WO2017131332A1 - 기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법 - Google Patents

기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법 Download PDF

Info

Publication number
WO2017131332A1
WO2017131332A1 PCT/KR2016/013330 KR2016013330W WO2017131332A1 WO 2017131332 A1 WO2017131332 A1 WO 2017131332A1 KR 2016013330 W KR2016013330 W KR 2016013330W WO 2017131332 A1 WO2017131332 A1 WO 2017131332A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane node
user plane
downlink packet
terminal device
forwarding table
Prior art date
Application number
PCT/KR2016/013330
Other languages
English (en)
French (fr)
Inventor
정상수
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Priority to JP2018558099A priority Critical patent/JP6638091B2/ja
Priority to EP22155429.8A priority patent/EP4033805A1/en
Priority to EP16888308.0A priority patent/EP3410774B1/en
Priority to ES16888308T priority patent/ES2862920T3/es
Priority to CN201680079838.1A priority patent/CN108496389B/zh
Priority to EP21151472.4A priority patent/EP3843456A1/en
Publication of WO2017131332A1 publication Critical patent/WO2017131332A1/ko
Priority to US16/044,906 priority patent/US10659397B2/en
Priority to US16/840,321 priority patent/US20200236067A1/en
Priority to US18/118,779 priority patent/US20230224263A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/14Flow control between communication endpoints using intermediate storage
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present embodiment relates to a method for transmitting a downlink packet to a terminal device in an idle mode in a mobile communication system in which a control plane and a user plane of a gateway node are separated.
  • the downlink traffic generated in the idle mode terminal device in the fifth generation mobile communication system is frequently generated or will be large traffic, it is efficiently processed to reduce the data transmission delay time for the user and reduce network resources. It is an important task to use it.
  • Embodiments of the present invention in a mobile communication system in which the control plane and the user plane of the gateway node is separated, the downlink packet for the terminal device in the idle mode that can reduce the data transmission delay time for the user and efficiently use network resources
  • the main purpose is to provide a transmission method.
  • the control plane node is a user plane.
  • a method for transmitting a downlink packet to an idle mode terminal device is provided.
  • the control plane node transmits a first forwarding table update command message to the first user plane node and the second user plane node to change the routing path of the downlink packet, and the second user plane node Receiving and buffering a downlink packet, and transmitting a downlink packet reception notification message to the control plane node, wherein the control plane node corresponds to the first user plane node and the second user plane node in response to the reception notification message of the downlink packet.
  • a buffered downlink packet is transmitted to the first user plane node by transmitting a second forwarding table update command message.
  • the first user plane node that provides a downlink packet transmission method comprising transmitting a downlink packet buffered by the station unit to the terminal device.
  • a method for transmitting a downlink packet to an idle mode terminal device is provided.
  • the control plane node transmits a first forwarding table update command message to the first user plane node and the second user plane node, and the first user plane node in response to the first forwarding table update command message.
  • the second user plane node buffering the downlink packet and transmitting a downlink packet reception notification message to the control plane node, receiving the downlink packet
  • the control plane node updates the second forwarding table with the first user plane node and the second user plane node.
  • Downlink packet transmission comprising the step of transmitting a command message, the buffered downlink packet being transmitted to the first user plane node, and the first user plane node transmitting the buffered downlink packet to the terminal device through the base station apparatus; Provide a method.
  • a data transmission delay time for a user in transmitting downlink data to a terminal device in an idle mode in a mobile communication system in which a control plane and a user plane of a gateway node are separated can reduce the cost and make efficient use of network resources.
  • an idle mode of a terminal device is supported to increase battery life.
  • the gateway by separating the user plane node of the gateway into a user plane node for processing traffic generated in the connection mode of the terminal device and a user plane node for buffering downlink traffic generated in the idle mode of the terminal device, This can increase the quality of service experience or reduce the complexity of the gateway user plane node.
  • routing is performed by configuring a user plane node for processing traffic generated in a connection mode of a terminal device and a user plane node for buffering downlink traffic generated in an idle mode of a terminal device with service chaining.
  • FIG. 1 is a block diagram of a conventional LTE mobile communication system.
  • FIG. 2 is a block diagram of a mobile communication system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a downlink data transmission method for an idle mode terminal device according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a downlink data transmission method for an idle mode terminal device according to another embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a downlink data transmission method for an idle mode terminal device according to another embodiment of the present invention.
  • FIG. 1 is a block diagram of a conventional LTE mobile communication system.
  • a conventional LTE mobile communication system includes a user equipment (UE) 10, a base station apparatus RAN 20, a mobility management entity (hereinafter referred to as “MME”), and serving.
  • Serving Gateway hereinafter referred to as 'S-GW', 40
  • Packet Gateway Packet Data Network Gateway, hereinafter referred to as 'P-GW', 60
  • PCRF Policy and Charging Rule Function
  • PDN Packet Data Network
  • the conventional LTE mobile communication system can be largely divided into a terminal device 10, a base station device 20, and a core network.
  • the core network here includes an MME 30, an S-GW 40, a P-GW 60, and a PCRF 50.
  • the gateways S-GW and P-GW included in the core network perform a function of interworking the PDN 70 and the base station apparatus 20.
  • the function of the gateway can be broadly classified into a function of a user plane (UP) for transmitting user data packets and a function of a control plane (CP) for controlling a function of the user plane.
  • UP user plane
  • CP control plane
  • the function of the control plane is to finally determine the traffic transmission parameters to be used in the user plane in consideration of user service and network conditions such as session management, mobility management, and quality of service management. It is done.
  • the function of the user plane is the main function to apply the parameters determined by the control plane to process the actual user traffic packet (for example, to transmit, discard, or buffer, etc. to another node).
  • Most of the conventional gateway nodes S-GW and P-GW have both the function of the user plane and the function of the control plane.
  • the mobile communication system separates and positions the control plane and the user plane of the gateway.
  • the function performed in the user plane is to process the user traffic packet according to the determined parameter, there is a simple and repetitive characteristic compared to the function performed in the control plane. Therefore, according to the present embodiment, the user plane is implemented as a switch of low complexity and low cost, and the control plane is centralized, thereby improving the performance of the entire mobile communication system.
  • the system performance can be improved by realizing the system by separating the functions according to the performance required by the user plane and the control plane.
  • FIG. 2 is a block diagram of a mobile communication system according to an embodiment of the present invention.
  • the mobile communication system 100 includes a terminal apparatus 110, a base station apparatus 120, an MME 132, gateway nodes 134 and 142, and a PCRF 136.
  • the gateway nodes 134 and 142 are divided into a control plane node 134 (hereinafter referred to as GW CP) and a user plane node 142 (hereinafter referred to as GW UP).
  • a 'node' may be implemented as a physical network device, a software module for performing a network function, or a combination of the two.
  • the software module may be stored in a memory and executed by one or more processors to perform one or more functions according to embodiments of the present invention described later.
  • Functions according to embodiments of the present invention may be performed by one processor, but may be performed in a form in which a plurality of processors are shared.
  • the processor may have a memory inside or outside the processor and may be connected to the processor by various means known to those skilled in the art.
  • the memory may be a computer-readable recording / storage medium such as random access memory (RAM), read only memory (ROM), flash memory, optical disk, magnetic disk, solid state disk (SSD), or the like.
  • the processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, individual gate or transistor logic, individual hardware components, or any of these. It can be implemented in combination.
  • the terminal device 110 may access an external network (not shown) through the base station device 120, the central cloud 130, and the edge cloud 140.
  • the terminal device 110 is an electronic device having a communication function, for example, a tablet PC, a laptop, a personal computer, a portable multimedia player (PMP), Wireless Communication Terminal, Smart Phone, Mobile Communication Terminal, Television, Digital Video Disc (DVD) Player, Audio, Refrigerator, Air Conditioner, Game Console, Set-top Box electronic devices of various types such as top boxes, medical devices, and measurement devices.
  • PMP portable multimedia player
  • PMP Portable Multimedia player
  • Wireless Communication Terminal Smart Phone
  • Mobile Communication Terminal Television
  • Digital Video Disc (DVD) Player Audio, Refrigerator, Air Conditioner, Game Console
  • Set-top Box electronic devices of various types such as top boxes, medical devices, and measurement devices.
  • the base station apparatus 120 refers to a device configuring an access network for call processing of the terminal apparatus 110 as a RAN (Radio Access Network) node.
  • the base station apparatus 120 may be, for example, an e-NodeB.
  • the MME 132 provides signaling and control functions for supporting access, network resource allocation, tracking, paging, roaming, handover, and the like, to the network connection of the terminal 110.
  • the node that does the job is not limited to, network resource allocation, tracking, paging, roaming, handover, and the like.
  • the GW CP 134 refers to a node that performs a control plane function of the gateway, and the GW UP 142 refers to a node that performs a user plane function of the gateway.
  • the GW UP 142 is a first user plane node 144 (hereinafter referred to as GW UP-C) and a second user plane node 146 (hereinafter referred to as GW UP-I) according to an embodiment of the present invention. It may include.
  • the GW UP-C 144 and the GW UP-I 146 are nodes that share the functions of the GW UP 142 according to an idle mode and a connected mode of the terminal device 110. Detailed description thereof will be described later with reference to other drawings.
  • the PCRF 136 is a node that determines a rule for policy and charging for each terminal device 110.
  • the MME 132, GW CP 134, and PCRF 136 may be virtualized and run in the central cloud 130, and the GW UP 142 may be virtualized and run in the edge cloud 140.
  • the central cloud 130 and the edge cloud 140 may be implemented as a commercial server.
  • the edge cloud 140 is a cloud that provides communication and computing functions located near the edge of the operator network, that is, the user terminal device or the base station device.
  • the function of the gateway may be separated to move the user plane node GW UP forward to the edge cloud 140.
  • the physical paths of the terminal device 110 and the base station device 120 are shortened by the forward arrangement of the user plane node GW UP, the transmission latency of the user data can be shortened effectively.
  • the downlink traffic arrives at the user plane node, but detects it and triggers paging and service request processes (ie, transmitting a downlink data notification message to the MME). This is done at the control plane node.
  • Another problem stems from the fact that the packet storage (buffering) function must be included in the user plane node in order to process the downlink packet of the idle terminal 110. Specifically, when the buffering function is implemented in all user plane nodes, the packet that is to be transmitted to the terminal device in the connected state cannot be processed due to the buffering function, thereby degrading service quality. It also makes it difficult to implement user plane nodes into low complexity switches as described above.
  • embodiments of the present invention provide a method in which a user plane node and a control plane node can process downlink traffic for an idle terminal device 110 by exchanging information.
  • FIG. 3 is a flowchart illustrating a downlink data transmission method for an idle mode terminal device according to an embodiment of the present invention.
  • Step S312 may include transmitting, by the GW CP 134, information including at least one of International Mobile Subscriber Identification (IMSI) and IP address of the terminal device 110 to the GW UP.
  • IMSI International Mobile Subscriber Identification
  • the information transmitted by the GW CP 134 to the GW UP 142 may distinguish a specific IP address.
  • the filter information may further include.
  • the GW UP 134 includes at least one of received information of a downlink packet matching the filter, a terminal device to which the received downlink packet belongs, an IP address, and tunnel endpoint identifier (TEID). Message to the GW CP 134.
  • TEID tunnel endpoint identifier
  • the GW UP-C 144 may include a buffering timer preset in the first forwarding table update command message and transmit the GW UP-C 144 to the GW UP.
  • the preset buffering timer may be set based on, for example, subscription information or service characteristics of the user. In this case, even if the GW UP receives the downlink packet, the GW UP does not transmit the downlink packet reception notification message to the GW CP 134 until the preset buffering timer expires. This may provide an effect of reducing battery consumption of the terminal device 110 using a service that is not sensitive to delay.
  • step S312 when the downlink packet destined for the identification information (IMSI) or IP address of the terminal device 110 is received by the GW UP 142, the GW UP 142 buffers the received downlink packet ( S314)
  • the generation notification message of the downlink packet reception event is transmitted to the GW CP 134 (S316).
  • the occurrence notification message of the downlink packet reception event may include at least one of identification information (IMSI), IP address, and tunnel end identification information (TEID) of the terminal device.
  • the GW CP 134 transmits a reception notification message of a downlink packet indicating that a downlink packet for the terminal device 110 in the idle mode has been received to a mobility management entity (hereinafter referred to as 'MME') ( S318).
  • the reception notification message of the downlink packet may include tunnel termination identification information (TEID) of the EPS bearer to which the packet belongs.
  • TEID tunnel termination identification information
  • the reception notification message of the downlink packet is at least one of the identification information (IMSI) and the IP address of the terminal device 110. It may include tunnel end identification information (TEID) of a default bearer of a packet data network connection (PDN connection) identified as one.
  • the GW CP 134 transmits a message indicating that the downlink packet is received to the MME 132 by using the notification information received from the GW UP 142.
  • the MME 132 transmits the paging request message to the terminal device 110 through the base station device 120 and receives the service request message from the terminal device 110, the terminal device 110 in the idle mode.
  • the paging process S320 and the bearer setup process S322 are performed.
  • the GW UP 134 transmits the downlink packet buffered through the base station apparatus 120 to the terminal apparatus 110 (S324 and S326).
  • the GW UP 134 transmits the buffered downlink packet to the base station apparatus 120 using the bearer set in step S322, and the base station apparatus 120 transmits the received downlink packet to the terminal apparatus 110. It transmits (S326).
  • each process is described as being sequentially executed, but is not necessarily limited thereto. In other words, since the process described in FIG. 3 may be applied by changing or executing one or more processes in parallel, FIG. 3 is not limited to the time series order.
  • the embodiment shown in FIG. 3 has the effect of processing downlink traffic for the terminal device 110 in the idle mode in the mobile communication network 100 in which the GW CP 134 and the GW UP 142 are separated. .
  • the GW UP 142 may process downlink traffic by performing a buffering function when the terminal device 110 is switched to the idle mode.
  • the buffering function increases the complexity of the mobile communication system. It can be cause.
  • the GW UP 142 should be equipped with a large buffering function, which may increase the complexity of the user plane node.
  • traffic processing of the connected mode terminal device may be delayed due to traffic processing of the idle mode terminal devices. Therefore, by separating the functions of the GW UP 142 according to the connection mode or the idle mode of the terminal device 110, it is necessary to control the complexity of the node or to control the connection mode traffic processing from being influenced by the idle mode traffic processing. .
  • FIG. 4 is a flowchart illustrating a downlink data transmission method for an idle mode terminal device according to another embodiment of the present invention.
  • the mobile communication system 100 is configured to idle traffic of a first user plane node GW UP-C and a terminal device 110 that process traffic generated in a connection mode of the terminal device 110. It may include a second user plane node (GW UP-I) for buffering the traffic generated in the.
  • GW UP-I second user plane node
  • the present embodiment separates the GW UP 142 into the GW UP-C 144 and the GW UP-I 146 to concentrate the buffering function in the idle mode on the GW UP-I 146.
  • the complexity of the GW UP-C 144 may be reduced, and the influence on the connection mode traffic processing may be reduced.
  • the terminal device 110 terminates data transmission in the connected mode (S410). Accordingly, the base station apparatus 120 transmits a terminal context release request message (eg, UE Context Release Request) to the MME 132 (S412), and the MME 132 sends a bearer modification / release request message to the GW CP 134. (Eg, Bearer Release Request) may be transmitted (S414).
  • Steps S412 and S414 are merely examples for the process of switching the terminal device 110 to the idle mode, and various modifications may be made by those skilled in the art without departing from the essential characteristics of the present embodiment. And variations will be possible.
  • the GW CP 134 transmits a first forwarding table update command message to the GW UP-I 146 and the GW UP-C 144 as the terminal device 110 is switched to the idle mode (S416). ).
  • the first forwarding table update command message is a message for instructing the forwarding table update to be received by the GW UP-I 146 instead of the GW UP-C 144 in the downlink packet generated for the terminal device 110 in the idle mode. It may mean.
  • the GW CP 134 sends a message to the GW UP-C 144 to instruct the GW UP-C 144 to update the forwarding table so that the GW UP-C 144 does not receive the downlink packet for the terminal device 110 in the idle mode. Can be transmitted (S416).
  • the GW CP 134 may transmit a message to the GW UP-I 146 instructing the GW UP-I 146 to update the forwarding table so that the GW UP-I 146 receives the downlink packet for the terminal device 110 in the idle mode. (S418).
  • the GW UP-C 144 may include a buffering timer preset in the first forwarding table update command message and transmit the same to the GW UP-I 146.
  • the preset buffering timer may be set based on, for example, subscription information or service characteristics of the user. In this case, even if the downlink packet is received, the GW UP-I 146 does not transmit the downlink packet reception notification message to the GW CP 134 until the preset buffering timer expires. This may provide an effect of reducing battery consumption of the terminal device 110 using a service that is not sensitive to delay.
  • the GW UP-I 146 Upon receiving the first forwarding table update command message, the GW UP-I 146 changes the transmission path of the downlink packet from the GW UP-C 144 to the GW UP-I 146 (S420). In detail, the GW UP-I 146 may transmit the routing information to the one or more routers 150 to change the routing path as described above.
  • the GW UP-I 146 When the GW UP-I 146 receives the downlink packet for the terminal device 110 in the idle mode according to the changed routing path, the GW UP-I 146 receives the reception notification message of the downlink packet indicating the GW CP. And transmits to step 134 (S424).
  • the reception notification message of the downlink packet may include identification information (IMSI), IP address, and tunnel end identification information (TEID) of the terminal device 110.
  • IMSI identification information
  • IP address IP address
  • TEID tunnel end identification information
  • step S426 is similar to the paging process and the service request process described above with reference to FIG. 3, description thereof will be omitted.
  • the GW CP 134 transmits a second forwarding table update command message to the GW UP-C 144 and the GW UP-I 146 in response to the reception notification message of the downlink packet (S428 and S430).
  • the GW CP 134 may transmit a message instructing the forwarding table update to allow the GW UP-C 144 to receive the downlink packet buffered in the GW UP-I 146 (S428).
  • the GW CP 134 may transmit a message instructing the forwarding table update to deliver the downlink packet buffered to the GW UP-I 146 to the GW UP-C 144 (S430).
  • the message for commanding the forwarding table update may include address or port information of the GW UP-C 144.
  • the GW UP-I 146 transmits the buffered downlink packet to the GW UP-C 144 using the path generated according to the forwarding table update (S432).
  • a process of reconfiguring a bearer (eg, an EPS bearer) may be performed (S434).
  • the GW UP-C 144 changes the transmission path of the downlink packet generated after the terminal device 110 is switched from the idle mode to the connected mode from the GW UP-I 146 to the GW UP-C 144.
  • routing information may be transmitted to one or more routers 150 (S436).
  • the GW UP-C 144 transmits the downlink packet buffered in the GW UP-I 146 to the terminal device 110 through the base station apparatus 120 (S438 and S440). Specifically, the GW UP-C 144 transmits a downlink packet to the base station apparatus 120 by using the bearer set in step S434, and the base station apparatus 120 transmits the received downlink packet to the terminal apparatus 110. Transmit (S440).
  • FIGS. 4A and 4B the processes are sequentially executed, but are not necessarily limited thereto. In other words, since the processes described in FIGS. 4A and 4B may be applied by changing or executing one or more processes in parallel, FIGS. 4A and 4B are not limited to the time series order.
  • the packet buffered in the GW UP-I 146 is transmitted to the GW UP-C 144, and then the GW UP-
  • the C 144 transmits the packets to the terminal device 110 through the base station device 120, but is not limited thereto.
  • the GW CP 134 transmits packets buffered in the GW UP-I 146 to the base station apparatus 120 and then downlinks the base station apparatus 120.
  • the forwarding information may be set to change the packet transmission path to the GW UP-C 144 and transmitted to the GW UP-I 146 and the GW UP-C 144.
  • GW UP-C first user plane node
  • GW UP second user plane node
  • FIG. 5 is a flowchart illustrating a downlink data transmission method for an idle mode terminal device according to another embodiment of the present invention.
  • the terminal device 110 terminates data transmission in the connected mode (S510). Accordingly, the base station apparatus 120 transmits a terminal context release request message (eg, UE Context Release Request) to the MME 132 (S512), and the MME 132 sends a bearer modification / release request message to the GW CP 134. (Eg, Bearer Release Request) may be transmitted (S514).
  • Steps S512 and S514 as a process for switching the terminal device 110 to the idle mode are merely exemplary, and various modifications can be made by those skilled in the art without departing from the essential characteristics of the present embodiment. And variations will be possible.
  • the GW UP-C 144 and the GW UP-I 146 are connected by service chaining.
  • the functions of the GW UP-C 144 and the GW UP-I 146 may be virtually connected.
  • the fact that the service chaining is applied means that downlink packet transmission is performed through the path of the GW UP-C 144 ⁇ GW UP-I 146 ⁇ GW UP-C 144 ⁇ base station apparatus 120.
  • the GW UP-I 146 receives and stores idle mode traffic from the GW UP-C.
  • the GW UP-I 146 plays a role of transmitting the traffic back to the GW UP-C. do.
  • the GW CP 134 transmits a first forwarding table update command message to the GW UP-I 146 and the GW UP-C 144 as the terminal device 110 is switched to the idle mode.
  • the first forwarding table update command message is received by the GW UP-C 144 and transmitted to the GW UP-I 146 by the GW UP-C 144 receiving the downlink packet generated in the idle mode of the terminal 110.
  • the GW CP 134 may transmit a message to the GW UP-C 144 to command the forwarding table update so that the downlink packet received by the GW UP-C 144 is delivered to the GW UP-I 146. There is (S516). In addition, the GW CP 134 may transmit a message instructing the forwarding table update to the GW UP-I 146 to buffer the downlink packet received from the GW UP-C 144 (S518).
  • the GW UP-C 144 may include a buffering timer preset in the first forwarding table update command message and transmit the same to the GW UP-I 146.
  • the preset buffering timer may be set based on, for example, subscription information or service characteristics of the user. In this case, even if the downlink packet is received, the GW UP-I 146 does not transmit the downlink packet reception notification message to the GW CP 134 until the preset buffering timer expires. This may provide an effect of reducing battery consumption of the terminal device 110 using a service that is not sensitive to delay.
  • the downlink packet generated for the terminal device 110 in the idle mode is first transmitted to the GW UP-C 144 (S520), and the GW UP-C 144 sets the received downlink packet into a service chain. ) To the GW UP-I 146 (S522).
  • the GW UP-I 146 buffers the received downlink packet (S522), and transmits a downlink reception notification message indicating the reception of the downlink packet to the GW CP 134 (S526). If the above-described buffering timer is set, the GW UP-I 146 may buffer the packet until the timer expires, and then transmit a reception notification message to the GW CP 134 when the timer expires.
  • step S528 is similar to the paging process and the service request process described above with reference to FIG. 3, a description thereof will be omitted.
  • the GW CP 134 transmits a second forwarding table update command message to the GW UP-C 144 and the GW UP-I 146 in response to the reception notification message of the downlink packet (S530 and S532).
  • the downlink packet buffered in the UP-I 146 is transmitted to the GW UP-C 144 (S534).
  • the GW CP 134 may transmit a message instructing the forwarding table update to allow the GW UP-C 144 to receive the downlink packet buffered in the GW UP-I 146 (S530).
  • a downlink packet generated after the terminal apparatus 110 is switched to the connected mode may transmit a message for commanding the forwarding table update so that the downlink packet is not transmitted to the GW UP-I 146. This is to deactivate the service chain set in the terminal device 110 in the idle mode.
  • the GW CP 134 may transmit a message to the GW UP-I 146 instructing the forwarding table update to forward the downlink packet buffered in the GW UP-I 146 to the GW UP-C 144.
  • the command message (second forwarding table update command message) transmitted by the GW CP 134 may include address or port information of the GW UP-C 144.
  • the GW UP-I 146 transmits the buffered downlink packet to the GW UP-C 144 (S534), and the GW UP-C 144 transmits the GW UP-I 146 through the base station apparatus 120.
  • the downlink packet received from the UE may be transmitted to the terminal device 110 (S536 and S538). Since a detailed description thereof is similar to that described above with reference to FIG. 4B, the description thereof will be omitted.
  • the packet buffered in the GW UP-I 146 is transmitted to the GW UP-C 144, and then the GW UP-
  • the C 144 transmits the packets to the terminal device 110 through the base station device 120, but is not limited thereto.
  • the GW CP 134 transmits packets buffered in the GW UP-I 146 to the base station apparatus 120 and then downlinks the base station apparatus 120.
  • the forwarding information may be set to change the packet transmission path to the GW UP-C 144 and transmitted to the GW UP-I 146 and the GW UP-C 144.
  • FIGS. 5A and 5B each process is described as being sequentially executed, but is not necessarily limited thereto. In other words, since the processes described in FIGS. 5A and 5B may be applied by changing or executing one or more processes in parallel, FIGS. 5A and 5B are not limited to the time series order.
  • each step of the flowcharts shown in FIGS. 3 to 5 may be embodied as computer readable codes on a computer readable recording medium.
  • the computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored. That is, the computer-readable recording medium may be a magnetic storage medium (for example, ROM, floppy disk, hard disk, etc.), an optical reading medium (for example, CD-ROM, DVD, etc.) and a carrier wave (for example, the Internet Storage medium).
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • the present embodiment is applied to a technique for transmitting downlink data to an idle terminal device, and thus, a control plane and a user plane of a gateway node are separated to reduce transmission delay time and improve network resource usage efficiency.
  • the present invention is a useful invention for generating an effect of increasing the battery life by supporting the idle mode of the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법을 개시한다. 본 실시예에 의하면, 게이트웨이 노드의 제어평면과 사용자평면이 분리된 이동통신 시스템에서, 사용자에 대한 데이터 전송 지연시간을 줄이고 네트워크 자원을 효율적으로 사용할 수 있도록 유휴모드의 단말장치에 대해 하향링크 패킷을 전송하는 방법을 제공하는 데 주된 목적이 있다.

Description

기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법
본 실시예는 게이트웨이 노드의 제어평면과 사용자평면이 분리된 이동통신 시스템에서, 유휴모드의 단말장치에 하향링크 패킷을 전송하는 방법에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
멀티미디어 서비스에 대한 요구가 커지면서 대용량 트래픽을 서비스하기 위하여 5세대 이동통신 기술에 대한 논의가 진행되고 있다. 5세대 이동통신 시스템에서는 대용량 트래픽이 발생하기 때문에 이를 효율적으로 처리하는 것이 중요한 과제가 된다. 이러한 과제에 대응하여 게이트웨이(Gateway)의 제어평면(Control Plane: CP)의 기능과 사용자평면(User Plane: UP)의 기능을 분리하는 것에 대한 논의가 3GPP(3rd Generation Partnership Project)에서 진행되고 있다.
게이트웨이가 제어평면의 기능을 수행하는 노드와 사용자평면의 기능을 수행하는 노드로 분리되어 별도로 존재하는 경우, 유휴모드(Idle Mode)의 단말장치(User Equipment: UE)에 대한 하향링크 트래픽 발생 시, 종래와는 다른 처리 방법이 필요하다. 다시 말해, 트래픽이 도착하는 노드(게이트웨이 사용자평면 노드)와 페이징(Paging)을 처리해야 할 노드(게이트웨이 제어평면 노드)가 서로 달라짐으로써, 이를 효율적으로 처리할 수 있는 방법이 필요하다.
또한, 5세대 이동통신 시스템에서 유휴모드의 단말장치에 대해 발생한 하향링크 트래픽은 빈번하게 발생하거나 용량이 큰 트래픽이 될 것이므로, 이를 효율적으로 처리하여 사용자에 대한 데이터 전송 지연시간을 줄이고 네트워크 자원을 효율적으로 사용하는 것이 중요한 과제로 대두된다.
본 발명의 실시예들은, 게이트웨이 노드의 제어평면과 사용자평면이 분리된 이동통신 시스템에서, 사용자에 대한 데이터 전송 지연시간을 줄이고 네트워크 자원을 효율적으로 사용할 수 있는 유휴모드의 단말장치에 대한 하향링크 패킷 전송방법을 제공하는 데 주된 목적이 있다.
본 발명의 실시예에 의하면, 게이트웨이가 사용자평면 노드와 제어평면 노드로 분리된 이동통신 시스템에서 유휴모드(Idle Mode)의 단말장치에 하향링크 패킷을 전송하는 방법에 있어서, 제어평면 노드가 사용자평면 노드에 상기 단말장치에 대한 하향링크 패킷 수신을 위한 정보 및 수신 알림 이벤트를 등록하는 단계, 사용자평면 노드가 단말장치에 대한 하향링크 패킷을 수신하여 버퍼링하고 제어평면 노드로 하향링크 패킷 수신 이벤트의 발생 알림 메시지를 전송하는 단계, 사용자평면 노드가 기지국장치를 통해 버퍼링된 하향링크 패킷을 단말장치로 전송하는 단계를 포함하는 하향링크 패킷 전송방법을 제공한다.
본 발명의 실시예에 의하면, 게이트웨이가 사용자평면 노드와 제어평면 노드로 분리된 이동통신 시스템에서 유휴모드(Idle Mode)의 단말장치에 하향링크 패킷을 전송하는 방법에 있어서, 단말장치가 유휴모드로 전환됨에 따라 제어평면 노드가 제1 사용자평면 노드 및 제2 사용자평면 노드로 제1 포워딩 테이블(Forwarding Table) 갱신명령 메시지를 전송하여 하향링크 패킷의 라우팅 경로를 변경하는 단계, 제2 사용자평면 노드가 하향링크 패킷을 수신하여 버퍼링하고 제어평면 노드로 하향링크 패킷의 수신 알림 메시지를 전송하는 단계, 하향링크 패킷의 수신 알림 메시지에 대응하여 제어평면 노드가 제1 사용자평면 노드 및 제2 사용자평면 노드로 제2 포워딩 테이블 갱신명령 메시지를 전송하여 버퍼링된 하향링크 패킷이 제1 사용자평면 노드로 전달되는 단계, 제1 사용자평면 노드가 지국장치를 통해 버퍼링된 하향링크 패킷을 단말장치로 전송하는 단계를 포함하는 하향링크 패킷 전송방법을 제공한다.
본 발명의 실시예에 의하면, 게이트웨이가 사용자평면 노드와 제어평면 노드로 분리된 이동통신 시스템에서 유휴모드(Idle Mode)의 단말장치에 하향링크 패킷을 전송하는 방법에 있어서, 단말장치가 유휴모드로 전환됨에 따라 제어평면 노드가 제1 사용자평면 노드 및 제2 사용자평면 노드로 제1 포워딩 테이블(Forwarding Table) 갱신명령 메시지를 전송하는 단계, 제1 포워딩 테이블 갱신명령 메시지에 대응하여 제1 사용자평면 노드가 하향링크 패킷을 수신하여 제2 사용자평면 노드로 전달하는 단계, 제2 사용자평면 노드가 하향링크 패킷을 버퍼링하고 제어평면 노드로 하향링크 패킷의 수신 알림 메시지를 전송하는 단계, 하향링크 패킷의 수신 알림 메시지에 대응하여 제어평면 노드가 제1 사용자평면 노드 및 제2 사용자평면 노드로 제2 포워딩 테이블 갱신명령 메시지를 전송하여 버퍼링된 하향링크 패킷이 제1 사용자평면 노드로 전달되는 단계 및 제1 사용자평면 노드가 기지국장치를 통해 버퍼링된 하향링크 패킷을 단말장치로 전송하는 단계를 포함하는 하향링크 패킷 전송방법을 제공한다.
이상에서 설명한 바와 같이 본 발명의 실시예들에 의하면, 게이트웨이 노드의 제어평면과 사용자평면이 분리된 이동통신 시스템에서 유휴모드의 단말장치로 하향링크 데이터를 전송함에 있어서, 사용자에 대한 데이터 전송 지연시간을 줄이고 네트워크 자원을 효율적으로 사용할 수 있는 효과가 있다.
본 발명의 실시예에 의하면, 게이트웨이 노드의 사용자평면과 제어평면이 분리된 이동통신 시스템에서, 단말장치의 유휴모드를 지원하여 배터리 사용 시간을 늘릴 수 있는 효과가 있다.
본 발명의 실시예에 의하면, 단말장치의 연결모드에서 발생한 트래픽을 처리하는 사용자평면 노드와 단말장치의 유휴모드에서 발생한 하향링크 트래픽을 버퍼링하는 사용자평면 노드로 게이트웨이의 사용자평면 노드를 분리함으로써, 사용자 체감 서비스 품질을 높이거나 게이트웨이 사용자평면 노드의 복잡성을 낮출 수 있는 효과가 있다.
본 발명의 실시예에 의하면, 단말장치의 연결모드에서 발생한 트래픽을 처리하는 사용자평면 노드와 단말장치의 유휴모드에서 발생한 하향링크 트래픽을 버퍼링하는 사용자 평면 노드를 서비스 체이닝(Service Chaining)으로 구성함으로써 라우팅 경로 갱신에 의한 오버헤드를 줄일 수 있는 효과가 있다.
도 1은 종래 LTE 이동통신 시스템의 구성도이다.
도 2는 본 발명의 실시예에 따른 이동통신 시스템의 구성도이다.
도 3은 본 발명의 실시예에 따른 유휴모드 단말장치에 대한 하향링크 데이터 전송방법을 나타내는 흐름도이다.
도 4는 본 발명의 다른 실시예에 따른 유휴모드 단말장치에 대한 하향링크 데이터 전송방법을 나타내는 흐름도이다.
도 5는 본 발명의 또 다른 실시예에 따른 유휴모드 단말장치에 대한 하향링크 데이터 전송방법을 나타내는 흐름도이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다.
첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.
도 1은 종래 LTE 이동통신 시스템의 구성도이다.
도 1을 참조하면, 종래 LTE 이동통신 시스템은 단말장치(User Equipment: UE, 10), 기지국장치(RAN, 20), 이동성 관리 엔티티(Mobility Management Entity, 이하 'MME'라 칭함, 30), 서빙 게이트웨이(Serving Gateway, 이하 'S-GW'라 칭함, 40), 패킷 게이트웨이(Packet Data Network Gateway, 이하 'P-GW'라 칭함, 60), 정책 및 과금 규칙기능(Policy and Charging Rule Function, 이하 'PCRF'라 칭함, 50), 및 패킷 데이터 네트워크(Packet Data Network, 이하 'PDN'이라 칭함, 70)를 포함한다.
종래 LTE 이동통신 시스템은 크게 단말장치(10), 기지국장치(20), 및 코어 네트워크로 구분할 수 있다. 여기서 코어 네트워크는 MME(30), S-GW(40), P-GW(60), 및 PCRF(50)를 포함한다.
코어 네트워크에 포함된 게이트웨이(S-GW 및 P-GW)는 PDN(70)과 기지국장치(20)를 연동하는 기능을 수행한다. 게이트웨이의 기능은 크게 사용자 데이터 패킷을 전송하는 사용자평면(User Plane: UP)의 기능과 사용자평면의 기능을 제어하기 위한 제어평면(Control Plane: CP)의 기능으로 구분할 수 있다.
제어평면의 기능은 세션 관리(Session Management), 이동성 관리(Mobility Management), QoS(Quality of Service) 관리 등 사용자 서비스와 네트워크 상태를 고려하여 사용자 평면에서 사용될 트래픽 전송 파라미터를 최종적으로 결정하는 것을 주요기능으로 한다. 한편, 사용자평면의 기능은 제어평면에 의해 결정된 파라미터를 적용하여 실제 사용자 트래픽 패킷을 처리(예컨대, 다른 노드로 전송, 폐기, 또는 버퍼링 등)하는 것을 주요기능으로 한다.
종래 게이트웨이 노드(S-GW 및 P-GW)의 대부분은 이러한 사용자평면의 기능과 제어평면의 기능을 모두 함께 갖는다.
그러나, 본 발명의 실시예에 따른 이동통신 시스템은 게이트웨이의 제어평면과 사용자평면을 분리하여 위치시킨다. 전술한 것과 같이, 사용자평면에서 수행되는 기능은 결정된 파라미터에 따라 사용자 트래픽 패킷을 처리하는 것이므로 제어평면에서 수행되는 기능에 비하여 단순하고 반복적인 특성이 있다. 따라서 본 실시예에 따르면 사용자평면을 낮은 복잡도와 저렴한 가격의 스위치(Switch)로 구현하고, 제어평면은 중앙 집중화함으로써 전체 이동통신 시스템의 성능을 향상시킬 수 있는 효과가 있다. 즉, 사용자평면 및 제어평면 각각의 기능에서 요구하는 성능에 맞게 기능을 분리하여 시스템을 구현함으로써 시스템 전체 성능까지 향상시킬 수 있는 것이다. 또한, 시스템의 성능 향상과 더불어 가격효율성을 높일 수 있는 효과도 있다.
이하, 도 2를 참조하여 본 발명의 실시예에 따른 이동통신 시스템의 구조에 대하여 구체적으로 설명한다.
도 2는 본 발명의 실시예에 따른 이동통신 시스템의 구성도이다.
본 발명의 실시예에 따른 이동통신 시스템(100)은 단말장치(110), 기지국장치(120), MME(132), 게이트웨이 노드(134, 142) 및 PCRF(136)를 포함한다. 여기서, 게이트웨이 노드(134, 142)는 제어평면 노드(134, 이하 'GW CP'라 칭함) 및 사용자평면 노드(142, 이하 'GW UP'라 칭함)로 분리된다.
이하, 본 발명의 실시예들에 대한 설명에서 '노드'는 물리적인 네트워크 장치, 네트워크 기능을 수행하는 소프트웨어 모듈, 또는 이 둘의 조합으로 구현될 수 있다. 소프트웨어 모듈은 추후 설명할 본 발명의 실시예들에 따른 하나 이상의 기능들을 수행하도록 메모리에 저장되어 하나 이상의 프로세서에 의해 실행될 수 있다. 본 발명의 실시예들에 따른 기능들은 하나의 프로세서에 의해 수행될 수도 있으나, 복수 개의 프로세서가 분담하는 형태로 수행될 수도 있다. 프로세서는 메모리는 프로세서 내부 또는 외부에 존재할 수 있고, 본 발명의 기술분야에 속한 통상의 기술자에게 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
메모리는 RAM(Random Access Memory), ROM(Read Only Memory), 플래시 메모리, 광 디스크, 자기 디스크, 솔리드 스테이트 디스크(SSD) 등의 컴퓨터로 판독 가능한 기록/저장매체일 수 있다. 프로세서는 범용 프로세서, DSP(Digital Signal Processor), ASIC(Application Specific Integrated Circuit), FPGA(Field Programmable Gate Array) 또는 다른 프로그램 가능한 로직 장치, 개별 게이트 또는 트랜지스터 로직, 개별 하드웨어 컴포넌트들, 또는 이들의 임의의 조합으로 구현될 수 있다.
단말장치(110)는 기지국장치(120), 중앙 클라우드(130), 및 에지 클라우드(140)를 통해 외부 네트워크(미도시)에 접속할 수 있다. 단말장치(110)는 통신 기능을 갖는 전자장치로, 예를 들어, 태블릿 PC(Tablet PC), 랩톱(Laptop), 개인용 컴퓨터(PC: Personal Computer), 휴대형 멀티미디어 플레이어(PMP: Portable Multimedia Player), 무선통신 단말장치(Wireless Communication Terminal), 스마트폰(SmartPhone), 이동통신 단말장치(Mobile Communication Terminal), 텔레비전, 디지털 비디오 디스크(DVD) 플레이어, 오디오, 냉장고, 에어컨디셔너, 게임 콘솔, 셋탑 박스(set-top box), 의료 기기, 측정 디바이스 등 다양한 형태의 전자기기가 포함될 수 있다.
기지국장치(120)는 RAN(Radio Access Network) 노드로서 단말장치(110)의 호 처리를 위한 액세스 네트워크를 구성하는 장치를 말한다. 기지국장치(120)는 예를 들어, e-NodeB가 될 수 있다.
MME(132)는 단말장치(110)의 네트워크 연결에 대한 액세스, 네트워크 자원 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버(handover) 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 노드이다.
GW CP(134)는 게이트웨이의 제어평면 기능을 수행하는 노드를 말하며, GW UP(142)는 게이트웨이의 사용자평면 기능을 수행하는 노드를 말한다. GW UP(142)는 본 발명의 실시예에 따라 제1 사용자평면 노드(144, 이하 'GW UP-C'라 칭함) 및 제2 사용자평면 노드(146, 이하 'GW UP-I'라 칭함)를 포함할 수 있다. GW UP-C(144) 및 GW UP-I(146)는 GW UP(142)의 기능을 단말장치(110)의 유휴모드(Idle Mode) 및 연결모드(Connected Mode)에 따라 분담한 노드로서, 이에 대한 자세한 설명은 다른 도면을 참조하여 후술한다.
PCRF(136)는 단말장치(110) 별로 정책(Policy)과 과금(Charging)에 대한 규칙을 정하는 노드이다.
MME(132), GW CP(134), 및 PCRF(136)는 가상화되어 중앙 클라우드(130)에서 실행될 수 있으며, GW UP(142)는 가상화되어 에지 클라우드(140)에서 실행될 수 있다. 중앙 클라우드(130) 및 에지 클라우드(140)는 상용서버로 구현될 수 있다. 여기서 에지 클라우드(140)는 사업자 망의 에지, 즉 사용자 단말장치나 기지국장치 근처에 위치하는 통신, 컴퓨팅 기능을 제공하는 클라우드이다.
본 발명의 실시예에 따르면, 게이트웨이의 기능을 분리하여 사용자평면 노드(GW UP)를 에지 클라우드(140)로 전진 배치할 수 있다. 사용자평면 노드(GW UP)의 전진배치로 단말장치(110)와 기지국장치(120)의 물리적 경로가 짧아짐에 따라 사용자 데이터의 전송 지연(Latency)을 효과적으로 단축할 수 있다.
다만, 사용자평면과 제어평면을 분리한 시스템 구조로 인하여 유휴상태에 있는 단말장치(110)의 하향링크 트래픽을 처리하는 데 어려움이 있다. 구체적으로 설명하면, 하향링크 트래픽은 사용자평면 노드로 도착하지만, 이를 감지하여 페이징(Paging) 및 서비스 요청(Service Request) 과정을 시작(Triggering)하는 작업(즉, MME에게 Downlink Data Notification 메시지를 전송하는 것)은 제어평면 노드에서 이루어지기 때문이다.
또 다른 문제는 유휴상태인 단말장치(110)의 하향링크 패킷을 처리하기 위해서는 패킷 저장(버퍼링) 기능이 사용자평면 노드에 포함되어야 하는 점으로부터 기인한다. 구체적으로, 모든 사용자평면 노드에 버퍼링 기능이 구현되면, 연결(connected) 상태의 단말장치에게 빠르게 전송되어야 하는 패킷을 버퍼링 기능 수행으로 인하여 처리하지 못하게 돼 서비스 품질을 저하시킬 수 있다. 또한, 사용자평면 노드를 전술한 바와 같이 복잡도가 낮은 스위치로 구현하는 것을 어렵게 만든다.
이러한 문제들을 해결하기 위하여 본 발명의 실시예들에서는 사용자평면 노드와 제어평면 노드가 정보를 교환함으로써 유휴상태의 단말장치(110)에 대한 하향링크 트래픽을 처리할 수 있는 방법을 제공한다.
이하, 도 3 내지 도 5를 참조하여 본 발명의 실시예에 대하여 구체적으로 설명한다.
도 3은 본 발명의 실시예에 따른 유휴모드 단말장치에 대한 하향링크 데이터 전송방법을 나타내는 흐름도이다.
도 3을 참조하면, 단말장치(110)는 연결모드에서 데이터 전송을 종료한 후 유휴모드로 전환된다(S310). 이에 따라, GW CP(134)는 단말장치(110)에 대한 하향링크 패킷 수신을 위한 정보 및 수신 알림 이벤트를 GW UP(142)에 등록한다(S312). 단계 S312는 GW CP(134)가 단말장치(110)의 식별정보(IMSI: International Mobile Subscriber Identification) 및 IP 주소 중 적어도 하나를 포함하는 정보를 GW UP로 전송하는 단계를 포함할 수 있다.
실시예에 따라 GW UP(142)와 GW CP(134)가 오픈플로우(OpenFlow)프로토콜로 통신하는 경우, GW CP(134)가 GW UP(142)로 전송하는 정보는 특정 IP 주소를 구분할 수 있는 필터 정보를 더 포함할 수 있다. 이 경우, GW UP(134)는 필터에 매칭되는 하향링크 패킷의 수신 정보, 수신된 하향링크 패킷이 속한 단말장치, IP 주소, 및 터널 종단 식별정보(TEID: Tunnel Endpoint Identifier) 중 적어도 하나를 포함하는 메시지를 GW CP(134)로 전송할 수 있다.
본 발명의 실시예에 따라 GW UP-C(144)는 제1 포워딩 테이블 갱신명령 메시지에 기 설정된 버퍼링 타이머를 포함하여 GW UP로 전송할 수 있다. 여기서 기 설정된 버퍼링 타이머는 예컨대, 사용자의 가입정보 또는 서비스 특성을 기반으로 설정될 수 있다. 이 경우, GW UP는 하향링크 패킷을 수신하더라도 기 설정된 버퍼링 타이머가 만료될 때까지 하향링크 패킷 수신 알림 메시지를 GW CP(134)로 전송하지 않는다. 이는 지연에 민감하지 않은 서비스를 사용하는 단말장치(110)의 배터리 소모를 줄일 수 있는 효과를 제공할 수 있다.
단계 S312 이후, GW UP(142)로 단말장치(110)의 식별정보(IMSI) 또는 IP 주소를 목적지로 하는 하향링크 패킷이 수신되면, GW UP(142)는 수신된 하향링크 패킷을 버퍼링하고(S314) GW CP(134)로 하향링크 패킷 수신 이벤트의 발생 알림 메시지를 전송한다(S316). 하향링크 패킷 수신 이벤트의 발생 알림 메시지는 단말장치의 식별정보(IMSI), IP 주소, 및 터널 종단 식별정보(TEID) 중 적어도 하나를 포함할 수 있다.
GW CP(134)는 이동성 관리 엔티티(Mobility Management Entity, 이하 'MME'라 칭함)로 유휴모드인 단말장치(110)에 대한 하향링크 패킷이 수신되었음을 알리는 하향링크 패킷의 수신 알림 메시지를 전송한다(S318). 여기서, 하향링크 패킷의 수신 알림 메시지는 패킷이 속한 EPS 베어러(Bearer)의 터널 종단 식별정보(TEID)를 포함할 수 있다.
GW CP(134)가 GW UP(142)로부터 터널 종단 식별정보(TEID)를 수신하지 않은 경우에 하향링크 패킷의 수신 알림 메시지는, 단말장치(110)의 식별정보(IMSI) 및 IP 주소 중 적어도 하나로 식별되는 패킷 데이터 네트워크 연결(Packet Data Network Connection: PDN Connection)의 디폴트 베어러(Default Bearer)의 터널 종단 식별정보(TEID)를 포함할 수 있다. GW CP(134)는 GW UP(142)로부터 수신된 알림 정보를 이용하여 MME(132)에게 하향링크 패킷이 수신되었음을 알리는 메시지를 전송한다.
단계 S318 이후, MME(132)는 기지국장치(120)를 통하여 단말장치(110)로 페이징요청 메시지를 전송하고 단말장치(110)로부터 서비스요청 메시지를 수신함으로써, 유휴모드에 있는 단말장치(110)에 대한 페이징 과정(S320) 및 베어러 설정 과정(S322)이 수행된다.
GW UP(134)는 기지국장치(120)를 통해 버퍼링되어 있던 하향링크 패킷을 단말장치(110)로 전송한다(S324 및 S326). 구체적으로, GW UP(134)는 단계 S322에서 설정된 베어러를 이용하여 기지국장치(120)로 버퍼링된 하향링크 패킷을 전송하고, 기지국장치(120)는 수신한 하향링크 패킷을 단말장치(110)로 전송한다(S326).
도 3에서는 각각의 과정을 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 다시 말해, 도 3에 기재된 과정을 변경하여 실행하거나 하나 이상의 과정을 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 3은 시계열적인 순서로 한정되는 것은 아니다.
도 3에서 도시하는 실시예는 GW CP(134)와 GW UP(142)가 분리된 이동통신 네트워크(100)에서 유휴모드의 단말장치(110)에 대한 하향링크 트래픽을 처리할 수 있는 효과가 있다.
본 발명의 실시예에 따른 GW UP(142)는 단말장치(110)가 유휴모드로 전환되는 경우 버퍼링 기능을 수행함으로써 하향링크 트래픽을 처리할 수 있는 데, 버퍼링 기능은 이동통신 시스템의 복잡도는 높이는 원인이 될 수 있다. 네트워크에 접속한 단말장치가 대부분의 시간 동안 유휴모드로 존재하는 것을 고려할 때, GW UP(142)가 버퍼링해야 할 트래픽의 양이 많거나 유휴모드 전환이 빈번하게 일어날 수 있기 때문이다. 이러한 이유로 많은 양의 트래픽을 버퍼링하기 위하여 GW UP(142)에는 대용량의 버퍼링 기능이 탑재되어야 할 것인데, 이것은 사용자평면 노드의 복잡성을 높일 수 있다. 단말장치의 수가 많거나 단말장치들의 유휴모드 진입이 빈번하면, 유휴모드 단말장치들의 트래픽 처리 때문에 연결모드 단말장치의 트래픽 처리가 지연될 수 있다. 따라서, 단말장치(110)의 연결모드 또는 유휴모드에 따라 GW UP(142)의 기능을 분리함으로써 노드의 복잡성을 낮추거나 연결모드 트래픽 처리가 유휴모드 트래픽 처리의 영향을 받지 않도록 제어할 필요가 있다.
이하, 도 4를 참조하여 전술한 문제점을 해결하기 위한 본 발명의 실시예에 대하여 설명한다.
도 4는 본 발명의 다른 실시예에 따른 유휴모드 단말장치에 대한 하향링크 데이터 전송방법을 나타내는 흐름도이다.
도 4를 참조하면, 본 실시예의 이동통신 시스템(100)은 단말장치(110)의 연결모드에서 발생한 트래픽을 처리하는 제1 사용자평면 노드(GW UP-C) 및 단말장치(110)의 유휴모드에서 발생한 트래픽을 버퍼링하는 제2 사용자평면 노드(GW UP-I)를 포함할 수 있다.
본 실시예는 GW UP(142)를 GW UP-C(144)와 GW UP-I(146)로 분리하여, 유휴모드에서의 버퍼링 기능을 GW UP-I(146)에 집중시킨다. 이로써, GW UP-C(144)의 복잡성은 낮추면서 연결모드 트래픽 처리에 미치는 영향을 줄일 수 있다.
도 4a를 참조하면, 우선 단말장치(110)가 연결모드에서의 데이터 전송을 종료한다(S410). 이에 따라 기지국장치(120)는 MME(132)로 단말 컨텍스트 해제 요청 메시지(예, UE Context Release Request)를 전송하고(S412), MME(132)는 GW CP(134)로 베어러 수정/해제 요청 메시지(예, Bearer Release Request)를 전송할 수 있다(S414). 단말장치(110)를 유휴모드로 전환하기 위한 과정으로서 단계 S412 및 S414는 예시에 불과하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
GW CP(134)는 단말장치(110)가 유휴모드로 전환됨에 따라 GW UP-I(146) 및 GW UP-C(144)로 제1 포워딩 테이블(Forwarding Table) 갱신명령 메시지를 전송한다(S416). 여기서 제1 포워딩 테이블 갱신명령 메시지는 유휴모드의 단말장치(110)에 대하여 발생한 하향링크 패킷을 GW UP-C(144)가 아닌 GW UP-I(146)가 수신하도록 포워딩 테이블 갱신을 명령하는 메시지를 의미할 수 있다.
구체적으로, GW CP(134)는 GW UP-C(144)가 유휴모드의 단말장치(110)에 대한 하향링크 패킷을 수신하지 않도록 포워딩 테이블 갱신을 명령하는 메시지를 GW UP-C(144)로 전송할 수 있다(S416). 또한, GW CP(134)는 GW UP-I(146)가 유휴모드의 단말장치(110)에 대한 하향링크 패킷을 수신하도록 포워딩 테이블 갱신을 명령하는 메시지를 GW UP-I(146)로 전송할 수 있다(S418).
본 발명의 실시예에 따라 GW UP-C(144)는 제1 포워딩 테이블 갱신명령 메시지에 기 설정된 버퍼링 타이머를 포함하여 GW UP-I(146)로 전송할 수 있다. 여기서 기 설정된 버퍼링 타이머는 예컨대, 사용자의 가입정보 또는 서비스 특성을 기반으로 설정될 수 있다. 이 경우, GW UP-I(146)는 하향링크 패킷을 수신하더라도 기 설정된 버퍼링 타이머가 만료될 때까지 하향링크 패킷 수신 알림 메시지를 GW CP(134)로 전송하지 않는다. 이는 지연에 민감하지 않은 서비스를 사용하는 단말장치(110)의 배터리 소모를 줄일 수 있는 효과를 제공할 수 있다.
제1 포워딩 테이블 갱신명령 메시지를 수신한 GW UP-I(146)는 하향링크 패킷의 전송경로를 GW UP-C(144)에서 GW UP-I(146)로 변경한다(S420). 구체적으로 GW UP-I(146)는 라우팅 경로를 전술한 바와 같이 변경하는 라우팅 정보를 하나 이상의 라우터(150)에 전송할 수 있다.
변경된 라우팅 경로에 따라 GW UP-I(146)가 유휴모드의 단말장치(110)에 대한 하향링크 패킷을 수신하면, GW UP-I(146)는 이를 알리는 하향링크 패킷의 수신 알림 메시지를 GW CP(134)로 전송한다(S424). 여기서 하향링크 패킷의 수신 알림 메시지는 단말장치(110)의 식별정보(IMSI), IP 주소 및 터널 종단 식별정보(TEID)를 포함할 수 있다. 전술한 바와 같이, GW UP-I(146)가 버퍼링 타이머를 수신한 경우, 버퍼링 타이머가 만료될 때까지 하향링크 패킷의 수신 알림 메시지 전송을 지연시킬 수 있다.
단계 S426은 도 3을 참조하여 전술한 페이징 과정 및 서비스 요청 과정과 유사하므로 설명을 생략한다.
GW CP(134)는 하향링크 패킷의 수신 알림 메시지에 대응하여 GW UP-C(144) 및 GW UP-I(146)로 제2 포워딩 테이블 갱신명령 메시지를 전송한다(S428 및 S430). 구체적으로 GW CP(134)는 GW UP-C(144)가 GW UP-I(146)에 버퍼링된 하향링크 패킷을 수신할 수 있도록 포워딩 테이블 갱신을 명령하는 메시지를 전송할 수 있다(S428). 또한, GW CP(134)는 GW UP-I(146)에 버퍼링된 하향링크 패킷을 GW UP-C(144)로 전달하도록 포워딩 테이블 갱신을 명령하는 메시지를 전송할 수 있다(S430). 여기서, 포워딩 테이블 갱신을 명령하는 메시지는 GW UP-C(144)의 주소 또는 포트 정보를 포함할 수 있다.
GW UP-I(146)는 포워딩 테이블 갱신에 따라 생성된 경로를 이용하여 버퍼링되어 있던 하향링크 패킷을 GW UP-C(144)로 전송한다(S432).
하향링크 패킷을 GW UP-C(144)에서 기지국장치(120)로 전송하기 위하여 베어러(예, EPS 베어러)를 다시 설정하는 과정이 수행될 수 있다(S434).
GW UP-C(144)는 단말장치(110)가 유휴모드에서 연결모드로 전환된 이후에 발생한 하향링크 패킷의 전송경로를 GW UP-I(146)에서 GW UP-C(144)로 변경하기 위하여 라우팅 경로를 변경하는 라우팅 정보를 하나 이상의 라우터(150)로 전송할 수 있다(S436).
GW UP-C(144)는 기지국장치(120)를 통해 GW UP-I(146)에 버퍼링되어 있던 하향링크 패킷을 단말장치(110)로 전송한다(S438 및 S440). 구체적으로, GW UP-C(144)는 단계 S434에서 설정된 베어러를 이용하여 기지국장치(120)로 하향링크 패킷을 전송하고, 기지국장치(120)는 수신한 하향링크 패킷을 단말장치(110)로 전송한다(S440).
도 4a 및 도 4b에서는 각각의 과정을 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 다시 말해, 도 4a 및 도 4b에 기재된 과정을 변경하여 실행하거나 하나 이상의 과정을 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 4a 및 도 4b은 시계열적인 순서로 한정되는 것은 아니다.
한편, 전술한 실시 예에서는 유휴모드의 단말장치(110)가 연결모드로 전환될 때 GW UP-I(146)에 버퍼링 되어있던 패킷이 GW UP-C(144)로 전송되고, 이후 GW UP-C(144)가 기지국장치(120)를 통해 패킷들을 단말장치(110)로 전송하는 것을 예로 들었으나, 이에 한정되지 않는다. 예컨대, GW UP-I(146)가 기지국장치(120)와 직접 연결된 경우, GW CP(134)는 GW UP-I(146)에 버퍼링 되어있는 패킷들을 기지국장치(120)로 전송시킨 후 하향링크 패킷 전송 경로를 GW UP-C(144)로 바꾸도록 포워딩 정보를 설정하여 GW UP-I(146)와 GW UP-C(144)로 전송할 수도 있다.
도 4에서 도시하는 실시예는 단말장치(110)의 연결모드에서 발생한 트래픽을 처리하는 제1 사용자평면 노드(GW UP-C)와 유휴모드에서 발생한 트래픽을 버퍼링하는 제2 사용자평면 노드(GW UP-I)를 분리하여 시스템의 효율성을 향상시킬 수 있는 효과가 있다.
다만, GW UP-C(144)와 GW UP-I(146) 사이에서 하향링크 패킷 전송경로가 변경됨에 따라 하나 이상의 라우터(150)로 라우팅 경로 정보가 전송되어야 하는 오버헤드가 존재한다. 따라서, 이러한 오버헤드를 줄이기 위한 방법이 요구된다.
이하, 도 5를 참조하여 전술한 문제점을 해결하기 위한 본 발명의 실시예에 대하여 설명한다.
도 5는 본 발명의 또 다른 실시예에 따른 유휴모드 단말장치에 대한 하향링크 데이터 전송방법을 나타내는 흐름도이다.
도 5a를 참조하면, 우선 단말장치(110)가 연결모드에서의 데이터 전송을 종료한다(S510). 이에 따라 기지국장치(120)는 MME(132)로 단말 컨텍스트 해제 요청 메시지(예, UE Context Release Request)를 전송하고(S512), MME(132)는 GW CP(134)로 베어러 수정/해제 요청 메시지(예, Bearer Release Request)를 전송할 수 있다(S514). 단말장치(110)를 유휴모드로 전환하기 위한 과정으로서 단계 S512 및 S514는 예시에 불과하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
본 실시예에서 GW UP-C(144)와 GW UP-I(146)는 서비스 체이닝(Serving Chaining)에 의해 연결된다. GW UP-C(144)와 GW UP-I(146)의 기능이 가상화되어 연결될 수 있다. 서비스 체이닝이 적용된다는 것은, 하향링크 패킷 전송이 GW UP-C(144) → GW UP-I(146) → GW UP-C(144) → 기지국장치(120)의 경로로 이루어진다는 것을 의미한다. 이 경로 상에서 GW UP-I(146)는 유휴모드 트래픽을 GW UP-C로부터 수신하여 저장하였다가, 단말장치(110)가 연결모드로 전환되면 이를 GW UP-C로 다시 전달해 주는 역할을 수행하게 된다.
GW CP(134)는 단말장치(110)가 유휴모드로 전환됨에 따라 GW UP-I(146) 및 GW UP-C(144)로 제1 포워딩 테이블 갱신명령 메시지를 전송한다. 여기서 제1 포워딩 테이블 갱신명령 메시지는 단말장치(110)의 유휴모드에서 발생한 하향링크 패킷을 GW UP-C(144)가 수신하여 GW UP-I(146)로 전달하고, GW UP-I(146)는 전달받은 하향링크 패킷을 버퍼링하도록 포워딩 테이블 갱신을 명령하는 메시지일 수 있다.
즉, GW CP(134)는 GW UP-C(144)가 수신한 하향링크 패킷이 GW UP-I(146)로 전달되도록 포워딩 테이블 갱신을 명령하는 메시지를 GW UP-C(144)로 전송할 수 있다(S516). 또한, GW CP(134)는 GW UP-C(144)로부터 전달받은 하향링크 패킷을 버퍼링하도록 포워딩 테이블 갱신을 명령하는 메시지를 GW UP-I(146)로 전송할 수 있다(S518).
본 발명의 실시예에 따라 GW UP-C(144)는 제1 포워딩 테이블 갱신명령 메시지에 기 설정된 버퍼링 타이머를 포함하여 GW UP-I(146)로 전송할 수 있다. 여기서 기 설정된 버퍼링 타이머는 예컨대, 사용자의 가입정보 또는 서비스 특성을 기반으로 설정될 수 있다. 이 경우, GW UP-I(146)는 하향링크 패킷을 수신하더라도 기 설정된 버퍼링 타이머가 만료될 때까지 하향링크 패킷 수신 알림 메시지를 GW CP(134)로 전송하지 않는다. 이는 지연에 민감하지 않은 서비스를 사용하는 단말장치(110의 배터리 소모를 줄일 수 있는 효과를 제공할 수 있다.
유휴모드의 단말장치(110)에 대하여 발생한 하향링크 패킷은 GW UP-C(144)로 먼저 전송되며(S520), GW UP-C(144)는 수신한 하향링크 패킷을 설정된 서비스 체인(Service Chain)에 의해 GW UP-I(146)로 전달한다(S522).
GW UP-I(146)는 전달받은 하향링크 패킷을 버퍼링하고(S522), GW CP(134)로 하향링크 패킷의 수신을 알리는 하향링크 수신 알림 메시지를 전송한다(S526). 만약 전술한 버퍼링 타이머가 설정된 경우, GW UP-I(146)는 타이머가 만료될 때까지 패킷을 버퍼링하다가, 만료되는 시점에 수신 알림 메시지를 GW CP(134)로 전송할 수 있다.
단계 S528은 도 3을 참조하여 전술한 페이징 과정 및 서비스 요청 과정과 유사하므로 설명을 생략한다.
이후, GW CP(134)는 하향링크 패킷의 수신 알림 메시지에 대응하여 GW UP-C(144) 및 GW UP-I(146)로 제2 포워딩 테이블 갱신명령 메시지를 전송하여(S530 및 S532) GW UP-I(146)에 버퍼링되어 있던 하향링크 패킷이 GW UP-C(144)로 전달되게 한다(S534).
구체적으로, GW CP(134)는 GW UP-C(144)가 GW UP-I(146)에 버퍼링된 하향링크 패킷을 수신할 수 있도록 포워딩 테이블 갱신을 명령하는 메시지를 전송할 수 있다(S530). 또한, 단말장치(110)가 연결모드로 전환된 이후 발생한 하향링크 패킷이 GW UP-I(146)에 전달되지 않도록 포워딩 테이블 갱신을 명령하는 메시지를 전송할 수 있다. 이는 단말장치(110)가 유휴모드인 상태에서 설정된 서비스 체인을 비활성화하기 위함이다.
또한, GW CP(134)는 GW UP-I(146)에 버퍼링된 하향링크 패킷을 GW UP-C(144)로 전달하도록 포워딩 테이블 갱신을 명령하는 메시지를 GW UP-I(146)로 전송할 수 있다(S532). 여기서 GW CP(134)가 전송하는 명령 메시지(제2 포워딩 테이블 갱신명령 메시지)는 GW UP-C(144)의 주소 또는 포트 정보를 포함할 수 있다.
GW UP-I(146)는 버퍼링된 하향링크 패킷을 GW UP-C(144)로 전달하고(S534), GW UP-C(144)는 기지국장치(120)를 통해 GW UP-I(146)로부터 수신한 하향링크 패킷을 단말장치(110)로 전송할 수 있다(S536 및 S538). 이에 대한 구체적인 설명은 도 4b를 참조하여 전술한 바와 유사하므로 설명을 생략한다.
한편, 전술한 실시 예에서는 유휴모드의 단말장치(110)가 연결모드로 전환될 때 GW UP-I(146)에 버퍼링 되어있던 패킷이 GW UP-C(144)로 전송되고, 이후 GW UP-C(144)가 기지국장치(120)를 통해 패킷들을 단말장치(110)로 전송하는 것을 예를 들었으나, 이에 한정되지 않는다. 예컨대, GW UP-I(146)가 기지국장치(120)와 직접 연결된 경우, GW CP(134)는 GW UP-I(146)에 버퍼링 되어있는 패킷들을 기지국장치(120)로 전송시킨 후 하향링크 패킷 전송 경로를 GW UP-C(144)로 바꾸도록 포워딩 정보를 설정하여 GW UP-I(146)와 GW UP-C(144)로 전송할 수도 있다.
도 5a 및 도 5b에서는 각각의 과정을 순차적으로 실행하는 것으로 기재하고 있으나, 반드시 이에 한정되는 것은 아니다. 다시 말해, 도 5a 및 도 5b에 기재된 과정을 변경하여 실행하거나 하나 이상의 과정을 병렬적으로 실행하는 것으로 적용 가능할 것이므로, 도 5a 및 도 5b는 시계열적인 순서로 한정되는 것은 아니다.
한편, 도 3 내지 도 5에 도시된 흐름도의 각 단계는 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 즉, 컴퓨터가 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장매체를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
이상의 설명은 본 실시예의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 실시예들은 본 실시예의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 실시예의 기술 사상의 범위가 한정되는 것은 아니다. 본 실시예의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 실시예의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 설명한 바와 같이 본 실시예는 유휴모드의 단말장치에 하향링크 데이터를 전송하는 기술에 적용되어, 게이트웨이 노드의 제어평면과 사용자평면을 분리하여 전송 지연 시간을 줄이고 네트워크 자원의 사용 효율을 향상시키며, 단말장치의 유휴모드를 지원함으로써 배터리 사용 시간을 늘릴 수 있는 효과를 발생하는 유용한 발명이다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2016년 01월 25일 한국에 출원한 특허출원번호 제10-2016-0008674호에 대해 미국 특허법 119(a)조(35 U.S.C §119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하며 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (12)

  1. 게이트웨이가 사용자평면 노드와 제어평면 노드로 분리된 이동통신 시스템에서 유휴모드(Idle Mode)의 단말장치에 하향링크 패킷을 전송하는 방법에 있어서,
    상기 제어평면 노드가 상기 사용자평면 노드에 상기 단말장치에 대한 하향링크 패킷 수신을 위한 정보 및 수신 알림 이벤트를 등록하는 단계;
    상기 사용자평면 노드가 상기 단말장치에 대한 하향링크 패킷을 수신하여 버퍼링하고, 상기 제어평면 노드로 상기 하향링크 패킷 수신 이벤트의 발생 알림 메시지를 전송하는 단계; 및
    상기 사용자평면 노드가 기지국장치를 통해 상기 버퍼링된 하향링크 패킷을 상기 단말장치로 전송하는 단계
    를 포함하는 하향링크 패킷 전송방법.
  2. 제1항에 있어서,
    상기 하향링크 패킷의 수신 알림 메시지는, 터널 종단 식별정보(TEID)를 포함하거나,
    상기 단말장치의 식별정보(IMSI) 및 IP 주소 중 적어도 하나로 식별되는 패킷 데이터 네트워크 연결(Packet Data Network Connection)의 디폴트 베어러(Default Bearer)의 터널 종단 식별정보(TEID)를 포함하는 것을 특징으로 하는 하향링크 패킷 전송방법.
  3. 게이트웨이가 사용자평면 노드와 제어평면 노드로 분리된 이동통신 시스템에서 유휴모드(Idle Mode)의 단말장치에 하향링크 패킷을 전송하는 방법에 있어서,
    상기 단말장치가 유휴모드로 전환됨에 따라 상기 제어평면 노드가 제1 사용자평면 노드 및 제2 사용자평면 노드로 제1 포워딩 테이블(Forwarding Table) 갱신명령 메시지를 전송하여 상기 하향링크 패킷의 라우팅 경로를 변경하는 단계;
    상기 제2 사용자평면 노드가 상기 하향링크 패킷을 수신하여 버퍼링하고 상기 제어평면 노드로 상기 하향링크 패킷의 수신 알림 메시지를 전송하는 단계;
    상기 하향링크 패킷의 수신 알림 메시지에 대응하여 상기 제어평면 노드가 상기 제1 사용자평면 노드 및 상기 제2 사용자평면 노드로 제2 포워딩 테이블 갱신명령 메시지를 전송하여 상기 버퍼링된 하향링크 패킷이 상기 제1 사용자평면 노드로 전달되는 단계; 및
    상기 제1 사용자평면 노드가 지국장치를 통해 상기 버퍼링된 하향링크 패킷을 상기 단말장치로 전송하는 단계
    를 포함하는 하향링크 패킷 전송방법.
  4. 제3항에 있어서,
    상기 제1 포워딩 테이블 갱신명령 메시지는,
    상기 단말장치의 유휴모드에서 발생한 하향링크 패킷을 상기 제1 사용자평면 노드가 아닌 제2 사용자평면 노드가 수신하도록 포워딩 테이블 갱신을 명령하는 메시지인 것을 특징으로 하는 하향링크 패킷 전송방법.
  5. 제3항에 있어서,
    상기 제2 포워딩 테이블 갱신명령 메시지는 상기 제1 사용자평면 노드의 주소 정보를 포함하는 것을 특징으로 하는 하향링크 패킷 전송방법.
  6. 제3항에 있어서,
    상기 제1 포워딩 테이블 갱신명령 메시지는 기 설정된 버퍼링 타이머를 포함하고, 상기 제2 사용자평면 노드는 상기 버퍼링 타이머가 만료될 때까지 상기 하향링크 패킷의 수신 알림 메시지 전송을 지연하는 것을 특징으로 하는 하향링크 패킷 전송방법.
  7. 게이트웨이가 사용자평면 노드와 제어평면 노드로 분리된 이동통신 시스템에서 유휴모드(Idle Mode)의 단말장치에 하향링크 패킷을 전송하는 방법에 있어서,
    상기 단말장치가 유휴모드로 전환됨에 따라 상기 제어평면 노드가 제1 사용자평면 노드 및 제2 사용자평면 노드로 제1 포워딩 테이블(Forwarding Table) 갱신명령 메시지를 전송하는 단계;
    상기 제1 포워딩 테이블 갱신명령 메시지에 대응하여 상기 제1 사용자평면 노드가 상기 하향링크 패킷을 수신하여 상기 제2 사용자평면 노드로 전달하는 단계;
    상기 제2 사용자평면 노드가 상기 하향링크 패킷을 버퍼링하고 상기 제어평면 노드로 상기 하향링크 패킷의 수신 알림 메시지를 전송하는 단계;
    상기 하향링크 패킷의 수신 알림 메시지에 대응하여 상기 제어평면 노드가 상기 제1 사용자평면 노드 및 상기 제2 사용자평면 노드로 제2 포워딩 테이블 갱신명령 메시지를 전송하여 상기 버퍼링된 하향링크 패킷이 상기 제1 사용자평면 노드로 전달되는 단계; 및
    상기 제1 사용자평면 노드가 기지국장치를 통해 상기 버퍼링된 하향링크 패킷을 상기 단말장치로 전송하는 단계
    를 포함하는 하향링크 패킷 전송방법.
  8. 제7항에 있어서,
    상기 제1 사용자평면 노드와 상기 제2 사용자평면 노드는 서비스 체이닝(Service Chaining)에 의해 연결되는 것을 특징으로 하는 하향링크 패킷 전송방법.
  9. 제7항에 있어서,
    상기 제1 포워딩 테이블 갱신명령 메시지는,
    상기 단말장치의 유휴모드에서 발생한 하향링크 패킷을 상기 제1 사용자평면 노드가 수신하여 상기 제2 사용자평면 노드로 전달하고, 상기 제2 사용자평면 노드는 상기 전달받은 하향링크 패킷을 버퍼링하도록 포워딩 테이블 갱신을 명령하는 메시지인 것을 특징으로 하는 하향링크 패킷 전송방법.
  10. 제7항에 있어서,
    상기 제2 포워딩 테이블 갱신명령 메시지는 상기 제1 사용자평면 노드의 주소 정보를 포함하는 것을 특징으로 하는 하향링크 패킷 전송방법.
  11. 제7항에 있어서,
    상기 제1 포워딩 테이블 갱신명령 메시지는 기 설정된 버퍼링 타이머를 포함하고, 상기 제2 사용자평면 노드는 상기 버퍼링 타이머가 만료될 때까지 상기 하향링크 패킷의 수신 알림 메시지 전송을 지연하는 것을 특징으로 하는 하향링크 패킷 전송방법.
  12. 제3항 또는 제7항에 있어서,
    상기 제1 사용자평면 노드는 상기 단말장치의 연결모드(Connected Mode)에서 발생한 트래픽을 처리하고, 상기 제2 사용자평면 노드는 상기 단말장치의 유휴모드에서 발생한 트래픽을 버퍼링하는 것을 특징으로 하는 하향링크 패킷 전송방법.
PCT/KR2016/013330 2016-01-25 2016-11-18 기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법 WO2017131332A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2018558099A JP6638091B2 (ja) 2016-01-25 2016-11-18 機能分離のコアネットワークでの下りリンクパケットの伝送方法
EP22155429.8A EP4033805A1 (en) 2016-01-25 2016-11-18 Method for transmitting downlink packet in function-separated core network
EP16888308.0A EP3410774B1 (en) 2016-01-25 2016-11-18 Method and gateway for transmitting downlink packet in function-separated core network
ES16888308T ES2862920T3 (es) 2016-01-25 2016-11-18 Procedimiento y puerta de enlace para transmitir un paquete de enlace descendente en una red central separada por funciones
CN201680079838.1A CN108496389B (zh) 2016-01-25 2016-11-18 用于在功能分离的核心网络中发送下行链路分组的方法
EP21151472.4A EP3843456A1 (en) 2016-01-25 2016-11-18 Method for transmitting downlink packet in function-separated core network
US16/044,906 US10659397B2 (en) 2016-01-25 2018-07-25 Method for transmitting downlink packet in function-separated core network
US16/840,321 US20200236067A1 (en) 2016-01-25 2020-04-03 Method for transmitting downlink packet in function-separated core network
US18/118,779 US20230224263A1 (en) 2016-01-25 2023-03-08 Method for transmitting downlink packet in function-separated core network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0008674 2016-01-25
KR1020160008674A KR101893917B1 (ko) 2016-01-25 2016-01-25 기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/044,906 Continuation US10659397B2 (en) 2016-01-25 2018-07-25 Method for transmitting downlink packet in function-separated core network

Publications (1)

Publication Number Publication Date
WO2017131332A1 true WO2017131332A1 (ko) 2017-08-03

Family

ID=59398892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/013330 WO2017131332A1 (ko) 2016-01-25 2016-11-18 기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법

Country Status (7)

Country Link
US (3) US10659397B2 (ko)
EP (3) EP3843456A1 (ko)
JP (2) JP6638091B2 (ko)
KR (1) KR101893917B1 (ko)
CN (3) CN108496389B (ko)
ES (1) ES2862920T3 (ko)
WO (1) WO2017131332A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10904739B2 (en) 2019-04-02 2021-01-26 Electronics And Telecommunications Research Institute Network data collection method from network function device for network data analytic function

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235376B (zh) * 2016-12-21 2020-03-06 电信科学技术研究院 一种用户面锚点选择方法及装置
KR102237265B1 (ko) * 2017-10-25 2021-04-07 에릭슨 엘지 주식회사 패킷 처리 장치 및 방법
CN110662308B (zh) * 2018-06-30 2021-11-09 华为技术有限公司 一种通信方法及装置
US10868750B1 (en) 2019-08-09 2020-12-15 Verizon Patent And Licensing Inc. Method and device for facilitating delivery of content in a multi-access edge computing (MEC) environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110310804A1 (en) * 2010-06-21 2011-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and Arrangement for Paging in a Wireless Communications System
US20130064158A1 (en) * 2010-05-26 2013-03-14 Telefonaktiebolaget L M Ericsson (Publ) Connection States for a User Entity in a Serving Gateway of an Evolved Packet Core System
WO2015000516A1 (en) * 2013-07-03 2015-01-08 Nokia Solutions And Networks Oy User plane idle mode buffering within software defined network architecture
US20150264739A1 (en) * 2012-10-08 2015-09-17 Nokia Solutions And Networks Oy Methods, devices, and computer program products for keeping devices attached without a default bearer
US20150359018A1 (en) * 2012-12-26 2015-12-10 Zte Corporation Bearer allocation method, user equipment, base station, and serving gateway
KR20160008674A (ko) 2014-07-14 2016-01-25 주식회사 대현실업 복합지수판의 십자형 연결이음부재

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY159641A (en) * 2009-09-02 2017-01-13 ERICSSON TELEFON AB L M (publ) Solution for paging differentiation in communication network
US9271216B2 (en) * 2011-04-12 2016-02-23 Telefonaktiebolaget L M Ericsson (Publ) Sending user plane traffic in a mobile communications network
EP2820803B1 (en) * 2012-02-28 2020-08-26 Nokia Solutions and Networks Oy Data forwarding in a mobile communications network system with centralized gateway apparatus controlling distributed gateway elements
WO2013143611A1 (en) * 2012-03-30 2013-10-03 Nokia Siemens Networks Oy Centralized ip address management for distributed gateways
CN110461030B (zh) * 2013-04-07 2020-08-07 华为技术有限公司 一种通信方法及装置
US10420029B2 (en) * 2014-08-11 2019-09-17 Lg Electronics Inc. Method for transmitting downlink data in a wireless communication system, and device for same
US9781624B2 (en) * 2014-10-31 2017-10-03 Mavenir Systems, Inc. System and method for intuitive packet buffering and adaptive paging
US10321358B2 (en) * 2015-05-22 2019-06-11 Lg Electronics Inc. Method for transmitting and receiving data in wireless communication system, and device therefor
DE112016004518T5 (de) * 2015-10-02 2018-06-21 Intel IP Corporation Verbesserter Paging-Mechanismus für das zellulare Internet der Dinge

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130064158A1 (en) * 2010-05-26 2013-03-14 Telefonaktiebolaget L M Ericsson (Publ) Connection States for a User Entity in a Serving Gateway of an Evolved Packet Core System
US20110310804A1 (en) * 2010-06-21 2011-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Method and Arrangement for Paging in a Wireless Communications System
US20150264739A1 (en) * 2012-10-08 2015-09-17 Nokia Solutions And Networks Oy Methods, devices, and computer program products for keeping devices attached without a default bearer
US20150359018A1 (en) * 2012-12-26 2015-12-10 Zte Corporation Bearer allocation method, user equipment, base station, and serving gateway
WO2015000516A1 (en) * 2013-07-03 2015-01-08 Nokia Solutions And Networks Oy User plane idle mode buffering within software defined network architecture
KR20160008674A (ko) 2014-07-14 2016-01-25 주식회사 대현실업 복합지수판의 십자형 연결이음부재

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410774A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10904739B2 (en) 2019-04-02 2021-01-26 Electronics And Telecommunications Research Institute Network data collection method from network function device for network data analytic function

Also Published As

Publication number Publication date
CN108496389B (zh) 2021-08-20
EP3410774B1 (en) 2021-02-17
US20200236067A1 (en) 2020-07-23
JP2020043617A (ja) 2020-03-19
EP3410774A4 (en) 2019-07-10
JP6876116B2 (ja) 2021-05-26
KR101893917B1 (ko) 2018-08-31
CN108496389A (zh) 2018-09-04
EP3410774A1 (en) 2018-12-05
EP3843456A1 (en) 2021-06-30
CN113473631A (zh) 2021-10-01
CN113473630A (zh) 2021-10-01
ES2862920T3 (es) 2021-10-08
US20230224263A1 (en) 2023-07-13
JP2019506820A (ja) 2019-03-07
EP4033805A1 (en) 2022-07-27
KR20170088598A (ko) 2017-08-02
JP6638091B2 (ja) 2020-01-29
US10659397B2 (en) 2020-05-19
US20180343211A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2017131332A1 (ko) 기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법
US10149331B2 (en) Communication system, serving gateway, communication method therefor, and base station
WO2014112844A1 (en) Method and apparatus for controlling traffic in wireless communication system
WO2016099058A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 통신 방법을 결정하는 방법 및 장치
WO2010079984A2 (en) Local pdn access method in wireless communication system
WO2011010869A2 (en) Method for switching session of user equipment in wireless communication system and system employing the same
WO2019054841A1 (en) METHOD FOR IMPLEMENTING REFLECTIVE SERVICE QUALITY IN WIRELESS COMMUNICATION SYSTEM, AND DEVICE THEREOF
WO2015020366A1 (en) Methods, systems and devices for supporting local breakout in small cell architecture
WO2014142390A1 (en) Method and apparatus for paging terminated call in mobile communication system
WO2014185719A1 (en) Apparatus and method for forwarding data based on software defined network in communication network
EP2389018B1 (en) Method and apparatus for assisting setting up multicast backhaul channels in the fixed network for mobile multicast service
WO2014209016A1 (en) Method and apparatus for offloading data traffic in a wireless communication system
WO2019088364A1 (ko) 단말장치 및 단말장치의 데이터 전송경로 스위칭 방법
WO2012030156A2 (ko) 무선 통신 시스템에서 단말의 접속 제어 정보 설정 방법 및 장치
WO2017123059A1 (ko) 소프트웨어 정의 네트워크 기반 이동통신 시스템에서 제어 메시지 전송 방법 및 장치
WO2014185720A1 (en) Method and apparatus for enhancing voice service performance in communication system
WO2023219252A1 (ko) 스위치를 이용하는 트래픽 처리를 위한 장치 및 방법
WO2015096040A1 (zh) 接入节点、移动管理网元以及寻呼消息处理方法
KR101932574B1 (ko) 기능 분리된 코어 네트워크에서 하향링크 패킷 전송방법
WO2014046464A1 (ko) 이동통신 시스템에서 작은 데이터를 검출하기 위한 방법 및 장치
WO2015083926A1 (en) Apparatus and method for detecting abnormal sip subscribe message in 4g mobile networks
EP3122111A1 (en) Communication device, communication method, communication system, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018558099

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888308

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888308

Country of ref document: EP

Effective date: 20180827