WO2017131232A1 - Catalyst for fischer-tropsch synthesis, method for producing catalyst for fischer-tropsch synthesis, and method for producing hydrocarbon - Google Patents

Catalyst for fischer-tropsch synthesis, method for producing catalyst for fischer-tropsch synthesis, and method for producing hydrocarbon Download PDF

Info

Publication number
WO2017131232A1
WO2017131232A1 PCT/JP2017/003202 JP2017003202W WO2017131232A1 WO 2017131232 A1 WO2017131232 A1 WO 2017131232A1 JP 2017003202 W JP2017003202 W JP 2017003202W WO 2017131232 A1 WO2017131232 A1 WO 2017131232A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
fischer
reduction
unreduced
tropsch synthesis
Prior art date
Application number
PCT/JP2017/003202
Other languages
French (fr)
Japanese (ja)
Inventor
真由美 横井
英樹 新宮
泰博 荒木
正成 秋山
Original Assignee
Jxエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxエネルギー株式会社 filed Critical Jxエネルギー株式会社
Priority to JP2017563893A priority Critical patent/JP6741694B2/en
Publication of WO2017131232A1 publication Critical patent/WO2017131232A1/en
Priority to ZA2018/05068A priority patent/ZA201805068B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon

Definitions

  • the present invention relates to a Fischer-Tropsch synthesis catalyst, a Fischer-Tropsch synthesis catalyst production method, and a hydrocarbon production method.
  • Patent Document 1 discloses a catalyst in which an active metal such as cobalt or iron is supported on a support such as silica or alumina
  • Patent Document 2 discloses cobalt or zirconium.
  • a catalyst containing titanium and silica is disclosed.
  • One aspect of the present invention relates to a Fischer-Tropsch synthesis catalyst.
  • the Fischer-Tropsch synthesis catalyst is composed of a reduction product of an unreduced catalyst including a support containing silica and zirconium oxide and a cobalt oxide supported on the support. Further, the Fischer-Tropsch synthesis catalyst of this embodiment has a hydrogen adsorption amount per unit mass at 100 ° C. of 0.60 ml / g or more.
  • the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak is C 1 and the TPR measurement of the reduced product (Fischer-Tropsch synthesis catalyst)
  • the ratio C 2 / C 1 is 0.01 to 0.13, where C 2 is the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak when performing.
  • the Fischer-Tropsch synthesis catalyst according to the above aspect has excellent reaction activity for the Fischer-Tropsch synthesis reaction and can maintain good reaction activity for a long period of time.
  • the degree of reduction of the cobalt atom represented by the formula (1) may be 80 to 95%.
  • Reduction degree of cobalt atom (%) 100 ⁇ [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
  • the content of zirconium oxide in the unreduced catalyst may be 0.01 to 7% by mass based on the total mass of the unreduced catalyst.
  • Another aspect of the present invention relates to a production method for producing a Fischer-Tropsch synthesis catalyst.
  • the production method includes a reduction step of obtaining a Fischer-Tropsch synthesis catalyst by reduction treatment of an unreduced catalyst.
  • the unreduced catalyst contains a support obtained by calcining a support precursor containing silica and a zirconium compound, and a cobalt oxide supported on the support.
  • the hydrogen adsorption amount per unit mass at 100 ° C. of the Fischer-Tropsch synthesis catalyst is 0.60 ml / g or more.
  • the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak is C 1
  • the TPR measurement of the Fischer-Tropsch synthesis catalyst is performed.
  • the hydrogen consumption in the temperature range from a peak top to peak end point of the main peak when the C 2 of a ratio C 2 / C 1 is 0.01 to 0.13.
  • the reaction activity with respect to the Fischer-Tropsch synthesis reaction is excellent and good reaction activity is achieved.
  • a Fischer-Tropsch synthesis catalyst that can be maintained for a long time can be obtained.
  • the degree of reduction of the cobalt atom represented by the formula (1) of the Fischer-Tropsch synthesis catalyst may be 80 to 95%.
  • Reduction degree of cobalt atom (%) 100 ⁇ [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
  • the zirconium content of the unreduced catalyst may be 0.01 to 7% by mass in terms of zirconium oxide based on the total mass of the unreduced catalyst.
  • the temperature is raised to a reduction temperature of 340 to 385 ° C. at a rate of temperature rise of less than 50 ° C./min while bringing a reducing gas into contact with the unreduced catalyst,
  • the reduction treatment of the unreduced catalyst may be performed while maintaining the time.
  • the reducing gas in the reduction step, may be brought into contact with the unreduced catalyst under the conditions of GHSV of 200 to 1200 h ⁇ 1 and a linear velocity of less than 20 mm / s.
  • Still another aspect of the present invention relates to a method for producing hydrocarbons.
  • the method for producing hydrocarbon according to one aspect may include a step of obtaining hydrocarbon by reacting carbon monoxide and hydrogen gas in the presence of the Fischer-Tropsch synthesis catalyst.
  • a method for producing hydrocarbons includes a step of reacting carbon monoxide with hydrogen gas to obtain hydrocarbons in the presence of a Fischer-Tropsch synthesis catalyst produced by the above production method. Good.
  • a catalyst for FT synthesis which is excellent in reaction activity for FT synthesis reaction and can maintain good reaction activity for a long period of time, and a method for producing the same. Moreover, according to this invention, the manufacturing method of the hydrocarbon using said catalyst for FT synthesis is provided.
  • the Fischer-Tropsch synthesis catalyst according to the present embodiment (hereinafter sometimes referred to as “FT synthesis catalyst”) is composed of a reduced product of an unreduced catalyst containing a cobalt oxide.
  • the amount of hydrogen adsorption per unit mass at 100 ° C. of the FT synthesis catalyst is 0.60 ml / g or more.
  • the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak when the TPR measurement of the unreduced catalyst is performed is C 1
  • the main consumption when the TPR measurement of the reduced product (FT synthesis catalyst) is performed when the hydrogen consumption in the temperature range from a peak top to peak end point of the peak was C 2, the ratio C 2 / C 1 is 0.01 to 0.13.
  • the catalyst for FT synthesis according to this embodiment has excellent reaction activity for FT synthesis reaction, and can maintain good reaction activity for a long period of time.
  • the hydrogen adsorption amount per unit mass of the FT synthesis catalyst at 100 ° C. is determined as follows using a metal dispersity measuring device (BEL-METAL-3 manufactured by Nippon Bell Co., Ltd.). It is done. First, the reduced FT synthesis catalyst (reduced product) is weighed in a dry box under an inert atmosphere and charged into a metal dispersion measuring device, and pretreated at 300 ° C. for 5 hours in an argon atmosphere, for example. Then, after cooling to 100 degreeC which is measurement temperature, hydrogen gas is made to adsorb
  • a metal dispersity measuring device BEL-METAL-3 manufactured by Nippon Bell Co., Ltd.
  • the ratio C 2 / C 1 is determined as follows using a TPR (Temperature Programmed Reduction) measuring apparatus.
  • TPR Temporal Programmed Reduction
  • the unreduced catalyst cobalt atoms are all oxides, degree of reduction is 0%
  • TPR measurement is performed with a TPR measurement device, and the main peak end point is calculated from the temperature representing the point where the perpendicular is drawn from the peak top of the main peak. seeking integrated area of the hydrogen consumption in the range of temperatures that represent, this is the hydrogen consumption C 1.
  • TRP measurement is performed with the TPR measurement device under the same conditions as the unreduced catalyst, and the temperature range representing the main peak end point from the temperature representing the point where the perpendicular is drawn from the peak top of the main peak seeking integrated area of the hydrogen consumption in, this is the hydrogen consumption C 2.
  • the ratio C 2 / C 1 is calculated from the hydrogen consumption C 1 and the hydrogen consumption C 2 thus obtained.
  • the ratio C 2 / C 1 is preferably 0.10 or less, more preferably 0.08 or less. Further, the ratio C 2 / C 1 is preferably 0.015 or more, more preferably 0.018 or more.
  • the degree of reduction of the cobalt atom represented by the formula (1) is preferably 80 to 95%, more preferably 87 to 92%.
  • Reduction degree of cobalt atom (%) 100 ⁇ [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
  • the unreduced catalyst may include a support containing silica and zirconium oxide and a cobalt oxide supported on the support. Further, the unreduced catalyst may include a support obtained by firing a support precursor containing silica and a zirconium compound, and a cobalt oxide supported on the support.
  • the zirconium content in the unreduced catalyst may be 0.01 to 7% by mass in terms of zirconium oxide based on the total mass of the unreduced catalyst.
  • a large amount of zirconia decreases the reducibility of cobalt and may lead to a decrease in initial activity. Therefore, it is preferably 0.1 to 6% by mass, more preferably 0.5 to 5.5% by mass. .
  • the content of zirconium oxide in the unreduced catalyst may be 0.01 to 7% by mass, preferably 0.1 to 6% by mass, more preferably based on the total mass of the unreduced catalyst. 0.5 to 5.5% by mass.
  • the content of cobalt oxide in the unreduced catalyst is preferably 10 to 35% by mass, and more preferably 20 to 30% by mass based on the total mass of the unreduced catalyst.
  • the unreduced catalyst may be granular, for example.
  • the average particle size of the unreduced catalyst is preferably 10 ⁇ m to 10 mm, more preferably 10 ⁇ m to 5 mm, still more preferably 10 to 150 ⁇ m, and even more preferably 30 to 100 ⁇ m.
  • the average particle size of the unreduced catalyst can be measured using a particle size distribution measuring device. For example, using Beckman Coulter Co., Ltd. Coulter Counter Multisizer 3, it is automatically measured and calculated by the electrical detection zone method (Coulter principle). Is done.
  • the unreduced catalyst may further contain a noble metal.
  • a noble metal at least one of Pt, Pd, Au and Re is preferable, and Pt is more preferable.
  • the reduction of cobalt can be promoted. Thereby, the oxidation of cobalt metal by the water produced
  • the amount of the noble metal supported is preferably 0.001 to 1% by mass, preferably 0.001 to 0.5% by mass, based on the total mass of the unreduced catalyst, in terms of the balance between the above effects and economy. It is more preferable that
  • the unreduced catalyst preferably has a mesopore volume of 0.35 cm 3 / g or more.
  • the mesopore volume of the unreduced catalyst is calculated by the following method. First, in order to remove moisture adsorbed on the unreduced catalyst, for example, a pretreatment for evacuating at 300 ° C. for 5 hours is performed. About the catalyst after this pretreatment, BELSORP-max manufactured by Nippon Bell Co., Ltd. is used, and adsorption / desorption isotherms are automatically measured by a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature ( ⁇ 196 ° C.). . The analysis software (BEL Master TM ) attached to the device can be used for data analysis.
  • the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BJH method, and the meso-fine per unit mass of the unreduced catalyst is analyzed.
  • the pore volume (cm 3 / g) is calculated.
  • the BJH method is a method for obtaining an average pore diameter from a desorption isotherm, which is a relationship between the relative pressure when the adsorbate is desorbed and the amount of adsorption. (EP Barrett, LG Joyner, PH Halenda: J. Am. Chem. Soc., 73, 373 (1951).)
  • Mesopore volume of unreduced catalyst is more preferably 0.35 ⁇ 0.8cm 3 / g, further preferably 0.4 ⁇ 0.7cm 3 / g.
  • the unreduced catalyst is 0.35 cm 3 / g or more, catalyst deterioration at the initial stage of the reaction tends to be more significantly suppressed.
  • the mesopore volume of the unreduced catalyst is 0.8 cm 3 / g or less, catalyst wear hardly occurs, and catalyst deterioration due to wear loss during the reaction is sufficiently suppressed.
  • the unreduced catalyst preferably has a specific surface area of 100 m 2 / g or more.
  • the specific surface area of the unreduced catalyst is calculated by the following method. First, in order to remove moisture adsorbed on the unreduced catalyst, for example, a pretreatment for evacuating at 300 ° C. for 5 hours is performed. About the catalyst after this pretreatment, BELSORP-max manufactured by Nippon Bell Co., Ltd. is used, and adsorption / desorption isotherms are automatically measured by a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature ( ⁇ 196 ° C.). .
  • the analysis software (BEL Master TM ) attached to the device can be used for data analysis, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BET equation, and the surface area per unit mass of the unreduced catalyst. (M 2 / g) is calculated.
  • the specific surface area of the unreduced catalyst is preferably 100 to 400 m 2 / g, and more preferably 110 to 200 m 2 / g.
  • the specific surface area is 100 m 2 / g or more, catalyst deterioration at the initial stage of the reaction tends to be more significantly suppressed.
  • the specific surface area is 400 m 2 / g or less, catalyst wear hardly occurs and catalyst deterioration due to wear loss during the reaction is sufficiently suppressed.
  • silica at least one selected from the group consisting of colloidal silica, water glass, aerosil, aerogel, silica sol, silica gel, powdered silica, and silicate can be preferably used.
  • the specific surface area of silica is preferably 50 to 500 m 2 / g, and more preferably 150 to 400 m 2 / g.
  • the specific surface area is 50 m 2 / g or more, aggregation of active metals such as cobalt tends to be suppressed.
  • the specific surface area is 500 m 2 / g or less, the pore diameter is sufficiently large, and there is a tendency to prevent the pores from being blocked by the loading of the active metal.
  • the specific surface area of silica is calculated by the following method. First, in order to remove moisture adsorbed on silica, for example, a pretreatment for evacuation at 300 ° C. for 5 hours is performed. The pretreated silica is subjected to automatic measurement of adsorption and desorption isotherms by BELSORP-max manufactured by Nippon Bell Co., Ltd. using a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature ( ⁇ 196 ° C.). .
  • the analysis software (BEL Master TM ) attached to the apparatus can be used for data analysis, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BET equation to determine the surface area per unit mass of silica (m 2 / g) is calculated.
  • the average pore diameter of silica is preferably 8 to 25 nm, more preferably 10 to 20 nm, and even more preferably 10 to 15 nm.
  • the average pore diameter is 8 nm or more, the reaction activity tends to be further improved. Further, when the average pore diameter is 25 nm or less, the surface area of the support becomes sufficiently large and aggregation of the supported metal tends to be sufficiently suppressed.
  • the average pore diameter of silica is calculated by the following method. First, in order to remove moisture adsorbed on silica, for example, a pretreatment for evacuation at 300 ° C. for 5 hours is performed. The pretreated silica is subjected to automatic measurement of adsorption and desorption isotherms by BELSORP-max manufactured by Nippon Bell Co., Ltd. using a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature ( ⁇ 196 ° C.). . For analysis of data, analysis software (BEL Master TM ) attached to the apparatus can be used, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BJH method, and the average pore diameter of silica is calculated.
  • BEL Master TM analysis software attached to the apparatus can be used, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BJH method, and the average pore diameter of silica is calculated.
  • the carrier precursor can be prepared, for example, using an impregnation method typified by the Incipient Wetness method using silica and a zirconium compound.
  • the shape of silica is not particularly limited, but it can be used from various shapes such as a spherical product, a crushed product, and a cylindrical molded product, and a shape suitable for the process can be selected.
  • the average particle diameter of the silica is not limited, and for example, a particle having a size of 5 ⁇ m to 10 mm, preferably 5 ⁇ m to 5 mm, more preferably 5 to 150 ⁇ m, and further preferably 10 to 100 ⁇ m is appropriately selected depending on the process. be able to.
  • the average particle size of silica can be measured using a particle size distribution measuring device. For example, using a Coulter counter Multisizer 3 manufactured by Beckman Coulter, Inc., it is automatically measured and calculated by an electrical detection band method (Coulter principle). .
  • the carrier precursor may contain one or more selected from the group consisting of alumina, titania, magnesia, ceria, zirconia, and complex oxides as a carrier material other than silica.
  • the composite oxide include silica-alumina, silica-titania, alumina-titania, silica-zirconia, alumina-zirconia, titania-zirconia and the like.
  • zirconyl nitrate ZrO (NO 3 ) 2
  • zirconium oxychloride ZrOCl 2
  • zirconium oxochloride ZrO (OH) Cl
  • zirconyl sulfate ZrOSO 4
  • zirconyl acetate ZrO (C) 2 H 3 O 2 ) 2
  • zirconyl ammonium carbonate (NH 4 ) 2 ZrO (CO 3 ) 2 ), and the like.
  • zirconyl ammonium carbonate, zirconyl nitrate, and zirconyl acetate are preferable.
  • a zirconium compound can be used individually by 1 type or in combination of 2 or more types.
  • an impregnation method typified by the Incipient Wetness method can be used as a method for preparing the carrier precursor.
  • the support precursor can be dried after impregnation, for example, preferably at a drying temperature of 50 to 150 ° C., more preferably 70 to 120 ° C., preferably 0.5 to 48 hours, more preferably 1 to 24 hours. .
  • the firing temperature of the carrier precursor is preferably 200 to 800 ° C, more preferably 350 to 650 ° C.
  • the firing temperature is preferably equal to or higher than the decomposition start temperature of the zirconia compound to be used.
  • the unreduced catalyst includes a step of calcining a carrier precursor containing silica and a zirconia compound to obtain a carrier, and a step of calcining a catalyst precursor containing the carrier and a cobalt compound to obtain an unreduced catalyst. It may be manufactured by a manufacturing method including.
  • cobalt compound a compound having cobalt in the molecule in the form of a salt or a complex can be used.
  • nitrate, hydrochloride, sulfate, formate, acetate, propionate, oxalate, acetylacetonate and the like can be mentioned.
  • Specific examples include cobalt nitrate, cobalt chloride, cobalt formate, cobalt propionate, cobalt acetate, and cobalt acetylacetonate.
  • a cobalt compound can be used individually by 1 type or in combination of 2 or more types.
  • the content of the cobalt compound in the catalyst precursor is preferably set to be 10 to 35% by mass in terms of cobalt oxide (tricobalt tetroxide) based on the total mass of the unreduced catalyst. From the viewpoint of obtaining high reactivity, it is more preferable that the content of the cobalt compound in the catalyst precursor is 20 to 30% by mass in terms of cobalt oxide (tricobalt tetroxide) based on the total mass of the unreduced catalyst.
  • the catalyst precursor can be dried after impregnation, for example, preferably at a drying temperature of 50 to 150 ° C., more preferably 70 to 120 ° C., preferably 0.5 to 48 hours, more preferably 1 to 24 hours. .
  • the calcining temperature of the catalyst precursor is preferably 250 to 650 ° C., and more preferably 400 to 650 ° C. from the viewpoint of obtaining high dispersibility of the cobalt compound. If it exceeds 650 ° C., the form of zirconia tends to change from amorphous to crystalline, which is not preferable.
  • the firing temperature is preferably equal to or higher than the decomposition start temperature of the cobalt compound used.
  • the manufacturing method of the catalyst for FT synthesis which concerns on this embodiment has a reduction process which obtains the catalyst for FT synthesis by the reduction process of an unreduced catalyst.
  • the hydrogen adsorption amount per unit mass at 100 ° C. of the catalyst for FT synthesis is 0.60 ml / g or more, and from the peak top to the peak end point of the main peak when the TPR measurement of the unreduced catalyst is performed.
  • hydrogen consumption in the temperature range of C 1 the ratio at which the hydrogen consumption was C 2 in the temperature range from the peak top of the main peak at the time of performing the TPR measurement of FT synthesis catalyst to a peak end point C 2 /
  • the unreduced catalyst is reduced so that C 1 becomes 0.01 to 0.13.
  • the reduction treatment may be performed so that the reduction degree of the cobalt atom represented by the formula (1) of the FT synthesis catalyst is preferably 80 to 95%, more preferably 87 to 92%.
  • the reaction activity of the catalyst for FT synthesis may improve further by making the reduction degree of a cobalt atom 80% or more. Further, when the degree of reduction of cobalt atoms is 95% or less, excessive aggregation of cobalt metal particles is suppressed, and the reaction activity tends to be further improved.
  • the reduction degree of the cobalt atom in the catalyst for FT synthesis is measured as follows using a TPR (Temperature Programmed Reduction) measuring device.
  • “Mass of cobalt metal atoms” is “mass of all cobalt atoms” ⁇ “mass of unreduced cobalt atoms”.
  • the reduction treatment of the unreduced catalyst may be performed by bringing a reducing gas into contact with the unreduced catalyst.
  • the reducing gas is a gas containing molecular hydrogen, preferably contains 70% by volume or more of molecular hydrogen, and more preferably contains 90% by volume or more of molecular hydrogen.
  • the molecular hydrogen content is 70% by volume or more, the reduction efficiency is improved, and the above-described effects are more remarkably exhibited.
  • Specific gases used for the reduction treatment include hydrogen gas, a mixed gas of hydrogen gas and an inert gas such as argon gas, and the like, and hydrogen gas is particularly preferable.
  • an FT synthesis reaction may occur during reduction under a high pressure reduction condition of 1.1 MPa or more as an absolute pressure, which may cause problems such as heat generation. Although it is not preferable, a trace amount of contamination is acceptable.
  • the reduction temperature is preferably 340 to 385 ° C, more preferably 345 to 380 ° C, and further preferably 345 to 375 ° C.
  • the rate of temperature rise when raising the temperature to the reduction temperature is preferably less than 50 ° C./min, more preferably less than 30 ° C./min, and even more preferably less than 20 ° C./min.
  • a predetermined holding time may be held at the reduction temperature.
  • the holding time is preferably 4 to 20 hours.
  • the reduction pressure is not particularly limited, but is selected from normal pressure to about 5 MPa.
  • the reduction treatment may be performed in a catalyst production facility, or may be performed in a facility for producing hydrocarbons by an FT synthesis method or a facility attached thereto.
  • the reduction treatment can be carried out in a generally known reduction reaction furnace or reduction reaction tower, for example, in a fixed bed, fluidized bed, rotary kiln or the like.
  • Preferred processes include a fluidized bed and a rotary kiln from the viewpoint of contact efficiency between the reducing gas and the catalyst.
  • GHSV is preferably at 200h -1 or more, in consideration of the economic losses more preferably 200h at -1 to 1200 h -1, more preferably not more than 200h -1 to 1000h -1.
  • the linear velocity is preferably less than 20 mm / s, more preferably 2 to 19 mm / s, and still more preferably 5 to 18 mm / s.
  • GHSV in the reduction treatment indicates a volume flow rate of the reducing gas per unit volume of the unreduced catalyst, and is a value obtained by, for example, “volume flow rate of reducing gas / volume of unreduced catalyst”.
  • the linear velocity in the reduction treatment indicates the velocity of the reducing gas passing through the cross section of the reduction reaction furnace (or reduction reaction tower) filled with the unreduced catalyst. It is a value obtained by the calculation formula of “the cross-sectional area of the reduction reaction furnace (or reduction reaction tower)”.
  • the hydrocarbon production method includes a step of obtaining a hydrocarbon by subjecting carbon monoxide and hydrogen gas to an FT synthesis reaction in the presence of the above-described catalyst for FT synthesis.
  • the raw material for carrying out the FT synthesis reaction is not particularly limited as long as it is a synthesis gas mainly composed of molecular hydrogen and carbon monoxide, but the hydrogen / carbon monoxide molar ratio is 1.5-2.
  • a synthesis gas having a molar ratio of 1.5 to 2.2 is more preferred.
  • the FT synthesis reaction can be carried out in a process known as a reaction process for FT synthesis, for example, a fixed bed, a supercritical fixed bed, a slurry bed, a fluidized bed, or the like.
  • a reaction process for FT synthesis for example, a fixed bed, a supercritical fixed bed, a slurry bed, a fluidized bed, or the like.
  • Preferred processes include a fixed bed, a supercritical fixed bed, and a slurry bed.
  • reaction conditions of FT synthesis reaction There is no restriction
  • the reaction temperature is 200 to 280 ° C.
  • the gas space velocity is 1000 to 3000 h ⁇ 1
  • W (catalyst mass) / F (synthesis gas flow rate) is 1 to 10 g ⁇ h / mol
  • the absolute pressure is 1.
  • the reaction can be carried out in the range of 1 to 5.1 MPa.
  • Example 1 Preparation of unreduced catalyst>
  • the spherical silica particles (average particle size 67 ⁇ m, specific surface area 255 m 2 / g) obtained by drying at 100 ° C. for 24 hours have a zirconium content of 5 mass% in terms of zirconium oxide based on the total mass of the unreduced catalyst.
  • An amount of zirconylammonium carbonate was impregnated by the Incipient Wetness method.
  • the carrier was obtained by firing the silica particles impregnated with zirconyl ammonium carbonate in air at 650 ° C. for 3 hours.
  • the obtained support was impregnated with an aqueous solution of cobalt nitrate in which the cobalt content based on the total mass of the unreduced catalyst was 30% by mass in terms of tricobalt tetroxide by the Incipient Wetness method.
  • the support after impregnation with the aqueous cobalt nitrate solution was dried at 120 ° C. for 12 hours and then calcined in air at 450 ° C. for 3 hours to obtain an unreduced catalyst.
  • the amount of hydrogen adsorbed per unit mass at 100 ° C. was measured and found to be 0.64 ml / g. Further, the unreduced catalyst and FT synthesis catalyst obtained was subjected to TPR measurements, the ratio C 2 / C 1 was 0.083. Moreover, the reduction degree of the cobalt atom in the obtained catalyst for FT synthesis was 84.9%.
  • ⁇ FT synthesis reaction> 2.5 g of the obtained FT synthesis catalyst was taken out in a dry box under an inert atmosphere so as not to be oxidized, and transferred to a stainless steel autoclave reactor having an internal volume of 100 cc together with 15 cc of PAO (polyalphaolefin).
  • the Fischer-Tropsch synthesis reaction was started under the condition of a stirring speed of 1,000 rpm.
  • the gas composition at the outlet of the reactor was analyzed over time by gas chromatography, and the conversion rate of carbon monoxide (CO conversion rate) was calculated from the analysis data. Table 1 shows the CO conversion after 6 hours and 48 hours from the start of the reaction.
  • Examples 2 to 9 A catalyst for FT synthesis was prepared in the same manner as in Example 1 except that the conditions for the reduction treatment were changed as shown in Table 1 or Table 2. The hydrogen adsorption amount, the ratio C 2 / C 1 and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst were as shown in Table 1 or Table 2, respectively. Using the obtained catalyst for FT synthesis, an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The obtained results are shown in Tables 1 and 2.
  • Example 10 A catalyst for FT synthesis was prepared in the same manner as in Example 1 except that the reactor was changed from a fixed bed reactor to a rotary kiln during the reduction treatment, and the reduction treatment conditions were changed as shown in Table 2. .
  • Table 2 shows the hydrogen adsorption amount, the ratio C 2 / C 1 and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst.
  • an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The obtained results are shown in Table 2.
  • Example 13 to 14 A catalyst for FT synthesis was prepared in the same manner as in Example 1 except that the conditions for the reduction treatment were changed as shown in Table 3.
  • Table 3 shows the hydrogen adsorption amount, the ratio C 2 / C 1, and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst.
  • an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The obtained results are shown in Table 3.
  • Example 15 to 21 Preparation of a catalyst for FT synthesis in the same manner as in Example 1 except that the reactor was changed from a fixed bed reactor to a rotary kiln during the reduction treatment, and the reduction treatment conditions were changed as shown in Table 3 or Table 4. Went.
  • the hydrogen adsorption amount, the ratio C 2 / C 1 and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst were as shown in Table 3 or Table 4, respectively.
  • an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The obtained results are shown in Table 3 or Table 4.
  • Example 6 A catalyst for FT synthesis was prepared in the same manner as in Example 1 except that the conditions for the reduction treatment were changed as shown in Table 5.
  • Table 5 shows the hydrogen adsorption amount, the ratio C 2 / C 1 and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst.
  • an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The results obtained are shown in Table 5.

Abstract

Provided is a catalyst for Fischer-Tropsch synthesis comprising a reduced product of an unreduced catalyst that contains: a carrier comprising silica and zirconium oxide; and cobalt oxide loaded on the carrier. The hydrogen adsorption amount per unit mass at 100°C is 0.60 ml/g or more. When the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak resulting from TPR measurement of the unreduced catalyst is denoted by C1 and the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak resulting from TPR measurement of the reduced product is denoted by C2, the ratio C2/C1 is 0.01-0.13.

Description

フィッシャー・トロプシュ合成用触媒、フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法Fischer-Tropsch synthesis catalyst, Fischer-Tropsch synthesis catalyst production method, and hydrocarbon production method
 本発明は、フィッシャー・トロプシュ合成用触媒、フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法に関する。 The present invention relates to a Fischer-Tropsch synthesis catalyst, a Fischer-Tropsch synthesis catalyst production method, and a hydrocarbon production method.
 水素と一酸化炭素とを主成分とする合成ガスから炭化水素を合成する反応は、フィッシャー・トロプシュ合成(FT合成)と呼ばれ、燃料などの製造に利用されている。このFT合成反応に用いる触媒として、例えば、特許文献1には、シリカ、アルミナ等の担体上に、コバルト、鉄等の活性金属を担持した触媒が開示され、特許文献2には、コバルト、ジルコニウム又はチタン、及びシリカを含有する触媒が開示されている。 The reaction of synthesizing hydrocarbons from synthesis gas containing hydrogen and carbon monoxide as main components is called Fischer-Tropsch synthesis (FT synthesis) and is used for the production of fuels. As a catalyst used for this FT synthesis reaction, for example, Patent Document 1 discloses a catalyst in which an active metal such as cobalt or iron is supported on a support such as silica or alumina, and Patent Document 2 discloses cobalt or zirconium. Alternatively, a catalyst containing titanium and silica is disclosed.
特開平4-227847号公報JP-A-4-227847 特開昭59-102440号公報JP 59-102440 A
 本発明は、FT合成反応に対する反応活性に優れ、良好な反応活性を長期間維持できるFT合成用触媒及びその製造方法を提供することを目的とする。また、本発明は、上記のFT合成用触媒を用いた炭化水素の製造方法を提供することを目的とする。 An object of the present invention is to provide a catalyst for FT synthesis which is excellent in reaction activity for FT synthesis reaction and can maintain good reaction activity for a long period of time, and a method for producing the same. Another object of the present invention is to provide a hydrocarbon production method using the above-mentioned catalyst for FT synthesis.
 本発明の一側面は、フィッシャー・トロプシュ合成用触媒に関する。 One aspect of the present invention relates to a Fischer-Tropsch synthesis catalyst.
 一態様において、フィッシャー・トロプシュ合成用触媒は、シリカ及び酸化ジルコニウムを含有する担体と該担体に担持されたコバルト酸化物とを含む未還元触媒の還元物で構成されている。また、本態様のフィッシャー・トロプシュ合成用触媒は、100℃における単位質量当たりの水素吸着量が0.60ml/g以上である。また、本態様において、未還元触媒のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をC、還元物(フィッシャー・トロプシュ合成用触媒)のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をCとしたとき、比C/Cは0.01~0.13である。 In one embodiment, the Fischer-Tropsch synthesis catalyst is composed of a reduction product of an unreduced catalyst including a support containing silica and zirconium oxide and a cobalt oxide supported on the support. Further, the Fischer-Tropsch synthesis catalyst of this embodiment has a hydrogen adsorption amount per unit mass at 100 ° C. of 0.60 ml / g or more. Further, in this embodiment, when the TPR measurement of the unreduced catalyst is performed, the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak is C 1 and the TPR measurement of the reduced product (Fischer-Tropsch synthesis catalyst) The ratio C 2 / C 1 is 0.01 to 0.13, where C 2 is the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak when performing.
 上記態様に係るフィッシャー・トロプシュ合成用触媒は、フィッシャー・トロプシュ合成反応に対する反応活性に優れ、且つ、良好な反応活性を長期間維持できる。 The Fischer-Tropsch synthesis catalyst according to the above aspect has excellent reaction activity for the Fischer-Tropsch synthesis reaction and can maintain good reaction activity for a long period of time.
 一態様に係るフィッシャー・トロプシュ合成用触媒において、式(1)で表されるコバルト原子の還元度は80~95%であってよい。
 コバルト原子の還元度(%)=100×[金属コバルト原子の質量]/[全コバルト原子の質量]  …(1)
In the Fischer-Tropsch synthesis catalyst according to one embodiment, the degree of reduction of the cobalt atom represented by the formula (1) may be 80 to 95%.
Reduction degree of cobalt atom (%) = 100 × [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
 一態様において、未還元触媒における酸化ジルコニウムの含有量は、未還元触媒の全質量を基準として、0.01~7質量%であってよい。 In one embodiment, the content of zirconium oxide in the unreduced catalyst may be 0.01 to 7% by mass based on the total mass of the unreduced catalyst.
 本発明の他の一側面は、フィッシャー・トロプシュ合成用触媒を製造する製造方法に関する。 Another aspect of the present invention relates to a production method for producing a Fischer-Tropsch synthesis catalyst.
 一態様において、上記製造方法は、未還元触媒の還元処理により、フィッシャー・トロプシュ合成用触媒を得る還元工程を有する。また、本態様において、未還元触媒は、シリカ及びジルコニウム化合物を含有する担体前駆体を焼成して得られる担体と、該担体に担持されたコバルト酸化物と、を含有する。また、本態様において、フィッシャー・トロプシュ合成用触媒の100℃における単位質量当たりの水素吸着量は0.60ml/g以上である。また、本態様において、未還元触媒のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をC、フィッシャー・トロプシュ合成用触媒のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をCとしたとき、比C/Cは0.01~0.13である。 In one embodiment, the production method includes a reduction step of obtaining a Fischer-Tropsch synthesis catalyst by reduction treatment of an unreduced catalyst. In this embodiment, the unreduced catalyst contains a support obtained by calcining a support precursor containing silica and a zirconium compound, and a cobalt oxide supported on the support. In this embodiment, the hydrogen adsorption amount per unit mass at 100 ° C. of the Fischer-Tropsch synthesis catalyst is 0.60 ml / g or more. In this embodiment, when the TPR measurement of the unreduced catalyst is performed, the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak is C 1 , and the TPR measurement of the Fischer-Tropsch synthesis catalyst is performed. the hydrogen consumption in the temperature range from a peak top to peak end point of the main peak when the C 2 of a ratio C 2 / C 1 is 0.01 to 0.13.
 上記態様に係る製造方法では、還元工程において所定の水素吸着量及び比C/Cを満たすように還元処理を行うことで、フィッシャー・トロプシュ合成反応に対する反応活性に優れ、良好な反応活性を長期間維持できるフィッシャー・トロプシュ合成用触媒を得ることができる。 In the production method according to the above aspect, by performing the reduction treatment so as to satisfy the predetermined hydrogen adsorption amount and the ratio C 2 / C 1 in the reduction step, the reaction activity with respect to the Fischer-Tropsch synthesis reaction is excellent and good reaction activity is achieved. A Fischer-Tropsch synthesis catalyst that can be maintained for a long time can be obtained.
 一態様において、フィッシャー・トロプシュ合成用触媒の式(1)で表されるコバルト原子の還元度は80~95%であってよい。
 コバルト原子の還元度(%)=100×[金属コバルト原子の質量]/[全コバルト原子の質量]  …(1)
In one embodiment, the degree of reduction of the cobalt atom represented by the formula (1) of the Fischer-Tropsch synthesis catalyst may be 80 to 95%.
Reduction degree of cobalt atom (%) = 100 × [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
 一態様において、未還元触媒のジルコニウム含量は、未還元触媒の全質量を基準として、酸化ジルコニウム換算で0.01~7質量%であってよい。 In one embodiment, the zirconium content of the unreduced catalyst may be 0.01 to 7% by mass in terms of zirconium oxide based on the total mass of the unreduced catalyst.
 一態様に係る製造方法では、還元工程において、未還元触媒に還元ガスを接触させつつ、昇温速度50℃/分未満で340~385℃の還元温度まで昇温し、還元温度で4~20時間保持して、未還元触媒の還元処理を行ってよい。 In the production method according to one aspect, in the reduction step, the temperature is raised to a reduction temperature of 340 to 385 ° C. at a rate of temperature rise of less than 50 ° C./min while bringing a reducing gas into contact with the unreduced catalyst, The reduction treatment of the unreduced catalyst may be performed while maintaining the time.
 一態様に係る製造方法では、還元工程において、GHSVが200~1200h-1、線速度が20mm/s未満の条件で、未還元触媒に還元ガスを接触させてよい。 In the production method according to one aspect, in the reduction step, the reducing gas may be brought into contact with the unreduced catalyst under the conditions of GHSV of 200 to 1200 h −1 and a linear velocity of less than 20 mm / s.
 本発明のさらに他の一側面は、炭化水素の製造方法に関する。 Still another aspect of the present invention relates to a method for producing hydrocarbons.
 一態様に係る炭化水素の製造方法は、上記フィッシャー・トロプシュ合成用触媒の存在下、一酸化炭素と水素ガスとを反応させて炭化水素を得る工程を有するものであってよい。 The method for producing hydrocarbon according to one aspect may include a step of obtaining hydrocarbon by reacting carbon monoxide and hydrogen gas in the presence of the Fischer-Tropsch synthesis catalyst.
 一態様に係る炭化水素の製造方法は、上記製造方法により製造されたフィッシャー・トロプシュ合成用触媒の存在下、一酸化炭素と水素ガスとを反応させて炭化水素を得る工程を有するものであってよい。 A method for producing hydrocarbons according to one aspect includes a step of reacting carbon monoxide with hydrogen gas to obtain hydrocarbons in the presence of a Fischer-Tropsch synthesis catalyst produced by the above production method. Good.
 本発明によれば、FT合成反応に対する反応活性に優れ、良好な反応活性を長期間維持できるFT合成用触媒及びその製造方法が提供される。また、本発明によれば、上記のFT合成用触媒を用いた炭化水素の製造方法が提供される。 According to the present invention, there are provided a catalyst for FT synthesis which is excellent in reaction activity for FT synthesis reaction and can maintain good reaction activity for a long period of time, and a method for producing the same. Moreover, according to this invention, the manufacturing method of the hydrocarbon using said catalyst for FT synthesis is provided.
 本発明の好適な一実施形態について、以下に説明する。 A preferred embodiment of the present invention will be described below.
 本実施形態に係るフィッシャー・トロプシュ合成用触媒(以下、場合により「FT合成用触媒」という。)は、コバルト酸化物を含む未還元触媒の還元物で構成されている。FT合成用触媒の100℃における単位質量当たりの水素吸着量は、0.60ml/g以上である。また、未還元触媒のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をC、還元物(FT合成用触媒)のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をCとしたとき、比C/Cは0.01~0.13である。 The Fischer-Tropsch synthesis catalyst according to the present embodiment (hereinafter sometimes referred to as “FT synthesis catalyst”) is composed of a reduced product of an unreduced catalyst containing a cobalt oxide. The amount of hydrogen adsorption per unit mass at 100 ° C. of the FT synthesis catalyst is 0.60 ml / g or more. In addition, the hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak when the TPR measurement of the unreduced catalyst is performed is C 1 , and the main consumption when the TPR measurement of the reduced product (FT synthesis catalyst) is performed. when the hydrogen consumption in the temperature range from a peak top to peak end point of the peak was C 2, the ratio C 2 / C 1 is 0.01 to 0.13.
 本実施形態に係るFT合成用触媒は、FT合成反応に対する反応活性に優れ、良好な反応活性を長期間維持することができる。 The catalyst for FT synthesis according to this embodiment has excellent reaction activity for FT synthesis reaction, and can maintain good reaction activity for a long period of time.
 なお、本明細書中、FT合成用触媒の100℃における単位質量当たりの水素吸着量は、金属分散度測定装置(日本ベル社製BEL-METAL-3)を用いて、以下のようにして求められる。まず、還元後のFT合成用触媒(還元物)を、不活性雰囲気下、ドライボックス中で秤量して金属分散度測定装置に仕込み、例えば、アルゴン雰囲気下300℃で5時間前処理を行う。続いて、測定温度である100℃まで冷却した後水素ガスを吸着させ、吸着した水素ガスの量を算出する。そして、吸着した水素ガス量をFT合成用触媒の質量で除し、単位質量当たりの水素吸着量を算出する。 In the present specification, the hydrogen adsorption amount per unit mass of the FT synthesis catalyst at 100 ° C. is determined as follows using a metal dispersity measuring device (BEL-METAL-3 manufactured by Nippon Bell Co., Ltd.). It is done. First, the reduced FT synthesis catalyst (reduced product) is weighed in a dry box under an inert atmosphere and charged into a metal dispersion measuring device, and pretreated at 300 ° C. for 5 hours in an argon atmosphere, for example. Then, after cooling to 100 degreeC which is measurement temperature, hydrogen gas is made to adsorb | suck and the quantity of adsorbed hydrogen gas is calculated. Then, the amount of adsorbed hydrogen gas is divided by the mass of the FT synthesis catalyst to calculate the amount of hydrogen adsorbed per unit mass.
 また、本明細書中、比C/Cは、TPR(Temperature Programed Reduction)測定装置を用いて以下のようにして求められる。まず、未還元触媒(コバルト原子が全て酸化物の状態、還元度0%)について、TPR測定装置でTPR測定を行い、メインピークのピークトップから垂線を下ろした点を表す温度からメインピーク終点を表す温度の範囲における水素消費量の積算面積を求め、これを水素消費量Cとする。次いで、FT合成用触媒について、TPR測定装置により、未還元触媒と同様の条件にてTRP測定を行い、メインピークのピークトップから垂線を下ろした点を表す温度からメインピーク終点を表す温度の範囲における水素消費量の積算面積を求め、これを水素消費量Cとする。このようにして求めた水素消費量C及び水素消費量Cから、比C/Cを算出する。 Further, in the present specification, the ratio C 2 / C 1 is determined as follows using a TPR (Temperature Programmed Reduction) measuring apparatus. First, with respect to the unreduced catalyst (cobalt atoms are all oxides, degree of reduction is 0%), TPR measurement is performed with a TPR measurement device, and the main peak end point is calculated from the temperature representing the point where the perpendicular is drawn from the peak top of the main peak. seeking integrated area of the hydrogen consumption in the range of temperatures that represent, this is the hydrogen consumption C 1. Next, for the FT synthesis catalyst, TRP measurement is performed with the TPR measurement device under the same conditions as the unreduced catalyst, and the temperature range representing the main peak end point from the temperature representing the point where the perpendicular is drawn from the peak top of the main peak seeking integrated area of the hydrogen consumption in, this is the hydrogen consumption C 2. The ratio C 2 / C 1 is calculated from the hydrogen consumption C 1 and the hydrogen consumption C 2 thus obtained.
 比C/Cは、好ましくは0.10以下であり、より好ましくは0.08以下である。また、比C/Cは、好ましくは0.015以上であり、より好ましくは0.018以上である。 The ratio C 2 / C 1 is preferably 0.10 or less, more preferably 0.08 or less. Further, the ratio C 2 / C 1 is preferably 0.015 or more, more preferably 0.018 or more.
 フィッシャー・トロプシュ合成用触媒において、式(1)で表されるコバルト原子の還元度は、80~95%であることが好ましく、87~92%であることがより好ましい。このような還元度であると、FT合成反応に対する反応活性が一層向上する傾向がある。
 コバルト原子の還元度(%)=100×[金属コバルト原子の質量]/[全コバルト原子の質量]  …(1)
In the Fischer-Tropsch synthesis catalyst, the degree of reduction of the cobalt atom represented by the formula (1) is preferably 80 to 95%, more preferably 87 to 92%. When the degree of reduction is such, the reaction activity for the FT synthesis reaction tends to be further improved.
Reduction degree of cobalt atom (%) = 100 × [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
 以下に、未還元触媒の好適な一態様、及びFT合成用触媒の製造方法の好適な一態様について詳述する。 Hereinafter, a preferred embodiment of the unreduced catalyst and a preferred embodiment of the method for producing the FT synthesis catalyst will be described in detail.
(未還元触媒)
 未還元触媒は、シリカ及び酸化ジルコニウムを含有する担体と、該担体に担持されたコバルト酸化物と、を含むものであってよい。また、未還元触媒は、シリカ及びジルコニウム化合物を含有する担体前駆体を焼成して得られる担体と、該担体に担持されたコバルト酸化物と、を含むものであってもよい。
(Unreduced catalyst)
The unreduced catalyst may include a support containing silica and zirconium oxide and a cobalt oxide supported on the support. Further, the unreduced catalyst may include a support obtained by firing a support precursor containing silica and a zirconium compound, and a cobalt oxide supported on the support.
 未還元触媒におけるジルコニウム含量は、未還元触媒の全質量を基準として、酸化ジルコニウム換算で0.01~7質量%であってよい。多量のジルコニアはコバルトの還元性を低下させ、初期活性の低下を招くおそれがあることから、好ましくは0.1~6質量%であり、より好ましくは0.5~5.5質量%である。 The zirconium content in the unreduced catalyst may be 0.01 to 7% by mass in terms of zirconium oxide based on the total mass of the unreduced catalyst. A large amount of zirconia decreases the reducibility of cobalt and may lead to a decrease in initial activity. Therefore, it is preferably 0.1 to 6% by mass, more preferably 0.5 to 5.5% by mass. .
 すなわち、未還元触媒における酸化ジルコニウムの含有量は、未還元触媒の全質量を基準として、0.01~7質量%であってよく、好ましくは0.1~6質量%であり、より好ましくは0.5~5.5質量%である。 That is, the content of zirconium oxide in the unreduced catalyst may be 0.01 to 7% by mass, preferably 0.1 to 6% by mass, more preferably based on the total mass of the unreduced catalyst. 0.5 to 5.5% by mass.
 未還元触媒におけるコバルト酸化物の含有量は、未還元触媒の全質量を基準として、10~35質量%であることが好ましく、20~30質量%であることがより好ましい。このような未還元触媒を用いることでより高い反応活性を有するFT合成用触媒が得られる。 The content of cobalt oxide in the unreduced catalyst is preferably 10 to 35% by mass, and more preferably 20 to 30% by mass based on the total mass of the unreduced catalyst. By using such an unreduced catalyst, a catalyst for FT synthesis having higher reaction activity can be obtained.
 未還元触媒は、例えば、粒状であってよい。未還元触媒の平均粒子径は、10μm~10mmであることが好ましく、10μm~5mmであることがより好ましく、10~150μmであることがさらに好ましく、30~100μmであることがさらにより好ましい。未還元触媒の平均粒子径は、粒度分布測定装置を用いて測定でき、例えば、ベックマン・コールター株式会社製コールターカウンター Multisizer 3を使用し、電気的検知帯法(コールター原理)により、自動測定・算出される。 The unreduced catalyst may be granular, for example. The average particle size of the unreduced catalyst is preferably 10 μm to 10 mm, more preferably 10 μm to 5 mm, still more preferably 10 to 150 μm, and even more preferably 30 to 100 μm. The average particle size of the unreduced catalyst can be measured using a particle size distribution measuring device. For example, using Beckman Coulter Co., Ltd. Coulter Counter Multisizer 3, it is automatically measured and calculated by the electrical detection zone method (Coulter principle). Is done.
 未還元触媒は、貴金属を更に含有していてもよい。貴金属としては、Pt、Pd、Au及びReのうちの一種以上が好ましく、Ptがより好ましい。貴金属を含有させることにより、コバルトの還元を促進することができる。これにより、触媒の劣化要因と推察される、フィッシャー・トロプシュ合成反応中に生成した水によるコバルト金属の酸化を抑制することができる。 The unreduced catalyst may further contain a noble metal. As the noble metal, at least one of Pt, Pd, Au and Re is preferable, and Pt is more preferable. By containing a noble metal, the reduction of cobalt can be promoted. Thereby, the oxidation of cobalt metal by the water produced | generated during the Fischer-Tropsch synthesis reaction presumed to be a deterioration factor of the catalyst can be suppressed.
 貴金属の担持量は、上記の効果と経済性とのバランスの点で、未還元触媒の全質量を基準として0.001~1質量%であることが好ましく、0.001~0.5質量%であることがより好ましい。 The amount of the noble metal supported is preferably 0.001 to 1% by mass, preferably 0.001 to 0.5% by mass, based on the total mass of the unreduced catalyst, in terms of the balance between the above effects and economy. It is more preferable that
 未還元触媒は、メソ細孔容積が0.35cm/g以上であることが好ましい。未還元触媒のメソ細孔容積は、以下の方法で算出される。まず、未還元触媒に吸着した水分を除去するため、例えば、300℃、5時間の真空排気する前処理を行う。この前処理後の触媒について、日本ベル(株)社製 BELSORP-maxを使用し、液体窒素温度(-196℃)で窒素を用いた定容量法ガス吸着法により吸脱着等温線を自動測定する。データの解析には、装置附属の解析ソフトウェア(BEL MasterTM)を用いることができ、測定された窒素の吸脱着等温線はBJH法にて自動解析され、未還元触媒の単位質量当りのメソ細孔容積(cm/g)が算出される。なお、BJH法とは、吸着質が脱離するときの相対圧と吸着量の関係である脱着等温線から平均細孔径を求める手法である。(E.P.Barrett, L.G.Joyner, P.H.Halenda:J.Am.Chem.Soc.,73,373(1951).) The unreduced catalyst preferably has a mesopore volume of 0.35 cm 3 / g or more. The mesopore volume of the unreduced catalyst is calculated by the following method. First, in order to remove moisture adsorbed on the unreduced catalyst, for example, a pretreatment for evacuating at 300 ° C. for 5 hours is performed. About the catalyst after this pretreatment, BELSORP-max manufactured by Nippon Bell Co., Ltd. is used, and adsorption / desorption isotherms are automatically measured by a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature (−196 ° C.). . The analysis software (BEL Master ) attached to the device can be used for data analysis. The measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BJH method, and the meso-fine per unit mass of the unreduced catalyst is analyzed. The pore volume (cm 3 / g) is calculated. The BJH method is a method for obtaining an average pore diameter from a desorption isotherm, which is a relationship between the relative pressure when the adsorbate is desorbed and the amount of adsorption. (EP Barrett, LG Joyner, PH Halenda: J. Am. Chem. Soc., 73, 373 (1951).)
 未還元触媒のメソ細孔容積は、0.35~0.8cm/gであることがより好ましく、0.4~0.7cm/gであることがさらに好ましい。未還元触媒が0.35cm/g以上であると、反応初期の触媒劣化がより顕著に抑制される傾向がある。一方、未還元触媒のメソ細孔容積が0.8cm/g以下であると、触媒摩耗が起こり難くなり、反応中の摩耗損失による触媒劣化が十分に抑制される。 Mesopore volume of unreduced catalyst is more preferably 0.35 ~ 0.8cm 3 / g, further preferably 0.4 ~ 0.7cm 3 / g. When the unreduced catalyst is 0.35 cm 3 / g or more, catalyst deterioration at the initial stage of the reaction tends to be more significantly suppressed. On the other hand, when the mesopore volume of the unreduced catalyst is 0.8 cm 3 / g or less, catalyst wear hardly occurs, and catalyst deterioration due to wear loss during the reaction is sufficiently suppressed.
 未還元触媒は、比表面積が100m/g以上であることが好ましい。未還元触媒の比表面積は以下の方法で算出される。まず、未還元触媒に吸着した水分を除去するため、例えば、300℃、5時間の真空排気する前処理を行う。この前処理後の触媒について、日本ベル(株)社製 BELSORP-maxを使用し、液体窒素温度(-196℃)で窒素を用いた定容量法ガス吸着法により吸脱着等温線を自動測定する。データの解析には、装置附属の解析ソフトウェア(BEL MasterTM)を用いることができ、測定された窒素の吸脱着等温線はBETの式にて自動解析され、未還元触媒の単位質量当りの表面積(m/g)が算出される。 The unreduced catalyst preferably has a specific surface area of 100 m 2 / g or more. The specific surface area of the unreduced catalyst is calculated by the following method. First, in order to remove moisture adsorbed on the unreduced catalyst, for example, a pretreatment for evacuating at 300 ° C. for 5 hours is performed. About the catalyst after this pretreatment, BELSORP-max manufactured by Nippon Bell Co., Ltd. is used, and adsorption / desorption isotherms are automatically measured by a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature (−196 ° C.). . The analysis software (BEL Master ) attached to the device can be used for data analysis, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BET equation, and the surface area per unit mass of the unreduced catalyst. (M 2 / g) is calculated.
 未還元触媒の比表面積は、100~400m/gであることが好ましく、110~200m/gであることがより好ましい。比表面積が100m/g以上であると、反応初期の触媒劣化がより顕著に抑制される傾向がある。一方、比表面積が400m/g以下であると、触媒摩耗が起こり難くなり、反応中の摩耗損失による触媒劣化が十分に抑制される。 The specific surface area of the unreduced catalyst is preferably 100 to 400 m 2 / g, and more preferably 110 to 200 m 2 / g. When the specific surface area is 100 m 2 / g or more, catalyst deterioration at the initial stage of the reaction tends to be more significantly suppressed. On the other hand, when the specific surface area is 400 m 2 / g or less, catalyst wear hardly occurs and catalyst deterioration due to wear loss during the reaction is sufficiently suppressed.
 本実施形態において、シリカとしては、コロイダルシリカ、水ガラス、アエロジル、エアロゲル、シリカゾル、シリカゲル、粉末シリカ、及びケイ酸塩からなる群より選ばれる少なくとも1種を好ましく用いることができる。 In the present embodiment, as the silica, at least one selected from the group consisting of colloidal silica, water glass, aerosil, aerogel, silica sol, silica gel, powdered silica, and silicate can be preferably used.
 シリカの比表面積は、50~500m/gであることが好ましく、150~400m/gであることがより好ましい。比表面積が50m/g以上であるとコバルトなどの活性金属の凝集が抑制される傾向がある。一方、比表面積が500m/g以下であると、細孔径が十分に大きくなり、活性金属の担持による細孔の閉塞が防止される傾向がある。 The specific surface area of silica is preferably 50 to 500 m 2 / g, and more preferably 150 to 400 m 2 / g. When the specific surface area is 50 m 2 / g or more, aggregation of active metals such as cobalt tends to be suppressed. On the other hand, when the specific surface area is 500 m 2 / g or less, the pore diameter is sufficiently large, and there is a tendency to prevent the pores from being blocked by the loading of the active metal.
 シリカの比表面積は以下の方法で算出される。まず、シリカに吸着した水分を除去するため、例えば、300℃、5時間の真空排気する前処理を行う。この前処理後のシリカについて、日本ベル(株)社製 BELSORP-maxを使用し、液体窒素温度(-196℃)で窒素を用いた定容量法ガス吸着法により吸脱着等温線を自動測定する。データの解析には、装置附属の解析ソフトウェア(BEL MasterTM)を用いることができ、測定された窒素の吸脱着等温線はBETの式にて自動解析され、シリカの単位質量当りの表面積(m/g)が算出される。 The specific surface area of silica is calculated by the following method. First, in order to remove moisture adsorbed on silica, for example, a pretreatment for evacuation at 300 ° C. for 5 hours is performed. The pretreated silica is subjected to automatic measurement of adsorption and desorption isotherms by BELSORP-max manufactured by Nippon Bell Co., Ltd. using a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature (−196 ° C.). . The analysis software (BEL Master ) attached to the apparatus can be used for data analysis, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BET equation to determine the surface area per unit mass of silica (m 2 / g) is calculated.
 シリカの平均細孔径は、8~25nmであることが好ましく、10~20nmであることがより好ましく、10~15nmであることが更により好ましい。平均細孔径が8nm以上であると、反応活性が一層向上する傾向がある。また、平均細孔径が25nm以下であると、担体の表面積が十分に大きくなり、担持金属の凝集が十分に抑制される傾向がある。 The average pore diameter of silica is preferably 8 to 25 nm, more preferably 10 to 20 nm, and even more preferably 10 to 15 nm. When the average pore diameter is 8 nm or more, the reaction activity tends to be further improved. Further, when the average pore diameter is 25 nm or less, the surface area of the support becomes sufficiently large and aggregation of the supported metal tends to be sufficiently suppressed.
 シリカの平均細孔径は以下の方法で算出される。まず、シリカに吸着した水分を除去するため、例えば、300℃、5時間の真空排気する前処理を行う。この前処理後のシリカについて、日本ベル(株)社製 BELSORP-maxを使用し、液体窒素温度(-196℃)で窒素を用いた定容量法ガス吸着法により吸脱着等温線を自動測定する。データの解析には、装置附属の解析ソフトウェア(BEL MasterTM)を用いることができ、測定された窒素の吸脱着等温線はBJH法にて自動解析され、シリカの平均細孔径が算出される。 The average pore diameter of silica is calculated by the following method. First, in order to remove moisture adsorbed on silica, for example, a pretreatment for evacuation at 300 ° C. for 5 hours is performed. The pretreated silica is subjected to automatic measurement of adsorption and desorption isotherms by BELSORP-max manufactured by Nippon Bell Co., Ltd. using a constant volume method gas adsorption method using nitrogen at a liquid nitrogen temperature (−196 ° C.). . For analysis of data, analysis software (BEL Master ) attached to the apparatus can be used, and the measured nitrogen adsorption / desorption isotherm is automatically analyzed by the BJH method, and the average pore diameter of silica is calculated.
 担体前駆体は、例えば、シリカとジルコニウム化合物とを用いて、Incipient Wetness法に代表される含浸法を用いて調製することができる。 The carrier precursor can be prepared, for example, using an impregnation method typified by the Incipient Wetness method using silica and a zirconium compound.
 シリカの形状は特に限定されないが、球状品、破砕品、円柱状成形品等の各種形状品の中から使用することができ、プロセスに適合した形状を選択することができる。シリカの平均粒子径についても制限はなく、例えば、5μm~10mm、好ましくは5μm~5mm、より好ましくは5~150μm、さらに好ましくは10~100μmのものを、プロセスに応じて適宜選択して使用することができる。シリカの平均粒子径は、粒度分布測定装置を用いて測定でき、例えば、ベックマン・コールター株式会社製コールターカウンター Multisizer 3を使用し、電気的検知帯法(コールター原理)により、自動測定・算出される。 The shape of silica is not particularly limited, but it can be used from various shapes such as a spherical product, a crushed product, and a cylindrical molded product, and a shape suitable for the process can be selected. The average particle diameter of the silica is not limited, and for example, a particle having a size of 5 μm to 10 mm, preferably 5 μm to 5 mm, more preferably 5 to 150 μm, and further preferably 10 to 100 μm is appropriately selected depending on the process. be able to. The average particle size of silica can be measured using a particle size distribution measuring device. For example, using a Coulter counter Multisizer 3 manufactured by Beckman Coulter, Inc., it is automatically measured and calculated by an electrical detection band method (Coulter principle). .
 担体前駆体には、シリカ以外の担体材料として、アルミナ、チタニア、マグネシア、セリア及びジルコニア並びにこれらの複合酸化物からなる群より選択される1種以上を含有させることができる。複合酸化物としては、シリカ-アルミナ、シリカ-チタニア、アルミナ-チタニア、シリカ-ジルコニア、アルミナ-ジルコニア、チタニア-ジルコニアなどが挙げられる。 The carrier precursor may contain one or more selected from the group consisting of alumina, titania, magnesia, ceria, zirconia, and complex oxides as a carrier material other than silica. Examples of the composite oxide include silica-alumina, silica-titania, alumina-titania, silica-zirconia, alumina-zirconia, titania-zirconia and the like.
 ジルコニウム化合物としては、硝酸ジルコニール(ZrO(NO)、酸塩化ジルコニウム(ZrOCl)、水酸化オキソ塩化ジルコニウム(ZrO(OH)Cl)、硫酸ジルコニール(ZrOSO)、酢酸ジルコニール(ZrO(C)、炭酸ジルコニールアンモニウム((NHZrO(CO)などが挙げられる。これらのなかでも、炭酸ジルコニールアンモニウム、硝酸ジルコニール、酢酸ジルコニールが好ましい。ジルコニウム化合物は1種を単独で、又は2種以上を組み合わせて用いることができる。 Zirconyl nitrate (ZrO (NO 3 ) 2 ), zirconium oxychloride (ZrOCl 2 ), zirconium oxochloride (ZrO (OH) Cl), zirconyl sulfate (ZrOSO 4 ), zirconyl acetate (ZrO (C) 2 H 3 O 2 ) 2 ), zirconyl ammonium carbonate ((NH 4 ) 2 ZrO (CO 3 ) 2 ), and the like. Among these, zirconyl ammonium carbonate, zirconyl nitrate, and zirconyl acetate are preferable. A zirconium compound can be used individually by 1 type or in combination of 2 or more types.
 担体前駆体の調製方法としては、Incipient Wetness法に代表される含浸法を用いることができる。担体前駆体は、含浸後、例えば、好ましくは50~150℃、より好ましくは70~120℃の乾燥温度で、好ましくは0.5~48時間、より好ましくは1~24時間乾燥することができる。 As a method for preparing the carrier precursor, an impregnation method typified by the Incipient Wetness method can be used. The support precursor can be dried after impregnation, for example, preferably at a drying temperature of 50 to 150 ° C., more preferably 70 to 120 ° C., preferably 0.5 to 48 hours, more preferably 1 to 24 hours. .
 担体前駆体の焼成温度は200~800℃が好ましく、350~650℃がより好ましい。焼成温度は、用いるジルコニア化合物の分解開始温度以上であることが好ましい。 The firing temperature of the carrier precursor is preferably 200 to 800 ° C, more preferably 350 to 650 ° C. The firing temperature is preferably equal to or higher than the decomposition start temperature of the zirconia compound to be used.
 未還元触媒は、シリカ及びジルコニア化合物を含有する担体前駆体を焼成して担体を得る工程と、該担体とコバルト化合物とを含有する触媒前駆体を焼成して未還元触媒を得る工程と、を含む製造方法により製造されたものであってよい。 The unreduced catalyst includes a step of calcining a carrier precursor containing silica and a zirconia compound to obtain a carrier, and a step of calcining a catalyst precursor containing the carrier and a cobalt compound to obtain an unreduced catalyst. It may be manufactured by a manufacturing method including.
 コバルト化合物としては、コバルトを塩又は錯体の形で分子内に有する化合物を用いることができる。例えば、硝酸塩、塩酸塩、硫酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、シュウ酸塩、アセチルアセトナート等が挙げられる。具体的には、硝酸コバルト、塩化コバルト、蟻酸コバルト、プロピオン酸コバルト、酢酸コバルト、コバルトアセチルアセトナートなどを挙げることができる。コバルト化合物は1種を単独で、又は2種以上を組み合わせて用いることができる。 As the cobalt compound, a compound having cobalt in the molecule in the form of a salt or a complex can be used. For example, nitrate, hydrochloride, sulfate, formate, acetate, propionate, oxalate, acetylacetonate and the like can be mentioned. Specific examples include cobalt nitrate, cobalt chloride, cobalt formate, cobalt propionate, cobalt acetate, and cobalt acetylacetonate. A cobalt compound can be used individually by 1 type or in combination of 2 or more types.
 触媒前駆体の調製方法としては、Incipient Wetness法に代表される含浸法を用いることができる。このとき、触媒前駆体におけるコバルト化合物の含有量が、未還元触媒の全質量を基準として酸化コバルト(四酸化三コバルト)換算で10~35質量%となるように設定されることが好ましい。高い反応性を得る観点から、触媒前駆体におけるコバルト化合物の含有量が、未還元触媒の全質量を基準として酸化コバルト(四酸化三コバルト)換算で20~30質量%となることがより好ましい。 As a method for preparing the catalyst precursor, an impregnation method typified by the Incipient Wetness method can be used. At this time, the content of the cobalt compound in the catalyst precursor is preferably set to be 10 to 35% by mass in terms of cobalt oxide (tricobalt tetroxide) based on the total mass of the unreduced catalyst. From the viewpoint of obtaining high reactivity, it is more preferable that the content of the cobalt compound in the catalyst precursor is 20 to 30% by mass in terms of cobalt oxide (tricobalt tetroxide) based on the total mass of the unreduced catalyst.
 触媒前駆体は、含浸後、例えば、好ましくは50~150℃、より好ましくは70~120℃の乾燥温度で、好ましくは0.5~48時間、より好ましくは1~24時間乾燥することができる。 The catalyst precursor can be dried after impregnation, for example, preferably at a drying temperature of 50 to 150 ° C., more preferably 70 to 120 ° C., preferably 0.5 to 48 hours, more preferably 1 to 24 hours. .
 触媒前駆体の焼成温度は250~650℃が好ましく、コバルト化合物の高い分散性を得る観点から、400~650℃がより好ましい。650℃を超えると、ジルコニアの形態が無定形から結晶へと変化しやすくなるため好ましくない。焼成温度は用いるコバルト化合物の分解開始温度以上であることが好ましい。 The calcining temperature of the catalyst precursor is preferably 250 to 650 ° C., and more preferably 400 to 650 ° C. from the viewpoint of obtaining high dispersibility of the cobalt compound. If it exceeds 650 ° C., the form of zirconia tends to change from amorphous to crystalline, which is not preferable. The firing temperature is preferably equal to or higher than the decomposition start temperature of the cobalt compound used.
(FT合成用触媒の製造方法)
 本実施形態に係るFT合成用触媒の製造方法は、未還元触媒の還元処理により、FT合成用触媒を得る還元工程を有する。
(Method for producing catalyst for FT synthesis)
The manufacturing method of the catalyst for FT synthesis which concerns on this embodiment has a reduction process which obtains the catalyst for FT synthesis by the reduction process of an unreduced catalyst.
 還元工程では、FT合成用触媒の100℃における単位質量当たりの水素吸着量が0.60ml/g以上となり、且つ、未還元触媒のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をC、FT合成用触媒のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をCとしたときの比C/Cが0.01~0.13となるように、未還元触媒を還元処理する。 In the reduction step, the hydrogen adsorption amount per unit mass at 100 ° C. of the catalyst for FT synthesis is 0.60 ml / g or more, and from the peak top to the peak end point of the main peak when the TPR measurement of the unreduced catalyst is performed. hydrogen consumption in the temperature range of C 1, the ratio at which the hydrogen consumption was C 2 in the temperature range from the peak top of the main peak at the time of performing the TPR measurement of FT synthesis catalyst to a peak end point C 2 / The unreduced catalyst is reduced so that C 1 becomes 0.01 to 0.13.
 還元工程では、FT合成用触媒の式(1)で表されるコバルト原子の還元度が、好ましくは80~95%、より好ましくは87~92%となるように還元処理を行ってよい。コバルト原子の還元度を80%以上とすることでFT合成用触媒の反応活性が一層向上する傾向がある。また、コバルト原子の還元度を95%以下とすることで、コバルト金属粒子の過剰な凝集が抑制され、反応活性が一層向上する傾向がある。 In the reduction step, the reduction treatment may be performed so that the reduction degree of the cobalt atom represented by the formula (1) of the FT synthesis catalyst is preferably 80 to 95%, more preferably 87 to 92%. There exists a tendency for the reaction activity of the catalyst for FT synthesis to improve further by making the reduction degree of a cobalt atom 80% or more. Further, when the degree of reduction of cobalt atoms is 95% or less, excessive aggregation of cobalt metal particles is suppressed, and the reaction activity tends to be further improved.
 なお、FT合成用触媒におけるコバルト原子の還元度は、TPR(Temperature Programed Reduction)測定装置を用いて、以下のようにして測定する。まず、基準となる試料として未還元触媒(コバルト原子が酸化物の状態、還元度0%)について、TPR測定装置でTPR測定を行い、生成するm/z=18(HO)量(1)を計測する。得られた値を基に、未還元触媒における「全コバルト原子の質量」を「コバルト原子量×4/3×(生成したm/z=18量(1))/水の分子量」として求める。次に、測定対象の触媒をTPR測定装置により、未還元触媒と同様の条件にてTPR測定を行ない、m/z=18量(2)を計測する。そして、得られた値を基に、FT合成用触媒における「未還元コバルト原子の質量」を「コバルト原子量×4/3×(生成したm/z=18量(2))/水の分子量」として求める。「金属コバルトの原子の質量」は「全コバルト原子の質量」-「未還元コバルト原子の質量」である。従って、コバルト原子の還元度(%)=100×〔金属コバルト原子の質量〕/〔全コバルト原子の質量〕=100×(「全コバルト原子の質量」-「未還元コバルト原子の質量」)/「全コバルト原子の質量」=100×(「生成したm/z=18量(1)」-「生成したm/z=18量(2)」)/(「生成したm/z=18量(1))となる。 In addition, the reduction degree of the cobalt atom in the catalyst for FT synthesis is measured as follows using a TPR (Temperature Programmed Reduction) measuring device. First, TPR measurement is performed on a non-reduced catalyst (cobalt is in an oxide state, reduction degree 0%) as a reference sample with a TPR measurement device, and the amount of m / z = 18 (H 2 O) produced (1 ). Based on the obtained value, the “mass of all cobalt atoms” in the unreduced catalyst is determined as “cobalt atom weight × 4/3 × (generated m / z = 18 amount (1)) / molecular weight of water”. Next, the TPR measurement is performed on the measurement target catalyst using the TPR measurement device under the same conditions as the unreduced catalyst, and m / z = 18 quantity (2) is measured. Based on the obtained value, the “mass of unreduced cobalt atom” in the catalyst for FT synthesis is expressed as “cobalt atomic weight × 4/3 × (generated m / z = 18 amount (2)) / molecular weight of water”. Asking. “Mass of cobalt metal atoms” is “mass of all cobalt atoms” − “mass of unreduced cobalt atoms”. Therefore, the degree of reduction of cobalt atoms (%) = 100 × [mass of cobalt metal atoms] / [mass of all cobalt atoms] = 100 × (“mass of all cobalt atoms” − “mass of unreduced cobalt atoms”) / “Mass of all cobalt atoms” = 100 × (“generated m / z = 18 amount (1)” − “generated m / z = 18 amount (2)”) / (“generated m / z = 18 amount (1)).
 還元工程では、未還元触媒に還元ガスを接触させることにより、未還元触媒の還元処理を行ってよい。 In the reduction step, the reduction treatment of the unreduced catalyst may be performed by bringing a reducing gas into contact with the unreduced catalyst.
 還元ガスは、分子状水素を含むガスであり、好ましくは分子状水素を70体積%以上含み、より好ましくは分子状水素を90体積%以上含む。分子状水素の含有量が70体積%以上であると、還元の効率が良好になり、上述の効果がより顕著に奏される。還元処理に使用する具体的な気体としては、水素ガス、水素ガスとアルゴンガス等の不活性ガスとの混合ガス等が挙げられるが、水素ガスが特に好ましい。 The reducing gas is a gas containing molecular hydrogen, preferably contains 70% by volume or more of molecular hydrogen, and more preferably contains 90% by volume or more of molecular hydrogen. When the molecular hydrogen content is 70% by volume or more, the reduction efficiency is improved, and the above-described effects are more remarkably exhibited. Specific gases used for the reduction treatment include hydrogen gas, a mixed gas of hydrogen gas and an inert gas such as argon gas, and the like, and hydrogen gas is particularly preferable.
 なお、還元処理に使用する気体が更に一酸化炭素を含む場合には、絶対圧として1.1MPa以上の高圧還元条件において還元中にFT合成反応が生起され、発熱等の問題を生じる懸念があることから好ましくないが、微量の混入であれば許容される。 In addition, when the gas used for the reduction treatment further contains carbon monoxide, an FT synthesis reaction may occur during reduction under a high pressure reduction condition of 1.1 MPa or more as an absolute pressure, which may cause problems such as heat generation. Although it is not preferable, a trace amount of contamination is acceptable.
 還元温度は、好ましくは340~385℃であり、より好ましくは345~380℃であり、更に好ましくは345~375℃である。 The reduction temperature is preferably 340 to 385 ° C, more preferably 345 to 380 ° C, and further preferably 345 to 375 ° C.
 還元温度まで昇温する際の昇温速度は、50℃/分未満であることが好ましく、より好ましくは30℃/分未満であり、更に好ましくは20℃/分未満である。 The rate of temperature rise when raising the temperature to the reduction temperature is preferably less than 50 ° C./min, more preferably less than 30 ° C./min, and even more preferably less than 20 ° C./min.
 また、還元処理では、上記還元温度で所定の保持時間保持してよい。保持時間は、好ましくは4~20時間である。上記昇温速度で上記還元温度まで昇温し、上記還元温度で上記の時間保持することで、上述の水素吸着量及び比C/Cの好適な数値範囲を満たすFT合成用触媒が得られ易くなる。 In the reduction process, a predetermined holding time may be held at the reduction temperature. The holding time is preferably 4 to 20 hours. By raising the temperature to the reduction temperature at the rate of temperature rise and holding the time at the reduction temperature for the above time, a catalyst for FT synthesis satisfying the above-mentioned suitable numerical ranges of the hydrogen adsorption amount and the ratio C 2 / C 1 is obtained. It becomes easy to be done.
 還元の圧力は特に限定されないが、常圧~5MPa程度が選択される。 The reduction pressure is not particularly limited, but is selected from normal pressure to about 5 MPa.
 還元処理は、触媒製造設備内において実施されてもよく、また、FT合成法による炭化水素の製造を実施する設備又はこれに付属する設備において実施されてもよい。 The reduction treatment may be performed in a catalyst production facility, or may be performed in a facility for producing hydrocarbons by an FT synthesis method or a facility attached thereto.
 また、還元処理は、一般的に知られている還元反応炉又は還元反応塔で実施することができ、例えば、固定床、流動床、ロータリーキルン等において実施することができる。好ましいプロセスとしては、還元ガスと触媒との接触効率の観点から、流動床、ロータリーキルンを挙げることができる。 Further, the reduction treatment can be carried out in a generally known reduction reaction furnace or reduction reaction tower, for example, in a fixed bed, fluidized bed, rotary kiln or the like. Preferred processes include a fluidized bed and a rotary kiln from the viewpoint of contact efficiency between the reducing gas and the catalyst.
 還元処理において、GHSVは200h-1以上であることが好ましく、経済損失を考慮すると200h-1以上1200h-1以下であることがより好ましく、さらに好ましくは200h-1以上1000h-1以下である。 In the reduction process, GHSV is preferably at 200h -1 or more, in consideration of the economic losses more preferably 200h at -1 to 1200 h -1, more preferably not more than 200h -1 to 1000h -1.
 還元処理において、線速度は、20mm/s未満であることが好ましく、2~19mm/sであることがより好ましく、さらに好ましくは5~18mm/sである。 In the reduction treatment, the linear velocity is preferably less than 20 mm / s, more preferably 2 to 19 mm / s, and still more preferably 5 to 18 mm / s.
 なお、本明細書中、還元処理におけるGHSVは、未還元触媒の単位体積当たりの還元ガスの体積流量を示し、例えば「還元ガスの体積流量/未還元触媒の体積」で求められる値である。また、還元処理における線速度は、未還元触媒が充填される還元反応炉(又は還元反応塔)の断面を通過する還元ガスの速度を示し、例えば「還元ガスの体積流量/未還元触媒が充填される還元反応炉(又は還元反応塔)の断面積」の計算式で得られる値である。 In the present specification, GHSV in the reduction treatment indicates a volume flow rate of the reducing gas per unit volume of the unreduced catalyst, and is a value obtained by, for example, “volume flow rate of reducing gas / volume of unreduced catalyst”. The linear velocity in the reduction treatment indicates the velocity of the reducing gas passing through the cross section of the reduction reaction furnace (or reduction reaction tower) filled with the unreduced catalyst. It is a value obtained by the calculation formula of “the cross-sectional area of the reduction reaction furnace (or reduction reaction tower)”.
 次に、本発明の炭化水素の製造方法の好適な一実施形態について、以下に説明する。 Next, a preferred embodiment of the hydrocarbon production method of the present invention will be described below.
 本実施形態に係る炭化水素の製造方法は、上述したFT合成用触媒の存在下、一酸化炭素と水素ガスとをFT合成反応させて、炭化水素を得る工程を有する。 The hydrocarbon production method according to the present embodiment includes a step of obtaining a hydrocarbon by subjecting carbon monoxide and hydrogen gas to an FT synthesis reaction in the presence of the above-described catalyst for FT synthesis.
 FT合成反応を実施する際の原料としては、分子状水素及び一酸化炭素を主成分とする合成ガスであれば特に制限はないが、水素/一酸化炭素のモル比が1.5~2.5である合成ガスが好適であり、該モル比が1.5~2.2である合成ガスがより好適である。 The raw material for carrying out the FT synthesis reaction is not particularly limited as long as it is a synthesis gas mainly composed of molecular hydrogen and carbon monoxide, but the hydrogen / carbon monoxide molar ratio is 1.5-2. A synthesis gas having a molar ratio of 1.5 to 2.2 is more preferred.
 FT合成反応は、FT合成の反応プロセスとして公知のプロセス、例えば、固定床、超臨界固定床、スラリー床、流動床等で実施することができる。好ましいプロセスとしては、固定床、超臨界固定床、スラリー床を挙げることができる。 The FT synthesis reaction can be carried out in a process known as a reaction process for FT synthesis, for example, a fixed bed, a supercritical fixed bed, a slurry bed, a fluidized bed, or the like. Preferred processes include a fixed bed, a supercritical fixed bed, and a slurry bed.
 FT合成反応の反応条件については特に制限はなく、公知の条件にて行うことができる。例えば、反応温度としては200~280℃、ガス空間速度としては1000~3000h-1、W(触媒質量)/F(合成ガス流量)が1~10g・h/mol、圧力としては絶対圧1.1~5.1MPaの範囲で反応を行うことができる。 There is no restriction | limiting in particular about the reaction conditions of FT synthesis reaction, It can carry out on well-known conditions. For example, the reaction temperature is 200 to 280 ° C., the gas space velocity is 1000 to 3000 h −1 , W (catalyst mass) / F (synthesis gas flow rate) is 1 to 10 g · h / mol, and the absolute pressure is 1. The reaction can be carried out in the range of 1 to 5.1 MPa.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
(実施例1)
<未還元触媒の調製>
 100℃で24時間乾燥して得られた球状のシリカ粒子(平均粒子径67μm、比表面積255m/g)に、未還元触媒の全質量を基準としたジルコニウム含量が酸化ジルコニウム換算で5質量%となる量の炭酸ジルコニールアンモニウムを、Insipient Wetness法により含浸させた。炭酸ジルコニールアンモニウム含浸後のシリカ粒子を、空気中、650℃で3時間焼成することで担体を得た。
Example 1
<Preparation of unreduced catalyst>
The spherical silica particles (average particle size 67 μm, specific surface area 255 m 2 / g) obtained by drying at 100 ° C. for 24 hours have a zirconium content of 5 mass% in terms of zirconium oxide based on the total mass of the unreduced catalyst. An amount of zirconylammonium carbonate was impregnated by the Incipient Wetness method. The carrier was obtained by firing the silica particles impregnated with zirconyl ammonium carbonate in air at 650 ° C. for 3 hours.
 得られた担体に、未還元触媒の全質量を基準としたコバルト含量が四酸化三コバルト換算で30質量%となる量の硝酸コバルト水溶液を、Insipient Wetness法により含浸させた。硝酸コバルト水溶液含浸後の担体を、120℃で12時間乾燥し、その後、空気中、450℃で3時間焼成し、未還元触媒を得た。 The obtained support was impregnated with an aqueous solution of cobalt nitrate in which the cobalt content based on the total mass of the unreduced catalyst was 30% by mass in terms of tricobalt tetroxide by the Incipient Wetness method. The support after impregnation with the aqueous cobalt nitrate solution was dried at 120 ° C. for 12 hours and then calcined in air at 450 ° C. for 3 hours to obtain an unreduced catalyst.
<FT合成用触媒の調製>
 未還元触媒を固定床反応器内にて水素気流下で還元した。還元に使用した水素ガスのGHSVは600h-1、線速度は17.6mm/sに設定し、触媒層温度を室温から350℃まで12.6℃/minで昇温し、350℃で7時間保持して、FT合成用触媒を得た。
<Preparation of catalyst for FT synthesis>
The unreduced catalyst was reduced in a fixed bed reactor under a hydrogen stream. The GHSV of the hydrogen gas used for the reduction was set to 600 h −1 , the linear velocity was set to 17.6 mm / s, the catalyst layer temperature was raised from room temperature to 350 ° C. at 12.6 ° C./min, and 350 ° C. for 7 hours. This was retained to obtain a catalyst for FT synthesis.
 得られたFT合成用触媒について、100℃における単位質量当たりの水素吸着量を測定したところ、0.64ml/gであった。また、得られた未還元触媒及びFT合成用触媒について、TPR測定を行ったところ、比C/Cは0.083であった。また、得られたFT合成用触媒におけるコバルト原子の還元度は、84.9%であった。 With respect to the obtained FT synthesis catalyst, the amount of hydrogen adsorbed per unit mass at 100 ° C. was measured and found to be 0.64 ml / g. Further, the unreduced catalyst and FT synthesis catalyst obtained was subjected to TPR measurements, the ratio C 2 / C 1 was 0.083. Moreover, the reduction degree of the cobalt atom in the obtained catalyst for FT synthesis was 84.9%.
<FT合成反応>
 得られたFT合成触媒2.5gを、酸化されないように不活性雰囲気下、ドライボックス中で取り出し、PAO(ポリアルファオレフィン)15ccと共に内容積100ccのステンレス鋼製オートクレーブ型反応器に移した。そして、水素ガス/一酸化ガスが2/1(モル比)の混合ガスを原料とし、W(触媒質量)/F(合成ガス流量)=3g・h/mol、温度220℃、圧力2.2MPa、撹拌速度1,000rpmの条件でフィッシャー・トロプシュ合成反応を開始した。反応器の出口のガス組成をガスクロマトグラフィーで経時的に分析し、この分析データから、一酸化炭素の転化率(CO転化率)を算出した。反応開始から6時間後及び48時間後におけるCO転化率を表1に示す。
<FT synthesis reaction>
2.5 g of the obtained FT synthesis catalyst was taken out in a dry box under an inert atmosphere so as not to be oxidized, and transferred to a stainless steel autoclave reactor having an internal volume of 100 cc together with 15 cc of PAO (polyalphaolefin). The raw material is a mixed gas of hydrogen gas / monoxide gas 2/1 (molar ratio), W (catalyst mass) / F (synthesis gas flow rate) = 3 g · h / mol, temperature 220 ° C., pressure 2.2 MPa. The Fischer-Tropsch synthesis reaction was started under the condition of a stirring speed of 1,000 rpm. The gas composition at the outlet of the reactor was analyzed over time by gas chromatography, and the conversion rate of carbon monoxide (CO conversion rate) was calculated from the analysis data. Table 1 shows the CO conversion after 6 hours and 48 hours from the start of the reaction.
(実施例2~9)
 還元処理の条件を表1又は表2に示すとおりに変更したこと以外は、実施例1と同様にしてFT合成用触媒の調製を行った。得られたFT合成用触媒における水素吸着量、比C/C及びコバルト原子の還元度は、それぞれ表1又は表2に示すとおりであった。得られたFT合成用触媒を用いて、実施例1と同様にFT合成反応を行い、反応開始から6時間後及び48時間後におけるCO転化率を求めた。得られた結果を表1及び表2に示す。
(Examples 2 to 9)
A catalyst for FT synthesis was prepared in the same manner as in Example 1 except that the conditions for the reduction treatment were changed as shown in Table 1 or Table 2. The hydrogen adsorption amount, the ratio C 2 / C 1 and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst were as shown in Table 1 or Table 2, respectively. Using the obtained catalyst for FT synthesis, an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The obtained results are shown in Tables 1 and 2.
(実施例10~12)
 還元処理に際し、反応器を固定床反応器からロータリーキルンに変更し、還元処理の条件を表2に示すとおりに変更したこと以外は、実施例1と同様にしてFT合成用触媒の調製を行った。得られたFT合成用触媒における水素吸着量、比C/C及びコバルト原子の還元度は、それぞれ表2に示すとおりであった。得られたFT合成用触媒を用いて、実施例1と同様にFT合成反応を行い、反応開始から6時間後及び48時間後におけるCO転化率を求めた。得られた結果を表2に示す。
(Examples 10 to 12)
A catalyst for FT synthesis was prepared in the same manner as in Example 1 except that the reactor was changed from a fixed bed reactor to a rotary kiln during the reduction treatment, and the reduction treatment conditions were changed as shown in Table 2. . Table 2 shows the hydrogen adsorption amount, the ratio C 2 / C 1 and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst. Using the obtained catalyst for FT synthesis, an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The obtained results are shown in Table 2.
(実施例13~14)
 還元処理の条件を表3に示すとおりに変更したこと以外は、実施例1と同様にしてFT合成用触媒の調製を行った。得られたFT合成用触媒における水素吸着量、比C/C及びコバルト原子の還元度は、それぞれ表3に示すとおりであった。得られたFT合成用触媒を用いて、実施例1と同様にFT合成反応を行い、反応開始から6時間後及び48時間後におけるCO転化率を求めた。得られた結果を表3に示す。
(Examples 13 to 14)
A catalyst for FT synthesis was prepared in the same manner as in Example 1 except that the conditions for the reduction treatment were changed as shown in Table 3. Table 3 shows the hydrogen adsorption amount, the ratio C 2 / C 1, and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst. Using the obtained catalyst for FT synthesis, an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The obtained results are shown in Table 3.
(実施例15~21)
 還元処理に際し、反応器を固定床反応器からロータリーキルンに変更し、還元処理の条件を表3又は表4に示すとおりに変更したこと以外は、実施例1と同様にしてFT合成用触媒の調製を行った。得られたFT合成用触媒における水素吸着量、比C/C及びコバルト原子の還元度は、それぞれ表3又は表4に示すとおりであった。得られたFT合成用触媒を用いて、実施例1と同様にFT合成反応を行い、反応開始から6時間後及び48時間後におけるCO転化率を求めた。得られた結果を表3又は表4に示す。
(Examples 15 to 21)
Preparation of a catalyst for FT synthesis in the same manner as in Example 1 except that the reactor was changed from a fixed bed reactor to a rotary kiln during the reduction treatment, and the reduction treatment conditions were changed as shown in Table 3 or Table 4. Went. The hydrogen adsorption amount, the ratio C 2 / C 1 and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst were as shown in Table 3 or Table 4, respectively. Using the obtained catalyst for FT synthesis, an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The obtained results are shown in Table 3 or Table 4.
(比較例1~6)
 還元処理の条件を表5に示すとおりに変更したこと以外は、実施例1と同様にしてFT合成用触媒の調製を行った。得られたFT合成用触媒における水素吸着量、比C/C及びコバルト原子の還元度は、それぞれ表5に示すとおりであった。得られたFT合成用触媒を用いて、実施例1と同様にFT合成反応を行い、反応開始から6時間後及び48時間後におけるCO転化率を求めた。得られた結果を表5に示す。
(Comparative Examples 1 to 6)
A catalyst for FT synthesis was prepared in the same manner as in Example 1 except that the conditions for the reduction treatment were changed as shown in Table 5. Table 5 shows the hydrogen adsorption amount, the ratio C 2 / C 1 and the degree of reduction of cobalt atoms in the obtained FT synthesis catalyst. Using the obtained catalyst for FT synthesis, an FT synthesis reaction was carried out in the same manner as in Example 1, and the CO conversion rates after 6 hours and 48 hours from the start of the reaction were determined. The results obtained are shown in Table 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (10)

  1.  シリカ及び酸化ジルコニウムを含有する担体と該担体に担持されたコバルト酸化物とを含む未還元触媒の還元物からなり、
     100℃における単位質量当たりの水素吸着量が0.60ml/g以上であり、
     前記未還元触媒のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をC、前記還元物のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をCとしたとき、比C/Cが0.01~0.13である、
     フィッシャー・トロプシュ合成用触媒。
    Comprising a reduced product of an unreduced catalyst comprising a support containing silica and zirconium oxide and a cobalt oxide supported on the support,
    The hydrogen adsorption amount per unit mass at 100 ° C. is 0.60 ml / g or more,
    Main peak peak-to-peak top when the hydrogen consumption in the temperature range from a peak top to peak end point of the main peak at the time of performing the TPR measurement of the unreduced catalyst was carried out C 1, the TPR measurement of the reduced product when the hydrogen consumption in the temperature range up to the end point was set to C 2, the ratio C 2 / C 1 is 0.01 to 0.13
    Fischer-Tropsch synthesis catalyst.
  2.  式(1)で表されるコバルト原子の還元度が80~95%である、請求項1に記載のフィッシャー・トロプシュ合成用触媒。
     コバルト原子の還元度(%)=100×[金属コバルト原子の質量]/[全コバルト原子の質量]  …(1)
    The Fischer-Tropsch synthesis catalyst according to claim 1, wherein the degree of reduction of the cobalt atom represented by the formula (1) is 80 to 95%.
    Reduction degree of cobalt atom (%) = 100 × [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
  3.  前記未還元触媒における酸化ジルコニウムの含有量が、前記未還元触媒の全質量を基準として、0.01~7質量%である、請求項1又は2に記載のフィッシャー・トロプシュ合成用触媒。 3. The Fischer-Tropsch synthesis catalyst according to claim 1, wherein the content of zirconium oxide in the unreduced catalyst is 0.01 to 7% by mass based on the total mass of the unreduced catalyst.
  4.  フィッシャー・トロプシュ合成用触媒を製造する方法であって、
     未還元触媒の還元処理により、前記フィッシャー・トロプシュ合成用触媒を得る還元工程を有し、
     前記未還元触媒が、シリカ及びジルコニウム化合物を含有する担体前駆体を焼成して得られる担体と、該担体に担持されたコバルト酸化物と、を含有し、
     前記フィッシャー・トロプシュ合成用触媒の100℃における単位質量当たりの水素吸着量が0.60ml/g以上であり、
     前記未還元触媒のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をC、前記フィッシャー・トロプシュ合成用触媒のTPR測定を行ったときのメインピークのピークトップからピーク終点までの温度範囲における水素消費量をCとしたとき、比C/Cが0.01~0.13である、
     製造方法。
    A method for producing a Fischer-Tropsch synthesis catalyst comprising:
    A reduction step of obtaining the Fischer-Tropsch synthesis catalyst by reduction treatment of the unreduced catalyst,
    The unreduced catalyst contains a support obtained by firing a support precursor containing silica and a zirconium compound, and a cobalt oxide supported on the support,
    The hydrogen adsorption amount per unit mass at 100 ° C. of the Fischer-Tropsch synthesis catalyst is 0.60 ml / g or more;
    The hydrogen consumption in the temperature range from the peak top to the peak end point of the main peak when performing the TPR measurement of the unreduced catalyst is C 1 , and the main peak when the TPR measurement of the Fischer-Tropsch synthesis catalyst is performed. when the hydrogen consumption in the temperature range from the peak top to peak endpoint was C 2, the ratio C 2 / C 1 is 0.01 to 0.13
    Production method.
  5.  前記フィッシャー・トロプシュ合成用触媒は、式(1)で表されるコバルト原子の還元度が80~95%である、請求項4に記載の製造方法。
     コバルト原子の還元度(%)=100×[金属コバルト原子の質量]/[全コバルト原子の質量]  …(1)
    The production method according to claim 4, wherein the Fischer-Tropsch synthesis catalyst has a reduction degree of the cobalt atom represented by the formula (1) of 80 to 95%.
    Reduction degree of cobalt atom (%) = 100 × [mass of metallic cobalt atom] / [mass of all cobalt atoms] (1)
  6.  前記未還元触媒のジルコニウム含量が、前記未還元触媒の全質量を基準として、酸化ジルコニウム換算で0.01~7質量%である、請求項4又は5に記載の製造方法。 6. The production method according to claim 4, wherein the zirconium content of the unreduced catalyst is 0.01 to 7% by mass in terms of zirconium oxide based on the total mass of the unreduced catalyst.
  7.  前記還元工程において、前記未還元触媒に還元ガスを接触させつつ、昇温速度50℃/分未満で340~385℃の還元温度まで昇温し、前記還元温度で4~20時間保持して、前記未還元触媒の還元処理を行う、請求項4~6のいずれか一項に記載の製造方法。 In the reduction step, the reducing gas is brought into contact with the unreduced catalyst, the temperature is increased to a reduction temperature of 340 to 385 ° C. at a temperature increase rate of less than 50 ° C./min, and held at the reduction temperature for 4 to 20 hours. The production method according to any one of claims 4 to 6, wherein the reduction treatment of the unreduced catalyst is performed.
  8.  前記還元工程において、GHSVが200~1200h-1、線速度が20mm/s未満の条件で、前記未還元触媒に還元ガスを接触させる、請求項4~7のいずれか一項に記載の製造方法。 The production method according to any one of claims 4 to 7, wherein in the reduction step, a reducing gas is brought into contact with the unreduced catalyst under the conditions of GHSV of 200 to 1200 h -1 and a linear velocity of less than 20 mm / s. .
  9.  請求項1~3のいずれか一項に記載のフィッシャー・トロプシュ合成用触媒の存在下、一酸化炭素と水素ガスとを反応させて炭化水素を得る工程を有する、炭化水素の製造方法。 A method for producing hydrocarbons, comprising the step of reacting carbon monoxide with hydrogen gas in the presence of the Fischer-Tropsch synthesis catalyst according to any one of claims 1 to 3 to obtain hydrocarbons.
  10.  請求項4~8のいずれか一項に記載の製造方法により製造されたフィッシャー・トロプシュ合成用触媒の存在下、一酸化炭素と水素ガスとを反応させて炭化水素を得る工程を有する、炭化水素の製造方法。 A hydrocarbon having a step of reacting carbon monoxide with hydrogen gas to obtain a hydrocarbon in the presence of the Fischer-Tropsch synthesis catalyst produced by the production method according to any one of claims 4 to 8. Manufacturing method.
PCT/JP2017/003202 2016-01-29 2017-01-30 Catalyst for fischer-tropsch synthesis, method for producing catalyst for fischer-tropsch synthesis, and method for producing hydrocarbon WO2017131232A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017563893A JP6741694B2 (en) 2016-01-29 2017-01-30 Fischer-Tropsch synthesis catalyst, method for producing Fischer-Tropsch synthesis catalyst, and method for producing hydrocarbon
ZA2018/05068A ZA201805068B (en) 2016-01-29 2018-07-27 Catalyst for fischer-tropsch synthesis, method for producing catalyst for fischer-tropsch synthesis, and method for producing hydrocarbon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016015587 2016-01-29
JP2016-015587 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017131232A1 true WO2017131232A1 (en) 2017-08-03

Family

ID=59398737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003202 WO2017131232A1 (en) 2016-01-29 2017-01-30 Catalyst for fischer-tropsch synthesis, method for producing catalyst for fischer-tropsch synthesis, and method for producing hydrocarbon

Country Status (3)

Country Link
JP (1) JP6741694B2 (en)
WO (1) WO2017131232A1 (en)
ZA (1) ZA201805068B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503546A (en) * 1998-02-20 2002-02-05 サソール テクノロジー(プロプライエタリー)リミテッド Process for producing hydrocarbons from synthesis gas and catalysts therefor
JP2005506190A (en) * 2001-10-25 2005-03-03 サソール テクノロジー(プロプライエタリー)リミテッド Method for activating a cobalt catalyst
JP2006205019A (en) * 2005-01-27 2006-08-10 Ishikawajima Harima Heavy Ind Co Ltd Fischer-tropsch synthesis catalyst and its manufacturing method
JP2007537035A (en) * 2004-05-11 2007-12-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー catalyst
JP2012213678A (en) * 2011-03-31 2012-11-08 Japan Oil Gas & Metals National Corp Activated catalyst for fischer-tropsch synthesis reaction and method for producing hydrocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002503546A (en) * 1998-02-20 2002-02-05 サソール テクノロジー(プロプライエタリー)リミテッド Process for producing hydrocarbons from synthesis gas and catalysts therefor
JP2005506190A (en) * 2001-10-25 2005-03-03 サソール テクノロジー(プロプライエタリー)リミテッド Method for activating a cobalt catalyst
JP2007537035A (en) * 2004-05-11 2007-12-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー catalyst
JP2006205019A (en) * 2005-01-27 2006-08-10 Ishikawajima Harima Heavy Ind Co Ltd Fischer-tropsch synthesis catalyst and its manufacturing method
JP2012213678A (en) * 2011-03-31 2012-11-08 Japan Oil Gas & Metals National Corp Activated catalyst for fischer-tropsch synthesis reaction and method for producing hydrocarbon

Also Published As

Publication number Publication date
JPWO2017131232A1 (en) 2018-11-22
ZA201805068B (en) 2019-07-31
JP6741694B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6007167B2 (en) Fischer-Tropsch synthesis catalyst production method and hydrocarbon production method
EP1666141B1 (en) Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems
JP4436832B2 (en) Fischer-Tropsch synthesis catalyst and hydrocarbon production process
JP5284346B2 (en) catalyst
JP2003500188A5 (en)
JP6307225B2 (en) Catalyst preparation method using a rapid drying step and its use for Fischer-Tropsch synthesis
US20120071571A1 (en) Cobalt catalysts
JP2012516377A5 (en) Catalyst supported on silica clad alumina support
JP5698851B2 (en) Fischer-Tropsch synthesis catalyst, method for producing the same, and method for producing hydrocarbons
JP6670843B2 (en) Catalyst containing dispersed gold and palladium and its use in selective hydrogenation
JP5937677B2 (en) Method for preparing cobalt-containing hydrocarbon synthesis catalyst precursor
JP6741694B2 (en) Fischer-Tropsch synthesis catalyst, method for producing Fischer-Tropsch synthesis catalyst, and method for producing hydrocarbon
WO2017131231A1 (en) Method for producing catalyst for fischer-tropsch synthesis and method for producing hydrocarbon
JP2014527908A (en) Process for the preparation of cobalt-containing Fischer-Tropsch catalysts
JP2023539407A (en) Reforming catalyst carrier and catalyst supported thereon
CN108786799B (en) Supported catalyst, preparation method and application thereof, and method for preparing propylene by propane dehydrogenation
JP5258485B2 (en) Catalyst for producing ethylene oxide and method for producing ethylene oxide using the catalyst
CN106140164A (en) Load type metal catalyst and the application in preparing heavy hydrocarbon from synthesis gas reacts thereof
CN115501905A (en) Catalyst with dehydrogenation function, preparation method and application thereof, and method for preparing small-molecule olefin
CN114728271A (en) Ammoxidation catalyst for propylene, process for producing the catalyst, and ammoxidation method using the catalyst
JP2018187556A (en) Manufacturing method of catalyst for manufacturing hydrocarbon from synthetic gas and manufacturing method of hydrocarbon for manufacturing hydrocarbon from synthetic gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744461

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563893

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744461

Country of ref document: EP

Kind code of ref document: A1