WO2017130919A1 - Suspension - Google Patents

Suspension Download PDF

Info

Publication number
WO2017130919A1
WO2017130919A1 PCT/JP2017/002190 JP2017002190W WO2017130919A1 WO 2017130919 A1 WO2017130919 A1 WO 2017130919A1 JP 2017002190 W JP2017002190 W JP 2017002190W WO 2017130919 A1 WO2017130919 A1 WO 2017130919A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
frame
upper frame
link
vibration
Prior art date
Application number
PCT/JP2017/002190
Other languages
French (fr)
Japanese (ja)
Inventor
藤田 悦則
大下 裕樹
Original Assignee
デルタ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デルタ工業株式会社 filed Critical デルタ工業株式会社
Priority to JP2017564243A priority Critical patent/JP6883333B2/en
Publication of WO2017130919A1 publication Critical patent/WO2017130919A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/50Seat suspension devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means

Definitions

  • the present invention relates to a suspension, and more particularly to a suspension suitable for use as a seat suspension for supporting a seat mounted on a vehicle such as an automobile.
  • an upper frame provided to be movable up and down with respect to the lower frame is elastically supported by a magnetic spring and a torsion bar, and the magnetic spring has a negative spring constant in a predetermined displacement range.
  • a combination of a torsion bar having a positive spring constant and a spring constant obtained by superimposing both in a predetermined displacement range is set to substantially zero (for example, a range from ⁇ 50 N / mm to +50 N / mm).
  • a suspension is disclosed.
  • the seat suspensions of Patent Documents 1 and 2 have characteristics that the spring constant obtained by superimposing both of them is substantially zero due to the configuration using the magnetic spring and the torsion bar for vibrations of a predetermined frequency and amplitude. Although it absorbs vibrations, a damper is also installed to absorb energy from larger vibrations and shocks.
  • a telescopic type including a cylinder, a piston moving in the cylinder, and a piston rod connected to the piston
  • the tip of the piston rod is connected to the lower frame via a shaft member.
  • the rear end of the cylinder is rotatably connected to the upper frame via a shaft member.
  • the present invention has been made in view of the above points, and can further improve vibration absorption characteristics and shock absorption characteristics, and can exert a high damping force even if the stroke of the upper frame is short. It is an object of the present invention to provide a suspension that can contribute to thinning, particularly a suspension that is suitable as a thin sheet suspension.
  • a suspension according to the present invention includes a lower frame, a front link and a rear link that are supported by the lower frame at a predetermined interval in the front-rear direction and perform a rotational motion around the lower portion.
  • the damper is a telescopic type including a piston rod and a cylinder, and is attached to the upper frame side so as to expand and contract by the rotational movement of the front link and the rear link, and the damper itself is externally attached.
  • the upper frame supported via the spring mechanism is a main vibration body, and the damper attached to the upper frame side is a sub vibration body.
  • the upper frame includes an upper front frame provided between the upper portions of the front links disposed on the left and right and an upper rear frame disposed between the upper portions of the rear links disposed on the left and right pairs.
  • the damper is disposed between at least one of the upper front frame and the upper rear frame via at least one damper link, and the damper link. It is preferable that the damper itself functions as the sub-vibration body that generates a vibration having a behavior different from the vibration of the upper frame, which is the main vibration body, due to an external input vibration.
  • the damper has an axial center near the neutral position of the upper frame, a fulcrum on the upper side of the front link that supports the upper frame, and a fulcrum on the upper side of the rear link that supports the upper frame.
  • a piston rod bracket to which the piston rod is connected and a cylinder bracket to which the cylinder is connected is provided on the upper front frame, and the other is provided on the upper rear frame.
  • a link is interposed between at least one of the piston rod and the piston rod bracket and between the cylinder and the cylinder bracket.
  • the fulcrums at both ends of the damper link are the upper fulcrum of the front link that supports the upper frame, or the upper side of the rear link that supports the upper frame. It is preferable to be provided in a posture that is substantially in line with the fulcrum.
  • the spring mechanism is a combination of a spring having a positive characteristic that biases the upper frame in a direction away from the lower frame and a spring having a negative characteristic in a predetermined displacement range.
  • a spring having a positive characteristic that biases the upper frame in a direction away from the lower frame
  • a spring having a negative characteristic in a predetermined displacement range.
  • the lower frame is fixed to the vehicle body side and used as a vehicle seat suspension in which a seat is supported by the upper frame.
  • the damper has a rotational motion of the front link and the rear link on the upper frame side which is a main vibration body supported by the upper part of the front link and the rear link of the frame link mechanism via the spring mechanism. It is provided so as to be a sub-vibration body that generates a vibration having a behavior different from the vibration of the upper frame caused by. That is, when the upper frame, which is the main vibrating body, vibrates due to the input vibration, the damper, which is the sub-vibrating body, exhibits different vibration behavior, so the energy of the input vibration is the heat generated by the vibration energy of the upper frame and the expansion and contraction of the damper. In addition to being dispersed in energy, it is also consumed as energy that vibrates the damper itself.
  • such an arrangement structure of the damper improves the basic performance of the vibration absorption characteristics and shock absorption characteristics of the suspension. As a result, even if the stroke of the upper frame is short, predetermined vibration absorption characteristics and shock absorption characteristics can be exhibited, which can contribute to a thinner suspension.
  • the damper can be disposed substantially horizontally along the upper frame and does not need to be disposed across the upper frame and the lower frame, this point can also contribute to thinning of the suspension.
  • the damper by installing the damper on the upper frame side via at least one damper link, the amount of vibration of the damper itself that occurs as the upper frame moves up and down is increased, and the share of input energy is reduced. The vibration absorption characteristics can be further improved.
  • the present invention preferably has a configuration in which the damper is substantially in a straight line when viewed from the side and the portion supporting the piston rod and cylinder near the neutral position of the upper frame. Therefore, when the upper frame is near the neutral position, the damper is near the dead center position, so that the damping force does not function so much and the upper frame is in the range of slight vibration, and the elasticity of the spring mechanism Can be isolated by force. Therefore, even if a damper with a high damping force is used, the damping force of the damper hardly functions in the range of slight vibration of the upper frame. Therefore, it is possible to use a damper that generates a stronger damping force, and the suspension is thin. It is suitable for planning. Further, by adopting a configuration using the rotational movement of the damper link, the damper can be expanded and contracted efficiently even if the displacement amount of the upper frame is small, and this also contributes to the thinning of the suspension.
  • FIG. 1 is a perspective view showing a schematic configuration of a seat suspension according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of the seat suspension shown in FIG. 1 with the attachment frame provided on the upper frame removed.
  • FIG. 3A is a front view of the seat suspension according to the embodiment, and FIG. 3B is a plan view.
  • FIG. 4A is a side view of the seat suspension according to the embodiment, and FIG. 4B is a bottom view.
  • FIG. 5 is a view for explaining the positional relationship between the front link, the rear link, and the damper.
  • 6 (a) to 6 (c) are views for explaining the operation of the seat suspension according to the embodiment, and FIG. 6 (a) is a side view of the upper frame in the lower limit position.
  • FIG. 6B is a side view of the upper frame in the neutral position
  • FIG. 6C is a side view of the upper frame in the upper limit position
  • FIG. 7A is a diagram showing the displacement-load characteristics of the seat suspension according to Test Example 1.
  • FIG. 7B is a diagram showing the displacement amount of the upper frame (suspension displacement) and the displacement amount of the damper (damper displacement). )
  • FIG. 7C is a diagram showing the relationship between suspension displacement and force transmission efficiency.
  • FIG. 8A is a diagram showing temporal changes in the displacement amount (suspension displacement) of the upper frame and the displacement amount of the damper (damper displacement) of the seat suspension according to Test Example 1, and FIG. FIG.
  • FIG. 8C is a diagram showing temporal changes in the displacement speed of the upper frame (suspension speed) and the displacement speed of the damper (damper speed).
  • FIG. 8C shows the damping force of the damper alone and the damping force of the entire seat suspension. It is the figure shown by the relationship with the displacement amount (suspension displacement) of a flame
  • FIG. 8D is a diagram showing the displacement-load characteristic diagram of FIG. 7A together with the damping force of the entire seat suspension in FIG. 8C.
  • FIG. 9 is a diagram illustrating a measurement result of vibration transmissibility in Test Example 2.
  • the seat suspension 1 for a vehicle such as a passenger car, a truck, a bus, and a forklift, which is a suspension according to an embodiment of the present invention.
  • the seat suspension 1 according to the present embodiment includes a substantially rectangular upper frame 10 and a lower frame 20, and a parallel link including a front link 30 and a rear link 40 in pairs. It is connected via a frame linking mechanism.
  • a vehicle seat (not shown) is supported on the upper frame 10, and the lower frame 20 is fixed to the vehicle body side (for example, a floor (not shown)).
  • the upper portions of the pair of left and right front links 30 and 30 are connected by an upper front frame 11 included in the upper frame 10, and the upper portion of the pair of left and right rear links 40 and 40 is connected to the upper rear frame 12 included in the upper frame 10. It is connected by. Then, the end portions of the upper front frame 11 and the upper rear frame 12 are inserted into attachment holes (not shown) formed in the pair of side frames 10a, 10a of the upper frame 10, and the front links 30, 30 and The rear links 40 and 40 are provided so as to be positioned near the side portions of the upper frame 10 and the lower frame 20. Accordingly, the upper frame 10 can move up and down with respect to the lower frame 20, more precisely, the frame link mechanism has a parallel link structure including the front links 30 and 30 and the rear links 40 and 40. Therefore, it moves up and down between the diagonally upper rear that is the upper limit position and the diagonally lower front that is the lower limit position along the rotation trajectories of the front links 30 and 30 and the rear links 40 and 40.
  • the upper front frame 11 and the upper rear frame 12 are both formed of a pipe material in the present embodiment, and the torsion bars 31 and 41 are inserted, respectively.
  • One end of each of the torsion bars 31 and 41 is provided so as not to rotate relative to the upper front frame 11 and the upper rear frame 12, so that the torsion bars 31 and 41 can move the upper frame 10 to the lower frame 20.
  • it is set so as to exert an elastic force biasing in a direction that is relatively separated from each other, that is, upward.
  • the other ends of the torsion bars 31 and 41 are connected to an initial position adjusting member 15 including an adjusting shaft 15a, an adjusting dial 15b, and the like.
  • the structure is the same as the structure disclosed in Patent Documents 1 and 2, and when the adjustment dial 15b is rotated, the torsion bars 31 and 41 are twisted in either direction, and the initial elasticity of the torsion bars 31 and 41 is The force is adjusted so that the upper frame 10 can be adjusted to the neutral position regardless of the weight of the seated person.
  • the arrangement positions of the torsion bars 31 and 41 are not limited to the upper part, and may be provided below the upper front frame 11 and the upper rear frame 12.
  • the spring for biasing the upper frame 10 in the direction away from the lower frame 20 is not limited to the torsion bars 31 and 41, and a coil spring or the like may be used.
  • the magnetic spring 50 includes a fixed magnet unit 51 and a moving magnet unit 52 as shown in FIGS.
  • the fixed magnet unit 51 includes a fixed-side magnet support frame 511 attached to the lower frame 20, and fixed-side magnets 512 and 512 supported by the fixed-side magnet support frame 511 and attached at predetermined intervals in the vertical direction. It becomes.
  • the moving magnet unit 52 includes a moving magnet 521 disposed in a gap 513 between fixed magnets 512 and 512 that are arranged to face each other at a predetermined interval.
  • Each end of the movement-side magnet 521 is connected to one end of a substantially L-shaped movement-side magnet link 522, 522.
  • the other ends of the moving-side magnet links 522 and 522 are pivotally supported by a mounting bracket 523 provided near the rear portion of the upper frame 20.
  • the magnetic spring 50 can be provided so that the moving side magnet 521 moves in a substantially vertical direction. However, if the moving side magnet 521 is configured to move in a substantially horizontal direction as in the present embodiment, the magnetic spring 50 can be provided. The overall thickness (vertical height) of the magnetic spring 50 can be reduced, which can contribute to a reduction in the overall thickness of the seat suspension 1.
  • the magnetic spring 50 exhibits a negative spring constant in a predetermined displacement amount range when the moving side magnet 521 moves.
  • the magnetic spring 50 has a thickness direction. Two magnetized magnets are used, each being arranged so that the different poles are adjacent to each other along the moving direction of the moving magnet 521, while the magnetizing direction of the moving magnet 521 is the moving direction.
  • the characteristic in the direction in which the value of the restoring force increases as the torsion amount of the torsion bars 31 and 41 increases is referred to as “positive spring characteristic (the spring constant at that time is referred to as“ positive spring constant ”).
  • positive spring characteristic the spring constant at that time is referred to as“ positive spring constant ”.
  • the spring mechanism of the present embodiment including the magnetic spring 50 and the above-described torsion bars 31 and 41 has the above-described torsion bars 31 and 41 in the range in which the negative spring constant of the magnetic spring 50 functions.
  • a constant load region where the load characteristic does not change even if the amount of displacement increases that is, a region where the spring constant becomes substantially zero (for example, the change of the spring constant changes from ⁇ 50 N / mm to +50 N).
  • / Mm range (a range from about ⁇ 10 mm to about 10 mm in FIG. 7A).
  • the moving magnet 521 of the moving magnet unit 52 is positioned substantially in the center of the moving range at the neutral position of the upper frame 10. It is preferable to set so as to.
  • the damper 60 is provided on the upper frame 10 side.
  • the damper 60 has a piston rod 61 and a cylinder 62 in which a piston 61b attached to the piston rod 61 reciprocates (see FIGS. 5 and 6).
  • the upper front side attached to the upper frame 10 side ("upper frame side” means any part constituting the upper frame 10 and any part operating together with the upper frame 10).
  • a piston rod bracket 35 as a part for supporting the front side of the damper 60 is provided on the part frame 11 so as to protrude rearward, and the upper rear frame is also attached to the upper frame 10 side.
  • 12 is provided with a cylinder bracket 45 as a part for supporting the rear side of the damper 60 so as to protrude forward (see FIGS. 5 and 6). Since the damper 60 is thus spanned between the upper front frame 11 and the upper rear frame 12 constituting the upper frame 10, the damper 60 is disposed substantially horizontally.
  • the upper frame 10 that is the main vibrating body vibrates up and down via the front links 30 and 30 and the rear links 40 and 40 due to vibration input from the vehicle body floor side during traveling, but the damper according to the present embodiment.
  • Reference numeral 60 denotes a sub-vibrator that generates vibrations having behaviors different from the vibration of the upper frame 10. Therefore, the energy of the input vibration is also dissipated by the vibration energy of the damper 60 as a sub-vibration body, and the vibration absorption characteristics and shock absorption characteristics of the entire seat suspension 1 are improved.
  • the piston rod 61 of the damper 60 as the sub-vibration body of the present embodiment has its tip end portion 61 a pivotally supported by the piston bracket 35 via the first shaft member 63 a.
  • the upper end 61a is pivotable up and down.
  • the cylinder 62 is not directly connected to the cylinder bracket 45 but is connected via a damper link 70.
  • a mounting frame 10b is spanned between the upper surfaces of the side frames 10a and 10a in the vicinity of the middle between the upper front frame 11 and the upper rear frame 12 of the upper frame 10.
  • Support brackets 64 that are formed in a substantially U-shape when viewed from the front of the seat suspension 1 are attached to the mounting frame 10b back to back, and a cylinder 62 is disposed between the side surfaces of the substantially U-shaped support bracket 64. (See FIGS. 1, 2 and 5).
  • the support bracket 64 is formed in a substantially L-shape extending downward after hanging downward when viewed from the side.
  • a substantially triangular link 65 that serves as a relay damper link connected to a damper link 70 described later. While being connected via the second shaft member 63b, the lower part of the substantially triangular link 65 is connected to the rear end 64a extending rearward in the support bracket 64 via the third shaft member 63c.
  • the top portion 65a of the substantially triangular link 65 projects rearward from the rear end of the cylinder 62, and the top portion 65a and one end 70a of the damper link 70 are connected via a fourth shaft member 63d.
  • the other end 70b of the damper link 70 and the cylinder bracket 45 are connected via a fifth shaft member 63e (see FIG. 5).
  • the damper link 70 is a dead center (thinking) in the vicinity of the middle of the displacement range in the vicinity of a point determined by design as a position where a sufficient vertical stroke can be secured. It is attached so that it becomes the posture of the point) position.
  • the damper link 70 is substantially straight with respect to the cylinder bracket 45 when viewed from the side, and more precisely when viewed from the side.
  • the center of the fifth shaft member 63e, which is a fulcrum, and the center of the fourth shaft member 63d, which is the other fulcrum of the damper link 70 and the substantially triangular link 65, are attached in a substantially straight line.
  • the upper frame 10 is located above the lower frame 20 from near the neutral position (in the direction of displacement from the state of FIG. 6B to the state of FIG. 6C) or below (the figure The damper 60 fixed to the upper rear frame 12 with any change in the angle of the rear links 40, 40, regardless of whether it is displaced from the state of 6 (b) to the state of FIG. 6 (a).
  • the angle of the cylinder bracket 45 as a part for supporting the rear side changes, that is, when the upper frame 10 is displaced upward, the tip of the cylinder bracket 45 is changed from the state of FIG. 6B to FIG. 6C.
  • the upper frame 10 is rotated downward (clockwise in FIGS.
  • the axis of the damper 60 (the center of the first shaft member 63a, which is a fulcrum between the piston bracket 35 and the piston rod 61).
  • a line connecting the center of the second shaft member 63b that is a fulcrum between the cylinder 62 and the substantially triangular link 65) is an upper front frame that is a fulcrum on the upper side of the front link 30 that supports the upper frame 10.
  • 11 (torsion bar 31) and the center of upper rear frame 12 (torsion bar 41), which is a fulcrum on the upper side of rear link 40 that supports upper frame 10 are provided so as to substantially coincide with each other.
  • the straight line connecting the center of the upper front frame 11 (center of the torsion bar 31) and the first shaft member 63a and the axis of the damper 60 are formed.
  • the angle on one side (lower side when displaced downward (FIG. 6A) and upper side when displaced upward (FIG. 6C)) is less than 180 degrees.
  • the other side formed by the straight line connecting the center of the upper rear frame 12 (center of the torsion bar 41) and the second shaft member 63b and the axis of the damper 60 (when displaced downward (FIG. 6A)).
  • the angle when the lens is displaced upward and downward is similarly less than 180 degrees.
  • the piston rod 61 and the cylinder 62 are displaced in the opposite direction, that is, in the extending direction by the amount corresponding to this angle. Therefore, in the configuration of the present embodiment, even if the damper link 70 is not disposed, if the upper frame 10 vibrates up and down from the neutral position, the piston rod 61 increases as the displacement amount of the upper frame 10 increases due to these actions. The ratio of the amount of displacement increases. However, it is preferable to provide the damper link 70 in order to increase the relative movement amount of the piston rod 61 with respect to the cylinder 62 even when the displacement amount of the upper frame 10 is smaller.
  • a substantially triangular link 65 is connected as an auxiliary damper link between the cylinder 62 and the damper link 70 using the second, third and fourth shaft members 63b to 63d. ing. Therefore, the damper 60 is supported via the articulated link structure including the damper link 70 and the substantially triangular link 65 as the auxiliary damper link. The resulting vibration of the damper 60 itself is noticeable.
  • the vibration behavior of the damper 60 at this time does not coincide with the behavior of the upper frame 10 that vibrates up and down substantially in parallel, and the front end portion on the piston rod 61 side and the rear end portion on the cylinder 62 side operate in opposite directions. Show different behaviors (pendulum motion).
  • the damper 60 serving as the sub-vibrating body can dissipate input energy not only by the expansion / contraction operation but also by the pendulum motion independent of the upper frame 10 serving as the main vibrating body, thereby improving vibration absorption characteristics and shock absorption characteristics.
  • the damper 60 itself exhibits such independent vibration behavior, when the seat suspension 1 itself is regarded as a dynamic vibration absorber, the damper 60 functions as an auxiliary mass body. It can be said that it contributes to the improvement of the characteristics and shock absorption characteristics.
  • the axial center of the damper 60 is substantially in line with the center of the upper front frame 11 and the center of the upper rear frame 12 as viewed from the side, and
  • the center of the fifth shaft member 63e and the center of the fourth shaft member 63d at both ends of the damper link 70 are substantially in line with the center of the upper rear frame 12 when viewed from the side surface.
  • the damping force of the damper 60 does not substantially act at the neutral position of the upper frame 10, and the vibration is isolated by the characteristics of the spring mechanism of the present embodiment configured by the torsion bars 31 and 41 and the magnetic spring 50. . That is, in the vicinity of the neutral position of the upper frame 10, small amplitude and high frequency micro vibrations of the upper frame 10 can be absorbed without using the damping force of the damper 60. For this reason, as the damper 60, it is possible to use a damper having a high damping force that effectively absorbs a low-frequency vibration or impact force having a larger amplitude. As a result, even if the entire stroke of the upper frame 10 is small, high vibration absorption characteristics and shock absorption characteristics can be exhibited, which is suitable for reducing the thickness of the seat suspension 1.
  • the damper link 70 since the damper link 70 is provided, the rotational movement of the cylinder bracket 45 via the upper rear frame 12 accompanying the rotational movement of the rear links 40, 40, the front link 30, In addition to the rotational motion of the piston rod bracket 35 associated with the rotational motion of 30, the rotational motion of the damper link 70 that accompanies the rotational motion acts synergistically. Therefore, in spite of the structure in which the damper 60 is provided substantially horizontally on the upper frame 10 side, the damper 70 quickly reacts sensitively to the upward or downward displacement from the vicinity of the neutral position of the upper frame 10. Works. Thereby, according to the seat suspension 1 of the present embodiment, a high damping force can be applied before the upper frame 10 reaches the upper limit position or the lower limit position, and the bottom frame and ceiling suppression effects of the upper frame 10 can be applied. Is expensive.
  • the type of the damper 60 is not limited, and a displacement-dependent damper such as a friction damper using a spring element, a speed-dependent damper such as a magnetic damper or an oil damper, or a displacement or speed.
  • a displacement-dependent damper such as a friction damper using a spring element
  • a speed-dependent damper such as a magnetic damper or an oil damper
  • a displacement or speed Other dampers or the like having a small dependency can be used.
  • the damper 60 is provided in a substantially horizontal posture on the upper frame 10 side, so that it is more than an oil damper using a viscous liquid. It is preferable to use a friction damper or a magnetic damper.
  • the displacement-dependent friction damper for example, a rubber or resin ball disposed on the outer peripheral surface of the piston 61b or a rubber and resin ball used together and provided in an appropriate arrangement in the axial direction is used. Thus, a frictional resistance and an elastic deformation are generated between the inner peripheral surface of the cylinder 62 and a damping force is generated.
  • the speed-dependent magnetic damper for example, a magnet having a structure in which a magnet is used as the piston 61b and a conductor made of copper is disposed on the inner peripheral surface as the cylinder 62 can be used.
  • a displacement-dependent friction damper can employ a high damping force by increasing the frictional resistance and spring constant.
  • the damper link 70 is provided between the cylinder 62 and the cylinder bracket 45, but instead, it may be provided between the piston rod 61 and the piston rod bracket 35. it can. Also, the damper link 70 can be disposed on both the piston rod 61 side and the cylinder 62 side. In this embodiment, the piston rod 61 is arranged on the front side and the cylinder 62 is arranged on the rear side. However, it is of course possible to arrange them in the reverse direction.
  • FIG. 7A to 7C are diagrams showing the static characteristics of the seat suspension 1 according to Test Example 1 that employs the structure of the present embodiment.
  • the damper 60 a speed-dependent magnetic damper in which a magnet is disposed as the piston 61b and copper is disposed on the inner peripheral surface of the cylinder 62 is used. Further, the distance (damper length) between the center of the first shaft member 63a on which the piston rod 61 is pivotally supported and the center of the second shaft member 63b, which is a fulcrum of the cylinder 62 and the substantially triangular link 65, is shown in FIG. When L1 is at the neutral position of 6 (b), L2 is at the lower limit position of FIG.
  • the displacement amount 0 mm is the neutral position of the upper frame 10
  • a positive value of the displacement amount indicates a case where the upper frame 10 is displaced downward from the neutral position
  • a negative value of the displacement amount is the upper frame.
  • a case where 10 is displaced upward from the neutral position is shown.
  • the seat suspension 1 of the present embodiment has a spring constant of an absolute value of about 20 N / mm or less (within an absolute value in a displacement amount range of ⁇ about 10 mm centered on a displacement amount of 0 mm ( It can be seen that in the displacement range of ⁇ 5 mm, the spring constant has an area of approximately zero with an absolute value of approximately 10 N / mm or less. Therefore, when a person is seated and the upper frame 10 is positioned near the neutral position, the vertical vibration transmitted from the vehicle body floor is effectively damped by the relative motion of the upper frame 10 and the lower frame 20.
  • FIGS. 8A and 8B are diagrams showing dynamic characteristics when the upper frame 10 is moved up and down at 4 Hz with the displacement amount from the neutral position of the upper frame 10 being ⁇ 15 mm.
  • the damper speed (moving speed of the piston 61b and the piston rod 61 in the cylinder 62) is highest when the displacement (suspension displacement) of the upper frame 10 is near +10 mm and near ⁇ 10 mm. It has become.
  • FIG. 8C the damping force of the damper 60 and the damping force of the seat suspension 1 are maximized in the vicinity of the displacement amount (suspension displacement) of the upper frame 10 +10 mm and in the vicinity of ⁇ 10 mm.
  • the upper frame 10 can be attenuated by applying a large damping force before reaching the upper limit position or the lower limit position.
  • the damper link 70 becomes a dead point (thought point) position, and the damping force of the damper 60 is hardly working.
  • FIG. 8 (d) showing the displacement-load characteristic of FIG. 7 (a) and the damping force of FIG. 8 (c).
  • a SEAT value (Seat Effective Amplitude Transmissibility factor) was determined based on JIS A 8304: 2001 (ISO 7096: 2000). Assuming that the seat suspension 1 of Test Example 1 is used for a driver's seat of a forklift, an input spectrum class EM6 (excitation center frequency 7.6, PSD, which is a reference of a “50,000 kg or less crawler tractor dozer”) The maximum value of 0.34 (m / s 2 ) 2 / Hz) was tested. The test subjects were two persons weighing 63 kg and 72 kg. As a result, the obtained SEAT values were 0.34 and 0.28, respectively. Since the standard of SEAT value of EM6 was less than 0.7, the standard was satisfied.
  • the test was performed with an input spectrum class EM8 (excitation center frequency 3.3, PSD maximum value 0.4 (m / s 2 ) 2 / Hz) which is a standard of “a compact loader of 4,500 kg or less”.
  • the subjects were two persons weighing 63 kg and 72 kg.
  • the obtained SEAT values were 0.52 and 0.52, respectively. Since the standard of SEAT value of EM8 was less than 0.8, the standard was satisfied.
  • FIG. 9 shows a vibration transmissibility when an automobile seat is mounted on the upper frame 10 of the seat suspension 1 in which the lower frame 20 is set on a vibration exciter and the subject with a weight of 85 kg is seated on the seat. It is the figure which showed the measurement result.
  • the damper 60 a displacement-dependent friction damper that provides rubber on the peripheral surface of the piston 61 b and slides on the inner peripheral surface of the cylinder 62 is used. Moreover, the damping force of the displacement-dependent friction damper exceeds the damping force of the magnetic damper of Test Example 1.
  • Comparative Example 1 is a measurement result when a seat suspension from which the displacement-dependent friction damper is removed is used.
  • FIG. 9 shows that the vibration transmissibility at the resonance point in Test Example 2 is significantly lower than that in Comparative Example 1. Further, in the region where the input frequency band is higher than the resonance point, Test Example 2 has almost the same vibration transmissibility as Comparative Example 1 even though the displacement-dependent friction damper having a high damping force is used. Thus, it can be seen that in the region of high frequency and small amplitude, the displacement-dependent friction damper does not act, and the vibration can be isolated by the action of a spring mechanism having a substantially zero spring constant characteristic.
  • the damper 60 that is the sub-vibrating body includes the cylinder 62, the second shaft member 63b, the third shaft member 63c, and the fourth shaft member. It is supported by a substantially triangular link 65 and a damper link 70 as auxiliary damper links connected via 63d and the fifth shaft member 63e, that is, by a multi-joint structure link. Therefore, when the upper frame 10 that is the main vibrating body moves up and down, the cylinder 62 side swings around the first shaft member 63a that is the fulcrum of the piston rod 61.
  • the resonance peak in Test Example 2 is significantly lower than that in Comparative Example 1 due to the expansion / contraction operation of the damper 60 made of a friction damper, but the resonance of Comparative Example 1 that does not include the damper 60. While the frequency is about 1.8 Hz, in Test Example 2, it is about 1.9 Hz. That is, Test Example 2 is slightly shifted to the high frequency side. However, in Test Example 2, the vibration transmissibility is lower than that of Comparative Example 1 even in a higher frequency region exceeding the resonance frequency, particularly up to about 2.5 Hz, and no secondary resonance point is generated. Moreover, in the high frequency region above 2.5 Hz, both have substantially the same vibration transmissibility.
  • the frequency band of the attenuation region is increased as compared with Comparative Example 1.
  • the damper 60 is not a spring but a substantially triangular link 65, a damper link in the upper frame 10. By being supported through a plurality of links including 70.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Seats For Vehicles (AREA)

Abstract

In order to make it possible to apply a greater damping force than with conventional suspensions while also decreasing thickness, a damper (60) is provided toward the side of an upper frame (10), which is a main vibration member supported at the tops of a front link (30) and a rear link (40) in a frame linking mechanism, so as to serve as an accessory vibration means that generates vibrations with a behavior different from the vibrations in the upper frame (10) which are generated by the rotational movements of the front link (30) and the rear link (40). When the upper frame vibrates due to input vibrations, the damper (60) exhibits a different vibrational behavior; thus, the energy of the input vibrations is not only dispersed as the vibrational energy of the upper frame (10) and the thermal energy generated by the expansions and contraction of the damper (60), but is also consumed as the energy that induces the vibration of the damper (60) itself, which is provided as a vibrating member. As a result of having such a structure, the damper (60) improves the basic performance of the suspension in terms of the vibration absorption characteristics and shock absorption characteristics thereof.

Description

サスペンションsuspension
 本発明は、サスペンションに関し、特に、自動車などの乗物に搭載されるシートを支持するシートサスペンションとして用いるのに適するサスペンションに関する。 The present invention relates to a suspension, and more particularly to a suspension suitable for use as a seat suspension for supporting a seat mounted on a vehicle such as an automobile.
 特許文献1,2には、下部フレームに対して上下動可能に設けられる上部フレームを磁気ばねとトーションバーとにより弾性的に支持し、所定の変位範囲において磁気ばねが負のばね定数を有することを利用して、正のばね定数を有するトーションバーとの組み合わせによって、所定の変位範囲における両者を重畳したばね定数を略ゼロ(例えば、-50N/mmから+50N/mmの範囲)に設定したシートサスペンションが開示されている。 In Patent Documents 1 and 2, an upper frame provided to be movable up and down with respect to the lower frame is elastically supported by a magnetic spring and a torsion bar, and the magnetic spring has a negative spring constant in a predetermined displacement range. , And a combination of a torsion bar having a positive spring constant and a spring constant obtained by superimposing both in a predetermined displacement range is set to substantially zero (for example, a range from −50 N / mm to +50 N / mm). A suspension is disclosed.
特開2010-179719号公報JP 2010-179719 A 特開2010-179720号公報JP 2010-179720 A
 特許文献1,2のシートサスペンションは、所定の周波数及び振幅の振動に対しては、上記の磁気ばねとトーションバーを用いた構成により、両者を重畳したばね定数が略ゼロになる特性でこれらの振動を吸収するが、より大きな振動や衝撃によるエネルギーを吸収するためにダンパーも併設されている。 The seat suspensions of Patent Documents 1 and 2 have characteristics that the spring constant obtained by superimposing both of them is substantially zero due to the configuration using the magnetic spring and the torsion bar for vibrations of a predetermined frequency and amplitude. Although it absorbs vibrations, a damper is also installed to absorb energy from larger vibrations and shocks.
 ダンパーとしては、シリンダと、シリンダ内を移動するピストンと、ピストンに連結されたピストンロッドとを備えた伸縮式のものが用いられ、例えば、ピストンロッドの先端部を、下部フレームに軸部材を介して回動可能に連結し、シリンダの後端部を、上部フレームに軸部材を介して回動可能に連結して配設している。これにより、上部フレームが下部フレームに対して上下動すると、それに相当する分、ピストンロッドに連結されたピストンがシリンダに対して移動し、エネルギーを減衰する。従って、かかる構成の場合、ダンパーは、上部フレームの変位や速度に応じて所定の減衰力を発揮する。
 しかし、振動吸収特性や衝撃吸収特性は、より適切に発揮できることが常に望まれている。特に、薄型のサスペンションにおいては、上部フレームのストロークが制限されている中で、より高い減衰力を発揮できることが望ましい。
As the damper, a telescopic type including a cylinder, a piston moving in the cylinder, and a piston rod connected to the piston is used. For example, the tip of the piston rod is connected to the lower frame via a shaft member. The rear end of the cylinder is rotatably connected to the upper frame via a shaft member. As a result, when the upper frame moves up and down relative to the lower frame, the piston connected to the piston rod moves relative to the cylinder by an amount corresponding thereto, and the energy is attenuated. Therefore, in such a configuration, the damper exhibits a predetermined damping force according to the displacement and speed of the upper frame.
However, it is always desired that vibration absorption characteristics and shock absorption characteristics can be more appropriately exhibited. In particular, in a thin suspension, it is desirable that a higher damping force can be exhibited while the stroke of the upper frame is limited.
 本発明は、上記の点に鑑みなされたものであり、振動吸収特性や衝撃吸収特性をさらに向上させることができると共に、上部フレームのストロークが短くても高い減衰力を作用させることができ、さらなる薄型化に寄与できるサスペンション、特に薄型のシートスサスペンションとして適するサスペンションを提供することを課題とする。 The present invention has been made in view of the above points, and can further improve vibration absorption characteristics and shock absorption characteristics, and can exert a high damping force even if the stroke of the upper frame is short. It is an object of the present invention to provide a suspension that can contribute to thinning, particularly a suspension that is suitable as a thin sheet suspension.
 上記課題を解決するため、本発明のサスペンションは、下部フレームと、前記下部フレームに、前後に所定間隔をおいて支持され、それぞれ下部を中心として前後に回転運動を行う前部リンク及び後部リンクを備えたフレーム用リンク機構と、前記前部リンク及び後部リンクの上部に支持された上部フレームと、前記前部リンク及び後部リンクを弾性的に付勢するばね機構と、前記上部フレームの前記下部フレームに対する離接動作時のエネルギーを減衰するダンパーとを備えたサスペンションであって、
 前記ダンパーが、ピストンロッドとシリンダとを備えた伸縮式であり、前記上部フレーム側に、前記前部リンク及び後部リンクの回転運動によって伸縮するように取り付けられていると共に、前記ダンパー自体が、外部からの入力振動による前記前部リンク及び後部リンクの回転運動によって生じる前記上部フレームの振動とは異なる挙動の振動を生じ、
 前記ばね機構を介して支持された前記上部フレームが主振動体となり、前記上部フレーム側に取り付けられた前記ダンパーが副振動体となっていることを特徴とする。
In order to solve the above-mentioned problems, a suspension according to the present invention includes a lower frame, a front link and a rear link that are supported by the lower frame at a predetermined interval in the front-rear direction and perform a rotational motion around the lower portion. A link mechanism for a frame, an upper frame supported on top of the front link and the rear link, a spring mechanism for elastically urging the front link and the rear link, and the lower frame of the upper frame A suspension with a damper that attenuates energy at the time of separating operation with respect to
The damper is a telescopic type including a piston rod and a cylinder, and is attached to the upper frame side so as to expand and contract by the rotational movement of the front link and the rear link, and the damper itself is externally attached. A vibration having a behavior different from the vibration of the upper frame caused by the rotational motion of the front link and the rear link due to the input vibration from
The upper frame supported via the spring mechanism is a main vibration body, and the damper attached to the upper frame side is a sub vibration body.
 前記上部フレームが、左右一対配設される前記前部リンクの上部間に設けられた上側前部フレームと、左右一対配設される前記後部リンクの上部間に設けられた上側後部フレームとを有し、前記ダンパーが、前記上側前部フレームとの間、及び、前記上側後部フレームとの間のいずれか少なくとも一方に、少なくとも一つのダンパー用リンクを介して配設されており、前記ダンパー用リンクの動きによって、前記ダンパー自体が、外部からの入力振動による前記主振動体である前記上部フレームの振動とは異なる挙動の振動を生じる前記副振動体として機能する構成であることが好ましい。
 前記ダンパーは、前記上部フレームの中立位置付近において、その軸心と、前記上部フレームを支持する前記前部リンクの上部側の支点と、前記上部フレームを支持する前記後部リンクの上部側の支点とが、側面から見て略一直線上になるように設定されていることが好ましい。
 前記ピストンロッドが連結されるピストンロッド用ブラケット及び前記シリンダが連結されるシリンダ用ブラケットのうちの一方が、前記上側前部フレームに設けられ、他方が、前記上側後部フレームに設けられ、前記ダンパー用リンクが、前記ピストンロッドと前記ピストンロッド用ブラケットとの間、及び、前記シリンダと前記シリンダ用ブラケットとの間の少なくとも一方に介在されていることが好ましい。
 前記上部フレームの中立位置付近において、前記ダンパー用リンクの両端の各支点が、前記上部フレームを支持する前記前部リンクの上部側の支点、又は、前記上部フレームを支持する前記後部リンクの上部側の支点と略一直線上となる姿勢で設けられていることが好ましい。
The upper frame includes an upper front frame provided between the upper portions of the front links disposed on the left and right and an upper rear frame disposed between the upper portions of the rear links disposed on the left and right pairs. The damper is disposed between at least one of the upper front frame and the upper rear frame via at least one damper link, and the damper link. It is preferable that the damper itself functions as the sub-vibration body that generates a vibration having a behavior different from the vibration of the upper frame, which is the main vibration body, due to an external input vibration.
The damper has an axial center near the neutral position of the upper frame, a fulcrum on the upper side of the front link that supports the upper frame, and a fulcrum on the upper side of the rear link that supports the upper frame. However, it is preferable that it is set so as to be substantially in a straight line when viewed from the side.
One of a piston rod bracket to which the piston rod is connected and a cylinder bracket to which the cylinder is connected is provided on the upper front frame, and the other is provided on the upper rear frame. It is preferable that a link is interposed between at least one of the piston rod and the piston rod bracket and between the cylinder and the cylinder bracket.
In the vicinity of the neutral position of the upper frame, the fulcrums at both ends of the damper link are the upper fulcrum of the front link that supports the upper frame, or the upper side of the rear link that supports the upper frame. It is preferable to be provided in a posture that is substantially in line with the fulcrum.
 前記ばね機構は、前記上部フレームを前記下部フレームに離間する方向に付勢するばね定数が正の特性を備えたばねと、所定の変位範囲において、ばね定数が負となる特性を備えたばねとの組み合わせからなり、前記上部フレームの中立位置付近において、前記各ばねの特性が重畳されて、ばね定数が略ゼロになる領域を有していることが好ましい。
 前記下部フレームが車体側に固定され、前記上部フレームにシートが支持される乗物のシートサスペンションとして用いられるものであることが好ましい。
The spring mechanism is a combination of a spring having a positive characteristic that biases the upper frame in a direction away from the lower frame and a spring having a negative characteristic in a predetermined displacement range. Preferably, in the vicinity of the neutral position of the upper frame, there is a region where the characteristics of the springs are superimposed and the spring constant becomes substantially zero.
It is preferable that the lower frame is fixed to the vehicle body side and used as a vehicle seat suspension in which a seat is supported by the upper frame.
 本発明によれば、ダンパーが、フレーム用リンク機構の前部リンク及び後部リンクの上部にばね機構を介して支持される主振動体である上部フレーム側に、前部リンク及び後部リンクの回転運動によって生じる上部フレームの振動とは異なる挙動の振動を生じる副振動体となるように設けられている。すなわち、入力振動によって主振動体である上部フレームが振動した際、副振動体であるダンパーは、異なる振動挙動を示すため、入力振動のエネルギーが、上部フレームの振動エネルギー、ダンパーの伸縮によって生じる熱エネルギーに分散されるだけでなく、ダンパー自体を振動させるエネルギーとしても消費される。従って、ダンパーのこのような配置構造は、サスペンションの有する振動吸収特性、衝撃吸収特性の基本的性能を向上させる。これにより、上部フレームのストロークが短くても、所定の振動吸収特性、衝撃吸収特性を発揮でき、サスペンションの薄型化に寄与できる。しかも、ダンパーを、上部フレームに沿って略水平に配置でき、上部フレーム及び下部フレームに跨って配置する必要がないため、この点でも、サスペンションの薄型化に寄与できる。また、ダンパーを上部フレーム側に、少なくとも一つのダンパー用リンクを介して取り付けた構成とすることにより、上部フレームの上下動に伴って生じるダンパー自体の振動量が大きくなり、入力エネルギーの負担割合が高くなり、振動吸収特性をさらに向上させることができる。 According to the present invention, the damper has a rotational motion of the front link and the rear link on the upper frame side which is a main vibration body supported by the upper part of the front link and the rear link of the frame link mechanism via the spring mechanism. It is provided so as to be a sub-vibration body that generates a vibration having a behavior different from the vibration of the upper frame caused by. That is, when the upper frame, which is the main vibrating body, vibrates due to the input vibration, the damper, which is the sub-vibrating body, exhibits different vibration behavior, so the energy of the input vibration is the heat generated by the vibration energy of the upper frame and the expansion and contraction of the damper. In addition to being dispersed in energy, it is also consumed as energy that vibrates the damper itself. Therefore, such an arrangement structure of the damper improves the basic performance of the vibration absorption characteristics and shock absorption characteristics of the suspension. As a result, even if the stroke of the upper frame is short, predetermined vibration absorption characteristics and shock absorption characteristics can be exhibited, which can contribute to a thinner suspension. In addition, since the damper can be disposed substantially horizontally along the upper frame and does not need to be disposed across the upper frame and the lower frame, this point can also contribute to thinning of the suspension. In addition, by installing the damper on the upper frame side via at least one damper link, the amount of vibration of the damper itself that occurs as the upper frame moves up and down is increased, and the share of input energy is reduced. The vibration absorption characteristics can be further improved.
 また、本発明は、好ましくは、上部フレームの中立位置付近において、ダンパーが、ピストンロッド及びシリンダを支持する部位と側面から見て略一直線上となる構成である。従って、上部フレームが中立位置付近に存在している場合には、ダンパーが死点位置付近となっているため、減衰力があまり機能せず、上部フレームが微振動の範囲では、ばね機構の弾性力によって除振できる。従って、減衰力の高いダンパーを使用しても、上部フレームの微振動の範囲ではダンパーの減衰力がほとんど機能しないため、より強い減衰力を発生するダンパーを用いることが可能であり、サスペンションの薄型化を図るのに適している。また、ダンパー用リンクの回転運動を利用する構成とすることにより、ダンパーの伸縮を、上部フレームの変位量が小さくても効率よく行わせることができ、この点でもサスペンションの薄型化に寄与できる。 Further, the present invention preferably has a configuration in which the damper is substantially in a straight line when viewed from the side and the portion supporting the piston rod and cylinder near the neutral position of the upper frame. Therefore, when the upper frame is near the neutral position, the damper is near the dead center position, so that the damping force does not function so much and the upper frame is in the range of slight vibration, and the elasticity of the spring mechanism Can be isolated by force. Therefore, even if a damper with a high damping force is used, the damping force of the damper hardly functions in the range of slight vibration of the upper frame. Therefore, it is possible to use a damper that generates a stronger damping force, and the suspension is thin. It is suitable for planning. Further, by adopting a configuration using the rotational movement of the damper link, the damper can be expanded and contracted efficiently even if the displacement amount of the upper frame is small, and this also contributes to the thinning of the suspension.
図1は、本発明の一の実施形態にかかるシートサスペンションの概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of a seat suspension according to an embodiment of the present invention. 図2は、図1に示したシートサスペンションの上部フレームに設けられている取り付けフレームを取り外した状態の斜視図である。FIG. 2 is a perspective view of the seat suspension shown in FIG. 1 with the attachment frame provided on the upper frame removed. 図3(a)は、上記実施形態にかかるシートサスペンションの正面図であり、図3(b)は、平面図である。FIG. 3A is a front view of the seat suspension according to the embodiment, and FIG. 3B is a plan view. 図4(a)は、上記実施形態にかかるシートサスペンションの側面図であり、図4(b)は、底面図である。FIG. 4A is a side view of the seat suspension according to the embodiment, and FIG. 4B is a bottom view. 図5は、前部リンク、後部リンク及びダンパーの取り付け位置関係を説明するための図である。FIG. 5 is a view for explaining the positional relationship between the front link, the rear link, and the damper. 図6(a)~(c)は、上記実施形態にかかるシートサスペンションの作用を説明するための図であり、図6(a)は、上部フレームが下限位置の状態の側面図であり、図6(b)は、上部フレームが中立位置の状態の側面図であり、図6(c)は、上部フレームが上限位置の状態の側面図である。6 (a) to 6 (c) are views for explaining the operation of the seat suspension according to the embodiment, and FIG. 6 (a) is a side view of the upper frame in the lower limit position. 6B is a side view of the upper frame in the neutral position, and FIG. 6C is a side view of the upper frame in the upper limit position. 図7(a)は、試験例1にかかるシートサスペンションの変位-荷重特性を示した図であり、図7(b)は、上部フレームの変位量(サスペンション変位)とダンパーの変位量(ダンパー変位)との関係を示した図であり、図7(c)はサスペンション変位と力の伝達効率との関係を示した図である。FIG. 7A is a diagram showing the displacement-load characteristics of the seat suspension according to Test Example 1. FIG. 7B is a diagram showing the displacement amount of the upper frame (suspension displacement) and the displacement amount of the damper (damper displacement). ), And FIG. 7C is a diagram showing the relationship between suspension displacement and force transmission efficiency. 図8(a)は、試験例1にかかるシートサスペンションの上部フレームの変位量(サスペンション変位)及びダンパーの変位量(ダンパー変位)の時間変化を示した図であり、図8(b)は、上部フレームの変位速度(サスペンション速度)及びダンパーの変位速度(ダンパー速度)の時間変化を示した図であり、図8(c)は、ダンパー単体の減衰力及びシートサスペンション全体の減衰力を、上部フレームの変位量(サスペンション変位)との関係で示した図である。図8(d)は、図7(a)の変位-荷重特性の図と、図8(c)におけるシートサスペンション全体の減衰力とをあわせて示した図である。FIG. 8A is a diagram showing temporal changes in the displacement amount (suspension displacement) of the upper frame and the displacement amount of the damper (damper displacement) of the seat suspension according to Test Example 1, and FIG. FIG. 8C is a diagram showing temporal changes in the displacement speed of the upper frame (suspension speed) and the displacement speed of the damper (damper speed). FIG. 8C shows the damping force of the damper alone and the damping force of the entire seat suspension. It is the figure shown by the relationship with the displacement amount (suspension displacement) of a flame | frame. FIG. 8D is a diagram showing the displacement-load characteristic diagram of FIG. 7A together with the damping force of the entire seat suspension in FIG. 8C. 図9は、試験例2の振動伝達率の測定結果を示した図である。FIG. 9 is a diagram illustrating a measurement result of vibration transmissibility in Test Example 2.
 以下、図面に示した実施形態に基づき本発明をさらに詳細に説明する。図1~図6は、本発明の一の実施形態に係るサスペンションである乗用車、トラック、バス、フォークリフト等の乗物用のシートサスペンション1の構造を示す。これらの図に示したように、本実施形態のシートサスペンション1は、略矩形状の上部フレーム10と下部フレーム20とを備え、前部リンク30と後部リンク40とを左右一対ずつ備えた平行リンク構造のフレーム用リンク機構を介して連結されている。上部フレーム10には、乗物用シート(図示せず)が支持され、下部フレーム20は車体側(例えばフロア(図示せず))に固定される。左右一対の前部リンク30,30の上部間が上部フレーム10に含まれる上側前部フレーム11により連結され、左右一対の後部リンク40,40の上部間が上部フレーム10に含まれる上側後部フレーム12により連結されている。そして、上側前部フレーム11及び上側後部フレーム12の各端部が上部フレーム10の一対の側部フレーム10a,10aに形成した取り付け孔(図示せず)に挿通され、前部リンク30,30及び後部リンク40,40が上部フレーム10及び下部フレーム20の側部付近に位置するように設けられている。これにより、上部フレーム10は、下部フレーム20に対して上下動可能に、より正確には、フレーム用リンク機構が前部リンク30,30と後部リンク40,40とを備えた平行リンク構造からなるため、前部リンク30,30及び後部リンク40,40の回転軌道に沿って、上限位置である斜め上後方と下限位置である斜め下前方との間を上下動する。 Hereinafter, the present invention will be described in more detail based on the embodiments shown in the drawings. 1 to 6 show a structure of a seat suspension 1 for a vehicle such as a passenger car, a truck, a bus, and a forklift, which is a suspension according to an embodiment of the present invention. As shown in these drawings, the seat suspension 1 according to the present embodiment includes a substantially rectangular upper frame 10 and a lower frame 20, and a parallel link including a front link 30 and a rear link 40 in pairs. It is connected via a frame linking mechanism. A vehicle seat (not shown) is supported on the upper frame 10, and the lower frame 20 is fixed to the vehicle body side (for example, a floor (not shown)). The upper portions of the pair of left and right front links 30 and 30 are connected by an upper front frame 11 included in the upper frame 10, and the upper portion of the pair of left and right rear links 40 and 40 is connected to the upper rear frame 12 included in the upper frame 10. It is connected by. Then, the end portions of the upper front frame 11 and the upper rear frame 12 are inserted into attachment holes (not shown) formed in the pair of side frames 10a, 10a of the upper frame 10, and the front links 30, 30 and The rear links 40 and 40 are provided so as to be positioned near the side portions of the upper frame 10 and the lower frame 20. Accordingly, the upper frame 10 can move up and down with respect to the lower frame 20, more precisely, the frame link mechanism has a parallel link structure including the front links 30 and 30 and the rear links 40 and 40. Therefore, it moves up and down between the diagonally upper rear that is the upper limit position and the diagonally lower front that is the lower limit position along the rotation trajectories of the front links 30 and 30 and the rear links 40 and 40.
 上側前部フレーム11及び上側後部フレーム12は、本実施形態ではいずれもパイプ材から形成され、それぞれ、トーションバー31,41が挿入されている。該トーションバー31,41の一端は、上側前部フレーム11及び上側後部フレーム12に対してそれぞれ相対回転しないように設けられ、これにより、トーションバー31,41は、上部フレーム10を下部フレーム20に対して相対的に離間する方向、すなわち、上方向に付勢する弾性力を発揮するように設定される。トーションバー31,41の他端は、調整用シャフト15a、調整用ダイヤル15b等を備えた初期位置調整部材15に接続されている。その構造は、特許文献1,2に開示された構造と同様であり、調整用ダイヤル15bを回転操作すると、トーションバー31,41がいずれかの方向にねじられ、トーションバー31,41の初期弾性力が調整され、着座者の体重にかかわらず、上部フレーム10を中立位置に調整できるようになっている。なお、トーションバー31,41の配設位置は上部に限定されるものではなく、上側前部フレーム11及び上側後部フレーム12の下部に設けてもよい。また、上部フレーム10を下部フレーム20に対して相対的に離間する方向に付勢するばねとしては、トーションバー31,41に限らず、コイルスプリング等を用いることも可能である。但し、上部フレーム10のストロークが短い範囲で所定の正のばね定数を得るためには、本実施形態のように、前部リンク30,30及び後部リンク40,40の支点に組み込むことができるトーションバー31,41を用いることが好ましい。 The upper front frame 11 and the upper rear frame 12 are both formed of a pipe material in the present embodiment, and the torsion bars 31 and 41 are inserted, respectively. One end of each of the torsion bars 31 and 41 is provided so as not to rotate relative to the upper front frame 11 and the upper rear frame 12, so that the torsion bars 31 and 41 can move the upper frame 10 to the lower frame 20. On the other hand, it is set so as to exert an elastic force biasing in a direction that is relatively separated from each other, that is, upward. The other ends of the torsion bars 31 and 41 are connected to an initial position adjusting member 15 including an adjusting shaft 15a, an adjusting dial 15b, and the like. The structure is the same as the structure disclosed in Patent Documents 1 and 2, and when the adjustment dial 15b is rotated, the torsion bars 31 and 41 are twisted in either direction, and the initial elasticity of the torsion bars 31 and 41 is The force is adjusted so that the upper frame 10 can be adjusted to the neutral position regardless of the weight of the seated person. The arrangement positions of the torsion bars 31 and 41 are not limited to the upper part, and may be provided below the upper front frame 11 and the upper rear frame 12. In addition, the spring for biasing the upper frame 10 in the direction away from the lower frame 20 is not limited to the torsion bars 31 and 41, and a coil spring or the like may be used. However, in order to obtain a predetermined positive spring constant in a range where the stroke of the upper frame 10 is short, a torsion that can be incorporated at the fulcrum of the front links 30 and 30 and the rear links 40 and 40 as in this embodiment. Bars 31 and 41 are preferably used.
 磁気ばね50は、図2及び図6に示したように、固定マグネットユニット51と移動マグネットユニット52とを備えてなる。固定マグネットユニット51は、下部フレーム20に取り付けられる固定側磁石支持フレーム511と、固定側磁石支持フレーム511に支持され、上下方向に所定間隔をおいて取り付けられた固定側磁石512,512とを備えてなる。 The magnetic spring 50 includes a fixed magnet unit 51 and a moving magnet unit 52 as shown in FIGS. The fixed magnet unit 51 includes a fixed-side magnet support frame 511 attached to the lower frame 20, and fixed- side magnets 512 and 512 supported by the fixed-side magnet support frame 511 and attached at predetermined intervals in the vertical direction. It becomes.
 移動マグネットユニット52は、所定間隔をおいて対向配置される固定側磁石512,512間の間隙513に配置される移動側磁石521を備えてなる。移動側磁石521の各端部は、略L字状の移動側磁石用リンク522,522の一端が連結される。移動側磁石用リンク522,522の他端は、上部フレーム20の後部付近に設けた取り付けブラケット523に軸支されている。これにより、上部フレーム10が下部フレーム20に接近する方向すなわち下方に変位した際には、移動側磁石用リンク522,522を介して移動側磁石521が、固定側磁石512,512間の間隙513を前方に移動し、上部フレーム10が下部フレーム20から離間する方向すなわち上方に変位した際には、移動側磁石用リンク522,522を介して移動側磁石521が、固定側磁石512,512間の間隙513を後方に移動する。 The moving magnet unit 52 includes a moving magnet 521 disposed in a gap 513 between fixed magnets 512 and 512 that are arranged to face each other at a predetermined interval. Each end of the movement-side magnet 521 is connected to one end of a substantially L-shaped movement- side magnet link 522, 522. The other ends of the moving-side magnet links 522 and 522 are pivotally supported by a mounting bracket 523 provided near the rear portion of the upper frame 20. As a result, when the upper frame 10 is displaced in the direction approaching the lower frame 20, that is, downward, the moving magnet 521 causes the gap 513 between the fixed magnets 512 and 512 via the moving magnet links 522 and 522. When the upper frame 10 is displaced away from the lower frame 20, that is, upward, the moving magnet 521 is moved between the fixed magnets 512 and 512 via the moving magnet links 522 and 522. The gap 513 is moved backward.
 なお、磁気ばね50は、移動側磁石521が略垂直方向に移動するように設けることも可能であるが、本実施形態のように、移動側磁石521を略水平方向に移動するように構成すると、磁気ばね50全体の厚さ(上下方向の高さ)を薄くでき、シートサスペンション1全体の薄型化に寄与できる。 The magnetic spring 50 can be provided so that the moving side magnet 521 moves in a substantially vertical direction. However, if the moving side magnet 521 is configured to move in a substantially horizontal direction as in the present embodiment, the magnetic spring 50 can be provided. The overall thickness (vertical height) of the magnetic spring 50 can be reduced, which can contribute to a reduction in the overall thickness of the seat suspension 1.
 磁気ばね50は、移動側磁石521が移動する際に、所定の変位量範囲で負のばね定数を発揮するものであるが、例えば、対向配置される固定側磁石512,512として、それぞれ厚み方向に着磁したものを2個ずつ用い、いずれも移動側磁石521の移動方向に沿って異極同士が隣接するように配置する一方、移動側磁石521の着磁方向がその移動方向となるように構成することにより、固定側磁石512,512間を横切る位置付近において負のばね定数を発揮する構造とすることができる。なお、本明細書では、トーションバー31,41のねじり量の増大に伴って復元力の値が大きくなっていく方向の特性を「正のばね特性(その時のばね定数を「正のばね定数」)」とし、トーションバー31,41が正のばね特性を発揮するようにねじられる際、移動側磁石521の固定側磁石512,512に対する相対位置によって、変位量の増加に拘わらず磁気ばね50の復元力の値が小さくなっていく変位範囲(図7(a)の約-10mmから約10mmまでの範囲)の特性を「負のばね特性(その時のばね定数を「負のばね定数」)」としている。 The magnetic spring 50 exhibits a negative spring constant in a predetermined displacement amount range when the moving side magnet 521 moves. For example, as the fixed side magnets 512 and 512 arranged to face each other, the magnetic spring 50 has a thickness direction. Two magnetized magnets are used, each being arranged so that the different poles are adjacent to each other along the moving direction of the moving magnet 521, while the magnetizing direction of the moving magnet 521 is the moving direction. By configuring in this way, a structure that exhibits a negative spring constant in the vicinity of a position that crosses between the fixed magnets 512 and 512 can be obtained. In this specification, the characteristic in the direction in which the value of the restoring force increases as the torsion amount of the torsion bars 31 and 41 increases is referred to as “positive spring characteristic (the spring constant at that time is referred to as“ positive spring constant ”). When the torsion bars 31 and 41 are twisted so as to exert positive spring characteristics, the relative position of the moving side magnet 521 with respect to the fixed side magnets 512 and 512 causes the magnetic spring 50 to move regardless of the increase in displacement. The characteristic of the displacement range (the range from about -10mm to about 10mm in Fig. 7 (a)) where the restoring force value becomes smaller is the "negative spring characteristic (the spring constant at that time is the" negative spring constant ")" It is said.
 この結果、磁気ばね50と上記したトーションバー31,41とを備えてなる本実施形態のばね機構は、磁気ばね50における負のばね定数が機能する範囲においては、上記したトーションバー31,41の正のばね定数のばね特性が重畳され、変位量が増加しても負荷荷重が変化しない定荷重領域すなわちばね定数が略ゼロになる領域(例えば、ばね定数の変化が、-50N/mmから+50N/mmの範囲の低い値に収まっている領域(図7(a)の約-10mmから約10mmまでの範囲))を有することになる。このばね定数が実質的に略ゼロになる領域をできるだけ有効利用するためには、上部フレーム10の中立位置において、移動マグネットユニット52の移動側磁石521が、その移動範囲の中で略中央に位置するようにセットされることが好ましい。 As a result, the spring mechanism of the present embodiment including the magnetic spring 50 and the above-described torsion bars 31 and 41 has the above-described torsion bars 31 and 41 in the range in which the negative spring constant of the magnetic spring 50 functions. A constant load region where the load characteristic does not change even if the amount of displacement increases, that is, a region where the spring constant becomes substantially zero (for example, the change of the spring constant changes from −50 N / mm to +50 N). / Mm range (a range from about −10 mm to about 10 mm in FIG. 7A). In order to effectively use the region where the spring constant is substantially zero as much as possible, the moving magnet 521 of the moving magnet unit 52 is positioned substantially in the center of the moving range at the neutral position of the upper frame 10. It is preferable to set so as to.
 ここで、本実施形態では、上部フレーム10側にダンパー60が設けられている。ダンパー60は、ピストンロッド61と、このピストンロッド61に取り付けられたピストン61bが内部を往復動作するシリンダ62とを有している(図5、図6参照)。上部フレーム10側(「上部フレーム側」とは、上部フレーム10を構成するいずれかの部位及び上部フレーム10と共に動作するいずれかの部位の両方を含む意味である)に取り付けられた上記の上側前部フレーム11に、ダンパー60の前部側を支持する部位としてのピストンロッド用ブラケット35が後方に突出するように設けられていると共に、同じく、上部フレーム10側に取り付けられた上記の上側後部フレーム12に、ダンパー60の後部側を支持する部位としてのシリンダ用ブラケット45が前方に突出するように設けられている(図5,図6参照)。ダンパー60は、このように、上部フレーム10を構成する上側前部フレーム11及び上側後部フレーム12間に掛け渡されるため、略水平に配置されることになる。 Here, in this embodiment, the damper 60 is provided on the upper frame 10 side. The damper 60 has a piston rod 61 and a cylinder 62 in which a piston 61b attached to the piston rod 61 reciprocates (see FIGS. 5 and 6). The upper front side attached to the upper frame 10 side ("upper frame side" means any part constituting the upper frame 10 and any part operating together with the upper frame 10). A piston rod bracket 35 as a part for supporting the front side of the damper 60 is provided on the part frame 11 so as to protrude rearward, and the upper rear frame is also attached to the upper frame 10 side. 12 is provided with a cylinder bracket 45 as a part for supporting the rear side of the damper 60 so as to protrude forward (see FIGS. 5 and 6). Since the damper 60 is thus spanned between the upper front frame 11 and the upper rear frame 12 constituting the upper frame 10, the damper 60 is disposed substantially horizontally.
 例えば、走行時に車体フロア側から入力される振動によって、主振動体である上部フレーム10は、前部リンク30,30及び後部リンク40,40を介して上下に振動するが、本実施形態のダンパー60は、この上部フレーム10の振動とは異なる挙動の振動を生じる副振動体となるように取り付けられている。そのため、入力振動のエネルギーが、副振動体としてのダンパー60の振動エネルギーによっても散逸され、シートサスペンション1全体の振動吸収特性、衝撃吸収特性が向上する。 For example, the upper frame 10 that is the main vibrating body vibrates up and down via the front links 30 and 30 and the rear links 40 and 40 due to vibration input from the vehicle body floor side during traveling, but the damper according to the present embodiment. Reference numeral 60 denotes a sub-vibrator that generates vibrations having behaviors different from the vibration of the upper frame 10. Therefore, the energy of the input vibration is also dissipated by the vibration energy of the damper 60 as a sub-vibration body, and the vibration absorption characteristics and shock absorption characteristics of the entire seat suspension 1 are improved.
 本実施形態の副振動体としてのダンパー60のピストンロッド61は、図5及び図6に示したように、その先端部61aが、第1軸部材63aを介してピストン用ブラケット35に軸支され、先端部61aを中心として上下に回動可能となっている。一方、シリンダ62は、シリンダ用ブラケット45に直接連結されるのではなく、ダンパー用リンク70を介して連結されている。 As shown in FIGS. 5 and 6, the piston rod 61 of the damper 60 as the sub-vibration body of the present embodiment has its tip end portion 61 a pivotally supported by the piston bracket 35 via the first shaft member 63 a. The upper end 61a is pivotable up and down. On the other hand, the cylinder 62 is not directly connected to the cylinder bracket 45 but is connected via a damper link 70.
 具体的には、上部フレーム10の上側前部フレーム11と上側後部フレーム12との中間付近であって、側部フレーム10a,10aの上面間には、取り付けフレーム10bが掛け渡されており、この取り付けフレーム10bに、シートサスペンション1の正面方向から見て略コ字状に形成された支持ブラケット64が背中合わせで取り付けられ、略コ字状の支持ブラケット64の側面部間に、シリンダ62が配置される(図1、図2及び図5参照)。なお、支持ブラケット64は、側面から見て、下方に垂下した後、後方に延びる略L字状に形成されている。シリンダ62の後部であって、シリンダ62の軸心に対応する位置には、後述のダンパー用リンク70に連結される、中継用のダンパー用リンクとなっている略三角形状リンク65の上部が、第2軸部材63bを介して連結されていると共に、略三角形状リンク65の下部が、支持ブラケット64において後方に延びた後方端部64aに第3軸部材63cを介して連結されている。略三角形状リンク65の頂部65aは、シリンダ62の後端よりも後方に突出しており、この頂部65aとダンパー用リンク70の一端70aとが第4軸部材63dを介して連結されている。そして、ダンパー用リンク70の他端70bとシリンダ用ブラケット45とが第5軸部材63eを介して連結されている(図5参照)。 Specifically, a mounting frame 10b is spanned between the upper surfaces of the side frames 10a and 10a in the vicinity of the middle between the upper front frame 11 and the upper rear frame 12 of the upper frame 10. Support brackets 64 that are formed in a substantially U-shape when viewed from the front of the seat suspension 1 are attached to the mounting frame 10b back to back, and a cylinder 62 is disposed between the side surfaces of the substantially U-shaped support bracket 64. (See FIGS. 1, 2 and 5). Note that the support bracket 64 is formed in a substantially L-shape extending downward after hanging downward when viewed from the side. At the position corresponding to the axial center of the cylinder 62 at the rear portion of the cylinder 62, there is an upper portion of a substantially triangular link 65 that serves as a relay damper link connected to a damper link 70 described later. While being connected via the second shaft member 63b, the lower part of the substantially triangular link 65 is connected to the rear end 64a extending rearward in the support bracket 64 via the third shaft member 63c. The top portion 65a of the substantially triangular link 65 projects rearward from the rear end of the cylinder 62, and the top portion 65a and one end 70a of the damper link 70 are connected via a fourth shaft member 63d. The other end 70b of the damper link 70 and the cylinder bracket 45 are connected via a fifth shaft member 63e (see FIG. 5).
 これにより、上部フレーム10が下部フレーム20に対して離接すると、ダンパー60のピストンロッド61とシリンダ62が相対的に伸縮動作するが、上部フレーム10が中立位置(上部フレーム10の下部フレーム20に対する変位範囲の中間付近で上下へのストロークを十分確保できる位置として設計上定めたポイント)付近の場合に、図5及び図6(b)に示したように、ダンパー用リンク70が死点(思案点)位置の姿勢となるように取り付けられる。具体的には、シリンダ用ブラケット45に対して、ダンパー用リンク70が側面から見て略一直線上に、より正確には、側面から見て、図5及び図6(b)に示したように、上部フレーム10を支持する後部リンク40の上部側の支点である、シリンダ用ブラケット45が取り付けられた上側後部フレーム12(トーションバー41)の中心、ダンパー用リンク70とシリンダ用ブラケット45の一方の支点である第5軸部材63eの中心、及び、ダンパー用リンク70と略三角形状リンク65の他方の支点である第4軸部材63dの中心が、略一直線上になるように取り付けられる。 Thus, when the upper frame 10 is separated from and in contact with the lower frame 20, the piston rod 61 and the cylinder 62 of the damper 60 relatively expand and contract, but the upper frame 10 is in a neutral position (the upper frame 10 with respect to the lower frame 20). As shown in FIGS. 5 and 6 (b), the damper link 70 is a dead center (thinking) in the vicinity of the middle of the displacement range in the vicinity of a point determined by design as a position where a sufficient vertical stroke can be secured. It is attached so that it becomes the posture of the point) position. Specifically, as shown in FIGS. 5 and 6 (b), the damper link 70 is substantially straight with respect to the cylinder bracket 45 when viewed from the side, and more precisely when viewed from the side. The center of the upper rear frame 12 (torsion bar 41) to which the cylinder bracket 45 is attached, which is a fulcrum on the upper side of the rear link 40 that supports the upper frame 10, one of the damper link 70 and the cylinder bracket 45 The center of the fifth shaft member 63e, which is a fulcrum, and the center of the fourth shaft member 63d, which is the other fulcrum of the damper link 70 and the substantially triangular link 65, are attached in a substantially straight line.
 このように取り付けることにより、上部フレーム10が、下部フレーム20に対して、中立位置付近からその上方(図6(b)の状態から図6(c)の状態に変位する方向)又は下方(図6(b)の状態から図6(a)の状態に変位する方向)のいずれに変位した場合でも、後部リンク40,40の角度変化に伴って、上側後部フレーム12に固定された、ダンパー60の後部側を支持する部位としてのシリンダ用ブラケット45の角度が変化し、すなわち、上部フレーム10が上方に変位するとシリンダ用ブラケット45の先端部が図6(b)の状態から図6(c)の状態となるように上方(図6(b),(c)において時計回り)に回転し、上部フレーム10が下方に変位するとシリンダ用ブラケット45の先端部が図6(b)の状態から図6(a)の状態となるように下方(図6(a),(b)において反時計回り)に回転する。そして、ダンパー用リンク70には、シリンダ用ブラケット45の回転に伴って他端70b側が同方向に変位するため、一端70a側は第5軸部材63eを中心として逆方向に回転し、略三角形状リンク65の頂部65aを、後部側すなわちシリンダ用ブラケット45側に引き寄せる。この結果、略三角形状リンク65の上部が、支持ブラケット64と連結された第3軸部材63cを中心として後方(図6(a)~(c)の時計回り)に回転し、略三角形状リンク65の上部に第2軸部材63bを介して連結されたシリンダ62が後方に引き寄せられ、ピストンロッド61がシリンダ62に対して相対的に伸び方向に動作する。そして、このように回転運動をするダンパー用リンク70によってダンパー60が伸びていくため、その単位時間当たりのダンパー60の変位量(伸び量)であるダンパー60の変位速度(ピストンロッド61のシリンダ62に対する移動速度)は、上部フレーム10の変位量が増加するにつれて大きくなる。そのため、上部フレーム10が上方又は下方に所定量離間した位置に至るまで、ダンパー60の減衰力は急激に上昇する。 By attaching in this way, the upper frame 10 is located above the lower frame 20 from near the neutral position (in the direction of displacement from the state of FIG. 6B to the state of FIG. 6C) or below (the figure The damper 60 fixed to the upper rear frame 12 with any change in the angle of the rear links 40, 40, regardless of whether it is displaced from the state of 6 (b) to the state of FIG. 6 (a). When the angle of the cylinder bracket 45 as a part for supporting the rear side changes, that is, when the upper frame 10 is displaced upward, the tip of the cylinder bracket 45 is changed from the state of FIG. 6B to FIG. 6C. When the upper frame 10 is rotated downward (clockwise in FIGS. 6B and 6C) so that the upper frame 10 is displaced downward, the tip of the cylinder bracket 45 is in the state shown in FIG. State so as to lower et Figure 6 (a) (FIG. 6 (a), the counter-clockwise direction in (b)) is rotated to. The other end 70b of the damper link 70 is displaced in the same direction as the cylinder bracket 45 is rotated. Therefore, the one end 70a rotates in the opposite direction around the fifth shaft member 63e, and has a substantially triangular shape. The top portion 65a of the link 65 is pulled toward the rear side, that is, the cylinder bracket 45 side. As a result, the upper part of the substantially triangular link 65 rotates backward (clockwise in FIGS. 6A to 6C) around the third shaft member 63c connected to the support bracket 64, and the substantially triangular link 65 The cylinder 62 connected to the upper part of the 65 via the second shaft member 63 b is drawn rearward, and the piston rod 61 operates in the extending direction relative to the cylinder 62. Since the damper 60 is extended by the damper link 70 that rotates in this manner, the displacement speed (the cylinder 62 of the piston rod 61) of the damper 60, which is the amount of displacement (elongation) of the damper 60 per unit time. (Moving speed) increases as the amount of displacement of the upper frame 10 increases. Therefore, the damping force of the damper 60 increases rapidly until the upper frame 10 reaches a position separated by a predetermined amount upward or downward.
 また、図5及び図6(b)に示したように、上部フレーム10の中立位置において、ダンパー60の軸心(ピストン用ブラケット35とピストンロッド61との支点である第1軸部材63aの中心と、シリンダ62と略三角形状リンク65との支点である第2軸部材63bの中心とを結ぶ線)は、上部フレーム10を支持する前部リンク30の上部側の支点である上側前部フレーム11(トーションバー31)の中心と、上部フレーム10を支持する後部リンク40の上部側の支点である上側後部フレーム12(トーションバー41)の中心とに、略一致するように設けられている。従って、上部フレーム10が中立位置から上下いずれかに変位すると、上側前部フレーム11の中心(トーションバー31の中心)と第1軸部材63aとを結ぶ直線と、ダンパー60の軸心とのなす一方側(下方に変位した場合(図6(a))には下側、上方に変位した場合(図6(c))には上側)の角度が180度未満となる。また、上側後部フレーム12の中心(トーションバー41の中心)と第2軸部材63bとを結ぶ直線と、ダンパー60の軸心とのなす他方側(下方に変位した場合(図6(a))には上側、上方に変位した場合(図6(c))には下側)の角度も同様に180度未満となる。この結果、この角度に応じた分、ピストンロッド61とシリンダ62はそれぞれ逆方向に、すなわち伸長する方向に変位する。よって、本実施形態の構成では、ダンパー用リンク70を配置しなくても、上部フレーム10が中立位置から上下に振動すると、これらの作用によって、上部フレーム10の変位量が大きくなるほど、ピストンロッド61の変位量の割合が大きくなる。但し、上部フレーム10の変位量がより少なくても、ピストンロッド61のシリンダ62に対する相対移動量を大きくするために、ダンパー用リンク70を設けることが好ましい。 Further, as shown in FIGS. 5 and 6B, at the neutral position of the upper frame 10, the axis of the damper 60 (the center of the first shaft member 63a, which is a fulcrum between the piston bracket 35 and the piston rod 61). And a line connecting the center of the second shaft member 63b that is a fulcrum between the cylinder 62 and the substantially triangular link 65) is an upper front frame that is a fulcrum on the upper side of the front link 30 that supports the upper frame 10. 11 (torsion bar 31) and the center of upper rear frame 12 (torsion bar 41), which is a fulcrum on the upper side of rear link 40 that supports upper frame 10, are provided so as to substantially coincide with each other. Therefore, when the upper frame 10 is displaced vertically from the neutral position, the straight line connecting the center of the upper front frame 11 (center of the torsion bar 31) and the first shaft member 63a and the axis of the damper 60 are formed. The angle on one side (lower side when displaced downward (FIG. 6A) and upper side when displaced upward (FIG. 6C)) is less than 180 degrees. Further, the other side formed by the straight line connecting the center of the upper rear frame 12 (center of the torsion bar 41) and the second shaft member 63b and the axis of the damper 60 (when displaced downward (FIG. 6A)). Similarly, the angle when the lens is displaced upward and downward (lower side in FIG. 6C) is similarly less than 180 degrees. As a result, the piston rod 61 and the cylinder 62 are displaced in the opposite direction, that is, in the extending direction by the amount corresponding to this angle. Therefore, in the configuration of the present embodiment, even if the damper link 70 is not disposed, if the upper frame 10 vibrates up and down from the neutral position, the piston rod 61 increases as the displacement amount of the upper frame 10 increases due to these actions. The ratio of the amount of displacement increases. However, it is preferable to provide the damper link 70 in order to increase the relative movement amount of the piston rod 61 with respect to the cylinder 62 even when the displacement amount of the upper frame 10 is smaller.
 また、ダンパー60をこのようにダンパー用リンク70等を用いて配設することにより、上部フレーム10が上下動する際には、ピストンロッド61の支点である第1軸部材63aを中心として、シリンダ62側の振動量が大きくなる。特に、本実施形態では、シリンダ62とダンパー用リンク70との間に、補助的なダンパー用リンクとして略三角形状リンク65を第2、第3及び第4軸部材63b~63dを用いて連結している。よって、ダンパー60は、ダンパー用リンク70と補助的なダンパー用リンクとしての略三角形状リンク65とを含む多関節のリンク構造を介して支持されていることになるため、上部フレーム10の振動によって生じる、ダンパー60自体の振動が顕著になされる。このときのダンパー60の振動挙動は、上部フレーム10の略平行に上下に振動する挙動と一致するものではなく、ピストンロッド61側の先端部とシリンダ62側の後端部が逆方向に動作するといった異なる挙動(振り子運動)を示す。その結果、副振動体であるダンパー60は、伸縮動作だけでなく、主振動体である上部フレーム10とは独立した振り子運動により入力エネルギーを散逸でき、振動吸収特性、衝撃吸収特性を向上できる。ダンパー60自体がこのように独立した振動挙動を示すため、シートサスペンション1自体を動吸振器として見なした場合には、ダンパー60はその補助質量体として機能しており、その意味でも、振動吸収特性、衝撃吸収特性の向上に寄与していると言える。 Further, by arranging the damper 60 using the damper link 70 or the like in this way, when the upper frame 10 moves up and down, the cylinder is formed around the first shaft member 63a that is a fulcrum of the piston rod 61. The amount of vibration on the 62 side increases. In particular, in this embodiment, a substantially triangular link 65 is connected as an auxiliary damper link between the cylinder 62 and the damper link 70 using the second, third and fourth shaft members 63b to 63d. ing. Therefore, the damper 60 is supported via the articulated link structure including the damper link 70 and the substantially triangular link 65 as the auxiliary damper link. The resulting vibration of the damper 60 itself is noticeable. The vibration behavior of the damper 60 at this time does not coincide with the behavior of the upper frame 10 that vibrates up and down substantially in parallel, and the front end portion on the piston rod 61 side and the rear end portion on the cylinder 62 side operate in opposite directions. Show different behaviors (pendulum motion). As a result, the damper 60 serving as the sub-vibrating body can dissipate input energy not only by the expansion / contraction operation but also by the pendulum motion independent of the upper frame 10 serving as the main vibrating body, thereby improving vibration absorption characteristics and shock absorption characteristics. Since the damper 60 itself exhibits such independent vibration behavior, when the seat suspension 1 itself is regarded as a dynamic vibration absorber, the damper 60 functions as an auxiliary mass body. It can be said that it contributes to the improvement of the characteristics and shock absorption characteristics.
 また、上部フレーム10の中立位置付近においては、上記のように、側面から見て、ダンパー60の軸心が、上側前部フレーム11の中心及び上側後部フレーム12の中心と略一直線上となり、かつ、ダンパー用リンク70の両端における第5軸部材63eの中心及び第4軸部材63dの中心が、側面から見て、上側後部フレーム12の中心と略一直線上になり、いずれも、死点(思案点)位置における姿勢になる。そのため、上部フレーム10の中立位置付近では、ダンパー60がほとんど伸縮動作をしない。従って、上部フレーム10の中立位置においては、ダンパー60の減衰力は実質的に作用せず、トーションバー31,41及び磁気ばね50により構成される本実施形態のばね機構の特性によって除振される。すなわち、上部フレーム10の中立位置付近では、ダンパー60の減衰力を利用することなく、上部フレーム10の小振幅、高周波の微振動を吸収できる。このため、ダンパー60としては、より振幅の大きな低周波の振動や衝撃力を効果的に吸収する減衰力の高いものを用いることができる。その結果、上部フレーム10の全ストロークが小さくても高い振動吸収特性、衝撃吸収特性を発揮でき、シートサスペンション1の薄型化を図るのに適している。 Further, in the vicinity of the neutral position of the upper frame 10, as described above, the axial center of the damper 60 is substantially in line with the center of the upper front frame 11 and the center of the upper rear frame 12 as viewed from the side, and The center of the fifth shaft member 63e and the center of the fourth shaft member 63d at both ends of the damper link 70 are substantially in line with the center of the upper rear frame 12 when viewed from the side surface. The posture at the point) position. Therefore, the damper 60 hardly expands and contracts near the neutral position of the upper frame 10. Accordingly, the damping force of the damper 60 does not substantially act at the neutral position of the upper frame 10, and the vibration is isolated by the characteristics of the spring mechanism of the present embodiment configured by the torsion bars 31 and 41 and the magnetic spring 50. . That is, in the vicinity of the neutral position of the upper frame 10, small amplitude and high frequency micro vibrations of the upper frame 10 can be absorbed without using the damping force of the damper 60. For this reason, as the damper 60, it is possible to use a damper having a high damping force that effectively absorbs a low-frequency vibration or impact force having a larger amplitude. As a result, even if the entire stroke of the upper frame 10 is small, high vibration absorption characteristics and shock absorption characteristics can be exhibited, which is suitable for reducing the thickness of the seat suspension 1.
 また、本実施形態では、ダンパー用リンク70を有しているため、後部リンク40,40の回転運動に伴う上側後部フレーム12を介してのシリンダ用ブラケット45の回転運動と、前部リンク30,30の回転運動に伴うピストンロッド用ブラケット35の回転運動とに加え、それらの回転運動に伴って生じるダンパー用リンク70の回転運動が相乗的に作用する。このため、ダンパー60を上部フレーム10側において略水平に設けた構造であるにもかかわらず、上部フレーム10の中立位置付近から上方又は下方への変位に敏感に反応して、ダンパー70が速やかに作用する。それにより、本実施形態のシートサスペンション1によれば、上部フレーム10が上限位置又は下限位置に至る前に、高い減衰力を作用させることができ、上部フレーム10の底付き、天付きの抑制効果が高い。 Further, in the present embodiment, since the damper link 70 is provided, the rotational movement of the cylinder bracket 45 via the upper rear frame 12 accompanying the rotational movement of the rear links 40, 40, the front link 30, In addition to the rotational motion of the piston rod bracket 35 associated with the rotational motion of 30, the rotational motion of the damper link 70 that accompanies the rotational motion acts synergistically. Therefore, in spite of the structure in which the damper 60 is provided substantially horizontally on the upper frame 10 side, the damper 70 quickly reacts sensitively to the upward or downward displacement from the vicinity of the neutral position of the upper frame 10. Works. Thereby, according to the seat suspension 1 of the present embodiment, a high damping force can be applied before the upper frame 10 reaches the upper limit position or the lower limit position, and the bottom frame and ceiling suppression effects of the upper frame 10 can be applied. Is expensive.
 ここで、ダンパー60の種類は限定されるものではなく、ばね要素を用いた摩擦ダンパーなどの変位依存型のダンパー、磁気ダンパーやオイルダンパーなどの速度依存型のダンパー、あるいは、変位や速度への依存性の小さい他のダンパー等を用いることができるが、上記のように、本実施形態では、ダンパー60を、上部フレーム10側に略水平姿勢で設けるため、粘性液体を利用するオイルダンパーよりも、摩擦ダンパーや磁気ダンパーを用いることが好ましい。変位依存型の摩擦ダンパーとしては、例えば、ピストン61bの外周面にゴム又は樹脂ボールを配設したものや、ゴムと樹脂ボールを併用し、軸方向に適宜の配列で設けたものなどを用いることができ、シリンダ62の内周面との間で摩擦抵抗と弾性変形を生じさせて減衰力を発生させるものである。速度依存型の磁気ダンパーとしては、例えば、ピストン61bとして磁石を用い、シリンダ62として内周面に銅からなる導体を配設した構造のものを用いることができる。変位依存型の摩擦ダンパーであれば、摩擦抵抗やばね定数を高めることで、減衰力の高いものを採用できる。速度依存型の磁気ダンパーの場合でも、上記のように本実施形態では、上部フレーム10の変位量が大きくなるほど、ピストンロッド61の変位量の割合が大きくなるため、上部フレーム10の中立位置付近から所定量離間した変位位置において、高い減衰力を発揮できる。 Here, the type of the damper 60 is not limited, and a displacement-dependent damper such as a friction damper using a spring element, a speed-dependent damper such as a magnetic damper or an oil damper, or a displacement or speed. Other dampers or the like having a small dependency can be used. However, as described above, in the present embodiment, the damper 60 is provided in a substantially horizontal posture on the upper frame 10 side, so that it is more than an oil damper using a viscous liquid. It is preferable to use a friction damper or a magnetic damper. As the displacement-dependent friction damper, for example, a rubber or resin ball disposed on the outer peripheral surface of the piston 61b or a rubber and resin ball used together and provided in an appropriate arrangement in the axial direction is used. Thus, a frictional resistance and an elastic deformation are generated between the inner peripheral surface of the cylinder 62 and a damping force is generated. As the speed-dependent magnetic damper, for example, a magnet having a structure in which a magnet is used as the piston 61b and a conductor made of copper is disposed on the inner peripheral surface as the cylinder 62 can be used. A displacement-dependent friction damper can employ a high damping force by increasing the frictional resistance and spring constant. Even in the case of a speed-dependent magnetic damper, in the present embodiment, as the amount of displacement of the upper frame 10 increases, the rate of displacement of the piston rod 61 increases as described above. A high damping force can be exerted at a displacement position separated by a predetermined amount.
 また、ダンパー用リンク70は、本実施形態では、シリンダ62とシリンダ用ブラケット45との間に設けているが、これに代えて、ピストンロッド61とピストンロッド用ブラケット35との間に設けることもできる。また、ダンパー用リンク70を、ピストンロッド61側とシリンダ62側の両方に配設することもできる。また、本実施形態では、前部側にピストンロッド61を配置し、後部側にシリンダ62を配置しているが、逆向きに配置することももちろん可能である。 Further, in this embodiment, the damper link 70 is provided between the cylinder 62 and the cylinder bracket 45, but instead, it may be provided between the piston rod 61 and the piston rod bracket 35. it can. Also, the damper link 70 can be disposed on both the piston rod 61 side and the cylinder 62 side. In this embodiment, the piston rod 61 is arranged on the front side and the cylinder 62 is arranged on the rear side. However, it is of course possible to arrange them in the reverse direction.
(試験例1)
 図7(a)~(c)は、本実施形態の構造を採用した試験例1に係るシートサスペンション1の静特性を示した図である。なお、ダンパー60としては、ピストン61bとして磁石を配置し、シリンダ62の内周面に銅を配設した速度依存型の磁気ダンパーを用いている。また、ピストンロッド61が軸支されている第1軸部材63aの中心と、シリンダ62と略三角形状リンク65との支点である第2軸部材63bの中心との距離(ダンパー長)が、図6(b)の中立位置においてL1、図6(a)の下限位置においてL2、図6(c)の上限位置においてL3とした場合に、L2=L1+3.1mm、L3=L1+5.3mmのものである。図7において、変位量0mmが上部フレーム10の中立位置であり、変位量の正の値が、上部フレーム10が中立位置から下方に変位した場合を示し、変位量の負の値が、上部フレーム10が中立位置から上方に変位した場合を示す。まず、図7(a)の変位-荷重特性から、本実施形態のシートサスペンション1は、変位量0mmを中心として±約10mmの変位量範囲において、ばね定数が絶対値で約20N/mm以下(±約5mmの変位量範囲ではばね定数が絶対値で約10N/mm以下)のばね定数略ゼロの領域を有していることがわかる。従って、人が着座して上部フレーム10が中立位置付近に位置している場合、車体フロアから伝わる上下振動は、上部フレーム10と下部フレーム20との相対運動により効果的に除振される。
(Test Example 1)
7A to 7C are diagrams showing the static characteristics of the seat suspension 1 according to Test Example 1 that employs the structure of the present embodiment. As the damper 60, a speed-dependent magnetic damper in which a magnet is disposed as the piston 61b and copper is disposed on the inner peripheral surface of the cylinder 62 is used. Further, the distance (damper length) between the center of the first shaft member 63a on which the piston rod 61 is pivotally supported and the center of the second shaft member 63b, which is a fulcrum of the cylinder 62 and the substantially triangular link 65, is shown in FIG. When L1 is at the neutral position of 6 (b), L2 is at the lower limit position of FIG. 6 (a), and L3 is at the upper limit position of FIG. 6 (c), L2 = L1 + 3.1 mm and L3 = L1 + 5.3 mm. is there. In FIG. 7, the displacement amount 0 mm is the neutral position of the upper frame 10, a positive value of the displacement amount indicates a case where the upper frame 10 is displaced downward from the neutral position, and a negative value of the displacement amount is the upper frame. A case where 10 is displaced upward from the neutral position is shown. First, from the displacement-load characteristics shown in FIG. 7 (a), the seat suspension 1 of the present embodiment has a spring constant of an absolute value of about 20 N / mm or less (within an absolute value in a displacement amount range of ± about 10 mm centered on a displacement amount of 0 mm ( It can be seen that in the displacement range of ± 5 mm, the spring constant has an area of approximately zero with an absolute value of approximately 10 N / mm or less. Therefore, when a person is seated and the upper frame 10 is positioned near the neutral position, the vertical vibration transmitted from the vehicle body floor is effectively damped by the relative motion of the upper frame 10 and the lower frame 20.
 一方、図7(b)から、上部フレーム10の下部フレーム20に対する変位量(サスペンション変位)と、ピストン61b及びピストンロッド61のシリンダ62に対する変位量(ダンパー変位)とを比較すると、上部フレーム10の変位量が増すにつれて、ダンパー60の変位量の割合が増加しており、特に、上部フレーム10の変位量が±10mm近傍以上となると、ダンパー60の変位量の割合の増加が急激になっており、シリンダ用ブラケット35、ダンパー用リンク70及びピストンロッド用ブラケット35の各回転運動の作用が顕著に現れている。 On the other hand, from FIG. 7B, when the displacement amount (suspension displacement) of the upper frame 10 with respect to the lower frame 20 is compared with the displacement amount (damper displacement) of the piston 61b and the piston rod 61 with respect to the cylinder 62, As the amount of displacement increases, the ratio of the amount of displacement of the damper 60 increases. In particular, when the amount of displacement of the upper frame 10 exceeds about ± 10 mm, the proportion of the amount of displacement of the damper 60 increases rapidly. The effects of the rotational movements of the cylinder bracket 35, the damper link 70, and the piston rod bracket 35 are notable.
 図8(a)~(c)は、上部フレーム10の中立位置からの変位量を±15mmとして、4Hzで上部フレーム10を上下動させた場合の動特性を示した図である。図8(a),(b)を比較すると、上部フレーム10の変位量(サスペンション変位)+10mm近傍、-10mm近傍において、ダンパー速度(ピストン61b及びピストンロッド61のシリンダ62内の移動速度)が最高になっている。そして、図8(c)より、上部フレーム10の変位量(サスペンション変位)+10mm近傍、-10mm近傍において、ダンパー60の減衰力及びシートサスペンション1の減衰力が最大になっている。よって、本実施形態によれば、上部フレーム10を、上限位置又は下限位置に至る前で大きな減衰力を作用させて減衰できることがわかる。その一方、上部フレーム10の中立位置において、ダンパー用リンク70が死点(思案点)位置となり、ダンパー60の減衰力がほとんど働いていない。このことは、図7(a)の変位-荷重特性と図8(c)の減衰力を併せて示した図8(d)からも明らかであり、上部フレーム10の中立位置付近では、上記したばね定数が実質的にゼロとなる特性により除振され、より大きな振動、衝撃が入力された場合には、ダンパー60の減衰力でエネルギー吸収がなされる。 8 (a) to 8 (c) are diagrams showing dynamic characteristics when the upper frame 10 is moved up and down at 4 Hz with the displacement amount from the neutral position of the upper frame 10 being ± 15 mm. Comparing FIGS. 8A and 8B, the damper speed (moving speed of the piston 61b and the piston rod 61 in the cylinder 62) is highest when the displacement (suspension displacement) of the upper frame 10 is near +10 mm and near −10 mm. It has become. From FIG. 8C, the damping force of the damper 60 and the damping force of the seat suspension 1 are maximized in the vicinity of the displacement amount (suspension displacement) of the upper frame 10 +10 mm and in the vicinity of −10 mm. Therefore, according to the present embodiment, it can be seen that the upper frame 10 can be attenuated by applying a large damping force before reaching the upper limit position or the lower limit position. On the other hand, at the neutral position of the upper frame 10, the damper link 70 becomes a dead point (thought point) position, and the damping force of the damper 60 is hardly working. This is also apparent from FIG. 8 (d) showing the displacement-load characteristic of FIG. 7 (a) and the damping force of FIG. 8 (c). When the vibration is isolated by the characteristic that the spring constant becomes substantially zero and a larger vibration or impact is input, energy is absorbed by the damping force of the damper 60.
 なお、試験例1のシートサスペンション1に関し、JIS A 8304:2001(ISO 7096:2000)に基づいて、SEAT値(Seat Effective Amplitude Transmissibility factor)を求めた。試験例1のシートサスペンション1を、フォークリフトの運転席シートに用いる場合を想定して、「50,000kg以下のクローラ式トラクタドーザ」の基準である入力スペクトルクラスEM6(励振中心周波数7.6、PSDの最高値0.34(m/s/Hz)で試験を行った。被験者は、体重63kg、72kgの2名であり、その結果、得られたSEAT値は、それぞれ0.34、0.28であった。EM6のSEAT値の基準が0.7未満であるため、基準を満たしていた。また、「4,500kg以下のコンパクトローダ」の基準である入力スペクトルクラスEM8(励振中心周波数3.3、PSDの最高値0.4(m/s/Hz)で試験を行った。被験者は、体重63kg、72kgの2名であり、その結果、得られたSEAT値は、それぞれ0.52、0.52であった。EM8のSEAT値の基準が0.8未満であるため、基準を満たしていた。 For the seat suspension 1 of Test Example 1, a SEAT value (Seat Effective Amplitude Transmissibility factor) was determined based on JIS A 8304: 2001 (ISO 7096: 2000). Assuming that the seat suspension 1 of Test Example 1 is used for a driver's seat of a forklift, an input spectrum class EM6 (excitation center frequency 7.6, PSD, which is a reference of a “50,000 kg or less crawler tractor dozer”) The maximum value of 0.34 (m / s 2 ) 2 / Hz) was tested. The test subjects were two persons weighing 63 kg and 72 kg. As a result, the obtained SEAT values were 0.34 and 0.28, respectively. Since the standard of SEAT value of EM6 was less than 0.7, the standard was satisfied. In addition, the test was performed with an input spectrum class EM8 (excitation center frequency 3.3, PSD maximum value 0.4 (m / s 2 ) 2 / Hz) which is a standard of “a compact loader of 4,500 kg or less”. The subjects were two persons weighing 63 kg and 72 kg. As a result, the obtained SEAT values were 0.52 and 0.52, respectively. Since the standard of SEAT value of EM8 was less than 0.8, the standard was satisfied.
(試験例2)
 図9は、下部フレーム20を加振機にセットしたシートサスペンション1の上部フレーム10に、自動車用シートを装着し、そのシートに体重85kgの被験者が着座した状態で加振した際の振動伝達率の測定結果を示した図である。なお、試験例2のシートサスペンション1では、ダンパー60として、ピストン61bの周面にゴムを設け、シリンダ62の内周面に摺接する変位依存型の摩擦ダンパーを用いている。また、この変位依存型の摩擦ダンパーの減衰力は、試験例1の磁気ダンパーの減衰力を上回るものである。図9において、比較例1は、当該変位依存型の摩擦ダンパーを取り外したシートサスペンションを用いた場合の測定結果である。
(Test Example 2)
FIG. 9 shows a vibration transmissibility when an automobile seat is mounted on the upper frame 10 of the seat suspension 1 in which the lower frame 20 is set on a vibration exciter and the subject with a weight of 85 kg is seated on the seat. It is the figure which showed the measurement result. In the seat suspension 1 of Test Example 2, as the damper 60, a displacement-dependent friction damper that provides rubber on the peripheral surface of the piston 61 b and slides on the inner peripheral surface of the cylinder 62 is used. Moreover, the damping force of the displacement-dependent friction damper exceeds the damping force of the magnetic damper of Test Example 1. In FIG. 9, Comparative Example 1 is a measurement result when a seat suspension from which the displacement-dependent friction damper is removed is used.
 図9より、比較例1と比べて、試験例2は、共振点における振動伝達率が大幅に低下していることがわかる。また、入力周波数帯が共振点より高い領域においては、試験例2が、減衰力の高い変位依存型の摩擦ダンパーを用いているにもかかわらず、比較例1とほぼ同じ振動伝達率となっており、高周波で小振幅の領域においては、変位依存型の摩擦ダンパーが作用せずに、実質的にばね定数ゼロの特性を備えたばね機構の作用により除振できていることがわかる。 FIG. 9 shows that the vibration transmissibility at the resonance point in Test Example 2 is significantly lower than that in Comparative Example 1. Further, in the region where the input frequency band is higher than the resonance point, Test Example 2 has almost the same vibration transmissibility as Comparative Example 1 even though the displacement-dependent friction damper having a high damping force is used. Thus, it can be seen that in the region of high frequency and small amplitude, the displacement-dependent friction damper does not act, and the vibration can be isolated by the action of a spring mechanism having a substantially zero spring constant characteristic.
 また、上記実施形態の構造を採用した試験例2においては、上記のように、副振動体であるダンパー60は、シリンダ62が、第2軸部材63b、第3軸部材63c、第4軸部材63d及び第5軸部材63eを介して連結された補助的なダンパー用リンクとしての略三角形状リンク65及びダンパー用リンク70により、すなわち、多関節構造のリンクによって支持されている。そのため、主振動体である上部フレーム10が上下動すると、ピストンロッド61の支点である第1軸部材63aを中心として、シリンダ62側が揺動する。 Further, in Test Example 2 that employs the structure of the above-described embodiment, as described above, the damper 60 that is the sub-vibrating body includes the cylinder 62, the second shaft member 63b, the third shaft member 63c, and the fourth shaft member. It is supported by a substantially triangular link 65 and a damper link 70 as auxiliary damper links connected via 63d and the fifth shaft member 63e, that is, by a multi-joint structure link. Therefore, when the upper frame 10 that is the main vibrating body moves up and down, the cylinder 62 side swings around the first shaft member 63a that is the fulcrum of the piston rod 61.
 図9から、試験例2が比較例1よりも共振峰が大きく低下しているのは、摩擦ダンパーからなるダンパー60の伸縮動作によるものであるが、ダンパー60を備えていない比較例1の共振周波数が約1.8Hzであるのに対し、試験例2では約1.9Hzとなっている。すなわち、試験例2の方が若干高周波側に移行している。しかしながら、試験例2は、共振周波数を越えたより高周波の領域においても、特に、2.5Hz付近まで振動伝達率が比較例1よりも低く、二次共振点も生じていない。また、2.5Hzよりも高周波領域においては、両者はほぼ同じ振動伝達率となっている。従って、試験例2は、比較例1よりも減衰領域の周波数帯域が増加している。これは、試験例2のシートサスペンション1が、主振動体である上部フレーム10の振動とは異なる挙動で振動する副振動体であるダンパー60の作用によるものである。すなわち、上部フレーム10の振動やダンパー60の伸縮動作に伴う入力振動のエネルギー消費だけでなく、ダンパー60自体が独自の振動を行うことによっても入力振動のエネルギーを散逸していることを示している。また、2Hzを越えた範囲で二次共振点が生じることなく振動伝達率がなだらかに下がっているのは、ダンパー60が、上部フレーム10に、ばねではなく、略三角形状リンク65、ダンパー用リンク70を含む複数のリンクを介して支持されていることによる。 From FIG. 9, the resonance peak in Test Example 2 is significantly lower than that in Comparative Example 1 due to the expansion / contraction operation of the damper 60 made of a friction damper, but the resonance of Comparative Example 1 that does not include the damper 60. While the frequency is about 1.8 Hz, in Test Example 2, it is about 1.9 Hz. That is, Test Example 2 is slightly shifted to the high frequency side. However, in Test Example 2, the vibration transmissibility is lower than that of Comparative Example 1 even in a higher frequency region exceeding the resonance frequency, particularly up to about 2.5 Hz, and no secondary resonance point is generated. Moreover, in the high frequency region above 2.5 Hz, both have substantially the same vibration transmissibility. Therefore, in Test Example 2, the frequency band of the attenuation region is increased as compared with Comparative Example 1. This is due to the action of the damper 60 which is a sub-vibration body in which the seat suspension 1 of Test Example 2 vibrates with a behavior different from the vibration of the upper frame 10 which is the main vibration body. That is, the energy of the input vibration is dissipated not only by the vibration of the upper frame 10 and the energy consumption of the input vibration accompanying the expansion / contraction operation of the damper 60 but also by the vibration of the damper 60 itself. . Also, the reason that the vibration transmissibility gradually falls without generating a secondary resonance point in the range exceeding 2 Hz is that the damper 60 is not a spring but a substantially triangular link 65, a damper link in the upper frame 10. By being supported through a plurality of links including 70.
 1 シートサスペンション
 10 上部フレーム
 11 上側前部フレーム
 12 上側後部フレーム
 15 初期位置調整部材
 20 下部フレーム
 30 前部リンク
 31 トーションバー
 35 ピストンロッド用ブラケット
 40 後部リンク
 41 トーションバー
 45 シリンダ用ブラケット
 50 磁気ばね
 51 固定マグネットユニット
 512 固定側磁石
 52 移動マグネットユニット
 521 移動側磁石
 60 ダンパー
 61 ピストンロッド
 61b ピストン
 62 シリンダ
 63a~63e 軸部材
 65 略三角形状リンク
 70 ダンパー用リンク
DESCRIPTION OF SYMBOLS 1 Seat suspension 10 Upper frame 11 Upper front frame 12 Upper rear frame 15 Initial position adjusting member 20 Lower frame 30 Front link 31 Torsion bar 35 Piston rod bracket 40 Rear link 41 Torsion bar 45 Cylinder bracket 50 Magnetic spring 51 Fixed Magnet unit 512 Fixed magnet 52 Moving magnet unit 521 Moving magnet 60 Damper 61 Piston rod 61b Piston 62 Cylinder 63a to 63e Shaft member 65 Roughly triangular link 70 Damper link

Claims (7)

  1.  下部フレームと、
     前記下部フレームに、前後に所定間隔をおいて支持され、それぞれ下部を中心として前後に回転運動を行う前部リンク及び後部リンクを備えたフレーム用リンク機構と、
     前記前部リンク及び後部リンクの上部に支持された上部フレームと、
     前記前部リンク及び後部リンクを弾性的に付勢するばね機構と、
     前記上部フレームの前記下部フレームに対する離接動作時のエネルギーを減衰するダンパーと
    を備えたサスペンションであって、
     前記ダンパーが、ピストンロッドとシリンダとを備えた伸縮式であり、前記上部フレーム側に、前記前部リンク及び後部リンクの回転運動によって伸縮するように取り付けられていると共に、前記ダンパー自体が、外部からの入力振動による前記前部リンク及び後部リンクの回転運動によって生じる前記上部フレームの振動とは異なる挙動の振動を生じ、
     前記ばね機構を介して支持された前記上部フレームが主振動体となり、前記上部フレーム側に取り付けられた前記ダンパーが副振動体となっていることを特徴とするサスペンション。
    A lower frame,
    A frame link mechanism comprising a front link and a rear link that are supported on the lower frame at a predetermined interval in the front-rear direction and each perform a rotational movement back and forth around the lower part;
    An upper frame supported on top of the front and rear links;
    A spring mechanism that elastically biases the front link and the rear link;
    A suspension comprising a damper for attenuating energy at the time of the separation operation of the upper frame with respect to the lower frame,
    The damper is a telescopic type including a piston rod and a cylinder, and is attached to the upper frame side so as to expand and contract by the rotational movement of the front link and the rear link, and the damper itself is externally attached. A vibration having a behavior different from the vibration of the upper frame caused by the rotational motion of the front link and the rear link due to the input vibration from
    The suspension is characterized in that the upper frame supported via the spring mechanism serves as a main vibration body, and the damper attached to the upper frame side serves as a sub vibration body.
  2.  前記上部フレームが、左右一対配設される前記前部リンクの上部間に設けられた上側前部フレームと、左右一対配設される前記後部リンクの上部間に設けられた上側後部フレームとを有し、
     前記ダンパーが、前記上側前部フレームとの間、及び、前記上側後部フレームとの間のいずれか少なくとも一方に、少なくとも一つのダンパー用リンクを介して配設されており、
     前記ダンパー用リンクの動きによって、前記ダンパー自体が、外部からの入力振動による前記主振動体である前記上部フレームの振動とは異なる挙動の振動を生じる前記副振動体として機能する請求項1記載のサスペンション。
    The upper frame includes an upper front frame provided between the upper portions of the front links disposed on the left and right and an upper rear frame disposed between the upper portions of the rear links disposed on the left and right pairs. And
    The damper is disposed between at least one damper link between the upper front frame and at least one of the upper rear frame,
    2. The damper according to claim 1, wherein the damper itself functions as the sub-vibration body that generates a vibration having a behavior different from the vibration of the upper frame, which is the main vibration body, due to an input vibration from the outside due to the movement of the damper link. suspension.
  3.  前記ダンパーは、前記上部フレームの中立位置付近において、その軸心と、前記上部フレームを支持する前記前部リンクの上部側の支点と、前記上部フレームを支持する前記後部リンクの上部側の支点とが、側面から見て略一直線上になるように設定されている請求項1又は2記載のサスペンション。 The damper has an axial center near the neutral position of the upper frame, a fulcrum on the upper side of the front link that supports the upper frame, and a fulcrum on the upper side of the rear link that supports the upper frame. The suspension according to claim 1, wherein the suspension is set to be substantially in a straight line when viewed from the side.
  4.  前記ピストンロッドが連結されるピストンロッド用ブラケット及び前記シリンダが連結されるシリンダ用ブラケットのうちの一方が、前記上側前部フレームに設けられ、他方が、前記上側後部フレームに設けられ、
     前記ダンパー用リンクが、前記ピストンロッドと前記ピストンロッド用ブラケットとの間、及び、前記シリンダと前記シリンダ用ブラケットとの間の少なくとも一方に介在されている請求項2又は3記載のサスペンション。
    One of the piston rod bracket to which the piston rod is connected and the cylinder bracket to which the cylinder is connected is provided on the upper front frame, and the other is provided on the upper rear frame.
    The suspension according to claim 2 or 3, wherein the damper link is interposed between at least one of the piston rod and the piston rod bracket and between the cylinder and the cylinder bracket.
  5.  前記上部フレームの中立位置付近において、前記ダンパー用リンクの両端の各支点が、前記上部フレームを支持する前記前部リンクの上部側の支点、又は、前記上部フレームを支持する前記後部リンクの上部側の支点と略一直線上となる姿勢で設けられている請求項4記載のサスペンション。 In the vicinity of the neutral position of the upper frame, the fulcrums at both ends of the damper link are the upper fulcrum of the front link that supports the upper frame, or the upper side of the rear link that supports the upper frame. The suspension according to claim 4, wherein the suspension is provided in a posture substantially in line with the fulcrum.
  6.  前記ばね機構は、前記上部フレームを前記下部フレームに離間する方向に付勢するばね定数が正の特性を備えたばねと、所定の変位範囲において、ばね定数が負となる特性を備えたばねとの組み合わせからなり、
     前記上部フレームの中立位置付近において、前記各ばねの特性が重畳されて、ばね定数が略ゼロになる領域を有している請求項1~5のいずれか1に記載のサスペンション。
    The spring mechanism is a combination of a spring having a positive characteristic that biases the upper frame in a direction away from the lower frame and a spring having a negative characteristic in a predetermined displacement range. Consists of
    The suspension according to any one of claims 1 to 5, wherein the suspension has a region in which a spring constant is substantially zero near the neutral position of the upper frame by superimposing the characteristics of the springs.
  7.  前記下部フレームが車体側に固定され、前記上部フレームにシートが支持される乗物のシートサスペンションとして用いられる請求項1~6のいずれか1に記載のサスペンション。 The suspension according to any one of claims 1 to 6, wherein the suspension is used as a vehicle seat suspension in which the lower frame is fixed to a vehicle body side and a seat is supported by the upper frame.
PCT/JP2017/002190 2016-01-31 2017-01-23 Suspension WO2017130919A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017564243A JP6883333B2 (en) 2016-01-31 2017-01-23 suspension

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016797 2016-01-31
JP2016-016797 2016-01-31

Publications (1)

Publication Number Publication Date
WO2017130919A1 true WO2017130919A1 (en) 2017-08-03

Family

ID=59398254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002190 WO2017130919A1 (en) 2016-01-31 2017-01-23 Suspension

Country Status (2)

Country Link
JP (1) JP6883333B2 (en)
WO (1) WO2017130919A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049879A1 (en) * 2017-09-07 2019-03-14 デルタ工業株式会社 Suspension mechanism and seat structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291940A (en) * 2003-03-28 2004-10-21 T S Tec Kk Vehicular seat
JP2010179720A (en) * 2009-02-03 2010-08-19 Delta Tooling Co Ltd Seat suspension

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6297409B2 (en) * 2014-05-20 2018-03-20 株式会社デルタツーリング Seat structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004291940A (en) * 2003-03-28 2004-10-21 T S Tec Kk Vehicular seat
JP2010179720A (en) * 2009-02-03 2010-08-19 Delta Tooling Co Ltd Seat suspension

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049879A1 (en) * 2017-09-07 2019-03-14 デルタ工業株式会社 Suspension mechanism and seat structure
JP2019048489A (en) * 2017-09-07 2019-03-28 デルタ工業株式会社 Suspension mechanism and seat structure

Also Published As

Publication number Publication date
JPWO2017130919A1 (en) 2018-11-22
JP6883333B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
JP6075914B2 (en) Seat suspension
JP5382646B2 (en) Seat suspension
CN109982892B (en) Suspension frame
JP7352949B2 (en) seat suspension mechanism
US6585240B1 (en) Vibration relief apparatus and magnetic damper mechanism therefor
JPWO2008117669A1 (en) Vibration isolator
JP2019202749A (en) Suspension mechanism, multi-suspension mechanism, and damper
JP6940849B2 (en) Suspension mechanism and seat structure
JP2000234649A (en) Suspension unit
WO2018221744A1 (en) Suspension mechanism
WO2017130919A1 (en) Suspension
WO2020241896A1 (en) Damper and seat suspension mechanism
JP2007290639A (en) Shock absorber
RU2281864C1 (en) Self-propelled vehicle operators's seat
WO2019225543A1 (en) Suspension mechanism, multi-suspension mechanism, and damper
JP7425461B2 (en) seat suspension mechanism
JP2017210073A (en) suspension
KR101257544B1 (en) Vibration Isolation System with Low Natural Frequency
EP2247491A1 (en) Cab suspension arrangement and cab suspension
JPH06117485A (en) Frequency coping type vibration damper
JP3747112B2 (en) Magnetic spring with damping characteristics
JP2006087552A (en) Vibration-isolating structure of electric wheelchair
JP5689624B2 (en) Actuators mounted on railway vehicles
JP2007015489A (en) Suspension structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744149

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017564243

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744149

Country of ref document: EP

Kind code of ref document: A1