WO2017130837A1 - Slag removal method, slag production method, and structure for attenuating energy of falling slag - Google Patents

Slag removal method, slag production method, and structure for attenuating energy of falling slag Download PDF

Info

Publication number
WO2017130837A1
WO2017130837A1 PCT/JP2017/001784 JP2017001784W WO2017130837A1 WO 2017130837 A1 WO2017130837 A1 WO 2017130837A1 JP 2017001784 W JP2017001784 W JP 2017001784W WO 2017130837 A1 WO2017130837 A1 WO 2017130837A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
pan
converter
guide plate
contact member
Prior art date
Application number
PCT/JP2017/001784
Other languages
French (fr)
Japanese (ja)
Inventor
憲一郎 内藤
孝夫 中切
邦俊 松永
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to CN201780002581.4A priority Critical patent/CN107849626B/en
Priority to JP2017564203A priority patent/JP6589998B2/en
Priority to KR1020187002598A priority patent/KR20180019745A/en
Publication of WO2017130837A1 publication Critical patent/WO2017130837A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/14Charging or discharging liquid or molten material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0034Means for moving, conveying, transporting the charge in the furnace or in the charging facilities
    • F27D2003/0054Means to move molten metal, e.g. electromagnetic pump

Definitions

  • the present disclosure relates to a draining method, a slag manufacturing method, and an energy attenuation structure of a flowing slag.
  • the converter After desiliconization and dephosphorization of the molten iron in the converter, the converter is tilted while leaving the molten iron in the converter, and a part of the upper slag is allowed to flow down from the furnace port to the waste pan placed below. And the method of performing a decarburization process after that is known. In this method, the slag is formed (foamed) in the converter to increase the bulk volume of the slag, thereby ensuring the exhaustability. Slag forming occurs when carbon in the molten iron and iron oxide in the slag generate CO gas by the reaction of the following formula (1), and the CO gas is held in the slag.
  • Japanese Patent No. 4907411, Japanese Patent No. 4580434 and Japanese Patent No. 4580435 disclose a method of calming the forming by putting the forming sedative into the slag pan. Yes.
  • the sedative material calms the slag formed by the action of a chemical reaction or the like, there is a limit to the sedative effect depending on the input amount of the forming sedative material.
  • Japanese Patent No. 500060 discloses a method of calming the slag forming in the slag pan by microwave irradiation.
  • problems such as microwave shielding.
  • Japanese Patent No. 2558292 discloses a water-cooled pre-furnace pre-proofing plate for preventing slag from flowing out and splashing to the work floor at the time of evacuation and allowing the slag to flow into the culvert pan.
  • the water-cooled pre-furnace fender is not intended to calm down the slag forming in the discharge pan.
  • This disclosure is intended to provide a method of removing the slag that is allowed to flow down from the converter and accommodated in the pan, and to provide a method for producing the slag using the slag and an energy attenuating structure for the slag.
  • the present inventors have provided a slag pan in which a portion of the upper slag is disposed downward from the furnace port by tilting the converter while desiliconizing and dephosphorizing the molten iron in the converter and leaving the molten iron in the converter.
  • the present inventors found that the carbon in the molten iron mixed in the slag flowing down from the converter and the iron oxide in the slag newly generated CO gas by the reaction of the above-mentioned formula (1) in the waste pan. It was found that the generation was one of the factors that hindered the sedation of forming in the slag pan.
  • the present inventors pay attention to suppressing the reaction of the above-described formula (1) between the carbon in the molten iron and the iron oxide in the slag in the waste pan, and the slag flows down into the waste pan. It has been found that it is effective to suppress agitation caused by an impact during the process.
  • the present disclosure is based on such knowledge.
  • the exclusion method is as follows. By tilting the converter after performing at least one of desiliconization, dephosphorization, and decarburization in the converter, the upper layer formed slag is left in the converter while leaving the molten iron in the converter. Flow down from the furnace port to the first position of the contact member, The contact member moved from the first position to a second position that is shifted from the first position in the lateral direction perpendicular to the vertical direction and that is positioned below the first position. Causing the slag to flow down from the second position; The slag flowing down from the second position is accommodated in a pan disposed below the converter, Exclusion method.
  • the energy attenuation structure of the falling slag is as follows.
  • a contact member formed with a surface in contact with the slag flowing down from the furnace port of the converter by tilting the converter, the slag flowing down from the furnace port is received at a first position of the surface,
  • Contact that causes the slag that has moved along the surface to flow down into the pan from the second position which is shifted from the first position in the lateral direction perpendicular to the vertical direction and below the first position.
  • the draining method, the slag manufacturing method, and the flowing-down slag energy attenuating structure of the present disclosure the forming of the slag that flows down from the converter and is accommodated in the pan is easily subdued.
  • the direction indicated by the arrow X and arrow -X in the drawing is the width direction of the energy attenuating structure 10 (see FIG. 1), and the direction indicated by the arrow Z and arrow -Z in the drawing is the vertical direction (hereinafter referred to as the arrow Z direction). Is the upper side, and the arrow-Z direction is the lower side).
  • the direction perpendicular to the width direction and the vertical direction is the depth direction.
  • the width direction is an example of a horizontal direction.
  • the energy attenuating structure 10 of the present embodiment flows down from the converter 20 when the slag S flowing down from the converter 20 (see FIG. 1) is accommodated in the discharge pot 30 (see FIG. 1).
  • 30 has a function of attenuating the energy of the slag S by bringing a concave surface 42A (see FIG. 2) of a guide plate 42 (see FIG. 1), which will be described later, into contact with the slag S before being accommodated in the slag 30.
  • the waste pan 30 is an example of a pan.
  • the slag S flowing down from the converter 20 to the waste pan 30 is an example of a flowing down slag.
  • the guide plate 42 is arrange
  • the converter 20 has an opening 22 (furnace port).
  • the converter 20 is configured to be tiltable with respect to the vertical direction by a rotating device (not shown) whose depth direction is the rotation axis direction.
  • the slag pan 30 is moved by a carriage 50 which will be described later, and is arranged below the converter 20.
  • the waste pan 30 includes a circular bottom 32 as viewed from above, and a peripheral wall 34 having an inner peripheral surface 34 ⁇ / b> A whose inner diameter increases toward the upper side. That is, the waste pan 30 of this embodiment is an inverted truncated cone shape.
  • FIG. 1 The converter 20 has an opening 22 (furnace port).
  • the converter 20 is configured to be tiltable with respect to the vertical direction by a rotating device (not shown) whose depth direction is the rotation axis direction.
  • the slag pan 30 is moved by a carriage 50 which will be described later, and is
  • FIG. 1 shows a state in which the converter 20 is rotated by the rotating device and is inclined to flow down (discharge) the slag S.
  • the lower end of the opening 22 of the converter 20 is shown.
  • the separation distance from the upper end of the waste pan 30 is 3 to 10 m.
  • the energy attenuating structure 10 of the present embodiment includes a guide portion 40 as shown in FIG.
  • the guide part 40 includes a guide plate 42 and a support part 44.
  • the guide plate 42 is an example of a contact member.
  • the guide plate 42 is supported by the support portion 44 in a state where the guide plate 42 is inclined 10 ° clockwise as an example with respect to the vertical direction in a front view.
  • the guide plate 42 comes into contact with the slag S flowing down from the converter 20 at a recessed surface 42A (see FIG. 2). That is, the guide plate 42 is formed with a recessed surface 42 ⁇ / b> A that flows down from the converter 20 and comes into contact with the slag S accommodated in the discharge pan 30.
  • the recessed surface 42A is an example of a surface.
  • the guide plate 42 has a bowl shape.
  • the guide plate 42 has a curved shape in which a cross-sectional shape perpendicular to the direction in which the slag S flows is convex downward.
  • the guide plate 42 of the present embodiment is made of steel as an example.
  • the width of the guide plate 42 (that is, the dimension in the depth direction) is not particularly limited, but in the present embodiment, it is designed in a range of 0.5 to 1.0 times the diameter of the opening 22.
  • a work floor provided on the side of the converter 20 is used as the support portion 44.
  • the guide plate 42 is fixed to the work floor as the support portion 44 via a fixing member (not shown).
  • the work floor here is a floor located at the same height as the lower end of the opening 22 in a state where the converter 20 is rotated and inclined by about 90 °, and repair work or converter in the converter 20 is performed. This floor is used for repairing and replacing 20 bottom-blown tuyere.
  • the upper end of the guide plate 42 is located above the work floor, and the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42. Is located below the work floor.
  • the converter 20 when discharging from the opening 22 of the converter 20, the converter 20 is tilted in a direction opposite to that when the steel is discharged from a steel outlet (not shown) provided in the converter 20.
  • the work floor to which the guide plate 42 is fixed is a work floor provided on the opposite side to the steel outlet in the upright converter 20.
  • the guide plate 42 receives the slag S flowing down from the converter 20 at the first position 42A1 of the recessed surface 42A and moves the slag S moved along the recessed surface 42A (downward). In addition, it is made to flow down into the waste pan 30 from the lower end 42A2 of the concave surface 42A.
  • “receiving the slag S flowing down from the converter 20 at the first position 42A1 of the recessed surface 42A” means that the slag S flowing down from the converter 20 collides with the first position 42A1 of the recessed surface 42A from above.
  • the lower end 42A2 is an example of a second position.
  • the lower end 42A2 is shifted from the first position 42A1 in the width direction orthogonal to the vertical direction, and below the first position 42A1.
  • the separation distance L in the up-down direction from the upper end of the waste pan 30 is 1 m as an example.
  • the inclination angle ⁇ of the guide plate 42 is formed by a vertical straight line (not shown) and a virtual straight line (not shown) connecting the first position 42A1 and the second position 42A2. The smaller one of the angles is used. Then, the inclination angle ⁇ of the guide plate 42 in this embodiment is 10 °.
  • the energy attenuating structure 10 of this embodiment includes a carriage 50.
  • the trolley 50 moves the slag pan 30 in the width direction so that the slag S flowing down in contact with the recessed surface 42 ⁇ / b> A is received by the inner peripheral surface 34 ⁇ / b> A of the sewage pan 30, thereby moving the slag S in the width direction. It has a function to adjust the position. That is, the cart 50 of this embodiment can be said to be a means for adjusting the position in the width direction of the waste pan 30.
  • the cart 50 includes a platform 52, a plurality of wheels 54, and a drive source (not shown).
  • the slag pan 30 is placed on the table 52.
  • the plurality of wheels 54 are attached to the base 52.
  • the drive source is controlled and operated by an operator.
  • the energy attenuating structure 10 of the present embodiment includes an adding unit 60.
  • the adding portion 60 has a function of adding the sedative material M to the slag S moving along the recessed surface 42A of the guide plate 42.
  • the addition part 60 is arrange
  • the sedative material M of the present embodiment is for calming the forming of the slag S, and as an example, is a papermaking sludge that is an inexpensive organic pyrolysis material and an inexpensive material for adjusting the specific gravity. It is formed by mixing steelmaking slag.
  • the operator moves the waste pan 30 placed on the carriage 50 to the lower side of the converter 20.
  • the converter 20 is rotated with a rotating apparatus, as FIG. 1 shows.
  • the slag S generated in the converter 20 flows down from the opening 22 of the converter 20 toward the guide plate 42.
  • the slag S flowing down from the converter 20 is received at the first position 42A1 on the recessed surface 42A of the guide plate 42, and the slag S moves along the recessed surface 42A to the lower end 42A2. Then, the slag S that has moved to the lower end 42A2 of the recessed surface 42A flows downward from the lower end 42A2. Moreover, the addition part 60 adds the soothing material M to the slag S which is moving along the concave surface 42A.
  • the slag S flowing down from the lower end 42A2 of the recessed surface 42A is received by the inner peripheral surface 34A of the sewage pan 30 and accommodated in the sewage pan 30.
  • the slag S is received by the inner peripheral surface 34 ⁇ / b> A.
  • the position of the slag pan 30 placed on the carriage 50 is adjusted before the flow of the slag S from the converter 20 is started.
  • the slag S accommodated in the slag pan 30 is then transported to the slag S cooling field (not shown), discharged from the slag pan 30, and then cooled to produce slag.
  • the first action is an action of attenuating the energy of the slag S by bringing the slag S flowing down from the converter 20 into contact with the recessed surface 42A.
  • the first action will be described with reference to the drawings while comparing the present embodiment with a comparative embodiment assumed below. In the description of the comparative embodiment, when the same components as those used in the present embodiment are used, the same reference numerals are given and detailed descriptions (including common actions) are omitted as appropriate.
  • the slag S generated in the converter 20 flows down toward the bottom 32 of the sewage pan 30 and is accommodated in the slag pan 30.
  • the addition part 60 adds the sedative material M toward the slag S in the waste pan 30.
  • the comparative form has the same configuration as the present embodiment except for the above points.
  • the slag S generated in the converter 20 flows down toward the bottom 32 of the slag pan 30 and is accommodated in the slag pan 30.
  • the potential energy of the slag S in the converter 20 is converted into the kinetic energy of the slag S, in other words, the stirring energy in the discharge pan 30.
  • the stirring energy of the slag S in the slag pan 30 is large, the mixing of the slag S accommodated in the slag pan 30 and the molten iron F mixed and contained in the slag S, that is, Mass transfer will be promoted.
  • the reaction between the carbon in the molten iron F and the iron oxide in the slag S promotes the generation of new CO gas in the waste pan 30 and promotes the formation of the slag S ( Forming sedation is inhibited).
  • the slag S flowing down from the converter 20 comes into contact with the recessed surface 42 ⁇ / b> A of the guide plate 42 and is then accommodated in the discharge pan 30.
  • the slag S flowing down from the converter 20 is attenuated in potential energy when the slag S is accommodated in the converter 20 due to contact frictional resistance with the guide plate 42.
  • the stirring energy of the slag S that comes into contact with the guide plate 42 and is accommodated in the waste pan 30 is reduced as compared with the comparative example.
  • the slag S generated in the converter 20 is allowed to flow down from the converter 20 and stored in the slag pan 30 as compared with the case where the slag S generated in the converter 20 is stored as it is.
  • the forming of the slag S is easy to calm down.
  • the second effect is that the concave surface 42A of the guide plate 42 is inclined with respect to the vertical direction in a front view.
  • the recessed surface 42A of the guide plate 42 is disposed so as to be inclined with respect to the vertical direction when viewed from the front, as shown in FIGS.
  • the third function is that the distance L in the vertical direction from the upper end of the waste pan 30 to the lower end 42A2 of the guide plate 42 is within 1 m.
  • the slag S flowing down from the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42 flows down into the discharge pan 30 with potential energy at the lower end 42 ⁇ / b> A ⁇ b> 2.
  • the potential energy at the lower end 42A2 is converted into stirring energy.
  • the forming of the slag S tends to be calmed down as the vertical separation distance L from the position where the slag S is separated from the guide plate 42 (the lower end 42A2) to the waste pan 30 is small. Therefore, according to the present embodiment, the forming of the slag S is easily subdued compared to the case where the vertical separation distance L from the upper end of the waste pan 30 to the lower end 42A2 of the guide plate 42 is greater than 1 m.
  • the fourth effect is that the slag S flowing down from the lower end 42A2 of the guide plate 42 is received and accommodated on the inner peripheral surface 34A of the slagging pan 30.
  • the forming of the slag S is more likely to be sedated as the vertical distance L from the position where the slag S is separated from the guide plate 42 (lower end 42A2) to the waste pan 30 is smaller.
  • the slag S flowing down from the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42 is received by the inner peripheral surface 34 ⁇ / b> A of the waste pan 30 and accommodated in the waste pan 30.
  • the slag pan 30 is received by the inner peripheral surface 34 ⁇ / b> A. It is moved by the carriage 50 in advance. Therefore, according to this embodiment, the position of the waste pan 30 is easily adjusted so that the slag S is received by the inner peripheral surface 34A.
  • a part of the inner peripheral surface 34A is a receiving position (a position for receiving the slag S discharged from the converter 20).
  • the fifth effect is that the guide plate 42 has a bowl shape.
  • the guide plate 42 of the present embodiment has a bowl shape as shown in FIG.
  • the slag S that moves on the concave surface 42A of the guide plate 42 spreads in the depth direction with respect to the flow direction (the direction in which the slag S travels). hard. Therefore, according to the guide plate 42 of this embodiment, compared with the case where the shape of the guide plate 42 is a flat shape, the accommodation property is stabilized in the waste pan 30 (not easily spilled). Note that the first to third actions described above are also exhibited when the guide plate 42 is planar.
  • the sixth action is an action of having the adding portion 60, in other words, an action of adding the sedative material M to the slag S moving on the recessed surface 42 ⁇ / b> A of the guide plate 42.
  • the sedative material M is added to the slag S that is moving the guide plate 42 by the addition unit 60.
  • the sixth action will be described with reference to the drawings while comparing the present embodiment with the above-described comparative embodiment. In the description of the comparative embodiment, when the same components as those used in the present embodiment are used, the same reference numerals are given and detailed descriptions (including common actions) are omitted as appropriate.
  • the adding unit 60 adds the sedative material M toward the slag S in the slag pan 30. Therefore, in the case of a comparative form, the slag S before flowing down from the converter 20 and being accommodated in the slag pan 30 is accommodated in the slag pan 30 as originally formed (in the converter 20). Is done.
  • the slag S moving on the concave surface 42A of the guide plate 42 that is, the slag S before flowing down from the converter 20 and accommodated in the slag pan 30 is calmed down. Since the material M is added, the slag S and the sedative material M are mixed well and the forming sedation is likely to proceed. For this reason, the slag S accommodated in the waste pan 30 is accommodated in a state in which the forming is calmed down compared to the state in which the forming is originally performed (in the converter 20). In the case of the present embodiment, since the sedative material M flows down together with the slag S, the sedative material M is easily stirred in the waste pan 30 (accordingly, the sedative material M reacts in the waste pan 30). easy).
  • the forming of the slag S is easily subdued compared to the case where the soothing material M is not added to the slag S moving on the concave surface 42A of the guide plate 42.
  • the slag S generated in the converter 20 and moved in contact with the guide plate 42 flows down toward the bottom 32 of the discharge pan 30, It is accommodated in the waste pan 30.
  • the first modification has the same configuration as that of the present embodiment except for the above points.
  • the slag S flowing down from the guide plate 42 is not received by the inner peripheral surface 34 ⁇ / b> A of the discharge pan 30.
  • the above-described first to third, fifth and sixth actions are exhibited.
  • the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42 is disposed in the slag pan 30.
  • the guide plate 42 is supported so as to be movable in the vertical direction (or the inclination direction of the guide plate 42) with respect to the support portion 44.
  • the guide plate 42 is moved upward when the level of the liquid surface of the slag S in the waste pan 30 reaches a predetermined height.
  • the second modification has the same configuration as that of the present embodiment except for the above points. In the case of the second modification, the above-described first to sixth actions are achieved.
  • the guide plate 42 has a bowl shape having a bent portion 42 ⁇ / b> B bent to the side where the support portion 44 is provided.
  • the slag S that has been received and moved at the first position 42A1 of the guide plate 42 flows down from the bent portion 42B toward the inside of the waste pan 30.
  • the bent portion 42B is an example of the second position.
  • the third modification has the same configuration as that of the present embodiment except for the above points. In the case of the third modification, the above-described first to sixth actions are achieved.
  • the guide plate 42 has a bowl shape having a bent portion 42 ⁇ / b> B bent to the side opposite to the side where the support portion 44 is provided.
  • the slag S that has been received and moved at the first position 42A1 of the guide plate 42 is changed in the moving direction at the bent portion 42B, and flows down from the lower end 42A2 into the discharge pan 30.
  • the lower end 42A2 is an example of a second position.
  • the fourth modification has the same configuration as that of the present embodiment except for the above points. In the case of the fourth modified example, the above-described first to sixth actions are exhibited.
  • the separation distance L in the fourth modification is shown smaller than the separation distance L in the present embodiment (FIG. 1) and other modifications (FIGS. 4, 6, and 9), Actually they are equivalent.
  • the surface 42 ⁇ / b> C of the guide plate 42 that contacts the slag S is curved so as to protrude toward the side on which the slag S contacts in front view.
  • the fifth modification has the same configuration as that of the present embodiment except for the above points.
  • the above-described first to sixth actions are exhibited.
  • the separation distance L in the fifth modification is illustrated larger than the separation distance L in the present embodiment (FIG. 1) and other modifications (FIGS. 4, 6, and 9). Are equivalent.
  • the guide plate 42 is configured such that its inclination angle ⁇ can be adjusted. And in the case of the 8th modification, even if the height of the liquid level of the slag S in the waste pan 30 becomes high during the period when the slag S is accommodated in the waste pan 30, the slag S is the inner peripheral surface.
  • the inclination angle ⁇ of the guide plate 42 is adjusted by the operator before the flow of the slag S from the converter 20 is started as received at 34A.
  • the eighth modification has the same configuration as that of the present embodiment except for the above points. In the case of the eighth modification, the above-described first to sixth actions are exhibited.
  • the conditions were set as much as possible to the extent that the influence on the evaluation due to variations in common conditions could be ignored, and the amount of slag S in the converter 20 after desiliconization and dephosphorization processing was about 20 t. It was. After desiliconization and dephosphorization, the converter 20 was tilted while the molten iron F was left in the converter 20, and the upper slag S was accommodated in the waste pan 30 arranged below from the furnace port (opening 22). While the slag S is flowing down, the operator manually controls the tilting operation of the converter 20 and the position of the carriage 50 while monitoring the sedation of the forming so that the slag S formed from the slag pan 30 does not overflow. It was.
  • the sedative material M introduced into the waste pan 30 is a mixture of papermaking sludge (not shown) that is an inexpensive organic pyrolysis substance and steelmaking slag (not shown) that is an inexpensive material for adjusting specific gravity.
  • the molded one was used.
  • the amount of the sedative material M to be added to the steelmaking slag was about 50 kg per one charging operation.
  • the amount of waste was measured with a weigher (not shown) placed on the carriage 50.
  • the waste time was defined as the time from the start of the tilting operation of the converter 20 for the flow of the slag S to the time when the molten iron F below the slag S flows out of the furnace port (opening 22). In this test, the greater the amount of evacuation and the shorter the evacuation time, the better the evacuation property.
  • Level 1 and level 2 are comparative examples, and the guide plate 42 is not arranged. Level 1 and level 2 are different from each other in the position where the slag S flows down to the discharge pan 30. In Level 2, the slag S hits the inner peripheral surface 34A of the upper wall on the side of the slag pan 30 (the slag S is received by the inner peripheral surface 34A). Level 2 was slightly better than level 1 in terms of exclusion.
  • Levels 3 to 9 are examples, and a guide plate 42 is disposed between the converter 20 and the discharge pan 30.
  • the guide plate 42 has a water cooling structure (a structure in which the guide plate 42 is cooled and the cooling water is circulated in a cavity formed in the guide plate 42) inside the guide plate 42. 2), and is linear in the flow-down direction (advancing direction of the slag S).
  • Levels 3 to 5 the inclination angle ⁇ of the guide plate 42 is different.
  • Levels 3 to 5 (Examples) have improved rejection compared to Levels 1 and 2 (Comparative Examples). This is presumably because, in the case of levels 3 to 5 (Example), the slag S flowing down from the converter 20 contacts the guide plate 42 and the energy is attenuated. That is, it can be said that the levels 3 to 5 have the first action described above.
  • the rejection is improved as the inclination angle ⁇ is increased. However, if the inclination angle is 10 ° or more, it can be said that there is no significant difference in the rejection. That is, it can be said that the levels 3 to 5 have the second action described above.
  • the addition amount of the sedative material M to the waste pan 30 was small compared with the comparative example.
  • Level 8 is an embodiment, and the slag S when the slag S is accommodated in the sewage pan 30 from the lower end 42A2 of the guide plate 42 hits the inner peripheral surface 34A of the upper side wall of the sewage pan 30 by the trolley 50.
  • the position of the waste pan 30 is adjusted by moving. It can be said that level 8 has improved rejection compared to level 6 where other conditions are equivalent. That is, it can be said that level 8 has the above-mentioned fourth action.
  • Level 9 is an example, and a sedative material M is added to the slag S moving in contact with the guide plate 42.
  • a sedative material M As the sedative material M, as in the sedative material M to be put into the waste pan 30, a mixed molding of paper sludge and steel slag is used, and a chute (addition part 60) disposed above the guide plate 42 is used. Then, 100 kg was continuously added to the moving slag. Compared with level 8 where other conditions are equivalent, level 9 has improved rejectability. That is, it can be said that level 9 has the above-mentioned sixth action. Moreover, compared with the level 8, the addition amount of the sedative material M to the inside of the squeezing pan 30 is small, and the addition amount of the total sedative material M is also low in the level 9.
  • Levels 3 to 9 have a shorter elimination time and an increased amount of elimination compared to levels 1 and 2 (comparative example). Further, the bulk volume of the slag S remaining in the converter 20 was almost the same regardless of the case of the example and the comparative example. However, the longer the discharge time, the longer the slag S in the converter 20 is. Forming subsides and bulk density increases. Since the weight of the slag S remaining in the converter 20 is obtained by multiplying the bulk volume and the bulk density of the slag S, the amount of the slag S remaining in the converter 20 decreases as the discharge time is shorter. The amount of excretion increases.
  • the embodiment is improved in the evacuation property because the sedation of the forming in the evacuation pan 30 is better than the comparative example.
  • the inclination of the guide plate 42, the vertical distance L between the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42 and the upper end of the waste pan 30, the position where the slag S flows to the waste pan 30 (the slag S in the waste pan 30) can be said that the forming can be sedated more efficiently and the evacuation property can be improved by setting appropriate conditions such as the receiving position) and the addition of the sedative material M to the guide plate 42.
  • the waste in the above embodiment has been described as waste after desiliconization and dephosphorization in the converter 20
  • the waste method of the present disclosure is not limited to this.
  • the exhaust method of the present disclosure is also used when the converter 20 is tilted and discharged from the opening 22 (furnace port) after performing only one of desiliconization and dephosphorization in the converter 20. May be.
  • the exhaust method of the present disclosure may also be used when the converter 20 is tilted and exhausted from the opening 22 (furnace port) after performing only the decarburization process in the converter 20.
  • the guide plate 42 may have a water cooling structure as in the embodiment.
  • the guide plate 42 since the guide plate 42 has a water cooling structure, the guide plate 42 can be prevented from being damaged or deformed.
  • the slag S is cooled by the contact between the slag S and the guide plate 42, and the bubbles in the slag S are broken by the thermal shock to promote the calming of forming.
  • the surface of the guide plate 42 with which the slag S contacts may be uneven. By adopting the uneven shape, the energy is easily attenuated by the contact frictional resistance from the contact slag S.
  • the sedative material M has been described as being formed by mixing paper sludge, which is an inexpensive organic pyrolysis substance, and steelmaking slag, which is an inexpensive substance for adjusting specific gravity.
  • the sedative material is not limited to this, as long as it has a function of calming slag forming.
  • carbon materials coke powder, coal powder, graphite powder, etc.
  • a substance containing a thermally decomposable substance carbonate, organic substance, plastic, etc.
  • the guide plate 42 is supported by the support portion 44 in a state where the guide plate 42 is inclined 10 ° clockwise as an example in the vertical direction (inclination angle ⁇ is 10 °).
  • the inclination angle ⁇ may not be 10 °.
  • the inclination angle ⁇ is preferably 5 ° or more, and more preferably 10 ° or more.
  • the inclination angle ⁇ is preferably 20 ° or less, and more preferably 15 ° or less.
  • the waste pan 30 includes a circular bottom 32 as viewed from above, and a peripheral wall 34 having an inner peripheral surface 34 ⁇ / b> A whose inner diameter increases toward the upper side. It demonstrated as an inverted frustoconical container.
  • the shape of the waste pan may be different from the shape of the present embodiment.
  • the shape of the waste pan may be a cylindrical shape, a hemispherical shape, an inverted elliptical cone shape, or other shapes.
  • the inner surface 34B inner surface
  • the inner surface 34B has an arcuate cross section as in the waste pan 30A (an example of the pan) in FIG.
  • the inner peripheral surface 34C in the waste pan 30A is the top and bottom of the inner surface 34B.
  • the position of the inner surface 34B with respect to the reference is 20% or more and 100% or less.
  • the energy attenuating structure 10 has been described as including the guide unit 40, the carriage 50, and the addition unit 60. However, if the energy attenuating structure 10 is a configuration including at least the guide plate 42 and is configured to be able to accommodate the slag S in a state where the energy is attenuated after being discharged from the converter 20 in the waste pan 30, It does not need to include at least one or both of the adding unit 60 and the carriage 50. The same applies to the modification.
  • the contact member is fixed to a work floor provided on the side of the converter, The second position is located below the work floor, The exclusion method as described in (1).
  • the inclination angle of the contact member is 5 ° or more and 20 ° or less, The exclusion method according to (1) or (2).
  • the vertical distance from the upper end of the pan to the second position is within 1 m.
  • the slag is adjusted. Accommodate in the pan, The exclusion method as described in (5). (7) Adding a sedative to the slag moving the contact member; (1) The elimination method according to any one of (6). (8) (1) to (7) to discharge and cool the slag contained in the pan by the draining method according to any one of A method for producing slag.
  • the energy damping structure of the falling slag with (10) The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m. (10) The energy attenuation structure of the flowing-down slag as described above.
  • ⁇ 1> The slag generated by desiliconizing and dephosphorizing the hot metal in the converter is caused to flow down to a first position of a member disposed below the converter, Energy is attenuated by moving while contacting the member to a second position that is shifted from the first position in the lateral direction perpendicular to the up-down direction and below the first position. Flowing down the slag from the second position; The slag flowing down from the second position is accommodated in a pan disposed below the member. Exclusion method.
  • ⁇ 2> The vertical distance from the upper end of the pan to the second position is within 1 m, and the slag flowing down from the second position is accommodated in the pan.
  • ⁇ 3> The slag flowing down in contact with the member is received by the inner peripheral surface of the pan, and the slag is accommodated in the pan.
  • ⁇ 4> The slag is accommodated in the pan after adjusting the horizontal position of the pan and the posture of the member so that the slag flowing down in contact with the member is received by the inner peripheral surface of the pan. Let The exclusion method as described in ⁇ 3>.
  • ⁇ 5> Adding a sedative to the slag moving the member, and flowing the slag with the sedative added from the second position into the pan, The exclusion method according to any one of ⁇ 1> to ⁇ 4>.
  • ⁇ 6> ⁇ 1> to ⁇ 5>
  • the slag contained in the pan is discharged and cooled by the evacuation method according to any one of ⁇ 5>, A method for producing slag.
  • a contact member formed with a surface that contacts the slag that flows down from the converter and is accommodated in the pan, receives the slag that flows from the converter at the first position of the surface, and moves along the surface
  • a contact member that causes the slag to flow down into the pan from a second position that is shifted from the first position in a lateral direction perpendicular to the vertical direction and is lower than the first position;
  • the energy damping structure of the falling slag with ⁇ 8> The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m.
  • the energy attenuating structure of the downflow slag as described.
  • An addition part for adding a sedative to the slag moving along the surface, ⁇ 7> or ⁇ 8> comprising the energy attenuating structure according to ⁇ 8>.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

This slag removal method comprises steps of: tilting a converter after at least one process of desiliconization, dephosphorization and decarburization in the converter to allow an upper layer of foamed slag to flow down from an opening of the converter to a first position of a contact member while allowing molten iron to remain in the converter; allowing the slag to be moved in contact with the contact member from the first position to a second position which is deviated from the first position in the transverse direction perpendicular to the vertical direction and located below the first position, and causing the slag to flow down from the second position; and allowing the slag flowing down from the second position to be accommodated in a pot disposed below the converter.

Description

排滓方法、スラグの製造方法及び流下スラグのエネルギー減衰構造Exhaust method, manufacturing method of slag, and energy damping structure of flowing slag
 本開示は、排滓方法、スラグの製造方法及び流下スラグのエネルギー減衰構造に関する。 The present disclosure relates to a draining method, a slag manufacturing method, and an energy attenuation structure of a flowing slag.
 転炉内の溶鉄の脱珪及び脱燐処理後に溶鉄を転炉内に残したまま転炉を傾けて炉口から上層のスラグの一部を下方に配置した排滓鍋に流下させて排滓し、その後脱炭処理を行う方法が知られている。この方法では、転炉内でスラグをフォーミング(泡立ち)させてスラグの嵩体積を増加させることにより排滓性を確保している。スラグのフォーミングは、溶鉄中の炭素とスラグ中の酸化鉄とが下記の(1)式の反応によりCOガスを生成させ、そのCOガスがスラグに保持されることにより発生する。
         C+FeO→CO↑+Fe (1)
 ところで、転炉から排滓したスラグを排滓鍋に収容させると、フォーミングしたスラグが排滓鍋の容量を超えて溢出してしまうおそれがある。そして、スラグが排滓鍋から溢出すると、例えば、設備損傷、操業障害等のトラブルを招くおそれがある。そこで、排滓鍋内のフォーミングの鎮静を待つと、排滓速度を低下させて排滓時間の長期化による生産性の低下を招く。また、排滓鍋内のフォーミングの鎮静を待つと、転炉内のスラグのフォーミングが鎮静して流下するスラグの嵩体積が減少する。その結果、排滓後の脱炭処理時に転炉内に残るスラグ量が増加して、脱炭処理時での復燐やスロッピング(溶鉄やスラグの液塊が転炉の炉口から飛び出すこと)の発生を助長するおそれがある。また、復燐やスロッピングの発生を抑制するための生石灰等の副原料の量の増加を招くおそれがある。
After desiliconization and dephosphorization of the molten iron in the converter, the converter is tilted while leaving the molten iron in the converter, and a part of the upper slag is allowed to flow down from the furnace port to the waste pan placed below. And the method of performing a decarburization process after that is known. In this method, the slag is formed (foamed) in the converter to increase the bulk volume of the slag, thereby ensuring the exhaustability. Slag forming occurs when carbon in the molten iron and iron oxide in the slag generate CO gas by the reaction of the following formula (1), and the CO gas is held in the slag.
C + FeO → CO ↑ + Fe (1)
By the way, if the slag discharged from the converter is accommodated in the slag pan, the formed slag may overflow beyond the capacity of the slag pan. If the slag overflows from the slag pan, for example, there is a risk of incurring troubles such as equipment damage and operational trouble. Therefore, waiting for the sedation of forming in the squeezing pan causes the squeezing speed to decrease, leading to a decrease in productivity due to a prolonged spilling time. In addition, when waiting for the sedation of the forming in the slag pan, the slag forming in the converter subsides and the bulk volume of the slag flowing down decreases. As a result, the amount of slag remaining in the converter during the decarburization process after exhausting increases, and rephosphorization and slopping during the decarburization process (the molten iron and slag liquid mass jump out of the furnace port of the converter). ) May be promoted. Moreover, there is a risk of increasing the amount of auxiliary raw materials such as quicklime for suppressing the occurrence of recovery and slopping.
 そこで、フォーミングしたスラグの排滓鍋からの溢出を抑制するため、様々な方法が提案されている。 Therefore, various methods have been proposed to suppress the overflow of the formed slag from the drain pan.
 例えば、単純な方法として、排滓鍋の容量を大きくする方法がある。しかしながら、排滓鍋の容量を大きくする方法では、転炉の下方のスペースの制約を受けるため、限界がある等の課題がある。 For example, as a simple method, there is a method of increasing the capacity of the waste pan. However, the method of increasing the capacity of the slag pan has problems such as limitations because it is limited by the space below the converter.
 また、日本国特許第4907411号公報、日本国特許第4580434号公報及び日本国特許第4580435号公報には、フォーミング鎮静材を排滓鍋内に投入して、フォーミングを鎮静する方法が開示されている。しかしながら、鎮静材は、化学反応等の作用によりフォーミングしたスラグを鎮静させることから、フォーミング鎮静材の投入量により鎮静効果に限界がある。 Further, Japanese Patent No. 4907411, Japanese Patent No. 4580434 and Japanese Patent No. 4580435 disclose a method of calming the forming by putting the forming sedative into the slag pan. Yes. However, since the sedative material calms the slag formed by the action of a chemical reaction or the like, there is a limit to the sedative effect depending on the input amount of the forming sedative material.
 また、日本国特許第5000360号公報には、マイクロ波の照射により排滓鍋内のスラグのフォーミングを鎮静する方法が開示されている。しかしながら、マイクロ波のシールド等の課題がある。 In addition, Japanese Patent No. 500060 discloses a method of calming the slag forming in the slag pan by microwave irradiation. However, there are problems such as microwave shielding.
 なお、日本国特許第2582692号公報には、排滓時にスラグの作業床への流出、飛散を防止し、排滓鍋内にうまく流入させるための水冷式炉前防滓板が開示されている。しかしながら、水冷式炉前防滓板は、排滓鍋内のスラグのフォーミングを鎮静させるためのものではない。 In addition, Japanese Patent No. 2558292 discloses a water-cooled pre-furnace pre-proofing plate for preventing slag from flowing out and splashing to the work floor at the time of evacuation and allowing the slag to flow into the culvert pan. . However, the water-cooled pre-furnace fender is not intended to calm down the slag forming in the discharge pan.
 本開示は、転炉から流下させて鍋内に収容されるスラグのフォーミングが鎮静され易い排滓方法、これを用いたスラグの製造方法、及び流下スラグのエネルギー減衰構造の提供を目的とする。 This disclosure is intended to provide a method of removing the slag that is allowed to flow down from the converter and accommodated in the pan, and to provide a method for producing the slag using the slag and an energy attenuating structure for the slag.
 本発明者らは、転炉内の溶鉄の脱珪及び脱燐した後に溶鉄を転炉内に残したまま転炉を傾けて炉口から上層のスラグの一部を下方に配置した排滓鍋に流下して排滓鍋に収容させる排滓方法について、鋭意研究した。その結果、本発明者らは、転炉から流下したスラグ中に混入した溶鉄中の炭素とスラグ中の酸化鉄とが排滓鍋内において前述の(1)式の反応により新たにCOガスを生成させることが、排滓鍋内のフォーミングの鎮静を阻害している要因の1つであることを知見した。 The present inventors have provided a slag pan in which a portion of the upper slag is disposed downward from the furnace port by tilting the converter while desiliconizing and dephosphorizing the molten iron in the converter and leaving the molten iron in the converter. We conducted an extensive study on the method of draining it into the draining pan. As a result, the present inventors found that the carbon in the molten iron mixed in the slag flowing down from the converter and the iron oxide in the slag newly generated CO gas by the reaction of the above-mentioned formula (1) in the waste pan. It was found that the generation was one of the factors that hindered the sedation of forming in the slag pan.
 そこで、本発明者らは、排滓鍋内における、溶鉄中の炭素とスラグ中の酸化鉄との前述の(1)式の反応を抑制することに着目し、スラグが排滓鍋内に流下する際の衝撃による撹拌を抑制することが有効であることを見出した。本開示は、かかる知見に基づくものである。 Therefore, the present inventors pay attention to suppressing the reaction of the above-described formula (1) between the carbon in the molten iron and the iron oxide in the slag in the waste pan, and the slag flows down into the waste pan. It has been found that it is effective to suppress agitation caused by an impact during the process. The present disclosure is based on such knowledge.
 本開示の一態様に係る排滓方法は、以下のとおりである。
 脱珪、脱燐又は脱炭のうち少なくとも1つの処理を転炉内で行った後に前記転炉を傾けることで、溶鉄を前記転炉内に残したまま、上層のフォーミングしたスラグを前記転炉の炉口から接触部材の第1位置に流下させ、
 前記第1位置から、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされた位置である第2位置まで、前記接触部材に接触しつつ移動した前記スラグを前記第2位置から流下させ、
 前記第2位置から流下した前記スラグを、前記転炉の下方に配置された鍋内に収容させる、
 排滓方法。
The exclusion method according to one aspect of the present disclosure is as follows.
By tilting the converter after performing at least one of desiliconization, dephosphorization, and decarburization in the converter, the upper layer formed slag is left in the converter while leaving the molten iron in the converter. Flow down from the furnace port to the first position of the contact member,
The contact member moved from the first position to a second position that is shifted from the first position in the lateral direction perpendicular to the vertical direction and that is positioned below the first position. Causing the slag to flow down from the second position;
The slag flowing down from the second position is accommodated in a pan disposed below the converter,
Exclusion method.
 本開示の他の態様に係る流下スラグのエネルギー減衰構造は、以下のとおりである。
 転炉を傾けることで前記転炉の炉口から流下するスラグに接触する面が形成された接触部材であって、前記炉口から流下した前記スラグを前記面の第1位置で受け取って、前記面に沿って移動した前記スラグを、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる位置である第2位置から鍋内に流下させる接触部材、
 を備えた流下スラグのエネルギー減衰構造。
The energy attenuation structure of the falling slag according to another aspect of the present disclosure is as follows.
A contact member formed with a surface in contact with the slag flowing down from the furnace port of the converter by tilting the converter, the slag flowing down from the furnace port is received at a first position of the surface, Contact that causes the slag that has moved along the surface to flow down into the pan from the second position, which is shifted from the first position in the lateral direction perpendicular to the vertical direction and below the first position. Element,
The energy damping structure of the falling slag with
 本開示の排滓方法、スラグの製造方法、及び流下スラグのエネルギー減衰構造によれば、転炉から流下させて鍋内に収容されるスラグのフォーミングが鎮静され易い。 According to the draining method, the slag manufacturing method, and the flowing-down slag energy attenuating structure of the present disclosure, the forming of the slag that flows down from the converter and is accommodated in the pan is easily subdued.
実施形態のエネルギー減衰構造を用いて転炉から流下したスラグを排滓鍋内に収容している状態を示す模式的な断面図である。It is typical sectional drawing which shows the state which has accommodated the slag which flowed down from the converter using the energy attenuation | damping structure of embodiment in the discharge pan. 実施形態のエネルギー減衰構造を構成するガイドの斜視図である。It is a perspective view of the guide which comprises the energy attenuation | damping structure of embodiment. 比較形態において、転炉から流下したスラグを鍋内に収容している状態を示す模式的な断面図である。In a comparative form, it is typical sectional drawing which shows the state which accommodates the slag which flowed down from the converter in the pan. 第1変形例のエネルギー減衰構造を用いて転炉から流下したスラグを鍋内に収容している状態を示す模式的な断面図である。It is typical sectional drawing which shows the state which accommodates the slag which flowed down from the converter using the energy attenuation | damping structure of the 1st modification in the pan. 第2変形例のエネルギー減衰構造を用いて転炉から流下したスラグを鍋内に収容している状態を示す模式的な断面図である。It is typical sectional drawing which shows the state which accommodates the slag which flowed down from the converter using the energy attenuation | damping structure of the 2nd modification in the pan. 第3変形例のエネルギー減衰構造を用いて転炉から流下したスラグを鍋内に収容している状態を示す模式的な断面図である。It is typical sectional drawing which shows the state which has accommodated the slag which flowed down from the converter using the energy attenuation | damping structure of the 3rd modification in the pan. 第4変形例のエネルギー減衰構造を用いて転炉から流下したスラグを鍋内に収容している状態を示す模式的な断面図である。It is typical sectional drawing which shows the state which accommodates the slag which flowed down from the converter using the energy attenuation | damping structure of the 4th modification in the pan. 第5変形例のエネルギー減衰構造を用いて転炉から流下したスラグを鍋内に収容している状態を示す模式的な断面図である。It is typical sectional drawing which shows the state which has accommodated the slag which flowed down from the converter using the energy attenuation | damping structure of the 5th modification in the pan. 第6変形例のエネルギー減衰構造を用いて転炉から流下したスラグを鍋内に収容している状態を示す模式的な断面図である。It is typical sectional drawing which shows the state which accommodates the slag which flowed down from the converter using the energy attenuation | damping structure of the 6th modification in the pan. 第7変形例のエネルギー減衰構造を用いて転炉から流下したスラグを鍋内に収容している状態を示す模式的な断面図である。It is typical sectional drawing which shows the state which accommodates the slag which flowed down from the converter using the energy attenuation | damping structure of the 7th modification in the pan. 実施例及び比較例における実験の条件及び実験の結果をまとめた表である。It is the table | surface which put together the conditions of experiment and the result of experiment in an Example and a comparative example. 排滓鍋の変形例を台車に載せた状態で示す模式的な断面図である。It is typical sectional drawing shown in the state which mounted the modification of the waste pan on the trolley | bogie.
≪概要≫
 以下、実施形態、実施形態の変形例(第1~第8変形例)並びに実施例及び比較例における実験について説明する。以下の説明では、図面に矢印X及び矢印-Xで示す方向をエネルギー減衰構造10(図1参照)の幅方向、図面に矢印Z及び矢印-Zで示す方向を上下方向(以下、矢印Z方向を上方、矢印-Z方向を下方という。)とする。また、幅方向及び上下方向のそれぞれに直交する方向(矢印Y及び矢印-Y方向)を奥行き方向とする。ここで、幅方向は、横方向の一例である。
≪Overview≫
Hereinafter, the experiment in the embodiment, the modified examples of the embodiment (first to eighth modified examples), the example, and the comparative example will be described. In the following description, the direction indicated by the arrow X and arrow -X in the drawing is the width direction of the energy attenuating structure 10 (see FIG. 1), and the direction indicated by the arrow Z and arrow -Z in the drawing is the vertical direction (hereinafter referred to as the arrow Z direction). Is the upper side, and the arrow-Z direction is the lower side). In addition, the direction perpendicular to the width direction and the vertical direction (arrow Y and arrow -Y direction) is the depth direction. Here, the width direction is an example of a horizontal direction.
≪本実施形態≫
 以下、実施形態について説明する。まず、実施形態のエネルギー減衰構造10(図1参照)の構成について説明する。次いで、エネルギー減衰構造10を用いたスラグSの製造方法(排滓方法)について説明する。次いで、実施形態の作用について説明する。
<< this embodiment >>
Hereinafter, embodiments will be described. First, the configuration of the energy attenuation structure 10 (see FIG. 1) of the embodiment will be described. Next, a manufacturing method (exhaust method) of the slag S using the energy attenuation structure 10 will be described. Next, the operation of the embodiment will be described.
<エネルギー減衰構造の構成>
 本実施形態のエネルギー減衰構造10は、転炉20(図1参照)から流下したスラグSを排滓鍋30(図1参照)内に収容する際に、転炉20から流下して排滓鍋30に収容される前のスラグSに後述するガイド板42(図1参照)の凹み面42A(図2参照)を接触させて、スラグSのエネルギーを減衰させる機能を有する。ここで、排滓鍋30は、鍋の一例である。なお、転炉20から排滓鍋30に至るまでに流下するスラグSは、流下スラグの一例である。
<Configuration of energy decay structure>
The energy attenuating structure 10 of the present embodiment flows down from the converter 20 when the slag S flowing down from the converter 20 (see FIG. 1) is accommodated in the discharge pot 30 (see FIG. 1). 30 has a function of attenuating the energy of the slag S by bringing a concave surface 42A (see FIG. 2) of a guide plate 42 (see FIG. 1), which will be described later, into contact with the slag S before being accommodated in the slag 30. Here, the waste pan 30 is an example of a pan. In addition, the slag S flowing down from the converter 20 to the waste pan 30 is an example of a flowing down slag.
 なお、ガイド板42は、図1に示されるように、排滓鍋30よりも上方に配置されている。また、転炉20には、開口22(炉口)が形成されている。転炉20は、奥行き方向を回転軸方向とする回転装置(図示省略)により上下方向に対して傾斜可能に構成されている。排滓鍋30は、スラグSの排滓の際、後述する台車50により移動されて、転炉20の下方に配置されるようになっている。また、排滓鍋30は、図1に示されるように、上方から見て円形の底32と、上方ほど内径が大きくなる内周面34Aを有する周壁34と、を備えている。すなわち、本実施形態の排滓鍋30は、逆円錐台状である。ここで、図1は、転炉20が回転装置により回転されて傾斜してスラグSを流下(排滓)している状態を示しているが、この状態において、転炉20の開口22の下端から排滓鍋30の上端までの離間距離は、一例として3~10mである。 In addition, the guide plate 42 is arrange | positioned upwards rather than the waste pan 30 as FIG. 1 shows. The converter 20 has an opening 22 (furnace port). The converter 20 is configured to be tiltable with respect to the vertical direction by a rotating device (not shown) whose depth direction is the rotation axis direction. When the slag S is discharged, the slag pan 30 is moved by a carriage 50 which will be described later, and is arranged below the converter 20. Further, as shown in FIG. 1, the waste pan 30 includes a circular bottom 32 as viewed from above, and a peripheral wall 34 having an inner peripheral surface 34 </ b> A whose inner diameter increases toward the upper side. That is, the waste pan 30 of this embodiment is an inverted truncated cone shape. Here, FIG. 1 shows a state in which the converter 20 is rotated by the rotating device and is inclined to flow down (discharge) the slag S. In this state, the lower end of the opening 22 of the converter 20 is shown. As an example, the separation distance from the upper end of the waste pan 30 is 3 to 10 m.
 本実施形態のエネルギー減衰構造10は、図1に示されるように、ガイド部40を備えている。 The energy attenuating structure 10 of the present embodiment includes a guide portion 40 as shown in FIG.
[ガイド部]
 ガイド部40は、ガイド板42と、支持部44と、を含んで構成されている。ここで、ガイド板42は、接触部材の一例である。ガイド板42は、正面視にて、上下方向に対して一例として時計回りに10°傾斜した状態で、支持部44に支持されている。そして、ガイド板42は、転炉20から流下したスラグSに凹み面42A(図2参照)で接触するようになっている。すなわち、ガイド板42には、転炉20から流下して排滓鍋30内に収容されるスラグSに接触する凹み面42Aが形成されている。ここで、凹み面42Aは、面の一例である。なお、ガイド板42は、樋状とされている。具体的には、図2に示されるように、ガイド板42は、スラグSが流れる方向に垂直な断面形状が下方に凸の湾曲した形状とされている。また、本実施形態のガイド板42は、一例として鋼鉄製とされている。また、ガイド板42の幅(すなわち奥行き方向の寸法)は、特に限定されないが、本実施形態では開口22の直径の0.5倍以上1.0倍以下の範囲に設計されている。
[Guide section]
The guide part 40 includes a guide plate 42 and a support part 44. Here, the guide plate 42 is an example of a contact member. The guide plate 42 is supported by the support portion 44 in a state where the guide plate 42 is inclined 10 ° clockwise as an example with respect to the vertical direction in a front view. The guide plate 42 comes into contact with the slag S flowing down from the converter 20 at a recessed surface 42A (see FIG. 2). That is, the guide plate 42 is formed with a recessed surface 42 </ b> A that flows down from the converter 20 and comes into contact with the slag S accommodated in the discharge pan 30. Here, the recessed surface 42A is an example of a surface. The guide plate 42 has a bowl shape. Specifically, as shown in FIG. 2, the guide plate 42 has a curved shape in which a cross-sectional shape perpendicular to the direction in which the slag S flows is convex downward. Moreover, the guide plate 42 of the present embodiment is made of steel as an example. Further, the width of the guide plate 42 (that is, the dimension in the depth direction) is not particularly limited, but in the present embodiment, it is designed in a range of 0.5 to 1.0 times the diameter of the opening 22.
 本実施形態では、支持部44として、転炉20の側方に設けられた作業床が用いられている。換言すると、ガイド板42は、支持部44としての作業床に図示しない固定部材などを介して固定されている。ここでいう作業床とは、転炉20が回転されて約90°傾斜した状態で、開口22の下端と同じくらいの高さに位置する床であり、転炉20内の補修作業や転炉20の底吹き羽口の補修、交換作業などに利用される床である。図1に示されるように、ガイド板42が作業床(支持部44)に固定された状態では、ガイド板42の上端は、作業床よりも上方に位置しており、ガイド板42の下端42A2は、作業床よりも下方に位置している。 In this embodiment, a work floor provided on the side of the converter 20 is used as the support portion 44. In other words, the guide plate 42 is fixed to the work floor as the support portion 44 via a fixing member (not shown). The work floor here is a floor located at the same height as the lower end of the opening 22 in a state where the converter 20 is rotated and inclined by about 90 °, and repair work or converter in the converter 20 is performed. This floor is used for repairing and replacing 20 bottom-blown tuyere. As shown in FIG. 1, in the state where the guide plate 42 is fixed to the work floor (support portion 44), the upper end of the guide plate 42 is located above the work floor, and the lower end 42 </ b> A <b> 2 of the guide plate 42. Is located below the work floor.
 なお、転炉20の開口22から排滓する際には、転炉20に設けられた出鋼口(図示省略)から出鋼する際とは逆方向に転炉20を傾ける。このため、ガイド板42が固定される作業床は、直立状態の転炉20における出鋼口とは反対側に設けられた作業床である。 In addition, when discharging from the opening 22 of the converter 20, the converter 20 is tilted in a direction opposite to that when the steel is discharged from a steel outlet (not shown) provided in the converter 20. For this reason, the work floor to which the guide plate 42 is fixed is a work floor provided on the opposite side to the steel outlet in the upright converter 20.
 ガイド板42は、図1に示されるように、転炉20から流下したスラグSを凹み面42Aの第1位置42A1で受け取って、凹み面42Aに沿って(下方側に)移動したスラグSを、凹み面42Aの下端42A2から排滓鍋30内に流下させるようになっている。ここで、「転炉20から流下したスラグSを凹み面42Aの第1位置42A1で受け取る」とは、転炉20から流下したスラグSが凹み面42Aの第1位置42A1に上方から衝突することを意味する。また、下端42A2は、第2位置の一例である。また、前述のとおり、ガイド板42は傾斜した状態とされていることから、下端42A2は、上下方向に直交する幅方向において、第1位置42A1とずれ、かつ、第1位置42A1よりも下方とされている。なお、ガイド板42の下端42A2は、排滓鍋30の上端からの上下方向における離間距離Lが一例として1mである。なお、本明細書では、ガイド板42の傾斜角θを、上下方向の仮想直線(図示省略)と、第1位置42A1と第2位置42A2とを結ぶ仮想直線(図示省略)とで形成される角度のうち小さい方の角度とする。そうすると、本実施形態における、ガイド板42の傾斜角θは、10°である。 As shown in FIG. 1, the guide plate 42 receives the slag S flowing down from the converter 20 at the first position 42A1 of the recessed surface 42A and moves the slag S moved along the recessed surface 42A (downward). In addition, it is made to flow down into the waste pan 30 from the lower end 42A2 of the concave surface 42A. Here, “receiving the slag S flowing down from the converter 20 at the first position 42A1 of the recessed surface 42A” means that the slag S flowing down from the converter 20 collides with the first position 42A1 of the recessed surface 42A from above. Means. The lower end 42A2 is an example of a second position. Further, as described above, since the guide plate 42 is inclined, the lower end 42A2 is shifted from the first position 42A1 in the width direction orthogonal to the vertical direction, and below the first position 42A1. Has been. In addition, as for the lower end 42A2 of the guide plate 42, the separation distance L in the up-down direction from the upper end of the waste pan 30 is 1 m as an example. In the present specification, the inclination angle θ of the guide plate 42 is formed by a vertical straight line (not shown) and a virtual straight line (not shown) connecting the first position 42A1 and the second position 42A2. The smaller one of the angles is used. Then, the inclination angle θ of the guide plate 42 in this embodiment is 10 °.
[台車]
 さらに、本実施形態のエネルギ減衰構造10は、台車50を備えている。
 台車50は、凹み面42Aに接触して流下したスラグSを排滓鍋30の内周面34Aで受け取らせるように、排滓鍋30を幅方向に移動させることで排滓鍋30の幅方向の位置を調整する機能を有する。すなわち、本実施形態の台車50は、排滓鍋30の幅方向の位置の調整手段といえる。
[Cart]
Furthermore, the energy attenuating structure 10 of this embodiment includes a carriage 50.
The trolley 50 moves the slag pan 30 in the width direction so that the slag S flowing down in contact with the recessed surface 42 </ b> A is received by the inner peripheral surface 34 </ b> A of the sewage pan 30, thereby moving the slag S in the width direction. It has a function to adjust the position. That is, the cart 50 of this embodiment can be said to be a means for adjusting the position in the width direction of the waste pan 30.
 台車50は、図1に示されるように、台52と、複数の車輪54と、駆動源(図示省略)と、を含んで構成されている。台52の上には、排滓鍋30が載せられている。複数の車輪54は、台52に取り付けられている。そして、複数の車輪54が駆動源により駆動されると、台52は、幅方向に移動するようになっている。すなわち、排滓鍋30は、台車50により幅方向に移動可能とされている。なお、駆動源は、オペレータにより制御されて作動するようになっている。 As shown in FIG. 1, the cart 50 includes a platform 52, a plurality of wheels 54, and a drive source (not shown). On the table 52, the slag pan 30 is placed. The plurality of wheels 54 are attached to the base 52. When the plurality of wheels 54 are driven by the drive source, the table 52 moves in the width direction. That is, the waste pan 30 can be moved in the width direction by the carriage 50. The drive source is controlled and operated by an operator.
[添加部]
 さらに、本実施形態のエネルギ減衰構造10は、添加部60を備えている。
 添加部60は、ガイド板42の凹み面42Aに沿って移動しているスラグSに鎮静材Mを添加する機能を有する。添加部60は、図1に示されるように、凹み面42Aに対向する位置に配置されている。そして、添加部60は、鎮静材Mを凹み面42Aに向けて散布させるようになっている。なお、本実施形態の鎮静材Mは、スラグSのフォーミングを鎮静させるためのものであり、一例として、安価な有機物系の熱分解物質である製紙スラッジと安価な比重調整のための物質である製鋼スラグとを混合して成型したものである。
[Addition part]
Furthermore, the energy attenuating structure 10 of the present embodiment includes an adding unit 60.
The adding portion 60 has a function of adding the sedative material M to the slag S moving along the recessed surface 42A of the guide plate 42. The addition part 60 is arrange | positioned in the position facing 42 A of recessed surfaces, as FIG. 1 shows. And the addition part 60 spreads the sedative material M toward the concave surface 42A. Note that the sedative material M of the present embodiment is for calming the forming of the slag S, and as an example, is a papermaking sludge that is an inexpensive organic pyrolysis material and an inexpensive material for adjusting the specific gravity. It is formed by mixing steelmaking slag.
 以上が、エネルギー減衰構造10の構成についての説明である。 The above is the description of the configuration of the energy attenuation structure 10.
<スラグの製造動作>
 次に、本実施形態のスラグSの製造動作(排滓方法)について、図1を参照しつつ説明する。
<Slag manufacturing operation>
Next, the manufacturing operation (exclusion method) of the slag S of this embodiment will be described with reference to FIG.
 まず、オペレータは、台車50に載せられた排滓鍋30を転炉20の下方に移動させる。そして、転炉20内の溶鉄の脱珪及び脱燐処理が行われた後、転炉20を、図1に示されるように、回転装置により回転させる。これに伴い、転炉20内で生成されたスラグSは、転炉20の開口22からガイド板42に向けて流下する。 First, the operator moves the waste pan 30 placed on the carriage 50 to the lower side of the converter 20. And after desiliconization and dephosphorization processing of the molten iron in the converter 20, the converter 20 is rotated with a rotating apparatus, as FIG. 1 shows. Along with this, the slag S generated in the converter 20 flows down from the opening 22 of the converter 20 toward the guide plate 42.
 次いで、転炉20から流下したスラグSは、ガイド板42の凹み面42Aにおける第1位置42A1で受け取られ、更に、スラグSは、凹み面42Aに沿って下端42A2まで移動する。そして、凹み面42Aの下端42A2まで移動したスラグSは、下端42A2から下方に流下する。また、添加部60は、凹み面42Aに沿って移動しているスラグSに鎮静材Mを添加する。 Next, the slag S flowing down from the converter 20 is received at the first position 42A1 on the recessed surface 42A of the guide plate 42, and the slag S moves along the recessed surface 42A to the lower end 42A2. Then, the slag S that has moved to the lower end 42A2 of the recessed surface 42A flows downward from the lower end 42A2. Moreover, the addition part 60 adds the soothing material M to the slag S which is moving along the concave surface 42A.
 凹み面42Aの下端42A2から流下したスラグSは、排滓鍋30の内周面34Aで受け取られて、排滓鍋30内に収容される。なお、排滓鍋30内にスラグSが収容されている期間中、排滓鍋30内のスラグSの液面の高さが高くなってもスラグSが内周面34Aで受け取られるように、台車50に載せられた排滓鍋30は、転炉20からのスラグSの流下が開始される前に、その位置が調整されている。 The slag S flowing down from the lower end 42A2 of the recessed surface 42A is received by the inner peripheral surface 34A of the sewage pan 30 and accommodated in the sewage pan 30. In addition, during the period in which the slag S is accommodated in the waste pan 30, even if the liquid level of the slag S in the waste pan 30 increases, the slag S is received by the inner peripheral surface 34 </ b> A. The position of the slag pan 30 placed on the carriage 50 is adjusted before the flow of the slag S from the converter 20 is started.
 なお、排滓鍋30に収容されたスラグSは、その後スラグSの冷却場(図示省略)に運搬されて、排滓鍋30から排出された後、冷却されてスラグが製造される The slag S accommodated in the slag pan 30 is then transported to the slag S cooling field (not shown), discharged from the slag pan 30, and then cooled to produce slag.
 以上が、本実施形態のスラグSの製造動作についての説明である。 The above is the description of the manufacturing operation of the slag S of the present embodiment.
<作用>
 次に、本実施形態の作用(第1~第6の作用)について説明する。
<Action>
Next, the operation (first to sixth operations) of this embodiment will be described.
[第1の作用]
 第1の作用は、転炉20から流下したスラグSを凹み面42Aに接触させてスラグSのエネルギーを減衰させることの作用である。第1の作用については、本実施形態を以下に想定する比較形態と比較しながら図面を参照しつつ説明する。なお、比較形態の説明において、本実施形態で用いた部品等と同じ部品等を用いる場合、同じ符号を付して詳細な説明(共通する作用も含む)は適宜省略する。
[First action]
The first action is an action of attenuating the energy of the slag S by bringing the slag S flowing down from the converter 20 into contact with the recessed surface 42A. The first action will be described with reference to the drawings while comparing the present embodiment with a comparative embodiment assumed below. In the description of the comparative embodiment, when the same components as those used in the present embodiment are used, the same reference numerals are given and detailed descriptions (including common actions) are omitted as appropriate.
 比較形態の場合、図3に示されるように、転炉20内で生成されたスラグSは、そのまま、排滓鍋30の底32に向けて流下し、排滓鍋30内に収容される。また、比較形態の場合、添加部60は、排滓鍋30内のスラグSに向けて鎮静材Mを添加する。比較形態は、上記の点以外、本実施形態と同様の構成とされている。 In the case of the comparative form, as shown in FIG. 3, the slag S generated in the converter 20 flows down toward the bottom 32 of the sewage pan 30 and is accommodated in the slag pan 30. Moreover, in the case of a comparison form, the addition part 60 adds the sedative material M toward the slag S in the waste pan 30. The comparative form has the same configuration as the present embodiment except for the above points.
 比較形態の場合、前述のとおり、転炉20内で生成されたスラグSは、そのまま、排滓鍋30の底32に向けて流下し、排滓鍋30内に収容される。その際、転炉20内のスラグSの位置エネルギーは、排滓鍋30内において、スラグSの運動エネルギー、別言すれば、撹拌エネルギーに転換される。そして、排滓鍋30内におけるスラグSの攪拌エネルギーが大きいと、排滓鍋30内に収容されているスラグSと、スラグS中に混入して収容されている溶鉄Fとの混合、すなわち、物質移動が促進されることになる。その結果、比較形態の場合、溶鉄F中の炭素とスラグS中の酸化鉄との反応により排滓鍋30内で新たなCOガスの生成が促進されて、スラグSのフォーミングが助長される(フォーミングの鎮静が阻害される)。 In the case of the comparative form, as described above, the slag S generated in the converter 20 flows down toward the bottom 32 of the slag pan 30 and is accommodated in the slag pan 30. At that time, the potential energy of the slag S in the converter 20 is converted into the kinetic energy of the slag S, in other words, the stirring energy in the discharge pan 30. And when the stirring energy of the slag S in the slag pan 30 is large, the mixing of the slag S accommodated in the slag pan 30 and the molten iron F mixed and contained in the slag S, that is, Mass transfer will be promoted. As a result, in the case of the comparative embodiment, the reaction between the carbon in the molten iron F and the iron oxide in the slag S promotes the generation of new CO gas in the waste pan 30 and promotes the formation of the slag S ( Forming sedation is inhibited).
 これに対して、本実施形態の場合、図1に示されるように、転炉20から流下したスラグSは、ガイド板42の凹み面42Aに接触してから、排滓鍋30内に収容される。そのため、本実施形態の場合、転炉20から流下したスラグSは、ガイド板42との接触摩擦抵抗によりスラグSが転炉20内に収容されていた際の位置エネルギーが減衰される。その結果、本実施形態の場合、ガイド板42に接触して排滓鍋30内に収容されるスラグSは、比較形態の場合に比べて、撹拌エネルギーが低減される。 On the other hand, in the case of this embodiment, as shown in FIG. 1, the slag S flowing down from the converter 20 comes into contact with the recessed surface 42 </ b> A of the guide plate 42 and is then accommodated in the discharge pan 30. The Therefore, in this embodiment, the slag S flowing down from the converter 20 is attenuated in potential energy when the slag S is accommodated in the converter 20 due to contact frictional resistance with the guide plate 42. As a result, in the case of the present embodiment, the stirring energy of the slag S that comes into contact with the guide plate 42 and is accommodated in the waste pan 30 is reduced as compared with the comparative example.
 したがって、本実施形態によれば、転炉20内で生成されたスラグSをそのまま排滓鍋30内に収容される場合に比べて、転炉20から流下させて排滓鍋30内に収容されるスラグSのフォーミングが鎮静され易い。 Therefore, according to the present embodiment, the slag S generated in the converter 20 is allowed to flow down from the converter 20 and stored in the slag pan 30 as compared with the case where the slag S generated in the converter 20 is stored as it is. The forming of the slag S is easy to calm down.
[第2の作用]
 第2の作用は、ガイド板42の凹み面42Aが正面視にて上下方向に対して傾斜していることの作用である。ここで、転炉20から流下したスラグSが上下方向に傾斜していない凹み面42Aに接触して、排滓鍋30内に収容される場合であっても、ガイド板42との接触摩擦抵抗によりスラグSが転炉20内に収容されていた際の位置エネルギーは減衰される。しかしながら、本実施形態の場合、ガイド板42の凹み面42Aは、図1及び図2に示されるように、正面視にて上下方向に対して傾斜して配置されている。そのため、本実施形態の場合、転炉20から流下したスラグSが上下方向に傾斜していない凹み面42Aに接触させる場合に比べて、転炉20内に収容されていた際のスラグSの位置エネルギーの減衰が大きい。したがって、本実施形態によれば、転炉20から流下したスラグSが上下方向に傾斜していない凹み面42Aに接触させる場合に比べて、スラグSのフォーミングが鎮静され易い。
[Second action]
The second effect is that the concave surface 42A of the guide plate 42 is inclined with respect to the vertical direction in a front view. Here, even when the slag S flowing down from the converter 20 comes into contact with the recessed surface 42A that is not inclined in the vertical direction and is accommodated in the discharge pan 30, the contact friction resistance with the guide plate 42 Thus, the potential energy when the slag S is accommodated in the converter 20 is attenuated. However, in the case of the present embodiment, the recessed surface 42A of the guide plate 42 is disposed so as to be inclined with respect to the vertical direction when viewed from the front, as shown in FIGS. Therefore, in the case of this embodiment, compared with the case where the slag S flowing down from the converter 20 is brought into contact with the recessed surface 42A that is not inclined in the vertical direction, the position of the slag S when accommodated in the converter 20 Energy decay is large. Therefore, according to this embodiment, compared with the case where the slag S flowing down from the converter 20 is brought into contact with the recessed surface 42A that is not inclined in the vertical direction, the forming of the slag S is easily sedated.
[第3の作用]
 第3の作用は、排滓鍋30の上端からガイド板42の下端42A2までの上下方向における離間距離Lが1m以内であることの作用である。ガイド板42の下端42A2から流下したスラグSは、図1に示されるように、下端42A2での位置エネルギーを持って、排滓鍋30内に流下される。別言すると、排滓鍋30内にスラグSが流下すると、下端42A2での位置エネルギーが攪拌エネルギーに転換される。このメカニズムによれば、スラグSがガイド板42から離れる位置(下端42A2)から排滓鍋30までの上下方向の離間距離Lが小さいほど、スラグSのフォーミングが鎮静され易い。したがって、本実施形態によれば、排滓鍋30の上端からガイド板42の下端42A2までの上下方向における離間距離Lが1mよりも大きい場合に比べて、スラグSのフォーミングが鎮静され易い。
[Third action]
The third function is that the distance L in the vertical direction from the upper end of the waste pan 30 to the lower end 42A2 of the guide plate 42 is within 1 m. As shown in FIG. 1, the slag S flowing down from the lower end 42 </ b> A <b> 2 of the guide plate 42 flows down into the discharge pan 30 with potential energy at the lower end 42 </ b> A <b> 2. In other words, when the slag S flows down into the discharge pan 30, the potential energy at the lower end 42A2 is converted into stirring energy. According to this mechanism, the forming of the slag S tends to be calmed down as the vertical separation distance L from the position where the slag S is separated from the guide plate 42 (the lower end 42A2) to the waste pan 30 is small. Therefore, according to the present embodiment, the forming of the slag S is easily subdued compared to the case where the vertical separation distance L from the upper end of the waste pan 30 to the lower end 42A2 of the guide plate 42 is greater than 1 m.
[第4の作用]
 第4の作用は、ガイド板42の下端42A2から流下するスラグSが排滓鍋30の内周面34Aに受け取られて収容されることの作用である。第3の作用での説明のとおり、スラグSがガイド板42から離れる位置(下端42A2)から排滓鍋30までの上下方向の離間距離Lが小さいほど、スラグSのフォーミングが鎮静され易い。そして、本実施形態の場合、ガイド板42の下端42A2から流下したスラグSは、排滓鍋30の内周面34Aで受け取られて排滓鍋30内に収容される。そのため、本実施形態の場合、ガイド板42の下端42A2から流下したスラグSを排滓鍋30内に収容されているスラグSに直接流下させる場合に比べて、スラグSの位置エネルギーを減衰させ易い。したがって、本実施形態によれば、ガイド板42の下端42A2から流下したスラグSを排滓鍋30内に収容されているスラグSに直接流下させる場合に比べて、スラグSのフォーミングが鎮静され易い。
[Fourth action]
The fourth effect is that the slag S flowing down from the lower end 42A2 of the guide plate 42 is received and accommodated on the inner peripheral surface 34A of the slagging pan 30. As described in the third action, the forming of the slag S is more likely to be sedated as the vertical distance L from the position where the slag S is separated from the guide plate 42 (lower end 42A2) to the waste pan 30 is smaller. In the case of this embodiment, the slag S flowing down from the lower end 42 </ b> A <b> 2 of the guide plate 42 is received by the inner peripheral surface 34 </ b> A of the waste pan 30 and accommodated in the waste pan 30. Therefore, in the case of this embodiment, it is easy to attenuate the potential energy of the slag S compared to the case where the slag S flowing down from the lower end 42 </ b> A <b> 2 of the guide plate 42 is directly flowed down to the slag S accommodated in the discharge pan 30. . Therefore, according to this embodiment, compared with the case where the slag S flowing down from the lower end 42A2 of the guide plate 42 is directly flowed down to the slag S accommodated in the discharge pan 30, the forming of the slag S is easily subdued. .
 なお、本実施形態の場合、図1に示されるように、排滓鍋30内にスラグSが収容されている期間中、スラグSが内周面34Aで受け取られるように、排滓鍋30は予め台車50により移動される。そのため、本実施形態によれば、スラグSが内周面34Aで受け取られるように、排滓鍋30の位置が容易に調整される。この場合、内周面34Aの一部は、受滓位置(転炉20から排滓されたスラグSを受け取る位置)である。 In the case of the present embodiment, as shown in FIG. 1, during the period in which the slag S is accommodated in the slag pan 30, the slag pan 30 is received by the inner peripheral surface 34 </ b> A. It is moved by the carriage 50 in advance. Therefore, according to this embodiment, the position of the waste pan 30 is easily adjusted so that the slag S is received by the inner peripheral surface 34A. In this case, a part of the inner peripheral surface 34A is a receiving position (a position for receiving the slag S discharged from the converter 20).
[第5の作用]
 第5の作用は、ガイド板42が樋状であることの作用である。本実施形態のガイド板42は、図2に示されるように、樋状とされている。そして、本実施形態の場合、ガイド板42の形状が樋状であることから、ガイド板42の凹み面42Aを移動するスラグSが流下方向(スラグSの進行方向)に対して奥行き方向に広がり難い。したがって、本実施形態のガイド板42によれば、ガイド板42の形状が平面状である場合に比べて、排滓鍋30内へ収容性が安定する(こぼれ難い)。なお、ガイド板42の形状が平面状である場合も、上記の第1~第3の作用を奏する。
[Fifth effect]
The fifth effect is that the guide plate 42 has a bowl shape. The guide plate 42 of the present embodiment has a bowl shape as shown in FIG. In the case of this embodiment, since the shape of the guide plate 42 is bowl-shaped, the slag S that moves on the concave surface 42A of the guide plate 42 spreads in the depth direction with respect to the flow direction (the direction in which the slag S travels). hard. Therefore, according to the guide plate 42 of this embodiment, compared with the case where the shape of the guide plate 42 is a flat shape, the accommodation property is stabilized in the waste pan 30 (not easily spilled). Note that the first to third actions described above are also exhibited when the guide plate 42 is planar.
[第6の作用]
 第6の作用は、添加部60を有することの作用、別言すれば、ガイド板42の凹み面42Aを移動しているスラグSに鎮静材Mを添加することの作用である。本実施形態の場合、図1に示されるように、添加部60によりガイド板42を移動しているスラグSに鎮静材Mが添加される。第6の作用については、本実施形態を前述の比較形態と比較しながら図面を参照しつつ説明する。なお、比較形態の説明において、本実施形態で用いた部品等と同じ部品等を用いる場合、同じ符号を付して詳細な説明(共通する作用も含む)は適宜省略する。
[Sixth action]
The sixth action is an action of having the adding portion 60, in other words, an action of adding the sedative material M to the slag S moving on the recessed surface 42 </ b> A of the guide plate 42. In the case of the present embodiment, as shown in FIG. 1, the sedative material M is added to the slag S that is moving the guide plate 42 by the addition unit 60. The sixth action will be described with reference to the drawings while comparing the present embodiment with the above-described comparative embodiment. In the description of the comparative embodiment, when the same components as those used in the present embodiment are used, the same reference numerals are given and detailed descriptions (including common actions) are omitted as appropriate.
 比較形態の場合、図3に示されるように、添加部60は、排滓鍋30内のスラグSに向けて鎮静材Mを添加する。そのため、比較形態の場合、転炉20から流下して排滓鍋30内に収容される前のスラグSは元々(転炉20内で)フォーミングしていた状態のまま排滓鍋30内に収容される。 In the case of the comparative form, as shown in FIG. 3, the adding unit 60 adds the sedative material M toward the slag S in the slag pan 30. Therefore, in the case of a comparative form, the slag S before flowing down from the converter 20 and being accommodated in the slag pan 30 is accommodated in the slag pan 30 as originally formed (in the converter 20). Is done.
 これに対して、本実施形態の場合、ガイド板42の凹み面42Aを移動しているスラグS、すなわち、転炉20から流下して排滓鍋30内に収容される前のスラグSに鎮静材Mが添加されるため、スラグSと鎮静材Mとが良好に混合されてフォーミングの鎮静が進行し易い。このため、排滓鍋30内に収容されるスラグSは、元々(転炉20内で)フォーミングしていた状態よりもフォーミングが鎮静された状態で収容される。また、本実施形態の場合、鎮静材MはスラグSとともに流下することから、鎮静材Mは排滓鍋30内で攪拌され易い(これに伴い、排滓鍋30内で鎮静材Mが反応し易い)。 In contrast, in the case of the present embodiment, the slag S moving on the concave surface 42A of the guide plate 42, that is, the slag S before flowing down from the converter 20 and accommodated in the slag pan 30 is calmed down. Since the material M is added, the slag S and the sedative material M are mixed well and the forming sedation is likely to proceed. For this reason, the slag S accommodated in the waste pan 30 is accommodated in a state in which the forming is calmed down compared to the state in which the forming is originally performed (in the converter 20). In the case of the present embodiment, since the sedative material M flows down together with the slag S, the sedative material M is easily stirred in the waste pan 30 (accordingly, the sedative material M reacts in the waste pan 30). easy).
 したがって、本実施形態によれば、ガイド板42の凹み面42Aを移動しているスラグSに鎮静材Mを添加しない場合に比べて、スラグSのフォーミングが鎮静され易い。 Therefore, according to the present embodiment, the forming of the slag S is easily subdued compared to the case where the soothing material M is not added to the slag S moving on the concave surface 42A of the guide plate 42.
≪変形例≫
 次に、本実施形態の変形例(第1~第8変形例)について図面を参照しつつ説明する。
≪Modification≫
Next, modified examples (first to eighth modified examples) of the present embodiment will be described with reference to the drawings.
<第1変形例>
 第1変形例の場合、図4に示されるように、転炉20内で生成されて、ガイド板42に接触して移動したスラグSは、排滓鍋30の底32に向けて流下し、排滓鍋30内に収容される。第1変形例は、上記の点以外、本実施形態と同様の構成とされている。第1変形例の場合、ガイド板42から流下したスラグSは、排滓鍋30の内周面34Aで受け取られない。しかしながら、第1変形例の場合、前述の第1~第3、第5及び第6の作用を奏する。
<First Modification>
In the case of the first modified example, as shown in FIG. 4, the slag S generated in the converter 20 and moved in contact with the guide plate 42 flows down toward the bottom 32 of the discharge pan 30, It is accommodated in the waste pan 30. The first modification has the same configuration as that of the present embodiment except for the above points. In the case of the first modification, the slag S flowing down from the guide plate 42 is not received by the inner peripheral surface 34 </ b> A of the discharge pan 30. However, in the case of the first modification, the above-described first to third, fifth and sixth actions are exhibited.
<第2変形例>
 第2変形例の場合、図5に示されるように、ガイド板42の下端42A2は、排滓鍋30内に配置されている。また、第2変形例の場合、ガイド板42は、支持部44に対して上下方向(又はガイド板42の傾斜方向)に移動可能に支持されている。そして、排滓鍋30内のスラグSの液面の高さが予め定められた高さとなったところで、ガイド板42は上方に移動されるようになっている。第2変形例は、上記の点以外、本実施形態と同様の構成とされている。第2変形例の場合、前述の第1~第6の作用を奏する。
<Second Modification>
In the case of the second modified example, as shown in FIG. 5, the lower end 42 </ b> A <b> 2 of the guide plate 42 is disposed in the slag pan 30. In the case of the second modification, the guide plate 42 is supported so as to be movable in the vertical direction (or the inclination direction of the guide plate 42) with respect to the support portion 44. The guide plate 42 is moved upward when the level of the liquid surface of the slag S in the waste pan 30 reaches a predetermined height. The second modification has the same configuration as that of the present embodiment except for the above points. In the case of the second modification, the above-described first to sixth actions are achieved.
<第3変形例>
 第3変形例の場合、図6に示されるように、ガイド板42は、支持部44が設けられている側に屈曲する屈曲部42Bを有する樋状とされている。そして、第3変形例の場合、ガイド板42の第1位置42A1に受け取られて移動したスラグSは、屈曲部42Bから排滓鍋30内に向けて流下される。ここで、屈曲部42Bは、第2位置の一例である。第3変形例は、上記の点以外、本実施形態と同様の構成とされている。第3変形例の場合、前述の第1~第6の作用を奏する。
<Third Modification>
In the case of the third modified example, as shown in FIG. 6, the guide plate 42 has a bowl shape having a bent portion 42 </ b> B bent to the side where the support portion 44 is provided. In the case of the third modification, the slag S that has been received and moved at the first position 42A1 of the guide plate 42 flows down from the bent portion 42B toward the inside of the waste pan 30. Here, the bent portion 42B is an example of the second position. The third modification has the same configuration as that of the present embodiment except for the above points. In the case of the third modification, the above-described first to sixth actions are achieved.
<第4変形例>
 第4変形例の場合、図7に示されるように、ガイド板42は、支持部44が設けられている側と反対側に屈曲する屈曲部42Bを有する樋状とされている。そして、第4変形例の場合、ガイド板42の第1位置42A1に受け取られて移動したスラグSは、屈曲部42Bで移動方向が変更され下端42A2から排滓鍋30内に向けて流下される。ここで、下端42A2は、第2位置の一例である。第4変形例は、上記の点以外、本実施形態と同様の構成とされている。第4変形例の場合、前述の第1~第6の作用を奏する。なお、また、第4変形例における離間距離Lは、本実施形態(図1)及び他の変形例(図4、図6及び図9)の離間距離Lに比べて小さく図示されているが、実際には同等である。
<Fourth Modification>
In the case of the fourth modified example, as shown in FIG. 7, the guide plate 42 has a bowl shape having a bent portion 42 </ b> B bent to the side opposite to the side where the support portion 44 is provided. In the case of the fourth modified example, the slag S that has been received and moved at the first position 42A1 of the guide plate 42 is changed in the moving direction at the bent portion 42B, and flows down from the lower end 42A2 into the discharge pan 30. . Here, the lower end 42A2 is an example of a second position. The fourth modification has the same configuration as that of the present embodiment except for the above points. In the case of the fourth modified example, the above-described first to sixth actions are exhibited. In addition, although the separation distance L in the fourth modification is shown smaller than the separation distance L in the present embodiment (FIG. 1) and other modifications (FIGS. 4, 6, and 9), Actually they are equivalent.
<第5変形例>
 第5変形例の場合、図8に示されるように、ガイド板42におけるスラグSが接触する面42Cが正面視にてスラグSが接触する側に凸となる湾曲している。第5変形例は、上記の点以外、本実施形態と同様の構成とされている。第5変形例の場合、前述の第1~第6の作用を奏する。また、第5変形例における離間距離Lは、本実施形態(図1)及び他の変形例(図4、図6及び図9)の離間距離Lに比べて大きく図示されているが、実際には同等である。
<Fifth Modification>
In the case of the fifth modification, as shown in FIG. 8, the surface 42 </ b> C of the guide plate 42 that contacts the slag S is curved so as to protrude toward the side on which the slag S contacts in front view. The fifth modification has the same configuration as that of the present embodiment except for the above points. In the case of the fifth modification, the above-described first to sixth actions are exhibited. In addition, the separation distance L in the fifth modification is illustrated larger than the separation distance L in the present embodiment (FIG. 1) and other modifications (FIGS. 4, 6, and 9). Are equivalent.
<第6変形例>
 第6変形例の場合、図9に示されるように、ガイド板42におけるスラグSが接触する面42Dが正面視にてスラグSが接触する側に凹となる湾曲している。第6変形例は、上記の点以外、本実施形態と同様の構成とされている。第6変形例の場合、前述の第1~第6の作用を奏する。
<Sixth Modification>
In the case of the sixth modification, as shown in FIG. 9, the surface 42 </ b> D with which the slag S contacts in the guide plate 42 is curved so as to be concave on the side with which the slag S contacts in front view. The sixth modified example has the same configuration as that of the present embodiment except for the above point. In the case of the sixth modification, the above-described first to sixth actions are exhibited.
<第7変形例>
 第7変形例の場合、図10に示されるように、ガイド部40が2つ備えられている。そして、第7変形例の場合、上方のガイド板42に接触して流下したスラグSが下方のガイド板42に接触して流下して、排滓鍋30内に収容される。第7変形例は、上記の点以外、本実施形態と同様の構成とされている。第7変形例の場合、前述の第1~第6の作用を奏する。
<Seventh Modification>
In the case of the seventh modified example, as shown in FIG. 10, two guide portions 40 are provided. In the case of the seventh modification, the slag S that has flowed in contact with the upper guide plate 42 flows into contact with the lower guide plate 42 and is accommodated in the slag pan 30. The seventh modified example has the same configuration as that of the present embodiment except for the above point. In the case of the seventh modification, the above-described first to sixth actions are exhibited.
<第8変形例>
 第8変形例の場合、ガイド板42は、その傾斜角θが調整可能に構成されている。そして、第8変形例の場合、排滓鍋30内にスラグSが収容されている期間中、排滓鍋30内のスラグSの液面の高さが高くなってもスラグSが内周面34Aで受け取られるように、転炉20からのスラグSの流下が開始される前に、オペレータによりガイド板42の傾斜角θが調整される。第8変形例は、上記の点以外、本実施形態と同様の構成とされている。第8変形例の場合、前述の第1~第6の作用を奏する。
<Eighth Modification>
In the case of the eighth modification, the guide plate 42 is configured such that its inclination angle θ can be adjusted. And in the case of the 8th modification, even if the height of the liquid level of the slag S in the waste pan 30 becomes high during the period when the slag S is accommodated in the waste pan 30, the slag S is the inner peripheral surface. The inclination angle θ of the guide plate 42 is adjusted by the operator before the flow of the slag S from the converter 20 is started as received at 34A. The eighth modification has the same configuration as that of the present embodiment except for the above points. In the case of the eighth modification, the above-described first to sixth actions are exhibited.
≪実施例≫
 次に、実施例及び比較例について説明する。
<Example>
Next, examples and comparative examples will be described.
<共通条件>
 実施例及び比較例の試験は、350t規模の上底吹き転炉(図1の転炉20)において、脱珪及び脱燐処理の後のスラグSの流下中に実施した。転炉20内にスクラップ(図示省略)及び溶鉄(図示省略)を装入した後、溶鉄の量及びSi濃度、リサイクルしたスラグSの量及びその組成に応じて、スラグSが所定の塩基度となるように生石灰等の副原料を投入して溶鉄の脱珪及び脱燐処理を行った。なお、共通条件のばらつきによる評価への影響をほぼ無視できる程度に、極力条件を揃えるようにしており、脱珪及び脱燐処理の後の転炉20内のスラグSの量は約20tであった。脱珪及び脱燐処理の後に溶鉄Fを転炉20内に残したまま転炉20を傾けて炉口(開口22)から上層のスラグSを下方に配置した排滓鍋30に収容させた。スラグSの流下中は排滓鍋30からフォーミングしたスラグSが溢出しないようにフォーミングの鎮静の状況を監視しながら、転炉20の傾き動作、台車50の位置をオペレータが手動で制御して行った。また、フォーミングしたスラグSが排滓鍋30から溢出しそうになった場合は、オペレータの判断で鎮静材Mを排滓鍋30内に投入した。排滓鍋30に投入した鎮静材Mは、安価な有機物系の熱分解物質である製紙スラッジ(図示省略)と安価な比重調整のための物質である製鋼スラグ(図示省略)とを混合して成型したものを用いた。ここで、製鋼スラグへの鎮静材Mの投入量は投入操作1回につき約50kgとした。その際、ガイド板42の有無、ガイド板42の傾斜、ガイド板42の下端42A2と排滓鍋30の上端との上下方向の離間距離L、排滓鍋30へのスラグSの流下位置、ガイド板42への鎮静材Mの添加有無等の条件を変更し、排滓量、排滓時間を評価した。
<Common conditions>
The tests of the examples and the comparative examples were performed in the 350 t scale top-bottom blowing converter (converter 20 in FIG. 1) during the flow of slag S after desiliconization and dephosphorization treatment. After charging scrap (not shown) and molten iron (not shown) into the converter 20, the slag S has a predetermined basicity according to the amount of molten iron and Si concentration, the amount of recycled slag S and the composition thereof. In order to achieve this, auxiliary raw materials such as quicklime were added to perform desiliconization and dephosphorization of molten iron. Note that the conditions were set as much as possible to the extent that the influence on the evaluation due to variations in common conditions could be ignored, and the amount of slag S in the converter 20 after desiliconization and dephosphorization processing was about 20 t. It was. After desiliconization and dephosphorization, the converter 20 was tilted while the molten iron F was left in the converter 20, and the upper slag S was accommodated in the waste pan 30 arranged below from the furnace port (opening 22). While the slag S is flowing down, the operator manually controls the tilting operation of the converter 20 and the position of the carriage 50 while monitoring the sedation of the forming so that the slag S formed from the slag pan 30 does not overflow. It was. In addition, when the formed slag S is about to overflow from the waste pan 30, the soothing material M is put into the waste pan 30 at the operator's discretion. The sedative material M introduced into the waste pan 30 is a mixture of papermaking sludge (not shown) that is an inexpensive organic pyrolysis substance and steelmaking slag (not shown) that is an inexpensive material for adjusting specific gravity. The molded one was used. Here, the amount of the sedative material M to be added to the steelmaking slag was about 50 kg per one charging operation. At that time, the presence or absence of the guide plate 42, the inclination of the guide plate 42, the vertical distance L between the lower end 42 </ b> A <b> 2 of the guide plate 42 and the upper end of the waste pan 30, the flow position of the slag S to the waste pan 30, the guide Conditions such as the presence or absence of the sedative M added to the plate 42 were changed, and the amount of evacuation and the evacuation time were evaluated.
 ここで、排滓量については、台車50に配置した秤量器(図示省略)で測定した。排滓時間については、スラグSの流下のために転炉20の傾き動作を開始してから、スラグSの下方の溶鉄Fが炉口(開口22)から流出するまでの時間とした。なお、本試験では、排滓量が多く、排滓時間が短いほど、排滓性は良好と評価した。 Here, the amount of waste was measured with a weigher (not shown) placed on the carriage 50. The waste time was defined as the time from the start of the tilting operation of the converter 20 for the flow of the slag S to the time when the molten iron F below the slag S flows out of the furnace port (opening 22). In this test, the greater the amount of evacuation and the shorter the evacuation time, the better the evacuation property.
<非共通条件及び結果>
 各水準の条件及び各結果を図11の表に示す。
<Uncommon conditions and results>
The conditions of each level and the results are shown in the table of FIG.
 水準1及び水準2は比較例であり、ガイド板42が配置されていない。水準1及び水準2はそれぞれ排滓鍋30へのスラグSの流下位置が異なる。水準2は、排滓鍋30側の壁上部の内周面34AにスラグSが当たる(内周面34AでスラグSが受け取られる)ようにした。そして、水準2は、水準1に比べて、排滓性が若干良好であった。 Level 1 and level 2 are comparative examples, and the guide plate 42 is not arranged. Level 1 and level 2 are different from each other in the position where the slag S flows down to the discharge pan 30. In Level 2, the slag S hits the inner peripheral surface 34A of the upper wall on the side of the slag pan 30 (the slag S is received by the inner peripheral surface 34A). Level 2 was slightly better than level 1 in terms of exclusion.
 水準3~9は実施例であり、転炉20と排滓鍋30との間にガイド板42が配置されている。ガイド板42は、その内部に水冷構造(ガイド板42を冷却する構造であって、ガイド板42内に形成された空洞に冷却水を循環させる構造)を有し、鋼鉄製の樋状(図2参照)とされており、流下方向(スラグSの進行方向)において直線状とされている。 Levels 3 to 9 are examples, and a guide plate 42 is disposed between the converter 20 and the discharge pan 30. The guide plate 42 has a water cooling structure (a structure in which the guide plate 42 is cooled and the cooling water is circulated in a cavity formed in the guide plate 42) inside the guide plate 42. 2), and is linear in the flow-down direction (advancing direction of the slag S).
 水準3~5では、それぞれガイド板42の傾斜角θの角度が異なる。水準3~5(実施例)は、水準1及び水準2(比較例)に比べて、排滓性が向上している。この理由は、水準3~5(実施例)の場合、転炉20から流下したスラグSがガイド板42に接触してエネルギーが減衰されたためと推考される。すなわち、水準3~5は、前述の第1の作用を奏するといえる。また、図11の表によれば、傾斜角θが大きくなるほど排滓性が向上しているが、傾斜角が10°以上であれば、排滓性に大きな差異はないといえる。すなわち、水準3~5は、前述の第2の作用を奏するといえる。また、実施例の場合、比較例に比べて、排滓鍋30への鎮静材Mの添加量が少なかった。 In Levels 3 to 5, the inclination angle θ of the guide plate 42 is different. Levels 3 to 5 (Examples) have improved rejection compared to Levels 1 and 2 (Comparative Examples). This is presumably because, in the case of levels 3 to 5 (Example), the slag S flowing down from the converter 20 contacts the guide plate 42 and the energy is attenuated. That is, it can be said that the levels 3 to 5 have the first action described above. Further, according to the table of FIG. 11, the rejection is improved as the inclination angle θ is increased. However, if the inclination angle is 10 ° or more, it can be said that there is no significant difference in the rejection. That is, it can be said that the levels 3 to 5 have the second action described above. Moreover, in the case of the Example, the addition amount of the sedative material M to the waste pan 30 was small compared with the comparative example.
 水準6及び水準7は実施例であり、ガイド板42の傾斜角θ(=10°)の条件で、ガイド板42の下端42A2と排滓鍋30の上端との上下方向の離間距離Lが異なる。水準4、水準6及び水準7を比較すると、ガイド板42の下端42A2と排滓鍋30の上端の上下方向の離間距離Lが小さくなるほど排滓性は向上するといえるが、離間距離Lが1m以内であれば、排滓性に大きな差異はないといえる。すなわち、水準6及び水準7は、前述の第3の作用を奏するといえる。 Level 6 and level 7 are examples, and the vertical distance L between the lower end 42A2 of the guide plate 42 and the upper end of the slag pan 30 is different under the condition of the inclination angle θ (= 10 °) of the guide plate 42. . Comparing Level 4, Level 6 and Level 7, it can be said that the lowering distance L in the vertical direction between the lower end 42A2 of the guide plate 42 and the upper end of the draining pan 30 becomes smaller, the draining performance is improved, but the spacing distance L is within 1 m. If so, it can be said that there is no significant difference in the excretion. That is, it can be said that the level 6 and the level 7 have the third action described above.
 水準8は実施例であり、ガイド板42の下端42A2から排滓鍋30に収容される際のスラグSが排滓鍋30の側壁上部の内周面34Aに当たるように台車50により排滓鍋30を移動して排滓鍋30の位置を調整されている。水準8は、その他の条件が同等とされる水準6と比較すると、排滓性が向上しているといえる。すなわち、水準8は、前述の第4の作用を奏するといえる。 Level 8 is an embodiment, and the slag S when the slag S is accommodated in the sewage pan 30 from the lower end 42A2 of the guide plate 42 hits the inner peripheral surface 34A of the upper side wall of the sewage pan 30 by the trolley 50. The position of the waste pan 30 is adjusted by moving. It can be said that level 8 has improved rejection compared to level 6 where other conditions are equivalent. That is, it can be said that level 8 has the above-mentioned fourth action.
 水準9は実施例であり、ガイド板42に接触して移動しているスラグSに鎮静材Mが添加されている。鎮静材Mとしては、排滓鍋30に投入する鎮静材Mと同様、製紙スラッジと製鋼スラグとを混合成形したものを用い、ガイド板42の上方に配置したシュート(添加部60)を経由して、移動中のスラグに100kgを連続的に添加した。水準9は、その他の条件が同等とされる水準8と比較すると、排滓性が向上している。すなわち、水準9は、前述の第6の作用を奏するといえる。また、水準9は、水準8と比較すると、排滓鍋30内への鎮静材Mの添加量が少なく、かつ、合計の鎮静材Mの添加量も少ない。 Level 9 is an example, and a sedative material M is added to the slag S moving in contact with the guide plate 42. As the sedative material M, as in the sedative material M to be put into the waste pan 30, a mixed molding of paper sludge and steel slag is used, and a chute (addition part 60) disposed above the guide plate 42 is used. Then, 100 kg was continuously added to the moving slag. Compared with level 8 where other conditions are equivalent, level 9 has improved rejectability. That is, it can be said that level 9 has the above-mentioned sixth action. Moreover, compared with the level 8, the addition amount of the sedative material M to the inside of the squeezing pan 30 is small, and the addition amount of the total sedative material M is also low in the level 9.
 水準3~9(実施例)は、水準1及び水準2(比較例)に比べて、排滓時間が短縮されるとともに、排滓量も増加している。また、転炉20内に残留するスラグSの嵩体積は、実施例及び比較例の場合に関わらず、ほぼ同程度であったが、排滓時間が長いほど、転炉20内のスラグSのフォーミングが鎮静して嵩密度が増加する。転炉20内に残留するスラグSの重量は、スラグSの嵩体積と嵩密度を乗じたものであるため、排滓時間が短いほど転炉20内に残留するスラグSの量が減少、すなわち、排滓量が増加する。 Levels 3 to 9 (examples) have a shorter elimination time and an increased amount of elimination compared to levels 1 and 2 (comparative example). Further, the bulk volume of the slag S remaining in the converter 20 was almost the same regardless of the case of the example and the comparative example. However, the longer the discharge time, the longer the slag S in the converter 20 is. Forming subsides and bulk density increases. Since the weight of the slag S remaining in the converter 20 is obtained by multiplying the bulk volume and the bulk density of the slag S, the amount of the slag S remaining in the converter 20 decreases as the discharge time is shorter. The amount of excretion increases.
 以上のとおり、実施例は、比較例に比べ、排滓鍋30内のフォーミングの鎮静が良好であるため、排滓性が向上しているといえる。また、ガイド板42の傾斜、ガイド板42の下端42A2と排滓鍋30の上端との上下方向の離間距離L、排滓鍋30へのスラグSの流下位置(排滓鍋30におけるスラグSの受け取り位置)、ガイド板42への鎮静材Mの添加等を適正な条件とすることで、さらに効率的にフォーミングを鎮静でき、排滓性が向上するといえる。 As described above, it can be said that the embodiment is improved in the evacuation property because the sedation of the forming in the evacuation pan 30 is better than the comparative example. Further, the inclination of the guide plate 42, the vertical distance L between the lower end 42 </ b> A <b> 2 of the guide plate 42 and the upper end of the waste pan 30, the position where the slag S flows to the waste pan 30 (the slag S in the waste pan 30 It can be said that the forming can be sedated more efficiently and the evacuation property can be improved by setting appropriate conditions such as the receiving position) and the addition of the sedative material M to the guide plate 42.
 以上、特定の実施形態について詳細に説明したが、以下のように変更して実施してもよい。 Although specific embodiments have been described in detail above, the following modifications may be made.
 上記実施形態での排滓は、転炉20内で脱珪及び脱燐処理を行った後の排滓として説明したが、本開示の排滓方法は、これに限定されない。例えば、転炉20内で脱珪処理と脱燐処理のうち一方のみを行った後に転炉20を傾けて開口22(炉口)から排滓する際にも、本開示の排滓方法を用いてもよい。また例えば、転炉20内で脱炭処理のみを行った後に転炉20を傾けて開口22(炉口)から排滓する際にも、本開示の排滓方法を用いてもよい。
 なぜなら、排滓したスラグが排滓鍋内でのフォーミングにより溢出してしまうおそれがある点では、脱珪処理と脱燐処理のうち一方のみを行った後や、脱炭処理のみを行った後に転炉20の開口22(炉口)から排滓をする場合も、脱珪及び脱燐処理を行った後の排滓と同様であるからである。
Although the waste in the above embodiment has been described as waste after desiliconization and dephosphorization in the converter 20, the waste method of the present disclosure is not limited to this. For example, the exhaust method of the present disclosure is also used when the converter 20 is tilted and discharged from the opening 22 (furnace port) after performing only one of desiliconization and dephosphorization in the converter 20. May be. Further, for example, the exhaust method of the present disclosure may also be used when the converter 20 is tilted and exhausted from the opening 22 (furnace port) after performing only the decarburization process in the converter 20.
This is because, after the slag that has been discharged may overflow due to forming in the discharge pan, after performing only one of the desiliconization process and the dephosphorization process, or after performing only the decarburization process. This is because the discharge from the opening 22 (furnace port) of the converter 20 is the same as the discharge after desiliconization and dephosphorization.
 例えば、ガイド板42は、実施例のように水冷構造としてもよい。この場合、ガイド板42が水冷構造を有していることで、ガイド板42の破損や変形を抑制できる。また、スラグSとガイド板42との接触によりスラグSを冷却し、その熱衝撃でスラグS中の気泡を破泡してフォーミングの鎮静が促進されるという効果を奏する。 For example, the guide plate 42 may have a water cooling structure as in the embodiment. In this case, since the guide plate 42 has a water cooling structure, the guide plate 42 can be prevented from being damaged or deformed. In addition, the slag S is cooled by the contact between the slag S and the guide plate 42, and the bubbles in the slag S are broken by the thermal shock to promote the calming of forming.
 また、ガイド板42におけるスラグSが接触する面を凹凸形状としてもよい。凹凸形状とすることで、接触するスラグSからの接触摩擦抵抗によりエネルギーが減衰され易くなる。 Further, the surface of the guide plate 42 with which the slag S contacts may be uneven. By adopting the uneven shape, the energy is easily attenuated by the contact frictional resistance from the contact slag S.
 また、本実施形態では、鎮静材Mは、安価な有機物系の熱分解物質である製紙スラッジと安価な比重調整のための物質である製鋼スラグとを混合して成型したものとして説明した。しかしながら、鎮静材はこれに限定されず、スラグのフォーミングを鎮静させる機能を有していればよい。例えば、スラグとの濡れ性が悪く、微細なスラグ中気泡の合体を促進して粗大化させる作用を持つ炭材(コークス粉、石炭粉、グラファイト粉等)や急激なガス発生のエネルギーにより物理的衝撃で破泡を促進する熱分解性物質(炭酸塩、有機物、プラスチック等)を含む物質を単体でまたは組み合わせて使用することが望ましい。 In the present embodiment, the sedative material M has been described as being formed by mixing paper sludge, which is an inexpensive organic pyrolysis substance, and steelmaking slag, which is an inexpensive substance for adjusting specific gravity. However, the sedative material is not limited to this, as long as it has a function of calming slag forming. For example, carbon materials (coke powder, coal powder, graphite powder, etc.) that have poor wettability with slag and promote the coalescence of fine bubbles in slag to become coarse, and physical energy due to rapid gas generation energy It is desirable to use a substance containing a thermally decomposable substance (carbonate, organic substance, plastic, etc.) that promotes bubble breakage upon impact alone or in combination.
 また、本実施形態では、ガイド板42は、正面視にて、上下方向に一例として時計回りに10°傾斜した状態(傾斜角θが10°の状態)で、支持部44に支持されているとして説明した。しかしながら、ガイド板42が正面視にて、上下方向に時計回りに傾斜した状態で支持部44に支持されていれば、傾斜角θは10°でなくてもよい。ただし、排滓性を向上させる観点からすると、傾斜角θは、5°以上が好ましく、より好ましくは10°以上である。また一方で、傾斜角θを大きくするほど転炉20の下のスペースやガイド板42の固定方法などの制約が増える。このような観点からすると、傾斜角θは20°以下が好ましく、より好ましくは15°以下である。 Further, in the present embodiment, the guide plate 42 is supported by the support portion 44 in a state where the guide plate 42 is inclined 10 ° clockwise as an example in the vertical direction (inclination angle θ is 10 °). As explained. However, as long as the guide plate 42 is supported by the support portion 44 in a state of being inclined clockwise in the vertical direction in a front view, the inclination angle θ may not be 10 °. However, from the viewpoint of improving the evacuation property, the inclination angle θ is preferably 5 ° or more, and more preferably 10 ° or more. On the other hand, as the inclination angle θ is increased, restrictions such as a space under the converter 20 and a fixing method of the guide plate 42 increase. From such a viewpoint, the inclination angle θ is preferably 20 ° or less, and more preferably 15 ° or less.
 また、本実施形態では、排滓鍋30は、図1に示されるように、上方から見て円形の底32と、上方ほど内径が大きくなる内周面34Aを有する周壁34と、を備えた逆円錐台状の容器であるとして説明した。しかしながら、スラグSを収容することができれば、排滓鍋の形状は、本実施形態の形状と異なる形状であってもよい。例えば、排滓鍋の形状は、筒状、半球状、逆楕円錐状その他の形状であってもよい。なお、図12の排滓鍋30A(鍋の一例)のように、その内面34B(内側の面)が断面円弧状である場合、排滓鍋30Aにおける内周面34Cとは、内面34Bにおける上下方向の最下点34B1の位置を0%(基準)、開口縁34B2の位置を100%とした場合、内面34Bにおける基準に対する位置が20%以上100%以下の部分をいう。 In the present embodiment, as shown in FIG. 1, the waste pan 30 includes a circular bottom 32 as viewed from above, and a peripheral wall 34 having an inner peripheral surface 34 </ b> A whose inner diameter increases toward the upper side. It demonstrated as an inverted frustoconical container. However, if the slag S can be accommodated, the shape of the waste pan may be different from the shape of the present embodiment. For example, the shape of the waste pan may be a cylindrical shape, a hemispherical shape, an inverted elliptical cone shape, or other shapes. In addition, when the inner surface 34B (inner surface) has an arcuate cross section as in the waste pan 30A (an example of the pan) in FIG. 12, the inner peripheral surface 34C in the waste pan 30A is the top and bottom of the inner surface 34B. When the position of the lowest point 34B1 in the direction is 0% (reference) and the position of the opening edge 34B2 is 100%, the position of the inner surface 34B with respect to the reference is 20% or more and 100% or less.
 また、本実施形態の説明では、エネルギー減衰構造10は、ガイド部40と、台車50と、添加部60と、を含んで構成されているとして説明した。しかしながら、エネルギー減衰構造10が少なくともガイド板42を含む構成であり、転炉20から排滓され、エネルギーが減衰された状態のスラグSを排滓鍋30に収容することができる構成であれば、添加部60及び台車50の少なくとも何れか一方又は両方を含んでいなくてもよい。変形例の場合についても同様である。 In the description of the present embodiment, the energy attenuating structure 10 has been described as including the guide unit 40, the carriage 50, and the addition unit 60. However, if the energy attenuating structure 10 is a configuration including at least the guide plate 42 and is configured to be able to accommodate the slag S in a state where the energy is attenuated after being discharged from the converter 20 in the waste pan 30, It does not need to include at least one or both of the adding unit 60 and the carriage 50. The same applies to the modification.
≪付記≫
 本明細書からは、少なくとも以下の(1)~(11)までの態様が概念化される。
(1)
 脱珪、脱燐又は脱炭のうち少なくとも1つの処理を転炉内で行った後に前記転炉を傾けることで、溶鉄を前記転炉内に残したまま、上層のフォーミングしたスラグを前記転炉の炉口から接触部材の第1位置に流下させ、
 前記第1位置から、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされた位置である第2位置まで、前記接触部材に接触しつつ移動した前記スラグを前記第2位置から流下させ、
 前記第2位置から流下した前記スラグを、前記転炉の下方に配置された鍋内に収容させる、
 排滓方法。
(2)
 前記接触部材は、前記転炉の側方に設けられた作業床に固定されており、
 前記第2位置は、前記作業床よりも下方に位置している、
 (1)に記載の排滓方法。
(3)
 前記接触部材の傾斜角は、5°以上20°以下である、
 (1)又は(2)に記載の排滓方法。
(4)
 前記鍋の上端から前記第2位置までの上下方向の離間距離は、1m以内である、
 (1)~(3)の何れか1項に記載の排滓方法。
(5)
 前記第2位置から流下した前記スラグを前記鍋内に収容させる際、前記スラグを前記鍋の内周面で受け取らせる、
 (1)~(4)の何れか1項に記載の排滓方法。
(6)
 前記接触部材に接触して流下した前記スラグを前記鍋の前記内周面で受け取らせるように、前記鍋の横方向の位置及び前記接触部材の姿勢の少なくとも一方を調整してから、前記スラグを前記鍋内に収容させる、
 (5)に記載の排滓方法。
(7)
 前記接触部材を移動している前記スラグに鎮静材を添加する、
 (1)~(6)の何れか1項に記載の排滓方法。
(8)
 (1)~(7)の何れか1項に記載の排滓方法により前記鍋内に収容した前記スラグを排出して冷却する、
 スラグの製造方法。
(9)
 転炉を傾けることで前記転炉の炉口から流下するスラグに接触する面が形成された接触部材であって、前記炉口から流下した前記スラグを前記面の第1位置で受け取って、前記面に沿って移動した前記スラグを、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる位置である第2位置から鍋内に流下させる接触部材、
 を備えた流下スラグのエネルギー減衰構造。
(10)
 前記接触部材は、前記鍋の上端から前記第2位置までの上下方向の離間距離が1m以内になるように、配置されている、
 (10)記載の流下スラグのエネルギー減衰構造。
(11)
 前記面に沿って移動している前記スラグに鎮静材を添加する添加部、
 をさらに備えた(9)又は(10)に記載の流下スラグのエネルギー減衰構造。
≪Appendix≫
From this specification, at least the following aspects (1) to (11) are conceptualized.
(1)
By tilting the converter after performing at least one of desiliconization, dephosphorization, and decarburization in the converter, the upper layer formed slag is left in the converter while leaving the molten iron in the converter. Flow down from the furnace port to the first position of the contact member,
The contact member moved from the first position to a second position that is shifted from the first position in the lateral direction perpendicular to the vertical direction and that is positioned below the first position. Causing the slag to flow down from the second position;
The slag flowing down from the second position is accommodated in a pan disposed below the converter,
Exclusion method.
(2)
The contact member is fixed to a work floor provided on the side of the converter,
The second position is located below the work floor,
The exclusion method as described in (1).
(3)
The inclination angle of the contact member is 5 ° or more and 20 ° or less,
The exclusion method according to (1) or (2).
(4)
The vertical distance from the upper end of the pan to the second position is within 1 m.
(1) The elimination method according to any one of (3).
(5)
When the slag flowing down from the second position is accommodated in the pan, the slag is received by the inner peripheral surface of the pan.
(1) The elimination method according to any one of (4).
(6)
After adjusting at least one of the lateral position of the pan and the posture of the contact member so that the slag flowing down in contact with the contact member is received by the inner peripheral surface of the pan, the slag is adjusted. Accommodate in the pan,
The exclusion method as described in (5).
(7)
Adding a sedative to the slag moving the contact member;
(1) The elimination method according to any one of (6).
(8)
(1) to (7) to discharge and cool the slag contained in the pan by the draining method according to any one of
A method for producing slag.
(9)
A contact member formed with a surface in contact with the slag flowing down from the furnace port of the converter by tilting the converter, the slag flowing down from the furnace port is received at a first position of the surface, Contact that causes the slag that has moved along the surface to flow down into the pan from the second position, which is shifted from the first position in the lateral direction perpendicular to the vertical direction and below the first position. Element,
The energy damping structure of the falling slag with
(10)
The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m.
(10) The energy attenuation structure of the flowing-down slag as described above.
(11)
An additive part for adding a sedative to the slag moving along the surface;
The energy attenuation structure of the falling slag according to (9) or (10), further comprising:
 また、本明細書からは、少なくとも以下の<1>~<9>までの他の態様が概念化される。
<1>
 転炉内の溶銑を脱珪及び脱燐して生成されたスラグを前記転炉の下方に配置された部材の第1位置に流下させ、
 前記第1位置に対し、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる第2位置まで前記部材に接触しつつ移動してエネルギーが減衰された前記スラグを前記第2位置から流下させ、
 前記第2位置から流下したスラグを、前記部材の下方に配置された鍋内に収容させる、
 排滓方法。
<2>
 前記鍋の上端から前記第2位置までの上下方向の離間距離を1m以内にして、前記第2位置から流下したスラグを前記鍋内に収容させる、
 <1>に記載の排滓方法。
<3>
 前記部材に接触して流下したスラグを前記鍋の内周面で受け取らせて、前記鍋内にスラグを収容させる、
 <1>又は<2>に記載の排滓方法。
<4>
 前記部材に接触して流下したスラグを前記鍋の内周面で受け取らせるように、前記鍋の横方向の位置及び前記部材の姿勢の少なくとも一方を調整してから、スラグを前記鍋内に収容させる、
 <3>に記載の排滓方法。
<5>
 前記部材を移動しているスラグに鎮静材を添加して、前記第2位置から前記鎮静材が添加されたスラグを前記鍋内に流下させる、
 <1>~<4>の何れか1項に記載の排滓方法。
<6>
 <1>~<5>の何れか1項に記載の排滓方法により前記鍋内に収容したスラグを排出して冷却する、
 スラグの製造方法。
<7>
 転炉から流下して鍋内に収容されるスラグに接触する面が形成された接触部材であって、転炉から流下したスラグを前記面の第1位置で受け取って、前記面に沿って移動したスラグを、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる第2位置から鍋内に流下させる接触部材、
 を備えた流下スラグのエネルギー減衰構造。
<8>
 前記接触部材は、前記鍋の上端から前記第2位置までの上下方向の離間距離が1m以内になるように、配置されている、
 <7>記載の流下スラグのエネルギー減衰構造。
<9>
 前記面に沿って移動しているスラグに鎮静材を添加する添加部、
 を備えた<7>又は<8>に記載のエネルギー減衰構造。
In addition, from this specification, at least the following other aspects from <1> to <9> are conceptualized.
<1>
The slag generated by desiliconizing and dephosphorizing the hot metal in the converter is caused to flow down to a first position of a member disposed below the converter,
Energy is attenuated by moving while contacting the member to a second position that is shifted from the first position in the lateral direction perpendicular to the up-down direction and below the first position. Flowing down the slag from the second position;
The slag flowing down from the second position is accommodated in a pan disposed below the member.
Exclusion method.
<2>
The vertical distance from the upper end of the pan to the second position is within 1 m, and the slag flowing down from the second position is accommodated in the pan.
The exclusion method as described in <1>.
<3>
The slag flowing down in contact with the member is received by the inner peripheral surface of the pan, and the slag is accommodated in the pan.
<1> or the exclusion method as described in <2>.
<4>
The slag is accommodated in the pan after adjusting the horizontal position of the pan and the posture of the member so that the slag flowing down in contact with the member is received by the inner peripheral surface of the pan. Let
The exclusion method as described in <3>.
<5>
Adding a sedative to the slag moving the member, and flowing the slag with the sedative added from the second position into the pan,
The exclusion method according to any one of <1> to <4>.
<6>
<1> to <5> The slag contained in the pan is discharged and cooled by the evacuation method according to any one of <5>,
A method for producing slag.
<7>
A contact member formed with a surface that contacts the slag that flows down from the converter and is accommodated in the pan, receives the slag that flows from the converter at the first position of the surface, and moves along the surface A contact member that causes the slag to flow down into the pan from a second position that is shifted from the first position in a lateral direction perpendicular to the vertical direction and is lower than the first position;
The energy damping structure of the falling slag with
<8>
The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m.
<7> The energy attenuating structure of the downflow slag as described.
<9>
An addition part for adding a sedative to the slag moving along the surface,
<7> or <8> comprising the energy attenuating structure according to <8>.
 2016年1月28日に出願された日本国特許出願2016-014686号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2016-014686 filed on Jan. 28, 2016 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.
 以上、種々の典型的な実施の形態を説明してきたが、本発明はそれらの実施の形態に限定されない。本発明の範囲は、次の請求の範囲によってのみ限定されるものである。 Although various typical embodiments have been described above, the present invention is not limited to these embodiments. The scope of the present invention is limited only by the following claims.

Claims (11)

  1.  脱珪、脱燐又は脱炭のうち少なくとも1つの処理を転炉内で行った後に前記転炉を傾けることで、溶鉄を前記転炉内に残したまま、上層のフォーミングしたスラグを前記転炉の炉口から接触部材の第1位置に流下させ、
     前記第1位置から、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされた位置である第2位置まで、前記接触部材に接触しつつ移動した前記スラグを前記第2位置から流下させ、
     前記第2位置から流下した前記スラグを、前記転炉の下方に配置された鍋内に収容させる、
     排滓方法。
    By tilting the converter after performing at least one of desiliconization, dephosphorization, and decarburization in the converter, the upper layer formed slag is left in the converter while leaving the molten iron in the converter. Flow down from the furnace port to the first position of the contact member,
    The contact member moved from the first position to a second position that is shifted from the first position in the lateral direction perpendicular to the vertical direction and that is positioned below the first position. Causing the slag to flow down from the second position;
    The slag flowing down from the second position is accommodated in a pan disposed below the converter,
    Exclusion method.
  2.  前記接触部材は、前記転炉の側方に設けられた作業床に固定されており、
     前記第2位置は、前記作業床よりも下方に位置している、
     請求項1に記載の排滓方法。
    The contact member is fixed to a work floor provided on the side of the converter,
    The second position is located below the work floor,
    The exclusion method according to claim 1.
  3.  前記接触部材の傾斜角は、5°以上20°以下である、
     請求項1又は請求項2に記載の排滓方法。
    The inclination angle of the contact member is 5 ° or more and 20 ° or less,
    The exclusion method according to claim 1 or claim 2.
  4.  前記鍋の上端から前記第2位置までの上下方向の離間距離は、1m以内である、
     請求項1~請求項3の何れか1項に記載の排滓方法。
    The vertical distance from the upper end of the pan to the second position is within 1 m.
    The exclusion method according to any one of claims 1 to 3.
  5.  前記第2位置から流下した前記スラグを前記鍋内に収容させる際、前記スラグを前記鍋の内周面で受け取らせる、
     請求項1~請求項4の何れか1項に記載の排滓方法。
    When the slag flowing down from the second position is accommodated in the pan, the slag is received by the inner peripheral surface of the pan.
    The exclusion method according to any one of claims 1 to 4.
  6.  前記接触部材に接触して流下した前記スラグを前記鍋の前記内周面で受け取らせるように、前記鍋の横方向の位置及び前記接触部材の姿勢の少なくとも一方を調整してから、前記スラグを前記鍋内に収容させる、
     請求項5に記載の排滓方法。
    After adjusting at least one of the lateral position of the pan and the posture of the contact member so that the slag flowing down in contact with the contact member is received by the inner peripheral surface of the pan, the slag is adjusted. Accommodate in the pan,
    The exclusion method according to claim 5.
  7.  前記接触部材を移動している前記スラグに鎮静材を添加する、
     請求項1~6の何れか1項に記載の排滓方法。
    Adding a sedative to the slag moving the contact member;
    The exclusion method according to any one of claims 1 to 6.
  8.  請求項1~7の何れか1項に記載の排滓方法により前記鍋内に収容した前記スラグを排出して冷却する、
     スラグの製造方法。
    The slag contained in the pan is discharged and cooled by the draining method according to any one of claims 1 to 7.
    A method for producing slag.
  9.  転炉を傾けることで前記転炉の炉口から流下するスラグに接触する面が形成された接触部材であって、前記炉口から流下した前記スラグを前記面の第1位置で受け取って、前記面に沿って移動した前記スラグを、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる位置である第2位置から鍋内に流下させる接触部材、
     を備えた流下スラグのエネルギー減衰構造。
    A contact member formed with a surface in contact with the slag flowing down from the furnace port of the converter by tilting the converter, the slag flowing down from the furnace port is received at a first position of the surface, Contact that causes the slag that has moved along the surface to flow down into the pan from the second position, which is shifted from the first position in the lateral direction perpendicular to the vertical direction and below the first position. Element,
    The energy damping structure of the falling slag with
  10.  前記接触部材は、前記鍋の上端から前記第2位置までの上下方向の離間距離が1m以内になるように、配置されている、
     請求項9記載の流下スラグのエネルギー減衰構造。
    The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m.
    The energy attenuating structure of the falling slag according to claim 9.
  11.  前記面に沿って移動している前記スラグに鎮静材を添加する添加部、
     をさらに備えた請求項9又は10に記載の流下スラグのエネルギー減衰構造。
    An additive part for adding a sedative to the slag moving along the surface;
    The energy attenuation structure of the falling slag according to claim 9 or 10, further comprising:
PCT/JP2017/001784 2016-01-28 2017-01-19 Slag removal method, slag production method, and structure for attenuating energy of falling slag WO2017130837A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780002581.4A CN107849626B (en) 2016-01-28 2017-01-19 Slag discharging method, method for manufacturing slag, and energy attenuation structure of flowing-down slag
JP2017564203A JP6589998B2 (en) 2016-01-28 2017-01-19 Exhaust method, manufacturing method of slag, and energy damping structure of flowing slag
KR1020187002598A KR20180019745A (en) 2016-01-28 2017-01-19 Disposal method, manufacturing method of slag and energy damping structure of slag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016014686 2016-01-28
JP2016-014686 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017130837A1 true WO2017130837A1 (en) 2017-08-03

Family

ID=59397777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001784 WO2017130837A1 (en) 2016-01-28 2017-01-19 Slag removal method, slag production method, and structure for attenuating energy of falling slag

Country Status (4)

Country Link
JP (1) JP6589998B2 (en)
KR (1) KR20180019745A (en)
CN (1) CN107849626B (en)
WO (1) WO2017130837A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208303A1 (en) * 2018-04-24 2019-10-31 日本製鉄株式会社 Method for killing foaming of discharged slag, and refining facility using said method
CN110592310A (en) * 2019-09-04 2019-12-20 北京首钢国际工程技术有限公司 Movable slag trap device under converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177114A (en) * 1986-01-29 1987-08-04 Nippon Kokan Kk <Nkk> Tapping method for molten steel
JPH0770626A (en) * 1993-07-05 1995-03-14 Nippon Steel Corp Converter steel making method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582692B2 (en) * 1991-11-16 1997-02-19 新日本製鐵株式会社 Converter steelmaking method
WO1995001458A1 (en) * 1993-06-30 1995-01-12 Nippon Steel Corporation Steel manufacturing method using converter
JP4907411B2 (en) * 2007-04-06 2012-03-28 新日本製鐵株式会社 Slag sedation method
JP4580434B2 (en) * 2008-05-09 2010-11-10 新日本製鐵株式会社 Slag forming sedative material and method
JP4580435B2 (en) * 2008-05-27 2010-11-10 新日本製鐵株式会社 Forming sedative material for slag pan and sedation method
CN102450909A (en) * 2010-11-02 2012-05-16 张联合 Defoaming beer glass
CN202436717U (en) * 2012-01-12 2012-09-19 韩时雨 Foaming-resistant beer cup during beer pouring
CN102885546A (en) * 2012-09-05 2013-01-23 苏州萃智新技术开发有限公司 Beer glass
CN104480244B (en) * 2014-12-18 2017-06-20 首钢水城钢铁(集团)有限责任公司 A kind of method for reducing iron-holder in converter smelting endpoint slag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177114A (en) * 1986-01-29 1987-08-04 Nippon Kokan Kk <Nkk> Tapping method for molten steel
JPH0770626A (en) * 1993-07-05 1995-03-14 Nippon Steel Corp Converter steel making method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208303A1 (en) * 2018-04-24 2019-10-31 日本製鉄株式会社 Method for killing foaming of discharged slag, and refining facility using said method
JPWO2019208303A1 (en) * 2018-04-24 2020-12-10 日本製鉄株式会社 Forming sedation method for discharged slag and refining equipment used for this
CN110592310A (en) * 2019-09-04 2019-12-20 北京首钢国际工程技术有限公司 Movable slag trap device under converter

Also Published As

Publication number Publication date
CN107849626B (en) 2020-02-21
JP6589998B2 (en) 2019-10-16
JPWO2017130837A1 (en) 2018-04-12
KR20180019745A (en) 2018-02-26
CN107849626A (en) 2018-03-27

Similar Documents

Publication Publication Date Title
JP6589998B2 (en) Exhaust method, manufacturing method of slag, and energy damping structure of flowing slag
JP5691207B2 (en) Refining vessel for desulfurization treatment of hot metal and desulfurization treatment method
CN111712585B (en) Foaming and calming method for discharging slag and refining equipment for same
JP5195737B2 (en) Hot metal desulfurization method
JP6477333B2 (en) Slag forming suppression method
JPWO2018150862A1 (en) Slag-forming sedative material, slag-forming sedative method, and converter blowing method
JP2015218390A (en) Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring
JP5401938B2 (en) Hot metal desulfurization method
JP6848437B2 (en) Desulfurization method and desulfurization equipment for molten steel
JP6416634B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP5085094B2 (en) Continuous refining method of blast furnace cast floor
JP6238019B2 (en) Hot metal desulfurization method with less recuperation
KR101602835B1 (en) Processing apparatus for molten metal and the method thereof
JP2014177674A (en) Agitator for refinery and method of refining molten iron
JP6052436B2 (en) Method for preventing hot metal after desulphurization
JP5078319B2 (en) Continuous refining method
JP7457236B2 (en) Slag forming sedation method
JP6289204B2 (en) Desiliconization and desulfurization methods in hot metal ladle
JP5085096B2 (en) Continuous refining method of blast furnace cast floor and blast furnace cast floor equipment
JP5949637B2 (en) Method for preventing hot metal after desulphurization
JP6790796B2 (en) Vacuum degassing equipment
JP4403055B2 (en) Steelmaking slag treatment method
WO2018146754A1 (en) Method for controlling slag foaming
JP5341583B2 (en) Dephosphorization slag outflow prevention method
JP2020007590A (en) Hot metal desiliconization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017564203

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187002598

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744067

Country of ref document: EP

Kind code of ref document: A1