WO2017130837A1 - Slag removal method, slag production method, and structure for attenuating energy of falling slag - Google Patents
Slag removal method, slag production method, and structure for attenuating energy of falling slag Download PDFInfo
- Publication number
- WO2017130837A1 WO2017130837A1 PCT/JP2017/001784 JP2017001784W WO2017130837A1 WO 2017130837 A1 WO2017130837 A1 WO 2017130837A1 JP 2017001784 W JP2017001784 W JP 2017001784W WO 2017130837 A1 WO2017130837 A1 WO 2017130837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slag
- pan
- converter
- guide plate
- contact member
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/02—Dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
- C21C5/42—Constructional features of converters
- C21C5/46—Details or accessories
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/28—Manufacture of steel in the converter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/14—Charging or discharging liquid or molten material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D2003/0034—Means for moving, conveying, transporting the charge in the furnace or in the charging facilities
- F27D2003/0054—Means to move molten metal, e.g. electromagnetic pump
Definitions
- the present disclosure relates to a draining method, a slag manufacturing method, and an energy attenuation structure of a flowing slag.
- the converter After desiliconization and dephosphorization of the molten iron in the converter, the converter is tilted while leaving the molten iron in the converter, and a part of the upper slag is allowed to flow down from the furnace port to the waste pan placed below. And the method of performing a decarburization process after that is known. In this method, the slag is formed (foamed) in the converter to increase the bulk volume of the slag, thereby ensuring the exhaustability. Slag forming occurs when carbon in the molten iron and iron oxide in the slag generate CO gas by the reaction of the following formula (1), and the CO gas is held in the slag.
- Japanese Patent No. 4907411, Japanese Patent No. 4580434 and Japanese Patent No. 4580435 disclose a method of calming the forming by putting the forming sedative into the slag pan. Yes.
- the sedative material calms the slag formed by the action of a chemical reaction or the like, there is a limit to the sedative effect depending on the input amount of the forming sedative material.
- Japanese Patent No. 500060 discloses a method of calming the slag forming in the slag pan by microwave irradiation.
- problems such as microwave shielding.
- Japanese Patent No. 2558292 discloses a water-cooled pre-furnace pre-proofing plate for preventing slag from flowing out and splashing to the work floor at the time of evacuation and allowing the slag to flow into the culvert pan.
- the water-cooled pre-furnace fender is not intended to calm down the slag forming in the discharge pan.
- This disclosure is intended to provide a method of removing the slag that is allowed to flow down from the converter and accommodated in the pan, and to provide a method for producing the slag using the slag and an energy attenuating structure for the slag.
- the present inventors have provided a slag pan in which a portion of the upper slag is disposed downward from the furnace port by tilting the converter while desiliconizing and dephosphorizing the molten iron in the converter and leaving the molten iron in the converter.
- the present inventors found that the carbon in the molten iron mixed in the slag flowing down from the converter and the iron oxide in the slag newly generated CO gas by the reaction of the above-mentioned formula (1) in the waste pan. It was found that the generation was one of the factors that hindered the sedation of forming in the slag pan.
- the present inventors pay attention to suppressing the reaction of the above-described formula (1) between the carbon in the molten iron and the iron oxide in the slag in the waste pan, and the slag flows down into the waste pan. It has been found that it is effective to suppress agitation caused by an impact during the process.
- the present disclosure is based on such knowledge.
- the exclusion method is as follows. By tilting the converter after performing at least one of desiliconization, dephosphorization, and decarburization in the converter, the upper layer formed slag is left in the converter while leaving the molten iron in the converter. Flow down from the furnace port to the first position of the contact member, The contact member moved from the first position to a second position that is shifted from the first position in the lateral direction perpendicular to the vertical direction and that is positioned below the first position. Causing the slag to flow down from the second position; The slag flowing down from the second position is accommodated in a pan disposed below the converter, Exclusion method.
- the energy attenuation structure of the falling slag is as follows.
- a contact member formed with a surface in contact with the slag flowing down from the furnace port of the converter by tilting the converter, the slag flowing down from the furnace port is received at a first position of the surface,
- Contact that causes the slag that has moved along the surface to flow down into the pan from the second position which is shifted from the first position in the lateral direction perpendicular to the vertical direction and below the first position.
- the draining method, the slag manufacturing method, and the flowing-down slag energy attenuating structure of the present disclosure the forming of the slag that flows down from the converter and is accommodated in the pan is easily subdued.
- the direction indicated by the arrow X and arrow -X in the drawing is the width direction of the energy attenuating structure 10 (see FIG. 1), and the direction indicated by the arrow Z and arrow -Z in the drawing is the vertical direction (hereinafter referred to as the arrow Z direction). Is the upper side, and the arrow-Z direction is the lower side).
- the direction perpendicular to the width direction and the vertical direction is the depth direction.
- the width direction is an example of a horizontal direction.
- the energy attenuating structure 10 of the present embodiment flows down from the converter 20 when the slag S flowing down from the converter 20 (see FIG. 1) is accommodated in the discharge pot 30 (see FIG. 1).
- 30 has a function of attenuating the energy of the slag S by bringing a concave surface 42A (see FIG. 2) of a guide plate 42 (see FIG. 1), which will be described later, into contact with the slag S before being accommodated in the slag 30.
- the waste pan 30 is an example of a pan.
- the slag S flowing down from the converter 20 to the waste pan 30 is an example of a flowing down slag.
- the guide plate 42 is arrange
- the converter 20 has an opening 22 (furnace port).
- the converter 20 is configured to be tiltable with respect to the vertical direction by a rotating device (not shown) whose depth direction is the rotation axis direction.
- the slag pan 30 is moved by a carriage 50 which will be described later, and is arranged below the converter 20.
- the waste pan 30 includes a circular bottom 32 as viewed from above, and a peripheral wall 34 having an inner peripheral surface 34 ⁇ / b> A whose inner diameter increases toward the upper side. That is, the waste pan 30 of this embodiment is an inverted truncated cone shape.
- FIG. 1 The converter 20 has an opening 22 (furnace port).
- the converter 20 is configured to be tiltable with respect to the vertical direction by a rotating device (not shown) whose depth direction is the rotation axis direction.
- the slag pan 30 is moved by a carriage 50 which will be described later, and is
- FIG. 1 shows a state in which the converter 20 is rotated by the rotating device and is inclined to flow down (discharge) the slag S.
- the lower end of the opening 22 of the converter 20 is shown.
- the separation distance from the upper end of the waste pan 30 is 3 to 10 m.
- the energy attenuating structure 10 of the present embodiment includes a guide portion 40 as shown in FIG.
- the guide part 40 includes a guide plate 42 and a support part 44.
- the guide plate 42 is an example of a contact member.
- the guide plate 42 is supported by the support portion 44 in a state where the guide plate 42 is inclined 10 ° clockwise as an example with respect to the vertical direction in a front view.
- the guide plate 42 comes into contact with the slag S flowing down from the converter 20 at a recessed surface 42A (see FIG. 2). That is, the guide plate 42 is formed with a recessed surface 42 ⁇ / b> A that flows down from the converter 20 and comes into contact with the slag S accommodated in the discharge pan 30.
- the recessed surface 42A is an example of a surface.
- the guide plate 42 has a bowl shape.
- the guide plate 42 has a curved shape in which a cross-sectional shape perpendicular to the direction in which the slag S flows is convex downward.
- the guide plate 42 of the present embodiment is made of steel as an example.
- the width of the guide plate 42 (that is, the dimension in the depth direction) is not particularly limited, but in the present embodiment, it is designed in a range of 0.5 to 1.0 times the diameter of the opening 22.
- a work floor provided on the side of the converter 20 is used as the support portion 44.
- the guide plate 42 is fixed to the work floor as the support portion 44 via a fixing member (not shown).
- the work floor here is a floor located at the same height as the lower end of the opening 22 in a state where the converter 20 is rotated and inclined by about 90 °, and repair work or converter in the converter 20 is performed. This floor is used for repairing and replacing 20 bottom-blown tuyere.
- the upper end of the guide plate 42 is located above the work floor, and the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42. Is located below the work floor.
- the converter 20 when discharging from the opening 22 of the converter 20, the converter 20 is tilted in a direction opposite to that when the steel is discharged from a steel outlet (not shown) provided in the converter 20.
- the work floor to which the guide plate 42 is fixed is a work floor provided on the opposite side to the steel outlet in the upright converter 20.
- the guide plate 42 receives the slag S flowing down from the converter 20 at the first position 42A1 of the recessed surface 42A and moves the slag S moved along the recessed surface 42A (downward). In addition, it is made to flow down into the waste pan 30 from the lower end 42A2 of the concave surface 42A.
- “receiving the slag S flowing down from the converter 20 at the first position 42A1 of the recessed surface 42A” means that the slag S flowing down from the converter 20 collides with the first position 42A1 of the recessed surface 42A from above.
- the lower end 42A2 is an example of a second position.
- the lower end 42A2 is shifted from the first position 42A1 in the width direction orthogonal to the vertical direction, and below the first position 42A1.
- the separation distance L in the up-down direction from the upper end of the waste pan 30 is 1 m as an example.
- the inclination angle ⁇ of the guide plate 42 is formed by a vertical straight line (not shown) and a virtual straight line (not shown) connecting the first position 42A1 and the second position 42A2. The smaller one of the angles is used. Then, the inclination angle ⁇ of the guide plate 42 in this embodiment is 10 °.
- the energy attenuating structure 10 of this embodiment includes a carriage 50.
- the trolley 50 moves the slag pan 30 in the width direction so that the slag S flowing down in contact with the recessed surface 42 ⁇ / b> A is received by the inner peripheral surface 34 ⁇ / b> A of the sewage pan 30, thereby moving the slag S in the width direction. It has a function to adjust the position. That is, the cart 50 of this embodiment can be said to be a means for adjusting the position in the width direction of the waste pan 30.
- the cart 50 includes a platform 52, a plurality of wheels 54, and a drive source (not shown).
- the slag pan 30 is placed on the table 52.
- the plurality of wheels 54 are attached to the base 52.
- the drive source is controlled and operated by an operator.
- the energy attenuating structure 10 of the present embodiment includes an adding unit 60.
- the adding portion 60 has a function of adding the sedative material M to the slag S moving along the recessed surface 42A of the guide plate 42.
- the addition part 60 is arrange
- the sedative material M of the present embodiment is for calming the forming of the slag S, and as an example, is a papermaking sludge that is an inexpensive organic pyrolysis material and an inexpensive material for adjusting the specific gravity. It is formed by mixing steelmaking slag.
- the operator moves the waste pan 30 placed on the carriage 50 to the lower side of the converter 20.
- the converter 20 is rotated with a rotating apparatus, as FIG. 1 shows.
- the slag S generated in the converter 20 flows down from the opening 22 of the converter 20 toward the guide plate 42.
- the slag S flowing down from the converter 20 is received at the first position 42A1 on the recessed surface 42A of the guide plate 42, and the slag S moves along the recessed surface 42A to the lower end 42A2. Then, the slag S that has moved to the lower end 42A2 of the recessed surface 42A flows downward from the lower end 42A2. Moreover, the addition part 60 adds the soothing material M to the slag S which is moving along the concave surface 42A.
- the slag S flowing down from the lower end 42A2 of the recessed surface 42A is received by the inner peripheral surface 34A of the sewage pan 30 and accommodated in the sewage pan 30.
- the slag S is received by the inner peripheral surface 34 ⁇ / b> A.
- the position of the slag pan 30 placed on the carriage 50 is adjusted before the flow of the slag S from the converter 20 is started.
- the slag S accommodated in the slag pan 30 is then transported to the slag S cooling field (not shown), discharged from the slag pan 30, and then cooled to produce slag.
- the first action is an action of attenuating the energy of the slag S by bringing the slag S flowing down from the converter 20 into contact with the recessed surface 42A.
- the first action will be described with reference to the drawings while comparing the present embodiment with a comparative embodiment assumed below. In the description of the comparative embodiment, when the same components as those used in the present embodiment are used, the same reference numerals are given and detailed descriptions (including common actions) are omitted as appropriate.
- the slag S generated in the converter 20 flows down toward the bottom 32 of the sewage pan 30 and is accommodated in the slag pan 30.
- the addition part 60 adds the sedative material M toward the slag S in the waste pan 30.
- the comparative form has the same configuration as the present embodiment except for the above points.
- the slag S generated in the converter 20 flows down toward the bottom 32 of the slag pan 30 and is accommodated in the slag pan 30.
- the potential energy of the slag S in the converter 20 is converted into the kinetic energy of the slag S, in other words, the stirring energy in the discharge pan 30.
- the stirring energy of the slag S in the slag pan 30 is large, the mixing of the slag S accommodated in the slag pan 30 and the molten iron F mixed and contained in the slag S, that is, Mass transfer will be promoted.
- the reaction between the carbon in the molten iron F and the iron oxide in the slag S promotes the generation of new CO gas in the waste pan 30 and promotes the formation of the slag S ( Forming sedation is inhibited).
- the slag S flowing down from the converter 20 comes into contact with the recessed surface 42 ⁇ / b> A of the guide plate 42 and is then accommodated in the discharge pan 30.
- the slag S flowing down from the converter 20 is attenuated in potential energy when the slag S is accommodated in the converter 20 due to contact frictional resistance with the guide plate 42.
- the stirring energy of the slag S that comes into contact with the guide plate 42 and is accommodated in the waste pan 30 is reduced as compared with the comparative example.
- the slag S generated in the converter 20 is allowed to flow down from the converter 20 and stored in the slag pan 30 as compared with the case where the slag S generated in the converter 20 is stored as it is.
- the forming of the slag S is easy to calm down.
- the second effect is that the concave surface 42A of the guide plate 42 is inclined with respect to the vertical direction in a front view.
- the recessed surface 42A of the guide plate 42 is disposed so as to be inclined with respect to the vertical direction when viewed from the front, as shown in FIGS.
- the third function is that the distance L in the vertical direction from the upper end of the waste pan 30 to the lower end 42A2 of the guide plate 42 is within 1 m.
- the slag S flowing down from the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42 flows down into the discharge pan 30 with potential energy at the lower end 42 ⁇ / b> A ⁇ b> 2.
- the potential energy at the lower end 42A2 is converted into stirring energy.
- the forming of the slag S tends to be calmed down as the vertical separation distance L from the position where the slag S is separated from the guide plate 42 (the lower end 42A2) to the waste pan 30 is small. Therefore, according to the present embodiment, the forming of the slag S is easily subdued compared to the case where the vertical separation distance L from the upper end of the waste pan 30 to the lower end 42A2 of the guide plate 42 is greater than 1 m.
- the fourth effect is that the slag S flowing down from the lower end 42A2 of the guide plate 42 is received and accommodated on the inner peripheral surface 34A of the slagging pan 30.
- the forming of the slag S is more likely to be sedated as the vertical distance L from the position where the slag S is separated from the guide plate 42 (lower end 42A2) to the waste pan 30 is smaller.
- the slag S flowing down from the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42 is received by the inner peripheral surface 34 ⁇ / b> A of the waste pan 30 and accommodated in the waste pan 30.
- the slag pan 30 is received by the inner peripheral surface 34 ⁇ / b> A. It is moved by the carriage 50 in advance. Therefore, according to this embodiment, the position of the waste pan 30 is easily adjusted so that the slag S is received by the inner peripheral surface 34A.
- a part of the inner peripheral surface 34A is a receiving position (a position for receiving the slag S discharged from the converter 20).
- the fifth effect is that the guide plate 42 has a bowl shape.
- the guide plate 42 of the present embodiment has a bowl shape as shown in FIG.
- the slag S that moves on the concave surface 42A of the guide plate 42 spreads in the depth direction with respect to the flow direction (the direction in which the slag S travels). hard. Therefore, according to the guide plate 42 of this embodiment, compared with the case where the shape of the guide plate 42 is a flat shape, the accommodation property is stabilized in the waste pan 30 (not easily spilled). Note that the first to third actions described above are also exhibited when the guide plate 42 is planar.
- the sixth action is an action of having the adding portion 60, in other words, an action of adding the sedative material M to the slag S moving on the recessed surface 42 ⁇ / b> A of the guide plate 42.
- the sedative material M is added to the slag S that is moving the guide plate 42 by the addition unit 60.
- the sixth action will be described with reference to the drawings while comparing the present embodiment with the above-described comparative embodiment. In the description of the comparative embodiment, when the same components as those used in the present embodiment are used, the same reference numerals are given and detailed descriptions (including common actions) are omitted as appropriate.
- the adding unit 60 adds the sedative material M toward the slag S in the slag pan 30. Therefore, in the case of a comparative form, the slag S before flowing down from the converter 20 and being accommodated in the slag pan 30 is accommodated in the slag pan 30 as originally formed (in the converter 20). Is done.
- the slag S moving on the concave surface 42A of the guide plate 42 that is, the slag S before flowing down from the converter 20 and accommodated in the slag pan 30 is calmed down. Since the material M is added, the slag S and the sedative material M are mixed well and the forming sedation is likely to proceed. For this reason, the slag S accommodated in the waste pan 30 is accommodated in a state in which the forming is calmed down compared to the state in which the forming is originally performed (in the converter 20). In the case of the present embodiment, since the sedative material M flows down together with the slag S, the sedative material M is easily stirred in the waste pan 30 (accordingly, the sedative material M reacts in the waste pan 30). easy).
- the forming of the slag S is easily subdued compared to the case where the soothing material M is not added to the slag S moving on the concave surface 42A of the guide plate 42.
- the slag S generated in the converter 20 and moved in contact with the guide plate 42 flows down toward the bottom 32 of the discharge pan 30, It is accommodated in the waste pan 30.
- the first modification has the same configuration as that of the present embodiment except for the above points.
- the slag S flowing down from the guide plate 42 is not received by the inner peripheral surface 34 ⁇ / b> A of the discharge pan 30.
- the above-described first to third, fifth and sixth actions are exhibited.
- the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42 is disposed in the slag pan 30.
- the guide plate 42 is supported so as to be movable in the vertical direction (or the inclination direction of the guide plate 42) with respect to the support portion 44.
- the guide plate 42 is moved upward when the level of the liquid surface of the slag S in the waste pan 30 reaches a predetermined height.
- the second modification has the same configuration as that of the present embodiment except for the above points. In the case of the second modification, the above-described first to sixth actions are achieved.
- the guide plate 42 has a bowl shape having a bent portion 42 ⁇ / b> B bent to the side where the support portion 44 is provided.
- the slag S that has been received and moved at the first position 42A1 of the guide plate 42 flows down from the bent portion 42B toward the inside of the waste pan 30.
- the bent portion 42B is an example of the second position.
- the third modification has the same configuration as that of the present embodiment except for the above points. In the case of the third modification, the above-described first to sixth actions are achieved.
- the guide plate 42 has a bowl shape having a bent portion 42 ⁇ / b> B bent to the side opposite to the side where the support portion 44 is provided.
- the slag S that has been received and moved at the first position 42A1 of the guide plate 42 is changed in the moving direction at the bent portion 42B, and flows down from the lower end 42A2 into the discharge pan 30.
- the lower end 42A2 is an example of a second position.
- the fourth modification has the same configuration as that of the present embodiment except for the above points. In the case of the fourth modified example, the above-described first to sixth actions are exhibited.
- the separation distance L in the fourth modification is shown smaller than the separation distance L in the present embodiment (FIG. 1) and other modifications (FIGS. 4, 6, and 9), Actually they are equivalent.
- the surface 42 ⁇ / b> C of the guide plate 42 that contacts the slag S is curved so as to protrude toward the side on which the slag S contacts in front view.
- the fifth modification has the same configuration as that of the present embodiment except for the above points.
- the above-described first to sixth actions are exhibited.
- the separation distance L in the fifth modification is illustrated larger than the separation distance L in the present embodiment (FIG. 1) and other modifications (FIGS. 4, 6, and 9). Are equivalent.
- the guide plate 42 is configured such that its inclination angle ⁇ can be adjusted. And in the case of the 8th modification, even if the height of the liquid level of the slag S in the waste pan 30 becomes high during the period when the slag S is accommodated in the waste pan 30, the slag S is the inner peripheral surface.
- the inclination angle ⁇ of the guide plate 42 is adjusted by the operator before the flow of the slag S from the converter 20 is started as received at 34A.
- the eighth modification has the same configuration as that of the present embodiment except for the above points. In the case of the eighth modification, the above-described first to sixth actions are exhibited.
- the conditions were set as much as possible to the extent that the influence on the evaluation due to variations in common conditions could be ignored, and the amount of slag S in the converter 20 after desiliconization and dephosphorization processing was about 20 t. It was. After desiliconization and dephosphorization, the converter 20 was tilted while the molten iron F was left in the converter 20, and the upper slag S was accommodated in the waste pan 30 arranged below from the furnace port (opening 22). While the slag S is flowing down, the operator manually controls the tilting operation of the converter 20 and the position of the carriage 50 while monitoring the sedation of the forming so that the slag S formed from the slag pan 30 does not overflow. It was.
- the sedative material M introduced into the waste pan 30 is a mixture of papermaking sludge (not shown) that is an inexpensive organic pyrolysis substance and steelmaking slag (not shown) that is an inexpensive material for adjusting specific gravity.
- the molded one was used.
- the amount of the sedative material M to be added to the steelmaking slag was about 50 kg per one charging operation.
- the amount of waste was measured with a weigher (not shown) placed on the carriage 50.
- the waste time was defined as the time from the start of the tilting operation of the converter 20 for the flow of the slag S to the time when the molten iron F below the slag S flows out of the furnace port (opening 22). In this test, the greater the amount of evacuation and the shorter the evacuation time, the better the evacuation property.
- Level 1 and level 2 are comparative examples, and the guide plate 42 is not arranged. Level 1 and level 2 are different from each other in the position where the slag S flows down to the discharge pan 30. In Level 2, the slag S hits the inner peripheral surface 34A of the upper wall on the side of the slag pan 30 (the slag S is received by the inner peripheral surface 34A). Level 2 was slightly better than level 1 in terms of exclusion.
- Levels 3 to 9 are examples, and a guide plate 42 is disposed between the converter 20 and the discharge pan 30.
- the guide plate 42 has a water cooling structure (a structure in which the guide plate 42 is cooled and the cooling water is circulated in a cavity formed in the guide plate 42) inside the guide plate 42. 2), and is linear in the flow-down direction (advancing direction of the slag S).
- Levels 3 to 5 the inclination angle ⁇ of the guide plate 42 is different.
- Levels 3 to 5 (Examples) have improved rejection compared to Levels 1 and 2 (Comparative Examples). This is presumably because, in the case of levels 3 to 5 (Example), the slag S flowing down from the converter 20 contacts the guide plate 42 and the energy is attenuated. That is, it can be said that the levels 3 to 5 have the first action described above.
- the rejection is improved as the inclination angle ⁇ is increased. However, if the inclination angle is 10 ° or more, it can be said that there is no significant difference in the rejection. That is, it can be said that the levels 3 to 5 have the second action described above.
- the addition amount of the sedative material M to the waste pan 30 was small compared with the comparative example.
- Level 8 is an embodiment, and the slag S when the slag S is accommodated in the sewage pan 30 from the lower end 42A2 of the guide plate 42 hits the inner peripheral surface 34A of the upper side wall of the sewage pan 30 by the trolley 50.
- the position of the waste pan 30 is adjusted by moving. It can be said that level 8 has improved rejection compared to level 6 where other conditions are equivalent. That is, it can be said that level 8 has the above-mentioned fourth action.
- Level 9 is an example, and a sedative material M is added to the slag S moving in contact with the guide plate 42.
- a sedative material M As the sedative material M, as in the sedative material M to be put into the waste pan 30, a mixed molding of paper sludge and steel slag is used, and a chute (addition part 60) disposed above the guide plate 42 is used. Then, 100 kg was continuously added to the moving slag. Compared with level 8 where other conditions are equivalent, level 9 has improved rejectability. That is, it can be said that level 9 has the above-mentioned sixth action. Moreover, compared with the level 8, the addition amount of the sedative material M to the inside of the squeezing pan 30 is small, and the addition amount of the total sedative material M is also low in the level 9.
- Levels 3 to 9 have a shorter elimination time and an increased amount of elimination compared to levels 1 and 2 (comparative example). Further, the bulk volume of the slag S remaining in the converter 20 was almost the same regardless of the case of the example and the comparative example. However, the longer the discharge time, the longer the slag S in the converter 20 is. Forming subsides and bulk density increases. Since the weight of the slag S remaining in the converter 20 is obtained by multiplying the bulk volume and the bulk density of the slag S, the amount of the slag S remaining in the converter 20 decreases as the discharge time is shorter. The amount of excretion increases.
- the embodiment is improved in the evacuation property because the sedation of the forming in the evacuation pan 30 is better than the comparative example.
- the inclination of the guide plate 42, the vertical distance L between the lower end 42 ⁇ / b> A ⁇ b> 2 of the guide plate 42 and the upper end of the waste pan 30, the position where the slag S flows to the waste pan 30 (the slag S in the waste pan 30) can be said that the forming can be sedated more efficiently and the evacuation property can be improved by setting appropriate conditions such as the receiving position) and the addition of the sedative material M to the guide plate 42.
- the waste in the above embodiment has been described as waste after desiliconization and dephosphorization in the converter 20
- the waste method of the present disclosure is not limited to this.
- the exhaust method of the present disclosure is also used when the converter 20 is tilted and discharged from the opening 22 (furnace port) after performing only one of desiliconization and dephosphorization in the converter 20. May be.
- the exhaust method of the present disclosure may also be used when the converter 20 is tilted and exhausted from the opening 22 (furnace port) after performing only the decarburization process in the converter 20.
- the guide plate 42 may have a water cooling structure as in the embodiment.
- the guide plate 42 since the guide plate 42 has a water cooling structure, the guide plate 42 can be prevented from being damaged or deformed.
- the slag S is cooled by the contact between the slag S and the guide plate 42, and the bubbles in the slag S are broken by the thermal shock to promote the calming of forming.
- the surface of the guide plate 42 with which the slag S contacts may be uneven. By adopting the uneven shape, the energy is easily attenuated by the contact frictional resistance from the contact slag S.
- the sedative material M has been described as being formed by mixing paper sludge, which is an inexpensive organic pyrolysis substance, and steelmaking slag, which is an inexpensive substance for adjusting specific gravity.
- the sedative material is not limited to this, as long as it has a function of calming slag forming.
- carbon materials coke powder, coal powder, graphite powder, etc.
- a substance containing a thermally decomposable substance carbonate, organic substance, plastic, etc.
- the guide plate 42 is supported by the support portion 44 in a state where the guide plate 42 is inclined 10 ° clockwise as an example in the vertical direction (inclination angle ⁇ is 10 °).
- the inclination angle ⁇ may not be 10 °.
- the inclination angle ⁇ is preferably 5 ° or more, and more preferably 10 ° or more.
- the inclination angle ⁇ is preferably 20 ° or less, and more preferably 15 ° or less.
- the waste pan 30 includes a circular bottom 32 as viewed from above, and a peripheral wall 34 having an inner peripheral surface 34 ⁇ / b> A whose inner diameter increases toward the upper side. It demonstrated as an inverted frustoconical container.
- the shape of the waste pan may be different from the shape of the present embodiment.
- the shape of the waste pan may be a cylindrical shape, a hemispherical shape, an inverted elliptical cone shape, or other shapes.
- the inner surface 34B inner surface
- the inner surface 34B has an arcuate cross section as in the waste pan 30A (an example of the pan) in FIG.
- the inner peripheral surface 34C in the waste pan 30A is the top and bottom of the inner surface 34B.
- the position of the inner surface 34B with respect to the reference is 20% or more and 100% or less.
- the energy attenuating structure 10 has been described as including the guide unit 40, the carriage 50, and the addition unit 60. However, if the energy attenuating structure 10 is a configuration including at least the guide plate 42 and is configured to be able to accommodate the slag S in a state where the energy is attenuated after being discharged from the converter 20 in the waste pan 30, It does not need to include at least one or both of the adding unit 60 and the carriage 50. The same applies to the modification.
- the contact member is fixed to a work floor provided on the side of the converter, The second position is located below the work floor, The exclusion method as described in (1).
- the inclination angle of the contact member is 5 ° or more and 20 ° or less, The exclusion method according to (1) or (2).
- the vertical distance from the upper end of the pan to the second position is within 1 m.
- the slag is adjusted. Accommodate in the pan, The exclusion method as described in (5). (7) Adding a sedative to the slag moving the contact member; (1) The elimination method according to any one of (6). (8) (1) to (7) to discharge and cool the slag contained in the pan by the draining method according to any one of A method for producing slag.
- the energy damping structure of the falling slag with (10) The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m. (10) The energy attenuation structure of the flowing-down slag as described above.
- ⁇ 1> The slag generated by desiliconizing and dephosphorizing the hot metal in the converter is caused to flow down to a first position of a member disposed below the converter, Energy is attenuated by moving while contacting the member to a second position that is shifted from the first position in the lateral direction perpendicular to the up-down direction and below the first position. Flowing down the slag from the second position; The slag flowing down from the second position is accommodated in a pan disposed below the member. Exclusion method.
- ⁇ 2> The vertical distance from the upper end of the pan to the second position is within 1 m, and the slag flowing down from the second position is accommodated in the pan.
- ⁇ 3> The slag flowing down in contact with the member is received by the inner peripheral surface of the pan, and the slag is accommodated in the pan.
- ⁇ 4> The slag is accommodated in the pan after adjusting the horizontal position of the pan and the posture of the member so that the slag flowing down in contact with the member is received by the inner peripheral surface of the pan. Let The exclusion method as described in ⁇ 3>.
- ⁇ 5> Adding a sedative to the slag moving the member, and flowing the slag with the sedative added from the second position into the pan, The exclusion method according to any one of ⁇ 1> to ⁇ 4>.
- ⁇ 6> ⁇ 1> to ⁇ 5>
- the slag contained in the pan is discharged and cooled by the evacuation method according to any one of ⁇ 5>, A method for producing slag.
- a contact member formed with a surface that contacts the slag that flows down from the converter and is accommodated in the pan, receives the slag that flows from the converter at the first position of the surface, and moves along the surface
- a contact member that causes the slag to flow down into the pan from a second position that is shifted from the first position in a lateral direction perpendicular to the vertical direction and is lower than the first position;
- the energy damping structure of the falling slag with ⁇ 8> The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m.
- the energy attenuating structure of the downflow slag as described.
- An addition part for adding a sedative to the slag moving along the surface, ⁇ 7> or ⁇ 8> comprising the energy attenuating structure according to ⁇ 8>.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
C+FeO→CO↑+Fe (1)
ところで、転炉から排滓したスラグを排滓鍋に収容させると、フォーミングしたスラグが排滓鍋の容量を超えて溢出してしまうおそれがある。そして、スラグが排滓鍋から溢出すると、例えば、設備損傷、操業障害等のトラブルを招くおそれがある。そこで、排滓鍋内のフォーミングの鎮静を待つと、排滓速度を低下させて排滓時間の長期化による生産性の低下を招く。また、排滓鍋内のフォーミングの鎮静を待つと、転炉内のスラグのフォーミングが鎮静して流下するスラグの嵩体積が減少する。その結果、排滓後の脱炭処理時に転炉内に残るスラグ量が増加して、脱炭処理時での復燐やスロッピング(溶鉄やスラグの液塊が転炉の炉口から飛び出すこと)の発生を助長するおそれがある。また、復燐やスロッピングの発生を抑制するための生石灰等の副原料の量の増加を招くおそれがある。 After desiliconization and dephosphorization of the molten iron in the converter, the converter is tilted while leaving the molten iron in the converter, and a part of the upper slag is allowed to flow down from the furnace port to the waste pan placed below. And the method of performing a decarburization process after that is known. In this method, the slag is formed (foamed) in the converter to increase the bulk volume of the slag, thereby ensuring the exhaustability. Slag forming occurs when carbon in the molten iron and iron oxide in the slag generate CO gas by the reaction of the following formula (1), and the CO gas is held in the slag.
C + FeO → CO ↑ + Fe (1)
By the way, if the slag discharged from the converter is accommodated in the slag pan, the formed slag may overflow beyond the capacity of the slag pan. If the slag overflows from the slag pan, for example, there is a risk of incurring troubles such as equipment damage and operational trouble. Therefore, waiting for the sedation of forming in the squeezing pan causes the squeezing speed to decrease, leading to a decrease in productivity due to a prolonged spilling time. In addition, when waiting for the sedation of the forming in the slag pan, the slag forming in the converter subsides and the bulk volume of the slag flowing down decreases. As a result, the amount of slag remaining in the converter during the decarburization process after exhausting increases, and rephosphorization and slopping during the decarburization process (the molten iron and slag liquid mass jump out of the furnace port of the converter). ) May be promoted. Moreover, there is a risk of increasing the amount of auxiliary raw materials such as quicklime for suppressing the occurrence of recovery and slopping.
脱珪、脱燐又は脱炭のうち少なくとも1つの処理を転炉内で行った後に前記転炉を傾けることで、溶鉄を前記転炉内に残したまま、上層のフォーミングしたスラグを前記転炉の炉口から接触部材の第1位置に流下させ、
前記第1位置から、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされた位置である第2位置まで、前記接触部材に接触しつつ移動した前記スラグを前記第2位置から流下させ、
前記第2位置から流下した前記スラグを、前記転炉の下方に配置された鍋内に収容させる、
排滓方法。 The exclusion method according to one aspect of the present disclosure is as follows.
By tilting the converter after performing at least one of desiliconization, dephosphorization, and decarburization in the converter, the upper layer formed slag is left in the converter while leaving the molten iron in the converter. Flow down from the furnace port to the first position of the contact member,
The contact member moved from the first position to a second position that is shifted from the first position in the lateral direction perpendicular to the vertical direction and that is positioned below the first position. Causing the slag to flow down from the second position;
The slag flowing down from the second position is accommodated in a pan disposed below the converter,
Exclusion method.
転炉を傾けることで前記転炉の炉口から流下するスラグに接触する面が形成された接触部材であって、前記炉口から流下した前記スラグを前記面の第1位置で受け取って、前記面に沿って移動した前記スラグを、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる位置である第2位置から鍋内に流下させる接触部材、
を備えた流下スラグのエネルギー減衰構造。 The energy attenuation structure of the falling slag according to another aspect of the present disclosure is as follows.
A contact member formed with a surface in contact with the slag flowing down from the furnace port of the converter by tilting the converter, the slag flowing down from the furnace port is received at a first position of the surface, Contact that causes the slag that has moved along the surface to flow down into the pan from the second position, which is shifted from the first position in the lateral direction perpendicular to the vertical direction and below the first position. Element,
The energy damping structure of the falling slag with
以下、実施形態、実施形態の変形例(第1~第8変形例)並びに実施例及び比較例における実験について説明する。以下の説明では、図面に矢印X及び矢印-Xで示す方向をエネルギー減衰構造10(図1参照)の幅方向、図面に矢印Z及び矢印-Zで示す方向を上下方向(以下、矢印Z方向を上方、矢印-Z方向を下方という。)とする。また、幅方向及び上下方向のそれぞれに直交する方向(矢印Y及び矢印-Y方向)を奥行き方向とする。ここで、幅方向は、横方向の一例である。 ≪Overview≫
Hereinafter, the experiment in the embodiment, the modified examples of the embodiment (first to eighth modified examples), the example, and the comparative example will be described. In the following description, the direction indicated by the arrow X and arrow -X in the drawing is the width direction of the energy attenuating structure 10 (see FIG. 1), and the direction indicated by the arrow Z and arrow -Z in the drawing is the vertical direction (hereinafter referred to as the arrow Z direction). Is the upper side, and the arrow-Z direction is the lower side). In addition, the direction perpendicular to the width direction and the vertical direction (arrow Y and arrow -Y direction) is the depth direction. Here, the width direction is an example of a horizontal direction.
以下、実施形態について説明する。まず、実施形態のエネルギー減衰構造10(図1参照)の構成について説明する。次いで、エネルギー減衰構造10を用いたスラグSの製造方法(排滓方法)について説明する。次いで、実施形態の作用について説明する。 << this embodiment >>
Hereinafter, embodiments will be described. First, the configuration of the energy attenuation structure 10 (see FIG. 1) of the embodiment will be described. Next, a manufacturing method (exhaust method) of the slag S using the
本実施形態のエネルギー減衰構造10は、転炉20(図1参照)から流下したスラグSを排滓鍋30(図1参照)内に収容する際に、転炉20から流下して排滓鍋30に収容される前のスラグSに後述するガイド板42(図1参照)の凹み面42A(図2参照)を接触させて、スラグSのエネルギーを減衰させる機能を有する。ここで、排滓鍋30は、鍋の一例である。なお、転炉20から排滓鍋30に至るまでに流下するスラグSは、流下スラグの一例である。 <Configuration of energy decay structure>
The
ガイド部40は、ガイド板42と、支持部44と、を含んで構成されている。ここで、ガイド板42は、接触部材の一例である。ガイド板42は、正面視にて、上下方向に対して一例として時計回りに10°傾斜した状態で、支持部44に支持されている。そして、ガイド板42は、転炉20から流下したスラグSに凹み面42A(図2参照)で接触するようになっている。すなわち、ガイド板42には、転炉20から流下して排滓鍋30内に収容されるスラグSに接触する凹み面42Aが形成されている。ここで、凹み面42Aは、面の一例である。なお、ガイド板42は、樋状とされている。具体的には、図2に示されるように、ガイド板42は、スラグSが流れる方向に垂直な断面形状が下方に凸の湾曲した形状とされている。また、本実施形態のガイド板42は、一例として鋼鉄製とされている。また、ガイド板42の幅(すなわち奥行き方向の寸法)は、特に限定されないが、本実施形態では開口22の直径の0.5倍以上1.0倍以下の範囲に設計されている。 [Guide section]
The
さらに、本実施形態のエネルギ減衰構造10は、台車50を備えている。
台車50は、凹み面42Aに接触して流下したスラグSを排滓鍋30の内周面34Aで受け取らせるように、排滓鍋30を幅方向に移動させることで排滓鍋30の幅方向の位置を調整する機能を有する。すなわち、本実施形態の台車50は、排滓鍋30の幅方向の位置の調整手段といえる。 [Cart]
Furthermore, the
The
さらに、本実施形態のエネルギ減衰構造10は、添加部60を備えている。
添加部60は、ガイド板42の凹み面42Aに沿って移動しているスラグSに鎮静材Mを添加する機能を有する。添加部60は、図1に示されるように、凹み面42Aに対向する位置に配置されている。そして、添加部60は、鎮静材Mを凹み面42Aに向けて散布させるようになっている。なお、本実施形態の鎮静材Mは、スラグSのフォーミングを鎮静させるためのものであり、一例として、安価な有機物系の熱分解物質である製紙スラッジと安価な比重調整のための物質である製鋼スラグとを混合して成型したものである。 [Addition part]
Furthermore, the
The adding
次に、本実施形態のスラグSの製造動作(排滓方法)について、図1を参照しつつ説明する。 <Slag manufacturing operation>
Next, the manufacturing operation (exclusion method) of the slag S of this embodiment will be described with reference to FIG.
次に、本実施形態の作用(第1~第6の作用)について説明する。 <Action>
Next, the operation (first to sixth operations) of this embodiment will be described.
第1の作用は、転炉20から流下したスラグSを凹み面42Aに接触させてスラグSのエネルギーを減衰させることの作用である。第1の作用については、本実施形態を以下に想定する比較形態と比較しながら図面を参照しつつ説明する。なお、比較形態の説明において、本実施形態で用いた部品等と同じ部品等を用いる場合、同じ符号を付して詳細な説明(共通する作用も含む)は適宜省略する。 [First action]
The first action is an action of attenuating the energy of the slag S by bringing the slag S flowing down from the
第2の作用は、ガイド板42の凹み面42Aが正面視にて上下方向に対して傾斜していることの作用である。ここで、転炉20から流下したスラグSが上下方向に傾斜していない凹み面42Aに接触して、排滓鍋30内に収容される場合であっても、ガイド板42との接触摩擦抵抗によりスラグSが転炉20内に収容されていた際の位置エネルギーは減衰される。しかしながら、本実施形態の場合、ガイド板42の凹み面42Aは、図1及び図2に示されるように、正面視にて上下方向に対して傾斜して配置されている。そのため、本実施形態の場合、転炉20から流下したスラグSが上下方向に傾斜していない凹み面42Aに接触させる場合に比べて、転炉20内に収容されていた際のスラグSの位置エネルギーの減衰が大きい。したがって、本実施形態によれば、転炉20から流下したスラグSが上下方向に傾斜していない凹み面42Aに接触させる場合に比べて、スラグSのフォーミングが鎮静され易い。 [Second action]
The second effect is that the
第3の作用は、排滓鍋30の上端からガイド板42の下端42A2までの上下方向における離間距離Lが1m以内であることの作用である。ガイド板42の下端42A2から流下したスラグSは、図1に示されるように、下端42A2での位置エネルギーを持って、排滓鍋30内に流下される。別言すると、排滓鍋30内にスラグSが流下すると、下端42A2での位置エネルギーが攪拌エネルギーに転換される。このメカニズムによれば、スラグSがガイド板42から離れる位置(下端42A2)から排滓鍋30までの上下方向の離間距離Lが小さいほど、スラグSのフォーミングが鎮静され易い。したがって、本実施形態によれば、排滓鍋30の上端からガイド板42の下端42A2までの上下方向における離間距離Lが1mよりも大きい場合に比べて、スラグSのフォーミングが鎮静され易い。 [Third action]
The third function is that the distance L in the vertical direction from the upper end of the
第4の作用は、ガイド板42の下端42A2から流下するスラグSが排滓鍋30の内周面34Aに受け取られて収容されることの作用である。第3の作用での説明のとおり、スラグSがガイド板42から離れる位置(下端42A2)から排滓鍋30までの上下方向の離間距離Lが小さいほど、スラグSのフォーミングが鎮静され易い。そして、本実施形態の場合、ガイド板42の下端42A2から流下したスラグSは、排滓鍋30の内周面34Aで受け取られて排滓鍋30内に収容される。そのため、本実施形態の場合、ガイド板42の下端42A2から流下したスラグSを排滓鍋30内に収容されているスラグSに直接流下させる場合に比べて、スラグSの位置エネルギーを減衰させ易い。したがって、本実施形態によれば、ガイド板42の下端42A2から流下したスラグSを排滓鍋30内に収容されているスラグSに直接流下させる場合に比べて、スラグSのフォーミングが鎮静され易い。 [Fourth action]
The fourth effect is that the slag S flowing down from the lower end 42A2 of the
第5の作用は、ガイド板42が樋状であることの作用である。本実施形態のガイド板42は、図2に示されるように、樋状とされている。そして、本実施形態の場合、ガイド板42の形状が樋状であることから、ガイド板42の凹み面42Aを移動するスラグSが流下方向(スラグSの進行方向)に対して奥行き方向に広がり難い。したがって、本実施形態のガイド板42によれば、ガイド板42の形状が平面状である場合に比べて、排滓鍋30内へ収容性が安定する(こぼれ難い)。なお、ガイド板42の形状が平面状である場合も、上記の第1~第3の作用を奏する。 [Fifth effect]
The fifth effect is that the
第6の作用は、添加部60を有することの作用、別言すれば、ガイド板42の凹み面42Aを移動しているスラグSに鎮静材Mを添加することの作用である。本実施形態の場合、図1に示されるように、添加部60によりガイド板42を移動しているスラグSに鎮静材Mが添加される。第6の作用については、本実施形態を前述の比較形態と比較しながら図面を参照しつつ説明する。なお、比較形態の説明において、本実施形態で用いた部品等と同じ部品等を用いる場合、同じ符号を付して詳細な説明(共通する作用も含む)は適宜省略する。 [Sixth action]
The sixth action is an action of having the adding
次に、本実施形態の変形例(第1~第8変形例)について図面を参照しつつ説明する。 ≪Modification≫
Next, modified examples (first to eighth modified examples) of the present embodiment will be described with reference to the drawings.
第1変形例の場合、図4に示されるように、転炉20内で生成されて、ガイド板42に接触して移動したスラグSは、排滓鍋30の底32に向けて流下し、排滓鍋30内に収容される。第1変形例は、上記の点以外、本実施形態と同様の構成とされている。第1変形例の場合、ガイド板42から流下したスラグSは、排滓鍋30の内周面34Aで受け取られない。しかしながら、第1変形例の場合、前述の第1~第3、第5及び第6の作用を奏する。 <First Modification>
In the case of the first modified example, as shown in FIG. 4, the slag S generated in the
第2変形例の場合、図5に示されるように、ガイド板42の下端42A2は、排滓鍋30内に配置されている。また、第2変形例の場合、ガイド板42は、支持部44に対して上下方向(又はガイド板42の傾斜方向)に移動可能に支持されている。そして、排滓鍋30内のスラグSの液面の高さが予め定められた高さとなったところで、ガイド板42は上方に移動されるようになっている。第2変形例は、上記の点以外、本実施形態と同様の構成とされている。第2変形例の場合、前述の第1~第6の作用を奏する。 <Second Modification>
In the case of the second modified example, as shown in FIG. 5, the
第3変形例の場合、図6に示されるように、ガイド板42は、支持部44が設けられている側に屈曲する屈曲部42Bを有する樋状とされている。そして、第3変形例の場合、ガイド板42の第1位置42A1に受け取られて移動したスラグSは、屈曲部42Bから排滓鍋30内に向けて流下される。ここで、屈曲部42Bは、第2位置の一例である。第3変形例は、上記の点以外、本実施形態と同様の構成とされている。第3変形例の場合、前述の第1~第6の作用を奏する。 <Third Modification>
In the case of the third modified example, as shown in FIG. 6, the
第4変形例の場合、図7に示されるように、ガイド板42は、支持部44が設けられている側と反対側に屈曲する屈曲部42Bを有する樋状とされている。そして、第4変形例の場合、ガイド板42の第1位置42A1に受け取られて移動したスラグSは、屈曲部42Bで移動方向が変更され下端42A2から排滓鍋30内に向けて流下される。ここで、下端42A2は、第2位置の一例である。第4変形例は、上記の点以外、本実施形態と同様の構成とされている。第4変形例の場合、前述の第1~第6の作用を奏する。なお、また、第4変形例における離間距離Lは、本実施形態(図1)及び他の変形例(図4、図6及び図9)の離間距離Lに比べて小さく図示されているが、実際には同等である。 <Fourth Modification>
In the case of the fourth modified example, as shown in FIG. 7, the
第5変形例の場合、図8に示されるように、ガイド板42におけるスラグSが接触する面42Cが正面視にてスラグSが接触する側に凸となる湾曲している。第5変形例は、上記の点以外、本実施形態と同様の構成とされている。第5変形例の場合、前述の第1~第6の作用を奏する。また、第5変形例における離間距離Lは、本実施形態(図1)及び他の変形例(図4、図6及び図9)の離間距離Lに比べて大きく図示されているが、実際には同等である。 <Fifth Modification>
In the case of the fifth modification, as shown in FIG. 8, the
第6変形例の場合、図9に示されるように、ガイド板42におけるスラグSが接触する面42Dが正面視にてスラグSが接触する側に凹となる湾曲している。第6変形例は、上記の点以外、本実施形態と同様の構成とされている。第6変形例の場合、前述の第1~第6の作用を奏する。 <Sixth Modification>
In the case of the sixth modification, as shown in FIG. 9, the
第7変形例の場合、図10に示されるように、ガイド部40が2つ備えられている。そして、第7変形例の場合、上方のガイド板42に接触して流下したスラグSが下方のガイド板42に接触して流下して、排滓鍋30内に収容される。第7変形例は、上記の点以外、本実施形態と同様の構成とされている。第7変形例の場合、前述の第1~第6の作用を奏する。 <Seventh Modification>
In the case of the seventh modified example, as shown in FIG. 10, two
第8変形例の場合、ガイド板42は、その傾斜角θが調整可能に構成されている。そして、第8変形例の場合、排滓鍋30内にスラグSが収容されている期間中、排滓鍋30内のスラグSの液面の高さが高くなってもスラグSが内周面34Aで受け取られるように、転炉20からのスラグSの流下が開始される前に、オペレータによりガイド板42の傾斜角θが調整される。第8変形例は、上記の点以外、本実施形態と同様の構成とされている。第8変形例の場合、前述の第1~第6の作用を奏する。 <Eighth Modification>
In the case of the eighth modification, the
次に、実施例及び比較例について説明する。 <Example>
Next, examples and comparative examples will be described.
実施例及び比較例の試験は、350t規模の上底吹き転炉(図1の転炉20)において、脱珪及び脱燐処理の後のスラグSの流下中に実施した。転炉20内にスクラップ(図示省略)及び溶鉄(図示省略)を装入した後、溶鉄の量及びSi濃度、リサイクルしたスラグSの量及びその組成に応じて、スラグSが所定の塩基度となるように生石灰等の副原料を投入して溶鉄の脱珪及び脱燐処理を行った。なお、共通条件のばらつきによる評価への影響をほぼ無視できる程度に、極力条件を揃えるようにしており、脱珪及び脱燐処理の後の転炉20内のスラグSの量は約20tであった。脱珪及び脱燐処理の後に溶鉄Fを転炉20内に残したまま転炉20を傾けて炉口(開口22)から上層のスラグSを下方に配置した排滓鍋30に収容させた。スラグSの流下中は排滓鍋30からフォーミングしたスラグSが溢出しないようにフォーミングの鎮静の状況を監視しながら、転炉20の傾き動作、台車50の位置をオペレータが手動で制御して行った。また、フォーミングしたスラグSが排滓鍋30から溢出しそうになった場合は、オペレータの判断で鎮静材Mを排滓鍋30内に投入した。排滓鍋30に投入した鎮静材Mは、安価な有機物系の熱分解物質である製紙スラッジ(図示省略)と安価な比重調整のための物質である製鋼スラグ(図示省略)とを混合して成型したものを用いた。ここで、製鋼スラグへの鎮静材Mの投入量は投入操作1回につき約50kgとした。その際、ガイド板42の有無、ガイド板42の傾斜、ガイド板42の下端42A2と排滓鍋30の上端との上下方向の離間距離L、排滓鍋30へのスラグSの流下位置、ガイド板42への鎮静材Mの添加有無等の条件を変更し、排滓量、排滓時間を評価した。 <Common conditions>
The tests of the examples and the comparative examples were performed in the 350 t scale top-bottom blowing converter (
各水準の条件及び各結果を図11の表に示す。 <Uncommon conditions and results>
The conditions of each level and the results are shown in the table of FIG.
なぜなら、排滓したスラグが排滓鍋内でのフォーミングにより溢出してしまうおそれがある点では、脱珪処理と脱燐処理のうち一方のみを行った後や、脱炭処理のみを行った後に転炉20の開口22(炉口)から排滓をする場合も、脱珪及び脱燐処理を行った後の排滓と同様であるからである。 Although the waste in the above embodiment has been described as waste after desiliconization and dephosphorization in the
This is because, after the slag that has been discharged may overflow due to forming in the discharge pan, after performing only one of the desiliconization process and the dephosphorization process, or after performing only the decarburization process. This is because the discharge from the opening 22 (furnace port) of the
本明細書からは、少なくとも以下の(1)~(11)までの態様が概念化される。
(1)
脱珪、脱燐又は脱炭のうち少なくとも1つの処理を転炉内で行った後に前記転炉を傾けることで、溶鉄を前記転炉内に残したまま、上層のフォーミングしたスラグを前記転炉の炉口から接触部材の第1位置に流下させ、
前記第1位置から、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされた位置である第2位置まで、前記接触部材に接触しつつ移動した前記スラグを前記第2位置から流下させ、
前記第2位置から流下した前記スラグを、前記転炉の下方に配置された鍋内に収容させる、
排滓方法。
(2)
前記接触部材は、前記転炉の側方に設けられた作業床に固定されており、
前記第2位置は、前記作業床よりも下方に位置している、
(1)に記載の排滓方法。
(3)
前記接触部材の傾斜角は、5°以上20°以下である、
(1)又は(2)に記載の排滓方法。
(4)
前記鍋の上端から前記第2位置までの上下方向の離間距離は、1m以内である、
(1)~(3)の何れか1項に記載の排滓方法。
(5)
前記第2位置から流下した前記スラグを前記鍋内に収容させる際、前記スラグを前記鍋の内周面で受け取らせる、
(1)~(4)の何れか1項に記載の排滓方法。
(6)
前記接触部材に接触して流下した前記スラグを前記鍋の前記内周面で受け取らせるように、前記鍋の横方向の位置及び前記接触部材の姿勢の少なくとも一方を調整してから、前記スラグを前記鍋内に収容させる、
(5)に記載の排滓方法。
(7)
前記接触部材を移動している前記スラグに鎮静材を添加する、
(1)~(6)の何れか1項に記載の排滓方法。
(8)
(1)~(7)の何れか1項に記載の排滓方法により前記鍋内に収容した前記スラグを排出して冷却する、
スラグの製造方法。
(9)
転炉を傾けることで前記転炉の炉口から流下するスラグに接触する面が形成された接触部材であって、前記炉口から流下した前記スラグを前記面の第1位置で受け取って、前記面に沿って移動した前記スラグを、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる位置である第2位置から鍋内に流下させる接触部材、
を備えた流下スラグのエネルギー減衰構造。
(10)
前記接触部材は、前記鍋の上端から前記第2位置までの上下方向の離間距離が1m以内になるように、配置されている、
(10)記載の流下スラグのエネルギー減衰構造。
(11)
前記面に沿って移動している前記スラグに鎮静材を添加する添加部、
をさらに備えた(9)又は(10)に記載の流下スラグのエネルギー減衰構造。 ≪Appendix≫
From this specification, at least the following aspects (1) to (11) are conceptualized.
(1)
By tilting the converter after performing at least one of desiliconization, dephosphorization, and decarburization in the converter, the upper layer formed slag is left in the converter while leaving the molten iron in the converter. Flow down from the furnace port to the first position of the contact member,
The contact member moved from the first position to a second position that is shifted from the first position in the lateral direction perpendicular to the vertical direction and that is positioned below the first position. Causing the slag to flow down from the second position;
The slag flowing down from the second position is accommodated in a pan disposed below the converter,
Exclusion method.
(2)
The contact member is fixed to a work floor provided on the side of the converter,
The second position is located below the work floor,
The exclusion method as described in (1).
(3)
The inclination angle of the contact member is 5 ° or more and 20 ° or less,
The exclusion method according to (1) or (2).
(4)
The vertical distance from the upper end of the pan to the second position is within 1 m.
(1) The elimination method according to any one of (3).
(5)
When the slag flowing down from the second position is accommodated in the pan, the slag is received by the inner peripheral surface of the pan.
(1) The elimination method according to any one of (4).
(6)
After adjusting at least one of the lateral position of the pan and the posture of the contact member so that the slag flowing down in contact with the contact member is received by the inner peripheral surface of the pan, the slag is adjusted. Accommodate in the pan,
The exclusion method as described in (5).
(7)
Adding a sedative to the slag moving the contact member;
(1) The elimination method according to any one of (6).
(8)
(1) to (7) to discharge and cool the slag contained in the pan by the draining method according to any one of
A method for producing slag.
(9)
A contact member formed with a surface in contact with the slag flowing down from the furnace port of the converter by tilting the converter, the slag flowing down from the furnace port is received at a first position of the surface, Contact that causes the slag that has moved along the surface to flow down into the pan from the second position, which is shifted from the first position in the lateral direction perpendicular to the vertical direction and below the first position. Element,
The energy damping structure of the falling slag with
(10)
The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m.
(10) The energy attenuation structure of the flowing-down slag as described above.
(11)
An additive part for adding a sedative to the slag moving along the surface;
The energy attenuation structure of the falling slag according to (9) or (10), further comprising:
<1>
転炉内の溶銑を脱珪及び脱燐して生成されたスラグを前記転炉の下方に配置された部材の第1位置に流下させ、
前記第1位置に対し、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる第2位置まで前記部材に接触しつつ移動してエネルギーが減衰された前記スラグを前記第2位置から流下させ、
前記第2位置から流下したスラグを、前記部材の下方に配置された鍋内に収容させる、
排滓方法。
<2>
前記鍋の上端から前記第2位置までの上下方向の離間距離を1m以内にして、前記第2位置から流下したスラグを前記鍋内に収容させる、
<1>に記載の排滓方法。
<3>
前記部材に接触して流下したスラグを前記鍋の内周面で受け取らせて、前記鍋内にスラグを収容させる、
<1>又は<2>に記載の排滓方法。
<4>
前記部材に接触して流下したスラグを前記鍋の内周面で受け取らせるように、前記鍋の横方向の位置及び前記部材の姿勢の少なくとも一方を調整してから、スラグを前記鍋内に収容させる、
<3>に記載の排滓方法。
<5>
前記部材を移動しているスラグに鎮静材を添加して、前記第2位置から前記鎮静材が添加されたスラグを前記鍋内に流下させる、
<1>~<4>の何れか1項に記載の排滓方法。
<6>
<1>~<5>の何れか1項に記載の排滓方法により前記鍋内に収容したスラグを排出して冷却する、
スラグの製造方法。
<7>
転炉から流下して鍋内に収容されるスラグに接触する面が形成された接触部材であって、転炉から流下したスラグを前記面の第1位置で受け取って、前記面に沿って移動したスラグを、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる第2位置から鍋内に流下させる接触部材、
を備えた流下スラグのエネルギー減衰構造。
<8>
前記接触部材は、前記鍋の上端から前記第2位置までの上下方向の離間距離が1m以内になるように、配置されている、
<7>記載の流下スラグのエネルギー減衰構造。
<9>
前記面に沿って移動しているスラグに鎮静材を添加する添加部、
を備えた<7>又は<8>に記載のエネルギー減衰構造。 In addition, from this specification, at least the following other aspects from <1> to <9> are conceptualized.
<1>
The slag generated by desiliconizing and dephosphorizing the hot metal in the converter is caused to flow down to a first position of a member disposed below the converter,
Energy is attenuated by moving while contacting the member to a second position that is shifted from the first position in the lateral direction perpendicular to the up-down direction and below the first position. Flowing down the slag from the second position;
The slag flowing down from the second position is accommodated in a pan disposed below the member.
Exclusion method.
<2>
The vertical distance from the upper end of the pan to the second position is within 1 m, and the slag flowing down from the second position is accommodated in the pan.
The exclusion method as described in <1>.
<3>
The slag flowing down in contact with the member is received by the inner peripheral surface of the pan, and the slag is accommodated in the pan.
<1> or the exclusion method as described in <2>.
<4>
The slag is accommodated in the pan after adjusting the horizontal position of the pan and the posture of the member so that the slag flowing down in contact with the member is received by the inner peripheral surface of the pan. Let
The exclusion method as described in <3>.
<5>
Adding a sedative to the slag moving the member, and flowing the slag with the sedative added from the second position into the pan,
The exclusion method according to any one of <1> to <4>.
<6>
<1> to <5> The slag contained in the pan is discharged and cooled by the evacuation method according to any one of <5>,
A method for producing slag.
<7>
A contact member formed with a surface that contacts the slag that flows down from the converter and is accommodated in the pan, receives the slag that flows from the converter at the first position of the surface, and moves along the surface A contact member that causes the slag to flow down into the pan from a second position that is shifted from the first position in a lateral direction perpendicular to the vertical direction and is lower than the first position;
The energy damping structure of the falling slag with
<8>
The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m.
<7> The energy attenuating structure of the downflow slag as described.
<9>
An addition part for adding a sedative to the slag moving along the surface,
<7> or <8> comprising the energy attenuating structure according to <8>.
本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The disclosure of Japanese Patent Application No. 2016-014686 filed on Jan. 28, 2016 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.
Claims (11)
- 脱珪、脱燐又は脱炭のうち少なくとも1つの処理を転炉内で行った後に前記転炉を傾けることで、溶鉄を前記転炉内に残したまま、上層のフォーミングしたスラグを前記転炉の炉口から接触部材の第1位置に流下させ、
前記第1位置から、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされた位置である第2位置まで、前記接触部材に接触しつつ移動した前記スラグを前記第2位置から流下させ、
前記第2位置から流下した前記スラグを、前記転炉の下方に配置された鍋内に収容させる、
排滓方法。 By tilting the converter after performing at least one of desiliconization, dephosphorization, and decarburization in the converter, the upper layer formed slag is left in the converter while leaving the molten iron in the converter. Flow down from the furnace port to the first position of the contact member,
The contact member moved from the first position to a second position that is shifted from the first position in the lateral direction perpendicular to the vertical direction and that is positioned below the first position. Causing the slag to flow down from the second position;
The slag flowing down from the second position is accommodated in a pan disposed below the converter,
Exclusion method. - 前記接触部材は、前記転炉の側方に設けられた作業床に固定されており、
前記第2位置は、前記作業床よりも下方に位置している、
請求項1に記載の排滓方法。 The contact member is fixed to a work floor provided on the side of the converter,
The second position is located below the work floor,
The exclusion method according to claim 1. - 前記接触部材の傾斜角は、5°以上20°以下である、
請求項1又は請求項2に記載の排滓方法。 The inclination angle of the contact member is 5 ° or more and 20 ° or less,
The exclusion method according to claim 1 or claim 2. - 前記鍋の上端から前記第2位置までの上下方向の離間距離は、1m以内である、
請求項1~請求項3の何れか1項に記載の排滓方法。 The vertical distance from the upper end of the pan to the second position is within 1 m.
The exclusion method according to any one of claims 1 to 3. - 前記第2位置から流下した前記スラグを前記鍋内に収容させる際、前記スラグを前記鍋の内周面で受け取らせる、
請求項1~請求項4の何れか1項に記載の排滓方法。 When the slag flowing down from the second position is accommodated in the pan, the slag is received by the inner peripheral surface of the pan.
The exclusion method according to any one of claims 1 to 4. - 前記接触部材に接触して流下した前記スラグを前記鍋の前記内周面で受け取らせるように、前記鍋の横方向の位置及び前記接触部材の姿勢の少なくとも一方を調整してから、前記スラグを前記鍋内に収容させる、
請求項5に記載の排滓方法。 After adjusting at least one of the lateral position of the pan and the posture of the contact member so that the slag flowing down in contact with the contact member is received by the inner peripheral surface of the pan, the slag is adjusted. Accommodate in the pan,
The exclusion method according to claim 5. - 前記接触部材を移動している前記スラグに鎮静材を添加する、
請求項1~6の何れか1項に記載の排滓方法。 Adding a sedative to the slag moving the contact member;
The exclusion method according to any one of claims 1 to 6. - 請求項1~7の何れか1項に記載の排滓方法により前記鍋内に収容した前記スラグを排出して冷却する、
スラグの製造方法。 The slag contained in the pan is discharged and cooled by the draining method according to any one of claims 1 to 7.
A method for producing slag. - 転炉を傾けることで前記転炉の炉口から流下するスラグに接触する面が形成された接触部材であって、前記炉口から流下した前記スラグを前記面の第1位置で受け取って、前記面に沿って移動した前記スラグを、上下方向に直交する横方向において前記第1位置とずれ、かつ、前記第1位置よりも下方とされる位置である第2位置から鍋内に流下させる接触部材、
を備えた流下スラグのエネルギー減衰構造。 A contact member formed with a surface in contact with the slag flowing down from the furnace port of the converter by tilting the converter, the slag flowing down from the furnace port is received at a first position of the surface, Contact that causes the slag that has moved along the surface to flow down into the pan from the second position, which is shifted from the first position in the lateral direction perpendicular to the vertical direction and below the first position. Element,
The energy damping structure of the falling slag with - 前記接触部材は、前記鍋の上端から前記第2位置までの上下方向の離間距離が1m以内になるように、配置されている、
請求項9記載の流下スラグのエネルギー減衰構造。 The contact member is arranged such that a vertical distance from the upper end of the pan to the second position is within 1 m.
The energy attenuating structure of the falling slag according to claim 9. - 前記面に沿って移動している前記スラグに鎮静材を添加する添加部、
をさらに備えた請求項9又は10に記載の流下スラグのエネルギー減衰構造。 An additive part for adding a sedative to the slag moving along the surface;
The energy attenuation structure of the falling slag according to claim 9 or 10, further comprising:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780002581.4A CN107849626B (en) | 2016-01-28 | 2017-01-19 | Slag discharging method, method for manufacturing slag, and energy attenuation structure of flowing-down slag |
JP2017564203A JP6589998B2 (en) | 2016-01-28 | 2017-01-19 | Exhaust method, manufacturing method of slag, and energy damping structure of flowing slag |
KR1020187002598A KR20180019745A (en) | 2016-01-28 | 2017-01-19 | Disposal method, manufacturing method of slag and energy damping structure of slag |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016014686 | 2016-01-28 | ||
JP2016-014686 | 2016-01-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017130837A1 true WO2017130837A1 (en) | 2017-08-03 |
Family
ID=59397777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001784 WO2017130837A1 (en) | 2016-01-28 | 2017-01-19 | Slag removal method, slag production method, and structure for attenuating energy of falling slag |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6589998B2 (en) |
KR (1) | KR20180019745A (en) |
CN (1) | CN107849626B (en) |
WO (1) | WO2017130837A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019208303A1 (en) * | 2018-04-24 | 2019-10-31 | 日本製鉄株式会社 | Method for killing foaming of discharged slag, and refining facility using said method |
CN110592310A (en) * | 2019-09-04 | 2019-12-20 | 北京首钢国际工程技术有限公司 | Movable slag trap device under converter |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177114A (en) * | 1986-01-29 | 1987-08-04 | Nippon Kokan Kk <Nkk> | Tapping method for molten steel |
JPH0770626A (en) * | 1993-07-05 | 1995-03-14 | Nippon Steel Corp | Converter steel making method |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2582692B2 (en) * | 1991-11-16 | 1997-02-19 | 新日本製鐵株式会社 | Converter steelmaking method |
WO1995001458A1 (en) * | 1993-06-30 | 1995-01-12 | Nippon Steel Corporation | Steel manufacturing method using converter |
JP4907411B2 (en) * | 2007-04-06 | 2012-03-28 | 新日本製鐵株式会社 | Slag sedation method |
JP4580434B2 (en) * | 2008-05-09 | 2010-11-10 | 新日本製鐵株式会社 | Slag forming sedative material and method |
JP4580435B2 (en) * | 2008-05-27 | 2010-11-10 | 新日本製鐵株式会社 | Forming sedative material for slag pan and sedation method |
CN102450909A (en) * | 2010-11-02 | 2012-05-16 | 张联合 | Defoaming beer glass |
CN202436717U (en) * | 2012-01-12 | 2012-09-19 | 韩时雨 | Foaming-resistant beer cup during beer pouring |
CN102885546A (en) * | 2012-09-05 | 2013-01-23 | 苏州萃智新技术开发有限公司 | Beer glass |
CN104480244B (en) * | 2014-12-18 | 2017-06-20 | 首钢水城钢铁(集团)有限责任公司 | A kind of method for reducing iron-holder in converter smelting endpoint slag |
-
2017
- 2017-01-19 JP JP2017564203A patent/JP6589998B2/en active Active
- 2017-01-19 CN CN201780002581.4A patent/CN107849626B/en not_active Expired - Fee Related
- 2017-01-19 WO PCT/JP2017/001784 patent/WO2017130837A1/en active Application Filing
- 2017-01-19 KR KR1020187002598A patent/KR20180019745A/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177114A (en) * | 1986-01-29 | 1987-08-04 | Nippon Kokan Kk <Nkk> | Tapping method for molten steel |
JPH0770626A (en) * | 1993-07-05 | 1995-03-14 | Nippon Steel Corp | Converter steel making method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019208303A1 (en) * | 2018-04-24 | 2019-10-31 | 日本製鉄株式会社 | Method for killing foaming of discharged slag, and refining facility using said method |
JPWO2019208303A1 (en) * | 2018-04-24 | 2020-12-10 | 日本製鉄株式会社 | Forming sedation method for discharged slag and refining equipment used for this |
CN110592310A (en) * | 2019-09-04 | 2019-12-20 | 北京首钢国际工程技术有限公司 | Movable slag trap device under converter |
Also Published As
Publication number | Publication date |
---|---|
CN107849626B (en) | 2020-02-21 |
JP6589998B2 (en) | 2019-10-16 |
JPWO2017130837A1 (en) | 2018-04-12 |
KR20180019745A (en) | 2018-02-26 |
CN107849626A (en) | 2018-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6589998B2 (en) | Exhaust method, manufacturing method of slag, and energy damping structure of flowing slag | |
JP5691207B2 (en) | Refining vessel for desulfurization treatment of hot metal and desulfurization treatment method | |
CN111712585B (en) | Foaming and calming method for discharging slag and refining equipment for same | |
JP5195737B2 (en) | Hot metal desulfurization method | |
JP6477333B2 (en) | Slag forming suppression method | |
JPWO2018150862A1 (en) | Slag-forming sedative material, slag-forming sedative method, and converter blowing method | |
JP2015218390A (en) | Desulfurization method of molten pig iron using combination of mechanical stirring and gas stirring | |
JP5401938B2 (en) | Hot metal desulfurization method | |
JP6848437B2 (en) | Desulfurization method and desulfurization equipment for molten steel | |
JP6416634B2 (en) | Desiliconization and desulfurization methods in hot metal ladle | |
JP5085094B2 (en) | Continuous refining method of blast furnace cast floor | |
JP6238019B2 (en) | Hot metal desulfurization method with less recuperation | |
KR101602835B1 (en) | Processing apparatus for molten metal and the method thereof | |
JP2014177674A (en) | Agitator for refinery and method of refining molten iron | |
JP6052436B2 (en) | Method for preventing hot metal after desulphurization | |
JP5078319B2 (en) | Continuous refining method | |
JP7457236B2 (en) | Slag forming sedation method | |
JP6289204B2 (en) | Desiliconization and desulfurization methods in hot metal ladle | |
JP5085096B2 (en) | Continuous refining method of blast furnace cast floor and blast furnace cast floor equipment | |
JP5949637B2 (en) | Method for preventing hot metal after desulphurization | |
JP6790796B2 (en) | Vacuum degassing equipment | |
JP4403055B2 (en) | Steelmaking slag treatment method | |
WO2018146754A1 (en) | Method for controlling slag foaming | |
JP5341583B2 (en) | Dephosphorization slag outflow prevention method | |
JP2020007590A (en) | Hot metal desiliconization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17744067 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017564203 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187002598 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17744067 Country of ref document: EP Kind code of ref document: A1 |