WO2017130499A1 - Device and method - Google Patents

Device and method Download PDF

Info

Publication number
WO2017130499A1
WO2017130499A1 PCT/JP2016/082166 JP2016082166W WO2017130499A1 WO 2017130499 A1 WO2017130499 A1 WO 2017130499A1 JP 2016082166 W JP2016082166 W JP 2016082166W WO 2017130499 A1 WO2017130499 A1 WO 2017130499A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
wireless communication
unit
resource
external device
Prior art date
Application number
PCT/JP2016/082166
Other languages
French (fr)
Japanese (ja)
Inventor
大輝 松田
亮太 木村
寿之 示沢
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to SG11201805360RA priority Critical patent/SG11201805360RA/en
Priority to EP16888084.7A priority patent/EP3410660A4/en
Priority to US16/067,762 priority patent/US11128431B2/en
Priority to MX2018008858A priority patent/MX2018008858A/en
Priority to RU2018126584A priority patent/RU2719404C2/en
Publication of WO2017130499A1 publication Critical patent/WO2017130499A1/en
Priority to ZA2018/04064A priority patent/ZA201804064B/en
Priority to US17/478,971 priority patent/US11706072B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/26265Arrangements for sidelobes suppression specially adapted to multicarrier systems, e.g. spectral precoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26414Filtering per subband or per resource block, e.g. universal filtered multicarrier [UFMC] or generalized frequency division multiplexing [GFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided

Definitions

  • the present disclosure relates to an apparatus and a method.
  • Radio resources for example, resource blocks
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • radio resources for example, resource blocks
  • OFDMA or SC-FDMA a part of the frequency band (OOB: Out Of Band) that is not used for data transmission is used to reduce the power leaked to the adjacent system. It may be used as a guard band.
  • OFDMA or SC-FDMA a part of the frequency band (OOB: Out Of Band) that is not used for data transmission is used to reduce the power leaked to the adjacent system. It may be used as a guard band.
  • Patent Literature 1 discloses an example of a wireless communication system that uses a part of a frequency band as a guard band.
  • New Waveform technology is a technology that cuts leakage power and improves frequency utilization efficiency by applying a filter to the transmission signal waveform.
  • the filter can be applied in a more suitable manner depending on the transmission / reception environment and use case.
  • the present disclosure proposes an apparatus and a method that can apply a filter for improving frequency utilization efficiency in a more preferable manner.
  • control information related to a resource to which a filter for limiting the width of a guard band out of a frequency band used for wireless communication and a communication unit that performs wireless communication is transmitted via the wireless communication.
  • a control unit that controls to be transmitted to the external device is transmitted via the wireless communication.
  • control information related to a resource to which a filter for limiting the width of a guard band out of a frequency band used for wireless communication and a communication unit that performs wireless communication is transmitted to the wireless communication.
  • an acquisition unit for acquiring from an external device is transmitted to the wireless communication.
  • the filter is And a control unit that controls the transmission data applied to the transmission data to be transmitted to the external device via the wireless communication.
  • control information related to resources for performing wireless communication and a resource to which a processor applies a filter for limiting a guard band width among frequency bands used for the wireless communication is the wireless communication.
  • Controlling to be transmitted to an external device via communication; A method is provided comprising:
  • control information regarding resources for performing wireless communication and a resource to which a processor applies a filter for limiting the width of a guard band among frequency bands used for the wireless communication is provided. Obtaining from an external device via communication.
  • an apparatus and a method that can apply a filter for improving frequency use efficiency in a more preferable manner.
  • FIG. 2 is an explanatory diagram for describing an example of a schematic configuration of a system according to an embodiment of the present disclosure.
  • FIG. It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment.
  • FIGS. 1 and 2. are explanatory diagrams for explaining the outline of the New Waveform technology.
  • FIG. 1 shows an example of a frequency domain power spectrum of a transmission signal when OFDMA is applied.
  • the horizontal axis indicates the frequency band in the subcarrier
  • the vertical axis indicates the transmission power.
  • the frequency band indicated by the reference symbol W11 indicates the frequency band used for data transmission (except for the NULL subcarrier), and the other frequency bands are OOB (Out Of Band) not used for data transmission.
  • OOB Out Of Band
  • at least a part of the frequency band of the OOB may be provided as a guard band for reducing power leaking to the adjacent system.
  • the guard band when the guard band is not provided, the power is attenuated to about ⁇ 20 dB to ⁇ 30 dB by providing the guard band even when the power of the subcarrier with the largest power in the OOB is about ⁇ 10 dB. It becomes possible to make it.
  • LTE / LTE-A reduces interference caused by leakage power to adjacent systems by providing guard bands on both sides of the frequency band used for data transmission.
  • the guard band uses a part of the frequency band as an unused band (that is, it is not used for data transmission), the frequency use efficiency may be reduced.
  • the channel width is 20 MHz, approximately 2 MHz (1 MHz on one side) is assigned as a guard band, and in this case, the frequency utilization efficiency is reduced by about 10%.
  • the New Waveform technology is one of the technologies that can be expected to improve the frequency utilization efficiency. Is attracting attention.
  • New Waveform technology is a technology that cuts leakage power and improves frequency utilization efficiency by applying a filter to the transmission signal waveform.
  • FIG. 2 shows an example of a frequency domain power spectrum of the transmission signal when a Dorf Chebychev filter is applied to the transmission signal shown in FIG. 2 is the same as the example shown in FIG.
  • the waveform of the transmission signal before applying the filter that is, the waveform shown in FIG. 1 is also shown for reference.
  • the power applied to the OOB is reduced by applying the filter.
  • the New Waveform technology that is, applying a filter to the transmission signal
  • the OOB signal is attenuated, the frequency bandwidth used as a guard band is further limited, and thus the frequency It is expected to improve usage efficiency.
  • the type of filter applied to the transmission signal is not necessarily limited to the Dorf Chebyshev filter as shown in FIG.
  • a so-called Nyquist filter such as a root raised cosine filter may be applied as a filter for realizing the New Waveform technology.
  • the filter applied to the transmission signal is not necessarily limited to a single filter, and a filter applied from a plurality of filters may be adaptively selected.
  • the aforementioned Dorfchebyshev filter or root raised cosine filter may be selectively applied depending on the situation.
  • a filter for further limiting the frequency bandwidth used as a guard band is used as in the above-described filter unless otherwise specified. Shall be shown.
  • the New Waveform technology makes it possible to reduce the leakage power to the OOB by applying a filter (for example, a Dorf Chebyshev filter) to the transmission signal.
  • a filter for example, a Dorf Chebyshev filter
  • it is desirable that the filter is applied in a more suitable manner according to the transmission / reception environment and use case.
  • transmission / reception processing amount and filter application The characteristics of subsequent signals may be different. Therefore, for example, a method for determining a unit to which a filter is applied and a method for transmitting the determined unit to another device are important examination issues in supporting the New Waveform technology.
  • FIG. 3 is an explanatory diagram for describing an example of a schematic configuration of the system 1 according to an embodiment of the present disclosure.
  • the system 1 includes a wireless communication device 100 and a terminal device 200.
  • the terminal device 200 is also called a user.
  • the user may also be referred to as a UE.
  • the wireless communication device 100C is also called UE-Relay.
  • the UE here may be a UE defined in LTE or LTE-A, and the UE-Relay may be Prose UE to Network Relay as discussed in 3GPP, and more generally It may mean equipment.
  • the wireless communication device 100 is a device that provides a wireless communication service to subordinate devices.
  • the wireless communication device 100A is a base station of a cellular system (or mobile communication system).
  • the base station 100A performs wireless communication with a device (for example, the terminal device 200A) located inside the cell 10A of the base station 100A.
  • the base station 100A transmits a downlink signal to the terminal device 200A and receives an uplink signal from the terminal device 200A.
  • the base station 100A is logically connected to other base stations through, for example, an X2 interface, and can transmit and receive control information and the like.
  • the base station 100A is logically connected to a so-called core network (not shown) by, for example, an S1 interface, and can transmit and receive control information and the like. Note that communication between these devices can be physically relayed by various devices.
  • the radio communication device 100A shown in FIG. 3 is a macro cell base station, and the cell 10A is a macro cell.
  • the wireless communication devices 100B and 100C are master devices that operate the small cells 10B and 10C, respectively.
  • the master device 100B is a small cell base station that is fixedly installed.
  • the small cell base station 100B establishes a wireless backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200B) in the small cell 10B.
  • the wireless communication device 100B may be a relay node defined by 3GPP.
  • the master device 100C is a dynamic AP (access point).
  • the dynamic AP 100C is a mobile device that dynamically operates the small cell 10C.
  • the dynamic AP 100C establishes a radio backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200C) in the small cell 10C.
  • the dynamic AP 100C may be, for example, a terminal device equipped with hardware or software that can operate as a base station or a wireless access point.
  • the small cell 10C in this case is a locally formed network (Localized Network / Virtual Cell).
  • the cell 10A may be operated in accordance with any wireless communication scheme such as LTE, LTE-A (LTE-Advanced), GSM (registered trademark), UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16, for example.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • GSM registered trademark
  • the small cell is a concept that can include various types of cells (for example, femtocells, nanocells, picocells, and microcells) that are smaller than the macrocells and that are arranged so as to overlap or not overlap with the macrocells.
  • the small cell is operated by a dedicated base station.
  • the small cell is operated by a terminal serving as a master device temporarily operating as a small cell base station.
  • So-called relay nodes can also be considered as a form of small cell base station.
  • a wireless communication device that functions as a master station of a relay node is also referred to as a donor base station.
  • the donor base station may mean a DeNB in LTE, and more generally may mean a parent station of a relay node.
  • Terminal device 200 The terminal device 200 can communicate in a cellular system (or mobile communication system).
  • the terminal device 200 performs wireless communication with a wireless communication device (for example, the base station 100A, the master device 100B, or 100C) of the cellular system.
  • a wireless communication device for example, the base station 100A, the master device 100B, or 100C
  • the terminal device 200A receives a downlink signal from the base station 100A and transmits an uplink signal to the base station 100A.
  • the present technology is not limited to the example illustrated in FIG.
  • a configuration of the system 1 a configuration that does not include a master device, an SCE (Small Cell Enhancement), a HetNet (Heterogeneous Network), an MTC (Machine Type Communication) network, or the like may be employed.
  • SCE Small Cell Enhancement
  • HetNet Heterogeneous Network
  • MTC Machine Type Communication
  • FIG. 4 is a block diagram illustrating an exemplary configuration of the base station 100 according to an embodiment of the present disclosure.
  • the base station 100 includes an antenna unit 110, a radio communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals.
  • the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • Storage unit 140 The storage unit 140 temporarily or permanently stores a program for operating the base station 100 and various data.
  • Processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes a communication processing unit 151 and a notification unit 153.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • FIG. 5 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to the embodiment of the present disclosure.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • Storage unit 230 The storage unit 230 temporarily or permanently stores a program for operating the terminal device 200 and various data.
  • the processing unit 240 provides various functions of the terminal device 200.
  • the processing unit 240 includes an information acquisition unit 241, a communication processing unit 243, and a notification unit 245.
  • the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
  • FIGS. 6, 7, and 8A are explanatory diagrams for explaining an example of processing in the transmission device that supports the New Waveform technology.
  • a bit stream for example, a transport block
  • several processes such as CRC (Cyclic Redundancy Check) coding, FEC (Forward Error Correction) coding, rate matching and scrambling / interleaving as shown in FIG. ) Is performed, and then modulation is performed.
  • CRC Cyclic Redundancy Check
  • FEC Forward Error Correction
  • FIG. 7 layer mapping, power allocation, precoding, and resource element mapping are performed on the modulated bit stream, and a bit stream for each antenna element is output.
  • the bit stream for each antenna is divided into units determined on the basis of at least one of the size in the frequency direction and the time direction (in other words, the number of resources) with the resource element as a minimum unit. At this time, each unit includes one or more resource elements. Then, for each unit, filter processing for further limiting the frequency bandwidth used as a guard band is performed.
  • the unit corresponds to a unit to which a filter is applied (hereinafter also referred to as “filter application unit”).
  • filter application unit For example, in the example shown in FIG. 8A, each resource element constituting the resource block is divided into B units of 0 to B ⁇ 1, and processing related to the application of the filter is executed for each unit.
  • the bit stream for each antenna is subjected to IFFT or IDFT processing for each unit and then subjected to filter processing. The method for determining the application unit of the filter will be described later in detail.
  • bit streams for each unit subjected to the filter processing are added to each other, and after being added with a guard interval as necessary, conversion from digital to analog and RF (Radio Frequency) is performed. Transmitted from each antenna.
  • each process in the transmission apparatus mentioned above may be performed based on control by a predetermined control unit (for example, PHY Configuration Controller in the figure).
  • a predetermined control unit for example, PHY Configuration Controller in the figure.
  • FIG. 8B is an explanatory diagram for explaining an example of processing in a transmission device that supports the New Waveform technology, and shows an example of applying a filter in the frequency domain to a bit stream for each antenna.
  • the IFFT or IDFT process may be performed on the unit after the filtering process.
  • the subsequent processing is the same as the case of applying the filter in the time domain shown in FIG. 8A.
  • FIG. 9 is an explanatory diagram for explaining an example of processing in a receiving apparatus that supports the New Waveform technology.
  • Processing such as conversion and decoding is performed.
  • the reverse processing of the filter processing based on the New Waveform technology is performed during equalization and decoding.
  • a bit stream for example, a transport block
  • the detailed contents of the reception process will be separately described later together with the description of the received signal.
  • each process in the above-described receiving apparatus may be executed based on control by a predetermined control unit (for example, PHY Configuration Controller in the drawing).
  • a predetermined control unit for example, PHY Configuration Controller in the drawing.
  • the reception devices as the transmission targets and u, the number of transmission antennas in the transmitter for transmitting a signal to the receiving device to N t.
  • Each transmission antenna is also referred to as a “transmission antenna port”.
  • the transmission signal to the receiving device u can be expressed in a vector format as shown in (Equation 1) below.
  • N represents the FFT size length.
  • N f indicates the filter length, and B indicates the number of subbands to which the filter is applied.
  • N t represents the number of transmission antennas, and N SS represents the number of spatial transmission streams.
  • vector S u, b is a spatial stream signal of subband b in receiving apparatus u.
  • Each element of the vector S u, b basically corresponds to a digital modulation symbol such as PSK or QAM.
  • W u, b is a precoding matrix for subband b of receiving apparatus u.
  • P u, b is a power allocation coefficient matrix in subband b of receiving apparatus u.
  • each element of the matrix P u, b is preferably a positive real number.
  • the matrix P u, b may be a so-called diagonal matrix (that is, a matrix in which components other than the diagonal component are zero).
  • the matrix P u, b is expressed as (Equation 3) shown below.
  • the scalar value P u, b may be used instead of the matrix P u, b .
  • the vector F is an FFT matrix of size N
  • the vector G u, b is a linear convolution matrix of a filter applied to the subband b of the receiving device u.
  • the vector ⁇ u, b corresponds to insertion of a guard interval (GI) section.
  • I N in ⁇ u, b is a unit matrix of size N
  • N GI is the section length of the guard interval.
  • L h indicates the number of transmission path paths.
  • the matrices hu, nt, and nr are channel response matrices between the transmission antenna n t and the reception antenna n r . Note that each element of the matrix hu, nt, nr is basically a complex number.
  • the vectors n u and nr indicate the noise of the receiving antenna n r of the receiving device u. Note that the noise n u, nr includes, for example, thermal noise and interference from other systems other than the system that is the subject of the present disclosure. Note that the average power of noise is represented by ⁇ n, u 2 .
  • the above-described received signals ru, nt, nr correspond to signals to which the above-described filters Gu, b are applied. Therefore, in the process of performing DFT / FFT and equalization and decoding processes on the received signals ru, nt, and nr , the reverse process of the process of applying the filter Gu, b described above is performed.
  • the receiving device u when processing the DFT / FFT for the received signals ru, nt, nr (that is, at the time of OFDM decoding), in addition to the IFFT size at the time of transmission processing, It is necessary to consider the size of the delay.
  • the receiving apparatus u is, for example, the received signal r u, nt, by implementing the zero-padding since the end of nr, the received signal r u, nt, signal length of nr is adjusted to be 2N.
  • the receiving apparatus u converts the received signal ru, nt, nr subjected to zero padding into a frequency domain signal by applying a DFT / FFT of size 2N, and the converted signal Apply 1/2 downsampling.
  • the signal length of the reception signal adjusted to 2N by performing zero padding is adjusted to N by 1/2 downsampling.
  • the receiving device u can decode the transmitted spatial stream signal by performing frequency domain equalization on the down-sampled received signal.
  • MMSE Minimum Mean Square Error
  • weights are conventionally generated in consideration of the channel matrix hu, nt, nr , the precoding matrix W u, b , and the noise power ⁇ n, u 2 .
  • equalization weights are created in consideration of the filter matrix Gu, b applied in the transmission signal processing in addition to the above. Will be.
  • the filter application unit (in other words, the above-described unit) of the filter for further limiting the frequency bandwidth used as the guard band is at least one of the frequency direction and the time direction with the resource element as the minimum unit. Is determined based on the size (in other words, the number of resources). More precisely, the application unit of the filter is determined with the minimum time-frequency unit used for transmission as the minimum unit to which the filter is applied.
  • one symbol on one subcarrier is defined as a resource element, and the application unit of the filter is determined with the resource element as a minimum unit.
  • the configuration of resource blocks (in other words, a method of dividing resource blocks into resource elements) assumes three cases as shown in FIGS. , Resource element sizes (that is, a band of one subcarrier and a symbol length of one symbol) are different. 10 to 12 are explanatory diagrams for explaining an example of the configuration of the resource block.
  • FIG. 10 shows an example of the configuration of a resource block when the number of symbols is 7 and the number of subcarriers is 12.
  • the band of one subcarrier is 15 kHz
  • FIG. 11 shows an example of a resource block configuration when the number of symbols is 6 and the number of subcarriers is 12.
  • the band of one subcarrier is 15 kHz
  • the symbol length of one symbol is 2560 Ts. That is, in the example shown in FIG. 11, the minimum unit to which the filter is applied is 15 kHz ⁇ 2560 Ts.
  • FIG. 12 shows an example of the configuration of the resource block when the number of symbols is 3 and the number of subcarriers is 24.
  • the band of one subcarrier is 7.5 kHz
  • the symbol length of one symbol is 5120 Ts. That is, in the example shown in FIG. 12, the minimum unit to which the filter is applied is 7.5 kHz ⁇ 5120 Ts.
  • the example described above is merely an example, and the application unit of the filter is not necessarily illustrated if the minimum time-frequency unit used for transmission is determined to be the minimum unit to which the filter is applied.
  • the present invention is not limited to the example described with reference to FIGS.
  • a plurality of sub-symbols are defined by further dividing one symbol.
  • 1 subcarrier ⁇ 1 subsymbol may be the minimum unit to which the filter is applied.
  • the application unit of the filter there are a case where a predetermined application unit is fixedly used (that is, a fixed case) and a case that can be changed according to the situation (that is, a variable case).
  • cases where the application unit of the filter is variable include a case where the application unit is determined semi-statically and a case where the application unit is dynamically determined. Therefore, in the following, each of the case where the filter application unit is fixed, the case where it is determined semi-statically, and the case where it is dynamically determined will be described in detail.
  • (A) Case of fixing application unit of filter First, a case of fixing the application unit of filter will be described.
  • the application unit of the filter is determined as a specification (for example, communication protocol, etc.), and the base station and the terminal device are configured for each unit based on the specification with respect to the transmission signal.
  • Apply a filter For example, Table 1 below shows an example of the setting (specification) of the filter application unit when LTE is taken as an example.
  • “Application Unit” indicates a unit to which a filter is applied, that is, corresponds to a filter application unit.
  • the example shown as Type 0 to 17 shows an example of the setting when the filter is applied over the entire bandwidth (Band Width) for each symbol (or for each sub-symbol).
  • the example shown as Type 18 to 20 shows an example in which the filter is applied in a finer unit in the frequency direction than the example shown as Type 0 to 17.
  • the information indicating the filter application unit as shown in Table 1 is stored in a storage area (for example, the storage unit 140 or the storage unit 230) that can be read by each of the base station and the terminal device. Good.
  • the base station may read information indicating the application unit of the filter from a predetermined storage area, and notify the terminal device of information related to the application unit according to the read result.
  • the information indicating the candidates for the application unit of the filter as shown in Table 2 is stored in a storage area (for example, the storage unit 140 or the storage unit 230) that can be read by each of the base station and the terminal device. It is good to leave.
  • the terminal device may recognize the candidate for the application unit of the filter by notifying the terminal device of information indicating the candidate for the application unit of the filter from the base station.
  • criteria for determining the application unit of the filter include the following examples. -System bandwidth-Feedback of communication quality from the terminal device-Retransmission request from the terminal device-Location information of the terminal device-Usage of the terminal device (requires communication quality from the terminal device) ⁇ Requests related to switching of application units of filters from terminal devices
  • the base station determines the application unit of the filter within the bandwidth that can be used by the system.
  • the base station can recognize the channel state based on the communication quality feedback from the terminal device, the base station can determine the application unit of the filter according to the recognition result of the channel state. Good. As a more specific example, when the channel state is deteriorated, it is assumed that the base station allocates a frequency with a better channel state to the terminal device. However, under conditions where the channel condition is degraded, the frequency with better channel condition is limited, and a range of usable frequencies may be assumed to be narrower. In such a case, the base station may narrow the frequency to be allocated to the terminal device, and may determine the filter application unit according to the frequency allocation. By such control, it becomes possible to suppress the reduction of the throughput of the terminal device and to secure a frequency that can be used by other terminal devices, and as a result, to improve the throughput of the entire system. .
  • the case where the application unit of the filter is determined based on the retransmission request of the terminal device and the position information of the terminal device is the same as the case where the application unit of the filter is determined based on the communication quality feedback from the terminal device.
  • the application unit of the filter is determined based on the communication quality feedback from the terminal device.
  • the base station can narrow the frequency to be allocated to the terminal device and determine the application unit of the filter according to the frequency allocation, as described above. Good.
  • the communication quality required by the terminal device is different.
  • the packet size may be small or the frequency band allocated to the terminal device may be relatively narrow, such as when the latency can be allowed There is.
  • the bucket size is larger or when low latency communication is required, it may be desirable to allocate a wider frequency band to the terminal device.
  • the base station determines a bandwidth of a frequency to be allocated to the terminal device in response to a request regarding communication quality from the terminal device (for example, QoS: Quality of Service), and The application unit of the filter may be determined according to the width.
  • the base station may switch the application unit of the filter according to the request.
  • the base station assigns a channel to the terminal device according to the state of the channel with the terminal device, the communication quality required by the terminal device, and the like.
  • the application unit of the filter may be determined.
  • the base station when the base unit determines the application unit of the filter (when switched), the base station notifies the terminal device of information regarding the determined application unit.
  • the information notified from the base station to the terminal includes, for example, information indicating the application unit of the filter itself (that is, the number of subcarriers or symbols to which the filter is applied) and the index value associated with the application unit. Etc.
  • the terminal device can recognize the applied unit after the switching based on the notification from the base station.
  • the terminal device can recognize the resource to which the filter is applied according to the applied unit of the filter after switching based on the notification from the base station.
  • the terminal device may determine an application unit of the filter. In this case, for example, the terminal device may notify the base station of information indicating the determined filter application unit as part of RRC Signaling or UCI (Uplink Control Information).
  • RRC Signaling or UCI (Uplink Control Information).
  • the base station determines the application unit based on a predetermined condition, that is, a predetermined criterion for determining the filter application unit.
  • a predetermined condition that is, a predetermined criterion for determining the filter application unit.
  • information for determining the application unit of the filter include the number of subcarriers to which the filter is applied and the number of symbols to which the filter is applied (or the number of subsymbols).
  • the criteria for determining the filter application unit the following examples can be given as in the case of determining the filter application unit quasi-statically. -System bandwidth-Feedback of communication quality from the terminal device-Retransmission request from the terminal device-Location information of the terminal device-Usage of the terminal device (requires communication quality from the terminal device) ⁇ Requests related to switching of application units of filters from terminal devices
  • the above-described filter application unit is quasi-statically determined. Similar to the case, the following examples are given. Notify as part of RRC Signaling (RRC Message) Notify as part of System Information Notify as part of DCI
  • the terminal device may determine the application unit of the filter. In this case, for example, the terminal device may notify the base station of information indicating the determined filter application unit as part of RRC Signaling or UCI (Uplink Control Information).
  • RRC Signaling or UCI (Uplink Control Information).
  • the terminal device can recognize the applied unit after the switching based on the notification from the base station.
  • the base station may switch the filter application unit for each data to be transmitted, but may determine the switchable timing and switch the filter application unit based on the determination result.
  • Examples of the timing at which the base station switches the filter application unit include the following examples. ⁇ Switching based on feedback on communication quality from terminal devices ⁇ Switching at predetermined timing (for example, every frame) ⁇ Switching at the timing of retransmission
  • the base station may determine the timing for switching the filter application unit based on the above-described conditions, and may switch the filter application unit at the timing based on the determination result.
  • the base station may notify the terminal device that it is possible to switch the application unit of the filter based on the determination result of the timing of switching the application unit of the filter.
  • the terminal device determines whether it is necessary to switch the filter application unit.
  • the terminal device determines that the switching of the filter application unit is necessary, the terminal device notifies the base station of a request for switching the filter application unit.
  • the base station may switch the application unit of the filter in response to a request from the terminal device.
  • Examples of the timing at which the terminal device requests the base station to switch the filter application unit include the following examples. ⁇ Notify when the measurement result of communication quality is below the threshold ⁇ Notify when a decoding error occurs
  • FIG. 13 is a flowchart illustrating an example of a flow of a series of processes related to determination of a filter application unit. In this description, it is assumed that the base station 100 determines a filter application unit.
  • the base station 100 determines whether or not to apply a filter for further limiting the frequency bandwidth used as a guard band to the transmission signal (S101). When it is determined that the filter is not applied (S101, NO), the base station 100 ends a series of processes related to determination of the filter application unit.
  • the base station 100 (communication processing unit 151) confirms the minimum unit to which the filter is applied (S103).
  • the minimum unit to which the filter is applied is as described above.
  • the base station 100 determines an application unit of the filter. Specifically, when the application unit of the filter is fixed (S105, YES), the base station 100 follows the application unit based on the specification (communication protocol) and the unit corresponding to the application unit for the transmission signal. A filter is applied every time (S107).
  • the base station 100 determines the filter application unit based on a predetermined condition. Select from predetermined candidates. Then, the base station 100 applies a filter for each unit corresponding to the selected filter application unit for the transmission signal.
  • the base station 100 (communication processing unit 151) dynamically determines the filter application unit based on a predetermined condition. Then, the base station 100 applies a filter for each unit corresponding to the determined filter application unit for the transmission signal.
  • FIG. 14 is a flowchart illustrating an example of a flow of a series of processes related to switching of application units of filters.
  • the base station 100 switches the application unit of the filter. That is, in the figure, the subject of processing indicated by reference numerals S201 to S205 and S213 is the base station 100, and the subject of processing indicated by reference numerals S207 to S211 is the terminal device 200.
  • the base station 100 (communication processing unit 151) checks whether or not it is the timing when the application unit of the filter can be switched (S201). When it is not the timing when the application unit of the filter can be switched (S201, NO), the application unit of the filter is not switched, and the series of processing ends.
  • the base station 100 (communication processing unit 151) confirms whether or not it is time to switch the application unit of the filter (S203). ). In the case where it is necessary to switch the application unit of the filter (S203, YES), the base station 100 (communication processing unit 151) determines the application unit of the filter based on a predetermined condition. Then, the base station 100 (notifying unit 153) notifies the terminal device 200 of information regarding the determined filter application unit (S213).
  • the base station 100 (notification unit 153) indicates that the filter application unit can be switched.
  • the device 200 is notified (S205).
  • the terminal device 200 determines whether or not to make a request for switching the filter application unit to the base station 100 based on a predetermined condition (S207). Note that if the terminal device 200 determines not to make a request for switching the filter application unit (S209, NO), the filter application unit is not switched, and the series of processing ends.
  • the terminal device 200 (notification unit 245) makes a request for switching the application unit of the filter to the base station 100. Notice.
  • the base station 100 (communication processing unit 151) determines a filter application unit based on a predetermined condition. Then, the base station 100 (notifying unit 153) notifies the terminal device 200 of information regarding the determined filter application unit (S213).
  • the terminal device 200 receives a notification of information related to a filter application unit from the base station 100. Accordingly, since the terminal device 200 (communication processing unit 243) can recognize the application unit of the filter applied to the signal transmitted from the base station 100, it is transmitted from the base station 100. It becomes possible to correctly decode the signal. Further, the terminal device 200 (information acquisition unit 241) may apply a filter to a signal to be transmitted to the base station 100 in application units corresponding to information notified from the base station 100. Thereby, the base station 100 can correctly decode the signal transmitted from the terminal device 200.
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
  • RRHs Remote Radio Heads
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 15 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 15, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example.
  • FIG. 15 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 15, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as illustrated in FIG. 15, and the plurality of RF circuits 827 may respectively correspond to a plurality of antenna elements, for example. 15 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the eNB 800 illustrated in FIG. 15 one or more components (the transmission processing unit 151 and / or the notification unit 153) included in the processing unit 150 described with reference to FIG. 4 are implemented in the wireless communication interface 825. Also good. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 4 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • the storage unit 140 may be implemented in the memory 822.
  • FIG. 16 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 16, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 16 shows an example in which the eNB 830 includes a plurality of antennas 840, but the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 15 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 16 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 16, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 16 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
  • one or more components included in the processing unit 150 described with reference to FIG. 4 include the wireless communication interface 855 and / or the wireless The communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 4 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • the storage unit 140 may be mounted in the memory 852.
  • FIG. 17 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG.
  • FIG. 17 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914.
  • the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 17 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 17 through a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the smartphone 900 illustrated in FIG. 17 one or more components (the information acquisition unit 241, the communication processing unit 243, and / or the notification unit 245) included in the processing unit 240 described with reference to FIG.
  • the communication interface 912 may be implemented. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919.
  • the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 5 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • the storage unit 230 may be mounted in the memory 902.
  • FIG. 18 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 18 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. 18 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 18 through a power supply line partially shown by a broken line in the figure. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be.
  • the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 5 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • the storage unit 230 may be implemented in the memory 922.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the information acquisition unit 241, the communication processing unit 243, and / or the notification unit 245.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the base station 100 notifies the terminal device 200 of control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for wireless communication is applied. To do. More specifically, the application unit of the filter is determined with the resource element as the minimum unit. And the information regarding the determined application unit of a filter is notified to the terminal device 200 from the base station 100, for example.
  • the transmission device transmits the filter based on control information related to a resource to which a filter for limiting the width of the guard band is applied. Applies to data (ie, transmitted signal). Then, the transmission device transmits the transmission data after applying the filter to the external device that is the transmission destination.
  • the resource in other words, the filter application unit
  • the filter can be applied to the transmission data in a more preferable manner, and as a result, the throughput of the entire system is expected to be improved.
  • a communication unit for performing wireless communication A control unit for controlling control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is transmitted to an external device via the wireless communication;
  • An apparatus comprising: (2) The control unit determines a unit to apply the filter using the resource as a minimum unit, and information related to the unit is transmitted to the external apparatus via the wireless communication as control information related to the resource.
  • the apparatus according to (1) which is controlled.
  • Equipment. (5) The apparatus according to (1), wherein the control unit determines a resource to which the filter is applied based on a predetermined condition. (6) The said control part is an apparatus as described in said (5) which determines the resource which applies the said filter from several preset candidates based on the said predetermined conditions. (7) The device according to (5) or (6), wherein the control unit determines a resource to which the filter is applied after receiving a request regarding the resource to which the filter is applied from the external device.
  • the control unit according to at least one of feedback of communication quality from the external device, retransmission request from the external device, location information of the external device, and request regarding communication quality from the external device
  • the apparatus according to any one of (5) to (7), wherein a resource to which a filter is applied is determined.
  • the device described. (10) The apparatus according to (2) or (3), wherein the control unit determines the unit to apply the filter based on a predetermined condition.
  • the apparatus determines the unit to apply the filter from a plurality of preset candidates based on the predetermined condition.
  • the said control part is an apparatus as described in said (10) or (11) which determines the said unit which applies the said filter after receiving the request regarding the said unit which applies the said filter from the said external device.
  • the control unit according to at least one of feedback of communication quality from the external device, retransmission request from the external device, location information of the external device, and request regarding communication quality from the external device
  • the apparatus according to any one of (10) to (12), wherein the unit to which a filter is applied is determined.
  • the control unit controls the information related to the timing of switching the unit to which the filter is applied to be transmitted to the external apparatus via the wireless communication.
  • An apparatus comprising: (16) The apparatus according to (15), further including a control unit configured to control so that a request regarding switching of a resource to which the filter is applied is transmitted to the external apparatus via the wireless communication according to a predetermined condition.
  • a communication unit for performing wireless communication Based on control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is applied, the filter is applied to transmission data, and the transmission data to which the filter is applied is A control unit for controlling to be transmitted to an external device via the wireless communication;
  • An apparatus comprising: (20) Doing wireless communication, The processor controls so that control information related to a resource to which a filter for limiting the width of a guard band out of the frequency band used for the wireless communication is transmitted to the external device via the wireless communication.
  • a processor acquires control information regarding a resource to which a filter for limiting a guard band width is used from among the frequency bands used for the wireless communication from an external device via the wireless communication; Including a method.
  • the processor applies the filter to transmission data based on control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is applied, and the filter to which the filter is applied Controlling transmission data to be transmitted to an external device via the wireless communication; Including a method.

Abstract

The present invention makes possible the application of a filter in a more suitable embodiment, said filter being for improving frequency usage efficiency. This device comprises a communication unit that performs wireless communication and a control device that provides control such that control information is transmitted to an external device via said wireless communication, said control information relating to a resource that applies a filter for limiting the width of a guard band within a frequency band that is used for said wireless communication.

Description

装置及び方法Apparatus and method
 本開示は、装置及び方法に関する。 The present disclosure relates to an apparatus and a method.
 LTE(Long Term Evolution)/LTE-A(Advanced)において採用されているOFDMA(Orthogonal Frequency-Division Multiple Access)及びSC-FDMA(Single-Carrier Frequency-Division Multiple Access)では、無線リソース(例えば、リソースブロック)は、重複なくユーザに割り当てられる。OFDMAやSC-FDMAが採用されている無線通信システムにおいては、データ伝送に使用されない帯域(OOB:Out Of Band)のうち、一部の周波数帯域を、隣接システムに漏洩する電力を軽減するためのガードバンドとして利用している場合がある。例えば、特許文献1には、一部の周波数帯域をガードバンドとして利用する無線通信システムの一例が開示されている。 In OFDMA (Orthogonal Frequency-Division Multiple Access) and SC-FDMA (Single-Carrier Frequency-Division Multiple Access) adopted in LTE (Long Term Evolution) / LTE-A (Advanced), radio resources (for example, resource blocks) ) Are assigned to users without duplication. In a wireless communication system employing OFDMA or SC-FDMA, a part of the frequency band (OOB: Out Of Band) that is not used for data transmission is used to reduce the power leaked to the adjacent system. It may be used as a guard band. For example, Patent Literature 1 discloses an example of a wireless communication system that uses a part of a frequency band as a guard band.
 また、近年では、LTE/LTE-Aに続く第5世代(5G)移動体通信システムの無線アクセス技術(Radio Access Technology:RAT)のうち、周波数利用効率の向上が期待できる技術の1つとして、New Waveform技術が注目されている。New Waveform技術は、送信信号波形にフィルタを適用することで、漏洩電力をカットし、周波数利用効率を向上させる技術である。New Waveform技術を適用することで、OOBの信号を減衰させ、ガードバンドとして使用される周波数帯域幅をより制限し、ひいては、周波数利用効率を向上させることが期待されている。 Also, in recent years, as one of the technologies that can be expected to improve the frequency utilization efficiency among the radio access technologies (RAT) of the fifth generation (5G) mobile communication systems following LTE / LTE-A, New Waveform technology is drawing attention. New Waveform technology is a technology that cuts leakage power and improves frequency utilization efficiency by applying a filter to the transmission signal waveform. By applying the New Waveform technology, it is expected that the OOB signal is attenuated, the frequency bandwidth used as a guard band is further limited, and thus the frequency utilization efficiency is improved.
特開2015-46901号公報Japanese Patent Laying-Open No. 2015-46901
 一方で、New Waveform技術をサポートする場合においては、送受信環境やユースケースに応じて、より好適な態様でフィルタを適用可能であることが望ましい場合がある。 On the other hand, when the New Waveform technology is supported, it may be desirable that the filter can be applied in a more suitable manner depending on the transmission / reception environment and use case.
 そこで、本開示では、周波数利用効率を向上させるためのフィルタを、より好適な態様で適用することが可能な、装置及び方法について提案する。 Therefore, the present disclosure proposes an apparatus and a method that can apply a filter for improving frequency utilization efficiency in a more preferable manner.
 本開示によれば、無線通信を行う通信部と、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報が、前記無線通信を介して外部装置に送信されるように制御する制御部と、を備える、装置が提供される。 According to the present disclosure, control information related to a resource to which a filter for limiting the width of a guard band out of a frequency band used for wireless communication and a communication unit that performs wireless communication is transmitted via the wireless communication. And a control unit that controls to be transmitted to the external device.
 また、本開示によれば、無線通信を行う通信部と、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報を、前記無線通信を介して外部装置から取得する取得部と、を備える、装置が提供される。 In addition, according to the present disclosure, control information related to a resource to which a filter for limiting the width of a guard band out of a frequency band used for wireless communication and a communication unit that performs wireless communication is transmitted to the wireless communication. And an acquisition unit for acquiring from an external device.
 また、本開示によれば、無線通信を行う通信部と、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報に基づき、前記フィルタを送信データに適用し、当該フィルタが適用された前記送信データが、前記無線通信を介して外部装置に送信されるように制御する制御部と、を備える、装置が提供される。 In addition, according to the present disclosure, based on control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for wireless communication and a communication unit that performs wireless communication is applied, the filter is And a control unit that controls the transmission data applied to the transmission data to be transmitted to the external device via the wireless communication.
 また、本開示によれば、無線通信を行うことと、プロセッサが、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報が、前記無線通信を介して外部装置に送信されるように制御することと、
 を含む、方法が提供される。
Further, according to the present disclosure, control information related to resources for performing wireless communication and a resource to which a processor applies a filter for limiting a guard band width among frequency bands used for the wireless communication is the wireless communication. Controlling to be transmitted to an external device via communication;
A method is provided comprising:
 また、本開示によれば、無線通信を行うことと、プロセッサが、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報を、前記無線通信を介して外部装置から取得することと、を含む、方法が提供される。 Also, according to the present disclosure, control information regarding resources for performing wireless communication and a resource to which a processor applies a filter for limiting the width of a guard band among frequency bands used for the wireless communication is provided. Obtaining from an external device via communication.
 また、本開示によれば、無線通信を行うことと、プロセッサが、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報に基づき、前記フィルタを送信データに適用し、当該フィルタが適用された前記送信データが、前記無線通信を介して外部装置に送信されるように制御することと、を含む、方法が提供される。 Further, according to the present disclosure, based on control information regarding resources to perform wireless communication and a resource to which a processor applies a filter for limiting a guard band width among frequency bands used for the wireless communication, Applying a filter to transmission data and controlling the transmission data to which the filter is applied to be transmitted to an external device via the wireless communication.
 以上説明したように本開示によれば、周波数利用効率を向上させるためのフィルタを、より好適な態様で適用することが可能な、装置及び方法が提供される。 As described above, according to the present disclosure, there is provided an apparatus and a method that can apply a filter for improving frequency use efficiency in a more preferable manner.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
New Waveform技術の概要について説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of New Waveform technology. New Waveform技術の概要について説明するための説明図である。It is explanatory drawing for demonstrating the outline | summary of New Waveform technology. 本開示の一実施形態に係るシステムの概略的な構成の一例について説明するための説明図である。2 is an explanatory diagram for describing an example of a schematic configuration of a system according to an embodiment of the present disclosure. FIG. 同実施形態に係る基地局の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. 同実施形態に係る端末装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment. New Waveform技術をサポートする送信装置における処理の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the process in the transmitter which supports New Waveform technology. New Waveform技術をサポートする送信装置における処理の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the process in the transmitter which supports New Waveform technology. New Waveform技術をサポートする送信装置における処理の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the process in the transmitter which supports New Waveform technology. New Waveform技術をサポートする送信装置における処理の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the process in the transmitter which supports New Waveform technology. New Waveform技術をサポートする受信装置における処理の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of the process in the receiver which supports New Waveform technology. リソースブロックの構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of a structure of a resource block. リソースブロックの構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of a structure of a resource block. リソースブロックの構成の一例について説明するための説明図である。It is explanatory drawing for demonstrating an example of a structure of a resource block. フィルタの適用単位の決定に係る一連の処理の流れの一例について示したフローチャートである。It is the flowchart shown about an example of the flow of a series of processes which concern on the determination of the application unit of a filter. フィルタの適用単位の切り替えに係る一連の処理の流れの一例について示したフローチャートである。It is the flowchart shown about an example of the flow of a series of processes concerning switching of the application unit of a filter. eNBの概略的な構成の第1の例を示すブロック図である。It is a block diagram which shows the 1st example of schematic structure of eNB. eNBの概略的な構成の第2の例を示すブロック図である。It is a block diagram which shows the 2nd example of schematic structure of eNB. スマートフォンの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a smart phone. カーナビゲーション装置の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a car navigation apparatus.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.はじめに
  1.1.New Waveform技術
  1.2.技術的課題
 2.構成例
  2.1.システムの構成例
  2.2.基地局の構成例
  2.3.端末装置の構成例
 3.技術的特徴
 4.応用例
  4.1.基地局に関する応用例
  4.2.端末装置に関する応用例
 5.むすび
The description will be made in the following order.
1. 1. Introduction 1.1. New Waveform technology 1.2. Technical issues Configuration example 2.1. System configuration example 2.2. Configuration example of base station 2.3. 2. Configuration example of terminal device Technical features 4. Application example 4.1. Application examples related to base stations 4.2. 4. Application examples related to terminal devices Conclusion
 <<1.はじめに>>
  <1.1.New Waveform技術>
 まず、図1及び図2を参照して、New Waveform技術の概要について説明する。図1及び図2は、New Waveform技術の概要について説明するための説明図である。
<< 1. Introduction >>
<1.1. New Waveform Technology>
First, an outline of the New Waveform technology will be described with reference to FIGS. 1 and 2. 1 and 2 are explanatory diagrams for explaining the outline of the New Waveform technology.
 LTEやLTE-Aにおいて採用されているOFDMA(Orthogonal Frequency-Division Multiple Access)及びSC-FDMA(Single-Carrier Frequency-Division Multiple Access)では、無線リソース(例えば、リソースブロック)は、重複なくユーザに割り当てられる。例えば、図1は、OFDMAが適用された場合の送信信号の周波数領域電力スペクトルの一例を示している。図1において、横軸は、サブキャリア内における周波数帯域を示しており、縦軸は、送信電力のパワーを示している。 In OFDMA (Orthogonal Frequency-Division Multiple Access) and SC-FDMA (Single-Carrier Frequency-Division Multiple Access) adopted in LTE and LTE-A, radio resources (for example, resource blocks) are allocated to users without duplication. It is done. For example, FIG. 1 shows an example of a frequency domain power spectrum of a transmission signal when OFDMA is applied. In FIG. 1, the horizontal axis indicates the frequency band in the subcarrier, and the vertical axis indicates the transmission power.
 図1に示す送信信号の波形のうち、参照符号W11で示された周波数帯域は、データ伝送に使用される周波数帯域を示しており(ただし、NULL Subcarrierは除く)、それ以外の周波数帯域は、データ伝送に使用されないOOB(Out Of Band)である。また、OOBのうち、少なくとも一部の周波数帯域が、隣接システムに漏洩する電力を軽減するためのガードバンドとして設けられている場合がある。例えば、ガードバンドを設けない場合においては、OOBのうち最も電力の大きいサブキャリアで、およそ-10dBの電力となる場合においても、ガードバンドを設けることにより、およそ-20dB~-30dBまで電力を減衰させることが可能となる。 In the waveform of the transmission signal shown in FIG. 1, the frequency band indicated by the reference symbol W11 indicates the frequency band used for data transmission (except for the NULL subcarrier), and the other frequency bands are OOB (Out Of Band) not used for data transmission. In addition, at least a part of the frequency band of the OOB may be provided as a guard band for reducing power leaking to the adjacent system. For example, when the guard band is not provided, the power is attenuated to about −20 dB to −30 dB by providing the guard band even when the power of the subcarrier with the largest power in the OOB is about −10 dB. It becomes possible to make it.
 このような仕組みを利用することで、LTE/LTE-Aにおいては、データ伝送に使用する周波数帯の両側にガードバンドを設けることで、隣接システムへの漏洩電力による干渉を軽減している。 By using such a mechanism, LTE / LTE-A reduces interference caused by leakage power to adjacent systems by providing guard bands on both sides of the frequency band used for data transmission.
 一方で、ガードバンドは、周波数帯域の一部を未使用帯域として使用する(即ち、データ伝送に利用されない)ため、周波数利用効率の低下を招く場合がある。具体的な一例として、チャネル幅が20MHzの場合には、ガードバンドとしておよそ2MHz(片側1MHz)が割り当てられており、この場合には、周波数利用効率が、約10%低下することとなる。 On the other hand, since the guard band uses a part of the frequency band as an unused band (that is, it is not used for data transmission), the frequency use efficiency may be reduced. As a specific example, when the channel width is 20 MHz, approximately 2 MHz (1 MHz on one side) is assigned as a guard band, and in this case, the frequency utilization efficiency is reduced by about 10%.
 そこで、LTE/LTE-Aに続く第5世代(5G)移動体通信システムの無線アクセス技術(Radio Access Technology:RAT)のうち、周波数利用効率の向上が期待できる技術の1つとして、New Waveform技術が注目されている。New Waveform技術は、送信信号波形にフィルタを適用することで、漏洩電力をカットし、周波数利用効率を向上させる技術である。例えば、図2は、図1に示した送信信号に対して、ドルフチェビシェフフィルタ(Dolph Shebychev Filter)を適用した場合における、当該送信信号の周波数領域電力スペクトルの一例を示している。なお、図2における横軸及び縦軸は、図1に示す例と同様である。また、図2においては、参考として、フィルタ適用前の送信信号の波形(即ち、図1に示す波形)をあわせて提示している。 Therefore, among the radio access technologies (Radio Access Technology: RAT) of the fifth generation (5G) mobile communication system following LTE / LTE-A, the New Waveform technology is one of the technologies that can be expected to improve the frequency utilization efficiency. Is attracting attention. New Waveform technology is a technology that cuts leakage power and improves frequency utilization efficiency by applying a filter to the transmission signal waveform. For example, FIG. 2 shows an example of a frequency domain power spectrum of the transmission signal when a Dorf Chebychev filter is applied to the transmission signal shown in FIG. 2 is the same as the example shown in FIG. In FIG. 2, the waveform of the transmission signal before applying the filter (that is, the waveform shown in FIG. 1) is also shown for reference.
 図2においてフィルタ適用後の送信信号の波形として示すように、フィルタの適用により、OOBにおける電力がより小さくなっていることがわかる。このように、New Waveform技術を適用する(即ち、送信信号に対してフィルタを適用する)ことで、OOBの信号を減衰させ、ガードバンドとして使用される周波数帯域幅をより制限し、ひいては、周波数利用効率を向上させることが期待されている。 As shown in FIG. 2 as the waveform of the transmission signal after applying the filter, it can be seen that the power applied to the OOB is reduced by applying the filter. In this way, by applying the New Waveform technology (that is, applying a filter to the transmission signal), the OOB signal is attenuated, the frequency bandwidth used as a guard band is further limited, and thus the frequency It is expected to improve usage efficiency.
 なお、ガードバンドとして使用される周波数帯域幅をより制限することが可能であれば、送信信号に適用されるフィルタの種別は、必ずしも図2に示すようなドルフチェビシェフフィルタのみには限定されない。具体的な一例として、ルートレイズドコサインフィルタのような所謂ナイキストフィルタが、New Waveform技術を実現するためのフィルタとして適用される場合もある。また、送信信号に適用されるフィルタは、必ずしも単一のフィルタに限定されず、複数のフィルタの中から適用されるフィルタが適応的に選択されてもよい。例えば、状況に応じて、前述したドルフチェビシェフフィルタやルートレイズドコサインフィルタが選択的に適用されてもよい。なお、以降の説明においては、単に「フィルタ」と表記した場合には、特に説明が無い限りは、上述したフィルタのように、ガードバンドとして使用される周波数帯域幅をより制限するためのフィルタを示すものとする。 If the frequency bandwidth used as a guard band can be further limited, the type of filter applied to the transmission signal is not necessarily limited to the Dorf Chebyshev filter as shown in FIG. As a specific example, a so-called Nyquist filter such as a root raised cosine filter may be applied as a filter for realizing the New Waveform technology. Further, the filter applied to the transmission signal is not necessarily limited to a single filter, and a filter applied from a plurality of filters may be adaptively selected. For example, the aforementioned Dorfchebyshev filter or root raised cosine filter may be selectively applied depending on the situation. In the following description, when simply described as “filter”, a filter for further limiting the frequency bandwidth used as a guard band is used as in the above-described filter unless otherwise specified. Shall be shown.
 以上、図1及び図2を参照して、New Waveform技術の概要について説明した。 The outline of the New Waveform technology has been described above with reference to FIGS.
  <1.2.技術的課題>
 次に、本開示の実施形態に係る技術的課題について説明する。
<1.2. Technical issues>
Next, a technical problem according to an embodiment of the present disclosure will be described.
 上述したように、New Waveform技術は、送信信号に対してフィルタ(例えば、ドルフチェビシェフフィルタ)を適用することで、OOBへの漏洩電力をより少なくすることを可能とする。このようなNew Waveform技術をサポートするにあたり、送受信環境やユースケースに応じて、より好適な態様でフィルタが適用されることが望ましい。特に、上述したフィルタを適用するにあたり、例えば、一連のリソースエレメントを1つの単位としてフィルタを適用するか、または、より細かい単位でフィルタを適用するかに応じて、送受信の処理量や、フィルタ適用後の信号の特性が異なる場合がある。そのため、例えば、フィルタを適用する単位の決定方法や、決定された当該単位を他の装置に伝達する方法は、New Waveform技術をサポートするうえで重要な検討課題となる。 As described above, the New Waveform technology makes it possible to reduce the leakage power to the OOB by applying a filter (for example, a Dorf Chebyshev filter) to the transmission signal. In supporting such New Waveform technology, it is desirable that the filter is applied in a more suitable manner according to the transmission / reception environment and use case. In particular, when applying the above-described filter, for example, depending on whether the filter is applied with a series of resource elements as one unit or the filter is applied in a finer unit, transmission / reception processing amount and filter application The characteristics of subsequent signals may be different. Therefore, for example, a method for determining a unit to which a filter is applied and a method for transmitting the determined unit to another device are important examination issues in supporting the New Waveform technology.
 そこで、本開示では、周波数利用効率を向上させるためのフィルタを、より好適な態様で適用可能とするための仕組みの一例として、特に、フィルタを適用する単位の決定方法や、当該単位の伝達方法に着目して説明する。 Therefore, in the present disclosure, as an example of a mechanism for making it possible to apply a filter for improving frequency utilization efficiency in a more preferable aspect, in particular, a method for determining a unit to which a filter is applied, and a method for transmitting the unit. This will be explained with a focus on.
 <<2.構成例>>
  <2.1.システムの構成例>
 まず、図3を参照して、本開示の一実施形態に係るシステム1の概略的な構成の一例について説明する。図3は、本開示の一実施形態に係るシステム1の概略的な構成の一例について説明するための説明図である。図3に示すように、システム1は、無線通信装置100と、端末装置200とを含む。ここでは、端末装置200は、ユーザとも呼ばれる。当該ユーザは、UEとも呼ばれ得る。無線通信装置100Cは、UE-Relayとも呼ばれる。ここでのUEは、LTE又はLTE-Aにおいて定義されているUEであってもよく、UE-Relayは、3GPPで議論されているProse UE to Network Relayであってもよく、より一般的に通信機器を意味してもよい。
<< 2. Configuration example >>
<2.1. System configuration example>
First, an example of a schematic configuration of the system 1 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 3 is an explanatory diagram for describing an example of a schematic configuration of the system 1 according to an embodiment of the present disclosure. As illustrated in FIG. 3, the system 1 includes a wireless communication device 100 and a terminal device 200. Here, the terminal device 200 is also called a user. The user may also be referred to as a UE. The wireless communication device 100C is also called UE-Relay. The UE here may be a UE defined in LTE or LTE-A, and the UE-Relay may be Prose UE to Network Relay as discussed in 3GPP, and more generally It may mean equipment.
  (1)無線通信装置100
 無線通信装置100は、配下の装置に無線通信サービスを提供する装置である。例えば、無線通信装置100Aは、セルラーシステム(又は移動体通信システム)の基地局である。基地局100Aは、基地局100Aのセル10Aの内部に位置する装置(例えば、端末装置200A)との無線通信を行う。例えば、基地局100Aは、端末装置200Aへのダウンリンク信号を送信し、端末装置200Aからのアップリンク信号を受信する。
(1) Wireless communication device 100
The wireless communication device 100 is a device that provides a wireless communication service to subordinate devices. For example, the wireless communication device 100A is a base station of a cellular system (or mobile communication system). The base station 100A performs wireless communication with a device (for example, the terminal device 200A) located inside the cell 10A of the base station 100A. For example, the base station 100A transmits a downlink signal to the terminal device 200A and receives an uplink signal from the terminal device 200A.
 基地局100Aは、他の基地局と例えばX2インタフェースにより論理的に接続されており、制御情報等の送受信が可能である。また、基地局100Aは、所謂コアネットワーク(図示を省略する)と例えばS1インタフェースにより論理的に接続されており、制御情報等の送受信が可能である。なお、これらの装置間の通信は、物理的には多様な装置により中継され得る。 The base station 100A is logically connected to other base stations through, for example, an X2 interface, and can transmit and receive control information and the like. The base station 100A is logically connected to a so-called core network (not shown) by, for example, an S1 interface, and can transmit and receive control information and the like. Note that communication between these devices can be physically relayed by various devices.
 ここで、図3に示した無線通信装置100Aは、マクロセル基地局であり、セル10Aはマクロセルである。一方で、無線通信装置100B及び100Cは、スモールセル10B及び10Cをそれぞれ運用するマスタデバイスである。一例として、マスタデバイス100Bは、固定的に設置されるスモールセル基地局である。スモールセル基地局100Bは、マクロセル基地局100Aとの間で無線バックホールリンクを、スモールセル10B内の1つ以上の端末装置(例えば、端末装置200B)との間でアクセスリンクをそれぞれ確立する。なお、無線通信装置100Bは、3GPPで定義されるリレーノードであってもよい。マスタデバイス100Cは、ダイナミックAP(アクセスポイント)である。ダイナミックAP100Cは、スモールセル10Cを動的に運用する移動デバイスである。ダイナミックAP100Cは、マクロセル基地局100Aとの間で無線バックホールリンクを、スモールセル10C内の1つ以上の端末装置(例えば、端末装置200C)との間でアクセスリンクをそれぞれ確立する。ダイナミックAP100Cは、例えば、基地局又は無線アクセスポイントとして動作可能なハードウェア又はソフトウェアが搭載された端末装置であってよい。この場合のスモールセル10Cは、動的に形成される局所的なネットワーク(Localized Network/Virtual Cell)である。 Here, the radio communication device 100A shown in FIG. 3 is a macro cell base station, and the cell 10A is a macro cell. On the other hand, the wireless communication devices 100B and 100C are master devices that operate the small cells 10B and 10C, respectively. As an example, the master device 100B is a small cell base station that is fixedly installed. The small cell base station 100B establishes a wireless backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200B) in the small cell 10B. Note that the wireless communication device 100B may be a relay node defined by 3GPP. The master device 100C is a dynamic AP (access point). The dynamic AP 100C is a mobile device that dynamically operates the small cell 10C. The dynamic AP 100C establishes a radio backhaul link with the macro cell base station 100A and an access link with one or more terminal devices (for example, the terminal device 200C) in the small cell 10C. The dynamic AP 100C may be, for example, a terminal device equipped with hardware or software that can operate as a base station or a wireless access point. The small cell 10C in this case is a locally formed network (Localized Network / Virtual Cell).
 セル10Aは、例えば、LTE、LTE-A(LTE-Advanced)、GSM(登録商標)、UMTS、W-CDMA、CDMA200、WiMAX、WiMAX2又はIEEE802.16などの任意の無線通信方式に従って運用されてよい。 The cell 10A may be operated in accordance with any wireless communication scheme such as LTE, LTE-A (LTE-Advanced), GSM (registered trademark), UMTS, W-CDMA, CDMA200, WiMAX, WiMAX2, or IEEE 802.16, for example. .
 なお、スモールセルは、マクロセルと重複して又は重複せずに配置される、マクロセルよりも小さい様々な種類のセル(例えば、フェムトセル、ナノセル、ピコセル及びマイクロセルなど)を含み得る概念である。ある例では、スモールセルは、専用の基地局によって運用される。別の例では、スモールセルは、マスタデバイスとなる端末がスモールセル基地局として一時的に動作することにより運用される。いわゆるリレーノードもまた、スモールセル基地局の一形態であると見なすことができる。リレーノードの親局として機能する無線通信装置は、ドナー基地局とも称される。ドナー基地局は、LTEにおけるDeNBを意味してもよく、より一般的にリレーノードの親局を意味してもよい。 Note that the small cell is a concept that can include various types of cells (for example, femtocells, nanocells, picocells, and microcells) that are smaller than the macrocells and that are arranged so as to overlap or not overlap with the macrocells. In one example, the small cell is operated by a dedicated base station. In another example, the small cell is operated by a terminal serving as a master device temporarily operating as a small cell base station. So-called relay nodes can also be considered as a form of small cell base station. A wireless communication device that functions as a master station of a relay node is also referred to as a donor base station. The donor base station may mean a DeNB in LTE, and more generally may mean a parent station of a relay node.
  (2)端末装置200
 端末装置200は、セルラーシステム(又は移動体通信システム)において通信可能である。端末装置200は、セルラーシステムの無線通信装置(例えば、基地局100A、マスタデバイス100B又は100C)との無線通信を行う。例えば、端末装置200Aは、基地局100Aからのダウンリンク信号を受信し、基地局100Aへのアップリンク信号を送信する。
(2) Terminal device 200
The terminal device 200 can communicate in a cellular system (or mobile communication system). The terminal device 200 performs wireless communication with a wireless communication device (for example, the base station 100A, the master device 100B, or 100C) of the cellular system. For example, the terminal device 200A receives a downlink signal from the base station 100A and transmits an uplink signal to the base station 100A.
  (3)補足
 以上、システム1の概略的な構成を示したが、本技術は図3に示した例に限定されない。例えば、システム1の構成として、マスタデバイスを含まない構成、SCE(Small Cell Enhancement)、HetNet(Heterogeneous Network)、MTC(Machine Type Communication)ネットワーク等が採用され得る。
(3) Supplement Although the schematic configuration of the system 1 has been described above, the present technology is not limited to the example illustrated in FIG. For example, as a configuration of the system 1, a configuration that does not include a master device, an SCE (Small Cell Enhancement), a HetNet (Heterogeneous Network), an MTC (Machine Type Communication) network, or the like may be employed.
  <2.2.基地局の構成例>
 続いて、図4を参照して、本開示の一実施形態に係る基地局100の構成を説明する。図4は、本開示の一実施形態に係る基地局100の構成の一例を示すブロック図である。図4を参照すると、基地局100は、アンテナ部110と、無線通信部120と、ネットワーク通信部130と、記憶部140と、処理部150とを含む。
<2.2. Example of base station configuration>
Subsequently, a configuration of the base station 100 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 4 is a block diagram illustrating an exemplary configuration of the base station 100 according to an embodiment of the present disclosure. Referring to FIG. 4, the base station 100 includes an antenna unit 110, a radio communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
 (1)アンテナ部110
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
(1) Antenna unit 110
The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
 (2)無線通信部120
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
(2) Wireless communication unit 120
The wireless communication unit 120 transmits and receives signals. For example, the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
 (3)ネットワーク通信部130
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
(3) Network communication unit 130
The network communication unit 130 transmits and receives information. For example, the network communication unit 130 transmits information to other nodes and receives information from other nodes. For example, the other nodes include other base stations and core network nodes.
 (4)記憶部140
 記憶部140は、基地局100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
(4) Storage unit 140
The storage unit 140 temporarily or permanently stores a program for operating the base station 100 and various data.
 (5)処理部150
 処理部150は、基地局100の様々な機能を提供する。処理部150は、通信処理部151と、通知部153とを含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
(5) Processing unit 150
The processing unit 150 provides various functions of the base station 100. The processing unit 150 includes a communication processing unit 151 and a notification unit 153. The processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
 なお、通信処理部151及び通知部153の動作は、後に詳細に説明する。 The operations of the communication processing unit 151 and the notification unit 153 will be described in detail later.
 <2.3.端末装置の構成例>
 次に、図5を参照して、本開示の実施形態に係る端末装置200の構成の一例を説明する。図5は、本開示の実施形態に係る端末装置200の構成の一例を示すブロック図である。図5に示すように、端末装置200は、アンテナ部210と、無線通信部220と、記憶部230と、処理部240とを含む。
<2.3. Configuration example of terminal device>
Next, an example of a configuration of the terminal device 200 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 5 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to the embodiment of the present disclosure. As illustrated in FIG. 5, the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
 (1)アンテナ部210
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
(1) Antenna unit 210
The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
 (2)無線通信部220
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
(2) Wireless communication unit 220
The wireless communication unit 220 transmits and receives signals. For example, the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
 (3)記憶部230
 記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
(3) Storage unit 230
The storage unit 230 temporarily or permanently stores a program for operating the terminal device 200 and various data.
 (4)処理部240
 処理部240は、端末装置200の様々な機能を提供する。例えば、処理部240は、情報取得部241と、通信処理部243と、通知部245とを含む。なお、処理部240は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、これらの構成要素の動作以外の動作も行い得る。
(4) Processing unit 240
The processing unit 240 provides various functions of the terminal device 200. For example, the processing unit 240 includes an information acquisition unit 241, a communication processing unit 243, and a notification unit 245. Note that the processing unit 240 may further include other components other than these components. That is, the processing unit 240 can perform operations other than the operations of these components.
 なお、情報取得部241、通信処理部243、及び通知部245の動作は、後に詳細に説明する。 The operations of the information acquisition unit 241, the communication processing unit 243, and the notification unit 245 will be described in detail later.
 <<3.技術的特徴>>
 続いて、本開示の技術的特徴について説明する。
<< 3. Technical features >>
Subsequently, technical features of the present disclosure will be described.
 (1)各装置における処理
 (a)送信装置における処理
 まず、図6、図7、及び図8Aを参照して、New Waveform技術をサポートする送信装置における処理の一例について説明する。図6、図7、及び図8Aは、New Waveform技術をサポートする送信装置における処理の一例を説明するための説明図である。図6、図7、及び図8Aに示すようにユーザごとのビットストリーム(例えば、トランスポートブロック)が処理される。このユーザごとのビットストリームに対して、いくつかの処理、例えば、図6に示すような、CRC(Cyclic Redundancy Check)符号化、FEC(Forward Error Correction)符号化、レートマッチング及びスクランブリング/インタリービング)が行われ、その後変調が行われる。そして、変調後のビットストリームに対して、図7に示すように、レイヤマッピング、電力割当て、プリコーディング、リソースエレメントマッピングが行われ、アンテナエレメントごとのビットストリームが出力される。
(1) Processing in Each Device (a) Processing in Transmission Device First, an example of processing in a transmission device that supports the New Waveform technology will be described with reference to FIGS. 6, 7, and 8A. 6, 7, and 8 </ b> A are explanatory diagrams for explaining an example of processing in the transmission device that supports the New Waveform technology. As shown in FIG. 6, FIG. 7, and FIG. 8A, a bit stream (for example, a transport block) for each user is processed. For this bit stream for each user, several processes such as CRC (Cyclic Redundancy Check) coding, FEC (Forward Error Correction) coding, rate matching and scrambling / interleaving as shown in FIG. ) Is performed, and then modulation is performed. Then, as shown in FIG. 7, layer mapping, power allocation, precoding, and resource element mapping are performed on the modulated bit stream, and a bit stream for each antenna element is output.
 アンテナごとのビットストリームは、リソースエレメントを最小単位とした、周波数方向及び時間方向の少なくともいずれかのサイズ(換言すると、リソース数)に基づき決定されたユニットに分けられる。このとき、各ユニットは、リソースエレメントを1以上含むこととなる。そして、ユニットごとに、ガードバンドとして使用される周波数帯域幅をより制限するためのフィルタ処理が施される。なお、当該ユニットが、フィルタが適用される単位(以降では、「フィルタの適用単位」とも称する)に相当する。例えば、図8Aに示す例では、リソースブロックを構成する各リソースエレメントを、0~B-1のB個のユニットに分け、当該ユニットごとにフィルタの適用に係る処理が実行される。具体的には、アンテナごとのビットストリームは、ユニットごとにIFFTまたはIDFT処理が施されたうえで、フィルタ処理が施される。なお、フィルタの適用単位の決定方法については、詳細を別途後述する。 The bit stream for each antenna is divided into units determined on the basis of at least one of the size in the frequency direction and the time direction (in other words, the number of resources) with the resource element as a minimum unit. At this time, each unit includes one or more resource elements. Then, for each unit, filter processing for further limiting the frequency bandwidth used as a guard band is performed. The unit corresponds to a unit to which a filter is applied (hereinafter also referred to as “filter application unit”). For example, in the example shown in FIG. 8A, each resource element constituting the resource block is divided into B units of 0 to B−1, and processing related to the application of the filter is executed for each unit. Specifically, the bit stream for each antenna is subjected to IFFT or IDFT processing for each unit and then subjected to filter processing. The method for determining the application unit of the filter will be described later in detail.
 そして、フィルタ処理が施されたユニットごとのビットストリームは、互いに加算され、必要に応じてガードインターバルの付加されたうえで、ディジタルからアナログ及びRF(Radio Frequency)への変換などが行われて、各アンテナから送信される。 Then, the bit streams for each unit subjected to the filter processing are added to each other, and after being added with a guard interval as necessary, conversion from digital to analog and RF (Radio Frequency) is performed. Transmitted from each antenna.
 なお、上述した送信装置における各処理は、所定の制御部(例えば、図中のPHY Configuration Controller)による制御に基づき実行されてもよい。 In addition, each process in the transmission apparatus mentioned above may be performed based on control by a predetermined control unit (for example, PHY Configuration Controller in the figure).
 また、上記では、アンテナごとのビットストリーム(即ち、送信信号)に対して、時間領域でフィルタを適用する例について説明したが、当該ビットストリームに対して、周波数領域でフィルタが適用されてもよい。例えば、図8Bは、New Waveform技術をサポートする送信装置における処理の一例を説明するための説明図であり、アンテナごとのビットストリームに対して周波数領域でフィルタを適用する場合の一例を示している。この場合には、図8Bに示すように、アンテナごとのビットストリームに対して、ユニットごとにフィルタ処理を施したうえで、フィルタ処理後の当該ユニットに対してIFFTまたはIDFT処理を施せばよい。なお、以降の処理については、図8Aに示した、時間領域でフィルタを適用する場合と同様である。 In the above description, the example in which the filter is applied in the time domain to the bit stream (that is, the transmission signal) for each antenna has been described. However, the filter may be applied to the bit stream in the frequency domain. . For example, FIG. 8B is an explanatory diagram for explaining an example of processing in a transmission device that supports the New Waveform technology, and shows an example of applying a filter in the frequency domain to a bit stream for each antenna. . In this case, as shown in FIG. 8B, after performing the filtering process for each unit on the bit stream for each antenna, the IFFT or IDFT process may be performed on the unit after the filtering process. The subsequent processing is the same as the case of applying the filter in the time domain shown in FIG. 8A.
 (b)受信装置における処理
 次いで、図9を参照して、New Waveform技術をサポートする受信装置における処理の一例について説明する。図9は、New Waveform技術をサポートする受信装置における処理の一例について説明するための説明図である。
(B) Processing in Receiving Device Next, an example of processing in the receiving device that supports the New Waveform technology will be described with reference to FIG. FIG. 9 is an explanatory diagram for explaining an example of processing in a receiving apparatus that supports the New Waveform technology.
 図9に示すように、各アンテナで受信された信号に対して、RF及びアナログからディジタルへの変換、ゼロパディング、DFT(Discrete Fourier Transform)/FFT(Fast Fourier Transform)、ダウンサンプリング、並びに、等化及び復号等の処理が施される。なお、New Waveform技術をサポートする受信装置においては、等化及び復号時に、New Waveform技術に基づくフィルタ処理の逆処理が施されることとなる。その結果として、各ユーザのビットストリーム((例えば、トランスポートブロック)が得られる。なお、受信処理のより詳細な内容については、受信信号の説明とあわせて別途後述する。 As shown in FIG. 9, RF and analog to digital conversion, zero padding, DFT (Discrete Fourier Transform) / FFT (Fast Fourier Transform), downsampling, etc. Processing such as conversion and decoding is performed. Note that in a receiving apparatus that supports the New Waveform technology, the reverse processing of the filter processing based on the New Waveform technology is performed during equalization and decoding. As a result, a bit stream (for example, a transport block) of each user is obtained. The detailed contents of the reception process will be separately described later together with the description of the received signal.
 また、上述した受信装置における各処理は、所定の制御部(例えば、図中のPHY Configuration Controller)による制御に基づき実行されてもよい。 Further, each process in the above-described receiving apparatus may be executed based on control by a predetermined control unit (for example, PHY Configuration Controller in the drawing).
 (2)送信信号及び受信信号
 次に、New Waveform技術がサポートされる場合における送信信号及び受信信号について説明する。なお、本説明では、HetNet(Heterogeneous Network)又はSCE(Small Cell Enhancement)などのマルチセルシステムを想定する。また、本説明においては、サブキャリアに相当するインデックスと、シンボル、サンプル、スロット、及びサブフレームに相当するインデックスとについては、特に断りがない限りは記載を省略する。
(2) Transmission signal and reception signal Next, a transmission signal and a reception signal when the New Waveform technology is supported will be described. In this description, a multi-cell system such as HetNet (Heterogeneous Network) or SCE (Small Cell Enhancement) is assumed. Also, in this description, the description corresponding to the subcarrier and the index corresponding to the symbol, sample, slot, and subframe are omitted unless otherwise specified.
 送信対象となる受信装置をuとし、当該受信装置に信号を送信する送信装置における送信アンテナ数をNとする。なお、各送信アンテナは、「送信アンテナポート」とも呼ばれる。ここで、受信装置uへの送信信号は、以下に(数式1)として示すように、ベクトル形式で表すことが可能である。 The reception devices as the transmission targets and u, the number of transmission antennas in the transmitter for transmitting a signal to the receiving device to N t. Each transmission antenna is also referred to as a “transmission antenna port”. Here, the transmission signal to the receiving device u can be expressed in a vector format as shown in (Equation 1) below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上述した(数式1)において、Nは、FFTサイズ長を示す。また、Nは、フィルタ長を示し、Bは、フィルタを適用するサブバンド数を示す。また、Nは、送信アンテナ数を示し、NSSは、空間送信ストリーム数を示している。また、ベクトルSu,bは、受信装置uにおけるサブバンドbの空間ストリーム信号である。ベクトルSu,bの各要素は、基本的には、PSK、QAM等のディジタル変調シンボルに相当する。ここで、例えば、サブバンドb=0が、第0~k-1までのサブキャリアの組であるとしたとき、以下に(数式2)として示す条件を満たすものとする。 In (Equation 1) described above, N represents the FFT size length. N f indicates the filter length, and B indicates the number of subbands to which the filter is applied. N t represents the number of transmission antennas, and N SS represents the number of spatial transmission streams. Further, vector S u, b is a spatial stream signal of subband b in receiving apparatus u. Each element of the vector S u, b basically corresponds to a digital modulation symbol such as PSK or QAM. Here, for example, when subband b = 0 is a set of subcarriers from 0th to k−1, the following condition (Equation 2) is satisfied.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 Wu,bは、受信装置uのサブバンドbに対するプリコーディング行列である。また、Pu,bは、受信装置uのサブバンドbにおける電力割当て係数行列である。なお、行列Pu,bの各要素は、正の実数とすることが望ましい。また、行列Pu,bは、所謂対角行列(即ち、対角成分以外の他の成分が0の行列)でもよい。例えば、行列Pu,bは、以下に示す(数式3)のように表される。 W u, b is a precoding matrix for subband b of receiving apparatus u. P u, b is a power allocation coefficient matrix in subband b of receiving apparatus u. Note that each element of the matrix P u, b is preferably a positive real number. The matrix P u, b may be a so-called diagonal matrix (that is, a matrix in which components other than the diagonal component are zero). For example, the matrix P u, b is expressed as (Equation 3) shown below.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、空間ストリームについて適応的な電力割当てが行われない場合には、行列Pu,bの代わりに、スカラ値Pu,bが用いられてもよい。 When adaptive power allocation is not performed for the spatial stream, the scalar value P u, b may be used instead of the matrix P u, b .
 ベクトルFは、サイズNのFFT行列であり、ベクトルGu,bは、受信装置uのサブバンドbに適用するフィルタの線形畳み込み行列である。また、ベクトルΩu,bは、ガードインターバル(GI)区間の挿入に相当する。Ωu,b中のIは、サイズNの単位行列であり、NGIは、ガードインターバルの区間長である。 The vector F is an FFT matrix of size N, and the vector G u, b is a linear convolution matrix of a filter applied to the subband b of the receiving device u. The vector Ω u, b corresponds to insertion of a guard interval (GI) section. I N in Ω u, b is a unit matrix of size N, and N GI is the section length of the guard interval.
 また、送信アンテナ#nの送信信号を受信アンテナ#nで受信した場合における、受信装置uにより受信された受信信号をru,nt,nrとすると、受信信号ru,nt,nrは、以下に示す(数式4)のように表される。 Further, in case of receiving a transmission signal of the transmission antenna #n t by the receiving antenna #n r, the received signal received by the receiving apparatus u r u, nt, when the nr, the received signal r u, nt, nr is It is expressed as (Equation 4) shown below.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、上述した(数式4)において、Lは、伝送路パス数を示している。また、行列hu,nt,nrは、送信アンテナnと受信アンテナnとの間のチャネル応答行列である。なお、行列hu,nt,nrの各要素は、基本的には複素数である。また、ベクトルnu,nrは、受信装置uの受信アンテナnの雑音を示している。なお、雑音nu,nrは、例えば、熱雑音や、本開示の対象とするシステム以外の他のシステムからの干渉を含む。なお、雑音の平均電力は、σn,u で表される。 In the above (Equation 4), L h indicates the number of transmission path paths. The matrices hu, nt, and nr are channel response matrices between the transmission antenna n t and the reception antenna n r . Note that each element of the matrix hu, nt, nr is basically a complex number. The vectors n u and nr indicate the noise of the receiving antenna n r of the receiving device u. Note that the noise n u, nr includes, for example, thermal noise and interference from other systems other than the system that is the subject of the present disclosure. Note that the average power of noise is represented by σ n, u 2 .
 また、New Waveform技術がサポートされる場合には、上述した受信信号ru,nt,nrは、前述したフィルタGu,bが適用された信号に相当する。そのため、受信信号ru,nt,nrに対して、DFT/FFTや、等化及び復号処理が施される過程において、前述したフィルタGu,bを適用する処理の逆処理が施される。 In addition, when the New Waveform technology is supported, the above-described received signals ru, nt, nr correspond to signals to which the above-described filters Gu, b are applied. Therefore, in the process of performing DFT / FFT and equalization and decoding processes on the received signals ru, nt, and nr , the reverse process of the process of applying the filter Gu, b described above is performed.
 具体的には、受信信号ru,nt,nrは、前述したフィルタGu,bの適用に伴い、当該フィルタGu,bのフィルタ長分だけ信号長(換言すると、サンプルシンボル数)が増加している。そのため、受信装置uは、受信信号ru,nt,nrに対するDFT/FFTの処理時(即ち、OFDM復号時)に、送信処理時におけるIFFTサイズに加えて、フィルタ長分のサイズと、チャネルのディレイ分のサイズとを考慮する必要がある。そこで、受信装置uは、例えば、受信信号ru,nt,nrの末尾以降にゼロパディングを実施することで、受信信号ru,nt,nrの信号長が2Nとなるように調整する。 Specifically, the received signal r u, nt, nr, the filter G u described above, with the application of b, the filter G u, filter length amount corresponding signal length of b (in other words, the number of samples symbols) increased is doing. For this reason, the receiving device u, when processing the DFT / FFT for the received signals ru, nt, nr (that is, at the time of OFDM decoding), in addition to the IFFT size at the time of transmission processing, It is necessary to consider the size of the delay. Therefore, the receiving apparatus u is, for example, the received signal r u, nt, by implementing the zero-padding since the end of nr, the received signal r u, nt, signal length of nr is adjusted to be 2N.
 次いで、受信装置uは、ゼロパディングが実施された受信信号ru,nt,nrに対して、サイズ2NのDFT/FFTを適用することで周波数領域の信号に変換し、変換後の信号に対して1/2のダウンサンプリングを適用する。このような処理により、ゼロパディングが施されることで2Nに調整された受信信号の信号長は、1/2のダウンサンプリングによりNに調整されることとなる。 Next, the receiving apparatus u converts the received signal ru, nt, nr subjected to zero padding into a frequency domain signal by applying a DFT / FFT of size 2N, and the converted signal Apply 1/2 downsampling. By such processing, the signal length of the reception signal adjusted to 2N by performing zero padding is adjusted to N by 1/2 downsampling.
 そして、受信装置uは、ダウンサンプリングが施された受信信号に対して、周波数領域等化を実施することで、送信された空間ストリーム信号を復号することが可能となる。例えば、MMSE(Minimum Mean Square Error)重みは、従来は、チャネル行列hu,nt,nr、プリコーディング行列Wu,b、及び雑音電力σn,u を考慮して作成される。これに対して、本開示のようにNew Waveform技術がサポートされる場合においては、上記に加えて、送信信号処理において適用されたフィルタ行列Gu,bについても考慮して、等化重みが作成されることとなる。 The receiving device u can decode the transmitted spatial stream signal by performing frequency domain equalization on the down-sampled received signal. For example, MMSE (Minimum Mean Square Error) weights are conventionally generated in consideration of the channel matrix hu, nt, nr , the precoding matrix W u, b , and the noise power σ n, u 2 . On the other hand, when the New Waveform technology is supported as in the present disclosure, equalization weights are created in consideration of the filter matrix Gu, b applied in the transmission signal processing in addition to the above. Will be.
 以上、New Waveform技術がサポートされる場合における送信信号及び受信信号について説明した。 The transmission signal and reception signal when the New Waveform technology is supported have been described above.
 (3)フィルタの適用単位
 続いて、図10~図12を参照して、フィルタの適用単位についてより詳しく説明する。前述したように、ガードバンドとして使用される周波数帯域幅をより制限するためのフィルタの適用単位(換言すると、前述したユニット)は、リソースエレメントを最小単位として、周波数方向及び時間方向の少なくともいずれかのサイズ(換言すると、リソース数)に基づき決定される。より厳密には、伝送に使用される最小の時間-周波数単位を、フィルタが適用される最小単位として、当該フィルタの適用単位が決定される。
(3) Filter Application Unit Next, the filter application unit will be described in more detail with reference to FIGS. As described above, the application unit (in other words, the above-described unit) of the filter for further limiting the frequency bandwidth used as the guard band is at least one of the frequency direction and the time direction with the resource element as the minimum unit. Is determined based on the size (in other words, the number of resources). More precisely, the application unit of the filter is determined with the minimum time-frequency unit used for transmission as the minimum unit to which the filter is applied.
 例えば、LTE/LTE-Aの場合には、1個のサブキャリア上の1個のシンボルがリソースエレメントとして定義され、当該リソースエレメントを最小単位として、フィルタの適用単位が決定される。なお、LTE/LTE-Aにおいては、リソースブロックの構成(換言すると、リソースブロックをリソースエレメントに分割する方法)として、図10~図12に示すような3つケースを想定しており、各ケースにおいて、リソースエレメントのサイズ(即ち、1サブキャリアの帯域、及び1シンボルのシンボル長)が異なる。図10~図12は、リソースブロックの構成の一例について説明するための説明図である。 For example, in the case of LTE / LTE-A, one symbol on one subcarrier is defined as a resource element, and the application unit of the filter is determined with the resource element as a minimum unit. In LTE / LTE-A, the configuration of resource blocks (in other words, a method of dividing resource blocks into resource elements) assumes three cases as shown in FIGS. , Resource element sizes (that is, a band of one subcarrier and a symbol length of one symbol) are different. 10 to 12 are explanatory diagrams for explaining an example of the configuration of the resource block.
 例えば、図10は、シンボル数を7とし、サブキャリア数を12とした場合における、リソースブロックの構成の一例を示している。この場合には、1サブキャリアの帯域は15kHzとなり、1シンボルのシンボル長は、Ts=1/30720[ms]とすると、2208Tsまたは2192Tsとなる。即ち、図10に示す例の場合には、フィルタが適用される最小単位は、15kHz×2208Ts(#0シンボルの場合)となる。 For example, FIG. 10 shows an example of the configuration of a resource block when the number of symbols is 7 and the number of subcarriers is 12. In this case, the band of one subcarrier is 15 kHz, and the symbol length of one symbol is 2208 Ts or 2192 Ts when Ts = 1/30720 [ms]. That is, in the example shown in FIG. 10, the minimum unit to which the filter is applied is 15 kHz × 2208 Ts (in the case of # 0 symbol).
 また、図11は、シンボル数を6とし、サブキャリア数を12とした場合における、リソースブロックの構成の一例を示している。この場合には、1サブキャリアの帯域は15kHzとなり、1シンボルのシンボル長は2560Tsとなる。即ち、図11に示す例の場合には、フィルタが適用される最小単位は、15kHz×2560Tsとなる。 FIG. 11 shows an example of a resource block configuration when the number of symbols is 6 and the number of subcarriers is 12. In this case, the band of one subcarrier is 15 kHz, and the symbol length of one symbol is 2560 Ts. That is, in the example shown in FIG. 11, the minimum unit to which the filter is applied is 15 kHz × 2560 Ts.
 また、図12は、シンボル数を3とし、サブキャリア数を24とした場合における、リソースブロックの構成の一例を示している。この場合には、1サブキャリアの帯域は7.5kHzとなり、1シンボルのシンボル長は5120Tsとなる。即ち、図12に示す例の場合には、フィルタが適用される最小単位は、7.5kHz×5120Tsとなる。 FIG. 12 shows an example of the configuration of the resource block when the number of symbols is 3 and the number of subcarriers is 24. In this case, the band of one subcarrier is 7.5 kHz, and the symbol length of one symbol is 5120 Ts. That is, in the example shown in FIG. 12, the minimum unit to which the filter is applied is 7.5 kHz × 5120 Ts.
 なお、上記に説明した例はあくまで一例であり、フィルタの適用単位は、伝送に使用される最小の時間-周波数単位が、フィルタが適用される最小単位となるように決定されれば、必ずしも図10~図12を参照して説明した例には限定されない。例えば、変調方式によっては、1シンボルをさらに分割することで、複数のサブシンボルを定義する場合が想定され得る。この場合には、例えば、1サブキャリア×1サブシンボルを、フィルタが適用される最小単位としてもよい。 Note that the example described above is merely an example, and the application unit of the filter is not necessarily illustrated if the minimum time-frequency unit used for transmission is determined to be the minimum unit to which the filter is applied. The present invention is not limited to the example described with reference to FIGS. For example, depending on the modulation method, it may be assumed that a plurality of sub-symbols are defined by further dividing one symbol. In this case, for example, 1 subcarrier × 1 subsymbol may be the minimum unit to which the filter is applied.
 (4)フィルタの適用単位の決定方法
 続いて、フィルタの適用単位を決定する方法の一例について説明する。フィルタの適用単位については、あらかじめ決定された適用単位が固定的に使用されるケース(即ち、固定のケース)と、状況に応じて変更可能なケース(即ち、可変のケース)が挙げられる。また、フィルタの適用単位が可変のケースとしては、当該適用単位を準静的に決定するケースと、当該適用単位を動的に決定するケースとが挙げられる。そこで、以下に、フィルタの適用単位を固定するケース、準静的に決定するケース、及び動的に決定するケースのそれぞれについて詳しく説明する。
(4) Method for Determining Application Unit of Filter Next, an example of a method for determining the application unit of the filter will be described. As for the application unit of the filter, there are a case where a predetermined application unit is fixedly used (that is, a fixed case) and a case that can be changed according to the situation (that is, a variable case). In addition, examples of cases where the application unit of the filter is variable include a case where the application unit is determined semi-statically and a case where the application unit is dynamically determined. Therefore, in the following, each of the case where the filter application unit is fixed, the case where it is determined semi-statically, and the case where it is dynamically determined will be described in detail.
 (a)フィルタの適用単位を固定するケース
 まず、フィルタの適用単位を固定するケースについて説明する。フィルタの適用単位を固定するケースにおいては、当該フィルタの適用単位を仕様(例えば、通信規約等)として決定しておき、基地局及び端末装置は、送信信号に対して当該仕様に基づくユニットごとにフィルタを適用する。例えば、以下に示す表1は、LTEを例にした場合における、フィルタの適用単位の設定(仕様)の一例を示している。なお、表1において、「Application Unit」は、フィルタの適用対象となるユニットを示しており、即ち、フィルタの適用単位に相当する。
(A) Case of fixing application unit of filter First, a case of fixing the application unit of filter will be described. In the case where the application unit of the filter is fixed, the application unit of the filter is determined as a specification (for example, communication protocol, etc.), and the base station and the terminal device are configured for each unit based on the specification with respect to the transmission signal. Apply a filter. For example, Table 1 below shows an example of the setting (specification) of the filter application unit when LTE is taken as an example. In Table 1, “Application Unit” indicates a unit to which a filter is applied, that is, corresponds to a filter application unit.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 なお、上記した表1において、Type0~17として示した例は、シンボルごと(または、サブシンボルごと)に帯域幅(Band Width)全体に亘ってフィルタを適用する場合の設定の一例を示している。これに対して、Type18~20として示した例は、Type0~17として示した例に比べて、周波数方向により細かい単位でフィルタを適用する場合の一例を示している。 In Table 1, the example shown as Type 0 to 17 shows an example of the setting when the filter is applied over the entire bandwidth (Band Width) for each symbol (or for each sub-symbol). . On the other hand, the example shown as Type 18 to 20 shows an example in which the filter is applied in a finer unit in the frequency direction than the example shown as Type 0 to 17.
 なお、表1に示したような、フィルタの適用単位を示す情報については、基地局及び端末装置のそれぞれが読み出し可能な記憶領域(例えば、記憶部140や記憶部230)に記憶させておくとよい。また、他の一例として、基地局が、フィルタの適用単位を示す情報を所定の記憶領域から読み出し、当該読み出し結果に応じて、当該適用単位に関する情報を端末装置に通知してもよい。 Note that the information indicating the filter application unit as shown in Table 1 is stored in a storage area (for example, the storage unit 140 or the storage unit 230) that can be read by each of the base station and the terminal device. Good. As another example, the base station may read information indicating the application unit of the filter from a predetermined storage area, and notify the terminal device of information related to the application unit according to the read result.
 (b)フィルタの適用単位を準静的に決定するケース
 次いで、フィルタの適用単位を準静的に決定するケースについて説明する。フィルタの適用単位を準静的に決定するケースにおいては、基地局及び端末装置間において、フィルタの適用単位として取り得る設定の候補をあらかじめ規定しておく。そして、例えば基地局が、所定の条件に基づきフィルタの適用単位をあらかじめ規定された候補の中から決定し、決定した当該適用単位に関する情報(換言すると、フィルタを適用するリソースに関する情報)を端末装置に通知する。例えば、以下に示す表2は、フィルタの適用単位の候補の一例を示している。
(B) Case where filter application unit is determined semi-statically Next, a case where a filter application unit is determined semi-statically will be described. In the case where the filter application unit is determined semi-statically, setting candidates that can be taken as filter application units are defined in advance between the base station and the terminal device. Then, for example, the base station determines the application unit of the filter from predetermined candidates based on a predetermined condition, and the terminal device transmits information on the determined application unit (in other words, information on the resource to which the filter is applied). Notify For example, Table 2 below shows an example of a candidate for application unit of the filter.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、表2に示したような、フィルタの適用単位の候補を示す情報については、基地局及び端末装置のそれぞれが読み出し可能な記憶領域(例えば、記憶部140や記憶部230)に記憶させておくとよい。また、他の一例として、フィルタの適用単位の候補を示す情報が、基地局から端末装置に対して通知されることで、端末装置が、当該フィルタの適用単位の候補を認識してもよい。 Note that the information indicating the candidates for the application unit of the filter as shown in Table 2 is stored in a storage area (for example, the storage unit 140 or the storage unit 230) that can be read by each of the base station and the terminal device. It is good to leave. As another example, the terminal device may recognize the candidate for the application unit of the filter by notifying the terminal device of information indicating the candidate for the application unit of the filter from the base station.
 次いで、フィルタの適用単位を決定するための判断基準に着目する。フィルタの適用単位を決定するための判断基準としては、以下に示す例が挙げられる。
 ・システムの帯域幅
 ・端末装置からの通信品質のフィードバック
 ・端末装置からの再送要求
 ・端末装置の位置情報
 ・端末装置の利用用途(端末装置からの通信品質に関する要求する)
 ・端末装置からのフィルタの適用単位の切り替えに関する要求
Next, attention is focused on the criteria for determining the application unit of the filter. Examples of criteria for determining the filter application unit include the following examples.
-System bandwidth-Feedback of communication quality from the terminal device-Retransmission request from the terminal device-Location information of the terminal device-Usage of the terminal device (requires communication quality from the terminal device)
・ Requests related to switching of application units of filters from terminal devices
 具体的には、基地局は、システムが使用可能な帯域幅以内で、フィルタの適用単位を決定することになる。 Specifically, the base station determines the application unit of the filter within the bandwidth that can be used by the system.
 また、基地局は、端末装置からの通信品質のフィードバックに基づき、チャネルの状態を認識することが可能であるため、当該チャネルの状態の認識結果に応じて、フィルタの適用単位を決定してもよい。より具体的な一例として、チャネルの状態が劣化している場合においては、基地局は、チャネルの状態がより良好な周波数を端末装置に割り当てる場合が想定される。しかしながら、チャネルの状態が劣化している状況下においては、チャネルの状態がより良好な周波数は限定的であり、利用可能な周波数の範囲がより狭くなる場合が想定され得る。このような場合には、基地局は、当該端末装置に割り当てる周波数をより狭くし、当該周波数の割り当てに応じてフィルタの適用単位を決定してもよい。このような制御により、当該端末装置のスループットの低減を抑え、かつ他の端末装置が使用可能な周波数を確保することが可能となり、ひいては、システム全体のスループットの改善を期待することも可能となる。 In addition, since the base station can recognize the channel state based on the communication quality feedback from the terminal device, the base station can determine the application unit of the filter according to the recognition result of the channel state. Good. As a more specific example, when the channel state is deteriorated, it is assumed that the base station allocates a frequency with a better channel state to the terminal device. However, under conditions where the channel condition is degraded, the frequency with better channel condition is limited, and a range of usable frequencies may be assumed to be narrower. In such a case, the base station may narrow the frequency to be allocated to the terminal device, and may determine the filter application unit according to the frequency allocation. By such control, it becomes possible to suppress the reduction of the throughput of the terminal device and to secure a frequency that can be used by other terminal devices, and as a result, to improve the throughput of the entire system. .
 また、端末装置の再送要求や、端末装置の位置情報に基づきフィルタの適用単位を決定する場合についても、端末装置からの通信品質のフィードバックに基づきフィルタの適用単位を決定する場合と同様である。例えば、端末装置から再送要求があった場合には、チャネルの状態が劣化している可能性が考えられる。また、端末装置の位置によっては、基地局と当該端末装置との間の伝搬距離がより遠くなっている場合があり、このような状況下では、チャネルの状態が劣化している可能性がある。このように、チャネルの状態が劣化している場合においては、上記と同様に、基地局は、端末装置に割り当てる周波数をより狭くし、当該周波数の割り当てに応じてフィルタの適用単位を決定すればよい。 Also, the case where the application unit of the filter is determined based on the retransmission request of the terminal device and the position information of the terminal device is the same as the case where the application unit of the filter is determined based on the communication quality feedback from the terminal device. For example, when there is a retransmission request from the terminal device, there is a possibility that the channel state is degraded. Also, depending on the position of the terminal device, the propagation distance between the base station and the terminal device may be longer, and under such circumstances, the channel state may be degraded. . As described above, when the channel state is degraded, the base station can narrow the frequency to be allocated to the terminal device and determine the application unit of the filter according to the frequency allocation, as described above. Good.
 また、端末装置の利用用途によっては、当該端末装置が要求する通信品質が異なる場合が想定され得る。例えば、端末装置の利用用途によっては、パケットサイズが小さくてよい場合や、レイテンシを許容することが可能な場合のように、当該端末装置に対して割り当てられる周波数帯域が比較的狭くてもよい場合がある。一方で、バケットサイズがより大きい場合や、低レイテンシ通信が要求される場合においては、当該端末装置に対してより広い周波数帯域を割り当てる方が望ましい場合がある。このような状況を想定し、例えば、基地局は、端末装置からの通信品質に関する要求(例えば、QoS:Quality of Service)に応じて、当該端末装置に割り当てる周波数の帯域幅を決定し、当該帯域幅に応じてフィルタの適用単位を決定してもよい。 Also, depending on the usage of the terminal device, it may be assumed that the communication quality required by the terminal device is different. For example, depending on the usage of the terminal device, when the packet size may be small or the frequency band allocated to the terminal device may be relatively narrow, such as when the latency can be allowed There is. On the other hand, when the bucket size is larger or when low latency communication is required, it may be desirable to allocate a wider frequency band to the terminal device. Assuming such a situation, for example, the base station determines a bandwidth of a frequency to be allocated to the terminal device in response to a request regarding communication quality from the terminal device (for example, QoS: Quality of Service), and The application unit of the filter may be determined according to the width.
 また、基地局は、端末装置からフィルタの適用単位の切り替えに関する要求を受けた場合に、当該要求に応じて、フィルタの適用単位を切り替えてもよい。この場合には、例えば、基地局は、端末装置との間のチャネルの状態や、当該端末装置が要求する通信品質等に応じて、当該端末装置に対してチャネルを割り当て、当該割り当てに応じてフィルタの適用単位を決定してもよい。 In addition, when the base station receives a request for switching the application unit of the filter from the terminal device, the base station may switch the application unit of the filter according to the request. In this case, for example, the base station assigns a channel to the terminal device according to the state of the channel with the terminal device, the communication quality required by the terminal device, and the like. The application unit of the filter may be determined.
 なお、基地局は、フィルタの適用単位を決定した場合(切り替えた場合)には、決定した当該適用単位に関する情報を端末装置に通知する。なお、基地局から端末に通知される情報としては、例えば、フィルタの適用単位自体を示す情報(即ち、フィルタを適用するサブキャリア数またはシンボル数等)や、当該適用単位に関連付けられたインデックス値等が挙げられる。 In addition, when the base unit determines the application unit of the filter (when switched), the base station notifies the terminal device of information regarding the determined application unit. The information notified from the base station to the terminal includes, for example, information indicating the application unit of the filter itself (that is, the number of subcarriers or symbols to which the filter is applied) and the index value associated with the application unit. Etc.
 次いで、基地局から端末装置に対して、フィルタの適用単位を示す情報を通知する方法に着目する。フィルタの適用単位を示す情報を通知する方法としては、例えば、以下に示す例が挙げられる。
 ・RRC Signaling(RRC Message)の一部として通知する
 ・System Informationの一部として通知する
 ・DCI(Downlink Control Information)の一部として通知する
Next, attention is focused on a method of notifying the terminal device of information indicating the unit of filter application from the base station. Examples of the method for notifying information indicating the application unit of the filter include the following examples.
Notify as part of RRC Signaling (RRC Message) Notify as part of System Information Notify as part of DCI (Downlink Control Information)
 以上のような構成により、フィルタの適用単位を状況に応じて切り替えることが可能となる。また、端末装置は、フィルタの適用単位が切替えられた場合においても、切り替え後の当該適用単位を、基地局からの通知に基づき認識することが可能となる。換言すると、端末装置は、切り替え後のフィルタの適用単位に応じた、当該フィルタが適用されるリソースを、基地局からの通知に基づき認識することが可能となる。 With the configuration as described above, it is possible to switch the application unit of the filter according to the situation. In addition, even when the application unit of the filter is switched, the terminal device can recognize the applied unit after the switching based on the notification from the base station. In other words, the terminal device can recognize the resource to which the filter is applied according to the applied unit of the filter after switching based on the notification from the base station.
 なお、上述した例では、フィルタの適用単位を基地局が決定する場合に着目して説明したが、フィルタの適用単位を決定する主体は、必ずしも基地局に限定されない。具体的な一例として、端末装置が、フィルタの適用単位を決定してもよい。なお、この場合には、端末装置は、例えば、決定したフィルタの適用単位を示す情報を、RRC Signalingや、UCI(Uplink Control Information)の一部として基地局に通知すればよい。 In the above-described example, the case where the base station determines the application unit of the filter has been described. However, the subject that determines the application unit of the filter is not necessarily limited to the base station. As a specific example, the terminal device may determine an application unit of the filter. In this case, for example, the terminal device may notify the base station of information indicating the determined filter application unit as part of RRC Signaling or UCI (Uplink Control Information).
 (c)フィルタの適用単位を動的に決定するケース
 次いで、フィルタの適用単位を動的に決定するケースについて説明する。当該ケースにおいては、例えば、基地局が、所定の条件、即ち、フィルタの適用単位を決定するための所定の判断基準に基づき、当該適用単位を決定する。なお、フィルタの適用単位を決定するための情報としては、例えば、フィルタを適用するサブキャリア数や、フィルタを適用するシンボル数(または、サブシンボル数)が挙げられる。
(C) Case in which filter application unit is dynamically determined Next, a case in which the filter application unit is dynamically determined will be described. In this case, for example, the base station determines the application unit based on a predetermined condition, that is, a predetermined criterion for determining the filter application unit. Examples of information for determining the application unit of the filter include the number of subcarriers to which the filter is applied and the number of symbols to which the filter is applied (or the number of subsymbols).
 なお、フィルタの適用単位を決定するための判断基準については、前述したフィルタの適用単位を準静的に決定するケースと同様に、以下に示す例が挙げられる。
 ・システムの帯域幅
 ・端末装置からの通信品質のフィードバック
 ・端末装置からの再送要求
 ・端末装置の位置情報
 ・端末装置の利用用途(端末装置からの通信品質に関する要求する)
 ・端末装置からのフィルタの適用単位の切り替えに関する要求
As for the criteria for determining the filter application unit, the following examples can be given as in the case of determining the filter application unit quasi-statically.
-System bandwidth-Feedback of communication quality from the terminal device-Retransmission request from the terminal device-Location information of the terminal device-Usage of the terminal device (requires communication quality from the terminal device)
・ Requests related to switching of application units of filters from terminal devices
 また、基地局から端末装置に対して、フィルタの適用単位を示す情報(換言すると、フィルタを適用するリソースに関する情報)を通知する方法についても、前述したフィルタの適用単位を準静的に決定するケースと同様に、以下に示す例が挙げられる。
 ・RRC Signaling(RRC Message)の一部として通知する
 ・System Informationの一部として通知する
 ・DCIの一部として通知する
In addition, regarding the method of notifying the terminal device of information indicating the filter application unit (in other words, information regarding the resource to which the filter is applied), the above-described filter application unit is quasi-statically determined. Similar to the case, the following examples are given.
Notify as part of RRC Signaling (RRC Message) Notify as part of System Information Notify as part of DCI
 また、端末装置が、フィルタの適用単位を決定してもよい。この場合には、端末装置は、例えば、決定したフィルタの適用単位を示す情報を、RRC Signalingや、UCI(Uplink Control Information)の一部として基地局に通知すればよい。 Also, the terminal device may determine the application unit of the filter. In this case, for example, the terminal device may notify the base station of information indicating the determined filter application unit as part of RRC Signaling or UCI (Uplink Control Information).
 以上のような構成により、フィルタの適用単位を状況に応じてより柔軟に切り替えることが可能となる。また、端末装置は、フィルタの適用単位が切替えられた場合においても、切り替え後の当該適用単位を、基地局からの通知に基づき認識することが可能となる。 With the configuration as described above, it is possible to switch the application unit of the filter more flexibly according to the situation. In addition, even when the application unit of the filter is switched, the terminal device can recognize the applied unit after the switching based on the notification from the base station.
 (5)フィルタの適用単位の切り替えタイミング
 続いて、フィルタの適用単位を切り替えるタイミングの一例について説明する。例えば、基地局は、送信するデータごとにフィルタの適用単位の切り替えを毎回行ってもよいが、切り替え可能なタイミングを判断し、当該判断結果に基づきフィルタの適用単位を切り替えてもよい。
(5) Filter Application Unit Switching Timing Next, an example of the filter application unit switching timing will be described. For example, the base station may switch the filter application unit for each data to be transmitted, but may determine the switchable timing and switch the filter application unit based on the determination result.
 基地局が、フィルタの適用単位を切り替えるタイミングとしては、以下に示す例が挙げられる。
 ・端末装置からの通信品質に関するフィードバックに基づく切り替え
 ・所定のタイミングごとの切り替え(例えば、1フレームごと等)
 ・再送のタイミングでの切り替え
Examples of the timing at which the base station switches the filter application unit include the following examples.
・ Switching based on feedback on communication quality from terminal devices ・ Switching at predetermined timing (for example, every frame)
・ Switching at the timing of retransmission
 即ち、基地局は、上述した条件に基づきフィルタの適用単位を切り替えるタイミングを判断し、当該判断結果に基づくタイミングにおいて、当該フィルタの適用単位を切り替えてもよい。 That is, the base station may determine the timing for switching the filter application unit based on the above-described conditions, and may switch the filter application unit at the timing based on the determination result.
 また、他の一例として、基地局は、フィルタの適用単位を切り替えるタイミングの判断結果に基づき、端末装置に対して、フィルタの適用単位の切り替えが可能なタイミングであることを通知してもよい。また、端末装置は、フィルタの適用単位の切り替えが可能なタイミングの通知を基地局から受けた場合には、フィルタの適用単位の切り替えが必要か否かを判断する。そして、端末装置は、フィルタの適用単位の切り替えが必要と判断した場合には、基地局に対して、フィルタの適用単位の切り替えに関する要求を通知する。この場合には、基地局は、端末装置からの要求に応じて、フィルタの適用単位を切り替えてもよい。 As another example, the base station may notify the terminal device that it is possible to switch the application unit of the filter based on the determination result of the timing of switching the application unit of the filter. In addition, when the terminal device receives a notification from the base station of the timing at which the filter application unit can be switched, the terminal device determines whether it is necessary to switch the filter application unit. When the terminal device determines that the switching of the filter application unit is necessary, the terminal device notifies the base station of a request for switching the filter application unit. In this case, the base station may switch the application unit of the filter in response to a request from the terminal device.
 なお、端末装置が、基地局に対してフィルタの適用単位の切り替えを要求するタイミングとしては、以下に示す例が挙げられる。
 ・通信品質の測定結果が閾値以下となった場合に通知する
 ・復号誤りが発生した場合に通知する
Examples of the timing at which the terminal device requests the base station to switch the filter application unit include the following examples.
・ Notify when the measurement result of communication quality is below the threshold ・ Notify when a decoding error occurs
 以上、フィルタの適用単位を切り替えるタイミングの一例について説明した。なお、フィルタの適用単位の切り替えに係る処理の流れの一例については別途後述する。 In the above, an example of the timing for switching the application unit of the filter has been described. An example of the flow of processing relating to switching of the application unit of the filter will be described later.
 (6)処理の流れ
 続いて、図13及び図14を参照して、本実施形態に係るシステムの処理の流れの一例について説明する。
(6) Process Flow Next, an example of a process flow of the system according to the present embodiment will be described with reference to FIGS. 13 and 14.
 (a)フィルタの適用単位の決定に係る処理
 まず、図13を参照して、フィルタの適用単位の決定に係る一連の処理の流れの一例について説明する。図13は、フィルタの適用単位の決定に係る一連の処理の流れの一例について示したフローチャートである。なお、本説明では、基地局100が、フィルタの適用単位を決定するものとして説明する。
(A) Process related to determination of filter application unit First, an example of a flow of a series of processes related to determination of a filter application unit will be described with reference to FIG. FIG. 13 is a flowchart illustrating an example of a flow of a series of processes related to determination of a filter application unit. In this description, it is assumed that the base station 100 determines a filter application unit.
 まず、基地局100(通信処理部151)は、送信信号に対して、ガードバンドとして使用される周波数帯域幅をより制限するためのフィルタを適用するか否かを判断する(S101)。フィルタを適用しないと判断した場合には(S101、NO)、基地局100は、フィルタの適用単位の決定に係る一連の処理を終了する。 First, the base station 100 (communication processing unit 151) determines whether or not to apply a filter for further limiting the frequency bandwidth used as a guard band to the transmission signal (S101). When it is determined that the filter is not applied (S101, NO), the base station 100 ends a series of processes related to determination of the filter application unit.
 また、フィルタを適用すると判断した場合には(S101、YES)、基地局100(通信処理部151)は、当該フィルタが適用される最小単位を確認する(S103)。なお、フィルタが適用される最小単位については前述した通りである。 If it is determined that the filter is to be applied (S101, YES), the base station 100 (communication processing unit 151) confirms the minimum unit to which the filter is applied (S103). The minimum unit to which the filter is applied is as described above.
 次いで、基地局100(通信処理部151)は、フィルタの適用単位を決定する。具体的には、フィルタの適用単位が固定の場合には(S105、YES)、基地局100は、仕様(通信規約)に基づく適用単位に従い、送信信号に対して、当該適用単位に応じたユニットごとにフィルタを適用する(S107)。 Next, the base station 100 (communication processing unit 151) determines an application unit of the filter. Specifically, when the application unit of the filter is fixed (S105, YES), the base station 100 follows the application unit based on the specification (communication protocol) and the unit corresponding to the application unit for the transmission signal. A filter is applied every time (S107).
 また、フィルタの適用単位を準静的に決定する場合には(S105、NO、かつ、S109、YES)、基地局100(通信処理部151)は、所定の条件に基づき、フィルタの適用単位を所定の候補の中から選択する。そして、基地局100は、送信信号に対して、選択したフィルタの適用単位に応じたユニットごとにフィルタを適用する。 When the application unit of the filter is determined semi-statically (S105, NO and S109, YES), the base station 100 (communication processing unit 151) determines the filter application unit based on a predetermined condition. Select from predetermined candidates. Then, the base station 100 applies a filter for each unit corresponding to the selected filter application unit for the transmission signal.
 また、フィルタの適用単位を動的に決定する場合には(S109、NO)、基地局100(通信処理部151)は、所定の条件に基づき、フィルタの適用単位を動的に決定する。そして、基地局100は、送信信号に対して、決定したフィルタの適用単位に応じたユニットごとにフィルタを適用する。 When the filter application unit is dynamically determined (S109, NO), the base station 100 (communication processing unit 151) dynamically determines the filter application unit based on a predetermined condition. Then, the base station 100 applies a filter for each unit corresponding to the determined filter application unit for the transmission signal.
 以上、図13を参照して、フィルタの適用単位の決定に係る一連の処理の流れの一例について説明した。 As described above, with reference to FIG. 13, an example of a flow of a series of processes related to determination of a filter application unit has been described.
 (b)フィルタの適用単位の切り替えに係る処理
 次いで、図14を参照して、フィルタの適用単位の切り替えに係る一連の処理の流れの一例について説明する。図14は、フィルタの適用単位の切り替えに係る一連の処理の流れの一例について示したフローチャートである。なお、本説明では、基地局100が、フィルタの適用単位を切り替えるものとして説明する。即ち、図中において、参照符号S201~S205、及びS213で示された処理の主体は基地局100であり、参照符号S207~S211で示された処理の主体は端末装置200となる。
(B) Process related to filter application unit switching Next, an example of a flow of a series of processes related to filter application unit switching will be described with reference to FIG. FIG. 14 is a flowchart illustrating an example of a flow of a series of processes related to switching of application units of filters. In the description, it is assumed that the base station 100 switches the application unit of the filter. That is, in the figure, the subject of processing indicated by reference numerals S201 to S205 and S213 is the base station 100, and the subject of processing indicated by reference numerals S207 to S211 is the terminal device 200.
 まず、基地局100(通信処理部151)は、フィルタの適用単位を切り替え可能なタイミングか否かを確認する(S201)。フィルタの適用単位を切り替え可能なタイミングではない場合には(S201、NO)、フィルタの適用単位の切り替えは行われず、一連の処理が終了となる。 First, the base station 100 (communication processing unit 151) checks whether or not it is the timing when the application unit of the filter can be switched (S201). When it is not the timing when the application unit of the filter can be switched (S201, NO), the application unit of the filter is not switched, and the series of processing ends.
 また、フィルタの適用単位を切り替え可能なタイミングの場合には(S201、YES)、基地局100(通信処理部151)は、フィルタの適用単位の切り替えが必要なタイミングか否かを確認する(S203)。フィルタの適用単位の切り替えが必要なタイミングの場合には(S203、YES)、基地局100(通信処理部151)は、所定の条件に基づきフィルタの適用単位を決定する。そして、基地局100(通知部153)は、決定したフィルタの適用単位に関する情報を端末装置200に通知する(S213)。 In addition, when it is the timing when the application unit of the filter can be switched (S201, YES), the base station 100 (communication processing unit 151) confirms whether or not it is time to switch the application unit of the filter (S203). ). In the case where it is necessary to switch the application unit of the filter (S203, YES), the base station 100 (communication processing unit 151) determines the application unit of the filter based on a predetermined condition. Then, the base station 100 (notifying unit 153) notifies the terminal device 200 of information regarding the determined filter application unit (S213).
 一方で、フィルタの適用単位の切り替えが必要なタイミングではないと判断した場合には(S203、NO)、基地局100(通知部153)は、フィルタの適用単位の切り替えが可能であることを端末装置200に通知する(S205)。この通知を受けて、端末装置200(通信処理部243)は、所定の条件に基づき、基地局100に対してフィルタの適用単位の切り替えに関する要求を行うか否かを判断する(S207)。なお、端末装置200が、フィルタの適用単位の切り替えに関する要求を行わないと判断した場合には(S209、NO)、フィルタの適用単位の切り替えは行われず、一連の処理が終了となる。 On the other hand, if it is determined that it is not necessary to switch the filter application unit (S203, NO), the base station 100 (notification unit 153) indicates that the filter application unit can be switched. The device 200 is notified (S205). Upon receiving this notification, the terminal device 200 (communication processing unit 243) determines whether or not to make a request for switching the filter application unit to the base station 100 based on a predetermined condition (S207). Note that if the terminal device 200 determines not to make a request for switching the filter application unit (S209, NO), the filter application unit is not switched, and the series of processing ends.
 また、フィルタの適用単位の切り替えに関する要求を行うと判断した場合には(S209、YES)、端末装置200(通知部245)は、基地局100に対して、フィルタの適用単位の切り替えに関する要求を通知する。この通知を受けて、基地局100(通信処理部151)は、所定の条件に基づきフィルタの適用単位を決定する。そして、基地局100(通知部153)は、決定したフィルタの適用単位に関する情報を端末装置200に通知する(S213)。 If it is determined that a request for switching the application unit of the filter is made (S209, YES), the terminal device 200 (notification unit 245) makes a request for switching the application unit of the filter to the base station 100. Notice. Upon receiving this notification, the base station 100 (communication processing unit 151) determines a filter application unit based on a predetermined condition. Then, the base station 100 (notifying unit 153) notifies the terminal device 200 of information regarding the determined filter application unit (S213).
 また、端末装置200(情報取得部241)は、基地局100から、フィルタの適用単位に関する情報の通知を受ける。これにより、端末装置200(通信処理部243)は、基地局100から送信される信号に対して適用されたフィルタの適用単位を認識することが可能となるため、当該基地局100から送信された信号を正しく復号することが可能となる。また、端末装置200(情報取得部241)は、基地局100に送信する信号に対して、当該基地局100から通知された情報に応じた適用単位でフィルタを適用してもよい。これにより、基地局100は、端末装置200から送信された信号を正しく復号することが可能となる。 Also, the terminal device 200 (information acquisition unit 241) receives a notification of information related to a filter application unit from the base station 100. Accordingly, since the terminal device 200 (communication processing unit 243) can recognize the application unit of the filter applied to the signal transmitted from the base station 100, it is transmitted from the base station 100. It becomes possible to correctly decode the signal. Further, the terminal device 200 (information acquisition unit 241) may apply a filter to a signal to be transmitted to the base station 100 in application units corresponding to information notified from the base station 100. Thereby, the base station 100 can correctly decode the signal transmitted from the terminal device 200.
 以上、図14を参照して、フィルタの適用単位の切り替えに係る一連の処理の流れの一例について説明した。 As described above, an example of a flow of a series of processes related to switching of the application unit of the filter has been described with reference to FIG.
 <<4.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
<< 4. Application example >>
The technology according to the present disclosure can be applied to various products. For example, the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB. The small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB. Instead, the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station). Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。 Further, for example, the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. The terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least some of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  <4.1.基地局に関する応用例>
 (第1の応用例)
 図15は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
<4.1. Application examples for base stations>
(First application example)
FIG. 15 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図15に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図15にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。 Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820. The eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 15, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Although FIG. 15 illustrates an example in which the eNB 800 includes a plurality of antennas 810, the eNB 800 may include a single antenna 810.
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。 The base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。 The controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node. The memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。 The network interface 823 is a communication interface for connecting the base station device 820 to the core network 824. The controller 821 may communicate with the core network node or other eNB via the network interface 823. In that case, the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface). The network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul. When the network interface 823 is a wireless communication interface, the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。 The wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810. The wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like. The BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP). Various signal processing of (Packet Data Convergence Protocol) is executed. The BB processor 826 may have some or all of the logical functions described above instead of the controller 821. The BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good. Further, the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade. On the other hand, the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
 無線通信インタフェース825は、図15に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図15に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図15には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。 The wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 15, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as illustrated in FIG. 15, and the plurality of RF circuits 827 may respectively correspond to a plurality of antenna elements, for example. 15 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
 図15に示したeNB800において、図4を参照して説明した処理部150に含まれる1つ以上の構成要素(送信処理部151及び/又は通知部153)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 800 illustrated in FIG. 15, one or more components (the transmission processing unit 151 and / or the notification unit 153) included in the processing unit 150 described with reference to FIG. 4 are implemented in the wireless communication interface 825. Also good. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program. Good. As described above, the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図15に示したeNB800において、図4を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。 Further, in the eNB 800 illustrated in FIG. 15, the wireless communication unit 120 described with reference to FIG. 4 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823. In addition, the storage unit 140 may be implemented in the memory 822.
 (第2の応用例)
 図16は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(Second application example)
FIG. 16 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図16に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図16にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。 Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860. The eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 16, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 16 shows an example in which the eNB 830 includes a plurality of antennas 840, but the eNB 830 may include a single antenna 840.
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図15を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。 The base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857. The controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図15を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図16に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図16には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。 The wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840. The wireless communication interface 855 may typically include a BB processor 856 and the like. The BB processor 856 is the same as the BB processor 826 described with reference to FIG. 15 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857. The wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 16, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. 16 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860. The connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。 In addition, the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850. The connection interface 861 may be a communication module for communication on the high-speed line.
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図16に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図16には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。 The wireless communication interface 863 transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 may typically include an RF circuit 864 and the like. The RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 16, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. 16 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, the wireless communication interface 863 may include a single RF circuit 864.
 図16に示したeNB830において、図4を参照して説明した処理部150に含まれる1つ以上の構成要素(送信処理部151及び/又は通知部153)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 830 illustrated in FIG. 16, one or more components (the transmission processing unit 151 and / or the notification unit 153) included in the processing unit 150 described with reference to FIG. 4 include the wireless communication interface 855 and / or the wireless The communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851. As an example, the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program. Good. As described above, the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図16に示したeNB830において、例えば、図4を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。 In the eNB 830 illustrated in FIG. 16, for example, the wireless communication unit 120 described with reference to FIG. 4 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864). The antenna unit 110 may be mounted on the antenna 840. The network communication unit 130 may be implemented in the controller 851 and / or the network interface 853. The storage unit 140 may be mounted in the memory 852.
  <4.2.端末装置に関する応用例>
 (第1の応用例)
 図17は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
<4.2. Application examples related to terminal devices>
(First application example)
FIG. 17 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied. The smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915. One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。 The processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900. The memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data. The storage 903 can include a storage medium such as a semiconductor memory or a hard disk. The external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。 The camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image. The sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor. The microphone 908 converts sound input to the smartphone 900 into an audio signal. The input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user. The display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900. The speaker 911 converts an audio signal output from the smartphone 900 into audio.
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図17に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図17には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。 The wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like. The BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916. The wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated. The wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. FIG. 17 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914. However, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。 Furthermore, the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method. In that case, a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。 Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図17に示したように複数のアンテナ916を有してもよい。なお、図17にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。 Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912. The smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 17 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。 Furthermore, the smartphone 900 may include an antenna 916 for each wireless communication method. In that case, the antenna switch 915 may be omitted from the configuration of the smartphone 900.
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図17に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。 The bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. . The battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 17 through a power supply line partially shown by a broken line in the drawing. For example, the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
 図17に示したスマートフォン900において、図5を参照して説明した処理部240に含まれる1つ以上の構成要素(情報取得部241、通信処理部243、及び/又は通知部245)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the smartphone 900 illustrated in FIG. 17, one or more components (the information acquisition unit 241, the communication processing unit 243, and / or the notification unit 245) included in the processing unit 240 described with reference to FIG. The communication interface 912 may be implemented. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed. As described above, the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図17に示したスマートフォン900において、例えば、図5を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。 Further, in the smartphone 900 illustrated in FIG. 17, for example, the wireless communication unit 220 described with reference to FIG. 5 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914). The antenna unit 210 may be mounted on the antenna 916. The storage unit 230 may be mounted in the memory 902.
 (第2の応用例)
 図18は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
(Second application example)
FIG. 18 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied. The car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication. The interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。 The processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920. The memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。 The GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites. The sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor. The data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。 The content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928. The input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user. The display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced. The speaker 931 outputs the navigation function or the audio of the content to be played back.
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図18に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図18には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。 The wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like. The BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937. The wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated. The wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 18 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。 Further, the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method. A BB processor 934 and an RF circuit 935 may be included for each communication method.
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。 Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図18に示したように複数のアンテナ937を有してもよい。なお、図18にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。 Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933. The car navigation device 920 may include a plurality of antennas 937 as shown in FIG. 18 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。 Furthermore, the car navigation device 920 may include an antenna 937 for each wireless communication method. In that case, the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図18に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。 The battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 18 through a power supply line partially shown by a broken line in the figure. Further, the battery 938 stores electric power supplied from the vehicle side.
 図18に示したカーナビゲーション装置920において、図5を参照して説明した処理部240に含まれる1つ以上の構成要素(情報取得部241、通信処理部243、及び/又は通知部245)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the car navigation device 920 shown in FIG. 18, one or more components (information acquisition unit 241, communication processing unit 243, and / or notification unit 245) included in the processing unit 240 described with reference to FIG. The wireless communication interface 933 may be implemented. Alternatively, at least some of these components may be implemented in the processor 921. As an example, the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be. As described above, the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図18に示したカーナビゲーション装置920において、例えば、図5を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。 In the car navigation device 920 shown in FIG. 18, for example, the wireless communication unit 220 described with reference to FIG. 5 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935). The antenna unit 210 may be mounted on the antenna 937. Further, the storage unit 230 may be implemented in the memory 922.
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、情報取得部241、通信処理部243、及び/又は通知部245を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。 Also, the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, the in-vehicle system (or vehicle) 940 may be provided as a device including the information acquisition unit 241, the communication processing unit 243, and / or the notification unit 245. The vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
 <<5.むすび>>
 以上、図1~図18を参照して、本開示の一実施形態について詳細に説明した。上記に説明したように、本実施形態に係る基地局100は、無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報を端末装置200に通知する。より具体的には、リソースエレメントを最小単位として、フィルタの適用単位が決定される。そして、決定されたフィルタの適用単位に関する情報が、例えば、基地局100から端末装置200に通知される。
<< 5. Conclusion >>
The embodiment of the present disclosure has been described in detail above with reference to FIGS. As described above, the base station 100 according to the present embodiment notifies the terminal device 200 of control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for wireless communication is applied. To do. More specifically, the application unit of the filter is determined with the resource element as the minimum unit. And the information regarding the determined application unit of a filter is notified to the terminal device 200 from the base station 100, for example.
 また、基地局100及び端末装置200のそれぞれが送信装置として動作する場合には、当該送信装置は、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報に基づき、当該フィルタを送信データ(即ち、送信信号)に対して適用する。そして、当該送信装置は、フィルタ適用後の送信データを、送信先となる外部装置に送信する。 In addition, when each of the base station 100 and the terminal device 200 operates as a transmission device, the transmission device transmits the filter based on control information related to a resource to which a filter for limiting the width of the guard band is applied. Applies to data (ie, transmitted signal). Then, the transmission device transmits the transmission data after applying the filter to the external device that is the transmission destination.
 以上のような構成により、本実施形態に係るシステムに依れば、ガードバンドの幅を制限するためのフィルタを適用するリソース(換言すると、フィルタの適用単位)を、送受信環境やユースケースに応じて、適応的に選択または決定することが可能となる。これにより、送信データに対してより好適な態様で当該フィルタを適用することが可能となり、ひいては、システム全体のスループットの向上も見込まれる。 With the configuration as described above, according to the system according to the present embodiment, the resource (in other words, the filter application unit) to which the filter for limiting the width of the guard band is applied depends on the transmission / reception environment and use case. Thus, it becomes possible to select or determine adaptively. As a result, the filter can be applied to the transmission data in a more preferable manner, and as a result, the throughput of the entire system is expected to be improved.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in the present specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 無線通信を行う通信部と、
 前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報が、前記無線通信を介して外部装置に送信されるように制御する制御部と、
 を備える、装置。
(2)
 前記制御部は、前記リソースを最小単位として、前記フィルタを適用する単位を決定し、当該単位に関する情報が、前記リソースに関する制御情報として、前記無線通信を介して前記外部装置に送信されるように制御する、前記(1)に記載の装置。
(3)
 前記単位は、周波数方向及び時間方向のうち少なくともいずれかのリソース数に基づき決定される、前記(2)に記載の装置。
(4)
 前記制御情報を記憶する記憶部を備え、
 前記制御部は、前記記憶部に記憶された前記制御情報が、前記無線通信を介して前記外部装置に送信されるように制御する、前記(1)~(3)のいずれか一項に記載の装置。
(5)
 前記制御部は、所定の条件に基づき前記フィルタを適用するリソースを決定する、前記(1)に記載の装置。
(6)
 前記制御部は、前記所定の条件に基づき、前記フィルタを適用するリソースを、あらかじめ設定された複数の候補の中から決定する、前記(5)に記載の装置。
(7)
 制御部は、前記外部装置から前記フィルタを適用するリソースに関する要求を受けた後に、当該フィルタを適用するリソースを決定する、前記(5)または(6)に記載の装置。
(8)
 前記制御部は、前記外部装置からの通信品質のフィードバック、当該外部装置からの再送要求、当該外部装置の位置情報、及び当該外部装置からの通信品質に関する要求のうち、少なくともいずれかに応じて前記フィルタを適用するリソースを決定する、前記(5)~(7)のいずれか一項に記載の装置。
(9)
 前記制御部は、前記フィルタを適用するリソースを切り替えるタイミングに関する情報が、前記無線通信を介して前記外部装置に送信されるように制御する、前記(1)~(8)のいずれか一項に記載の装置。
(10)
 前記制御部は、所定の条件に基づき前記フィルタを適用する前記単位を決定する、前記(2)または(3)に記載の装置。
(11)
 前記制御部は、前記所定の条件に基づき、前記フィルタを適用する前記単位を、あらかじめ設定された複数の候補の中から決定する、前記(10)に記載の装置。
(12)
 前記制御部は、前記外部装置から前記フィルタを適用する前記単位に関する要求を受けた後に、当該フィルタを適用する前記単位を決定する、前記(10)または(11)に記載の装置。
(13)
 前記制御部は、前記外部装置からの通信品質のフィードバック、当該外部装置からの再送要求、当該外部装置の位置情報、及び当該外部装置からの通信品質に関する要求のうち、少なくともいずれかに応じて前記フィルタを適用する前記単位を決定する、前記(10)~(12)のいずれか一項に記載の装置。
(14)
 前記制御部は、前記フィルタを適用する前記単位を切り替えるタイミングに関する情報が、前記無線通信を介して前記外部装置に送信されるように制御する、前記(2)、3、10~(13)のいずれか一項に記載の装置。
(15)
 無線通信を行う通信部と、
 前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報を、前記無線通信を介して外部装置から取得する取得部と、
 を備える、装置。
(16)
 所定の条件に応じて、前記フィルタを適用するリソースの切り替えに関する要求が、前記無線通信を介して前記外部装置に送信されるように制御する制御部を備える、前記(15)に記載の装置。
(17)
 前記制御部は、前記無線通信の品質に応じて、前記要求が、前記無線通信を介して前記外部装置に送信されるように制御する、前記(16)に記載の装置。
(18)
 前記制御部は、前記無線通信を介して前記外部装置から受信したデータの復号結果に応じて、前記要求が、前記無線通信を介して前記外部装置に送信されるように制御する、前記(16)に記載の装置。
(19)
 無線通信を行う通信部と、
 前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報に基づき、前記フィルタを送信データに適用し、当該フィルタが適用された前記送信データが、前記無線通信を介して外部装置に送信されるように制御する制御部と、
 を備える、装置。
(20)
 無線通信を行うことと、
 プロセッサが、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報が、前記無線通信を介して外部装置に送信されるように制御することと、
 を含む、方法。
(21)
 無線通信を行うことと、
 プロセッサが、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報を、前記無線通信を介して外部装置から取得することと、
 を含む、方法。
(22)
 無線通信を行うことと、
 プロセッサが、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報に基づき、前記フィルタを送信データに適用し、当該フィルタが適用された前記送信データが、前記無線通信を介して外部装置に送信されるように制御することと、
 を含む、方法。
The following configurations also belong to the technical scope of the present disclosure.
(1)
A communication unit for performing wireless communication;
A control unit for controlling control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is transmitted to an external device via the wireless communication;
An apparatus comprising:
(2)
The control unit determines a unit to apply the filter using the resource as a minimum unit, and information related to the unit is transmitted to the external apparatus via the wireless communication as control information related to the resource. The apparatus according to (1), which is controlled.
(3)
The apparatus according to (2), wherein the unit is determined based on the number of resources in at least one of a frequency direction and a time direction.
(4)
A storage unit for storing the control information;
The control unit performs control so that the control information stored in the storage unit is transmitted to the external device via the wireless communication, according to any one of (1) to (3). Equipment.
(5)
The apparatus according to (1), wherein the control unit determines a resource to which the filter is applied based on a predetermined condition.
(6)
The said control part is an apparatus as described in said (5) which determines the resource which applies the said filter from several preset candidates based on the said predetermined conditions.
(7)
The device according to (5) or (6), wherein the control unit determines a resource to which the filter is applied after receiving a request regarding the resource to which the filter is applied from the external device.
(8)
The control unit, according to at least one of feedback of communication quality from the external device, retransmission request from the external device, location information of the external device, and request regarding communication quality from the external device The apparatus according to any one of (5) to (7), wherein a resource to which a filter is applied is determined.
(9)
The control unit according to any one of (1) to (8), wherein the control unit controls information related to timing of switching a resource to which the filter is applied to be transmitted to the external device via the wireless communication. The device described.
(10)
The apparatus according to (2) or (3), wherein the control unit determines the unit to apply the filter based on a predetermined condition.
(11)
The apparatus according to (10), wherein the control unit determines the unit to apply the filter from a plurality of preset candidates based on the predetermined condition.
(12)
The said control part is an apparatus as described in said (10) or (11) which determines the said unit which applies the said filter after receiving the request regarding the said unit which applies the said filter from the said external device.
(13)
The control unit, according to at least one of feedback of communication quality from the external device, retransmission request from the external device, location information of the external device, and request regarding communication quality from the external device The apparatus according to any one of (10) to (12), wherein the unit to which a filter is applied is determined.
(14)
The control unit controls the information related to the timing of switching the unit to which the filter is applied to be transmitted to the external apparatus via the wireless communication. (2), 3, 10 to (13) The device according to any one of the above.
(15)
A communication unit for performing wireless communication;
An acquisition unit that acquires control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is applied from the external device via the wireless communication;
An apparatus comprising:
(16)
The apparatus according to (15), further including a control unit configured to control so that a request regarding switching of a resource to which the filter is applied is transmitted to the external apparatus via the wireless communication according to a predetermined condition.
(17)
The device according to (16), wherein the control unit controls the request to be transmitted to the external device via the wireless communication in accordance with the quality of the wireless communication.
(18)
The control unit controls the request to be transmitted to the external device via the wireless communication in accordance with a decoding result of data received from the external device via the wireless communication. ) Device.
(19)
A communication unit for performing wireless communication;
Based on control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is applied, the filter is applied to transmission data, and the transmission data to which the filter is applied is A control unit for controlling to be transmitted to an external device via the wireless communication;
An apparatus comprising:
(20)
Doing wireless communication,
The processor controls so that control information related to a resource to which a filter for limiting the width of a guard band out of the frequency band used for the wireless communication is transmitted to the external device via the wireless communication. When,
Including a method.
(21)
Doing wireless communication,
A processor acquires control information regarding a resource to which a filter for limiting a guard band width is used from among the frequency bands used for the wireless communication from an external device via the wireless communication;
Including a method.
(22)
Doing wireless communication,
The processor applies the filter to transmission data based on control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is applied, and the filter to which the filter is applied Controlling transmission data to be transmitted to an external device via the wireless communication;
Including a method.
 1   システム
 10  セル
 100 基地局
 110 アンテナ部
 120 無線通信部
 130 ネットワーク通信部
 140 記憶部
 150 処理部
 151 通信処理部
 153 通知部
 200 端末装置
 210 アンテナ部
 220 無線通信部
 230 記憶部
 240 処理部
 241 情報取得部
 243 通信処理部
 245 通知部
1 system 10 cell 100 base station 110 antenna unit 120 wireless communication unit 130 network communication unit 140 storage unit 150 processing unit 151 communication processing unit 153 notification unit 200 terminal device 210 antenna unit 220 wireless communication unit 230 storage unit 240 processing unit 241 information acquisition Unit 243 communication processing unit 245 notification unit

Claims (22)

  1.  無線通信を行う通信部と、
     前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報が、前記無線通信を介して外部装置に送信されるように制御する制御部と、
     を備える、装置。
    A communication unit for performing wireless communication;
    A control unit for controlling control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is transmitted to an external device via the wireless communication;
    An apparatus comprising:
  2.  前記制御部は、前記リソースを最小単位として、前記フィルタを適用する単位を決定し、当該単位に関する情報が、前記リソースに関する制御情報として、前記無線通信を介して前記外部装置に送信されるように制御する、請求項1に記載の装置。 The control unit determines a unit to apply the filter using the resource as a minimum unit, and information related to the unit is transmitted to the external apparatus via the wireless communication as control information related to the resource. The apparatus of claim 1, wherein the apparatus controls.
  3.  前記単位は、周波数方向及び時間方向のうち少なくともいずれかのリソース数に基づき決定される、請求項2に記載の装置。 The apparatus according to claim 2, wherein the unit is determined based on the number of resources in at least one of a frequency direction and a time direction.
  4.  前記制御情報を記憶する記憶部を備え、
     前記制御部は、前記記憶部に記憶された前記制御情報が、前記無線通信を介して前記外部装置に送信されるように制御する、請求項1に記載の装置。
    A storage unit for storing the control information;
    The apparatus according to claim 1, wherein the control unit controls the control information stored in the storage unit to be transmitted to the external device via the wireless communication.
  5.  前記制御部は、所定の条件に基づき前記フィルタを適用するリソースを決定する、請求項1に記載の装置。 The apparatus according to claim 1, wherein the control unit determines a resource to which the filter is applied based on a predetermined condition.
  6.  前記制御部は、前記所定の条件に基づき、前記フィルタを適用するリソースを、あらかじめ設定された複数の候補の中から決定する、請求項5に記載の装置。 The apparatus according to claim 5, wherein the control unit determines a resource to which the filter is applied from a plurality of preset candidates based on the predetermined condition.
  7.  制御部は、前記外部装置から前記フィルタを適用するリソースに関する要求を受けた後に、当該フィルタを適用するリソースを決定する、請求項5に記載の装置。 6. The apparatus according to claim 5, wherein the control unit determines a resource to which the filter is applied after receiving a request regarding the resource to which the filter is applied from the external apparatus.
  8.  前記制御部は、前記外部装置からの通信品質のフィードバック、当該外部装置からの再送要求、当該外部装置の位置情報、及び当該外部装置からの通信品質に関する要求のうち、少なくともいずれかに応じて前記フィルタを適用するリソースを決定する、請求項5に記載の装置。 The control unit, according to at least one of feedback of communication quality from the external device, retransmission request from the external device, location information of the external device, and request regarding communication quality from the external device 6. The apparatus according to claim 5, wherein a resource to which a filter is applied is determined.
  9.  前記制御部は、前記フィルタを適用するリソースを切り替えるタイミングに関する情報が、前記無線通信を介して前記外部装置に送信されるように制御する、請求項1に記載の装置。 The apparatus according to claim 1, wherein the control unit controls information related to timing of switching a resource to which the filter is applied to be transmitted to the external apparatus via the wireless communication.
  10.  前記制御部は、所定の条件に基づき前記フィルタを適用する前記単位を決定する、請求項2に記載の装置。 The apparatus according to claim 2, wherein the control unit determines the unit to apply the filter based on a predetermined condition.
  11.  前記制御部は、前記所定の条件に基づき、前記フィルタを適用する前記単位を、あらかじめ設定された複数の候補の中から決定する、請求項10に記載の装置。 The apparatus according to claim 10, wherein the control unit determines the unit to which the filter is applied from a plurality of preset candidates based on the predetermined condition.
  12.  前記制御部は、前記外部装置から前記フィルタを適用する前記単位に関する要求を受けた後に、当該フィルタを適用する前記単位を決定する、請求項10に記載の装置。 The apparatus according to claim 10, wherein the control unit determines the unit to which the filter is applied after receiving a request regarding the unit to which the filter is applied from the external apparatus.
  13.  前記制御部は、前記外部装置からの通信品質のフィードバック、当該外部装置からの再送要求、当該外部装置の位置情報、及び当該外部装置からの通信品質に関する要求のうち、少なくともいずれかに応じて前記フィルタを適用する前記単位を決定する、請求項10に記載の装置。 The control unit, according to at least one of feedback of communication quality from the external device, retransmission request from the external device, location information of the external device, and request regarding communication quality from the external device The apparatus of claim 10, wherein the unit for applying a filter is determined.
  14.  前記制御部は、前記フィルタを適用する前記単位を切り替えるタイミングに関する情報が、前記無線通信を介して前記外部装置に送信されるように制御する、請求項2に記載の装置。 The apparatus according to claim 2, wherein the control unit controls information related to timing of switching the unit to which the filter is applied to be transmitted to the external apparatus via the wireless communication.
  15.  無線通信を行う通信部と、
     前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報を、前記無線通信を介して外部装置から取得する取得部と、
     を備える、装置。
    A communication unit for performing wireless communication;
    An acquisition unit that acquires control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is applied from the external device via the wireless communication;
    An apparatus comprising:
  16.  所定の条件に応じて、前記フィルタを適用するリソースの切り替えに関する要求が、前記無線通信を介して前記外部装置に送信されるように制御する制御部を備える、請求項15に記載の装置。 The apparatus according to claim 15, further comprising a control unit configured to control so that a request regarding switching of a resource to which the filter is applied is transmitted to the external apparatus via the wireless communication according to a predetermined condition.
  17.  前記制御部は、前記無線通信の品質に応じて、前記要求が、前記無線通信を介して前記外部装置に送信されるように制御する、請求項16に記載の装置。 The apparatus according to claim 16, wherein the control unit controls the request to be transmitted to the external apparatus via the wireless communication according to the quality of the wireless communication.
  18.  前記制御部は、前記無線通信を介して前記外部装置から受信したデータの復号結果に応じて、前記要求が、前記無線通信を介して前記外部装置に送信されるように制御する、請求項16に記載の装置。 The control unit controls the request to be transmitted to the external device via the wireless communication according to a decoding result of data received from the external device via the wireless communication. The device described in 1.
  19.  無線通信を行う通信部と、
     前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報に基づき、前記フィルタを送信データに適用し、当該フィルタが適用された前記送信データが、前記無線通信を介して外部装置に送信されるように制御する制御部と、
     を備える、装置。
    A communication unit for performing wireless communication;
    Based on control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is applied, the filter is applied to transmission data, and the transmission data to which the filter is applied is A control unit for controlling to be transmitted to an external device via the wireless communication;
    An apparatus comprising:
  20.  無線通信を行うことと、
     プロセッサが、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報が、前記無線通信を介して外部装置に送信されるように制御することと、
     を含む、方法。
    Doing wireless communication,
    The processor controls so that control information related to a resource to which a filter for limiting the width of a guard band out of the frequency band used for the wireless communication is transmitted to the external device via the wireless communication. When,
    Including a method.
  21.  無線通信を行うことと、
     プロセッサが、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報を、前記無線通信を介して外部装置から取得することと、
     を含む、方法。
    Doing wireless communication,
    A processor acquires control information regarding a resource to which a filter for limiting a guard band width is used from among the frequency bands used for the wireless communication from an external device via the wireless communication;
    Including a method.
  22.  無線通信を行うことと、
     プロセッサが、前記無線通信に利用する周波数帯域のうち、ガードバンドの幅を制限するためのフィルタを適用するリソースに関する制御情報に基づき、前記フィルタを送信データに適用し、当該フィルタが適用された前記送信データが、前記無線通信を介して外部装置に送信されるように制御することと、
     を含む、方法。
    Doing wireless communication,
    The processor applies the filter to transmission data based on control information related to a resource to which a filter for limiting the width of a guard band among frequency bands used for the wireless communication is applied, and the filter to which the filter is applied Controlling transmission data to be transmitted to an external device via the wireless communication;
    Including a method.
PCT/JP2016/082166 2016-01-26 2016-10-28 Device and method WO2017130499A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SG11201805360RA SG11201805360RA (en) 2016-01-26 2016-10-28 Apparatus and method
EP16888084.7A EP3410660A4 (en) 2016-01-26 2016-10-28 Device and method
US16/067,762 US11128431B2 (en) 2016-01-26 2016-10-28 Apparatus and method
MX2018008858A MX2018008858A (en) 2016-01-26 2016-10-28 Device and method.
RU2018126584A RU2719404C2 (en) 2016-01-26 2016-10-28 Apparatus and method
ZA2018/04064A ZA201804064B (en) 2016-01-26 2018-06-18 Device and method
US17/478,971 US11706072B2 (en) 2016-01-26 2021-09-20 Apparatus and method for filtering a bit stream and providing guard bands

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016012196 2016-01-26
JP2016-012196 2016-01-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/067,762 A-371-Of-International US11128431B2 (en) 2016-01-26 2016-10-28 Apparatus and method
US17/478,971 Continuation US11706072B2 (en) 2016-01-26 2021-09-20 Apparatus and method for filtering a bit stream and providing guard bands

Publications (1)

Publication Number Publication Date
WO2017130499A1 true WO2017130499A1 (en) 2017-08-03

Family

ID=59397854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082166 WO2017130499A1 (en) 2016-01-26 2016-10-28 Device and method

Country Status (8)

Country Link
US (2) US11128431B2 (en)
EP (1) EP3410660A4 (en)
MX (1) MX2018008858A (en)
RU (1) RU2719404C2 (en)
SG (1) SG11201805360RA (en)
TW (1) TW201731275A (en)
WO (1) WO2017130499A1 (en)
ZA (1) ZA201804064B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10708941B2 (en) * 2014-11-21 2020-07-07 Sony Corporation Apparatus for acquiring and reporting power allocation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111187A1 (en) * 2006-03-20 2007-10-04 Ntt Docomo, Inc. Base station, mobile station, and method
JP2010199923A (en) * 2009-02-25 2010-09-09 Kyocera Corp Radio communication device
WO2014109948A1 (en) * 2013-01-10 2014-07-17 Intel Corporation Sending information at a band edge within an orthogonal frequency-division multiplexing (ofdm) symbol
US20150349996A1 (en) * 2014-02-13 2015-12-03 Futurewei Technologies, Inc. System and Method for Guard Band Utilization for Synchronous and Asynchronous Communications

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3981899B2 (en) * 1998-02-26 2007-09-26 ソニー株式会社 Transmission method, transmission device, and reception device
US6996522B2 (en) * 2001-03-13 2006-02-07 Industrial Technology Research Institute Celp-Based speech coding for fine grain scalability by altering sub-frame pitch-pulse
FR2834072B1 (en) * 2001-12-26 2006-08-04 Onera (Off Nat Aerospatiale) FALSE REJECTION IN PASSIVE SIGNAL RADAR RECEPTOR TO OFDM WITH ANTENNA NETWORK
US20060128329A1 (en) * 2004-12-13 2006-06-15 Pieter Van Rooyen Method and system for receiver front end (RFE) architecture supporting broadcast utilizing a fractional N synthesizer for European, world and US wireless bands
US20070147226A1 (en) 2005-10-27 2007-06-28 Aamod Khandekar Method and apparatus for achieving flexible bandwidth using variable guard bands
JP4946159B2 (en) * 2006-05-09 2012-06-06 富士通株式会社 Wireless transmission method, wireless reception method, wireless transmission device, and wireless reception device
JP2009267797A (en) * 2008-04-25 2009-11-12 Kyocera Corp Wireless communication system, wireless transmitting apparatus, wireless receiving apparatus, and wireless communication method
US8315217B2 (en) * 2008-09-23 2012-11-20 Qualcomm Incorporated Method and apparatus for controlling UE emission in a wireless communication system
WO2010062061A2 (en) * 2008-11-03 2010-06-03 엘지전자주식회사 Communication method and apparatus in multi-carrier system
RU2405273C1 (en) * 2009-04-20 2010-11-27 Открытое акционерное общество "Рязанское конструкторское бюро "Глобус" Demodulator of phase-shift signals
CN101997650B (en) * 2009-08-28 2014-07-30 华为技术有限公司 Transmission method, device and system of multi-antenna system data signals
US9565655B2 (en) * 2011-04-13 2017-02-07 Google Technology Holdings LLC Method and apparatus to detect the transmission bandwidth configuration of a channel in connection with reducing interference between channels in wireless communication systems
US8743946B2 (en) * 2011-09-08 2014-06-03 Texas Instruments Incorporated Frequency-domain equalization and combining for single carrier transmission
US9544827B2 (en) * 2011-09-12 2017-01-10 Ntt Docomo, Inc. Enhanced local access in mobile communications with FDD resource allocation
WO2014121847A1 (en) 2013-02-08 2014-08-14 Huawei Technologies Co., Ltd. Base station and method for controlling radio resources allocation
TW201445939A (en) * 2013-02-15 2014-12-01 Sony Corp OFDM encoding apparatus and method
US10075954B2 (en) * 2013-09-20 2018-09-11 Blackberry Limited Systems and methods for band-limited subframes in wireless networks
US9584284B2 (en) * 2013-09-26 2017-02-28 Qualcomm Incorporated Simplified FDD-TDD carrier aggregation
US9312998B2 (en) * 2013-09-30 2016-04-12 T-Mobile Usa, Inc. Filter-based guardband determination and subcarrier selection
US9787515B2 (en) * 2014-02-13 2017-10-10 Huawei Technologies Co., Ltd. System and method for guard band utilization for synchronous and asynchronous communications
WO2016159468A1 (en) * 2015-04-02 2016-10-06 엘지전자 주식회사 Method for processing signal in wireless communication system and device therefor
US20160352419A1 (en) * 2015-05-27 2016-12-01 John P. Fonseka Constrained interleaving for 5G wireless and optical transport networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111187A1 (en) * 2006-03-20 2007-10-04 Ntt Docomo, Inc. Base station, mobile station, and method
JP2010199923A (en) * 2009-02-25 2010-09-09 Kyocera Corp Radio communication device
WO2014109948A1 (en) * 2013-01-10 2014-07-17 Intel Corporation Sending information at a band edge within an orthogonal frequency-division multiplexing (ofdm) symbol
US20150349996A1 (en) * 2014-02-13 2015-12-03 Futurewei Technologies, Inc. System and Method for Guard Band Utilization for Synchronous and Asynchronous Communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410660A4 *

Also Published As

Publication number Publication date
RU2719404C2 (en) 2020-04-17
RU2018126584A (en) 2020-01-20
SG11201805360RA (en) 2018-07-30
US11128431B2 (en) 2021-09-21
US20220006598A1 (en) 2022-01-06
EP3410660A1 (en) 2018-12-05
EP3410660A4 (en) 2019-02-13
MX2018008858A (en) 2018-09-07
ZA201804064B (en) 2019-04-24
RU2018126584A3 (en) 2020-01-20
US11706072B2 (en) 2023-07-18
US20190013922A1 (en) 2019-01-10
TW201731275A (en) 2017-09-01

Similar Documents

Publication Publication Date Title
JP6668686B2 (en) Transmission device
JP6787311B2 (en) Equipment and method
US11296909B2 (en) Apparatus and method for performing radio communication
JP6586762B2 (en) Reception device, transmission device, reception method, transmission method, and program
US20220109595A1 (en) Apparatus and method
WO2017047210A1 (en) Device and method
US11706072B2 (en) Apparatus and method for filtering a bit stream and providing guard bands
US11088735B2 (en) Wireless communication method and wireless communication device
JPWO2017085971A1 (en) Apparatus, method, and program
JP7468364B2 (en) COMMUNICATION DEVICE, COMMUNICATION CONTROL DEVICE, COMMUNICATION METHOD, AND COMMUNICATION CONTROL METHOD
JP2024503448A (en) HARQ process handling for multi-DCI multi-TRP operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888084

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201805360R

Country of ref document: SG

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/008858

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888084

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888084

Country of ref document: EP

Effective date: 20180827

NENP Non-entry into the national phase

Ref country code: JP