WO2017128602A1 - 一种教育玩具套件及其定位孔检测定位方法 - Google Patents
一种教育玩具套件及其定位孔检测定位方法 Download PDFInfo
- Publication number
- WO2017128602A1 WO2017128602A1 PCT/CN2016/086799 CN2016086799W WO2017128602A1 WO 2017128602 A1 WO2017128602 A1 WO 2017128602A1 CN 2016086799 W CN2016086799 W CN 2016086799W WO 2017128602 A1 WO2017128602 A1 WO 2017128602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- positioning hole
- area
- positioning
- tablet
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H33/00—Other toys
- A63H33/04—Building blocks, strips, or similar building parts
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30164—Workpiece; Machine component
Definitions
- the invention relates to the technical field of computer vision detection and processing, in particular to an educational toy kit and a positioning hole detecting and positioning method thereof.
- an educational toy kit has been successfully developed in the field of application of computer vision recognition processing technology, including: a bracket, a helmet detector and a bottom plate, and the bracket is mounted on the bottom plate, and the helmet detector is mounted on the bracket; There is a first groove; the bottom of the bracket has a protrusion, the protrusion is installed in the first groove, the top has a second groove and a third groove, the second groove is used for placing the tablet; the helmet detector is installed on the first Inside the three grooves.
- an educational toy kit and a positioning hole detecting and positioning method thereof are urgently needed, and a positioning hole is set on an educational toy kit, and a targeted image processing technology can be applied to detect whether a position of a positioning hole preset on a component is Centering, to achieve the detection of equipment installation between components, improve the accuracy of installation, improve installation speed, image acquisition and analysis results are more accurate.
- the present invention provides an educational toy kit and a positioning hole detecting and positioning method thereof, and the technical solutions are as follows:
- An educational toy kit comprising a bracket, a helmet detector and a bottom plate, wherein the bracket is mounted on the bottom plate, the helmet detector is mounted on the bracket, and a first groove is arranged above the bottom plate; the bottom of the bracket has a protrusion, and the protrusion is installed at the bottom a recess having a second recess for positioning a tablet computer; a helmet detector mounted in the third recess; and a positioning hole disposed in the third recess The longitudinal center axis of the side wall.
- a positioning hole detecting and positioning method for an educational toy kit includes the following steps:
- Step one first installing the bottom end of the tablet in the second recess, and then mounting the helmet detector on the top of the tablet through the fourth recess;
- Step 2 After the installation is fixed, the image is acquired by the front camera of the tablet computer;
- Step 3 extracting a position image of the positioning hole in the image acquired by the front camera
- Step 4 Determine the position of the positioning hole by using the position image extracted in the third step, and determine whether the tablet is accurately installed by the position of the positioning hole.
- the positioning hole In the position image of the positioning hole obtained in the third step, the positioning hole should be located at the center point of the image in the correct case; a deviation threshold is set in advance, and if the deviation of the positioning hole is less than or equal to the threshold of the deviation, the installation is considered accurate; A positioning hole appears in the image, but the deviation of the positioning hole exceeds the deviation threshold, indicating that the tablet is not properly installed; if the positioning hole does not appear in the image, it means that the tablet or helmet detector is not properly installed.
- the specific steps of the second step are:
- I xy f(x, y);
- f(x, y) (R xy , G xy , B xy );
- R xy represents the color value of the image pixel in the red channel
- G xy represents the color value of the image pixel in the green channel
- B xy represents the color value of the image pixel in the blue channel.
- the specific steps of the third step are:
- the color image acquired in step 2 is converted into a grayscale image.
- the specific formula is:
- Gray(x, y) 0.2989 ⁇ R xy +0.5870 ⁇ G xy +0.1140 ⁇ B xy ;
- Gray(x, y) represents a grayscale image
- a template matrix is defined to extract the positioning holes, the template matrix size is (n+2) ⁇ (n+2), and the template matrix is a square matrix with an n ⁇ n zero matrix in the middle and a boundary of 1, the template matrix Specifically:
- mask (n+2) ⁇ (n+2) represents a template matrix
- grayscale image is convoluted together with the template matrix
- the positioning hole Since the positioning hole is disposed on the bottom side of the side wall of the third groove, the positioning hole should be located in the upper half of the grayscale image, and only the upper half of the grayscale image is processed together with the template matrix during the convolution operation. Yes;
- M r represents the height of the image
- M c represents the width of the image
- C (s, t) represents the convolved image
- the specific value of n is determined by the diameter of the positioning hole in the image
- the convolution image is subtracted from the gray image to obtain a difference image, and then the pixel value of the difference image is calculated, and the difference image is binarized.
- the specific formula is:
- B(x, y) represents a binarized image of the difference image
- the morphological prior knowledge is used to filter out the locating hole area, and a position image containing only the locating hole is obtained.
- step 3 the morphological prior knowledge is used to filter the positioning hole area, and the specific steps of obtaining the position image containing only the positioning hole are:
- 8 neighborhood connectivity refers to the point that the pixel value of one pixel is non-zero, and the other pixel points have non-zero pixel values in the upper, lower, left, right, upper left, upper right, lower left, and lower right directions.
- the two pixels are connected in 8 neighborhoods, so different connected areas can be distinguished one by one;
- step b) separately calculating the area of the connected area marked in step a), and setting the area threshold;
- step c) separately calculating the eccentricity of the connected region marked in step a), and setting the eccentricity threshold;
- the positioning area can be filtered out, and the positioning hole position image is obtained;
- the remaining connected area of the filtering area is the positioning hole position image.
- step 4 the position image extracted in step 3 is used to determine the position of the positioning hole, and then the position of the positioning hole determines whether the tablet computer is accurately installed.
- the specific steps are:
- the positioning hole should be located at the center point position of the image in the correct case; a deviation threshold is set in advance, and the installation is considered accurate if the deviation of the positioning hole is less than or equal to the deviation threshold; A locating hole has appeared, but the locating hole exceeds the deviation threshold, indicating that the tablet is not properly installed; if the locating hole does not appear in the image, the tablet or helmet detector is not properly installed.
- the hardware design is ingenious.
- the invention only has a positioning hole on the base of the tablet computer.
- the structure is simple and the cost is low.
- the size and position of the positioning hole are verified by a large number of experiments, which is more scientific and convenient for the camera to collect images and can be quickly Check if the installation was successful.
- the detection performance is stable, the installation of different lighting, different tablet computers can be quickly tested, the applicability is stronger.
- the invention provides a positioning hole on the educational toy kit, and can apply a targeted image processing technology to detect whether the position of the preset positioning hole on the component is centered, realize the installation detection of the components between the components, and improve the installation accuracy. Improve installation speed, image acquisition and analysis results are more accurate.
- FIG. 1 is a schematic structural view of an educational toy kit of the present invention.
- FIG. 2 is a rear elevational view of the bracket of the educational toy kit of the present invention.
- FIG. 3 is a perspective view of a bracket of an educational toy kit of the present invention.
- FIG. 4 is a schematic structural view of a bottom plate of an educational toy kit of the present invention.
- FIG. 5 is a flow chart of a positioning hole detecting and positioning method of an educational toy kit.
- FIG. 5 is a flow chart of an educational toy kit and a positioning hole detecting and positioning method thereof.
- an educational toy kit and a positioning hole detecting and positioning method thereof include the following steps:
- Step one first installing the bottom end of the tablet in the second recess, and then mounting the helmet detector on the top of the tablet through the fourth recess;
- Step 2 After the installation is fixed, the image is acquired by the front camera of the tablet computer;
- I xy f(x, y);
- f(x, y) (R xy , G xy , B xy );
- R xy represents the color value of the image pixel in the red channel
- G xy represents the color value of the image pixel in the green channel
- B xy represents the color value of the image pixel in the blue channel
- Step 3 extracting a position image of the positioning hole in the image acquired by the front camera
- the color image acquired in step 2 is converted into a grayscale image.
- the specific formula is:
- Gray(x, y) 0.2989 ⁇ R xy +0.5870 ⁇ G xy +0.1140 ⁇ B xy ;
- Gray(x, y) represents a grayscale image
- a template matrix is defined to extract the positioning holes, the template matrix size is (n+2) ⁇ (n+2), and the template matrix is a square matrix with an n ⁇ n zero matrix in the middle and a boundary of 1, the template matrix Specifically:
- mask (n+2) ⁇ (n+2) represents a template matrix
- grayscale image is convoluted together with the template matrix
- the positioning hole Since the positioning hole is disposed on the bottom side of the side wall of the third groove, the positioning hole should be located in the upper half of the grayscale image, and only the upper half of the grayscale image is processed together with the template matrix during the convolution operation. Yes;
- M r represents the height of the image
- M c represents the width of the image
- C (s, t) represents the convolved image
- the specific value of n is determined by the diameter of the positioning hole in the image
- the convolution image is subtracted from the gray image to obtain a difference image, and then the pixel value of the difference image is calculated, and the difference image is binarized.
- the specific formula is:
- B(x, y) represents a binarized image of the difference image
- the morphological prior knowledge is used to filter the locating hole area, and the specific steps for obtaining the locating hole position image are:
- 8 neighborhood connectivity refers to the point that the pixel value of one pixel is non-zero, and the other pixel points have non-zero pixel values in the upper, lower, left, right, upper left, upper right, lower left, and lower right directions.
- the two pixels are connected in 8 neighborhoods, so different connected areas can be distinguished one by one;
- step b) separately calculating the area of the connected area marked in step a), and setting the area threshold;
- step c) separately calculating the eccentricity of the connected region marked in step a), and setting the eccentricity threshold;
- the positioning area can be filtered out, and the positioning hole image is obtained;
- Step 4 Determine the position of the positioning hole by using the position image extracted in the third step, and then determine whether the tablet is accurately installed by the position of the positioning hole:
- the positioning hole In the position image of the positioning hole obtained in the third step, the positioning hole should be located at the center point of the image in the correct case; a deviation threshold is set in advance, and if the deviation of the positioning hole is less than or equal to the threshold of the deviation, the installation is considered accurate; A positioning hole appears in the image, but the deviation of the positioning hole exceeds the deviation threshold, indicating that the tablet is not properly installed; if the positioning hole does not appear in the image, it means that the tablet or helmet detector is not properly installed.
- FIG. 1 is a schematic structural view of an educational toy kit of the present invention.
- FIG. 2 is a rear elevational view of the bracket of the educational toy kit of the present invention.
- FIG. 3 is a perspective view of a bracket of an educational toy kit of the present invention.
- FIG. 4 is a schematic structural view of a bottom plate of an educational toy kit of the present invention.
- an educational toy kit includes a bracket 1, a helmet detector 2 and a bottom plate 3, and the bracket 1 is mounted on the bottom plate 3, and the helmet detector 2 is mounted on the bracket 1; the bottom plate 3 is disposed above There is a first groove 301; a bracket 1 having a protrusion 101 at the bottom, the protrusion 101 is mounted in the first groove 301, the top has a second groove 102 and a third groove 103, and the second groove 102 is used for placing a tablet computer; the helmet detector 2 is mounted in the third recess 103; and further includes: a positioning hole 104 disposed on a longitudinal central axis of the sidewall of the third recess 103.
- FIG. 5 is a flow chart of a positioning hole detecting and positioning method of an educational toy kit.
- a method for detecting and positioning a positioning hole of an educational toy kit includes the following steps:
- Step one first installing the bottom end of the tablet in the second recess, and then mounting the helmet detector on the top of the tablet through the fourth recess;
- Step 2 After the installation is fixed, the image is acquired by the front camera of the tablet computer;
- Step 3 extracting a position image of the positioning hole in the image acquired by the front camera
- Step 4 Determine the position of the positioning hole by using the position image extracted in the third step, and determine whether the tablet is accurately installed by the position of the positioning hole.
- FIG. 5 is a flow chart of an educational toy kit and a positioning hole detecting and positioning method thereof.
- an educational toy kit and a positioning hole detecting and positioning method thereof include the following steps:
- Step one first installing the bottom end of the tablet in the second recess, and then mounting the helmet detector on the top of the tablet through the fourth recess;
- Step 2 After the installation is fixed, the image is acquired by the front camera of the tablet computer;
- I xy f(x, y);
- f(x, y) (R xy , G xy , B xy );
- R xy represents the color value of the image pixel in the red channel
- G xy represents the color value of the image pixel in the green channel
- B xy represents the color value of the image pixel in the blue channel
- Step 3 extracting a position image of the positioning hole in the image acquired by the front camera
- the color image acquired in step 2 is converted into a grayscale image.
- the specific formula is:
- Gray(x, y) 0.2989 ⁇ R xy +0.5870 ⁇ G xy +0.1140 ⁇ B xy ;
- Gray(x, y) represents a grayscale image
- a template matrix is defined to extract the positioning holes, the template matrix size is (n+2) ⁇ (n+2), and the template matrix is a square matrix with an n ⁇ n zero matrix in the middle and a boundary of 1, the template matrix Specifically:
- mask (n+2) ⁇ (n+2) represents a template matrix
- grayscale image is convoluted together with the template matrix
- the positioning hole Since the positioning hole is disposed on the bottom side of the side wall of the third groove, the positioning hole should be located in the upper half of the grayscale image, and only the upper half of the grayscale image is processed together with the template matrix during the convolution operation. Yes;
- M r represents the height of the image
- M c represents the width of the image
- C (s, t) represents the convolved image
- the specific value of n is determined by the diameter of the positioning hole in the image
- the convolution image is subtracted from the gray image to obtain a difference image, and then the pixel value of the difference image is calculated, and the difference image is binarized.
- the specific formula is:
- B(x, y) represents a binarized image of the difference image
- the morphological prior knowledge is used to filter the locating hole area, and the specific steps for obtaining the locating hole position image are:
- 8 neighborhood connectivity refers to the point that the pixel value of one pixel is non-zero, and the other pixel points have non-zero pixel values in the upper, lower, left, right, upper left, upper right, lower left, and lower right directions.
- the two pixels are connected in 8 neighborhoods, so different connected areas can be distinguished one by one;
- step b) separately calculating the area of the connected area marked in step a), and setting the area threshold;
- step c) separately calculating the eccentricity of the connected region marked in step a), and setting the eccentricity threshold;
- the positioning area can be filtered out, and the positioning hole image is obtained;
- Step 4 Determine the position of the positioning hole by using the position image extracted in the third step, and then determine whether the tablet is accurately installed by the position of the positioning hole:
- the positioning hole In the position image of the positioning hole obtained in step 3, the positioning hole should be located at the center point of the image in the correct case; a deviation threshold is set in advance, and if the deviation of the positioning hole is less than or equal to the threshold of the deviation, the installation is considered Accurate; if a positioning hole appears in the image, but the deviation of the positioning hole exceeds the deviation threshold, it means that the tablet is not properly installed; if the positioning hole does not appear in the image, it means that the tablet or helmet detector is not properly installed.
- the hardware of the invention is ingeniously designed, and only one positioning hole is placed on the base of the tablet computer, the structure is simple and the cost is low, but the size and position of the positioning hole are verified by a large number of experiments, which is more scientific, convenient for the camera to collect images, and can quickly detect and install. whether succeed.
- the calculation speed of the invention is fast, and the time of each positioning detection is about 50 ms.
- the detection performance of the invention is stable, and the installation of different illuminations and different tablet computers can be quickly tested, and the applicability is stronger.
- the invention provides a positioning hole on the educational toy set, and can apply a targeted image processing technology to detect whether the position of the preset positioning hole on the component is centered, realize the installation and detection of the components between the components, improve the accuracy of the installation, and improve the accuracy. Installation speed, image acquisition and analysis results are more accurate.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Electrically Operated Instructional Devices (AREA)
- Toys (AREA)
- Image Processing (AREA)
Abstract
一种教育玩具套件及定位孔(104)检测定位的方法,套件包括支架(1)、头盔探测器(2)和底板(3),支架(1)安装于底板(3)上,头盔探测器(2)安装于支架(1)上,底板(3)上方设置有第一凹槽(301);支架(1)底部具有凸起(101),凸起(101)安装在第一凹槽(301)内,顶部具有第二凹槽(102)和第三凹槽(103),第二凹槽(102)用于放置平板电脑;头盔探测器(2)安装于第三凹槽(103)内;还包括:定位孔(104)设置于第三凹槽(103)的侧壁底侧,并且位于侧壁的纵向中心轴上。方法的步骤如下:将平板电脑、头盔探测器(2)安装好;通过平板电脑的前置摄像头采集图像;对图像进行处理,得出定位孔(104)位置图像;由定位孔(104)的位置判定平板电脑是否安装准确。教育玩具套件上设置定位孔(104)提高了安装的精确度和速度,使图像采集、分析结果更加准确。
Description
本发明涉及计算机视觉检测处理技术领域,特别涉及一种教育玩具套件及其定位孔检测定位方法。
现在平板电脑上有许多有趣的幼教游戏应用程序或者儿童游戏,但往往只是让小朋友在屏幕上指指画画,互动性欠缺,长时间看着屏幕容易对眼睛造成伤害;而当下一些互动性强的传统性游戏玩具已经脱离了时代的发展,形式上无法满足孩子学习、玩耍的需求,也不便于孩子和家长的互动沟通。
为了解决上述问题,应用计算机视觉识别处理技术领域成功的开发了一种教育玩具套件,包括:支架、头盔探测器和底板,并且支架安装于底板上,头盔探测器安装于支架上;底板上方设置有第一凹槽;支架底部具有凸起,凸起安装在第一凹槽内,顶部具有第二凹槽和第三凹槽,第二凹槽用于放置平板电脑;头盔探测器安装于第三凹槽内。
上述的教育玩具套件虽然解决了平板电脑中游戏的互动性欠缺的问题,但是其定位安装常常出现偏差,会导致安装缓慢,图像采集出错,分析结果不准确等问题的出现。
因此,计算机视觉检测处理技术领域急需一种教育玩具套件及其定位孔检测定位方法,在教育玩具套件上设置定位孔,能够应用针对性的图像处理技术检测部件上预设的定位孔的位置是否居中,实现对部件相互之间装备安装的检测,提高安装的精确度,提高安装速度,图像采集以及分析结果更加准确。
本发明为了解决上述问题,提供了一种教育玩具套件及其定位孔检测定位方法,技术方案如下:
一种教育玩具套件,包括支架、头盔探测器和底板,并且支架安装于底板上,头盔探测器安装于支架上,底板上方设置有第一凹槽;支架底部具有凸起,凸起安装在第一凹槽内,顶部具有第二凹槽和第三凹槽,第二凹槽用于放置平板电脑;头盔探测器安装于第三凹槽内;还包括:定位孔,设置于第三凹槽侧壁的纵向中心轴上。
一种教育玩具套件的定位孔检测定位方法,包括如下步骤:
步骤一,首先将平板电脑的底端安装于第二凹槽内,然后通过第四凹槽将头盔探测器安装于平板电脑的顶端;
步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像;
步骤三,在前置摄像头采集的图像中提取出定位孔的位置图像;
步骤四,通过步骤三中提取出的位置图像,判断出定位孔的位置,进而由定位孔的位置判定平板电脑是否安装准确。
在步骤三中得出的定位孔位置图像中,正确情况下定位孔应该位于图像的中心点位置;预先设定一个偏差阈值,如果定位孔的偏差小于等于偏差的阈值,则认为安装准确;如果图像中出现了定位孔,但是定位孔的偏差超过偏差阈值,则表示平板电脑没有正确安装;如果定位孔没有出现在图像中,则表示平板电脑或者头盔探测器没有正确安装。
优选的,在上述一种教育玩具套件的定位孔检测定位方法中,步骤二的具体步骤为:
将平板电脑前置摄像头所获取图像定义为Ixy,Ixy=f(x,y);
其中,(x,y)表示图像像素点的位置坐标,f(x,y)表示图像的在(x,y)上的像素值;
由于摄像头采集的图像为彩色图片,因此f(x,y)=(Rxy,Gxy,Bxy);
其中,Rxy表示图像像素点在红色通道的色彩值,Gxy表示图像像素点在绿色通道的色彩值,Bxy表示图像像素点在蓝色通道的色彩值。
优选的,在上述一种教育玩具套件的定位孔检测定位方法中,步骤三的具体步骤为:
首先,把步骤二中采集得到的彩色图像转换为灰度图像,具体公式为:
Gray(x,y)=0.2989×Rxy+0.5870×Gxy+0.1140×Bxy;
其中,Gray(x,y)表示灰度图像;
进一步地,定义一个模板矩阵用以提取定位孔,模板矩阵大小为(n+2)×(n+2),并且模板矩阵是中间为n×n零矩阵、边界为1的方形矩阵,模板矩阵具体为:
其中,mask(n+2)×(n+2)表示模板矩阵;
进一步地,把灰度图像与模板矩阵一起做卷积运算;
因为定位孔设置于第三凹槽的侧壁底侧,所以定位孔应该位于灰度图像的上半部分,在卷积运算的过程中只去灰度图像的上半部分与模板矩阵一起做运算即可;
0≤s≤Mr+n+1;
0≤t≤Mc+n+1;
其中,Mr表示图像的高度,Mc表示图像的宽度,C(s,t)表示卷积图像,n的具体数值由图像中定位孔的直径确定;
进一步地,从灰度图像中减去卷积图像得出差图像,再计算差图像的像素值,并对差图像进行二值化处理,具体公式为:
其中,B(x,y)表示差图像的二值化图像;
进一步地,采用形态学先验知识滤除非定位孔区域,得到只含有定位孔的位置图像。
优选的,在上述一种教育玩具套件的定位孔检测定位方法中,步骤三中采用形态学先验知识滤除非定位孔区域,得到只含有定位孔的位置图像的具体步骤为:
a)对差图像的二值化图像做8邻域连通分量标记;
8邻域连通是指将一个像素的像素值非零,另一个像素点的上、下、左、右、左上、右上、左下、右下8个方向也存在非零像素值的点,则认为这2个像素点是8邻域连通的,因此不同的连通区域即可被一一区分出来;
b)分别计算步骤a)标记完成的连通区域的面积,并且设定面积阈值;
计算每个8邻域连通分量中含有的像素个数,像素个数即为连通区域的面积;
c)分别计算步骤a)标记完成的连通区域的离心率,并且设定离心率阈值;
d)根据每个连通区域的面积、面积阈值、离心率以及离心率阈值即可滤除非定位区域,得出定位孔位置图像;
首先,将步骤b)中计算得出的连通区域的面积数值与面积阈值进行比较,当面积数值超出面积阈值范围时表示该连通区域为非定位区域,将其滤除;
然后,将步骤c)中计算得出的连通区域的离心率与离心率阈值相比较,当离心率超出离心率阈值范围时表示该连通区域为非定位区域,将其滤除;
进一步地,滤除非定位区域的剩余连通区域为定位孔位置图像。
优选的,在上述一种教育玩具套件的定位孔检测定位方法中,步骤四中通过步骤三中提取出的位置图像,判断出定位孔的位置,进而由定位孔的位置判定平板电脑是否安装准确的具体步骤为:
在步骤三得出的定位孔位置图像中,正确情况下定位孔应该位于图像的中心点位置;预先设定一个偏差阈值,只要定位孔的偏差小于等于偏差的阈值即认为安装准确;如果图像中出现了定位孔,但是定位孔超过偏差阈值,则表示平板电脑没有正确安装;如果定位孔没有出现在图像中,则表示平板电脑或者头盔探测器没有正确安装。
1、硬件设计巧妙,本发明只在平板电脑底座上打上一个定位孔,结构简单,成本低廉,但是定位孔的大小和位置是经过大量的实验验证的,更加科学,便于摄像头采集图像,能够快速检测安装是否成功。
2、计算速度快,每次定位检测耗时在50ms左右。
3、检测性能稳定,对不同光照、不同平板电脑的安装都能够快速的进行测试,适用性更强。
4、本发明在教育玩具套件上设置定位孔,能够应用针对性的图像处理技术检测部件上预设的定位孔的位置是否居中,实现对部件相互之间的装备安装检测,提高安装的精确度,提高安装速度,图像采集以及分析结果更加准确。
下面结合附图和具体实施方式来详细说明本发明:
图1是本实用新型一种教育玩具套件的结构示意图。
图2是本实用新型一种教育玩具套件的支架的后视图。
图3是本实用新型一种教育玩具套件的支架的立体图。
图4是本实用新型一种教育玩具套件的底板的结构示意图。
图5是一种教育玩具套件的定位孔检测定位方法的流程图。
其中,图1-5中的附图标记与部件名称之间的对应关系为:
支架1,凸起101,第二凹槽102,第三凹槽103,定位孔104,头盔探测器2,底板3,第一凹槽301。
实施例2:
图5是一种教育玩具套件及其定位孔检测定位方法的流程图。
如图5所示,一种教育玩具套件及其定位孔检测定位方法,包括如下步骤:
步骤一,首先将平板电脑的底端安装于第二凹槽内,然后通过第四凹槽将头盔探测器安装于平板电脑的顶端;
步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像;
将平板电脑前置摄像头所获取图像定义为Ixy,Ixy=f(x,y);
其中,(x,y)表示图像像素点的位置坐标,f(x,y)表示图像的在(x,y)上的像素值;
由于摄像头采集的图像为彩色图片,因此f(x,y)=(Rxy,Gxy,Bxy);
其中,Rxy表示图像像素点在红色通道的色彩值,Gxy表示图像像素点在绿色通道的色彩值,Bxy表示图像像素点在蓝色通道的色彩值;
步骤三,在前置摄像头采集的图像中提取出定位孔的位置图像;
首先,把步骤二中采集得到的彩色图像转换为灰度图像,具体公式为:
Gray(x,y)=0.2989×Rxy+0.5870×Gxy+0.1140×Bxy;
其中,Gray(x,y)表示灰度图像;
进一步地,定义一个模板矩阵用以提取定位孔,模板矩阵大小为(n+2)×(n+2),并且模板矩阵是中间为n×n零矩阵、边界为1的方形矩阵,模板矩阵具体为:
其中,mask(n+2)×(n+2)表示模板矩阵;
进一步地,把灰度图像与模板矩阵一起做卷积运算;
因为定位孔设置于第三凹槽的侧壁底侧,所以定位孔应该位于灰度图像的上半部分,在卷积运算的过程中只去灰度图像的上半部分与模板矩阵一起做运算即可;
0≤s≤Mr+n+1;
0≤t≤Mc+n+1;
其中,Mr表示图像的高度,Mc表示图像的宽度,C(s,t)表示卷积图像,n的具体数值由图像中定位孔的直径确定;
进一步地,从灰度图像中减去卷积图像得出差图像,再计算差图像的像素值,并对差图像进行二值化处理,具体公式为:
其中,B(x,y)表示差图像的二值化图像;
进一步地,采用形态学先验知识滤除非定位孔区域,得出定位孔位置图像的具体步骤为:
a)对差图像的二值化图像做8邻域连通分量标记;
8邻域连通是指将一个像素的像素值非零,另一个像素点的上、下、左、右、左上、右上、左下、右下8个方向也存在非零像素值的点,则认为这2个像素点是8邻域连通的,因此不同的连通区域即可被一一区分出来;
b)分别计算步骤a)标记完成的连通区域的面积,并且设定面积阈值;
计算每个8邻域连通分量中含有的像素个数,像素个数即为连通区域的面积;
c)分别计算步骤a)标记完成的连通区域的离心率,并且设定离心率阈值;
d)根据每个连通区域的面积、面积阈值、离心率以及离心率阈值即可滤除非定位区域,得出定位孔图像;
首先,将步骤b)中计算得出的连通区域的面积数值与面积阈值进行比较,当面积数值超出面积阈值范围时表示该连通区域为非定位区域,将其滤除;
然后,将步骤c)中计算得出的连通区域的离心率与离心率阈值相比较,当离心率超出离心率阈值范围时表示该连通区域为非定位区域,将其滤除;
进一步地,滤除非定位区域的剩余连通区域为定位孔位置图像;
步骤四,通过步骤三中提取出的位置图像,判断出定位孔的位置,进而由定位孔的位置判定平板电脑是否安装准确的具体步骤为:
在步骤三中得出的定位孔位置图像中,正确情况下定位孔应该位于图像的中心点位置;预先设定一个偏差阈值,如果定位孔的偏差小于等于偏差的阈值,则认为安装准确;如果图像中出现了定位孔,但是定位孔的偏差超过偏差阈值,则表示平板电脑没有正确安装;如果定位孔没有出现在图像中,则表示平板电脑或者头盔探测器没有正确安装。
为了使本发明技术实现的措施、创作特征、达成目的与功效易于明白了解,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
图1是本实用新型一种教育玩具套件的结构示意图。
图2是本实用新型一种教育玩具套件的支架的后视图。
图3是本实用新型一种教育玩具套件的支架的立体图。
图4是本实用新型一种教育玩具套件的底板的结构示意图。
如图1-4所示,一种教育玩具套件,包括支架1、头盔探测器2和底板3,并且支架1安装于底板3上,头盔探测器2安装于支架1上;底板3,上方设置有第一凹槽301;支架1,底部具有凸起101,凸起101安装在第一凹槽301内,顶部具有第二凹槽102和第三凹槽103,第二凹槽102用于放置平板电脑;头盔探测器2,安装于第三凹槽103内;还包括:定位孔104,设置于第三凹槽103侧壁的纵向中心轴上。
图5是一种教育玩具套件的定位孔检测定位方法的流程图。
如图5所示,一种教育玩具套件的定位孔检测定位方法,包括如下步骤:
步骤一,首先将平板电脑的底端安装于第二凹槽内,然后通过第四凹槽将头盔探测器安装于平板电脑的顶端;
步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像;
步骤三,在前置摄像头采集的图像中提取出定位孔的位置图像;
步骤四,通过步骤三中提取出的位置图像,判断出定位孔的位置,进而由定位孔的位置判定平板电脑是否安装准确。
实施例2:
图5是一种教育玩具套件及其定位孔检测定位方法的流程图。
如图5所示,一种教育玩具套件及其定位孔检测定位方法,包括如下步骤:
步骤一,首先将平板电脑的底端安装于第二凹槽内,然后通过第四凹槽将头盔探测器安装于平板电脑的顶端;
步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像;
将平板电脑前置摄像头所获取图像定义为Ixy,Ixy=f(x,y);
其中,(x,y)表示图像像素点的位置坐标,f(x,y)表示图像的在(x,y)上的像素值;
由于摄像头采集的图像为彩色图片,因此f(x,y)=(Rxy,Gxy,Bxy);
其中,Rxy表示图像像素点在红色通道的色彩值,Gxy表示图像像素点在绿色通道的色彩值,Bxy表示图像像素点在蓝色通道的色彩值;
步骤三,在前置摄像头采集的图像中提取出定位孔的位置图像;
首先,把步骤二中采集得到的彩色图像转换为灰度图像,具体公式为:
Gray(x,y)=0.2989×Rxy+0.5870×Gxy+0.1140×Bxy;
其中,Gray(x,y)表示灰度图像;
进一步地,定义一个模板矩阵用以提取定位孔,模板矩阵大小为(n+2)×(n+2),并且模板矩阵是中间为n×n零矩阵、边界为1的方形矩阵,模板矩阵具体为:
其中,mask(n+2)×(n+2)表示模板矩阵;
进一步地,把灰度图像与模板矩阵一起做卷积运算;
因为定位孔设置于第三凹槽的侧壁底侧,所以定位孔应该位于灰度图像的上半部分,在卷积运算的过程中只去灰度图像的上半部分与模板矩阵一起做运算即可;
0≤s≤Mr+n+1;
0≤t≤Mc+n+1;
其中,Mr表示图像的高度,Mc表示图像的宽度,C(s,t)表示卷积图像,n的具体数值由图像中定位孔的直径确定;
进一步地,从灰度图像中减去卷积图像得出差图像,再计算差图像的像素值,并对差图像进行二值化处理,具体公式为:
其中,B(x,y)表示差图像的二值化图像;
进一步地,采用形态学先验知识滤除非定位孔区域,得出定位孔位置图像的具体步骤为:
a)对差图像的二值化图像做8邻域连通分量标记;
8邻域连通是指将一个像素的像素值非零,另一个像素点的上、下、左、右、左上、右上、左下、右下8个方向也存在非零像素值的点,则认为这2个像素点是8邻域连通的,因此不同的连通区域即可被一一区分出来;
b)分别计算步骤a)标记完成的连通区域的面积,并且设定面积阈值;
计算每个8邻域连通分量中含有的像素个数,像素个数即为连通区域的面积;
c)分别计算步骤a)标记完成的连通区域的离心率,并且设定离心率阈值;
d)根据每个连通区域的面积、面积阈值、离心率以及离心率阈值即可滤除非定位区域,得出定位孔图像;
首先,将步骤b)中计算得出的连通区域的面积数值与面积阈值进行比较,当面积数值超出面积阈值范围时表示该连通区域为非定位区域,将其滤除;
然后,将步骤c)中计算得出的连通区域的离心率与离心率阈值相比较,当离心率超出离心率阈值范围时表示该连通区域为非定位区域,将其滤除;
进一步地,滤除非定位区域的剩余连通区域为定位孔位置图像;
步骤四,通过步骤三中提取出的位置图像,判断出定位孔的位置,进而由定位孔的位置判定平板电脑是否安装准确的具体步骤为:
在步骤三中得出的定位孔位置图像中,正确情况下定位孔应该位于图像的中心点位置;预先设定一个偏差阈值,如果定位孔的偏差小于等于偏差的阈值,则认为安装
准确;如果图像中出现了定位孔,但是定位孔的偏差超过偏差阈值,则表示平板电脑没有正确安装;如果定位孔没有出现在图像中,则表示平板电脑或者头盔探测器没有正确安装。
本发明硬件设计巧妙,只在平板电脑底座上打上一个定位孔,结构简单,成本低廉,但是定位孔的大小和位置是经过大量的实验验证的,更加科学,便于摄像头采集图像,能够快速检测安装是否成功。
本发明计算速度快,每次定位检测耗时在50ms左右。
本发明检测性能稳定,对不同光照、不同平板电脑的安装都能够快速的进行测试,适用性更强。
本发明在教育玩具套件上设置定位孔,能够应用针对性的图像处理技术检测部件上预设的定位孔的位置是否居中,实现对部件相互之间的装备安装检测,提高安装的精确度,提高安装速度,图像采集以及分析结果更加准确。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等同物界定。
所属领域技术人员根据上文的记载容易得知,本发明技术方案适合在工业中制造并在生产、生活中使用,因此本发明具备工业实用性。
Claims (6)
- 一种教育玩具套件,包括:支架、头盔探测器和底板,并且所述支架安装于底板上,所述头盔探测器安装于支架上,所述底板上方设置有第一凹槽;所述支架底部具有凸起,所述凸起安装在第一凹槽内,顶部具有第二凹槽和第三凹槽,所述第二凹槽用于放置平板电脑;所述头盔探测器安装于第三凹槽内;其特征在于,还包括:定位孔,设置于所述第三凹槽侧壁的纵向中心轴上。
- 一种教育玩具套件的定位孔检测定位方法,其特征在于,包括如下步骤:步骤一,首先将平板电脑的底端安装于第二凹槽内,然后通过第四凹槽将头盔探测器安装于平板电脑的顶端;步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像;步骤三,在前置摄像头采集的图像中提取出定位孔的位置图像;步骤四,通过所述步骤三中提取出的位置图像,判断出定位孔的位置,进而由定位孔的位置判定平板电脑是否安装准确。
- 根据权利要求2所述的一种教育玩具套件的定位孔检测定位方法,其特征在于,所述步骤二的具体步骤为:将平板电脑前置摄像头获取的图像定义为Ixy,Ixy=f(x,y);其中,(x,y)表示图像像素点的位置坐标,f(x,y)表示图像的在(x,y)上的像素值;由于摄像头采集的图像为彩色图片,因此f(x,y)=(Rxy,Gxy,Bxy);其中,Rxy表示图像像素点在红色通道的色彩值,Gxy表示图像像素点在绿色通道的色彩值,Bxy表示图像像素点在蓝色通道的色彩值。
- 根据权利要求3所述的一种教育玩具套件的定位孔检测定位方法,其特征在于,所述步骤三的具体步骤为:首先,把所述步骤二中采集得到的彩色图像转换为灰度图像,具体公式为:Gray(x,y)=0.2989×Rxy+0.5870×Gxy+0.1140×Bxy;其中,Gray(x,y)表示灰度图像;进一步地,定义一个模板矩阵用以提取定位孔,模板矩阵大小为(n+2)×(n+2),并且模板矩阵是中间为n×n零矩阵、边界为1的方形矩阵,模板矩阵具体为:其中,mask(n+2)×(n+2)表示模板矩阵;进一步地,把灰度图像与模板矩阵一起做卷积运算;因为定位孔设置于第三凹槽的侧壁底侧,所以定位孔应该位于灰度图像的上半部分,在卷积运算的过程中只去灰度图像的上半部分与模板矩阵一起做运算即可;0≤s≤Mr+n+1;0≤t≤Mc+n+1;其中,Mr表示图像的高度,Mc表示图像的宽度,C(s,t)表示卷积图像,n的具体数值由图像中定位孔的直径确定;进一步地,从灰度图像中减去卷积图像得出差图像,再计算差图像的像素值,并对差图像进行二值化处理,具体公式为:其中,B(x,y)表示差图像的二值化图像;进一步地,采用形态学先验知识滤除非定位孔区域,得到只含有定位孔的位置图像。
- 根据权利要求4所述的一种教育玩具套件的定位孔检测定位方法,其特征在于,所述步骤三中采用形态学先验知识滤除非定位孔区域,得到只含有定位孔的位置图像的具体步骤为:a)对差图像的二值化图像做8邻域连通分量标记;8邻域连通是指将一个像素的像素值非零,另一个像素点的上、下、左、右、左上、右上、左下、右下8个方向也存在非零像素值的点,则认为这2个像素点是8邻域连通的,因此不同的连通区域即可被一一区分出来;b)分别计算所述步骤a)标记完成的连通区域的面积,并且设定面积阈值;计算每个8邻域连通分量中含有的像素个数,像素个数即为连通区域的面积;c)分别计算所述步骤a)标记完成的连通区域的离心率,并且设定离心率阈值;d)根据每个连通区域的面积、面积阈值、离心率以及离心率阈值即可滤除非定位区域,得出定位孔位置图像;首先,将所述步骤b)中计算得出的连通区域的面积数值与面积阈值进行比较,当面积数值超出面积阈值范围时表示该连通区域为非定位区域,将其滤除;然后,将所述步骤c)中计算得出的连通区域的离心率与离心率阈值相比较,当离心率超出离心率阈值范围时表示该连通区域为非定位区域,将其滤除;进一步地,滤除非定位区域的剩余连通区域为定位孔位置图像。
- 根据权利要求1所述的一种教育玩具套件的定位孔检测定位方法,其特征在于,所述步骤四中通过步骤三中提取出的位置图像,判断出定位孔的位置,进而由定位孔的位置判定平板电脑是否安装准确的具体步骤为:在所述步骤三得出的定位孔位置图像中,正确情况下定位孔应该位于图像的中心点位置;预先设定一个偏差阈值,只要定位孔的偏差小于等于偏差的阈值即认为安装准确;如果图像中出现了定位孔,但是定位孔超过偏差阈值,则表示平板电脑没有正确安装;如果定位孔没有出现在图像中,则表示平板电脑或者头盔探测器没有正确安装。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610053438.5A CN105498253B (zh) | 2016-01-26 | 2016-01-26 | 一种教育玩具套件及其定位孔检测定位方法 |
CN201610053438.5 | 2016-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017128602A1 true WO2017128602A1 (zh) | 2017-08-03 |
Family
ID=55706789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/086799 WO2017128602A1 (zh) | 2016-01-26 | 2016-06-22 | 一种教育玩具套件及其定位孔检测定位方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105498253B (zh) |
WO (1) | WO2017128602A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113494884A (zh) * | 2020-04-08 | 2021-10-12 | Oppo(重庆)智能科技有限公司 | 电子设备镜片检测装置及方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105709434B (zh) * | 2016-01-26 | 2017-10-13 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其反光镜位置检测方法 |
CN105719307A (zh) * | 2016-01-26 | 2016-06-29 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及检测七巧板摆放形状、位置的方法 |
CN105513086B (zh) * | 2016-01-26 | 2019-02-19 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其基于形状匹配的魔方检测定位方法 |
CN105719318B (zh) * | 2016-01-26 | 2018-07-10 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件中基于hsv的魔方颜色识别方法 |
CN105498253B (zh) * | 2016-01-26 | 2017-10-13 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其定位孔检测定位方法 |
CN105498200A (zh) * | 2016-01-26 | 2016-04-20 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其七巧板颜色识别方法 |
CN106097833B (zh) * | 2016-08-19 | 2019-08-30 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其数字识别方法 |
CN106297492B (zh) * | 2016-08-19 | 2019-06-25 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及利用颜色和轮廓识别编程模块的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202153402U (zh) * | 2011-07-22 | 2012-02-29 | 佳木斯大学 | 可调式多功能阅读器 |
CN204288552U (zh) * | 2014-12-23 | 2015-04-22 | 成都韬睿教育咨询有限公司 | 一种远程教育终端 |
US20150125835A1 (en) * | 2012-04-17 | 2015-05-07 | David Wittich | System and Method for Providing Recursive Feedback During and Assembly Operation |
CN204347923U (zh) * | 2015-01-16 | 2015-05-20 | 王虓栋 | 基于摄像技术的网格定位处理系统 |
CN105194884A (zh) * | 2015-10-27 | 2015-12-30 | 上海葡萄纬度科技有限公司 | 教育玩具套件 |
CN105498253A (zh) * | 2016-01-26 | 2016-04-20 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其定位孔检测定位方法 |
-
2016
- 2016-01-26 CN CN201610053438.5A patent/CN105498253B/zh active Active
- 2016-06-22 WO PCT/CN2016/086799 patent/WO2017128602A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202153402U (zh) * | 2011-07-22 | 2012-02-29 | 佳木斯大学 | 可调式多功能阅读器 |
US20150125835A1 (en) * | 2012-04-17 | 2015-05-07 | David Wittich | System and Method for Providing Recursive Feedback During and Assembly Operation |
CN204288552U (zh) * | 2014-12-23 | 2015-04-22 | 成都韬睿教育咨询有限公司 | 一种远程教育终端 |
CN204347923U (zh) * | 2015-01-16 | 2015-05-20 | 王虓栋 | 基于摄像技术的网格定位处理系统 |
CN105194884A (zh) * | 2015-10-27 | 2015-12-30 | 上海葡萄纬度科技有限公司 | 教育玩具套件 |
CN105498253A (zh) * | 2016-01-26 | 2016-04-20 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其定位孔检测定位方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113494884A (zh) * | 2020-04-08 | 2021-10-12 | Oppo(重庆)智能科技有限公司 | 电子设备镜片检测装置及方法 |
CN113494884B (zh) * | 2020-04-08 | 2022-12-27 | Oppo(重庆)智能科技有限公司 | 电子设备镜片检测装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105498253B (zh) | 2017-10-13 |
CN105498253A (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017128602A1 (zh) | 一种教育玩具套件及其定位孔检测定位方法 | |
WO2017128603A1 (zh) | 一种教育玩具套件及其反光镜位置检测方法 | |
WO2021138995A1 (zh) | 一种棋盘格角点全自动检测方法 | |
WO2017128605A1 (zh) | 一种教育玩具套件及其基于hsv的魔方颜色识别方法 | |
WO2017128604A1 (zh) | 一种教育玩具套件及其基于形状匹配的魔方检测定位方法 | |
WO2018032626A1 (zh) | 一种教育玩具套件及其数字识别方法 | |
CN109785316B (zh) | 一种芯片表观缺陷检测方法 | |
WO2017128606A1 (zh) | 一种教育玩具套件及其七巧板颜色识别方法 | |
WO2018032630A1 (zh) | 一种教育玩具套件及利用颜色和轮廓识别编程模块的方法 | |
CN107392890B (zh) | 一种fpc铜线表面氧化缺陷检测方法及其检测系统 | |
CN106485749B (zh) | 一种基于角点的矩形引脚元件粗定位方法 | |
WO2017128607A1 (zh) | 一种教育玩具套件及检测七巧板摆放形状、位置的方法 | |
WO2018032631A1 (zh) | 一种教育玩具套件及其电路元件和电线的识别方法 | |
CN102988052B (zh) | 足长测量方法及系统 | |
CN108709500B (zh) | 一种电路板元件定位匹配方法 | |
WO2018032627A1 (zh) | 一种教育玩具套件及其海洋模具识别方法 | |
CN106327464A (zh) | 一种边缘检测方法 | |
CN108520260A (zh) | 瓶装口服液中可见异物的识别方法 | |
CN109726721A (zh) | 一种基于卷积神经网络模型的象棋识别方法 | |
CN114187253A (zh) | 一种电路板零件安装检测方法 | |
TW201516397A (zh) | 玻璃氣泡瑕疵檢測系統 | |
CN105092589B (zh) | 一种胶囊头缺陷检测方法 | |
CN102024264B (zh) | 一种基于直方图统计的触摸笔颜色识别方法 | |
CN105758337B (zh) | 一种获取透镜平面与图像传感器平面之间夹角的方法 | |
CN112419225A (zh) | 一种基于引脚分割的sop型芯片检测方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16887484 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16887484 Country of ref document: EP Kind code of ref document: A1 |