WO2017128607A1 - 一种教育玩具套件及检测七巧板摆放形状、位置的方法 - Google Patents
一种教育玩具套件及检测七巧板摆放形状、位置的方法 Download PDFInfo
- Publication number
- WO2017128607A1 WO2017128607A1 PCT/CN2016/086804 CN2016086804W WO2017128607A1 WO 2017128607 A1 WO2017128607 A1 WO 2017128607A1 CN 2016086804 W CN2016086804 W CN 2016086804W WO 2017128607 A1 WO2017128607 A1 WO 2017128607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- edge
- jigsaw puzzle
- groove
- tangram
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63H—TOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
- A63H33/00—Other toys
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F9/00—Games not otherwise provided for
- A63F9/06—Patience; Other games for self-amusement
- A63F9/10—Two-dimensional jig-saw puzzles
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
Definitions
- the invention relates to the technical field of computer vision detection and processing, in particular to an educational toy kit and a method for detecting the shape and position of a jigsaw puzzle.
- an educational toy kit has been successfully developed in the field of computer vision recognition processing technology, including: a bracket, a helmet detector and a bottom plate, and the bracket is mounted on the bottom plate, and the helmet detector is mounted on the bracket; a first groove; the bottom of the bracket has a protrusion, the protrusion is installed in the first groove, the top has a second groove and a third groove, the second groove is for placing the tablet; the helmet detector is installed in the third Inside the groove.
- the jigsaw puzzle is placed on the bottom plate, the game program is installed in the tablet computer, and the stitching image of the jigsaw puzzle placed on the bottom plate is collected by the camera of the tablet computer to determine whether the jigsaw puzzle pattern is consistent with the stitching program required by the game program, and if the inconsistency is given the most Quick and easy splicing guide to enhance the fun of the game, children's hands-on ability and interactivity.
- the field of computer vision detection and processing technology urgently needs an educational toy kit and a method for detecting the shape and position of the jigsaw puzzle, which can quickly detect whether the position of the jigsaw puzzle is accurately positioned and the shape of the jigsaw puzzle, and improve the image collection and the analysis result. rate.
- the present invention provides an educational toy kit and a method for detecting the shape and position of a jigsaw puzzle.
- the technical solution is as follows:
- An educational toy kit comprising a bracket, a helmet detector and a bottom plate, wherein the bracket is mounted on the bottom plate, the helmet detector is mounted on the bracket, and a first groove is arranged above the bottom plate; the bottom of the bracket has a protrusion, and the protrusion is installed at the bottom One In the groove, the top has a second groove and a third groove, the second groove is for placing a tablet computer; the helmet detector is installed in the third groove; and the positioning hole is disposed on the third groove side On the longitudinal center axis of the wall.
- a method for detecting the shape and position of a jigsaw puzzle in an educational toy kit comprising the following steps:
- Step 1 Install the game program in the tablet computer, install the bottom end of the tablet in the second recess, mount the helmet detector on the top of the tablet through the fourth recess, and place the jigsaw puzzle on the bottom plate;
- Step 2 After the installation is fixed, the image is acquired by the front camera of the tablet computer;
- Step 3 Perform perspective conversion on the image collected in step 2, and obtain the number of color plates in the jigsaw puzzle to determine whether the position of the jigsaw puzzle is accurate. If it is not accurate, reposition the jigsaw puzzle and repeat steps 2 to 3. If it is accurate Perform step four;
- Step 4 calculating the side length, the angle, and the side length ratio of the edge contour of the color board in the third step, and calculating the position of each color board according to the original pixel values of the edge contours of the respective color boards of the pre-set jigsaw puzzle in the tablet computer.
- the angle of rotation gives the shape of the jigsaw puzzle.
- the specific steps of the second step are:
- I xy f(x, y);
- f(x, y) (R xy , G xy , B xy );
- R xy represents the color value of the image pixel in the red channel
- G xy represents the color value of the image pixel in the green channel
- B xy represents the color value of the image pixel in the blue channel.
- the specific steps of the third step are:
- the image acquired in step 2 is an oblique angle image, and the perspective transformation principle is used to convert the oblique angle image into a positive view.
- step b) Converting the positive-angle image obtained in step a) into a grayscale image, the specific formula is:
- Gray(x, y) 0.2989 ⁇ R xy +0.5870 ⁇ G xy +0.1140 ⁇ B xy ;
- Gray(x, y) represents a grayscale image
- the edge of the image refers to the part of the gray image where the gray level changes sharply.
- the degree of change of the gray value is quantitatively represented by the gradient change between adjacent pixels.
- the gradient is the two-dimensional equivalent of the first-order two-dimensional derivative.
- G x represents the difference of the adjacent pixels in the x direction
- Gy represents the difference of the adjacent pixels in the y direction
- f[i, j+1] represents the pixel value of the image in the j+1th row of the i th row
- f[i,j] represents the pixel value of the image in the i-th row and the j-th column
- f[i+1,j] represents the pixel value of the image in the i-th row and the jth column
- G(x, y) represents the gradient value at the (x, y) point of the image
- the gradient magnitude of the edge point is calculated, and the gradient magnitude set of all the edge points is the extracted edge contour;
- the edge detection method is used to extract
- the gradient amplitude set of the edge point is the edge contour of the tangram;
- the conventional edge extraction algorithm includes Sobel operator, Roberts operator, Prewitt operator and Canny operator. The specific formula is:
- the edge of the tangram obtained from step c) is a set of edge point gradient amplitudes, so there may be a broken line or a plurality of parallel edges. Therefore, the edge of the tangram edge obtained in step c) Performing an expansion process to merge the parallel edges into one edge and join the broken edges to obtain a tangent panel expansion edge profile;
- step d analyzing the contour of the expansion edge of the tangram in step d), and extracting the edge contours of the triangle and the quad;
- step f) using the prior knowledge of the specific shape, side length ratio, size, angle and position of the jigsaw puzzle to filter out the edge contours in step d) that are inconsistent with the above prior knowledge, and calculate the number of remaining edge contours, if the number is Seven of them prove that the placement position is accurate, and step four is performed. If the number is not seven, the placement position is wrong. You need to reposition the jigsaw puzzle and repeat steps one to three.
- the step a) of the step 3 further comprises: cutting the positive view image according to the prior knowledge, and obtaining the feeling Interest in the ROI area image, speeding up the processing speed.
- the game interaction design of the invention is ingenious; the appearance is simple, the judgment is faster, and the fun and the intuitiveness are enhanced at the same time.
- the detection algorithm of the invention is more scientific and mature, and combines image transformation, grayscale conversion, image convolution, edge detection, morphological angle and other image algorithms to quickly determine whether the placement of the jigsaw puzzle is Accurate, and determine the shape of the jigsaw puzzle, easy to adjust the position of the jigsaw puzzle, improve the accuracy of image acquisition and analysis results.
- the calculation speed of the invention is fast; each positioning detection takes about 100ms, which provides a smooth experience for the player.
- the performance of the invention is stable. When different tablet computers are installed in the educational toy kit, the collection and test are performed on 3,000 pictures, and the false recognition rate and the missed detection rate are below 0.2%.
- FIG. 1 is a schematic structural view of an educational toy kit of the present invention.
- FIG. 2 is a rear elevational view of the bracket of the educational toy kit of the present invention.
- FIG. 3 is a perspective view of a bracket of an educational toy kit of the present invention.
- FIG. 4 is a schematic structural view of a bottom plate of an educational toy kit of the present invention.
- Figure 5 is a flow chart of a method for detecting the shape and position of a jigsaw puzzle in an educational toy kit.
- Fig. 6 is a structural schematic view of the triangular jigsaw puzzle when it is not rotated.
- Fig. 7 is a structural schematic view of the triangular jigsaw puzzle after rotation.
- Bracket 1 protrusion 101, second groove 102, third groove 103, dish-shaped chassis 104, circular top frame 105, open handle 106, helmet detector 2, bottom plate 3, first groove 301 .
- FIG. 1 is a schematic structural view of an educational toy kit of the present invention.
- FIG. 2 is a rear elevational view of the bracket of the educational toy kit of the present invention.
- FIG. 3 is a perspective view of a bracket of an educational toy kit of the present invention.
- FIG. 4 is a schematic structural view of a bottom plate of an educational toy kit of the present invention.
- an educational toy kit includes a bracket 1, a helmet detector 2 and a bottom plate 3, and the bracket 1 is mounted on the bottom plate 3, and the helmet detector 2 is mounted on the bracket 1; the bottom plate 3 is disposed above There is a first groove 301; a bracket 1 having a protrusion 101 at the bottom, the protrusion 101 is mounted in the first groove 301, the top has a second groove 102 and a third groove 103, and the second groove 102 is used for placing a tablet computer; the helmet detector 2 is mounted in the third recess 103; and further includes: a positioning hole 104 disposed on a longitudinal central axis of the sidewall of the third recess 103.
- Figure 5 is a flow chart of a method for detecting the shape and position of a jigsaw puzzle in an educational toy kit.
- a method for detecting the shape and position of a jigsaw puzzle in an educational toy kit includes the following steps:
- Step 1 Install the game program in the tablet computer, install the bottom end of the tablet in the second recess, mount the helmet detector on the top of the tablet through the fourth recess, and place the jigsaw puzzle on the bottom plate;
- Step 2 After the installation is fixed, the image is acquired by the front camera of the tablet computer;
- Step 3 Perform perspective conversion on the image collected in step 2, and obtain the number of color plates in the jigsaw puzzle to determine whether the position of the jigsaw puzzle is accurate. If it is not accurate, reposition the jigsaw puzzle and repeat steps 2 to 3. If it is accurate Perform step four;
- Step 4 calculating the side length, the angle, and the side length ratio of the edge contour of the color board in the third step, and calculating the position of each color board according to the original pixel values of the edge contours of the respective color boards of the pre-set jigsaw puzzle in the tablet computer.
- the angle of rotation gives the shape of the jigsaw puzzle.
- FIG. 1 is a schematic structural view of an educational toy kit of the present invention.
- FIG. 2 is a rear elevational view of the bracket of the educational toy kit of the present invention.
- FIG. 3 is a perspective view of a bracket of an educational toy kit of the present invention.
- FIG. 4 is a schematic structural view of a bottom plate of an educational toy kit of the present invention.
- an educational toy kit includes a bracket 1, a helmet detector 2 and a bottom plate 3, and the bracket 1 is mounted on the bottom plate 3, and the helmet detector 2 is mounted on the bracket 1; the bottom plate 3 is disposed above There is a first groove 301; a bracket 1 having a protrusion 101 at the bottom, the protrusion 101 is mounted in the first groove 301, the top has a second groove 102 and a third groove 103, and the second groove 102 is used for placing a tablet computer; the helmet detector 2 is mounted in the third recess 103; and further includes: a positioning hole 104 disposed on a longitudinal central axis of the sidewall of the third recess 103.
- Figure 5 is a flow chart of a method for detecting the shape and position of a jigsaw puzzle in an educational toy kit.
- a method for detecting the shape and position of a jigsaw puzzle in an educational toy kit includes the following steps:
- Step 1 Install the game program in the tablet computer, install the bottom end of the tablet in the second recess, mount the helmet detector on the top of the tablet through the fourth recess, and place the jigsaw puzzle on the bottom plate;
- Step 2 After the installation is fixed, the image is acquired by the front camera of the tablet computer;
- Step 3 Perform perspective conversion on the image collected in step 2, and obtain the number of color plates in the jigsaw puzzle to determine whether the position of the jigsaw puzzle is accurate. If it is not accurate, reposition the jigsaw puzzle and repeat steps 2 to 3. If it is accurate Perform step four;
- Step 4 calculating the side length, the angle, and the side length ratio of the edge contour of the color board in the third step, and calculating the position of each color board according to the original pixel values of the edge contours of the respective color boards of the pre-set jigsaw puzzle in the tablet computer.
- the angle of rotation gives the shape of the jigsaw puzzle.
- Figure 5 is a flow chart of a method for detecting the shape and position of a jigsaw puzzle in an educational toy kit.
- a method for detecting the shape and position of a jigsaw puzzle in an educational toy kit includes the following steps:
- Step 1 Install the game program in the tablet computer, install the bottom end of the tablet in the second recess, mount the helmet detector on the top of the tablet through the fourth recess, and place the jigsaw puzzle on the bottom plate;
- Step 2 After the installation is fixed, the image is collected by the front camera of the tablet.
- the specific steps are as follows:
- f(x, y) (R xy , G xy , B xy );
- R xy represents the color value of the image pixel in the red channel
- G xy represents the color value of the image pixel in the green channel
- B xy represents the color value of the image pixel in the blue channel
- Step 3 Perform perspective conversion on the image collected in step 2, and obtain the number of color plates in the jigsaw puzzle to determine whether the position of the jigsaw puzzle is accurate. If it is not accurate, reposition the jigsaw puzzle and repeat steps 2 to 3. If it is accurate Perform step four.
- the specific steps are as follows:
- the image acquired in step 2 is an oblique angle image, and the perspective transformation principle is used to convert the oblique angle image into a positive view.
- step b) Converting the positive-angle image obtained in step a) into a grayscale image, the specific formula is:
- Gray(x, y) 0.2989 ⁇ R xy +0.5870 ⁇ G xy +0.1140 ⁇ B xy ;
- Gray(x, y) represents a grayscale image
- the edge of the image refers to the part of the gray image where the gray level changes sharply.
- the degree of change of the gray value is quantitatively represented by the gradient change between adjacent pixels.
- the gradient is the two-dimensional equivalent of the first-order two-dimensional derivative.
- G x represents the difference of adjacent pixels in the x direction
- G y represents the difference of adjacent pixels in the y direction
- f[i, j+1] represents the pixel value of the image in the i th row and j+1th column.
- f[i,j] represents the pixel value of the image in the i-th row and the j-th column
- f[i+1,j] represents the pixel value of the image in the i-th row and the j-th column
- G(x, y) represents the gradient value at the (x, y) point of the image
- the gradient magnitude of the edge point is calculated, and the gradient magnitude set of all the edge points is the extracted edge contour;
- the edge detection method is used to extract
- the gradient amplitude set of the edge point is the edge contour of the tangram;
- the conventional edge extraction algorithm includes Sobel operator, Roberts operator, Prewitt operator and Canny operator. The specific formula is:
- the edge of the tangram obtained from step c) is a set of edge point gradient amplitudes, so there may be a broken line or a plurality of parallel edges. Therefore, the edge of the tangram edge obtained in step c) Performing an expansion process to merge the parallel edges into one edge and join the broken edges to obtain a tangent panel expansion edge profile;
- step d analyzing the contour of the expansion edge of the tangram in step d), and extracting the edge contours of the triangle and the quad;
- step f) using the prior knowledge of the specific shape, side length ratio, size, angle and position of the jigsaw puzzle to filter out the edge contours in step d) that are inconsistent with the above prior knowledge, and calculate the number of remaining edge contours, if the number is 7 cases prove that the placement position is accurate, perform step 4, if the number is not 7, it proves that the placement position is wrong, you need to reposition the jigsaw puzzle, repeat steps one to three;
- Step 4 calculating the side length, the angle, and the side length ratio of the remaining edge contours in the step f), and calculating the position of each color panel by combining the original pixel values of the edge contours of the respective color plates of the pre-set jigsaw puzzle in the tablet computer.
- the angle of rotation gives the shape of the jigsaw puzzle.
- the step a) of the step 3 further comprises: cutting the positive-view image according to the prior knowledge, and obtaining the image of the ROI region of interest, thereby speeding up the processing operation speed.
- FIG. 6 is a schematic structural view of a triangular jigsaw puzzle when it is not rotated
- FIG. 7 is a schematic structural view of a triangular jigsaw puzzle after rotation
- the triangular rotation angle is calculated from three vertices of the triangle.
- the positive rotation direction in the reference frame is set to be inverse In the hour hand direction, the zero position of the triangle is the position shown in Fig. 6, and the rotation angle ⁇ A'OB shown in Fig. 7 after the rotation of the triangle is calculated;
- the game interaction design of the invention is ingenious; the appearance is simple, the judgment is faster, and the fun and the intuitiveness are enhanced at the same time.
- the detection algorithm of the invention is more scientific and mature, and combines image transformation, grayscale conversion, image convolution, edge detection, morphological angle and other image algorithms to quickly determine whether the placement position of the jigsaw puzzle is accurate. And judging the shape of the jigsaw puzzle, easy to adjust the position of the jigsaw puzzle, improve the accuracy of image acquisition and analysis results.
- the calculation speed of the invention is fast; each positioning detection takes about 100ms, which provides a smooth experience for the player.
- the performance of the invention is stable. When different tablet computers are installed in the educational toy kit, the collection and test are performed on 3,000 pictures, and the false recognition rate and the missed detection rate are below 0.2%.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Toys (AREA)
Abstract
提供一种教育玩具套件及检测七巧板摆放形状、位置的方法。该套件包括支架、头盔探测器、底板和定位孔;支架安装于底板上,头盔探测器安装于支架上;底板上方设置有第一凹槽;支架的底部具有凸起,凸起安装在第一凹槽内;支架的顶部具有第二凹槽和第三凹槽,第二凹槽用于放置平板电脑;头盔探测器安装于第三凹槽内;定位孔设置于第三凹槽侧壁的纵向中心轴上。该方法包括:将安装有游戏程序的平板电脑安装于教育玩具套件上,将七巧板放置于底板上;通过平板电脑采集图像;对图像进行视角转换,得出七巧板中彩色板个数;计算彩色板边缘轮廓的边长、角度和边长比例,结合预先设置的七巧板原始像素值,得出七巧板的摆放形状。
Description
本发明涉及计算机视觉检测处理技术领域,特别涉及一种教育玩具套件及检测七巧板摆放形状、位置的方法。
现在平板电脑上有许多有趣的幼教游戏应用程序或者儿童游戏,但往往只是让小朋友在屏幕上指指画画,互动性欠缺,长时间看着屏幕容易对眼睛造成伤害;而当下一些互动性强的传统性游戏玩具已经脱离了时代的发展,形式上无法满足孩子学习、玩耍的需求,也不便于孩子和家长的互动沟通。
为了解决上述问题,计算机视觉识别处理技术领域成功的开发了一种教育玩具套件,包括:支架、头盔探测器和底板,并且支架安装于底板上,头盔探测器安装于支架上;底板上方设置有第一凹槽;支架底部具有凸起,凸起安装在第一凹槽内,顶部具有第二凹槽和第三凹槽,第二凹槽用于放置平板电脑;头盔探测器安装于第三凹槽内。然后将七巧板放置于底板上,在平板电脑内安装游戏程序,通过平板电脑的摄像头采集放置于底板上的七巧板的拼接图像,判定七巧板图案是否与游戏程序要求的拼接程序一致,如果不一致给出最快捷的下一步拼接指导,增强游戏的趣味性、儿童动手能力以及互动性。
上述的教育玩具套件虽然解决了平板电脑中游戏的互动性欠缺的问题,但是由于底板很大,七巧板的摆放位置常常出现偏差,导致摄像头不能采集到完整的图像,图像容易采集出错,分析结果不准确等问题的出现,并且不能够检测出七巧板的摆放形状。
因此,计算机视觉检测处理技术领域急需一种教育玩具套件及检测七巧板摆放形状、位置的方法,能够快速的检测出七巧板摆放位置是否准确以及七巧板摆放形状,提高图像采集以及分析结果的准确率。
本发明为了解决上述问题,提供了一种教育玩具套件及检测七巧板摆放形状、位置的方法,技术方案如下:
一种教育玩具套件,包括支架、头盔探测器和底板,并且支架安装于底板上,头盔探测器安装于支架上,底板上方设置有第一凹槽;支架底部具有凸起,凸起安装在第一
凹槽内,顶部具有第二凹槽和第三凹槽,第二凹槽用于放置平板电脑;头盔探测器安装于第三凹槽内;还包括:定位孔,设置于第三凹槽侧壁的纵向中心轴上。
一种教育玩具套件中检测七巧板摆放形状、位置的方法,包括如下步骤:
步骤一,在平板电脑中安装游戏程序,再将平板电脑的底端安装于第二凹槽内,通过第四凹槽将头盔探测器安装于平板电脑的顶端,再将七巧板放置于底板上;
步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像;
步骤三,对步骤二中采集到的图像进行视角转换,得出七巧板中彩色板个数判断七巧板摆放位置是否准确,如果不准确则重新摆放七巧板,重复执行步骤二至三,如果准确则执行步骤四;
步骤四,计算步骤三中彩色板边缘轮廓的边长、角度和边长比例,结合平板电脑中预先设置的七巧板的各个彩色板的边缘轮廓的原始像素值,计算出每个彩色板的位置和旋转角度,得出七巧板的摆放形状。
优选的,在上述一种教育玩具套件中检测七巧板摆放形状、位置的方法中,步骤二的具体步骤为:
将平板电脑前置摄像头所获取图像定义为Ixy,Ixy=f(x,y);
其中,(x,y)表示图像像素点的位置坐标,f(x,y)表示图像的在(x,y)上的像素值;
由于摄像头采集的图像为彩色图片,因此f(x,y)=(Rxy,Gxy,Bxy);
其中,Rxy表示图像像素点在红色通道的色彩值,Gxy表示图像像素点在绿色通道的色彩值,Bxy表示图像像素点在蓝色通道的色彩值。
优选的,在上述一种教育玩具套件中检测七巧板摆放形状、位置的方法中,步骤三的具体步骤为:
a)由于步骤二中平板电脑顶部的摄像头相对于底板来说是具有一个倾斜视角的,因此步骤二中采集到的图像为斜视角图像,采用透视变换原理,将斜视角图像转换为俯视的正视角图像;
b)将步骤a)中得到的正视角图像转换为灰度图像,具体公式为:
Gray(x,y)=0.2989×Rxy+0.5870×Gxy+0.1140×Bxy;
其中,Gray(x,y)表示灰度图像;
c)使用边缘检测算法检测灰度图像中的强边缘;
图像的边缘是指灰度图像中灰度变化比较剧烈的部分,灰度值的变化程度采用相邻像素间的梯度变化来定量表示,梯度是一阶二维导数的二维等效式,具体计算过程为:
首先,计算相邻像素的差分,具体公式为:
Gx=f[i,j+1]-f[i,j]
Gy=f[i,j]-f[i+1,j]
其中,Gx表示相邻像素在x方向上的差分,Gy表示相邻像素在y方向上的差分,f[i,j+1]表示图像在第i行第j+1列的像素值,f[i,j]表示图像在第i行第j列的像素值;f[i+1,j]表示图像在第i+1行第j列的像素值,
进一步地,计算相邻像素间的梯度,具体公式为:
进一步地,计算边缘点的梯度幅值,所有边缘点的梯度幅值集合即为提取的边缘轮廓;
由于待检测的七巧板目标,在转换为灰度图后,不同的彩色板之间反差较大,因此可以将反差很大的彩色板的轮廓视为当前图像的边缘,进而采用边缘检测的方法提取出边缘点的梯度幅值集合,即为七巧板的边缘轮廓;常规的边缘提取算法,包括Sobel算子、Roberts算子、Prewitt算子和Canny算子等,具体公式为:
其中,|G(x,y)|表示边缘点的梯度幅值;
d)由步骤c)中得出的七巧板边缘轮廓由于是一个边缘点梯度幅值集合,所以会出现断线或者具有多条平行边缘的情况,因此,对步骤c)中得出的七巧板边缘轮廓进行膨胀处理,使平行的边缘合并为一个边缘,并且把断了的边缘连接起来,得到七巧板膨胀边缘轮廓;
e)对步骤d)中的七巧板膨胀边缘轮廓进行分析,筛选出三角形和四边形的边缘轮廓;
f)采用七巧板的特定形状、边长比例、大小、角度和位置的先验知识过滤掉步骤d)中与上述先验知识不符的的边缘轮廓,计算剩余边缘轮廓的个数,如果个数为7个则证明摆放位置准确,执行步骤四,如果个数不为7个则证明摆放位置错误,需要重新摆放七巧板,重复步骤一至三。
优选的,在上述一种教育玩具套件中检测七巧板摆放形状、位置的方法中,所述步骤三的步骤a)中还包括:根据先验知识,对正视角图像进行剪切,得出感兴趣ROI区域图像,加快了处理运算速度。
1、本发明游戏交互设计巧妙;美观简单,判断更加快速,同时增强了趣味性和直观性。
2、本发明检测算法更加科学、成熟,将图像的透视变换、灰度化转换、图像卷积、边缘检测、形态学角度等图像算法相结合使用,能够快速的判断出七巧板的摆放位置是否准确,以及判断出七巧板的摆放形状,便于七巧板位置的快速调节,提高图像采集以及分析结果的准确率。
3、本发明计算速度快;每次定位检测耗时在100ms左右,为玩家提供流畅的使用体验。
4、本发明性能稳定,在对不同平板电脑安装于教育玩具套件内的情况下,针对3千幅图片进行了采集测试,误识别率和漏检率在0.2%以下。
下面结合附图和具体实施方式来详细说明本发明:
图1是本实用新型一种教育玩具套件的结构示意图。
图2是本实用新型一种教育玩具套件的支架的后视图。
图3是本实用新型一种教育玩具套件的支架的立体图。
图4是本实用新型一种教育玩具套件的底板的结构示意图。
图5是一种教育玩具套件中检测七巧板摆放形状、位置的方法的流程图。
图6是三角形七巧板未旋转时的结构示意图。
图7是三角形七巧板旋转后的结构示意图。
其中,图1-7中的附图标记与部件名称之间的对应关系为:
支架1,凸起101,第二凹槽102,第三凹槽103,碟状底架104,圆形顶架105,露空提手106,头盔探测器2,底板3,第一凹槽301。
实施例1:
图1是本实用新型一种教育玩具套件的结构示意图。
图2是本实用新型一种教育玩具套件的支架的后视图。
图3是本实用新型一种教育玩具套件的支架的立体图。
图4是本实用新型一种教育玩具套件的底板的结构示意图。
如图1-4所示,一种教育玩具套件,包括支架1、头盔探测器2和底板3,并且支架1安装于底板3上,头盔探测器2安装于支架1上;底板3,上方设置有第一凹槽301;支架1,底部具有凸起101,凸起101安装在第一凹槽301内,顶部具有第二凹槽102和第三凹槽103,第二凹槽102用于放置平板电脑;头盔探测器2,安装于第三凹槽103内;还包括:定位孔104,设置于第三凹槽103侧壁的纵向中心轴上。
图5是一种教育玩具套件中检测七巧板摆放形状、位置的方法的流程图。
如图5所示,一种教育玩具套件中检测七巧板摆放形状、位置的方法,包括如下步骤:
步骤一,在平板电脑中安装游戏程序,再将平板电脑的底端安装于第二凹槽内,通过第四凹槽将头盔探测器安装于平板电脑的顶端,再将七巧板放置于底板上;
步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像;
步骤三,对步骤二中采集到的图像进行视角转换,得出七巧板中彩色板个数判断七巧板摆放位置是否准确,如果不准确则重新摆放七巧板,重复执行步骤二至三,如果准确则执行步骤四;
步骤四,计算步骤三中彩色板边缘轮廓的边长、角度和边长比例,结合平板电脑中预先设置的七巧板的各个彩色板的边缘轮廓的原始像素值,计算出每个彩色板的位置和旋转角度,得出七巧板的摆放形状。
为了使本发明技术实现的措施、创作特征、达成目的与功效易于明白了解,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
图1是本实用新型一种教育玩具套件的结构示意图。
图2是本实用新型一种教育玩具套件的支架的后视图。
图3是本实用新型一种教育玩具套件的支架的立体图。
图4是本实用新型一种教育玩具套件的底板的结构示意图。
如图1-4所示,一种教育玩具套件,包括支架1、头盔探测器2和底板3,并且支架1安装于底板3上,头盔探测器2安装于支架1上;底板3,上方设置有第一凹槽301;支架1,底部具有凸起101,凸起101安装在第一凹槽301内,顶部具有第二凹槽102和第三凹槽103,第二凹槽102用于放置平板电脑;头盔探测器2,安装于第三凹槽103内;还包括:定位孔104,设置于第三凹槽103侧壁的纵向中心轴上。
图5是一种教育玩具套件中检测七巧板摆放形状、位置的方法的流程图。
如图5所示,一种教育玩具套件中检测七巧板摆放形状、位置的方法,包括如下步骤:
步骤一,在平板电脑中安装游戏程序,再将平板电脑的底端安装于第二凹槽内,通过第四凹槽将头盔探测器安装于平板电脑的顶端,再将七巧板放置于底板上;
步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像;
步骤三,对步骤二中采集到的图像进行视角转换,得出七巧板中彩色板个数判断七巧板摆放位置是否准确,如果不准确则重新摆放七巧板,重复执行步骤二至三,如果准确则执行步骤四;
步骤四,计算步骤三中彩色板边缘轮廓的边长、角度和边长比例,结合平板电脑中预先设置的七巧板的各个彩色板的边缘轮廓的原始像素值,计算出每个彩色板的位置和旋转角度,得出七巧板的摆放形状。
实施例2:
图5是一种教育玩具套件中检测七巧板摆放形状、位置的方法的流程图。
如图5所示,一种教育玩具套件中检测七巧板摆放形状、位置的方法,包括如下步骤:
步骤一,在平板电脑中安装游戏程序,再将平板电脑的底端安装于第二凹槽内,通过第四凹槽将头盔探测器安装于平板电脑的顶端,再将七巧板放置于底板上;
步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像,具体步骤为:
首先,将平板电脑前置摄像头所获取图像定义为Ixy,Ixy=f(x,y);
其中,(x,y)表示图像像素点的位置坐标,f(x,y)表示图像的在(x,y)上的像素值;
由于摄像头采集的图像为彩色图片,因此f(x,y)=(Rxy,Gxy,Bxy);
其中,Rxy表示图像像素点在红色通道的色彩值,Gxy表示图像像素点在绿色通道的色彩值,Bxy表示图像像素点在蓝色通道的色彩值;
步骤三,对步骤二中采集到的图像进行视角转换,得出七巧板中彩色板个数判断七巧板摆放位置是否准确,如果不准确则重新摆放七巧板,重复执行步骤二至三,如果准确则执行步骤四,具体步骤为:
a)由于步骤二中平板电脑顶部的摄像头相对于底板来说是具有一个倾斜视角的,因此步骤二中采集到的图像为斜视角图像,采用透视变换原理,将斜视角图像转换为俯视的正视角图像;
b)将步骤a)中得到的正视角图像转换为灰度图像,具体公式为:
Gray(x,y)=0.2989×Rxy+0.5870×Gxy+0.1140×Bxy;
其中,Gray(x,y)表示灰度图像;
c)使用边缘检测算法检测灰度图像中的强边缘;
图像的边缘是指灰度图像中灰度变化比较剧烈的部分,灰度值的变化程度采用相邻像素间的梯度变化来定量表示,梯度是一阶二维导数的二维等效式,具体计算过程为:
首先,计算相邻像素的差分,具体公式为:
Gx=f[i,j+1]-f[i,j]
Gy=f[i,j]-f[i+1,j]
其中,Gx表示相邻像素在x方向上的差分,Gy表示相邻像素在y方向上的差分,f[i,j+1]表示图像在第i行第j+1列的像素值,f[i,j]表示图像在第i行第j列的像素值;f[i+1,j]表示图像在第i+1行第j列的像素值,
进一步地,计算相邻像素间的梯度,具体公式为:
进一步地,计算边缘点的梯度幅值,所有边缘点的梯度幅值集合即为提取的边缘轮廓;
由于待检测的七巧板目标,在转换为灰度图后,不同的彩色板之间反差较大,因此可以将反差很大的彩色板的轮廓视为当前图像的边缘,进而采用边缘检测的方法提取出边缘点的梯度幅值集合,即为七巧板的边缘轮廓;常规的边缘提取算法,包括Sobel算子、Roberts算子、Prewitt算子和Canny算子等,具体公式为:
其中,|G(x,y)|表示边缘点的梯度幅值;
d)由步骤c)中得出的七巧板边缘轮廓由于是一个边缘点梯度幅值集合,所以会出现断线或者具有多条平行边缘的情况,因此,对步骤c)中得出的七巧板边缘轮廓进行膨胀处理,使平行的边缘合并为一个边缘,并且把断了的边缘连接起来,得到七巧板膨胀边缘轮廓;
e)对步骤d)中的七巧板膨胀边缘轮廓进行分析,筛选出三角形和四边形的边缘轮廓;
f)采用七巧板的特定形状、边长比例、大小、角度和位置的先验知识过滤掉步骤d)中与上述先验知识不符的的边缘轮廓,计算剩余边缘轮廓的个数,如果个数为7个则证明摆放位置准确,执行步骤四,如果个数不为7个则证明摆放位置错误,需要重新摆放七巧板,重复步骤一至三;
步骤四,计算步骤f)中剩余边缘轮廓的边长、角度和边长比例,结合平板电脑中预先设置的七巧板的各个彩色板的边缘轮廓的原始像素值,计算出每个彩色板的位置和旋转角度,得出七巧板的摆放形状。
本实施例中,步骤三的步骤a)中还包括:根据先验知识,对正视角图像进行剪切,得出感兴趣ROI区域图像,加快了处理运算速度。
下面以三角形形状的七巧板作为举例对本发明进行具体说明:
图6是三角形七巧板未旋转时的结构示意图,图7是三角形七巧板旋转后的结构示意图;由三角形的三个顶点计算三角形旋转角度,首先,设定参考系中正旋转方向为逆
时针方向,三角形的零度位置为图6所示的位置,计算三角形旋转后如图7所示的旋转角∠A’OB;
然后,利用A点、B点和O点的坐标,计算出角度在70~90度之内的角,即可判定该角的顶点为O点,则O点就是直角三角形的顶点;
然后,找出位于O点左侧的点B,利用平面几何的向量内积公式:OA′·OB=|OA′|·|OB|·cos(A′OB),由于向量OA’和OB已知,所以它们的模|OA’|和|OB|也是已知的,然后利用反三角函数公式即可求出旋转角∠A’OB。
本发明游戏交互设计巧妙;美观简单,判断更加快速,同时增强了趣味性和直观性。
本发明检测算法更加科学、成熟,将图像的透视变换、灰度化转换、图像卷积、边缘检测、形态学角度等图像算法相结合使用,能够快速的判断出七巧板的摆放位置是否准确,以及判断出七巧板的摆放形状,便于七巧板位置的快速调节,提高图像采集以及分析结果的准确率。
本发明计算速度快;每次定位检测耗时在100ms左右,为玩家提供流畅的使用体验。
本发明性能稳定,在对不同平板电脑安装于教育玩具套件内的情况下,针对3千幅图片进行了采集测试,误识别率和漏检率在0.2%以下。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及等同物界定。
所属领域技术人员根据上文的记载容易得知,本发明技术方案适合在工业中制造并在生产、生活中使用,因此本发明具备工业实用性。
Claims (5)
- 一种教育玩具套件,包括:支架、头盔探测器和底板,并且所述支架安装于底板上,所述头盔探测器安装于支架上,所述底板上方设置有第一凹槽;所述支架底部具有凸起,所述凸起安装在第一凹槽内,顶部具有第二凹槽和第三凹槽,所述第二凹槽用于放置平板电脑;所述头盔探测器安装于第三凹槽内;其特征在于,还包括:定位孔,设置于所述第三凹槽侧壁的纵向中心轴上。
- 一种教育玩具套件中检测七巧板摆放形状、位置的方法,其特征在于,包括如下步骤:步骤一,在平板电脑中安装游戏程序,再将平板电脑的底端安装于第二凹槽内,通过第四凹槽将头盔探测器安装于平板电脑的顶端,再将七巧板放置于底板上;步骤二,固定安装好后,通过平板电脑的前置摄像头采集图像;步骤三,对所述步骤二中采集到的图像进行视角转换,得出七巧板中彩色板个数判断七巧板摆放位置是否准确,如果不准确则重新摆放七巧板,重复执行所述步骤二至三,如果准确则执行步骤四;所述步骤四,计算所述步骤三中彩色板边缘轮廓的边长、角度和边长比例,结合平板电脑中预先设置的七巧板的各个彩色板的边缘轮廓的原始像素值,计算出每个彩色板的位置和旋转角度,得出七巧板的摆放形状。
- 根据权利要求2所述的一种教育玩具套件中检测七巧板摆放形状、位置的方法中,其特征在于,所述步骤二的具体步骤为:将平板电脑前置摄像头所获取图像定义为Ixy,Ixy=f(x,y);其中,(x,y)表示图像像素点的位置坐标,f(x,y)表示图像的在(x,y)上的像素值;由于摄像头采集的图像为彩色图片,因此f(x,y)=(Rxy,Gxy,Bxy);其中,Rxy表示图像像素点在红色通道的色彩值,Gxy表示图像像素点在绿色通道的色彩值,Bxy表示图像像素点在蓝色通道的色彩值。
- 根据权利要求3所述的一种教育玩具套件中检测七巧板摆放形状、位置的方法中,其特征在于,所述步骤三的具体步骤为:a)由于所述步骤二中平板电脑顶部的摄像头相对于底板来说是具有一个倾斜视角的,因此所述步骤二中采集到的图像为斜视角图像,采用透视变换原理,将斜视角图像转换为俯视的正视角图像;b)将所述步骤a)中得到的正视角图像转换为灰度图像,具体公式为:Gray(x,y)=0.2989×Rxy+0.5870×Gxy+0.1140×Bxy;其中,Gray(x,y)表示灰度图像;c)使用边缘检测算法检测灰度图像中的强边缘;图像的边缘是指灰度图像中灰度变化比较剧烈的部分,灰度值的变化程度采用相邻像素间的梯度变化来定量表示,梯度是一阶二维导数的二维等效式,具体计算过程为:首先,计算相邻像素的差分,具体公式为:Gx=f[i,j+1]-f[i,j]Gy=f[i,j]-f[i+1,j]其中,Gx表示相邻像素在x方向上的差分,Gy表示相邻像素在y方向上的差分,f[i,j+1]表示图像在第i行第j+1列的像素值,f[i,j]表示图像在第i行第j列的像素值;f[i+1,j]表示图像在第i+1行第j列的像素值;进一步地,计算相邻像素间的梯度,具体公式为:进一步地,计算边缘点的梯度幅值,所有边缘点的梯度幅值集合即为提取的边缘轮廓;由于待检测的七巧板目标,在转换为灰度图后,不同的彩色板之间反差较大,因此可以将反差很大的彩色板的轮廓视为当前图像的边缘,进而采用边缘检测的方法提取出边缘点的梯度幅值集合,即为七巧板的边缘轮廓;常规的边缘提取算法,包括Sobel算子、Roberts算子、Prewitt算子和Canny算子等,具体公式为:其中,|G(x,y)|表示边缘点的梯度幅值;d)由所述步骤c)中得出的七巧板边缘轮廓由于是一个边缘点梯度幅值集合,所以会出现断线或者具有多条平行边缘的情况,因此,对所述步骤c)中得出的七巧板边缘轮廓进行膨胀处理,使平行的边缘合并为一个边缘,并且把断了的边缘连接起来,得到七巧板膨胀边缘轮廓;e)对所述步骤d)中的七巧板膨胀边缘轮廓进行分析,筛选出三角形和四边形的边缘轮廓;f)采用七巧板的特定形状、边长比例、大小、角度和位置的先验知识过滤掉步骤d)中与上述先验知识不符的的边缘轮廓,计算剩余边缘轮廓的个数,如果个数为7个则证明摆放位置准确,执行所述步骤四,如果个数不为7个则证明摆放位置错误,需要重新摆放七巧板,重复所述步骤一至三。
- 根据权利要求4所述的一种教育玩具套件中检测七巧板摆放形状、位置的方法中,其特征在于,所述步骤三的步骤a)中还包括:根据先验知识,对正视角图像进行剪切,得出感兴趣ROI区域图像,加快了处理运算速度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610053798.5A CN105719307A (zh) | 2016-01-26 | 2016-01-26 | 一种教育玩具套件及检测七巧板摆放形状、位置的方法 |
CN201610053798.5 | 2016-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017128607A1 true WO2017128607A1 (zh) | 2017-08-03 |
Family
ID=56154942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/086804 WO2017128607A1 (zh) | 2016-01-26 | 2016-06-22 | 一种教育玩具套件及检测七巧板摆放形状、位置的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105719307A (zh) |
WO (1) | WO2017128607A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114646289A (zh) * | 2022-05-20 | 2022-06-21 | 中国重型机械研究院股份公司 | 一种用于液胀成型的等边三角管件成型度检测装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105513086B (zh) * | 2016-01-26 | 2019-02-19 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其基于形状匹配的魔方检测定位方法 |
CN105719318B (zh) * | 2016-01-26 | 2018-07-10 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件中基于hsv的魔方颜色识别方法 |
CN105498200A (zh) * | 2016-01-26 | 2016-04-20 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其七巧板颜色识别方法 |
CN106097833B (zh) * | 2016-08-19 | 2019-08-30 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其数字识别方法 |
CN106327956B (zh) * | 2016-08-19 | 2019-06-21 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其涂色卡片识别方法 |
CN106355592B (zh) * | 2016-08-19 | 2020-06-16 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其电路元件和电线的识别方法 |
CN106297492B (zh) * | 2016-08-19 | 2019-06-25 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及利用颜色和轮廓识别编程模块的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050068619A (ko) * | 2003-12-30 | 2005-07-05 | 한국과학기술원 | 흥미롭고 교육적이어서 아동에게 적합한 인터렉티브칠교놀이 |
CN104680519A (zh) * | 2015-02-06 | 2015-06-03 | 四川长虹电器股份有限公司 | 基于轮廓和颜色的七巧板识别方法 |
CN105194884A (zh) * | 2015-10-27 | 2015-12-30 | 上海葡萄纬度科技有限公司 | 教育玩具套件 |
CN105498253A (zh) * | 2016-01-26 | 2016-04-20 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其定位孔检测定位方法 |
CN105709434A (zh) * | 2016-01-26 | 2016-06-29 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其反光镜位置检测方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7680312B2 (en) * | 2005-07-13 | 2010-03-16 | Siemens Medical Solutions Usa, Inc. | Method for knowledge based image segmentation using shape models |
CN104269079A (zh) * | 2014-09-30 | 2015-01-07 | 张启熙 | 基于镜面反射和增强现实技术的移动终端幼教系统及方法 |
-
2016
- 2016-01-26 CN CN201610053798.5A patent/CN105719307A/zh active Pending
- 2016-06-22 WO PCT/CN2016/086804 patent/WO2017128607A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050068619A (ko) * | 2003-12-30 | 2005-07-05 | 한국과학기술원 | 흥미롭고 교육적이어서 아동에게 적합한 인터렉티브칠교놀이 |
CN104680519A (zh) * | 2015-02-06 | 2015-06-03 | 四川长虹电器股份有限公司 | 基于轮廓和颜色的七巧板识别方法 |
CN105194884A (zh) * | 2015-10-27 | 2015-12-30 | 上海葡萄纬度科技有限公司 | 教育玩具套件 |
CN105498253A (zh) * | 2016-01-26 | 2016-04-20 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其定位孔检测定位方法 |
CN105709434A (zh) * | 2016-01-26 | 2016-06-29 | 上海葡萄纬度科技有限公司 | 一种教育玩具套件及其反光镜位置检测方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114646289A (zh) * | 2022-05-20 | 2022-06-21 | 中国重型机械研究院股份公司 | 一种用于液胀成型的等边三角管件成型度检测装置 |
CN114646289B (zh) * | 2022-05-20 | 2022-08-12 | 中国重型机械研究院股份公司 | 一种用于液胀成型的等边三角管件成型度检测装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105719307A (zh) | 2016-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017128607A1 (zh) | 一种教育玩具套件及检测七巧板摆放形状、位置的方法 | |
WO2017128606A1 (zh) | 一种教育玩具套件及其七巧板颜色识别方法 | |
CN105719318B (zh) | 一种教育玩具套件中基于hsv的魔方颜色识别方法 | |
WO2018032626A1 (zh) | 一种教育玩具套件及其数字识别方法 | |
WO2017128604A1 (zh) | 一种教育玩具套件及其基于形状匹配的魔方检测定位方法 | |
Chen et al. | Sports camera calibration via synthetic data | |
WO2021138995A1 (zh) | 一种棋盘格角点全自动检测方法 | |
CN107766855B (zh) | 基于机器视觉的棋子定位方法、系统、存储介质及机器人 | |
CN106297492B (zh) | 一种教育玩具套件及利用颜色和轮廓识别编程模块的方法 | |
WO2017128602A1 (zh) | 一种教育玩具套件及其定位孔检测定位方法 | |
WO2017128603A1 (zh) | 一种教育玩具套件及其反光镜位置检测方法 | |
CN103218605B (zh) | 一种基于积分投影与边缘检测的快速人眼定位方法 | |
WO2018032627A1 (zh) | 一种教育玩具套件及其海洋模具识别方法 | |
CN106384355B (zh) | 一种投影交互系统中的自动标定方法 | |
CN106355592B (zh) | 一种教育玩具套件及其电路元件和电线的识别方法 | |
CN107154058B (zh) | 一种引导使用者还原魔方的方法 | |
CN106529531A (zh) | 一种基于图像处理的中国象棋识别系统及方法 | |
WO2018032628A1 (zh) | 一种教育玩具套件及其涂色卡片识别方法 | |
CN115580716A (zh) | 一种基于实物模块的投影画面输出方法、系统及设备 | |
Valgma et al. | Iterative closest point based 3d object reconstruction using rgb-d acquisition devices | |
CN113378886B (zh) | 一种自动训练形状匹配模型的方法 | |
WO2018032629A1 (zh) | 一种教育玩具套件及其敲击动作检测方法 | |
CN110960850A (zh) | 一种基于ar的儿童学习娱乐系统 | |
CN110532840A (zh) | 一种方形物体的形变识别方法、装置及设备 | |
CN113686375B (zh) | 一种数字表自动检定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16887489 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16887489 Country of ref document: EP Kind code of ref document: A1 |