WO2017126541A1 - Calculation method, wireless station, and storage medium - Google Patents

Calculation method, wireless station, and storage medium Download PDF

Info

Publication number
WO2017126541A1
WO2017126541A1 PCT/JP2017/001521 JP2017001521W WO2017126541A1 WO 2017126541 A1 WO2017126541 A1 WO 2017126541A1 JP 2017001521 W JP2017001521 W JP 2017001521W WO 2017126541 A1 WO2017126541 A1 WO 2017126541A1
Authority
WO
WIPO (PCT)
Prior art keywords
covariance matrix
eigenvector
eigenvalue decomposition
initial vector
matrix
Prior art date
Application number
PCT/JP2017/001521
Other languages
French (fr)
Japanese (ja)
Inventor
伸一 田島
ブンサーン ピタックダンロンキジャー
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017562841A priority Critical patent/JPWO2017126541A1/en
Publication of WO2017126541A1 publication Critical patent/WO2017126541A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • This disclosure relates to at least one of a calculation method, a radio station, and a storage medium.
  • MIMO Multiple Input Multiple Output
  • multiple antennas are arranged on both the transmitter and the receiver, and spatial multiplexing transmission is performed, thereby improving the frequency utilization efficiency.
  • Massive MIMO the received power of the terminal is greatly improved due to the high array gain by a large number of antenna elements.
  • the degree of freedom of the antenna is high, a large number of data can be multiplexed and transmitted. For this reason, the channel capacity can be significantly improved as compared with general MIMO.
  • the receiving side when a base station multiplies transmission data by a precoder, the receiving side can spatially separate data transmitted at the same frequency and the same time, and spatial multiplexing is realized.
  • a subband In LTE (Long Term Evolution), a subband (FIG. 11) is defined as a radio resource area to which the same precoder is applied.
  • a subband is composed of a plurality of RBs (Resource Blocks) on the same time and frequency axis.
  • the RB is the minimum unit of radio resources on the time and frequency axes in LTE, and is composed of 7 OFDM (Orthogonal Frequency Division Multiplexing) symbols on the time axis and 12 subcarriers on the frequency axis.
  • a precoder generation method for spatial multiplexing there is a method using singular value decomposition (including eigenvalue decomposition) of channel information.
  • singular value decomposition including eigenvalue decomposition
  • SVD Single Value Decomposition, Singular Value Decomposition
  • TDD Time Division Division Duplex
  • the base station estimates the channel matrix of the uplink channel based on the known signal transmitted by the terminal for uplink channel estimation.
  • channel reciprocity is established, and the channel matrix of the channel is used as downlink channel estimation information. Can be used as
  • the SVD precoder described in Non-Patent Document 1 is a channel matrix representing a channel response of downlink communication between a base station and a terminal. Is calculated from the following equation (1).
  • ⁇ i is the i-th singular value of the channel matrix H.
  • is a diagonal matrix with singular values as diagonal components.
  • diag ⁇ is a diagonal matrix with elements in ⁇ as diagonal elements.
  • min () means the minimum value among the elements in parentheses. Is the left singular vector. Is the right singular vector.
  • the shoulder H is a complex conjugate transpose.
  • the right singular vector V is used as a precoder that multiplies transmission data on the base station side
  • the left singular vector U is used as a postcoder that multiplies reception data on the receiving terminal side.
  • the terminal can diagonalize the channel matrix H as shown in the following equation (2) and separate a plurality of data.
  • x is a transmission signal vector.
  • y is a received signal vector.
  • n is a noise vector.
  • a transmission covariance matrix R Tx that is power information of the channel matrix is used.
  • the transmission covariance matrix R Tx is calculated by the following equation (3).
  • the SVD precoder can also be obtained from the eigenvalue decomposition of the transmission covariance matrix.
  • equation (1) By substituting equation (1) into the defining equation of the transmission covariance matrix, the following equation (4) is obtained.
  • the last equation of the following equation (4) is in the form of eigenvalue decomposition of the transmission covariance matrix.
  • the eigenvector and eigenvalue of the transmission covariance matrix are the square of the right singular vector and singular value of the channel matrix, respectively.
  • D is a diagonal matrix having the eigenvalues of the transmission covariance matrix as diagonal elements. Details of the relationship between eigenvalues and eigenvectors between the transmission covariance matrix and the channel matrix will be described later.
  • Average transmit covariance matrix Is calculated by the following equation (5). here Is the transmission covariance matrix of the i RBth RB in the subband. N RB is the number of RBs in the subband.
  • the direct method is a method of obtaining eigenvalues and eigenvectors by a finite number of operations, and includes a method of applying a Gaussian elimination method to eigen equations and relational expressions between eigenvalues and eigenvectors.
  • the iterative method is a method of obtaining an approximate solution by converging initial values by iterative calculation.
  • An example of the iterative method is the power method described in Non-Patent Document 2.
  • the direct method has higher calculation accuracy than the iterative method, but has a problem in that it requires a large amount of calculation.
  • a randomly generated vector is usually used as an initial vector.
  • one of the objects of the exemplary embodiment is to provide a new mechanism for reducing the number of iterations of the iterative method in eigenvalue decomposition and reducing the amount of calculation. It should be noted that this object is only one of a plurality of objects that the embodiments disclosed herein intend to achieve. Other objects or problems and novel features will become apparent from the description of the present specification or the accompanying drawings.
  • the calculation method of the exemplary embodiment includes determining an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station, and performing an iterative method based on the initial vector. And performing eigenvalue decomposition of the transmission covariance matrix.
  • the wireless station of the exemplary embodiment includes a determination unit that determines an initial vector based on channel information in a propagation path from a wireless station having a plurality of antennas to another wireless station, and an iterative method based on the initial vector. And a calculation unit that performs eigenvalue decomposition of the transmission covariance matrix.
  • the program of the exemplary embodiment determines an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station, and uses an iterative method based on the initial vector. And performing eigenvalue decomposition of the transmission covariance matrix.
  • the number of iterations of the iterative method in eigenvalue decomposition can be reduced, and the amount of computation can be reduced.
  • FIG. 3 is a diagram for explaining a configuration of an initial vector calculation unit 103.
  • FIG. It is a figure for demonstrating the detail of operation
  • FIG. 5 is a diagram for explaining a configuration of an eigenvalue decomposition execution unit 104. It is a figure for demonstrating the structure of operation
  • FIG. 10 illustrates a wireless station in a fourth exemplary embodiment.
  • an average transmission covariance matrix (hereinafter, subband average transmission covariance) averaged over a plurality of RBs in a subband by a base station (also referred to as a radio station) having multiple antennas. (Referred to as a matrix).
  • a base station also referred to as a radio station
  • an iterative method is performed with the first vector calculated based on the channel information as an initial vector.
  • a power method is used as an iterative method. Details of the power method will be described later.
  • the number of receiving antennas is two, but the present invention is not limited to this.
  • the number of transmission antennas can be several tens to several hundreds.
  • FIG. 12 shows an example of a method for using radio resources in the first embodiment.
  • one RB in one subband is selected as the first RB.
  • the first vector and the second vector are calculated and set as initial vectors used for eigenvalue decomposition of the average transmission covariance matrix of each subband.
  • FIG. 1 shows a system configuration example of the first exemplary embodiment.
  • the system shown in FIG. 1 includes a channel matrix storage unit 101, an average transmission covariance matrix calculation unit 102, an initial vector calculation unit 103, an eigenvalue decomposition execution unit 104, and an eigenvalue decomposition result storage unit 105.
  • the channel matrix storage unit 101 is connected to the average transmission covariance matrix calculation unit 102.
  • Average transmission covariance matrix calculation section 102 is connected to eigenvalue decomposition execution section 104.
  • the initial vector calculation unit 103 is connected to the eigenvalue decomposition execution unit 104.
  • the eigenvalue decomposition result storage unit 105 is connected to the eigenvalue decomposition execution unit 104.
  • the channel matrix storage unit 101 is configured to store the channel matrix of each RB obtained by channel estimation.
  • the average transmission covariance matrix calculation unit 102 calculates the average transmission covariance matrix of each subband based on the channel matrix of each RB read from the channel matrix storage unit 101 and outputs the average transmission covariance matrix to the eigenvalue decomposition execution unit 104 It is configured.
  • the initial vector calculation unit 103 uses the first RB channel matrix read from the channel matrix storage unit 101 to calculate a first vector, which is an initial vector for use in the power method, and performs an eigenvalue decomposition execution unit 104. (S102).
  • the eigenvalue decomposition execution unit 104 is configured to input the average transmission covariance matrix in each subband from the average transmission covariance matrix calculation unit 102 and input the first vector from the initial vector calculation unit 103.
  • the eigenvalue decomposition execution unit 104 is configured to perform a power method based on the average transmission covariance matrix and the first vector in each subband, and to perform eigenvalue decomposition on the average transmission covariance matrix in each subband.
  • the The eigenvalue decomposition execution unit 104 is configured to output the calculation result of the eigenvalue decomposition to the eigenvalue decomposition result storage unit 105 (S103).
  • FIG. 2 shows an example of the operation of the first exemplary embodiment.
  • the average transmission covariance matrix of each subband is calculated based on the channel matrix of each RB obtained by channel estimation.
  • a first vector that is an initial vector for use in the power method is calculated.
  • the average transmission covariance matrix calculation unit 102 calculates an average transmission covariance matrix based on the channel matrix of each RB read from the channel matrix storage unit 101 (S101).
  • the initial vector calculation unit 103 uses the channel matrix for each RB read from the channel matrix storage unit 101 to calculate a first vector that is an initial vector for use in the power method (S102).
  • FIG. 4 shows a detailed flow of the operation S102 of the initial vector calculation unit 103.
  • an initial vector calculation unit 103 includes an RB selection unit 103-1, a reception covariance matrix calculation unit 103-2, a reception covariance matrix eigenvalue calculation unit 103-3, and a reception covariance matrix eigenvector calculation unit 103. -4 and a transmission covariance matrix eigenvector calculation unit 103-5.
  • S102 includes operations S102-1 to S102-5.
  • the RB selection unit 103-1 selects a single RB as the first RB for calculating the first vector based on the channel matrix of each RB in the subband read from the channel matrix storage unit 101.
  • the RB selection unit 103-1 outputs the channel matrix of the selected first RB to the reception covariance matrix calculation unit 103-2 (S102-1).
  • the reception covariance matrix calculation unit 103-2 calculates the reception covariance matrix of the first RB based on the channel matrix of the first RB input from the RB selection unit 103-1.
  • Reception covariance matrix calculation section 103-2 outputs the calculated reception covariance matrix of the first RB to reception covariance matrix eigenvalue calculation section 103-3 (S102-2).
  • the reception covariance matrix eigenvalue calculation unit 103-3 calculates eigenvalues for the reception covariance matrix of the first RB based on the reception covariance matrix of the first RB input from the reception covariance matrix calculation unit 103-2. calculate.
  • Receive covariance matrix eigenvalue calculation section 103-3 outputs the received covariance matrix of the eigenvalues of the calculation result and the first RB to receive covariance matrix eigenvector calculation section 103-4 (S102-3).
  • the reception covariance matrix eigenvector calculation unit 103-4 is based on the eigenvalues of the first RB reception covariance matrix and the first RB reception covariance matrix input from the reception covariance matrix eigenvalue calculation unit 103-3.
  • the eigenvector of the reception covariance matrix of the first RB is calculated.
  • Reception covariance matrix eigenvector calculation section 103-4 outputs the eigenvalue and eigenvector of the first RB reception covariance matrix to transmission covariance matrix eigenvector calculation section 103-5 (S102-4).
  • the transmission covariance matrix eigenvector calculation section 103-5 is configured to transmit the first RB transmission co-ordinate based on the eigenvalue and eigenvector of the first RB reception covariance matrix input from the reception covariance matrix eigenvector calculation section 103-4. Compute the eigenvectors of the variance matrix. Transmission covariance matrix eigenvector calculation section 103-5 outputs the calculated eigenvector of the first RB transmission covariance matrix to eigenvalue decomposition execution section 104 (S102-5).
  • the RB selection unit 103-1 selects a single RB for calculating the first vector based on the channel matrix of each RB in the subband read from the channel matrix storage unit 101, and selects the selected RB.
  • the channel matrix is output to reception covariance matrix calculation section 103-2 (S102-1).
  • the index of the first RB used for the initial vector calculation is calculated from the following equation (7).
  • tr () is a matrix trace and represents the sum of the diagonal elements of the matrix in ().
  • the RB with the highest channel power is selected from within the subband. The reason why the channel power can be calculated from the trace of the transmission covariance matrix is as follows.
  • the power of the i RBth RB channel can be calculated from the sum of the squares of the singular values of the channel matrix. Further, from the relationship between the singular value decomposition of the channel matrix and the eigenvalue decomposition of the transmission covariance matrix, the sum of the squares of the singular values of the channel matrix is equal to the sum of the eigenvalues of the transmission covariance matrix. Furthermore, since the transmission covariance matrix is a Hermitian matrix, the sum of the eigenvalues of the transmission covariance matrix matches the trace of the transmission covariance matrix. Considering the above together, it can be seen that the power of each RB channel can be calculated from the sum of the traces of the transmission covariance matrix.
  • the eigenvector close to the average transmission covariance matrix in the subband can be obtained by selecting the RB whose power influence is dominant in the subband and obtaining the eigenvector of the transmission covariance matrix.
  • Reception covariance matrix calculation section 103-2 calculates a reception covariance matrix based on the channel matrix input from RB selection section 103-1, and outputs it to reception covariance matrix eigenvalue calculation section 103-3 (S102-). 2).
  • the reception covariance matrix is calculated by the following equation (8).
  • the reception covariance matrix eigenvalue calculation unit 103-3 calculates the eigenvalue of the reception covariance matrix based on the reception covariance matrix input from the reception covariance matrix calculation unit 103-2, and calculates the eigenvalue calculation result and the reception covariance.
  • the matrix is output to reception covariance matrix eigenvector calculation section 103-4. (S102-3)
  • the eigenvalue (9) of the reception covariance matrix is solved to obtain the eigenvalue.
  • det () is a determinant of the matrix in (). Since the equation (8) is a quadratic equation related to the eigenvalue ⁇ , it can be solved analytically.
  • Reception covariance matrix eigenvector calculation section 103-4 calculates the eigenvector of the reception covariance matrix based on the reception covariance matrix and the eigenvalue of the reception covariance matrix input from reception covariance matrix eigenvalue calculation section 103-3.
  • the eigenvalues and eigenvectors of the reception covariance matrix are output to the eigenvector calculation unit 103-5 of the transmission covariance matrix.
  • the eigenvector corresponding to the eigenvalue obtained by solving equation (9) can be calculated by solving the eigenvalue defining equation of the following equation (10).
  • Equation (10) are the N R source simultaneous linear equations for each element of the eigenvector as a variable, analytically solution of the equation is obtained.
  • the transmission covariance matrix eigenvector calculation section 103-5 is configured to transmit the first RB transmission co-ordinate based on the eigenvalue and eigenvector of the first RB reception covariance matrix input from the reception covariance matrix eigenvector calculation section 103-4.
  • the eigenvector of the variance matrix is calculated and output to the eigenvalue decomposition execution unit 104 (S102-5).
  • the receive covariance matrix is the singular value decomposition of the channel matrix Can be expressed in the form of eigenvalue decomposition of the reception covariance matrix as in the following equation (11).
  • Equation (11) Since the last equation of Equation (11) is in the form of eigenvalue decomposition of the reception covariance matrix, the left singular vector U of the channel matrix matches the eigenvector of the reception covariance matrix, and the singular value of the channel matrix It can be seen that the square matches the eigenvalue of the reception covariance matrix.
  • the right singular vector V of the channel matrix and the eigenvector of the transmission covariance matrix coincide with each other as shown in Equation (4).
  • the square of the value matches the eigenvalue of the transmission covariance matrix.
  • ⁇ Method for indirectly obtaining eigenvector of transmission covariance matrix Transform the singular value decomposition equation of the channel matrix without directly performing the eigenvalue decomposition of the transmit covariance matrix, and indirectly calculate the right singular vector of the channel matrix from the singular value, left singular vector, and channel matrix of the channel matrix Indicates that
  • the definition formula of the singular value decomposition of the channel matrix H is modified as the following formula (12) for the right singular vector.
  • the left singular vector U is a unitary matrix, and utilizes the fact that the product of its own complex conjugate transpose becomes a unit matrix.
  • ⁇ ⁇ 1 is a diagonal matrix whose diagonal element is the reciprocal of the singular value of the channel matrix.
  • FIG. 13 shows the concept of a method for indirectly calculating the eigenvector of the transmission covariance matrix.
  • the left singular vector and singular value of the channel matrix can be calculated from the eigenvector and eigenvalue of the reception covariance matrix, respectively.
  • the right singular vector of the channel matrix matches the eigenvector of the transmission covariance matrix. Therefore, the eigenvector of the transmission covariance matrix can be calculated from the eigenvector and eigenvalue of the reception covariance matrix and the channel matrix from Equation (12).
  • the above is the principle by which the eigenvector of the transmission covariance matrix is obtained from the eigenvalue and eigenvector of the reception covariance matrix.
  • the eigenvector of the transmission covariance matrix of the first RB is calculated from the following equation (13).
  • the calculated v 1 and v 2 are output to the eigenvalue decomposition execution unit 104 as the first vector x 1 and the second vector x 2 , respectively.
  • the eigenvalue decomposition of the transmission covariance matrix is not performed directly, but indirectly through the reception covariance matrix as in S102-1 to S102-5.
  • the amount of calculation can be reduced by calculating the eigenvector of the transmission covariance matrix.
  • the calculation amount of one iteration of the power method requires a calculation amount of the square size of the matrix size for both the multiplier and the adder.
  • the eigenvalues and eigenvectors of the reception covariance matrix may be algebraic calculations, and the equation for obtaining the eigenvalues of the transmission covariance matrix (13) But The product of the matrix between each other is once, Since the matrix product is one time, the amount of computation is the first order of the size of the transmission covariance matrix.
  • the eigenvalue decomposition execution unit 104 applies the average transmission covariance matrix in each subband input from the average transmission covariance matrix calculation unit 102, and the first vector and the second vector input from the initial vector calculation unit 103. Based on this, a power method is performed, and eigenvalue decomposition of the average transmission covariance matrix in each subband is performed (S103).
  • FIG. 5 shows a detailed configuration of the eigenvalue decomposition execution unit 104.
  • 6A and 6B show a detailed flow of the operation S103 of the eigenvalue decomposition execution unit 104.
  • FIG. The eigenvalue decomposition execution unit 104 includes a first eigenvalue calculation unit 104-1 and a second eigenvalue calculation unit 104-2.
  • the operation S103 includes operations S103-1 to S103-13.
  • the first eigenvalue calculation unit 104-1 is a power method based on the average transmission covariance matrix in each subband input from the average transmission covariance matrix calculation unit and the first vector input from the initial vector calculation unit 103. To calculate the first eigenvalue and first eigenvector of the average transmission covariance matrix of each RB, and output them to the eigenvalue decomposition result storage unit 105 and the second eigenvalue calculation unit 104-2 (S103-1 to S103-7) .
  • the second eigenvalue calculator 104-2 receives the average transmission covariance matrix of each subband input from the average transmission covariance matrix calculator 102, the first eigenvalue input from the first eigenvalue calculator 104-1 and the first eigenvalue Based on one eigenvector, a second eigenvalue and a second eigenvector are calculated and output to the eigenvalue decomposition result storage unit 105 (S103-8 to S103-15).
  • the principle of the power method will be described.
  • the initial vector is converged to the eigenvector by repeatedly multiplying the initial vector by the eigenvalue decomposition target vector.
  • N EV is the number of eigenvalues.
  • the initial vector that is, the estimated eigenvector v (0) before the iteration is set as the first vector x (0) .
  • the power method is a method for obtaining a maximum eigenvalue of a target matrix and an eigenvector corresponding to the maximum eigenvalue.
  • the second and subsequent eigenvalues can be obtained by performing the following processing.
  • a matrix A ′ having the second eigenvalue of matrix A as the first eigenvalue is calculated using spectral decomposition of Hermitian matrix, and a power method is applied to matrix A ′ To do.
  • the matrix A is represented by the following equation (18) for spectral decomposition for each eigenvector.
  • the matrix A ′ can be obtained by subtracting the component of the eigenvector corresponding to the first eigenvalue from the matrix A, and the matrix A ′ is calculated by the following equation (19).
  • the first eigenvalue calculation unit 104-1 is a power based on the average transmission covariance matrix in each subband input from the average transmission covariance matrix calculation unit 102 and the first vector input from the initial vector calculation unit 103.
  • the first eigenvalue and the first eigenvector of the average transmission covariance matrix of each subband are calculated and output to the eigenvalue decomposition result storage unit 105 and the second eigenvalue calculation unit 104-2 (S103-1 to S103-). 7).
  • initial vector setting (S103-1) and index initialization are performed (S103-2).
  • the initial vector the first vector x 1 is used.
  • (,) is the inner product of the vectors in ().
  • S103-3 to S103-5 are one iteration process in the power method. If the convergence condition of the following equation (23) is not satisfied after the iterative processing, the processing of S103-3 to S103-5 is executed again (S103-7).
  • is an eigenvalue tolerance.
  • the maximum error for the true eigenvalue of ⁇ (k) for any k is ⁇ (k) ⁇ (k ⁇ 1) . Therefore, ⁇ may be determined according to the accuracy of the eigenvalue required by the system.
  • the second eigenvalue calculator 104-2 receives the average transmission covariance matrix of each subband input from the average transmission covariance matrix calculator 102, the first eigenvalue input from the first eigenvalue calculator 104-1 and the first eigenvalue Based on one eigenvector, a second eigenvalue and a second eigenvector are calculated and output to the eigenvalue decomposition result storage unit 105 (S103-7 to S103-13).
  • a second eigenvalue calculation matrix R ′ Tx is calculated from the following equation (24) using spectral decomposition of the Hermitian matrix. (S103-8)
  • the second vector input from the initial vector calculation unit 103 is used (S103-9).
  • the first RB is selected from the RBs in the subband, and an eigenvalue decomposition is performed on the eigenvector of the transmission covariance matrix of the average transmission covariance matrix of all RBs in the subband. Value. Since the first RB selects the power dominant in the subband, the first vector that is the eigenvector of the transmission covariance matrix of the first RB is smaller than the randomly generated vector. It is close to the eigenvector of the average transmission covariance matrix of all RBs in the band. Therefore, by using the first vector as the initial vector of the power method, the number of iterations of the power method, and hence the amount of calculation of eigenvalue decomposition can be reduced.
  • the eigenvector of the transmission covariance matrix of the first RB is obtained by indirectly performing the eigenvalue decomposition of the transmission covariance matrix using the fact that the receiving antenna is significantly smaller than the transmitting antenna. It is possible to calculate.
  • FIG. 14 shows a conceptual diagram of a second exemplary embodiment.
  • the calculation method of the first vector of the second embodiment is different from the calculation method of the first embodiment.
  • the eigenvector of the 1 RB transmission covariance matrix in the subband is the first vector.
  • a first eigenvector and a second eigenvector of a transmission covariance matrix (also referred to as an average transmission covariance matrix between subbands) averaged over a plurality of subbands are set as the first vector, Let it be the second vector.
  • eigenvalue decomposition is performed by the power method of the average transmission covariance matrix of each subband using the determined first vector as an initial vector, and the result is sent to the eigenvalue decomposition result storage unit 105. Output.
  • FIG. 7 illustrates the system configuration of the second exemplary embodiment.
  • the channel matrix storage unit 101 is configured to store a channel matrix for each RB obtained by channel estimation.
  • the average transmission covariance matrix calculation unit 102A is configured to calculate an average transmission covariance matrix within each subband and between subbands based on the channel matrix for each RB read from the channel matrix calculation unit.
  • the average transmission covariance matrix calculation unit 102A is configured to output an average transmission covariance matrix within each subband and between subbands to the initial vector calculation unit 103A and the eigenvalue decomposition execution unit 104.
  • the initial vector calculation unit 103A is configured to calculate the first vector based on the average transmission covariance matrix between subbands read from the average transmission covariance matrix calculation unit 102A.
  • the initial vector calculation unit 103A is configured to output the first vector to the eigenvalue decomposition execution unit 104.
  • the eigenvalue decomposition execution unit 104 performs power multiplication based on the first vector input from the initial vector calculation unit 103A and the average transmission covariance matrix in each subband input from the average transmission covariance matrix calculation unit 102A. Configured to calculate an eigenvector of the average transmission covariance matrix of each subband.
  • FIG. 2 shows an example of the operation of the second exemplary embodiment.
  • the average transmission covariance matrix calculation unit 102A calculates an average transmission covariance matrix based on the channel matrix for each RB read from the channel matrix calculation unit, and outputs the average transmission covariance matrix to the initial vector calculation unit 103A and the eigenvalue decomposition execution unit 104 (S101A). ).
  • This operation S101A differs from the operation of S101 in that an average transmission covariance matrix between subbands is obtained.
  • the average transmission covariance matrix within each subband and the average transmission covariance matrix between subbands for generating an initial vector are calculated by the following equations (25) and (26), respectively.
  • the initial vector calculation unit 103A includes an average transmission covariance matrix between subbands read from the average transmission covariance matrix calculation unit 102A. Based on, a first vector, which is an initial vector used in the power method, is calculated (S102A).
  • the eigenvector of the transmission covariance matrix of 1 RB in the subband is the first vector
  • the first transmission covariance matrix between subbands is calculated.
  • the first eigenvector and the second eigenvector are defined as a first vector and a second vector, respectively.
  • the number N SB of subbands to be averaged when calculating the average transmission covariance matrix between subbands may be determined by numerical search, and NSB having a large effect of reducing the amount of computation of eigenvalue decomposition calculated by simulation in advance. .
  • the eigenvalue decomposition execution unit 104 is based on the average transmission covariance matrix of the subband input from the average transmission covariance matrix calculation unit 102A, and the first vector and the second vector input from the initial vector calculation unit 103A.
  • the eigenvalues and eigenvectors of the average transmission covariance matrix of the subband are calculated and stored in the eigenvalue decomposition result storage unit 105 (S103).
  • this operation S103 is the same as that of the first embodiment, a description thereof will be omitted.
  • a vector close to the eigenvector of the average transmission covariance matrix of subbands can be calculated.
  • the power vector initial vector the number of iterations for the average transmission covariance matrix of each subband can be reduced, and the number of computations can be reduced.
  • the calculation of the initial vector requires a certain amount of calculation because eigenvalue decomposition is performed by the power method.
  • this initial vector setting improves the number of iterations of the power method of the average transmission covariance matrix in each subband, so that the initial value vector is randomized as the amount of computation of the total eigenvalue decomposition including the initial vector calculation. Compared with the case, the amount of calculation is reduced.
  • the first item is the amount of calculation for calculating the initial vector
  • the second item is the amount of calculation for eigenvalue decomposition of the average transmission covariance matrix in each subband.
  • the amount of calculation when the initial vector determination method of the present embodiment is used is expressed by the following equation (28).
  • the first term of the equation (29) becomes larger than the second term, that is, the amount of calculation by the eigenvalue decomposition in each subband is reduced as the amount of calculation increases by setting the initial vector. And the amount of calculation can be reduced.
  • the initial vector can be calculated with a low amount of computation in the first embodiment, whereas in this embodiment, the calculation amount of eigenvalue decomposition for initial value calculation is different for each subband. A calculation amount that cannot be ignored for the calculation amount of eigenvalue decomposition is necessary. On the other hand, there is an advantage that the influence of the channel estimation error can be reduced by calculating the initial vector from a wide band.
  • FIG. 9 shows the system configuration of the third exemplary embodiment.
  • an initial vector of eigenvalue decomposition using the power method of the average transmission covariance matrix of each subband based on feedback information from the terminal is used.
  • a system shown in FIG. 9 includes a channel matrix storage unit 101, an average transmission covariance matrix calculation unit 102, an initial vector calculation unit 103B, an eigenvalue decomposition execution unit 104, an eigenvalue decomposition result storage unit 105, and terminal feedback information. And a storage unit 106.
  • the channel matrix storage unit 101 is connected to the average transmission covariance matrix calculation unit 102.
  • Average transmission covariance matrix calculation section 102 is connected to eigenvalue decomposition execution section 104.
  • the terminal feedback information storage unit 106 is connected to the initial vector calculation unit 103B.
  • the initial vector calculation unit 103B is connected to the eigenvalue decomposition execution unit 104.
  • the eigenvalue decomposition execution unit 104 is connected to the eigenvalue decomposition result storage unit 105.
  • the channel matrix storage unit 101 is configured to store a channel matrix for each RB obtained by channel estimation.
  • the terminal feedback information storage unit 106 is configured to store information fed back from the terminal.
  • the initial vector calculation unit 103B is configured to calculate the first vector and the second vector based on the terminal feedback information read from the terminal feedback information storage unit 106 and output the first vector and the second vector to the eigenvalue decomposition execution unit 104. Yes.
  • the average transmission covariance matrix calculation unit 102 is configured to calculate an average transmission covariance matrix for each subband based on the channel matrix for each RB read from the channel matrix storage unit 101.
  • Average transmission covariance matrix calculation section 102 outputs the average transmission covariance matrix of each subband to eigenvalue decomposition execution section 104.
  • the eigenvalue decomposition execution unit 104 converts the first vector and the second vector input from the initial vector calculation unit 103B, and the average transmission covariance matrix of each subband input from the average transmission covariance matrix calculation unit 102. Based on this, the eigenvalues and eigenvectors of the average transmission covariance matrix of each subband are calculated.
  • the average transmission covariance matrix calculation unit 102 calculates the average transmission covariance matrix of each RB based on the channel matrix for each RB read from the channel matrix storage unit (S101).
  • the calculation method is the same as in the first embodiment.
  • the initial vector calculation unit 103B reads the terminal feedback information read from the terminal feedback information storage unit 106, and calculates a first vector that is an initial vector used in the power method (S102B).
  • PMI Precoding Matrix Indicator
  • the base station and the terminal maintain a quantized precoding table called a codebook.
  • a suitable precoder determined by the terminal is fed back to the base station as a codebook index.
  • the initial vector calculation unit 103B outputs the precoder specified by PMI to the eigenvalue decomposition execution unit 104 as the first vector and the second vector.
  • Massive MIMO for the purpose of increasing array gain, it is possible to increase the number of physical antennas freely without being restricted by the number of antennas determined by the standard.
  • the number of base station antennas which is the premise of the codebook precoder, may differ from the actual number of base station antennas.
  • a modified precoder obtained by modifying the precoder with respect to the number of transmission antennas may be held.
  • a steering weight having the same peak direction as the beam pattern of the codec precoder may be used.
  • the i-th precoder of the modified code The n th element of Is represented by the following equation (30).
  • the eigenvalue decomposition execution unit 104 determines each subband based on the average transmission covariance matrix of each subband input from the average transmission covariance matrix calculation unit 102 and the first vector input from the initial vector calculation unit 103B. Compute the eigenvalues and eigenvectors of the mean transmission covariance matrix of.
  • the initial vector can be determined simply by referring to the table based on feedback from the terminal. For this reason, there is an advantage that the calculation of the initial vector becomes unnecessary.
  • FIG. 15 shows a wireless station in a fourth exemplary embodiment.
  • the radio station 1000 includes a determination unit 1001 and a calculation unit 1002.
  • the determining unit 1001 determines an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station.
  • the calculation unit 1002 performs eigenvalue decomposition of the transmission covariance matrix using the iterative method based on the initial vector.
  • the number of iterations of the iterative method in eigenvalue decomposition can be reduced, and the amount of computation can be reduced.
  • different wireless communication systems for example, WiFi, WiMAX (Worldwide Interoperability for Microwave Access), IEEE 802.802.
  • Adopting a TDD (Time Division Duplex) method that uses the same frequency for uplink and downlink at different times. 16m).
  • the above embodiment may be a wireless communication system that employs an FDD (Frequency Division Duplex) method that uses different frequencies simultaneously on the uplink and downlink.
  • FDD Frequency Division Duplex
  • the above embodiments have been described with reference to LTE wireless communication systems, at least some of the methods and apparatus of the various embodiments can cover a wide range of communications including many non-LTE and / or non-cellular systems. Applicable to the system.
  • the above embodiment may be a UMTS (Universal Mobile Telecommunications System) system.
  • UMTS Universal Mobile Telecommunications System
  • the above radio station may be a transmitter, for example.
  • the radio station that receives data from the transmitter may be a receiver.
  • the above radio station may be a base station, for example.
  • a base station can be used to communicate with one or more wireless terminals, and the functionality of an access point, node, evolved node B (eNB: evolved Node B), or some other network entity May be included in part or in whole.
  • the base station communicates with a UE (User Equipment) via an air interface. This communication can occur through one or more sectors.
  • the base station may act as a router between the UE and the rest of the access network, which may include an Internet Protocol (IP) network, by converting the received air interface frame into an IP packet.
  • IP Internet Protocol
  • the base station may also coordinate management of attributes for the air interface and may be a gateway between the wired network and the wireless network.
  • the above terminal can also be called a wireless terminal, a mobile terminal, or a user terminal (or user).
  • the terminal is also a system, subscriber unit, subscriber station, mobile station, wireless terminal, mobile device, node, device, remote station, remote terminal, wireless communication device, wireless communication device, wireless communication device or user agent function May include some or all of sex.
  • Terminals include cellular phones, cordless phones, session initiation protocol (SIP) phones, smartphones, wireless local loop (WLL) stations, personal digital assistants (PDAs), laptops, tablets, netbooks, smart books, handheld communication devices, handhelds It may be a computing device, a satellite radio, a wireless modem card and / or another processing device that communicates via a wireless system.
  • radio station can be realized by hardware, software, or a combination thereof.
  • the above calculation method can also be realized by hardware, software, or a combination thereof.
  • realized by software means realized by a computer reading and executing a program.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media are magnetic recording media (for example, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (for example, magneto-optical disks), CD-ROMs (Compact Disc--Read-Only Memory).
  • CD-R Compact-Disc--Recordable
  • CD-R / W Compact-Disc--Rewritable
  • DVD-ROM Digital-Versatile-Disc--ROM
  • DVD-R Digital-Versatile-Disc--Recordable
  • DVD-R / W Digital Versatile Disc-Rewritable
  • semiconductor memory for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may be supplied to the computer by various types of temporary computer readable media.
  • Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • the transmission covariance matrix is Calculated based on the eigenvalues of the reception covariance matrix and the eigenvectors of the reception covariance matrix;
  • the eigenvector is An eigenvector of the transmission covariance matrix,
  • the calculation method according to attachment 2. (Appendix 4)
  • the partial area is: It is an area where the power of the channel is highest among the radio resource areas to be subjected to the eigenvalue decomposition.
  • the calculation method according to attachment 2. (Appendix 5)
  • the initial vector is An eigenvector calculated based on channel information related to a region combining a plurality of radio resource regions to be subjected to eigenvalue decomposition, The calculation method according to attachment 1.
  • the eigenvector is An eigenvector of a transmission covariance matrix averaged in an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition; The calculation method according to attachment 5.
  • the initial vector is Based on a precoder selected by the other radio station, determined with reference to a predetermined table, The calculation method according to attachment 1.
  • the table is A precoder obtained by correcting a precoder defined by the system so as to correspond to the number of antennas of the radio station.
  • the calculation method according to attachment 7. (Appendix 9)
  • the channel information is A channel matrix estimated by the wireless station, The calculation method according to attachment 1.
  • the channel information is A precoder selected by the other radio station; The calculation method according to attachment 1.
  • a determination unit that determines an initial vector based on channel information in a propagation path from a wireless station having a plurality of antennas to another wireless station; A calculation unit that performs eigenvalue decomposition of a transmission covariance matrix using an iterative method based on the initial vector; Radio station.
  • the channel information is Related to a part of the radio resource area to be subjected to the eigenvalue decomposition, The initial vector is An eigenvector calculated based on the channel information, The radio station according to appendix 11.
  • the transmission covariance matrix is Calculated based on the eigenvalues of the reception covariance matrix and the eigenvectors of the reception covariance matrix;
  • the eigenvector is An eigenvector of the transmission covariance matrix,
  • the partial area is: It is an area where the power of the channel is highest among the radio resource areas to be subjected to the eigenvalue decomposition.
  • the initial vector is An eigenvector calculated based on channel information related to an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
  • the eigenvector is An eigenvector of a transmission covariance matrix averaged in an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition; The radio station according to attachment 15.
  • the initial vector is Based on a precoder selected by the other radio station, determined with reference to a predetermined table, The radio station according to appendix 11.
  • the table is A precoder obtained by correcting a precoder defined by the system so as to correspond to the number of antennas of the radio station.
  • the channel information is A channel matrix estimated by the wireless station, The radio station according to appendix 11.
  • the channel information is A precoder selected by the other radio station; The radio station according to appendix 11.
  • (Appendix 21) Determining an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station; Performing eigenvalue decomposition of the transmission covariance matrix using the iterative method based on the initial vector; A program that causes a computer to execute.
  • the channel information is Related to a part of the radio resource area to be subjected to the eigenvalue decomposition,
  • the initial vector is An eigenvector calculated based on the channel information,
  • the transmission covariance matrix is Calculated based on the eigenvalues of the reception covariance matrix and the eigenvectors of the reception covariance matrix;
  • the eigenvector is An eigenvector of the transmission covariance matrix,
  • the program according to attachment 22. (Appendix 24)
  • the partial area is: It is an area where the power of the channel is highest among the radio resource areas to be subjected to the eigenvalue decomposition.
  • the initial vector is An eigenvector calculated based on channel information related to an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
  • the program according to appendix 21 The program according to appendix 21.
  • the eigenvector is An eigenvector of a transmission covariance matrix averaged in an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition; The program according to attachment 25.
  • the initial vector is Based on a precoder selected by the other radio station, determined with reference to a predetermined table, The program according to appendix 21.
  • the table is A precoder obtained by correcting a precoder defined by the system so as to correspond to the number of antennas of the radio station.
  • the channel information is A channel matrix estimated by the wireless station,
  • the channel information is A precoder selected by the other radio station; The program according to appendix 21.

Abstract

The present invention provides a wireless station for reducing the number of iterations of an iteration method in eigenvalue decomposition and reducing the amount of computation. The wireless station includes a determination unit for determining an initial vector on the basis of channel information in a propagation path from a wireless station having a plurality of antennas to other wireless stations, and a calculation unit for performing the eigenvalue decomposition of a transmission covariance matrix using an iteration method on the basis of the initial vector.

Description

計算方法、無線局、記憶媒体Calculation method, radio station, storage medium
 本開示は計算方法、無線局、記憶媒体の少なくとも一つに関する。 This disclosure relates to at least one of a calculation method, a radio station, and a storage medium.
 MIMO(Multiple Input Multiple Output)では、送信機と受信機の双方に複数のアンテナが配置され、空間多重送信が行われることにより、周波数利用効率の改善が図られる。 In MIMO (Multiple Input Multiple Output), multiple antennas are arranged on both the transmitter and the receiver, and spatial multiplexing transmission is performed, thereby improving the frequency utilization efficiency.
 さらに、近年では無線用回路の小型化技術の進展に伴い、基地局が数十から数百のアンテナ素子を備えるMassive MIMOの実用化が検討されている。Massive MIMOでは、多数のアンテナ素子による高アレイゲインにより、端末の受信電力が大きく改善される。また、アンテナ自由度が高いため、多数のデータを多重し伝送することができる。このため、一般的なMIMOに比べて通信路容量が大幅に改善され得る。 Furthermore, in recent years, with the progress of miniaturization technology for wireless circuits, the practical use of Massive MIMO in which a base station includes several tens to several hundreds of antenna elements is being studied. In Massive MIMO, the received power of the terminal is greatly improved due to the high array gain by a large number of antenna elements. In addition, since the degree of freedom of the antenna is high, a large number of data can be multiplexed and transmitted. For this reason, the channel capacity can be significantly improved as compared with general MIMO.
 まず、MIMOに関する一般的な背景技術が示される。これをMassive MIMOで実現する上での課題を述べる。 First, general background technology related to MIMO is shown. The issues in realizing this with Massive MIMO are described.
 MIMOでは、基地局が送信データに対してプリコーダを乗算することで、受信側は同一周波数、同一時刻に送信されたデータを空間的に分離することができ、空間多重が実現される。 In MIMO, when a base station multiplies transmission data by a precoder, the receiving side can spatially separate data transmitted at the same frequency and the same time, and spatial multiplexing is realized.
 また、LTE(Long Term Evolution)では、同一のプリコーダが適用される無線リソース領域としてサブバンド(図11)が定義されている。サブバンドは複数の同一時刻、周波数軸上の複数のRB(Resource Block)から構成されている。RBは、LTEにおける時間、周波数軸での無線リソースの最小単位であり、時間軸で7OFDM(Orthogonal Frequency Division Multiplexing)シンボル、周波数軸上で12サブキャリアから構成される。 In LTE (Long Term Evolution), a subband (FIG. 11) is defined as a radio resource area to which the same precoder is applied. A subband is composed of a plurality of RBs (Resource Blocks) on the same time and frequency axis. The RB is the minimum unit of radio resources on the time and frequency axes in LTE, and is composed of 7 OFDM (Orthogonal Frequency Division Multiplexing) symbols on the time axis and 12 subcarriers on the frequency axis.
 空間多重のためのプリコーダ生成法として、チャネル情報の特異値分解(固有値分解を含む)を用いる方法がある。以下、その例として基地局の数が1つ、端末の数が1つの場合の下りMIMO通信におけるSVD(Singular Value Decomposition、特異値分解)プリコーダの生成法が示される。 As a precoder generation method for spatial multiplexing, there is a method using singular value decomposition (including eigenvalue decomposition) of channel information. In the following, an SVD (Single Value Decomposition, Singular Value Decomposition) precoder generation method in downlink MIMO communication when the number of base stations is one and the number of terminals is one is shown as an example.
 前提として、上りリンクと下りリンクで同一のキャリア周波数を用いるTDD(Time Division Duplex)システムを想定する。上りの伝搬路推定のために端末が送信した既知信号により、基地局は上り伝搬路のチャネル行列を推定するが、TDDではチャネル相反性が成立し、伝搬路のチャネル行列を下りチャネルの推定情報として用いることができる。 As a premise, a TDD (Time Division Division Duplex) system using the same carrier frequency in the uplink and downlink is assumed. The base station estimates the channel matrix of the uplink channel based on the known signal transmitted by the terminal for uplink channel estimation. However, in TDD, channel reciprocity is established, and the channel matrix of the channel is used as downlink channel estimation information. Can be used as
 非特許文献1に記載のSVDプリコーダは、基地局と端末の間の下り通信の伝搬路応答を表すチャネル行列
Figure JPOXMLDOC01-appb-I000001
の右特異ベクトルVとして、次式(1)から計算される。
Figure JPOXMLDOC01-appb-I000002
 ここで、√λはチャネル行列Hのi番目の特異値である。Σは特異値を対角成分とする対角行列である。diag{  }は{  }内の要素を対角要素とする対角行列である。min()は括弧内の要素の中の最小値を意味する。
Figure JPOXMLDOC01-appb-I000003
は左特異ベクトルである。
Figure JPOXMLDOC01-appb-I000004
は右特異ベクトルである。また、肩のHは複素共役転置である。
The SVD precoder described in Non-Patent Document 1 is a channel matrix representing a channel response of downlink communication between a base station and a terminal.
Figure JPOXMLDOC01-appb-I000001
Is calculated from the following equation (1).
Figure JPOXMLDOC01-appb-I000002
Here, √λ i is the i-th singular value of the channel matrix H. Σ is a diagonal matrix with singular values as diagonal components. diag {} is a diagonal matrix with elements in {} as diagonal elements. min () means the minimum value among the elements in parentheses.
Figure JPOXMLDOC01-appb-I000003
Is the left singular vector.
Figure JPOXMLDOC01-appb-I000004
Is the right singular vector. The shoulder H is a complex conjugate transpose.
 基地局側で送信データに乗ずるプリコーダとして右特異ベクトルVが、受信端末側で受信データに乗ずるポストコーダとして左特異ベクトルUが用いられる。これにより、端末は次式(2)のようにチャネル行列Hを対角化し複数のデータを分離することができる。
Figure JPOXMLDOC01-appb-I000005
ここで、xは送信信号ベクトルである。yは受信信号ベクトルである。nは雑音ベクトルである。
The right singular vector V is used as a precoder that multiplies transmission data on the base station side, and the left singular vector U is used as a postcoder that multiplies reception data on the receiving terminal side. As a result, the terminal can diagonalize the channel matrix H as shown in the following equation (2) and separate a plurality of data.
Figure JPOXMLDOC01-appb-I000005
Here, x is a transmission signal vector. y is a received signal vector. n is a noise vector.
 一方、実環境ではチャネル推定誤差が存在するが、サブバンドと呼ばれる同一時刻、周波数軸上の複数RBにわたって、チャネル行列に関する情報を平均化することで、チャネル推定誤差の影響を低減することができる。さらに、サブバンド内で平均化された情報からSVDプリコーダを計算することで、チャネル推定誤差耐性のあるプリコーダを計算可能である。 On the other hand, there is a channel estimation error in the real environment, but the influence of the channel estimation error can be reduced by averaging the information about the channel matrix over a plurality of RBs on the same time and frequency axis called a subband. . Furthermore, by calculating the SVD precoder from the information averaged within the subband, it is possible to calculate a precoder having channel estimation error tolerance.
 平均化に用いるチャネル情報としては、チャネル行列の電力情報である送信共分散行列RTxを用いる。送信共分散行列RTxは次式(3)で計算される。
Figure JPOXMLDOC01-appb-I000006
As channel information used for averaging, a transmission covariance matrix R Tx that is power information of the channel matrix is used. The transmission covariance matrix R Tx is calculated by the following equation (3).
Figure JPOXMLDOC01-appb-I000006
 振幅、位相情報であるチャネル行列を用いて周波数軸上の平均化を行う場合、平均サンプル間の位相変化による打消し合いが発生し、正しく平均化情報を算出できない場合がある。 When performing averaging on the frequency axis using a channel matrix that is amplitude and phase information, cancellation may occur due to phase changes between average samples, and averaging information may not be calculated correctly.
 送信共分散行列の固有値分解からでも、SVDプリコーダを得ることができる。送信共分散行列の定義式に式(1)を代入することで、次式(4)が得られる。次式(4)の最後の式が送信共分散行列の固有値分解の形になっている。また、送信共分散行列の固有ベクトル、固有値はそれぞれ、チャネル行列の右特異ベクトル、特異値の2乗となっていることがわかる。
Figure JPOXMLDOC01-appb-I000007
 ここで、Dは送信共分散行列の固有値を対角要素とする対角行列である。送信共分散行列とチャネル行列間の固有値、固有ベクトルの関係の詳細は、後述する。
The SVD precoder can also be obtained from the eigenvalue decomposition of the transmission covariance matrix. By substituting equation (1) into the defining equation of the transmission covariance matrix, the following equation (4) is obtained. The last equation of the following equation (4) is in the form of eigenvalue decomposition of the transmission covariance matrix. It can also be seen that the eigenvector and eigenvalue of the transmission covariance matrix are the square of the right singular vector and singular value of the channel matrix, respectively.
Figure JPOXMLDOC01-appb-I000007
Here, D is a diagonal matrix having the eigenvalues of the transmission covariance matrix as diagonal elements. Details of the relationship between eigenvalues and eigenvectors between the transmission covariance matrix and the channel matrix will be described later.
 実際に、チャネル推定誤差の影響を低減する際は、サブバンド内の各RBの送信共分散行列を複数RBにわたって平均化を行い、平均送信共分散行列を求め、平均送信共分散行列の固有値分解を行うことで、SVDプリコーダを求める。平均送信共分散行列
Figure JPOXMLDOC01-appb-I000008
は次式(5)で計算される。
Figure JPOXMLDOC01-appb-I000009
ここで
Figure JPOXMLDOC01-appb-I000010
はサブバンド内のiRB番目のRBの送信共分散行列である。NRBはサブバンド内のRBの個数である。
Actually, when reducing the effect of channel estimation error, the transmission covariance matrix of each RB in the subband is averaged over multiple RBs to obtain the average transmission covariance matrix and eigenvalue decomposition of the average transmission covariance matrix To obtain the SVD precoder. Average transmit covariance matrix
Figure JPOXMLDOC01-appb-I000008
Is calculated by the following equation (5).
Figure JPOXMLDOC01-appb-I000009
here
Figure JPOXMLDOC01-appb-I000010
Is the transmission covariance matrix of the i RBth RB in the subband. N RB is the number of RBs in the subband.
 基地局が数十~数百のアンテナを備えるMassive MIMOシステムでは、固有値分解の対象となる送信共分散行列が大規模となり、上記送信共分散行列の固有値分解の演算量が増大する。 In a Massive MIMO system in which a base station has several tens to several hundreds of antennas, the transmission covariance matrix to be subjected to eigenvalue decomposition becomes large, and the amount of computation of eigenvalue decomposition of the transmission covariance matrix increases.
 一般に、固有値分解をハードウェアに実装する方法は、直接法と反復法がある。 Generally, there are a direct method and an iterative method for implementing eigenvalue decomposition in hardware.
 直接法は、固有値や固有ベクトルを有限回の演算により求める方法で、固有方程式、固有値と固有ベクトルの関係式にガウス消去法を適用する方法などがある。 The direct method is a method of obtaining eigenvalues and eigenvectors by a finite number of operations, and includes a method of applying a Gaussian elimination method to eigen equations and relational expressions between eigenvalues and eigenvectors.
 一方、反復法は、反復計算により初期値を収束させ近似解を求める方法である。反復法の一例は、非特許文献2に記載のべき乗法である。 On the other hand, the iterative method is a method of obtaining an approximate solution by converging initial values by iterative calculation. An example of the iterative method is the power method described in Non-Patent Document 2.
 一般的に直接法は、反復法と比べて計算の精度は高いが、演算量が多い点が課題である。 Generally, the direct method has higher calculation accuracy than the iterative method, but has a problem in that it requires a large amount of calculation.
 この点を考慮した発明者は、大規模な送信共分散行列の固有値分解を必要とするMassive MIMOシステムでは、固有値分解の演算量を低減するために、反復法を用いることを見出した。 The inventor considering this point has found that in a Massive MIMO system that requires eigenvalue decomposition of a large-scale transmission covariance matrix, an iterative method is used to reduce the amount of calculation of eigenvalue decomposition.
 反復法によって送信共分散行列の固有値分解を行う場合、通例、初期ベクトルとして、ランダムに生成したベクトルを用いる。 When performing eigenvalue decomposition of a transmission covariance matrix by an iterative method, a randomly generated vector is usually used as an initial vector.
 しかし、このランダムベクトルと真の固有ベクトルの差異が大きい場合、収束までの反復回数が多くなり、プリコーダの演算量が増加する。 However, if the difference between this random vector and the true eigenvector is large, the number of iterations until convergence increases, and the amount of computation of the precoder increases.
 そこで、例示的な実施形態の目的の1つは、固有値分解における反復法の反復回数を低減し、演算量を低減する新たな仕組みを提供することにある。なお、この目的は、本明細書に開示される実施形態が達成しようとする複数の目的の1つに過ぎないことに留意されるべきである。その他の目的又は課題と新規な特徴は、本明細書の記述又は添付図面から明らかにされる。 Therefore, one of the objects of the exemplary embodiment is to provide a new mechanism for reducing the number of iterations of the iterative method in eigenvalue decomposition and reducing the amount of calculation. It should be noted that this object is only one of a plurality of objects that the embodiments disclosed herein intend to achieve. Other objects or problems and novel features will become apparent from the description of the present specification or the accompanying drawings.
 例示的な実施形態の計算方法は、複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定することと、前記初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行うことと、を含む。 The calculation method of the exemplary embodiment includes determining an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station, and performing an iterative method based on the initial vector. And performing eigenvalue decomposition of the transmission covariance matrix.
 例示的な実施形態の無線局は、複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定する決定部と、前記初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行う計算部と、を含む。 The wireless station of the exemplary embodiment includes a determination unit that determines an initial vector based on channel information in a propagation path from a wireless station having a plurality of antennas to another wireless station, and an iterative method based on the initial vector. And a calculation unit that performs eigenvalue decomposition of the transmission covariance matrix.
 例示的な実施形態のプログラムは、複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定することと、前記初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行うこととを、コンピュータに実行させる。 The program of the exemplary embodiment determines an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station, and uses an iterative method based on the initial vector. And performing eigenvalue decomposition of the transmission covariance matrix.
 例示的な実施形態によれば、固有値分解における反復法の反復回数を低減し、演算量を低減することができる。 According to the exemplary embodiment, the number of iterations of the iterative method in eigenvalue decomposition can be reduced, and the amount of computation can be reduced.
第1の例示的な実施形態の固有値演算装置の構成を例示する図である。It is a figure which illustrates the structure of the eigenvalue calculating apparatus of 1st exemplary embodiment. 第1の例示的な実施形態の固有値演算装置の動作を例示する図である。It is a figure which illustrates operation | movement of the eigenvalue calculating apparatus of 1st exemplary embodiment. 初期ベクトル計算部103の構成を説明するための図である。3 is a diagram for explaining a configuration of an initial vector calculation unit 103. FIG. 動作S102の詳細を説明するための図である。It is a figure for demonstrating the detail of operation | movement S102. 固有値分解実行部104の構成を説明するための図である。FIG. 5 is a diagram for explaining a configuration of an eigenvalue decomposition execution unit 104. 動作S103の構成を説明するための図である。It is a figure for demonstrating the structure of operation | movement S103. 動作S103の構成を説明するための図である。It is a figure for demonstrating the structure of operation | movement S103. 第2の例示的な実施形態の固有値演算装置の構成を例示する図である。It is a figure which illustrates the structure of the eigenvalue calculating apparatus of 2nd exemplary embodiment. 第2の例示的な実施形態の固有値演算装置の動作を例示する図である。It is a figure which illustrates operation | movement of the eigenvalue calculating apparatus of 2nd exemplary embodiment. 第3の例示的な実施形態の固有値演算装置の構成を例示する図であるIt is a figure which illustrates the structure of the eigenvalue calculating apparatus of 3rd exemplary embodiment. 第3の例示的な実施形態の固有値演算装置の動作を例示する図である。It is a figure which illustrates operation | movement of the eigenvalue calculating apparatus of 3rd exemplary embodiment. サブバンドの概念を示した図である。It is the figure which showed the concept of the subband. 第1の例示的な実施形態における無線リソース利用の概念を示した図である。It is the figure which showed the concept of the radio | wireless resource utilization in 1st exemplary embodiment. 第1の例示的な実施形態における第1のRBにおける送信共分散行列の固有ベクトルの間接的な計算方法の概念を示した図である。It is the figure which showed the concept of the indirect calculation method of the eigenvector of the transmission covariance matrix in 1st RB in 1st illustrative embodiment. 第2の例示的な実施形態における無線リソース利用の概念を示した図である。It is the figure which showed the concept of the radio | wireless resource utilization in 2nd exemplary embodiment. 第4の例示的な実施形態における無線局を示す図である。FIG. 10 illustrates a wireless station in a fourth exemplary embodiment.
 例示的な実施形態が、以下に示される。 An exemplary embodiment is shown below.
 例示的な実施形態によれば、複数のアンテナを有する基地局(無線局ともいう)が、サブバンド内の複数のRBにわたって平均化された平均送信共分散行列(以下サブバンドの平均送信共分散行列と称する。)の固有値分解を行う。この固有値分解を行う際に、チャネル情報に基づいて計算した第1のベクトルを初期ベクトルとする反復法が行われる。また、反復法として、例えば、べき乗法が用いられる。べき乗法の詳細は後述する。 According to an exemplary embodiment, an average transmission covariance matrix (hereinafter, subband average transmission covariance) averaged over a plurality of RBs in a subband by a base station (also referred to as a radio station) having multiple antennas. (Referred to as a matrix). When performing this eigenvalue decomposition, an iterative method is performed with the first vector calculated based on the channel information as an initial vector. As an iterative method, for example, a power method is used. Details of the power method will be described later.
 説明をシンプルにするため、受信アンテナ数は2アンテナであると仮定するが、これに限定されない。例えば、例示的な実施形態をMassive MIMOシステムにおける基地局へ適用する場合、送信アンテナ数は数十から数百とすることが可能である。 In order to simplify the explanation, it is assumed that the number of receiving antennas is two, but the present invention is not limited to this. For example, when the exemplary embodiment is applied to a base station in a Massive MIMO system, the number of transmission antennas can be several tens to several hundreds.
 <第1の例示的な実施形態>
 図12は、第1の実施形態における無線リソースの使用方法の一例を示す。図12において、1つのサブバンド内の1つのRBが第1のRBとして選択される。選択された第1のRBのチャネル行列に基づいて、第1のベクトル、第2のベクトルが計算され、各サブバンドの平均送信共分散行列の固有値分解に用いられる初期ベクトルとする。
<First Exemplary Embodiment>
FIG. 12 shows an example of a method for using radio resources in the first embodiment. In FIG. 12, one RB in one subband is selected as the first RB. Based on the selected channel matrix of the first RB, the first vector and the second vector are calculated and set as initial vectors used for eigenvalue decomposition of the average transmission covariance matrix of each subband.
 図1は、第1の例示的な実施形態のシステム構成例を示す。図1に示されるシステムは、チャネル行列記憶部101と、平均送信共分散行列計算部102と、初期ベクトル計算部103と、固有値分解実行部104と、固有値分解結果記憶部105とを含む。 FIG. 1 shows a system configuration example of the first exemplary embodiment. The system shown in FIG. 1 includes a channel matrix storage unit 101, an average transmission covariance matrix calculation unit 102, an initial vector calculation unit 103, an eigenvalue decomposition execution unit 104, and an eigenvalue decomposition result storage unit 105.
 チャネル行列記憶部101は、平均送信共分散行列計算部102に接続される。平均送信共分散行列計算部102は、固有値分解実行部104に接続される。初期ベクトル計算部103は、固有値分解実行部104に接続される。固有値分解結果記憶部105は、固有値分解実行部104に接続される。 The channel matrix storage unit 101 is connected to the average transmission covariance matrix calculation unit 102. Average transmission covariance matrix calculation section 102 is connected to eigenvalue decomposition execution section 104. The initial vector calculation unit 103 is connected to the eigenvalue decomposition execution unit 104. The eigenvalue decomposition result storage unit 105 is connected to the eigenvalue decomposition execution unit 104.
 チャネル行列記憶部101は、チャネル推定によって得られた各RBのチャネル行列を格納するように構成されている。 The channel matrix storage unit 101 is configured to store the channel matrix of each RB obtained by channel estimation.
 平均送信共分散行列計算部102は、チャネル行列記憶部101から読み出した各RBのチャネル行列に基づいて、各サブバンドの平均送信共分散行列を計算し、固有値分解実行部104へ出力するように構成されている。 The average transmission covariance matrix calculation unit 102 calculates the average transmission covariance matrix of each subband based on the channel matrix of each RB read from the channel matrix storage unit 101 and outputs the average transmission covariance matrix to the eigenvalue decomposition execution unit 104 It is configured.
 初期ベクトル計算部103は、チャネル行列記憶部101から読み出した第1のRBのチャネル行列を用いて、べき乗法で用いるための初期ベクトルである第1のベクトルを計算して、固有値分解実行部104へ出力するように構成されている(S102)。 The initial vector calculation unit 103 uses the first RB channel matrix read from the channel matrix storage unit 101 to calculate a first vector, which is an initial vector for use in the power method, and performs an eigenvalue decomposition execution unit 104. (S102).
 固有値分解実行部104は、平均送信共分散行列計算部102から各サブバンド内の平均送信共分散行列を入力し、初期ベクトル計算部103から第1のベクトルを入力するように構成される。固有値分解実行部104は、各サブバンド内の平均送信共分散行列と第1のベクトルとに基づいてべき乗法を行い、各サブバンド内の平均送信共分散行列の固有値分解を行うように構成される。固有値分解実行部104は、固有値分解の計算結果を固有値分解結果記憶部105へ出力するように構成される(S103)。 The eigenvalue decomposition execution unit 104 is configured to input the average transmission covariance matrix in each subband from the average transmission covariance matrix calculation unit 102 and input the first vector from the initial vector calculation unit 103. The eigenvalue decomposition execution unit 104 is configured to perform a power method based on the average transmission covariance matrix and the first vector in each subband, and to perform eigenvalue decomposition on the average transmission covariance matrix in each subband. The The eigenvalue decomposition execution unit 104 is configured to output the calculation result of the eigenvalue decomposition to the eigenvalue decomposition result storage unit 105 (S103).
 図2は、第1の例示的な実施形態の動作の一例を示す。 FIG. 2 shows an example of the operation of the first exemplary embodiment.
 S101において、チャネル推定によって得られた各RBのチャネル行列に基づいて、各サブバンドの平均送信共分散行列が計算される。 In S101, the average transmission covariance matrix of each subband is calculated based on the channel matrix of each RB obtained by channel estimation.
 S102において、チャネル推定によって得られた各RBのチャネル行列を用いて、べき乗法で用いるための初期ベクトルである第1のベクトルが計算される。 In S102, using the channel matrix of each RB obtained by channel estimation, a first vector that is an initial vector for use in the power method is calculated.
 S103において、各サブバンド内の平均送信共分散行列と第1のベクトルとに基づいてべき乗法を行い、各サブバンド内の平均送信共分散行列の固有値分解を行う。 In S103, power multiplication is performed based on the average transmission covariance matrix in each subband and the first vector, and eigenvalue decomposition of the average transmission covariance matrix in each subband is performed.
 以降において、S101、S102、S103の詳細が示される。 Hereinafter, details of S101, S102, and S103 will be described.
 <平均送信共分散行列の計算>
平均送信共分散行列計算部102は、チャネル行列記憶部101から読み出した各RBのチャネル行列に基づいて平均送信共分散行列を計算する(S101)。iSB番目のサブバンドの平均送信共分散行列
Figure JPOXMLDOC01-appb-I000011
は次式(6)を用いて計算される
Figure JPOXMLDOC01-appb-I000012
ここでNRBはサブバンド内のRBの数、
Figure JPOXMLDOC01-appb-I000013
はiSB番目のサブバンドにおけるiRB番目のRBのチャネル行列、
Figure JPOXMLDOC01-appb-I000014
<Calculation of average transmission covariance matrix>
The average transmission covariance matrix calculation unit 102 calculates an average transmission covariance matrix based on the channel matrix of each RB read from the channel matrix storage unit 101 (S101). average transmit covariance matrix of i SB-th subband
Figure JPOXMLDOC01-appb-I000011
Is calculated using the following equation (6)
Figure JPOXMLDOC01-appb-I000012
Where N RB is the number of RBs in the subband,
Figure JPOXMLDOC01-appb-I000013
Is the channel matrix of the i RB th RB in the i SB th subband,
Figure JPOXMLDOC01-appb-I000014
はiSB番目のサブバンドにおけるiRB番目のRBの送信共分散行列である。 Is the transmission covariance matrix of the i RB th RB in the i SB th subband.
 <第一のベクトルの計算>
初期ベクトル計算部103は、チャネル行列記憶部101から読み出したRBごとのチャネル行列を用いて、べき乗法で用いるための初期ベクトルである第1のベクトルを計算する(S102)。
<Calculation of the first vector>
The initial vector calculation unit 103 uses the channel matrix for each RB read from the channel matrix storage unit 101 to calculate a first vector that is an initial vector for use in the power method (S102).
 ここで、図3に、初期ベクトル計算部103の一例が示される。また、図4に、初期ベクトル計算部103の動作S102の詳細のフローが示される。 Here, an example of the initial vector calculation unit 103 is shown in FIG. FIG. 4 shows a detailed flow of the operation S102 of the initial vector calculation unit 103.
 図3において、初期ベクトル計算部103は、RB選択部103-1と、受信共分散行列計算部103-2と、受信共分散行列固有値計算部103-3と、受信共分散行列固有ベクトル計算部103-4と、送信共分散行列固有ベクトル計算部103-5を含む。 In FIG. 3, an initial vector calculation unit 103 includes an RB selection unit 103-1, a reception covariance matrix calculation unit 103-2, a reception covariance matrix eigenvalue calculation unit 103-3, and a reception covariance matrix eigenvector calculation unit 103. -4 and a transmission covariance matrix eigenvector calculation unit 103-5.
 また、図2において、S102は、動作S102-1からS102-5を含む。 In FIG. 2, S102 includes operations S102-1 to S102-5.
 RB選択部103-1は、チャネル行列記憶部101から読み出したサブバンド内の各RBのチャネル行列に基づいて、第1のベクトルを計算するための第1のRBとして単一RBを選択する。RB選択部103-1は、選択した第1のRBのチャネル行列を受信共分散行列計算部103-2に出力する(S102-1)。 The RB selection unit 103-1 selects a single RB as the first RB for calculating the first vector based on the channel matrix of each RB in the subband read from the channel matrix storage unit 101. The RB selection unit 103-1 outputs the channel matrix of the selected first RB to the reception covariance matrix calculation unit 103-2 (S102-1).
 受信共分散行列計算部103-2は、RB選択部103-1から入力された第1のRBのチャネル行列に基づいて、第1のRBの受信共分散行列を計算する。受信共分散行列計算部103-2は、計算した第1のRBの受信共分散行列を、受信共分散行列固有値計算部103-3へ出力する(S102-2)。 The reception covariance matrix calculation unit 103-2 calculates the reception covariance matrix of the first RB based on the channel matrix of the first RB input from the RB selection unit 103-1. Reception covariance matrix calculation section 103-2 outputs the calculated reception covariance matrix of the first RB to reception covariance matrix eigenvalue calculation section 103-3 (S102-2).
 受信共分散行列固有値計算部103-3は、受信共分散行列計算部103-2から入力された第1のRBの受信共分散行列に基づいて、第1のRBの受信共分散行列について固有値を計算する。受信共分散行列固有値計算部103-3は、固有値計算結果および第1のRBの受信共分散行列を受信共分散行列固有ベクトル計算部103-4へ出力する(S102-3)。 The reception covariance matrix eigenvalue calculation unit 103-3 calculates eigenvalues for the reception covariance matrix of the first RB based on the reception covariance matrix of the first RB input from the reception covariance matrix calculation unit 103-2. calculate. Receive covariance matrix eigenvalue calculation section 103-3 outputs the received covariance matrix of the eigenvalues of the calculation result and the first RB to receive covariance matrix eigenvector calculation section 103-4 (S102-3).
 受信共分散行列固有ベクトル計算部103-4は、受信共分散行列固有値計算部103-3から入力された第1のRBの受信共分散行列と第1のRBの受信共分散行列の固有値に基づいて、第1のRBの受信共分散行列の固有ベクトルを計算する。受信共分散行列固有ベクトル計算部103-4は、第1のRBの受信共分散行列の固有値と固有ベクトルを、送信共分散行列の固有ベクトル計算部103-5へ出力する(S102-4)。 The reception covariance matrix eigenvector calculation unit 103-4 is based on the eigenvalues of the first RB reception covariance matrix and the first RB reception covariance matrix input from the reception covariance matrix eigenvalue calculation unit 103-3. The eigenvector of the reception covariance matrix of the first RB is calculated. Reception covariance matrix eigenvector calculation section 103-4 outputs the eigenvalue and eigenvector of the first RB reception covariance matrix to transmission covariance matrix eigenvector calculation section 103-5 (S102-4).
 送信共分散行列固有ベクトル計算部103-5は、受信共分散行列固有ベクトル計算部103-4から入力された第1のRBの受信共分散行列の固有値と固有ベクトルに基づいて、第1のRBの送信共分散行列の固有ベクトルを計算する。送信共分散行列固有ベクトル計算部103-5は、計算された、第1のRBの送信共分散行列の固有ベクトルを、固有値分解実行部104へ出力する(S102-5)。 The transmission covariance matrix eigenvector calculation section 103-5 is configured to transmit the first RB transmission co-ordinate based on the eigenvalue and eigenvector of the first RB reception covariance matrix input from the reception covariance matrix eigenvector calculation section 103-4. Compute the eigenvectors of the variance matrix. Transmission covariance matrix eigenvector calculation section 103-5 outputs the calculated eigenvector of the first RB transmission covariance matrix to eigenvalue decomposition execution section 104 (S102-5).
 以下に、動作S102-1~S102-5の詳細が示される。 Details of operations S102-1 to S102-5 are shown below.
 <初期ベクトルの計算対象となるRBの選択>
RB選択部103-1は、チャネル行列記憶部101から読み出したサブバンド内の各RBのチャネル行列に基づいて、第1のベクトルを計算するための単一RBを選択し、選択されたRBのチャネル行列を受信共分散行列計算部103-2に出力する(S102-1)。
初期ベクトル計算に用いる第1のRBのインデックスを次式(7)より計算する。
Figure JPOXMLDOC01-appb-I000015
ここで、tr()は行列のトレースであり、()内の行列の対角要素の和を表す。式(7)では、サブバンド内から最もチャネルの電力が高いRBが選択されている。送信共分散行列のトレースからチャネルの電力が計算できる理由は以下の通りである。
<Selection of RB for initial vector calculation>
The RB selection unit 103-1 selects a single RB for calculating the first vector based on the channel matrix of each RB in the subband read from the channel matrix storage unit 101, and selects the selected RB. The channel matrix is output to reception covariance matrix calculation section 103-2 (S102-1).
The index of the first RB used for the initial vector calculation is calculated from the following equation (7).
Figure JPOXMLDOC01-appb-I000015
Here, tr () is a matrix trace and represents the sum of the diagonal elements of the matrix in (). In equation (7), the RB with the highest channel power is selected from within the subband. The reason why the channel power can be calculated from the trace of the transmission covariance matrix is as follows.
 iRB番目のRBのチャネルの電力は、チャネル行列の特異値の2乗の和から計算できる。また、チャネル行列の特異値分解と送信共分散行列の固有値分解の関係から、チャネル行列の特異値の2乗の和は、送信共分散行列の固有値の和と等しい。さらに、送信共分散行列がエルミート行列であることから、送信共分散行列の固有値の和と送信共分散行列のトレースが一致する。以上を併せて考えると、送信共分散行列のトレースの和から各RBのチャネルの電力を計算できることがわかる。 The power of the i RBth RB channel can be calculated from the sum of the squares of the singular values of the channel matrix. Further, from the relationship between the singular value decomposition of the channel matrix and the eigenvalue decomposition of the transmission covariance matrix, the sum of the squares of the singular values of the channel matrix is equal to the sum of the eigenvalues of the transmission covariance matrix. Furthermore, since the transmission covariance matrix is a Hermitian matrix, the sum of the eigenvalues of the transmission covariance matrix matches the trace of the transmission covariance matrix. Considering the above together, it can be seen that the power of each RB channel can be calculated from the sum of the traces of the transmission covariance matrix.
 サブバンド内で電力的な影響が支配的なRBを選択し、その送信共分散行列の固有ベクトルを求めることで、サブバンド内の平均送信共分散行列に近い固有ベクトルを求めることができる。 The eigenvector close to the average transmission covariance matrix in the subband can be obtained by selecting the RB whose power influence is dominant in the subband and obtaining the eigenvector of the transmission covariance matrix.
 <受信共分散行列の固有ベクトルの計算>
受信共分散行列計算部103-2は、RB選択部103-1から入力されたチャネル行列に基づいて、受信共分散行列を計算し受信共分散行列固有値計算部103-3へ出力する(S102-2)。
<Calculation of eigenvectors of reception covariance matrix>
Reception covariance matrix calculation section 103-2 calculates a reception covariance matrix based on the channel matrix input from RB selection section 103-1, and outputs it to reception covariance matrix eigenvalue calculation section 103-3 (S102-). 2).
 受信共分散行列は次式(8)で計算される。
Figure JPOXMLDOC01-appb-I000016
The reception covariance matrix is calculated by the following equation (8).
Figure JPOXMLDOC01-appb-I000016
 ここで、
Figure JPOXMLDOC01-appb-I000017
は、RB選択部103-1によって選択されたRBのチャネル行列である。
here,
Figure JPOXMLDOC01-appb-I000017
Is the channel matrix of the RB selected by the RB selection unit 103-1.
 <受信共分散行列の固有値の計算>
 受信共分散行列固有値計算部103-3は、受信共分散行列計算部103-2から入力された受信共分散行列に基づいて、受信共分散行列の固有値を計算し、固有値計算結果および受信共分散行列を受信共分散行列固有ベクトル計算部103-4へ出力する。(S102-3)
 受信共分散行列の固有方程式(9)を解き、固有値を求める。
Figure JPOXMLDOC01-appb-I000018
ただし、det()は()内の行列の行列式である。
式(8)は固有値λに関する二次方程式であるため、解析的に解くことができる。
<Calculation of eigenvalues of reception covariance matrix>
The reception covariance matrix eigenvalue calculation unit 103-3 calculates the eigenvalue of the reception covariance matrix based on the reception covariance matrix input from the reception covariance matrix calculation unit 103-2, and calculates the eigenvalue calculation result and the reception covariance. The matrix is output to reception covariance matrix eigenvector calculation section 103-4. (S102-3)
The eigenvalue (9) of the reception covariance matrix is solved to obtain the eigenvalue.
Figure JPOXMLDOC01-appb-I000018
However, det () is a determinant of the matrix in ().
Since the equation (8) is a quadratic equation related to the eigenvalue λ, it can be solved analytically.
 <受信共分散行行列の固有ベクトルの計算>
受信共分散行列固有ベクトル計算部103-4は、受信共分散行列固有値計算部103-3から入力された受信共分散行列と受信共分散行列の固有値に基づいて、受信共分散行列の固有ベクトルを計算し、受信共分散行列の固有値と固有ベクトルを、送信共分散行列の固有ベクトル計算部103-5へ出力する。(S102-4)
 式(9)を解いて得られた固有値に対応する固有ベクトルは、次式(10)の固有値の定義式を解くことで計算できる。
Figure JPOXMLDOC01-appb-I000019
<Calculation of eigenvectors of received covariance row matrix>
Reception covariance matrix eigenvector calculation section 103-4 calculates the eigenvector of the reception covariance matrix based on the reception covariance matrix and the eigenvalue of the reception covariance matrix input from reception covariance matrix eigenvalue calculation section 103-3. The eigenvalues and eigenvectors of the reception covariance matrix are output to the eigenvector calculation unit 103-5 of the transmission covariance matrix. (S102-4)
The eigenvector corresponding to the eigenvalue obtained by solving equation (9) can be calculated by solving the eigenvalue defining equation of the following equation (10).
Figure JPOXMLDOC01-appb-I000019
式(10)は、固有ベクトルの各要素を変数とするN元の連立一次方程式であるため、解析的に方程式の解が求まる。 Equation (10) are the N R source simultaneous linear equations for each element of the eigenvector as a variable, analytically solution of the equation is obtained.
 <送信共分散行列の固有ベクトルの計算>
送信共分散行列固有ベクトル計算部103-5は、受信共分散行列固有ベクトル計算部103-4から入力された第1のRBの受信共分散行列の固有値と固有ベクトルに基づいて、第1のRBの送信共分散行列の固有ベクトルを計算し、固有値分解実行部104へ出力する(S102-5)。
<Calculation of eigenvectors of transmission covariance matrix>
The transmission covariance matrix eigenvector calculation section 103-5 is configured to transmit the first RB transmission co-ordinate based on the eigenvalue and eigenvector of the first RB reception covariance matrix input from the reception covariance matrix eigenvector calculation section 103-4. The eigenvector of the variance matrix is calculated and output to the eigenvalue decomposition execution unit 104 (S102-5).
 以降では、受信共分散行列の固有値、固有ベクトルから、間接的に送信共分散行列の固有ベクトルが求まる原理について述べる。 In the following, the principle of determining the eigenvector of the transmission covariance matrix indirectly from the eigenvalues and eigenvectors of the reception covariance matrix will be described.
 <チャネル行列の特異値、特異ベクトルと受信共分散行列の固有値、固有ベクトルの関係>
受信共分散行列の固有値、固有ベクトルとチャネル行列の特異値、特異ベクトルの関係について説明する。
受信共分散行列は、チャネル行列の特異値分解
Figure JPOXMLDOC01-appb-I000020
を用いて、次式(11)のように受信共分散行列の固有値分解の形で表すことができる。
Figure JPOXMLDOC01-appb-I000021
 式(11)の最後の式が受信共分散行列の固有値分解の形になっていることから、チャネル行列の左特異ベクトルUと受信共分散行列の固有ベクトルが一致すること、チャネル行列の特異値の2乗が受信共分散行列の固有値と一致することがわかる。
<Relationship between singular values of channel matrix, singular vectors, eigenvalues of reception covariance matrix, and eigenvectors>
The relationship between the eigenvalues and eigenvectors of the reception covariance matrix and the singular values and singular vectors of the channel matrix will be described.
The receive covariance matrix is the singular value decomposition of the channel matrix
Figure JPOXMLDOC01-appb-I000020
Can be expressed in the form of eigenvalue decomposition of the reception covariance matrix as in the following equation (11).
Figure JPOXMLDOC01-appb-I000021
Since the last equation of Equation (11) is in the form of eigenvalue decomposition of the reception covariance matrix, the left singular vector U of the channel matrix matches the eigenvector of the reception covariance matrix, and the singular value of the channel matrix It can be seen that the square matches the eigenvalue of the reception covariance matrix.
 送信共分散行列の固有値分解とチャネル行列の特異値分解については、すでに式(4)で示してある通り、チャネル行列の右特異ベクトルVと送信共分散行列の固有ベクトルは一致し、チャネル行列の特異値の2乗は送信共分散行列の固有値と一致する。 As for the eigenvalue decomposition of the transmission covariance matrix and the singular value decomposition of the channel matrix, the right singular vector V of the channel matrix and the eigenvector of the transmission covariance matrix coincide with each other as shown in Equation (4). The square of the value matches the eigenvalue of the transmission covariance matrix.
 <送信共分散行列の固有ベクトルを間接的に求める方法>
送信共分散行列の固有値分解を直接行わず、チャネル行列の特異値分解の式を変形し、チャネル行列の特異値、左特異ベクトル、チャネル行列から、チャネル行列の右特異ベクトルを間接的に計算可能であることを示す。
チャネル行列Hの特異値分解の定義式を右特異ベクトルについて次式(12)のように変形する。
Figure JPOXMLDOC01-appb-I000022
なお、左特異ベクトルUはユニタリ行列であり、自身と自身の複素共役転置の積が単位行列になることを利用している。なお、Σ-1はチャネル行列の特異値の逆数を対角要素とする対角行列である。
<Method for indirectly obtaining eigenvector of transmission covariance matrix>
Transform the singular value decomposition equation of the channel matrix without directly performing the eigenvalue decomposition of the transmit covariance matrix, and indirectly calculate the right singular vector of the channel matrix from the singular value, left singular vector, and channel matrix of the channel matrix Indicates that
The definition formula of the singular value decomposition of the channel matrix H is modified as the following formula (12) for the right singular vector.
Figure JPOXMLDOC01-appb-I000022
Note that the left singular vector U is a unitary matrix, and utilizes the fact that the product of its own complex conjugate transpose becomes a unit matrix. Note that Σ −1 is a diagonal matrix whose diagonal element is the reciprocal of the singular value of the channel matrix.
 図13は、送信共分散行列の固有ベクトルを間接的に計算する方法の概念を示す。上述の通りチャネル行列の左特異ベクトル、特異値は、受信共分散行列の固有ベクトル、固有値からそれぞれ計算可能である。また、チャネル行列の右特異ベクトルは送信共分散行列の固有ベクトルと一致する。したがって、式(12)より受信共分散行列の固有ベクトルと固有値、チャネル行列から、送信共分散行列の固有ベクトルが計算可能である。 FIG. 13 shows the concept of a method for indirectly calculating the eigenvector of the transmission covariance matrix. As described above, the left singular vector and singular value of the channel matrix can be calculated from the eigenvector and eigenvalue of the reception covariance matrix, respectively. The right singular vector of the channel matrix matches the eigenvector of the transmission covariance matrix. Therefore, the eigenvector of the transmission covariance matrix can be calculated from the eigenvector and eigenvalue of the reception covariance matrix and the channel matrix from Equation (12).
 以上が、受信共分散行列の固有値、固有ベクトルから、送信共分散行列の固有ベクトルが求まる原理である。 The above is the principle by which the eigenvector of the transmission covariance matrix is obtained from the eigenvalue and eigenvector of the reception covariance matrix.
 上述の原理を用いて、第1のRBの送信共分散行列の固有ベクトルは次式(13)から計算される。
Figure JPOXMLDOC01-appb-I000023
ここで計算したv、vをそれぞれ第1のベクトルx、第2のベクトルxとして固有値分解実行部104へ出力する。
Using the above principle, the eigenvector of the transmission covariance matrix of the first RB is calculated from the following equation (13).
Figure JPOXMLDOC01-appb-I000023
The calculated v 1 and v 2 are output to the eigenvalue decomposition execution unit 104 as the first vector x 1 and the second vector x 2 , respectively.
 送信アンテナ数が受信アンテナ数よりも膨大なときは、直接的に、送信共分散行列の固有値分解を行うのではなく、上記S102-1~S102-5のように受信共分散行列を介して間接的に送信共分散行列の固有ベクトルを計算することで演算量を低減できる。 When the number of transmission antennas is larger than the number of reception antennas, the eigenvalue decomposition of the transmission covariance matrix is not performed directly, but indirectly through the reception covariance matrix as in S102-1 to S102-5. In particular, the amount of calculation can be reduced by calculating the eigenvector of the transmission covariance matrix.
 具体的には、送信共分散行列の固有値分解を直接的に行う場合、例えばべき乗法の1反復の計算量は乗算器、加算器ともに行列サイズの2乗オーダの演算量が必要となる。一方で、上述したように、間接的に送信共分散行列の固有値分解を行う場合、受信共分散行列の固有値、固有ベクトルの計算は、代数的な計算でよく、送共分散行列の固有値を求める式(13)でも
Figure JPOXMLDOC01-appb-I000024
同士の行列の積が一回、
Figure JPOXMLDOC01-appb-I000025
の行列の積が一回であるため、演算量は送信共分散行列のサイズの1乗オーダである。
したがって、受信アンテナが送信アンテナに比べて大幅に少ないときは、上述のようにサイズの小さい受信共分散行列の固有値分解を介して、サイズの大きい送信共分散行列の固有値分解を行うことで、固有値分解の演算量を低減することができる。
Specifically, when eigenvalue decomposition of the transmission covariance matrix is performed directly, for example, the calculation amount of one iteration of the power method requires a calculation amount of the square size of the matrix size for both the multiplier and the adder. On the other hand, as described above, when the eigenvalue decomposition of the transmission covariance matrix is indirectly performed, the eigenvalues and eigenvectors of the reception covariance matrix may be algebraic calculations, and the equation for obtaining the eigenvalues of the transmission covariance matrix (13) But
Figure JPOXMLDOC01-appb-I000024
The product of the matrix between each other is once,
Figure JPOXMLDOC01-appb-I000025
Since the matrix product is one time, the amount of computation is the first order of the size of the transmission covariance matrix.
Therefore, when the number of receiving antennas is significantly smaller than that of transmitting antennas, eigenvalue decomposition is performed on the transmission covariance matrix having a large size through eigenvalue decomposition of the reception covariance matrix having a small size as described above. The amount of calculation for decomposition can be reduced.
 <平均送信共分散行列の固有値分解>
固有値分解実行部104は、平均送信共分散行列計算部102から入力された各サブバンド内の平均送信共分散行列と、初期ベクトル計算部103から入力された第1のベクトル、第2のベクトルに基づいて、べき乗法を行い、各サブバンド内の平均送信共分散行列の固有値分解を行う(S103)。
<Eigenvalue decomposition of average transmission covariance matrix>
The eigenvalue decomposition execution unit 104 applies the average transmission covariance matrix in each subband input from the average transmission covariance matrix calculation unit 102, and the first vector and the second vector input from the initial vector calculation unit 103. Based on this, a power method is performed, and eigenvalue decomposition of the average transmission covariance matrix in each subband is performed (S103).
 図5は、固有値分解実行部104の詳細な構成をしめす。図6Aおよび図6Bは、固有値分解実行部104の動作S103の詳細フローを示す。固有値分解実行部104は、第1固有値計算部104-1と第2固有値計算部104-2を含む。動作S103は、動作S103-1からS103-13を含む。 FIG. 5 shows a detailed configuration of the eigenvalue decomposition execution unit 104. 6A and 6B show a detailed flow of the operation S103 of the eigenvalue decomposition execution unit 104. FIG. The eigenvalue decomposition execution unit 104 includes a first eigenvalue calculation unit 104-1 and a second eigenvalue calculation unit 104-2. The operation S103 includes operations S103-1 to S103-13.
 第1固有値計算部104-1は平均送信共分散行列計算部から入力された各サブバンド内の平均送信共分散行列と、初期ベクトル計算部103から入力された第一のベクトルに基づいてべき乗法を行い、各RBの平均送信共分散行列の第一固有値と第一固有ベクトルを計算し、固有値分解結果記憶部105および第2固有値計算部104-2へ出力する(S103-1~S103-7)。 The first eigenvalue calculation unit 104-1 is a power method based on the average transmission covariance matrix in each subband input from the average transmission covariance matrix calculation unit and the first vector input from the initial vector calculation unit 103. To calculate the first eigenvalue and first eigenvector of the average transmission covariance matrix of each RB, and output them to the eigenvalue decomposition result storage unit 105 and the second eigenvalue calculation unit 104-2 (S103-1 to S103-7) .
 第2固有値計算部104-2は、平均送信共分散行列計算部102から入力された各サブバンドの平均送信共分散行列と、第1固有値計算部104-1から入力された第一固有値と第一固有ベクトルに基づいて、第2固有値と第2固有ベクトルを計算し、固有値分解結果記憶部105に出力する(S103-8~S103-15)。 The second eigenvalue calculator 104-2 receives the average transmission covariance matrix of each subband input from the average transmission covariance matrix calculator 102, the first eigenvalue input from the first eigenvalue calculator 104-1 and the first eigenvalue Based on one eigenvector, a second eigenvalue and a second eigenvector are calculated and output to the eigenvalue decomposition result storage unit 105 (S103-8 to S103-15).
 まず、べき乗法の原理を説明する。ここでは、対称行列Aの固有値分解を行うものとする。べき乗法では、初期ベクトルに対して、固有値分解対象のベクトルを反復的に乗ずることにより、初期ベクトルを固有ベクトルに収束させる。
任意のベクトルは、すべての固有ベクトルの線形結合で表現可能である。このため、第1のベクトルx(0)は、各サブバンドの平均送信共分散行列のi番目の固有ベクトルvと任意の定数c(i=1~NEV)を用いて、次式(14)で表される。
Figure JPOXMLDOC01-appb-I000026
ここで、NEVは、固有値の個数である。
初期ベクトル、すなわち反復を行う前の推定固有ベクトルv(0)を第1のベクトルx(0)とする。初期ベクトルv(0)に対してi回、固有値分解を行う対象の行列を乗じたベクトルは、固有ベクトルの定義式Av=λvを用いて次式(15)で表される。
Figure JPOXMLDOC01-appb-I000027
ここで、
λ>λ(n=2~NEV)であることから、式(15)の{}内における第二項のλn/λは1より小さくなる。このため、iが十分大きければ、v(i)は次式(16)で表される。

Figure JPOXMLDOC01-appb-I000028
式(16)には

Figure JPOXMLDOC01-appb-I000029
が含まれており、これがオーバーフローの原因となるが、べき乗法における各ステップでv(i)を正規化することでオーバーフローを防ぐことができる。こうして、固有ベクトルのスカラ倍のベクトルが得られるため、次式(17)に示すように十分に反復を繰り返した後の推定固有ベクトルを正規化することで最終的な固有ベクトルが得られる。
Figure JPOXMLDOC01-appb-I000030
First, the principle of the power method will be described. Here, it is assumed that eigenvalue decomposition of the symmetric matrix A is performed. In the power method, the initial vector is converged to the eigenvector by repeatedly multiplying the initial vector by the eigenvalue decomposition target vector.
An arbitrary vector can be expressed by a linear combination of all eigenvectors. Therefore, the first vector x (0) is expressed by the following equation (i) using the i-th eigenvector v i of the average transmission covariance matrix of each subband and an arbitrary constant c i (i = 1 to N EV ). 14).
Figure JPOXMLDOC01-appb-I000026
Here, N EV is the number of eigenvalues.
The initial vector, that is, the estimated eigenvector v (0) before the iteration is set as the first vector x (0) . A vector obtained by multiplying the initial vector v (0) by the target matrix to be subjected to eigenvalue decomposition i times is expressed by the following equation (15) using an eigenvector definition equation Av i = λv i .
Figure JPOXMLDOC01-appb-I000027
here,
Since λ 1 > λ n (n = 2 to N EV ), λ n / λ 1 in the second term in {} of Equation (15) is smaller than 1. For this reason, if i is sufficiently large, v (i) is expressed by the following equation (16).

Figure JPOXMLDOC01-appb-I000028
In equation (16)

Figure JPOXMLDOC01-appb-I000029
This causes an overflow, but overflow can be prevented by normalizing v (i) at each step in the power method. In this way, since a vector that is a scalar multiple of the eigenvector is obtained, the final eigenvector can be obtained by normalizing the estimated eigenvector after sufficiently repeating the iteration as shown in the following equation (17).
Figure JPOXMLDOC01-appb-I000030
 以上で述べた通り、べき乗法は、対象となる行列の最大固有値と、最大固有値に対応する固有ベクトルを求める方法である。ただし、以下の処理を行うことで第2固有値以降も求めることができる。 As described above, the power method is a method for obtaining a maximum eigenvalue of a target matrix and an eigenvector corresponding to the maximum eigenvalue. However, the second and subsequent eigenvalues can be obtained by performing the following processing.
 行列Aの第2固有値を求めるためには、エルミート行列のスペクトル分解を用いて、行列Aの第二固有値を第一固有値とする行列A´を計算し、行列A´に対してべき乗法を適用する。行列Aは各固有ベクトルについてスペクトル分解は次式(18)で表される。
Figure JPOXMLDOC01-appb-I000031
In order to obtain the second eigenvalue of matrix A, a matrix A ′ having the second eigenvalue of matrix A as the first eigenvalue is calculated using spectral decomposition of Hermitian matrix, and a power method is applied to matrix A ′ To do. The matrix A is represented by the following equation (18) for spectral decomposition for each eigenvector.
Figure JPOXMLDOC01-appb-I000031
 したがって行列A´を求めるには行列Aから第一固有値に対応する固有ベクトルの成分を差し引けばよく、行列A´は次式(19)で計算される。
Figure JPOXMLDOC01-appb-I000032
Therefore, the matrix A ′ can be obtained by subtracting the component of the eigenvector corresponding to the first eigenvalue from the matrix A, and the matrix A ′ is calculated by the following equation (19).
Figure JPOXMLDOC01-appb-I000032
 以降では、図6Aおよび図6Bに示される固有値分解実行部104の動作S103の詳細が示される。 Hereinafter, details of the operation S103 of the eigenvalue decomposition execution unit 104 shown in FIGS. 6A and 6B will be described.
 <各サブバンドの平均送信共分散行列の第1固有値、第1固有ベクトルの計算>
 第1固有値計算部104-1は平均送信共分散行列計算部102から入力された各サブバンド内の平均送信共分散行列と、初期ベクトル計算部103から入力された第一のベクトルに基づいてべき乗法を行い、各サブバンドの平均送信共分散行列の第一固有値と第一固有ベクトルを計算し、固有値分解結果記憶部105および第2固有値計算部104-2へ出力する(S103-1~S103-7)。
<Calculation of first eigenvalue and first eigenvector of average transmission covariance matrix of each subband>
The first eigenvalue calculation unit 104-1 is a power based on the average transmission covariance matrix in each subband input from the average transmission covariance matrix calculation unit 102 and the first vector input from the initial vector calculation unit 103. The first eigenvalue and the first eigenvector of the average transmission covariance matrix of each subband are calculated and output to the eigenvalue decomposition result storage unit 105 and the second eigenvalue calculation unit 104-2 (S103-1 to S103-). 7).
 反復処理に入る前に、初期ベクトルの設定(S103-1)とインデックスの初期化が行われる(S103-2)。
初期ベクトルとしては、第1のベクトルxが用いられる。
Before entering the iterative process, initial vector setting (S103-1) and index initialization are performed (S103-2).
The initial vector, the first vector x 1 is used.
 反復処理では、次式(20)で示すように、
前回の繰り返しの中で計算されたv(k-1)に対して固有値分解の計算対象であるRTxを乗ずる(S103-3)。
Figure JPOXMLDOC01-appb-I000033
In the iterative process, as shown in the following equation (20),
Multiplying the R Tx is calculated subject to the eigenvalue decomposition on v calculated in the previous iteration (k-1) (S103-3) .
Figure JPOXMLDOC01-appb-I000033
 さらに、ベクトル
Figure JPOXMLDOC01-appb-I000034
に対して前述したオーバーフローを防ぐために次式(21)により正規化を行う(S103-4)。
Figure JPOXMLDOC01-appb-I000035
Vector
Figure JPOXMLDOC01-appb-I000034
In order to prevent the overflow described above, normalization is performed by the following equation (21) (S103-4).
Figure JPOXMLDOC01-appb-I000035
 最後に次式(22)によりk番目の繰り返し処理における固有値の推定値λ(k)を計算する(S103-5)。
Figure JPOXMLDOC01-appb-I000036
Finally, an estimated value λ (k) of the eigenvalue in the k-th iterative process is calculated by the following equation (22) (S103-5).
Figure JPOXMLDOC01-appb-I000036
ここで、(,)は()内のベクトルの内積である。 Here, (,) is the inner product of the vectors in ().
 以上S103-3~S103-5がべき乗法における1反復処理となる。
反復処理後に次式(23)の収束条件を満たさなければ、再度S103-3~S103-5の処理を実行する(S103-7)。
Figure JPOXMLDOC01-appb-I000037
S103-3 to S103-5 are one iteration process in the power method.
If the convergence condition of the following equation (23) is not satisfied after the iterative processing, the processing of S103-3 to S103-5 is executed again (S103-7).
Figure JPOXMLDOC01-appb-I000037
 ここで、εは固有値許容誤差である。
べき乗法では、任意のkに対してλ(k)の真の固有値に対する最大の誤差はλ(k)-λ(k-1)である。したがって、システムが必要とする固有値の精度に応じて、εを定めればよい。
Here, ε is an eigenvalue tolerance.
In the power method, the maximum error for the true eigenvalue of λ (k) for any k is λ (k) −λ (k−1) . Therefore, ε may be determined according to the accuracy of the eigenvalue required by the system.
 また、上記で説明した収束判定を行うには、2回の反復処理間での推定固有値の差を計算する必要があるため、1回目の反復処理では、無条件で2回目の反復処理へ進む。(S103-6)
 <各サブバンドの平均送信共分散行列の第2固有値、第2固有ベクトルの計算>
第2固有値計算部104-2は、平均送信共分散行列計算部102から入力された各サブバンドの平均送信共分散行列と、第1固有値計算部104-1から入力された第一固有値と第一固有ベクトルに基づいて、第2固有値と第2固有ベクトルを計算し、固有値分解結果記憶部105に出力する(S103-7~S103-13)。
Further, in order to perform the convergence determination described above, it is necessary to calculate the difference between the estimated eigenvalues between the two iterations. Therefore, in the first iteration, the process proceeds unconditionally to the second iteration. . (S103-6)
<Calculation of Second Eigenvalue and Second Eigenvector of Average Transmission Covariance Matrix of Each Subband>
The second eigenvalue calculator 104-2 receives the average transmission covariance matrix of each subband input from the average transmission covariance matrix calculator 102, the first eigenvalue input from the first eigenvalue calculator 104-1 and the first eigenvalue Based on one eigenvector, a second eigenvalue and a second eigenvector are calculated and output to the eigenvalue decomposition result storage unit 105 (S103-7 to S103-13).
 エルミート行列のスペクトル分解を利用して第2固有値計算用行列R´Txを次式(24)より計算する。(S103-8)
Figure JPOXMLDOC01-appb-I000038
A second eigenvalue calculation matrix R ′ Tx is calculated from the following equation (24) using spectral decomposition of the Hermitian matrix. (S103-8)
Figure JPOXMLDOC01-appb-I000038
 初期ベクトルとしては、初期ベクトル計算部103から入力された第2のベクトルを用いる(S103-9)。 As the initial vector, the second vector input from the initial vector calculation unit 103 is used (S103-9).
 以下S103-11~S103-15では、第2固有値計算用の行列R´Txに対して、S103-2~S103-7と同様の動作を行い、第2固有値計算用の行列の第1固有値と第1固有ベクトルを求める。第2固有値計算用の行列の第1固有値と第1固有ベクトルは、各RBの平均送信共分散行列の第2固有値と第2固有ベクトルとそれぞれ等しいため、これを固有値分解結果記憶部105へ出力する(S103-11~S103-15)。 Hereinafter, in S103-11 to S103-15, the same operation as that of S103-2 to S103-7 is performed on the second eigenvalue calculation matrix R ′ Tx , and the first eigenvalue of the second eigenvalue calculation matrix is calculated. Find the first eigenvector. Since the first eigenvalue and the first eigenvector of the second eigenvalue calculation matrix are equal to the second eigenvalue and the second eigenvector of the average transmission covariance matrix of each RB, these are output to the eigenvalue decomposition result storage unit 105 ( S103-11 to S103-15).
 第1の実施形態によれば、サブバンド内のRBから第1のRBを選択し、その送信共分散行列の固有ベクトルをサブバンド内の全RBの平均送信共分散行列を固有値分解する際の初期値とする。第1のRBは、サブバンド内で電力的に支配的なものを選択するため、第1のRBの送信共分散行列の固有ベクトルである第1のベクトルは、ランダムに生成したベクトルと比べ、サブバンド内の全RBの平均送信共分散行列の固有ベクトルと近くなる。したがって、べき乗法の初期ベクトルとして、第1のベクトルを用いることでべき乗法の反復回数、ひいては固有値分解の演算量を低減できる。 According to the first embodiment, the first RB is selected from the RBs in the subband, and an eigenvalue decomposition is performed on the eigenvector of the transmission covariance matrix of the average transmission covariance matrix of all RBs in the subband. Value. Since the first RB selects the power dominant in the subband, the first vector that is the eigenvector of the transmission covariance matrix of the first RB is smaller than the randomly generated vector. It is close to the eigenvector of the average transmission covariance matrix of all RBs in the band. Therefore, by using the first vector as the initial vector of the power method, the number of iterations of the power method, and hence the amount of calculation of eigenvalue decomposition can be reduced.
 さらに、初期ベクトルの計算では、受信アンテナが送信アンテナに比べて大幅に小さいことを利用し、送信共分散行列の固有値分解を間接的に行うことで第1のRBの送信共分散行列の固有ベクトルを計算することが可能である。 Further, in the calculation of the initial vector, the eigenvector of the transmission covariance matrix of the first RB is obtained by indirectly performing the eigenvalue decomposition of the transmission covariance matrix using the fact that the receiving antenna is significantly smaller than the transmitting antenna. It is possible to calculate.
 <第2の例示的な実施形態>
図14は、第2の例示的な実施形態の概念図を示す。
第2の実施形態の第1のベクトルの計算方法は、第1の実施形態の計算方法と異なる。第1の実施形態では、サブバンド内の1RBの送信共分散行列の固有ベクトルを第1のベクトルとする。対して、第2の実施形態では、複数サブバンドにわたって平均化された送信共分散行列(サブバンド間の平均送信共分散行列ともいう)の第1固有ベクトル、第2固有ベクトルをそれぞれ第1のベクトル、第2のベクトルとする。
<Second Exemplary Embodiment>
FIG. 14 shows a conceptual diagram of a second exemplary embodiment.
The calculation method of the first vector of the second embodiment is different from the calculation method of the first embodiment. In the first embodiment, the eigenvector of the 1 RB transmission covariance matrix in the subband is the first vector. On the other hand, in the second embodiment, a first eigenvector and a second eigenvector of a transmission covariance matrix (also referred to as an average transmission covariance matrix between subbands) averaged over a plurality of subbands are set as the first vector, Let it be the second vector.
 第1のベクトルが決定された後は、決定された第1のベクトルを初期ベクトルとして、各サブバンドの平均送信共分散行列のべき乗法による固有値分解を行い、結果を固有値分解結果記憶部105へ出力する。 After the first vector is determined, eigenvalue decomposition is performed by the power method of the average transmission covariance matrix of each subband using the determined first vector as an initial vector, and the result is sent to the eigenvalue decomposition result storage unit 105. Output.
 図7は、第2の例示的な実施形態のシステム構成を例示する。
チャネル行列記憶部101は、チャネル推定によって得られたRBごとのチャネル行列を格納するように構成されている。
FIG. 7 illustrates the system configuration of the second exemplary embodiment.
The channel matrix storage unit 101 is configured to store a channel matrix for each RB obtained by channel estimation.
 平均送信共分散行列計算部102Aは、チャネル行列計算部から読み出したRBごとのチャネル行列に基づいて各サブバンド内、およびサブバンド間の平均送信共分散行列を計算するように構成されている。平均送信共分散行列計算部102Aは、各サブバンド内、およびサブバンド間の平均送信共分散行列を、初期ベクトル計算部103Aと固有値分解実行部104へ出力するように構成されている。 The average transmission covariance matrix calculation unit 102A is configured to calculate an average transmission covariance matrix within each subband and between subbands based on the channel matrix for each RB read from the channel matrix calculation unit. The average transmission covariance matrix calculation unit 102A is configured to output an average transmission covariance matrix within each subband and between subbands to the initial vector calculation unit 103A and the eigenvalue decomposition execution unit 104.
 初期ベクトル計算部103Aは、平均送信共分散行列計算部102Aから読み出したサブバンド間の平均送信共分散行列に基づいて、第1のベクトルを計算するように構成されている。初期ベクトル計算部103Aは、第1のベクトルを固有値分解実行部104へ出力するように構成されている。 The initial vector calculation unit 103A is configured to calculate the first vector based on the average transmission covariance matrix between subbands read from the average transmission covariance matrix calculation unit 102A. The initial vector calculation unit 103A is configured to output the first vector to the eigenvalue decomposition execution unit 104.
 固有値分解実行部104は、初期ベクトル計算部103Aから入力された第1のベクトルと、平均送信共分散行列計算部102Aから入力された各サブバンド内の平均送信共分散行列に基づいてべき乗法を行い、各サブバンドの平均送信共分散行列の固有ベクトルを計算するように構成されている。 The eigenvalue decomposition execution unit 104 performs power multiplication based on the first vector input from the initial vector calculation unit 103A and the average transmission covariance matrix in each subband input from the average transmission covariance matrix calculation unit 102A. Configured to calculate an eigenvector of the average transmission covariance matrix of each subband.
 図2は、第2の例示的な実施形態の動作の一例を示す。 FIG. 2 shows an example of the operation of the second exemplary embodiment.
 <平均送信共分散行列の計算>
平均送信共分散行列計算部102Aは、チャネル行列計算部から読み出したRBごとのチャネル行列に基づいて平均送信共分散行列を計算し、初期ベクトル計算部103Aと固有値分解実行部104へ出力する(S101A)。本動作S101Aは、S101の動作に加えて、サブバンド間の平均送信共分散行列を求める点で異なる。各サブバンド内の平均送信共分散行列と、初期ベクトル生成用のサブバンド間の平均送信共分散行列はそれぞれ次式(25)(26)で計算される。
Figure JPOXMLDOC01-appb-I000039

Figure JPOXMLDOC01-appb-I000040
<Calculation of average transmission covariance matrix>
The average transmission covariance matrix calculation unit 102A calculates an average transmission covariance matrix based on the channel matrix for each RB read from the channel matrix calculation unit, and outputs the average transmission covariance matrix to the initial vector calculation unit 103A and the eigenvalue decomposition execution unit 104 (S101A). ). This operation S101A differs from the operation of S101 in that an average transmission covariance matrix between subbands is obtained. The average transmission covariance matrix within each subband and the average transmission covariance matrix between subbands for generating an initial vector are calculated by the following equations (25) and (26), respectively.
Figure JPOXMLDOC01-appb-I000039

Figure JPOXMLDOC01-appb-I000040
 <第一のベクトルの計算>
初期ベクトル計算部103Aは、平均送信共分散行列計算部102Aから読み出したサブバンド間の平均送信共分散行列
Figure JPOXMLDOC01-appb-I000041
に基づいて、べき乗法で用いる初期ベクトルである第1のベクトルを計算する(S102A)。
<Calculation of the first vector>
The initial vector calculation unit 103A includes an average transmission covariance matrix between subbands read from the average transmission covariance matrix calculation unit 102A.
Figure JPOXMLDOC01-appb-I000041
Based on, a first vector, which is an initial vector used in the power method, is calculated (S102A).
 第1実施形態におけるS102は、サブバンド内の1RBの送信共分散行列の固有ベクトルを第1のベクトルとするのに対して、本実施形態のS102Aでは、サブバンド間の平均送信共分散行列の第1固有ベクトル、第2固有ベクトルをそれぞれ第1のベクトル、第2のベクトルとする。 In S102 in the first embodiment, the eigenvector of the transmission covariance matrix of 1 RB in the subband is the first vector, whereas in S102A of the present embodiment, the first transmission covariance matrix between subbands is calculated. The first eigenvector and the second eigenvector are defined as a first vector and a second vector, respectively.
 サブバンド間の平均送信共分散行列計算の際に平均化するサブバンドの個数NSBは、事前にシミュレーションにより算出した固有値分解の演算量削減効果が大きいNSBを数値探索により決定してもよい。 The number N SB of subbands to be averaged when calculating the average transmission covariance matrix between subbands may be determined by numerical search, and NSB having a large effect of reducing the amount of computation of eigenvalue decomposition calculated by simulation in advance. .
 <固有ベクトルの計算>
固有値分解実行部104は、平均送信共分散行列計算部102Aから入力されたサブバンドの平均送信共分散行列と、初期ベクトル計算部103Aから入力された第一のベクトル、第二のベクトルに基づいて、サブバンドの平均送信共分散行列の固有値および固有ベクトルを計算し、固有値分解結果記憶部105へ格納する(S103)。
<Eigenvector calculation>
The eigenvalue decomposition execution unit 104 is based on the average transmission covariance matrix of the subband input from the average transmission covariance matrix calculation unit 102A, and the first vector and the second vector input from the initial vector calculation unit 103A. The eigenvalues and eigenvectors of the average transmission covariance matrix of the subband are calculated and stored in the eigenvalue decomposition result storage unit 105 (S103).
 本動作S103は、第一の実施形態と同様のため省略する。
本実施形態では、サブバンド間の平均送信共分散行列の固有値分解を行うことで、サブバンドの平均送信共分散行列の固有ベクトルに近いベクトルを計算できる。これをべき乗法の初期ベクトルとすることにより、各サブバンドの平均送信共分散行列の際の反復回数を減らし、演算回数を低減することができる。初期ベクトルの計算には、べき乗法による固有値分解を行うため一定の演算量を要する。しかし、この初期ベクトル設定により各サブバンド内の平均送信共分散行列のべき乗法の反復回数が改善することによって、初期ベクトル計算を含めたトータルの固有値分解の演算量としては、初期値ベクトルをランダムとした場合にくらべて演算量が少なくなる。
Since this operation S103 is the same as that of the first embodiment, a description thereof will be omitted.
In the present embodiment, by performing eigenvalue decomposition of the average transmission covariance matrix between subbands, a vector close to the eigenvector of the average transmission covariance matrix of subbands can be calculated. By using this as the power vector initial vector, the number of iterations for the average transmission covariance matrix of each subband can be reduced, and the number of computations can be reduced. The calculation of the initial vector requires a certain amount of calculation because eigenvalue decomposition is performed by the power method. However, this initial vector setting improves the number of iterations of the power method of the average transmission covariance matrix in each subband, so that the initial value vector is randomized as the amount of computation of the total eigenvalue decomposition including the initial vector calculation. Compared with the case, the amount of calculation is reduced.
 具体的な演算量の削減効果を、数式を用いて以下で述べる。
まず、平均送信共分散行列を、ランダムベクトルを初期値としてべき乗法を行った場合の演算量の平均値を計算しCrandとする。
A specific calculation amount reduction effect will be described below using mathematical expressions.
First, the average transmit covariance matrix, and calculated C rand the average value of the operation quantity when performing the power method the random vector as an initial value.
 次に、あるNSBを仮定して、各サブバンド内の平均送信共分散行列のべき乗法による固有値分解の際に、初期ベクトルをランダムベクトルとした場合と比較した本実施形態の初期ベクトル生成を用いたことによる演算量の改善量の平均値をCImpとする。 Next, assuming a certain N SB , the initial vector generation of this embodiment compared to the case where the initial vector is a random vector during eigenvalue decomposition by the power method of the average transmission covariance matrix in each subband is performed. Let C Imp be the average value of the amount of improvement in the amount of computation due to use.
 本実施形態の初期ベクトルの決定法を使わなかった場合のNSB個のサブバンドにおける固有値分解の演算量は、次式(27)となる。
Figure JPOXMLDOC01-appb-I000042
Computation of eigenvalue decomposition of N SB subbands if you did not use the method of determining the initial vector of the present embodiment, the following equation (27).
Figure JPOXMLDOC01-appb-I000042
 第一項目は初期ベクトルの計算にかかる演算量であり、第二項目は各サブバンド内の平均送信共分散行列の固有値分解にかかる演算量である。
一方、本実施形態の初期ベクトルの決定法を用いた場合の演算量は、次式(28)となる。
Figure JPOXMLDOC01-appb-I000043
The first item is the amount of calculation for calculating the initial vector, and the second item is the amount of calculation for eigenvalue decomposition of the average transmission covariance matrix in each subband.
On the other hand, the amount of calculation when the initial vector determination method of the present embodiment is used is expressed by the following equation (28).
Figure JPOXMLDOC01-appb-I000043
 したがって本実施形態における初期ベクトルの決定法の演算量低減量は次式(29)で表される。
Figure JPOXMLDOC01-appb-I000044
Therefore, the calculation amount reduction amount of the initial vector determination method in this embodiment is expressed by the following equation (29).
Figure JPOXMLDOC01-appb-I000044
 適切なNSBを定めることにより式(29)の第1項が第2項よりも大きくなる、すなわち初期ベクトルの設定による演算量増に対して、各サブバンド内の固有値分解の演算量低減効果が上回り、演算量低減効果が得られる。 By determining an appropriate NSB , the first term of the equation (29) becomes larger than the second term, that is, the amount of calculation by the eigenvalue decomposition in each subband is reduced as the amount of calculation increases by setting the initial vector. And the amount of calculation can be reduced.
 第一実施形態との比較では、第一の実施形態では初期ベクトルを低演算量で計算できるのに対して、本実施形態では初期値計算のための固有値分解の計算量が、サブバンドごとの固有値分解の計算量に対して無視できない演算量が必要である。一方、広い帯域から初期ベクトルを計算することで、チャネル推定誤差の影響を低減できるメリットがある。 In comparison with the first embodiment, the initial vector can be calculated with a low amount of computation in the first embodiment, whereas in this embodiment, the calculation amount of eigenvalue decomposition for initial value calculation is different for each subband. A calculation amount that cannot be ignored for the calculation amount of eigenvalue decomposition is necessary. On the other hand, there is an advantage that the influence of the channel estimation error can be reduced by calculating the initial vector from a wide band.
 <第3の例示的な実施形態>
図9は、第3の例示的な実施形態のシステム構成を示す。
第3の実施形態では、端末からのフィードバック情報をもとに各サブバンドの平均送信共分散行列のべき乗法を用いた固有値分解の初期ベクトルが用いられる。
<Third exemplary embodiment>
FIG. 9 shows the system configuration of the third exemplary embodiment.
In the third embodiment, an initial vector of eigenvalue decomposition using the power method of the average transmission covariance matrix of each subband based on feedback information from the terminal is used.
 図9に示されるシステムは、チャネル行列記憶部101と、平均送信共分散行列計算部102と、初期ベクトル計算部103Bと、固有値分解実行部104と、固有値分解結果記憶部105と、端末フィードバック情報記憶部106とを含む。 A system shown in FIG. 9 includes a channel matrix storage unit 101, an average transmission covariance matrix calculation unit 102, an initial vector calculation unit 103B, an eigenvalue decomposition execution unit 104, an eigenvalue decomposition result storage unit 105, and terminal feedback information. And a storage unit 106.
 チャネル行列記憶部101は、平均送信共分散行列計算部102に接続される。平均送信共分散行列計算部102は、固有値分解実行部104に接続される。端末フィードバック情報記憶部106は、初期ベクトル計算部103Bに接続される。初期ベクトル計算部103Bは、固有値分解実行部104に接続される。固有値分解実行部104は、固有値分解結果記憶部105に接続される。 The channel matrix storage unit 101 is connected to the average transmission covariance matrix calculation unit 102. Average transmission covariance matrix calculation section 102 is connected to eigenvalue decomposition execution section 104. The terminal feedback information storage unit 106 is connected to the initial vector calculation unit 103B. The initial vector calculation unit 103B is connected to the eigenvalue decomposition execution unit 104. The eigenvalue decomposition execution unit 104 is connected to the eigenvalue decomposition result storage unit 105.
 チャネル行列記憶部101は、チャネル推定によって得られたRBごとのチャネル行列を格納するように構成されている。 The channel matrix storage unit 101 is configured to store a channel matrix for each RB obtained by channel estimation.
 端末フィードバック情報記憶部106は、端末からフィードバックされた情報を格納するように構成されている。 The terminal feedback information storage unit 106 is configured to store information fed back from the terminal.
 初期ベクトル計算部103Bは、端末フィードバック情報記憶部106から読み出した端末フィードバック情報に基づいて、第1のベクトルと第2のベクトルを計算して、固有値分解実行部104へ出力するように構成されている。 The initial vector calculation unit 103B is configured to calculate the first vector and the second vector based on the terminal feedback information read from the terminal feedback information storage unit 106 and output the first vector and the second vector to the eigenvalue decomposition execution unit 104. Yes.
 平均送信共分散行列計算部102は、チャネル行列記憶部101から読み出したRBごとのチャネル行列に基づいて各サブバンドの平均送信共分散行列を計算するように構成されている。平均送信共分散行列計算部102は、各サブバンドの平均送信共分散行列を固有値分解実行部104へ出力する。 The average transmission covariance matrix calculation unit 102 is configured to calculate an average transmission covariance matrix for each subband based on the channel matrix for each RB read from the channel matrix storage unit 101. Average transmission covariance matrix calculation section 102 outputs the average transmission covariance matrix of each subband to eigenvalue decomposition execution section 104.
 固有値分解実行部104は、初期ベクトル計算部103Bから入力された第1のベクトル、第2のベクトルと、平均送信共分散行列計算部102から入力された各サブバンドの平均送信共分散行列とに基づき、各サブバンドの平均送信共分散行列の固有値および固有ベクトルを計算するように構成されている。 The eigenvalue decomposition execution unit 104 converts the first vector and the second vector input from the initial vector calculation unit 103B, and the average transmission covariance matrix of each subband input from the average transmission covariance matrix calculation unit 102. Based on this, the eigenvalues and eigenvectors of the average transmission covariance matrix of each subband are calculated.
 <平均送信共分散行列の計算>
平均送信共分散行列計算部102は、チャネル行列記憶部から読み出したRBごとのチャネル行列に基づいて各RBの平均送信共分散行列を計算する(S101)。計算方法は第1実施形態と同様である。
<Calculation of average transmission covariance matrix>
The average transmission covariance matrix calculation unit 102 calculates the average transmission covariance matrix of each RB based on the channel matrix for each RB read from the channel matrix storage unit (S101). The calculation method is the same as in the first embodiment.
 <第一のベクトルの計算>
初期ベクトル計算部103Bは、端末フィードバック情報記憶部106から読み出した端末フィードバック情報を読み出し、べき乗法で用いる初期ベクトルである第1のベクトルを計算する(S102B)。
<Calculation of the first vector>
The initial vector calculation unit 103B reads the terminal feedback information read from the terminal feedback information storage unit 106, and calculates a first vector that is an initial vector used in the power method (S102B).
 LTEでは、端末からのチャネル情報フィードバックとしてPMI(Precoding Matrix Indicator)が定義されている。基地局と端末は、コードブックと呼ばれる量子化されたプリコーディングのテーブルを保持している。端末が判断した好適なプリコーダをコードブックのインデックスとして基地局へフィードバックする。 In LTE, PMI (Precoding Matrix Indicator) is defined as channel information feedback from a terminal. The base station and the terminal maintain a quantized precoding table called a codebook. A suitable precoder determined by the terminal is fed back to the base station as a codebook index.
 本実施形態では、初期ベクトル計算部103BがPMIで指定されたプリコーダを、第1のベクトル、第2のベクトルとして固有値分解実行部104に出力する。 In this embodiment, the initial vector calculation unit 103B outputs the precoder specified by PMI to the eigenvalue decomposition execution unit 104 as the first vector and the second vector.
 また、Massive MIMOでは、アレイゲインを稼ぐ目的で、標準規格で決められたアンテナ数に縛られず、自由に物理的なアンテナを増やすことが可能である。この場合、コードブックのプリコーダの前提となる基地局のアンテナ本数と実際の基地局アンテナ本数が異なる場合がある。このため、送信アンテナ数に関してプリコーダを修正した修正プリコーダが保持されてもよい。修正プリコーダの設定法としては、たとえばコードブックのプリコーダのビームパターンとピーク方向が同一なステアリングウェイトを用いてもよい。 Also, in Massive MIMO, for the purpose of increasing array gain, it is possible to increase the number of physical antennas freely without being restricted by the number of antennas determined by the standard. In this case, the number of base station antennas, which is the premise of the codebook precoder, may differ from the actual number of base station antennas. For this reason, a modified precoder obtained by modifying the precoder with respect to the number of transmission antennas may be held. As a setting method of the modified precoder, for example, a steering weight having the same peak direction as the beam pattern of the codec precoder may be used.
 コードブックのi番目のプリコーダのピーク方向をθとすると修正コードのi番目のプリコーダ
Figure JPOXMLDOC01-appb-I000045
のn番目の要素
Figure JPOXMLDOC01-appb-I000046
は次式(30)で表される。
Figure JPOXMLDOC01-appb-I000047
If the peak direction of the i-th precoder in the codebook is θ i , the i-th precoder of the modified code
Figure JPOXMLDOC01-appb-I000045
The n th element of
Figure JPOXMLDOC01-appb-I000046
Is represented by the following equation (30).
Figure JPOXMLDOC01-appb-I000047
 <固有値分解の実行>
固有値分解実行部104は、平均送信共分散行列計算部102から入力された各サブバンドの平均送信共分散行列と、初期ベクトル計算部103Bから入力された第一のベクトルに基づいて、各サブバンドの平均送信共分散行列の固有値と固有ベクトルを計算する。
<Execution of eigenvalue decomposition>
The eigenvalue decomposition execution unit 104 determines each subband based on the average transmission covariance matrix of each subband input from the average transmission covariance matrix calculation unit 102 and the first vector input from the initial vector calculation unit 103B. Compute the eigenvalues and eigenvectors of the mean transmission covariance matrix of.
 本動作は、第一の実施形態と同様なので省略する。
[実施形態の効果]
 本実施形態では、第一実施形態、第二実施形態と異なり、端末からのフィードバックをもとに、テーブルを参照するだけで初期ベクトルを決定できる。このため、初期ベクトルの演算が不要になるというメリットがある。
Since this operation is the same as that of the first embodiment, a description thereof will be omitted.
[Effect of the embodiment]
In this embodiment, unlike the first embodiment and the second embodiment, the initial vector can be determined simply by referring to the table based on feedback from the terminal. For this reason, there is an advantage that the calculation of the initial vector becomes unnecessary.
 <第4の例示的な実施形態>
図15は、第4の例示的な実施形態における無線局を示す。無線局1000は、決定部1001と計算部1002とを有する。
<Fourth Exemplary Embodiment>
FIG. 15 shows a wireless station in a fourth exemplary embodiment. The radio station 1000 includes a determination unit 1001 and a calculation unit 1002.
 決定部1001は、複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定する。 The determining unit 1001 determines an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station.
 計算部1002は、該初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行う。 The calculation unit 1002 performs eigenvalue decomposition of the transmission covariance matrix using the iterative method based on the initial vector.
 本実施形態によれば、固有値分解における反復法の反復回数を低減し、演算量を低減することができる。 According to this embodiment, the number of iterations of the iterative method in eigenvalue decomposition can be reduced, and the amount of computation can be reduced.
 <他の例示的な実施形態>
 上記実施形態は、下り通信(ダウンリンク)に関するものについて主に詳細が示されたが、上り通信(アップリンク)についても適用可能である。
<Other exemplary embodiments>
Although the details have been mainly shown in the above embodiment regarding downlink communication (downlink), it is also applicable to uplink communication (uplink).
 上記実施形態は、上り回線と下り回線で同一の周波数を異なる時間で使用するTDD (Time Division Duplex)方式を採用する異なる無線通信システム(例えばWiFi、WiMAX(Worldwide interoperability for Microwave Access)、IEEE 802.16m)であってもよい。 In the above-described embodiment, different wireless communication systems (for example, WiFi, WiMAX (Worldwide Interoperability for Microwave Access), IEEE 802.802.) Adopting a TDD (Time Division Duplex) method that uses the same frequency for uplink and downlink at different times. 16m).
 また、上記実施形態は、上り回線と下り回線で異なる周波数を同時に使用するFDD (Frequency Division Duplex)方式を採用する無線通信システムであってもよい。 Also, the above embodiment may be a wireless communication system that employs an FDD (Frequency Division Duplex) method that uses different frequencies simultaneously on the uplink and downlink.
 また、上記実施形態では、LTE方式の無線通信システムに関して説明されたが、様々な実施形態の方法および装置のうちの少なくともいくつかは、多くの非LTEおよび/または非セルラーシステムを含む広範囲の通信システムに適用可能である。例えば、上記実施形態は、UMTS (Universal Mobile Telecommunications System)方式であってもよい。 Also, while the above embodiments have been described with reference to LTE wireless communication systems, at least some of the methods and apparatus of the various embodiments can cover a wide range of communications including many non-LTE and / or non-cellular systems. Applicable to the system. For example, the above embodiment may be a UMTS (Universal Mobile Telecommunications System) system.
 上記の無線局は、例えば、送信機であってもよい。ここで、この送信機からデータを受信する無線局は、受信機であってもよい。 The above radio station may be a transmitter, for example. Here, the radio station that receives data from the transmitter may be a receiver.
 上記の無線局とは、例えば、基地局であってもよい。ここで、基地局は、1つまたは複数のワイヤレス端末との通信に使用することができ、アクセスポイント、ノード、進化型ノードB(eNB: evolved Node B)、または他の何らかのネットワークエンティティの機能性の一部または全部を含み得る。基地局は、エアインターフェースを介してUE(User Equipment)と通信する。この通信は、1つまたは複数のセクタを通って起こり得る。基地局は、受信したエアインターフェースフレームをIPパケットに変換することによって、UEと、インターネットプロトコル(IP)ネットワークを含み得るアクセスネットワークの残りとの間のルータとして作用し得る。基地局は、エアインターフェース用の属性の管理を調整することもでき、ワイヤードネットワークとワイヤレスネットワークとの間のゲートウェイであってもよい。 The above radio station may be a base station, for example. Here, a base station can be used to communicate with one or more wireless terminals, and the functionality of an access point, node, evolved node B (eNB: evolved Node B), or some other network entity May be included in part or in whole. The base station communicates with a UE (User Equipment) via an air interface. This communication can occur through one or more sectors. The base station may act as a router between the UE and the rest of the access network, which may include an Internet Protocol (IP) network, by converting the received air interface frame into an IP packet. The base station may also coordinate management of attributes for the air interface and may be a gateway between the wired network and the wireless network.
 上記の端末とは、無線端末、移動端末またはユーザ端末(またはユーザ)と呼ぶこともできる。また、端末は、システム、加入者ユニット、加入者局、移動局、ワイヤレス端末、モバイルデバイス、ノード、デバイス、リモート局、リモート端末、ワイヤレス通信デバイス、ワイヤレス通信デバイス、ワイヤレス通信装置またはユーザエージェントの機能性の一部または全部を含み得る。端末は、セルラー電話、コードレス電話、セッション開始プロトコル(SIP)電話、スマートフォン、ワイヤレスローカルループ(WLL)局、携帯情報端末(PDA)、ラップトップ、タブレット、ネットブック、スマートブック、ハンドヘルド通信デバイス、ハンドヘルドコンピューティングデバイス、衛星無線、ワイヤレスモデムカードおよび/またはワイヤレスシステムを介して通信する別の処理デバイスでよい。 The above terminal can also be called a wireless terminal, a mobile terminal, or a user terminal (or user). The terminal is also a system, subscriber unit, subscriber station, mobile station, wireless terminal, mobile device, node, device, remote station, remote terminal, wireless communication device, wireless communication device, wireless communication device or user agent function May include some or all of sex. Terminals include cellular phones, cordless phones, session initiation protocol (SIP) phones, smartphones, wireless local loop (WLL) stations, personal digital assistants (PDAs), laptops, tablets, netbooks, smart books, handheld communication devices, handhelds It may be a computing device, a satellite radio, a wireless modem card and / or another processing device that communicates via a wireless system.
 なお、上記実施形態において、端末の操作者が1台の端末を所有している例が示されたが、これに限られない。1台の端末は、複数の操作者によって共有される場合であってもよい。 In addition, in the said embodiment, although the example in which the operator of a terminal owns one terminal was shown, it is not restricted to this. One terminal may be shared by a plurality of operators.
 また、上記の無線局は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。また、上記の計算方法も、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。 Further, the above radio station can be realized by hardware, software, or a combination thereof. The above calculation method can also be realized by hardware, software, or a combination thereof. Here, “realized by software” means realized by a computer reading and executing a program.
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Compact Disc - Read Only Memory)、CD-R(Compact Disc - Recordable)、CD-R/W(Compact Disc - Rewritable)、DVD-ROM(Digital Versatile Disc - ROM)、DVD-R(Digital Versatile Disc - Recordable)、DVD-R/W(Digital Versatile Disc - Rewritable)、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。 The program can be stored and supplied to a computer using various types of non-transitory computer readable media. Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media are magnetic recording media (for example, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (for example, magneto-optical disks), CD-ROMs (Compact Disc--Read-Only Memory). , CD-R (Compact-Disc--Recordable), CD-R / W (Compact-Disc--Rewritable), DVD-ROM (Digital-Versatile-Disc--ROM), DVD-R (Digital-Versatile-Disc--Recordable), DVD-R / W (Digital Versatile Disc-Rewritable), semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
 また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Also, the program may be supplied to the computer by various types of temporary computer readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 <付記>
前述の例示的な実施形態の一部または全部は、以下の各付記のようにも記載することができる。しかしながら、以下の各付記は、あくまでも、本発明の単なる例示に過ぎず、本発明は、かかる場合のみに限るものではない。
(付記1)
 複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定し、
 前記初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行う、
 計算方法。
(付記2)
 前記チャネル情報は、
前記固有値分解の対象となる無線リソース領域の一部の領域に関連する、
 前記初期ベクトルは、
前記チャネル情報に基づいて計算される固有ベクトルである、
 付記1に記載の計算方法。
(付記3)
 前記送信共分散行列は、
受信共分散行列の固有値と、前記受信共分散行列の固有ベクトルに基づいて計算され、
 前記固有ベクトルは、
前記送信共分散行列の固有ベクトルである、
 付記2に記載の計算方法。
(付記4)
 前記一部の領域は、
前記固有値分解の対象となる前記無線リソース領域のうち最もチャネルの電力が高い領域である、
 付記2に記載の計算方法。
(付記5)
 前記初期ベクトルは、
前記固有値分解の対象となる無線リソース領域を複数併せた領域に関するチャネル情報に基づいて計算される固有ベクトルである、
 付記1に記載の計算方法。
(付記6)
 前記固有ベクトルは、
前記固有値分解の対象となる前記無線リソース領域を複数併せた領域のなかで平均化された送信共分散行列の固有ベクトルである、
 付記5に記載の計算方法。
(付記7)
 前記初期ベクトルは、
前記他の無線局が選択したプリコーダに基づいて、所定のテーブルを参照して決定される、
 付記1に記載の計算方法。
(付記8)
 前記テーブルは、
システムで定義されたプリコーダを、前記無線局のアンテナの数に対応するように補正したプリコーダである、
 付記7に記載の計算方法。
(付記9)
 前記チャネル情報は、
前記無線局が推定したチャネル行列である、
 付記1に記載の計算方法。
(付記10)
 前記チャネル情報は、
前記他の無線局が選択したプリコーダである、
 付記1に記載の計算方法。
(付記11)
 複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定する決定部と、
 前記初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行う計算部とを有する、
 無線局。
(付記12)
 前記チャネル情報は、
前記固有値分解の対象となる無線リソース領域の一部の領域に関連する、
 前記初期ベクトルは、
前記チャネル情報に基づいて計算される固有ベクトルである、
 付記11に記載の無線局。
(付記13)
 前記送信共分散行列は、
受信共分散行列の固有値と、前記受信共分散行列の固有ベクトルに基づいて計算され、
 前記固有ベクトルは、
前記送信共分散行列の固有ベクトルである、
 付記12に記載の無線局。
(付記14)
 前記一部の領域は、
前記固有値分解の対象となる前記無線リソース領域のうち最もチャネルの電力が高い領域である、
 付記12に記載の無線局。
(付記15)
 前記初期ベクトルは、
前記固有値分解の対象となる前記無線リソース領域を複数併せた領域に関するチャネル情報に基づいて計算される固有ベクトルである、
 付記11に記載の無線局。
(付記16)
 前記固有ベクトルは、
前記固有値分解の対象となる前記無線リソース領域を複数併せた領域のなかで平均化された送信共分散行列の固有ベクトルである、
 付記15に記載の無線局。
(付記17)
 前記初期ベクトルは、
前記他の無線局が選択したプリコーダに基づいて、所定のテーブルを参照して決定される、
 付記11に記載の無線局。
(付記18)
 前記テーブルは、
システムで定義されたプリコーダを、前記無線局のアンテナの数に対応するように補正したプリコーダである、
 付記17に記載の無線局。
(付記19)
 前記チャネル情報は、
前記無線局が推定したチャネル行列である、
 付記11に記載の無線局。
(付記20)
 前記チャネル情報は、
前記他の無線局が選択したプリコーダである、
 付記11に記載の無線局。
(付記21)
 複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定し、
 前記初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行う、
 ことをコンピュータに実行させるプログラム。
(付記22)
 前記チャネル情報は、
前記固有値分解の対象となる無線リソース領域の一部の領域に関連する、
 前記初期ベクトルは、
前記チャネル情報に基づいて計算される固有ベクトルである、
 付記21に記載のプログラム。
(付記23)
 前記送信共分散行列は、
受信共分散行列の固有値と、前記受信共分散行列の固有ベクトルに基づいて計算され、
 前記固有ベクトルは、
前記送信共分散行列の固有ベクトルである、
 付記22に記載のプログラム。
(付記24)
 前記一部の領域は、
前記固有値分解の対象となる前記無線リソース領域のうち最もチャネルの電力が高い領域である、
 付記22に記載のプログラム。
(付記25)
 前記初期ベクトルは、
前記固有値分解の対象となる前記無線リソース領域を複数併せた領域に関するチャネル情報に基づいて計算される固有ベクトルである、
 付記21に記載のプログラム。
(付記26)
 前記固有ベクトルは、
前記固有値分解の対象となる前記無線リソース領域を複数併せた領域のなかで平均化された送信共分散行列の固有ベクトルである、
 付記25に記載のプログラム。
(付記27)
 前記初期ベクトルは、
前記他の無線局が選択したプリコーダに基づいて、所定のテーブルを参照して決定される、
 付記21に記載のプログラム。
(付記28)
 前記テーブルは、
システムで定義されたプリコーダを、前記無線局のアンテナの数に対応するように補正したプリコーダである、
 付記27に記載のプログラム。
(付記29)
 前記チャネル情報は、
前記無線局が推定したチャネル行列である、
 付記21に記載のプログラム。
(付記30)
 前記チャネル情報は、
前記他の無線局が選択したプリコーダである、
 付記21に記載のプログラム。
<Appendix>
Part or all of the exemplary embodiments described above can be described as the following supplementary notes. However, the following supplementary notes are merely examples of the present invention, and the present invention is not limited only to such cases.
(Appendix 1)
Determining an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station;
Performing eigenvalue decomposition of the transmission covariance matrix using the iterative method based on the initial vector;
Method of calculation.
(Appendix 2)
The channel information is
Related to a part of the radio resource area to be subjected to the eigenvalue decomposition,
The initial vector is
An eigenvector calculated based on the channel information,
The calculation method according to attachment 1.
(Appendix 3)
The transmission covariance matrix is
Calculated based on the eigenvalues of the reception covariance matrix and the eigenvectors of the reception covariance matrix;
The eigenvector is
An eigenvector of the transmission covariance matrix,
The calculation method according to attachment 2.
(Appendix 4)
The partial area is:
It is an area where the power of the channel is highest among the radio resource areas to be subjected to the eigenvalue decomposition.
The calculation method according to attachment 2.
(Appendix 5)
The initial vector is
An eigenvector calculated based on channel information related to a region combining a plurality of radio resource regions to be subjected to eigenvalue decomposition,
The calculation method according to attachment 1.
(Appendix 6)
The eigenvector is
An eigenvector of a transmission covariance matrix averaged in an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
The calculation method according to attachment 5.
(Appendix 7)
The initial vector is
Based on a precoder selected by the other radio station, determined with reference to a predetermined table,
The calculation method according to attachment 1.
(Appendix 8)
The table is
A precoder obtained by correcting a precoder defined by the system so as to correspond to the number of antennas of the radio station.
The calculation method according to attachment 7.
(Appendix 9)
The channel information is
A channel matrix estimated by the wireless station,
The calculation method according to attachment 1.
(Appendix 10)
The channel information is
A precoder selected by the other radio station;
The calculation method according to attachment 1.
(Appendix 11)
A determination unit that determines an initial vector based on channel information in a propagation path from a wireless station having a plurality of antennas to another wireless station;
A calculation unit that performs eigenvalue decomposition of a transmission covariance matrix using an iterative method based on the initial vector;
Radio station.
(Appendix 12)
The channel information is
Related to a part of the radio resource area to be subjected to the eigenvalue decomposition,
The initial vector is
An eigenvector calculated based on the channel information,
The radio station according to appendix 11.
(Appendix 13)
The transmission covariance matrix is
Calculated based on the eigenvalues of the reception covariance matrix and the eigenvectors of the reception covariance matrix;
The eigenvector is
An eigenvector of the transmission covariance matrix,
The radio station according to attachment 12.
(Appendix 14)
The partial area is:
It is an area where the power of the channel is highest among the radio resource areas to be subjected to the eigenvalue decomposition.
The radio station according to attachment 12.
(Appendix 15)
The initial vector is
An eigenvector calculated based on channel information related to an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
The radio station according to appendix 11.
(Appendix 16)
The eigenvector is
An eigenvector of a transmission covariance matrix averaged in an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
The radio station according to attachment 15.
(Appendix 17)
The initial vector is
Based on a precoder selected by the other radio station, determined with reference to a predetermined table,
The radio station according to appendix 11.
(Appendix 18)
The table is
A precoder obtained by correcting a precoder defined by the system so as to correspond to the number of antennas of the radio station.
The radio station according to appendix 17.
(Appendix 19)
The channel information is
A channel matrix estimated by the wireless station,
The radio station according to appendix 11.
(Appendix 20)
The channel information is
A precoder selected by the other radio station;
The radio station according to appendix 11.
(Appendix 21)
Determining an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station;
Performing eigenvalue decomposition of the transmission covariance matrix using the iterative method based on the initial vector;
A program that causes a computer to execute.
(Appendix 22)
The channel information is
Related to a part of the radio resource area to be subjected to the eigenvalue decomposition,
The initial vector is
An eigenvector calculated based on the channel information,
The program according to appendix 21.
(Appendix 23)
The transmission covariance matrix is
Calculated based on the eigenvalues of the reception covariance matrix and the eigenvectors of the reception covariance matrix;
The eigenvector is
An eigenvector of the transmission covariance matrix,
The program according to attachment 22.
(Appendix 24)
The partial area is:
It is an area where the power of the channel is highest among the radio resource areas to be subjected to the eigenvalue decomposition.
The program according to attachment 22.
(Appendix 25)
The initial vector is
An eigenvector calculated based on channel information related to an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
The program according to appendix 21.
(Appendix 26)
The eigenvector is
An eigenvector of a transmission covariance matrix averaged in an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
The program according to attachment 25.
(Appendix 27)
The initial vector is
Based on a precoder selected by the other radio station, determined with reference to a predetermined table,
The program according to appendix 21.
(Appendix 28)
The table is
A precoder obtained by correcting a precoder defined by the system so as to correspond to the number of antennas of the radio station.
The program according to appendix 27.
(Appendix 29)
The channel information is
A channel matrix estimated by the wireless station,
The program according to appendix 21.
(Appendix 30)
The channel information is
A precoder selected by the other radio station;
The program according to appendix 21.
 さらに、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。本明細書で説明したそれぞれの実施形態による機能またはステップおよび/または動作は特定の順序で実行しなくてもよい。さらに、本発明の要素は、単数形で説明または請求されていることがあるが、単数形に限定することが明示的に述べられていない限り、複数形であってもよい。 Furthermore, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention already described. The functions or steps and / or actions according to each embodiment described herein may not be performed in a particular order. Further, although elements of the invention may be described or claimed in the singular, the elements may be in the plural unless expressly stated to be limited to the singular.
 この出願は、2016年1月20日に出願された日本出願特願2016-008497を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2016-008497 filed on January 20, 2016, the entire disclosure of which is incorporated herein.
 101 第1、第2、第3の実施形態におけるチャネル行列記憶部
 102 第1、第3の実施形態における平均送信共分散行列計算部
 102A 第2の実施形態における平均送信共分散行列計算部
 103 第1の実施形態における初期ベクトル計算部
 103A 第2の実施形態における初期ベクトル計算部
 103B 第3の実施形態における初期ベクトル計算部
 103-1 第1の実施形態の初期ベクトル計算部103におけるRB選択部
 103-2 第1の実施形態の初期ベクトル計算部103における受信共分散行列計算部
 103-3 第1の実施形態の初期ベクトル計算部103における受信共分散行列固有値計算部
 103-4 第1の実施形態の初期ベクトル計算部103における受信共分散行列固有ベクトル計算部
 103-5 第1の実施形態の初期ベクトル計算部103における送信共分散行列固有ベクトル計算部
 104 第1、第2、第3の実施形態における固有値分解実行部
 104-1 第1の実施形態における固有値分解実行部104における第1固有値計算部
 104-2 第1の実施形態における固有値分解実行部104における第2固有値計算部
 105 第1、第2、第3の実施形態における固有値分解結果記憶部
 106 第3の実施形態における端末フィードバック情報記憶部
 1000 無線局
 1001 決定部
 1002 計算部
101 Channel matrix storage unit 102 in the first, second, and third embodiments 102 Average transmission covariance matrix calculation unit 102A in the first and third embodiments 102A Average transmission covariance matrix calculation unit 103 in the second embodiment 103 Initial vector calculation unit 103A in the first embodiment 103A Initial vector calculation unit 103B in the second embodiment 103B Initial vector calculation unit 103-1 in the third embodiment 103-1 RB selection unit 103 in the initial vector calculation unit 103 in the first embodiment 103 -2 Reception Covariance Matrix Calculation Unit in Initial Vector Calculation Unit 103 of First Embodiment 103-3 Reception Covariance Matrix Eigenvalue Calculation Unit in Initial Vector Calculation Unit 103 of First Embodiment 103-4 First Embodiment Received covariance matrix eigenvector calculation unit 103-5 in the initial vector calculation unit 103 of the first implementation Transmission covariance matrix eigenvector calculation unit 104 in the initial vector calculation unit 103 of the state 104 eigenvalue decomposition execution unit 104-1 in the first, second, and third embodiments 104-1 first eigenvalue in the eigenvalue decomposition execution unit 104 in the first embodiment Calculation unit 104-2 Second eigenvalue calculation unit in eigenvalue decomposition execution unit 104 in the first embodiment 105 Eigenvalue decomposition result storage unit in the first, second, and third embodiments 106 Terminal feedback information in the third embodiment Storage unit 1000 Radio station 1001 Determination unit 1002 Calculation unit

Claims (30)

  1.  複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定し、
     前記初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行う、
     計算方法。
    Determining an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station;
    Performing eigenvalue decomposition of the transmission covariance matrix using the iterative method based on the initial vector;
    Method of calculation.
  2.  前記チャネル情報は、
    前記固有値分解の対象となる無線リソース領域の一部の領域に関連する、
     前記初期ベクトルは、
    前記チャネル情報に基づいて計算される固有ベクトルである、
     請求項1に記載の計算方法。
    The channel information is
    Related to a part of the radio resource area to be subjected to the eigenvalue decomposition,
    The initial vector is
    An eigenvector calculated based on the channel information,
    The calculation method according to claim 1.
  3.  前記送信共分散行列は、
    受信共分散行列の固有値と、前記受信共分散行列の固有ベクトルに基づいて計算され、
     前記固有ベクトルは、
    前記送信共分散行列の固有ベクトルである、
     請求項2に記載の計算方法。
    The transmission covariance matrix is
    Calculated based on the eigenvalues of the reception covariance matrix and the eigenvectors of the reception covariance matrix;
    The eigenvector is
    An eigenvector of the transmission covariance matrix,
    The calculation method according to claim 2.
  4.  前記一部の領域は、
    前記固有値分解の対象となる前記無線リソース領域のうち最もチャネルの電力が高い領域である、
     請求項2に記載の計算方法。
    The partial area is:
    It is an area where the power of the channel is highest among the radio resource areas to be subjected to the eigenvalue decomposition.
    The calculation method according to claim 2.
  5.  前記初期ベクトルは、
    前記固有値分解の対象となる無線リソース領域を複数併せた領域に関するチャネル情報に基づいて計算される固有ベクトルである、
     請求項1に記載の計算方法。
    The initial vector is
    An eigenvector calculated based on channel information related to a region combining a plurality of radio resource regions to be subjected to eigenvalue decomposition,
    The calculation method according to claim 1.
  6.  前記固有ベクトルは、
    前記固有値分解の対象となる前記無線リソース領域を複数併せた領域のなかで平均化された送信共分散行列の固有ベクトルである、
     請求項5に記載の計算方法。
    The eigenvector is
    An eigenvector of a transmission covariance matrix averaged in an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
    The calculation method according to claim 5.
  7.  前記初期ベクトルは、
    前記他の無線局が選択したプリコーダに基づいて、所定のテーブルを参照して決定される、
     請求項1に記載の計算方法。
    The initial vector is
    Based on a precoder selected by the other radio station, determined with reference to a predetermined table,
    The calculation method according to claim 1.
  8.  前記テーブルは、
    システムで定義されたプリコーダを、前記無線局のアンテナの数に対応するように補正したプリコーダである、
     請求項7に記載の計算方法。
    The table is
    A precoder obtained by correcting a precoder defined by the system so as to correspond to the number of antennas of the radio station.
    The calculation method according to claim 7.
  9.  前記チャネル情報は、
    前記無線局が推定したチャネル行列である、
     請求項1に記載の計算方法。
    The channel information is
    A channel matrix estimated by the wireless station,
    The calculation method according to claim 1.
  10.  前記チャネル情報は、
    前記他の無線局が選択したプリコーダである、
     請求項1に記載の計算方法。
    The channel information is
    A precoder selected by the other radio station;
    The calculation method according to claim 1.
  11.  複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定する決定部と、
     前記初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行う計算部とを有する、
     無線局。
    A determination unit that determines an initial vector based on channel information in a propagation path from a wireless station having a plurality of antennas to another wireless station;
    A calculation unit that performs eigenvalue decomposition of a transmission covariance matrix using an iterative method based on the initial vector;
    Radio station.
  12.  前記チャネル情報は、
    前記固有値分解の対象となる無線リソース領域の一部の領域に関連する、
     前記初期ベクトルは、
    前記チャネル情報に基づいて計算される固有ベクトルである、
     請求項11に記載の無線局。
    The channel information is
    Related to a part of the radio resource area to be subjected to the eigenvalue decomposition,
    The initial vector is
    An eigenvector calculated based on the channel information,
    The radio station according to claim 11.
  13.  前記送信共分散行列は、
    受信共分散行列の固有値と、前記受信共分散行列の固有ベクトルに基づいて計算され、
     前記固有ベクトルは、
    前記送信共分散行列の固有ベクトルである、
     請求項12に記載の無線局。
    The transmission covariance matrix is
    Calculated based on the eigenvalues of the reception covariance matrix and the eigenvectors of the reception covariance matrix;
    The eigenvector is
    An eigenvector of the transmission covariance matrix,
    The radio station according to claim 12.
  14.  前記一部の領域は、
    前記固有値分解の対象となる前記無線リソース領域のうち最もチャネルの電力が高い領域である、
     請求項12に記載の無線局。
    The partial area is:
    It is an area where the power of the channel is highest among the radio resource areas to be subjected to the eigenvalue decomposition.
    The radio station according to claim 12.
  15.  前記初期ベクトルは、
    前記固有値分解の対象となる無線リソース領域を複数併せた領域に関するチャネル情報に基づいて計算される固有ベクトルである、
     請求項11に記載の無線局。
    The initial vector is
    An eigenvector calculated based on channel information related to a region combining a plurality of radio resource regions to be subjected to eigenvalue decomposition,
    The radio station according to claim 11.
  16.  前記固有ベクトルは、
    前記固有値分解の対象となる前記無線リソース領域を複数併せた領域のなかで平均化された送信共分散行列の固有ベクトルである、
     請求項15に記載の無線局。
    The eigenvector is
    An eigenvector of a transmission covariance matrix averaged in an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
    The radio station according to claim 15.
  17.  前記初期ベクトルは、
    前記他の無線局が選択したプリコーダに基づいて、所定のテーブルを参照して決定される、
     請求項11に記載の無線局。
    The initial vector is
    Based on a precoder selected by the other radio station, determined with reference to a predetermined table,
    The radio station according to claim 11.
  18.  前記テーブルは、
    システムで定義されたプリコーダを、前記無線局のアンテナの数に対応するように補正したプリコーダである、
     請求項17に記載の無線局。
    The table is
    A precoder obtained by correcting a precoder defined by the system so as to correspond to the number of antennas of the radio station.
    The radio station according to claim 17.
  19.  前記チャネル情報は、
    前記無線局が推定したチャネル行列である、
     請求項11に記載の無線局。
    The channel information is
    A channel matrix estimated by the wireless station,
    The radio station according to claim 11.
  20.  前記チャネル情報は、
    前記他の無線局が選択したプリコーダである、
     請求項11に記載の無線局。
    The channel information is
    A precoder selected by the other radio station;
    The radio station according to claim 11.
  21.  複数のアンテナを有する無線局から他の無線局への伝搬路におけるチャネル情報に基づいて初期ベクトルを決定し、
     前記初期ベクトルに基づいて、反復法を用いて送信共分散行列の固有値分解を行う、
     ことをコンピュータに実行させるプログラムを記憶する記憶媒体。
    Determining an initial vector based on channel information in a propagation path from a radio station having a plurality of antennas to another radio station;
    Performing eigenvalue decomposition of the transmission covariance matrix using the iterative method based on the initial vector;
    A storage medium for storing a program for causing a computer to execute the above.
  22.  前記チャネル情報は、
    前記固有値分解の対象となる無線リソース領域の一部の領域に関連する、
     前記初期ベクトルは、
    前記チャネル情報に基づいて計算される固有ベクトルである、
     請求項21に記載の記憶媒体。
    The channel information is
    Related to a part of the radio resource area to be subjected to the eigenvalue decomposition,
    The initial vector is
    An eigenvector calculated based on the channel information,
    The storage medium according to claim 21.
  23.  前記送信共分散行列は、
    受信共分散行列の固有値と、前記受信共分散行列の固有ベクトルに基づいて計算され、
     前記固有ベクトルは、
    前記送信共分散行列の固有ベクトルである、
     請求項22に記載の記憶媒体。
    The transmission covariance matrix is
    Calculated based on the eigenvalues of the reception covariance matrix and the eigenvectors of the reception covariance matrix;
    The eigenvector is
    An eigenvector of the transmission covariance matrix,
    The storage medium according to claim 22.
  24.  前記一部の領域は、
    前記固有値分解の対象となる前記無線リソース領域のうち最もチャネルの電力が高い領域である、
     請求項22に記載の記憶媒体。
    The partial area is:
    It is an area where the power of the channel is highest among the radio resource areas to be subjected to the eigenvalue decomposition.
    The storage medium according to claim 22.
  25.  前記初期ベクトルは、
    前記固有値分解の対象となる無線リソース領域を複数併せた領域に関するチャネル情報に基づいて計算される固有ベクトルである、
     請求項21に記載の記憶媒体。
    The initial vector is
    An eigenvector calculated based on channel information related to a region combining a plurality of radio resource regions to be subjected to eigenvalue decomposition,
    The storage medium according to claim 21.
  26.  前記固有ベクトルは、
    前記固有値分解の対象となる前記無線リソース領域を複数併せた領域のなかで平均化された送信共分散行列の固有ベクトルである、
     請求項25に記載の記憶媒体。
    The eigenvector is
    An eigenvector of a transmission covariance matrix averaged in an area obtained by combining a plurality of radio resource areas to be subjected to eigenvalue decomposition;
    The storage medium according to claim 25.
  27.  前記初期ベクトルは、
    前記他の無線局が選択したプリコーダに基づいて、所定のテーブルを参照して決定される、
     請求項21に記載の記憶媒体。
    The initial vector is
    Based on a precoder selected by the other radio station, determined with reference to a predetermined table,
    The storage medium according to claim 21.
  28.  前記テーブルは、
    システムで定義されたプリコーダを、前記無線局のアンテナの数に対応するように補正したプリコーダである、
     請求項27に記載の記憶媒体。
    The table is
    The precoder defined in the system is corrected so as to correspond to the number of antennas of the radio station.
    The storage medium according to claim 27.
  29.  前記チャネル情報は、
    前記無線局が推定したチャネル行列である、
     請求項21に記載の記憶媒体。
    The channel information is
    A channel matrix estimated by the wireless station,
    The storage medium according to claim 21.
  30.  前記チャネル情報は、
    前記他の無線局が選択したプリコーダである、
     請求項21に記載の記憶媒体。
    The channel information is
    A precoder selected by the other radio station;
    The storage medium according to claim 21.
PCT/JP2017/001521 2016-01-20 2017-01-18 Calculation method, wireless station, and storage medium WO2017126541A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017562841A JPWO2017126541A1 (en) 2016-01-20 2017-01-18 Calculation method, radio station, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-008497 2016-01-20
JP2016008497 2016-01-20

Publications (1)

Publication Number Publication Date
WO2017126541A1 true WO2017126541A1 (en) 2017-07-27

Family

ID=59361783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001521 WO2017126541A1 (en) 2016-01-20 2017-01-18 Calculation method, wireless station, and storage medium

Country Status (2)

Country Link
JP (1) JPWO2017126541A1 (en)
WO (1) WO2017126541A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615652A (en) * 2020-12-17 2021-04-06 吉首大学 Semi-blind spectrum sensing method based on eigenvalue test and suitable for high-order MIMO

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222742A (en) * 2005-02-10 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Transmitting method and transmitter for spatial multiplex transmission
JP2013543348A (en) * 2010-11-01 2013-11-28 リアデン リミテッド ライアビリティ カンパニー System and method for coordinating transmissions in a distributed wireless system through user clustering
JP2014183582A (en) * 2013-03-15 2014-09-29 Fujitsu Ltd Noise plus interference space covariance matrix determination device and interference rejection combining device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222742A (en) * 2005-02-10 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> Transmitting method and transmitter for spatial multiplex transmission
JP2013543348A (en) * 2010-11-01 2013-11-28 リアデン リミテッド ライアビリティ カンパニー System and method for coordinating transmissions in a distributed wireless system through user clustering
JP2014183582A (en) * 2013-03-15 2014-09-29 Fujitsu Ltd Noise plus interference space covariance matrix determination device and interference rejection combining device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN'ICHI TAJIMA ET AL.: "Low Complexity Eigenvalue Decomposition Method for Massive MIMO", PROCEEDINGS OF THE 2016 IEICE GENERAL CONFERENCE, 1 March 2016 (2016-03-01), pages 397 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112615652A (en) * 2020-12-17 2021-04-06 吉首大学 Semi-blind spectrum sensing method based on eigenvalue test and suitable for high-order MIMO
CN112615652B (en) * 2020-12-17 2022-06-10 吉首大学 Semi-blind spectrum sensing method based on eigenvalue test and suitable for high-order MIMO

Also Published As

Publication number Publication date
JPWO2017126541A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
US8462873B2 (en) Communication system performing interference alignment and interference alignment method
US11706054B2 (en) Methods, distributed base station system, remote radio unit and base band unit system for handling uplink signals
US10840983B2 (en) Apparatus and method for integrated beamforming in wireless communication system
US20150146646A1 (en) Maximizing efficiency of multi-user communications networks
US10708019B2 (en) Apparatus and method for supporting multiple access in wireless communication system
US8744361B2 (en) Devices and methods for transmitting and receiving data using precoding matrix
US9048896B2 (en) Apparatus for multi-user multi-antenna transmission based on double codebook and method for the same
US10511361B2 (en) Method for determining a precoding matrix and precoding module
JP5274664B2 (en) Method for precoding a signal for transmission in a wireless MIMO system
CN114982140A (en) Downlink beamforming in MU-MIMO systems
CN114642019A (en) Method for acquiring channel information
Wei et al. TDD reciprocity calibration for multi-user large-scale (massive) MIMO systems with iterative coordinate descent
US20230412430A1 (en) Inforamtion reporting method and apparatus, first device, and second device
WO2017126541A1 (en) Calculation method, wireless station, and storage medium
US8488708B2 (en) Rotating reference codebook that is used in a multiple-input multiple-output (MIMO) communication system
US9531467B2 (en) Opportunistic downlink interference alignment
Ullah et al. Beyond traditional beamforming: Singular vector projection techniques for mu-mimo interference management
EP3574588A1 (en) Methods and apparatuses for transmit weights
CN106452676B (en) Method and related equipment for coordinated multi-point transmission
CN113676196B (en) Communication method and device
US11848732B2 (en) Steering vector weighting for ZF backhaul transmission
US20230276368A1 (en) Beamforming estimation
WO2022036682A1 (en) Methods, apparatuses, and computer readable media for controlling transmit power
Ogbe et al. Iterative beam alignment algorithms for TDD MIMO systems
CN116264474A (en) Beam forming method, network equipment, device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741418

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017562841

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741418

Country of ref document: EP

Kind code of ref document: A1