WO2022036682A1 - Methods, apparatuses, and computer readable media for controlling transmit power - Google Patents

Methods, apparatuses, and computer readable media for controlling transmit power Download PDF

Info

Publication number
WO2022036682A1
WO2022036682A1 PCT/CN2020/110489 CN2020110489W WO2022036682A1 WO 2022036682 A1 WO2022036682 A1 WO 2022036682A1 CN 2020110489 W CN2020110489 W CN 2020110489W WO 2022036682 A1 WO2022036682 A1 WO 2022036682A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
current
transmission
accelerated
weight
Prior art date
Application number
PCT/CN2020/110489
Other languages
French (fr)
Inventor
Haiyou Guo
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN202080103323.7A priority Critical patent/CN115885551A/en
Priority to PCT/CN2020/110489 priority patent/WO2022036682A1/en
Publication of WO2022036682A1 publication Critical patent/WO2022036682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/221TPC being performed according to specific parameters taking into account previous information or commands using past power control commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/362Aspects of the step size

Definitions

  • Various embodiments relate to methods, apparatuses, and computer readable media for controlling transmit power.
  • transmission powers may be controlled for example for interference management, energy management, connectivity management, or the like.
  • a method including determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and performing a next transmission to the receiver with the next power or the accelerated power.
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one transmitter sharing a common physical channel.
  • the quality of the current transmission may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
  • an apparatus which may be configured to perform at least the method in the first aspect.
  • the apparatus may include at least one processor and at least one memory.
  • the at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and performing a next transmission to the receiver with the next power or the accelerated power.
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one transmitter sharing a common physical channel.
  • the quality of the current transmission may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
  • an apparatus which may be configured to perform at least the method in the first aspect.
  • the apparatus may include means for determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, means for determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and means for performing a next transmission to the receiver with the next power or the accelerated power.
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one transmitter sharing a common physical channel.
  • the quality of the current transmission may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
  • a computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the first aspect.
  • the instructions may cause the apparatus to perform determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and performing a next transmission to the receiver with the next power or the accelerated power.
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one transmitter sharing a common physical channel.
  • the quality of the current transmission may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
  • a method including determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and notifying the next power or the accelerated power to the transmitter.
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the accelerated power may be notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one receiver sharing a common physical channel.
  • the quality of the current reception may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
  • an apparatus which may be configured to perform at least the method in the fifth aspect.
  • the apparatus may include at least one processor and at least one memory.
  • the at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and notifying the next power or the accelerated power to the transmitter.
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the accelerated power may be notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one receiver sharing a common physical channel.
  • the quality of the current reception may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
  • an apparatus which may be configured to perform at least the method in the fifth aspect.
  • the apparatus may include means for determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, means for determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and means for notifying the next power or the accelerated power to the transmitter.
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the accelerated power may be notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one receiver sharing a common physical channel.
  • the quality of the current reception may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
  • a computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the fifth aspect.
  • the instructions may cause the apparatus to perform determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and notifying the next power or the accelerated power to the transmitter.
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the accelerated power may be notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one receiver sharing a common physical channel.
  • the quality of the current reception may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
  • FIG. 1 illustrates a distributed network in an embodiment.
  • FIG. 2 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 3 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 4 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 5 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 6 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 7 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 8 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 9 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 10 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 11 illustrates an example procedure of controlling powers in an embodiment.
  • FIG. 12 illustrates an example method for controlling powers in an embodiment.
  • FIG. 13 illustrates an example apparatus for controlling powers in an embodiment.
  • FIG. 14 illustrates an example apparatus for controlling powers in an embodiment.
  • FIG. 15 illustrates an example method for controlling powers in an embodiment.
  • FIG. 16 illustrates an example apparatus for controlling powers in an embodiment.
  • FIG. 17 illustrates an example apparatus for controlling powers in an embodiment.
  • FIG. 18 illustrates performance of the power control without restarting in an embodiment.
  • FIG. 19 illustrates performance of the power control without restarting in an embodiment.
  • FIG. 20 illustrates performance of the power control with restarting in an embodiment.
  • FIG. 21 illustrates performance of the power control with restarting in an embodiment.
  • Transmission powers may be controlled based on measurements of one or more received powers.
  • a closed-loop power adjustment/control for physical uplink channels such as a physical uplink shared channel (PUSCH) and/or a physical uplink control channel (PUCCH) has been defined in several 3rd generation partnership project (3GPP) technical standards (TS) such as 3GPP TS 36.213/36.212 for the LTE system, 3GPP TS 38.213/38.212 for the NR system, 3GPP TS 25.214 for wideband code division multiple access (WCDMA) , and so on.
  • 3GPP 3rd generation partnership project
  • TS 3rd generation partnership project
  • a distributed or decentralized transmission power control may be applied so that an autonomous power control may be realized based on local measurements and extra costs on signaling cross links may be reduced or avoided.
  • a power control based on a signal to interference plus noise ratio (SINR) tracking such as an iterative power control procedure based on the Foschini-Miljanic algorithm, may be applied to allow admitted communication links (transmitter-receiver pairs) to pursue their target SINRs in accordance with differences between target SINRs and actual SINRs, respectively. Since the power control commands in the 3GPP standards (e.g.
  • 3GPP TS 36.213/36.212 for the LTE system 3GPP TS 38.213/38.212 for the NR system
  • 3GPP TS 25.214 for WCDMA, and so on define a basic step-size for power adjustment/control, based on which multiples of that step-size may be used and smaller step-sizes may be emulated.
  • the SINR-tracking power control may be allowed by the 3GPP standards.
  • a transmitter of a link l (or the l-th link, 0 ⁇ l ⁇ L) , which is also labelled by TX l herein, transmits data to an intended receiver of the link l which also labelled by RX l herein.
  • TX 1 101 may transmit data to RX 1 102.
  • TX 2 103 may transmit data to RX 2 104
  • TX 3 105 may transmit data to RX 3 106
  • TX L 107 may transmit data to RX L 108, and so on.
  • communications of a plurality of links may share a common physical channel, which, however, may bring mutual interferences.
  • the communication between TX 1 101 and RX 1 102 may be interfered by the transmissions from one or more another transmitters such as TX 2 103, TX 3 105, TX L 107, and so on.
  • G lm (0 ⁇ m ⁇ L) denotes a channel gain between TX m and RX l , and TX l is assigned with a transmit power p l . Then, SINR measured at RX l (or on the link l) may be
  • the links in the distributed network 100 as illustrated in FIG. 1 pursue their target SINRs, respectively, for maintaining a minimum level of received signals.
  • the links in the network 100 may meet target SINRs at a minimum power cost, so as to reduce the interference and power consumption. Accordingly, the power control seeks for an optimal power assignment p * as the following:
  • ⁇ l denotes a target SINR of the link l.
  • p * may be also derived through the following closed-from expression:
  • I is an identity matrix
  • diag ( ⁇ ) denotes a diagonal matrix formed by the components of a vector
  • denotes an operation of Schur product
  • [ ⁇ 1 ⁇ 2 ... ⁇ L ] T
  • v [1/G 11 1/G 22 ... 1/G LL ] T
  • F denotes an L-by-L matrix representing cross-channel interfering, and for 0 ⁇ k ⁇ L
  • an initial transmission on the link l at an initial time 0 may be performed with an initial power p l (0)
  • a power p l (t) for performing a transmission on the link l at a time t (t>0) may be determined based on a power p l (t-1) for performing a transmission on the link l at a previous time t-1 and actually measured SINR on the link l at the time t-1.
  • the power p l (t) may be determined as:
  • a vector sequence of ⁇ p (0) , p (1) , ..., p (t) ⁇ may be obtained.
  • p (t) may converge to the optimal power assignment p * as t ⁇ with a asymptotical convergence rate -log ⁇ A , regardless of the initial p (0) .
  • the value of L and the order of the matrix A may increase due to massive connectivity, and target SINRs of ⁇ may also increase due to high data demands, which may lead to rise in ⁇ A and further a reduction of the convergence rate.
  • ⁇ A may increase from 0.7464 to 0.9330 as the target SINR increases from 10 dB to 12.5 dB, and the convergence rate may further degrade in a case of higher target SINR.
  • the power control procedure based on SINR tracking may become inefficient or even inapplicable as ⁇ A ⁇ 1.
  • a deflation solution for controlling transmission powers.
  • the interfering matrix A is modified with a rank-one matrix, so that the convergence rate of the deflation solution for the power control may be determined by a subdominant eigenvalue with the second largest modulus instead of the dominant eigenvalue with the largest modulus in the matrix A.
  • the asymptotical convergence rate of the deflation solution for the power control may be –log
  • the rank-one matrix of xb T may be applied to modify the original interfering matrix A by displacing the eigenvalue of ⁇ A (for example with zero) while keeping other eigenvalues unchanged so that the eigenvalue ⁇ 2 becomes the eigenvalue with largest modulus of the modified matrix B.
  • a faster sequence converging to q * may be derived from the original process of and may be treated as an approximation to q * .
  • q * may be described by the following closed-form expression:
  • the l-th component of p * may be estimated by (also denoted as herein) , which is independent of x and b.
  • the links in the network 100 may independently derive the knowledge of ⁇ A from local knowledge of may involves a parallel computation suitable for distributed implementation.
  • an estimate of ⁇ A may be obtained based on
  • an estimate of p * at time t+1 or an accelerated power at time t+1 may be
  • an estimate of p * or an accelerated power at the time t+1 may be obtained at least as the followings:
  • FIG. 2 illustrates an example procedure 200 of the distributed deflation power control in an embodiment, which is performed in TX l in the network 100.
  • a determination may be made of whether t+1 is a member of a predetermined increasing sequence of integers or not.
  • the predetermined increasing sequence may include at least one integers being equal to or larger than 2, where an increment of two successive integers may be larger than 2.
  • an increasing sequence of one or more integers may be configured for the TX l , where the minimum integer of the one or more integers may be larger than 2, and a difference between any two integers of the one or more integers may be larger than 2.
  • an increasing sequence of one or more integers may be configured for the TX l , may include single integer with a value larger than 2.
  • multiple transmitters sharing the same physical channel, such as TX l and TX l+1 in the network 100 are configured with the same predetermined increasing sequence to maintain a synchronous procedure.
  • an operation 208 may be performed so that the transmit power P trans may be updated with p l (t+1) determined in the operation 204, and t may be updated with t+1 in an operation 209 so that a next transmission with the transmit power P trans may be enabled in the operation 202 of the next loop.
  • ⁇ A for the link l at time t+1 may be determined based on the above formula (17) from and which is used in a previous loop for a previous transmission from TX l to RX l at time t-1, and then may be determined based on the above formula (22) .
  • t>1 may also be determined based on a ratio of a difference between a quality indicator used to determine p l (t+1) and a quality indicator used to determine p l (t) to a difference between the quality indicator used to determine p l (t) and a quality indicator used to determine p l (t-1) , and then may be determined based on the above formula (22) .
  • the quality indicator associated with the concurrent transmissions with p (t) at time t may be the interference power or the SINR measured by RX l or TX l at time t.
  • TXl performs the transmissions except for t is a member of the predetermined increasing sequence with a transmit power which is determined for example based on the above formula (5) , and determines a more accurate power assignment for actual transmission for example in response to reaching a predetermined number of transmission that may be a member of the predetermined increasing sequence or at the end of the power control.
  • TX l performs a transmission to RX l with an initial power p l (0)
  • RX l measures the reception quality of the transmission performed with p l (0) , such as SINR l (0) , and feedbacks the measured reception quality SINR l (0) to TX l
  • TX l performs a transmission to RX l with a power p l (1) which is determined in the operation 204 based on the formula (5) from p l (0) and SINR l (0)
  • RX l measures the reception quality of the transmission performed with p l (1) , such as SINR l (1) , and feedbacks the measured reception quality SINR l (1) to TX l
  • TX l performs a transmission to RX l with a power p l (T trans -1) which is determined in
  • FIG. 4 illustrates another example procedure 400 of the distributed deflation power control in an embodiment, which is performed in TX l in the network 100.
  • a difference between the example procedure 400 and the example procedure 200 includes that, in the example procedure 400, in an operation 401, a determination may be made of whether t+1 reaches a predetermined restarting period or restarting window denoted by T restart ⁇ 2 or not.
  • TX l performs a transmission to RX l with an initial power p l (0)
  • RX l measures the reception quality of the transmission performed with p l (0) , such as SINR l (0) , and feedbacks the measured reception quality SINR l (0) to TX l
  • TX l performs a transmission to RX l with a power p l (1) which is determined in the operation 204 based on the formula (5) from p l (0) and SINR l (0)
  • RX l measures the reception quality of the transmission performed with p l (1) , such as SINR l (1) , and feedbacks the measured reception quality SINR l (1) to TX l ; and so on.
  • T restart is selected as the restarting period.
  • TX l performs a transmission to RX l with a power p l (T restart -1) which is determined in the operation 204 based on the formula (5) from p l (T restart -2) and SINR l (T restart -2) , and RX l measures reception quality of the transmission performed with p l (T restart -1) , such as SINR l (T restart -1) , and feedbacks the measured quality SINR l (T restart -1) to TX l .
  • TX l performs a transmission to RX l with a power p l (1') which is determined in the operation 204 based on the formula (5) from p l (0') and SINR l (0') , and RX l measures reception quality of the transmission performed with p l (1') , such as SINR l (1') , and feedbacks the measured reception quality SINR l (1') to TX l , and so on.
  • restarting period T restart may be different for different loops of the example procedure 400 by selecting from the one or more different integers.
  • the one or more integers may be common for one or more transmitters sharing the same physical channel such as TX l and TX l+1 in the network 100, so that the restarting of the power control in the one or more transmitters sharing the same physical channel may be synchronized.
  • determined based on the formula (17) at the end of the initial restarting period may also be kept and used for subsequent process, so as to avoid a possible degradation in convergence rate.
  • a more accurate power assignment may be provided as an initial configuration at the beginning of respective restarting periods, so that actual transmissions over the air may be improved, for example.
  • FIG. 6 illustrates another example procedure 600 of the distributed deflation power control in an embodiment, which is performed in TX l in the network 100.
  • the example procedure 600 may include one or more operations in the above example procedures, such as operations 201, 202, 203, 204, 206, 207, 208, and 209.
  • the operation 206 for determining is performed in a case where t>0 is determined by an operation 601 after the operation 204, and then an operation 602 is included in the example procedure 600 for checking whether satisfies a predetermined convergence condition or whether t+1 is a member of a predetermined increasing sequence of integers. If the check in the operation 602 returns “Yes” , the operation 207 may be performed, or otherwise the operation 208 may be performed.
  • the TX l may check whether is below a predetermined threshold indicating a convergence. In another example, in the operation 602, the TX l may determine whether satisfies a predetermined convergence condition based on and one or more accelerated powers calculated in the operation 206 of one or more previous loops of the example procedure 600. For example, if a difference of a predetermined number of accelerated powers including at least and are below a predetermined threshold indicating converge, or if a sequence of a predetermined number of accelerated powers including at least and converge. It is appreciated that the disclosure is not limited to a manner of checking whether power assignment becomes to converge.
  • an execution of 207 or 208 may be determined adaptively based on current accelerated power and/or one or more historical accelerated powers, and more accurate power assignment may be provided during the distributed deflation power control.
  • the distributed deflation power control which may be performed in TX l in the network 100 is not limited to the above examples.
  • One or more examples may be combined, and/or one or more features/operations/aspects may be modified, added, or deleted in another example.
  • the distributed deflation power control based on the principle in the disclosure may be also implemented in RX l in the network 100.
  • FIG. 7 illustrates another example procedure 700 of the distributed deflation power control in an embodiment, which is performed in RX l in the network 100.
  • RX l may receive data which is transmitted from TX l in the network 100 with a power p l (t) .
  • An operation 702 may be performed by RX l to measure reception quality of the transmission received in the operation 701, for example by measuring SINR l (t) .
  • RX l may determine p l (t+1) from p l (t) and SINR l (t) based on an iteration defined by the above formula (5) .
  • an operation 704 a determination may be made of whether t+1 is a member of a predetermined increasing sequence of integers or not.
  • the predetermined increasing sequence may include at least one integer being equal to or larger than 2, an increment of two successive integers may be larger than 2. If t+1 is not a member of the predetermined increasing sequence , an operation 707 may be performed to notify the power p l (t+1) determined in the operation 704, and t may be updated with t+1 in an operation 708 so that a next reception at time t+1 may be enabled in the operation 701 of the next loop.
  • an accelerate power may be determined in an operation 705, and may be notified to the TX l in an operation 706. Then, t may be updated with t+1 in the operation 708 so that the next reception may be enabled in the next operation 701.
  • the accelerate power may be determined based on the principle of the disclosure in any suitable manners.
  • any suitable manners may be adopted to notify p l (t+1) or for an example, p l (t+1) or may be quantized and notified through a power control command. For another example, an increment or decrement of p l (t+1) or may be quantized and notified through a power control command.
  • the powers used by TX l to perform transmissions are notified by the RX l , where a transmit power except for t is a member of the predetermined increasing sequence may be determined for example based on the above formula (5) , and a more accurate power assignment for actual transmission may be determined for example in response to reaching a predetermined number of transmission that is a member of the predetermined increasing sequence or at the end of the power control.
  • TX l performs a transmission to RX l with an initial power p l (0)
  • RX l measures reception quality of the transmission performed with p l (0) , such as SINR l (0) , and feeds p l (1) back to TX l
  • p l (1) is determined in the operation 702 based on the formula (5) from p l (0) and SINR l (0)
  • RX l measures reception quality of the transmission performed with p l (1) , such as SINR l (1) , and feeds p l (2) back to TX l
  • p l (2) is determined in the operation 702 based on the formula (5) from p l (1) and SINR l (1) , and so
  • TX l may perform a transmission to RX l with the accelerated power notified by RX l at time T trans -1.
  • FIG. 7 illustrates another example procedure 900 of the distributed deflation power control in an embodiment, which is performed in RX l in the network 100.
  • a difference between the example procedure 900 and the example procedure 700 includes that, in the example procedure 900, in an operation 901, a determination may be made of whether t+1 reaches a predetermined restarting period or restarting window denoted by T restart ⁇ 2 or not.
  • TX l performs a transmission to RX l with an initial power p l (0)
  • RX l measures reception quality of the transmission performed with p l (0) , such as SINR l (0) , and feeds p l (1) back to TX l
  • p l (1) is determined in the operation 702 based on the formula (5) from p l (0) and SINR l (0)
  • RX l measures reception quality of the transmission performed with p l (1) , such as SINR l (1) , and feeds p l (2) back to TX l
  • p l (2) is determined in the operation 702 based on the formula (5) from p l (1) and SINR l (1) , and so
  • SINR l SINR l
  • TX l performs a transmission to RX l with an accelerated power and RX l measures reception quality of the transmission performed with such as SINR l (0') , and feeds p l (1') back to TX l , p l (1') is determined in the operation 702 based on the formula (5) from p l (0') and SINR l (0') .
  • a restarting mechanism may be implemented in RX l , and one or more features/aspects described above with respect to the restarting mechanism implemented in TX l may also be applied or combined in the restarting mechanism implemented in RX l .
  • one or more integers e.g. an increasing sequence of one or more integers
  • the minimum integer of the one or more integers may be larger than 2
  • a difference between any two integers of the one or more integers may be larger than 2.
  • the one or more integers may include single integer with a value larger than 2.
  • different restarting periods may be adopted for different target SINRs.
  • restarting periods may be different for different loops of the example procedure 900.
  • the one or more integers may be common for one or more receivers sharing the same physical channel such as RX l and RX l+1 in the network 100, so that the restarting of the power control in the one or more receivers sharing the same physical channel may be synchronized.
  • FIG. 11 illustrates another example procedure 1100 of the distributed deflation power control in an embodiment, which is performed in RX l in the network 100.
  • the example procedure 1100 may include one or more operations in the above example procedures, such as operations 701, 902, 702, 703, 705, 706, 707, and 708.
  • the operation 705 for determining is performed in a case where t>0 is determined by an operation 1101 after the operation 703, and then an operation 1102 is included in the example procedure 1100 for checking whether satisfies a predetermined convergence condition or whether t+1 is a member of a predetermined increasing sequence of integers. If the check in the operation 1102 returns “Yes” , the operation 706 may be performed, or otherwise the operation 707 may be performed.
  • the implementation of the operation 1102 may be similar to that of the operation 602, which is not repeated.
  • the distributed deflation power control which may be performed in RX l in the network 100 is not limited to the above examples.
  • One or more examples may be combined, and/or one or more features/operations/aspects may be modified, added, or deleted in another example, which may be similar to the distributed deflation power control in TX l in the network 100, details of which are not repeated.
  • FIG. 12 illustrates an example method 1200 for controlling powers in an embodiment, which may be performed for example in a transmitter such as one or more of TX 1 101, TX 2 103, TX 3 105, ..., TX L 107 or the like in the network 100.
  • Implementation examples of the example method 1200 may include, but are not limited to, the above example procedures 200, 400, 600, 600, 800, and so on.
  • the example method 1200 may include an operation 1201 of determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, an operation 1202 of determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and an operation 1203 of performing a next transmission to the receiver with the next power or the accelerated power.
  • the transmitter TX l may receive SINR l (t) from RX l , and may determine the next power p l (t+1) from the current power p l (t) for performing the current transmission to the receiver RX l at the current time t for example based on Then, in the operation 1202, the transmitter TX l may determine the accelerated power based on the next power p l (t+1) , the current power p l (t) , and the previous power p l (t-1) for performing the previous transmission to the receiver RX l at the previous time t-1. Then, in the operation 1202, the transmitter TX l may perform the next transmission at the next time t+1 to the receiver RX l with the next power p l (t+1) or the accelerated power
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one transmitter sharing a common physical channel, so that a synchronized process of updating the transmission power with the accelerated power may be allowed for the transmitters sharing the common physical channel.
  • reception quality e.g. signal to noise ratio or SNR etc.
  • SNR signal to noise ratio
  • FIG. 13 illustrates an example apparatus 1300 for controlling powers in an embodiment, which may be for example at least a part of one of TX 1 101, TX 2 103, TX 3 105, ..., TX L 107 or the like in the network 100.
  • the example apparatus 1300 may include at least one processor 1301 and at least one memory 1302 that may include computer program code 1303.
  • the at least one memory 1302 and the computer program code 1303 may be configured to, with the at least one processor 1301, cause the apparatus 1300 at least to perform at least the operations of the example method 1200 described above.
  • the at least one processor 1301 in the example apparatus 1300 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) . Further, the at least one processor 1301 may also include at least one other circuitry or element not shown in FIG. 13.
  • at least one hardware processor including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) .
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • the at least one memory 1302 in the example apparatus 1300 may include at least one storage medium in various forms, such as a volatile memory and/or a non-volatile memory.
  • the volatile memory may include, but not limited to, for example, a random-access memory (RAM) , a cache, and so on.
  • the non-volatile memory may include, but not limited to, for example, a read only memory (ROM) , a hard disk, a flash memory, and so on.
  • the at least memory 1302 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
  • the example apparatus 1300 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
  • the circuitries, parts, elements, and interfaces in the example apparatus 1300 may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
  • FIG. 14 illustrates an example apparatus 1400 for controlling powers in an embodiment, which may be for example at least a part of one of TX 1 101, TX 2 103, TX 3 105, ..., TX L 107 or the like in the network 100.
  • the example apparatus 1400 may include means for performing operations of the example method 1300 described above in various embodiments.
  • the apparatus 1400 may include means 1401 for performing the operation 1201 of the example method 1200, means 1402 for performing the operation 1202 of the example method 1200, and means 1403 for performing the operation 1203 of the example method 1200.
  • at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 1400.
  • examples of means in the apparatus 1400 may include circuitries.
  • an example of means 1401 may include a circuitry configured to perform the operation 1201 of the example method 1200
  • an example of means 1402 may include a circuitry configured to perform the operation 1202 of the example method 1200
  • an example of means 1403 may include a circuitry configured to perform the operation 1203 of the example method 1200.
  • examples of means may also include software modules and any other suitable function entities.
  • circuitry throughout this disclosure may refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) ; (b) combinations of hardware circuits and software, such as (as applicable) (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) ; and (c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
  • hardware-only circuit implementations such as implementations in only analog and/or digital circuitry
  • combinations of hardware circuits and software such as (as applicable) (i) a
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • FIG. 15 illustrates an example method 1500 for controlling powers in an embodiment, which may be performed for example in a receiver such as one or more of RX 1 102, RX 2 104, RX 3 106, ..., RX L 108 or the like in the network 100.
  • Implementation examples of the example method 1500 may include, but are not limited to, the above example procedures 700, 900, 1100, and so on.
  • the example method 1500 may include an operation 1501 of determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, an operation 1502 of determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and an operation 1503 of notifying the next power or the accelerated power to the transmitter.
  • the receiver RX l may receive data transmitted from the transmitter TX l using the current power p l (t) at current time t, measure SINR l (t) , and determine the next power p l (t+1) from the measured SINR l (t) and the current power p l (t) based on Then, in the operation 1502, the receiver RX l may determine the accelerated power based on the next power p l (t+1) , the current power p l (t) , and the previous power p l (t-1) with which the transmitter TX l performs the previous transmission to the receiver RX l at the previous time t-1.
  • the receiver RX l may notify or transmit information on the next power p l (t+1) or the accelerated power to the transmitter TX l , so that the transmitter TX l , may perform the next transmission to the receiver RX l at the next time t+1 with the power notified from the RX l at the current time t.
  • the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
  • the accelerated power may be notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  • the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
  • the at least one predetermined number may be common for more than one receiver sharing a common physical channel, so that an synchronized process of updating the transmission power with the accelerated power may be allowed for the receivers sharing the common physical channel.
  • reception quality e.g. signal to noise ratio or SNR etc.
  • SNR signal to noise ratio
  • FIG. 16 illustrates an example apparatus 1600 for controlling powers in an embodiment, which may be for example at least a part of one of RX 1 102, RX 2 104, RX 3 106, ..., RX L 108 or the like in the network 100.
  • the example apparatus 1600 may include at least one processor 1601 and at least one memory 1602 that may include computer program code 1603.
  • the at least one memory 1602 and the computer program code 1603 may be configured to, with the at least one processor 1601, cause the apparatus 1600 at least to perform at least the operations of the example method 1500 described above.
  • the at least one processor 1601 in the example apparatus 1300 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a CPU, a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example FPGA and ASIC. Further, the at least one processor 1601 may also include at least one other circuitry or element not shown in FIG. 16.
  • the at least one memory 1602 in the example apparatus 1600 may include at least one storage medium in various forms, such as a volatile memory and/or a non-volatile memory.
  • the volatile memory may include, but not limited to, for example, a RAM, a cache, and so on.
  • the non-volatile memory may include, but not limited to, for example, a ROM, a hard disk, a flash memory, and so on.
  • the at least memory 1602 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
  • the example apparatus 1600 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
  • the circuitries, parts, elements, and interfaces in the example apparatus 1600 may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
  • FIG. 17 illustrates an example apparatus 1700 for controlling powers in an embodiment, which may be for example at least a part of one of RX 1 102, RX 2 104, RX 3 106, ..., RX L 108 or the like in the network 100.
  • the example apparatus 1700 may include means for performing operations of the example method 1500 described above in various embodiments.
  • the apparatus 1700 may include means 1701 for performing the operation 1501 of the example method 1500, means 1702 for performing the operation 1502 of the example method 1500, and means 1703 for performing the operation 1503 of the example method 1500.
  • at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 1700.
  • examples of means in the apparatus 1700 may include circuitries.
  • an example of means 1701 may include a circuitry configured to perform the operation 1501 of the example method 1500
  • an example of means 1702 may include a circuitry configured to perform the operation 1502 of the example method 1500
  • an example of means 1703 may include a circuitry configured to perform the operation 1503 of the example method 1500.
  • examples of means may also include software modules and any other suitable function entities.
  • a transmitter communicating with the receiver such as TX l
  • the transmitter such as TX l may include means for receiving the power notified by the receiver, such as one or more circuits or one or more processors.
  • Another example embodiment may relate to computer program codes or instructions which may cause an apparatus to perform at least respective methods described above.
  • Another example embodiment may be related to a computer readable medium having such computer program codes or instructions stored thereon.
  • a computer readable medium may include at least one storage medium in various forms such as a volatile memory and/or a non-volatile memory.
  • the volatile memory may include, but not limited to, for example, a RAM, a cache, and so on.
  • the non-volatile memory may include, but not limited to, a ROM, a hard disk, a flash memory, and so on.
  • the non-volatile memory may also include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
  • the deflated process mimics a faster iteration based on a deflated matrix whose eigenvalues are same as the original interfering matrix, except that the dominant eigenvalue in original matrix is replaced by zero in the deflated matrix. Therefore, the convergence rate of the accelerated power control is determined by the subdominant eigenvalue with the second largest modulus instead of the dominant eigenvalue with largest modulus, resulting in substantial gain in convergence rate, promising a fast and accurate tracking capability for time-varying wireless channel.
  • the solution of this disclosure modifies the original interfering matrix with a rank-one matrix that is designed for easing distributed implementation.
  • the distributed deflation solution of this disclosure may be carried out in an elegant manner.
  • the solution of this disclosure may be implemented based on the local historical observations of transmit power, without extra cost of measurements and information exchange across distributed links.
  • a wireless network including 5 concurrent links is simulated where all link shares the same target SINR.
  • the simulation is conducted under a given channel gain matrix that is listed in the above Table 1, and performance comparisons between a traditional SINR-tracking power control manner based on Foschini-Miljanic algorithm (shortened as “FM” herein) and the distributed deflation power control solution (shortened as “DDPC” herein) in an embodiment, in terms of normalized absolute error for different target SINRs, respectively.
  • FM Foschini-Miljanic algorithm
  • DDPC distributed deflation power control solution
  • FIG. 18 illustrates a performance comparison in the case of target SINR of 10 dB and DDPC without restarting mechanism
  • FIG. 19 illustrates a performance comparison in the case of target SINR of 12.5 dB and DDPC without restarting mechanism.
  • the DDPC may significantly reduce the residual error by several orders of magnitude under the same number of iteration.
  • the gain in the convergence rate may be translated to gain in power saving, time saving and signalling reduction, promising fast and accurate tracking capability for time-varying wireless environments.
  • target SINR of 10 dB at least 37.5%reduction in iteration time can be achieved for the normalized residual error less than 10 -5 .
  • the gain becomes more manifest as ⁇ A increases and closes to one.
  • target SINR of 12.5 dB at least 66%reduction in iteration time can be achieved for the normalized residual error less than 10 -5 .
  • FIG. 20 illustrates a performance comparison in the case of target SINR of 10 dB and DDPC with a restarting period being 20
  • FIG. 21 illustrates a performance comparison in the case of target SINR of 12.5 dB and DDPC with a restarting period being 40. From FIG. 20 and FIG. 21, it can be seen that the DDPC may significantly reduce the residual error.
  • the receiver and the transmitter herein may include any suitable apparatuses which may communicate based on any suitable communication standards such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • Examples of the receiver and/or the transmitter may include, but are not limited to, a network device such as a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated and Access Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device; or a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile
  • the words “comprise, ” “comprising, ” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to. ”
  • the word “coupled” refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements.
  • the word “connected” refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements.
  • conditional language used herein such as, among others, “can, ” “could, ” “might, ” “may, ” “e.g., ” “for example, ” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states.
  • conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.

Abstract

Disclosed are methods for controlling transmit power. An example method may include determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and performing a next transmission to the receiver with the next power or the accelerated power. Related apparatuses and computer readable media are also disclosed.

Description

METHODS, APPARATUSES, AND COMPUTER READABLE MEDIA FOR CONTROLLING TRANSMIT POWER TECHNICAL FIELD
Various embodiments relate to methods, apparatuses, and computer readable media for controlling transmit power.
BACKGROUND
In a telecommunication system or network such as a long term evolution (LTE) system, a new radio (NR or 5G) system, or a non-cellular wireless network, transmission powers may be controlled for example for interference management, energy management, connectivity management, or the like.
SUMMARY
In a first aspect, disclosed is a method including determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and performing a next transmission to the receiver with the next power or the accelerated power.
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one transmitter sharing a common physical channel.
In some embodiments, the quality of the current transmission may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
In a second aspect, disclosed is an apparatus which may be configured to perform at least the method in the first aspect. The apparatus may include at least one processor and at least one memory. The at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and performing a next transmission to the receiver with the next power or the accelerated power.
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one transmitter sharing a common physical channel.
In some embodiments, the quality of the current transmission may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
In a third aspect, disclosed is an apparatus which may be configured to perform at least the method in the first aspect. The apparatus may include means for determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, means for determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and means for performing a next transmission to the receiver with the next power or the accelerated power.
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one transmitter sharing a common physical channel.
In some embodiments, the quality of the current transmission may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
In a fourth aspect, a computer readable medium is disclosed. The computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the first aspect. The instructions may cause the apparatus to perform determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, determining an accelerated power based on the  current power, the next power, and a previous power for performing a previous transmission to the receiver, and performing a next transmission to the receiver with the next power or the accelerated power.
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one transmitter sharing a common physical channel.
In some embodiments, the quality of the current transmission may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
In a fifth aspect, disclosed is a method including determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and notifying the next power or the accelerated power to the transmitter.
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the accelerated power may be notified to the transmitter  in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one receiver sharing a common physical channel.
In some embodiments, the quality of the current reception may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
In a sixth aspect, disclosed is an apparatus which may be configured to perform at least the method in the fifth aspect. The apparatus may include at least one processor and at least one memory. The at least one memory may include computer program code, and the at least one memory and the computer program code may be configured to, with the at least one processor, cause the apparatus to perform determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and notifying the next power or the accelerated power to the transmitter.
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the accelerated power may be notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive  integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one receiver sharing a common physical channel.
In some embodiments, the quality of the current reception may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
In a seventh aspect, disclosed is an apparatus which may be configured to perform at least the method in the fifth aspect. The apparatus may include means for determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, means for determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and means for notifying the next power or the accelerated power to the transmitter.
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the accelerated power may be notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one receiver sharing a common physical channel.
In some embodiments, the quality of the current reception may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
In an eighth aspect, a computer readable medium is disclosed. The computer readable medium may include instructions stored thereon for causing an apparatus to perform the method in the fifth aspect. The instructions may cause the apparatus to perform  determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and notifying the next power or the accelerated power to the transmitter.
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the accelerated power may be notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one receiver sharing a common physical channel.
In some embodiments, the quality of the current reception may include at least one of a signal to noise ratio, a signal to interference plus noise ratio, or the like.
BRIEF DESCRIPTION OF THE DRAWINGS
Some embodiments will now be described, by way of non-limiting examples, with reference to the accompanying drawings.
FIG. 1 illustrates a distributed network in an embodiment.
FIG. 2 illustrates an example procedure of controlling powers in an embodiment.
FIG. 3 illustrates an example procedure of controlling powers in an embodiment.
FIG. 4 illustrates an example procedure of controlling powers in an embodiment.
FIG. 5 illustrates an example procedure of controlling powers in an embodiment.
FIG. 6 illustrates an example procedure of controlling powers in an embodiment.
FIG. 7 illustrates an example procedure of controlling powers in an embodiment.
FIG. 8 illustrates an example procedure of controlling powers in an embodiment.
FIG. 9 illustrates an example procedure of controlling powers in an embodiment.
FIG. 10 illustrates an example procedure of controlling powers in an embodiment.
FIG. 11 illustrates an example procedure of controlling powers in an embodiment.
FIG. 12 illustrates an example method for controlling powers in an embodiment.
FIG. 13 illustrates an example apparatus for controlling powers in an embodiment.
FIG. 14 illustrates an example apparatus for controlling powers in an embodiment.
FIG. 15 illustrates an example method for controlling powers in an embodiment.
FIG. 16 illustrates an example apparatus for controlling powers in an embodiment.
FIG. 17 illustrates an example apparatus for controlling powers in an embodiment.
FIG. 18 illustrates performance of the power control without restarting in an embodiment.
FIG. 19 illustrates performance of the power control without restarting in an embodiment.
FIG. 20 illustrates performance of the power control with restarting in an embodiment.
FIG. 21 illustrates performance of the power control with restarting in an embodiment.
DETAILED DESCRIPTION
Transmission powers may be controlled based on measurements of one or more received powers. For example, a closed-loop power adjustment/control for physical uplink channels such as a physical uplink shared channel (PUSCH) and/or a physical uplink control  channel (PUCCH) has been defined in several 3rd generation partnership project (3GPP) technical standards (TS) such as 3GPP TS 36.213/36.212 for the LTE system, 3GPP TS 38.213/38.212 for the NR system, 3GPP TS 25.214 for wideband code division multiple access (WCDMA) , and so on. For example in a case of lacking central coordination or global information such as channel state information (CSI) , a distributed or decentralized transmission power control (also referred as “power control” herein) may be applied so that an autonomous power control may be realized based on local measurements and extra costs on signaling cross links may be reduced or avoided. For example, a power control based on a signal to interference plus noise ratio (SINR) tracking, such as an iterative power control procedure based on the Foschini-Miljanic algorithm, may be applied to allow admitted communication links (transmitter-receiver pairs) to pursue their target SINRs in accordance with differences between target SINRs and actual SINRs, respectively. Since the power control commands in the 3GPP standards (e.g. 3GPP TS 36.213/36.212 for the LTE system, 3GPP TS 38.213/38.212 for the NR system, 3GPP TS 25.214 for WCDMA, and so on) define a basic step-size for power adjustment/control, based on which multiples of that step-size may be used and smaller step-sizes may be emulated. Thus, the SINR-tracking power control may be allowed by the 3GPP standards.
As illustrated in FIG. 1, in a distributed network 100 including L (L>0) links (transmitter-receiver pairs) , a transmitter of a link l (or the l-th link, 0<l≤L) , which is also labelled by TX l herein, transmits data to an intended receiver of the link l which also labelled by RX l herein. For example, as shown by the thick solid arrow from TX 1 101 to RX 1 102 in FIG. 1, TX 1 101 may transmit data to RX 1 102. Similarly, TX 2 103 may transmit data to RX 2 104, TX 3 105 may transmit data to RX 3 106, and TX L 107 may transmit data to RX L 108, and so on. To reuse spectrum resources, communications of a plurality of links may share a common physical channel, which, however, may bring mutual interferences. For example, as illustrated by the dashed arrows from TX 2 103, TX 3 105, TX L 107, and so on to RX 1 in FIG. 1, the communication between TX 1 101 and RX 1 102 may be interfered by the transmissions from one or more another transmitters such as TX 2 103, TX 3 105, TX L 107, and so on.
Herein, G lm (0<m≤L) denotes a channel gain between TX m and RX l, and TX l is assigned with a transmit power p l. Then, SINR measured at RX l (or on the link l) may be
Figure PCTCN2020110489-appb-000001
where p= [p 1 p 2 … p LT and
Figure PCTCN2020110489-appb-000002
denotes a background noise power incurring at RX l accounting for a total effect of the outside interference and thermal noise.
The links in the distributed network 100 as illustrated in FIG. 1 pursue their target SINRs, respectively, for maintaining a minimum level of received signals. For example, it is expected that the links in the network 100 may meet target SINRs at a minimum power cost, so as to reduce the interference and power consumption. Accordingly, the power control seeks for an optimal power assignment p *as the following:
Figure PCTCN2020110489-appb-000003
where β l denotes a target SINR of the link l. In theory, the optimal power assignment p *may be also derived through the following closed-from expression:
p *= (I-diag (βοv) F)  -1 diag (βοv) n      (3)
where I is an identity matrix, diag (·) denotes a diagonal matrix formed by the components of a vector, ο denotes an operation of Schur product, β= [β 1 β 2 … β LT, v= [1/G 11 1/G 22 … 1/G LLT
Figure PCTCN2020110489-appb-000004
F denotes an L-by-L matrix representing cross-channel interfering, and for 0 < k ≤ L,
Figure PCTCN2020110489-appb-000005
In a case where the SINR tracking power control is applied to the network 100, an initial transmission on the link l at an initial time 0 may be performed with an initial power p l (0) , and a power p l (t) for performing a transmission on the link l at a time t (t>0) may be determined based on a power p l (t-1) for performing a transmission on the link l at a previous time t-1 and actually measured SINR on the link l at the time t-1. For example, the power p l (t) may be determined as:
Figure PCTCN2020110489-appb-000006
where SINR l (p (t-1) ) denotes SINR actually measured based on the concurrent transmissions caused by the  links  1, 2, …, and L with power vector p (t-1) = [p 1 (t-1) , p 2 (t-1) , ..., p L (t-1) ] at time t-1, which may be also denoted as SINR l (t-1) herein for simplicity. Thus, in an iteration process based on the above formula (5) , a power p l (t+1) may be determined based on p l (t) and SINR l (p (t) ) or SINR l (t) which denotes SINR actually measured based on the concurrent transmissions caused by the  links  1, 2, …, and L with power vector p (t) = [p 1 (t) , p 2 (t) , ..., p L (t) ] at time t, or the like.
For analysis convenience, the iterative procedure based on the above formula (5) may be also expressed in the following form of matrix:
Figure PCTCN2020110489-appb-000007
where p (0) = [p 1 (0) , p 2 (0) , ..., p L (0) ] , A=diag (βοv) F is an interfering matrix accounting the total effect of interfering situation and SINR assignments, and T A (. ) denotes a mapping with respect to the interfering matrix A.
Thus, from the initial time to the time t, a vector sequence of {p (0) , p (1) , ..., p (t) } may be obtained. When the spectrum radius ρ A of the matrix A satisfies ρ A<1, p (t) may converge to the optimal power assignment p *as t→∞ with a asymptotical convergence rate -logρ A, regardless of the initial p (0) .
For example in a case where the network involves massive connectivity with high data demands, the value of L and the order of the matrix A may increase due to massive connectivity, and target SINRs of β may also increase due to high data demands, which may lead to rise in ρ A and further a reduction of the convergence rate. For example, in a case  where L=5 and the channel gain matrix G lm is given according to Table 1, ρ A may increase from 0.7464 to 0.9330 as the target SINR increases from 10 dB to 12.5 dB, and the convergence rate may further degrade in a case of higher target SINR. Then, in some cases such as a mobile network with fast time-variant wireless channel, the power control procedure based on SINR tracking may become inefficient or even inapplicable as ρ A→1.
Table 1
1.10194588439936e-07 8.41898684194568e-08 1.53574617266426e-08 1.16224589656660e-09 1.37251649708510e-09
3.60736560897660e-09 1.84184128703664e-06 4.14929688608175e-11 3.83803201299795e-11 2.03633863933387e-07
1.73937439527428e-10 2.15795864030339e-09 6.46092004913417e-05 5.67904664792682e-08 5.64430331759815e-11
1.18575922136206e-09 1.58307017098643e-09 2.46791667879707e-08 2.09606162299721e-05 1.15945398466017e-10
2.49260848948694e-09 1.32444587671931e-09 2.95064978814982e-09 4.11836894997452e-10 7.36295297267865e-07
In various embodiments, disclosed is a deflation solution for controlling transmission powers. In principle of the deflation solution, the interfering matrix A is modified with a rank-one matrix, so that the convergence rate of the deflation solution for the power control may be determined by a subdominant eigenvalue with the second largest modulus instead of the dominant eigenvalue with the largest modulus in the matrix A. For example, if the nonnegative matrix A has L eigenvalues λ 1, λ 2, λ 3…λ L and ρ A= |λ 1| > |λ 2| ≥ |λ 3| ≥ …≥ |λ L|, the asymptotical convergence rate of the deflation solution for the power control may be –log|λ 2|, rather than -logρ A.
To eliminate the bottleneck effect due to ρ A, a mapping 
Figure PCTCN2020110489-appb-000008
with respect to a deflated matrix B=A-xb T may be introduced where x is the dominant eigenvector associated with the dominant eigenvalue ρ A and b is an arbitrary vector to be designed such that b Tx=ρ Α. The rank-one matrix of xb T may be applied to modify the original interfering matrix A by displacing the eigenvalue of ρ A (for example with zero) while keeping other eigenvalues unchanged so that the eigenvalue λ 2 becomes the eigenvalue with largest modulus of the modified matrix B.
For
Figure PCTCN2020110489-appb-000009
it is assumed that
Figure PCTCN2020110489-appb-000010
under a condition ρ Α<1. It may be expected the convergence rate of
Figure PCTCN2020110489-appb-000011
is faster than that  of the above
Figure PCTCN2020110489-appb-000012
and the asymptotical convergence rate may be improved by gain of 
Figure PCTCN2020110489-appb-000013
where
Figure PCTCN2020110489-appb-000014
due to |λ 2|<ρ Α<1.
From
Figure PCTCN2020110489-appb-000015
and b Tx=ρ Α, a simple relationship between processes of
Figure PCTCN2020110489-appb-000016
and
Figure PCTCN2020110489-appb-000017
may be obtained based on the above formulas (6) and (7) :
Figure PCTCN2020110489-appb-000018
Accordingly, a faster sequence converging to q *may be derived from the original process of 
Figure PCTCN2020110489-appb-000019
and
Figure PCTCN2020110489-appb-000020
may be treated as an approximation to q *.
Substantially, q *may be described by the following closed-form expression:
q *= (I-diag (βοv) F+xb T-1 diag (βοv) n       (10)
Combining with the above formula (3) , a relationship between q *and p *may be obtained as follows:
Figure PCTCN2020110489-appb-000021
based on which a faster approximation to p *may be derived by using an approximation to q *.
Thus, a better estimate of p *may be obtained by
Figure PCTCN2020110489-appb-000022
Further, let
Figure PCTCN2020110489-appb-000023
denote the l-th row of the matrix A and x l be the l-th coordinate of the dominant eigenvector x. Then, considering
Figure PCTCN2020110489-appb-000024
an eligible b for the link l may be
Figure PCTCN2020110489-appb-000025
Combining the above formulas (13) and (14) , the following formula may be obtained:
Figure PCTCN2020110489-appb-000026
Because
Figure PCTCN2020110489-appb-000027
may be obtained where [·]  l denotes the l-th component of a vector and
Figure PCTCN2020110489-appb-000028
Thus, the l-th component of p *may be estimated by
Figure PCTCN2020110489-appb-000029
 (also denoted as 
Figure PCTCN2020110489-appb-000030
herein) , which is independent of x and b. In a case where the links in the network 100 may independently derive the knowledge of ρ A from local knowledge of
Figure PCTCN2020110489-appb-000031
Figure PCTCN2020110489-appb-000032
may involves a parallel computation suitable for distributed implementation.
For the link l at a time t+1, an estimate of ρ A may be obtained based on
Figure PCTCN2020110489-appb-000033
where the estimate may be consistently refined as t increases, and different links in the network 100 may reach a consensus of ρ A as (t+1) →∞, as the following:
Figure PCTCN2020110489-appb-000034
Combining the above formulas (16) and (17) , an estimate of p *at time t+1 or an accelerated power at time t+1 may be
Figure PCTCN2020110489-appb-000035
where operations of division and product apply in component-wise manner. Thus, different links of the network 100 may utilize their associated components of
Figure PCTCN2020110489-appb-000036
respectively, without introducing extra observation and signaling. For example, for the link l, an estimate of p *or an accelerated power at the time t+1 may be obtained at least as the followings:
Figure PCTCN2020110489-appb-000037
Figure PCTCN2020110489-appb-000038
where
Figure PCTCN2020110489-appb-000039
FIG. 2 illustrates an example procedure 200 of the distributed deflation power control in an embodiment, which is performed in TX l in the network 100.
As illustrated in FIG. 2, in an operation 201, at time t=0, TX l may initiate a transmit power P trans by P trans=p l (0) . Then, in an operation 202, at time t, TX l may transmit data to RX l with the transmit power P trans whose value is equal to that of the current power p l (t) . In an operation 203, TX l may obtain quality of the current transmission performed in the operation 202, for example by receiving SINR l (t) from RX l. Then, TX l may determine p l (t+1) from p l (t) and SINR l (t) based on an iteration defined by the above formula (5) .
Then, as illustrated in FIG. 2, in an operation 205, a determination may be made of whether t+1 is a member of a predetermined increasing sequence of integers or not. The predetermined increasing sequence may include at least one integers being equal to or larger than 2, where an increment of two successive integers may be larger than 2. For example, an increasing sequence of one or more integers may be configured for the TX l, where the minimum integer of the one or more integers may be larger than 2, and a difference between any two integers of the one or more integers may be larger than 2. For example, an increasing sequence of one or more integers may be configured for the TX l, may include single integer with a value larger than 2. In some examples, multiple transmitters sharing the same physical channel, such as TX l and TX l+1 in the network 100, are configured with the same predetermined increasing sequence to maintain a synchronous procedure.
If t+1 is not a member of the predetermined increasing sequence, an operation 208 may be performed so that the transmit power P trans may be updated with p l (t+1) determined in the operation 204, and t may be updated with t+1 in an operation 209 so that a next transmission with the transmit power P trans may be enabled in the operation 202 of the next  loop.
If t+1 is a member of the predetermined increasing sequence, an accelerate power
Figure PCTCN2020110489-appb-000040
may be determined in an operation 206, and the transmit power P trans may be updated with the accelerate power
Figure PCTCN2020110489-appb-000041
in an operation 207. Then, t may be updated with t+1 in the operation 209 so that the transmission corresponding to t=T trans, where T trans is a member of the predetermined increasing sequence, may be performed with the transmit power P trans in the operation 202 of the next loop.
In an example, 
Figure PCTCN2020110489-appb-000042
may be determined based on the above formula (20) or (21) . In another example, 
Figure PCTCN2020110489-appb-000043
 (an estimated of ρ A for the link l at time t+1) may be determined based on the above formula (17) from
Figure PCTCN2020110489-appb-000044
and
Figure PCTCN2020110489-appb-000045
which is used in a previous loop for a previous transmission from TX l to RX l at time t-1, and then 
Figure PCTCN2020110489-appb-000046
may be determined based on the above formula (22) . In another example, for example when t>1, 
Figure PCTCN2020110489-appb-000047
may also be determined based on a ratio of a difference between a quality indicator used to determine p l (t+1) and a quality indicator used to determine p l (t) to a difference between the quality indicator used to determine p l (t) and a quality indicator used to determine p l (t-1) , and then
Figure PCTCN2020110489-appb-000048
may be determined based on the above formula (22) . In another example, for example when t>1, 
Figure PCTCN2020110489-appb-000049
may also be determined based on a ratio of a difference between a quality indicator associated with the concurrent transmissions with p (t) at time t in a same physical channel and a quality indicator associated with the concurrent transmissions with p (t-1) at time t-1 in the same physical channel to a difference between the quality indicator associated with the concurrent transmissions p (t-1) at time t-1 in the same physical channel and a quality indicator associated with the concurrent transmissions with p (t-2) at time t-2 in the same physical channel , and then
Figure PCTCN2020110489-appb-000050
may be determined based on the above formula (22) . For example,  the quality indicator associated with the concurrent transmissions with p (t) at time t may be the interference power or the SINR measured by RX l or TX l at time t.
In the example procedure 200, TXl performs the transmissions except for t is a member of the predetermined increasing sequence with a transmit power which is determined for example based on the above formula (5) , and determines a more accurate power assignment for actual transmission for example in response to reaching a predetermined number of transmission that may be a member of the predetermined increasing sequence or at the end of the power control.
For example as illustrated in FIG. 3, at time t=0, TX l performs a transmission to RX l with an initial power p l (0) , and RX l measures the reception quality of the transmission performed with p l (0) , such as SINR l (0) , and feedbacks the measured reception quality SINR l (0) to TX l; at time t=1 subsequent to time t, TX l performs a transmission to RX l with a power p l (1) which is determined in the operation 204 based on the formula (5) from p l (0) and SINR l (0) , and RX l measures the reception quality of the transmission performed with p l (1) , such as SINR l (1) , and feedbacks the measured reception quality SINR l (1) to TX l; and so on, at time t=T rans-1, TX l performs a transmission to RX l with a power p l (T trans-1) which is determined in the operation 204 based on the formula (5) from p l (T trans-2) and SINR l (T trans-2) , and RX l measures the reception quality of the transmission performed with p l (T trans-1) , such as SINR l (T trans-1) , and feedbacks the measured reception quality SINR l (T trans-1) to TX l.
As illustrated in FIG. 3, in the example procedure 200, at time t=T rans, TX l performs a transmission to RX l with an accelerated power
Figure PCTCN2020110489-appb-000051
which may be determined for example based on the above formula (20) , (21) , (22) , or the like. Then, at t=T trans, the example procedure 200 may be halted for example after performing the operation 202 with the accelerated power
Figure PCTCN2020110489-appb-000052
Further, as illustrated in FIG. 3, at time T trans and subsequent  times such as T trans+1, TX l may perform a transmission to RX l with the accelerated power 
Figure PCTCN2020110489-appb-000053
FIG. 4 illustrates another example procedure 400 of the distributed deflation power control in an embodiment, which is performed in TX l in the network 100.
Several operations in the example procedure 400 are substantially the same with some in the example procedure 200, and thus are denoted with corresponding reference numbers in FIG. 2, details of which are not repeated. A difference between the example procedure 400 and the example procedure 200 includes that, in the example procedure 400, in an operation 401, a determination may be made of whether t+1 reaches a predetermined restarting period or restarting window denoted by T restart≥2 or not. The  operations  206 and 207 are performed in response to t+1=T restart and the power control process will be restarted after time t by updating or resetting t with 0 in operation 402 and returning to the operation 202, and the  operations  208 and 209 are performed otherwise.
For example, as illustrated in FIG. 5, in the example procedure 400, at time t=0, TX l performs a transmission to RX l with an initial power p l (0) , and RX l measures the reception quality of the transmission performed with p l (0) , such as SINR l (0) , and feedbacks the measured reception quality SINR l (0) to TX l; at time t=1 subsequent to time t=0, TX l performs a transmission to RX l with a power p l (1) which is determined in the operation 204 based on the formula (5) from p l (0) and SINR l (0) , and RX l measures the reception quality of the transmission performed with p l (1) , such as SINR l (1) , and feedbacks the measured reception quality SINR l (1) to TX l; and so on.
For example, in a current loop starting at t=0, T restart is selected as the restarting period. At time t=T restart-1, TX l performs a transmission to RX l with a power p l (T restart-1) which is determined in the operation 204 based on the formula (5) from p l (T restart-2) and SINR l (T restart-2) , and RX l measures reception quality of the transmission performed with  p l (T restart-1) , such as SINR l (T restart-1) , and feedbacks the measured quality SINR l (T restart-1) to TX l. Then, at the restarting time t=T restart=0’ subsequent to time T restart-1, TX l performs a transmission to RX l with an accelerated power p l (0') =p l (T restart) which may be determined for example based on the above formula (20) , (21) , (22) , or the like in the  operations  206 and 207. Subsequently, at time t=1' after restarting, TX l performs a transmission to RX l with a power p l (1') which is determined in the operation 204 based on the formula (5) from p l (0') and SINR l (0') , and RX l measures reception quality of the transmission performed with p l (1') , such as SINR l (1') , and feedbacks the measured reception quality SINR l (1') to TX l, and so on.
In the example procedure 400, for example, different restarting periods may be adopted for different target SINRs. Further, for example, restarting period T restart may be different for different loops of the example procedure 400 by selecting from the one or more different integers. Further, for example, the one or more integers may be common for one or more transmitters sharing the same physical channel such as TX l and TX l+1 in the network 100, so that the restarting of the power control in the one or more transmitters sharing the same physical channel may be synchronized. Further, for example, in the operation 206 in the example procedure 400, 
Figure PCTCN2020110489-appb-000054
determined based on the formula (17) at the end of the initial restarting period may also be kept and used for subsequent process, so as to avoid a possible degradation in convergence rate.
Through the restarting mechanism, a more accurate power assignment may be provided as an initial configuration at the beginning of respective restarting periods, so that actual transmissions over the air may be improved, for example.
FIG. 6 illustrates another example procedure 600 of the distributed deflation power control in an embodiment, which is performed in TX l in the network 100.
As illustrated in FIG. 6, the example procedure 600 may include one or more operations in the above example procedures, such as  operations  201, 202, 203, 204, 206, 207, 208, and 209. Different from the  example procedures  200 or 400, , in the example procedure 600, the operation 206 for determining
Figure PCTCN2020110489-appb-000055
is performed in a case where t>0 is  determined by an operation 601 after the operation 204, and then an operation 602 is included in the example procedure 600 for checking whether
Figure PCTCN2020110489-appb-000056
satisfies a predetermined convergence condition or whether t+1 is a member of a predetermined increasing sequence of integers. If the check in the operation 602 returns “Yes” , the operation 207 may be performed, or otherwise the operation 208 may be performed.
For example, in the operation 602, the TX l may check whether
Figure PCTCN2020110489-appb-000057
is below a predetermined threshold indicating a convergence. In another example, in the operation 602, the TX l may determine whether
Figure PCTCN2020110489-appb-000058
satisfies a predetermined convergence condition based on
Figure PCTCN2020110489-appb-000059
and one or more accelerated powers calculated in the operation 206 of one or more previous loops of the example procedure 600. For example, if a difference of a predetermined number of accelerated powers including at least
Figure PCTCN2020110489-appb-000060
and 
Figure PCTCN2020110489-appb-000061
are below a predetermined threshold indicating converge, or if a sequence of a predetermined number of accelerated powers including at least
Figure PCTCN2020110489-appb-000062
and
Figure PCTCN2020110489-appb-000063
converge. It is appreciated that the disclosure is not limited to a manner of checking whether power assignment becomes to converge.
In the example procedure 600, an execution of 207 or 208 may be determined adaptively based on current accelerated power and/or one or more historical accelerated powers, and more accurate power assignment may be provided during the distributed deflation power control.
It is appreciated that the distributed deflation power control which may be performed in TX l in the network 100 is not limited to the above examples. One or more examples may be combined, and/or one or more features/operations/aspects may be modified, added, or deleted in another example.
In another example, the distributed deflation power control based on the principle in the disclosure may be also implemented in RX l in the network 100.
FIG. 7 illustrates another example procedure 700 of the distributed deflation power control in an embodiment, which is performed in RX l in the network 100.
As illustrated in FIG. 7, in an operation 701, at time t, RX l may receive data which is transmitted from TX l in the network 100 with a power p l (t) . An operation 702 may be performed by RX l to measure reception quality of the transmission received in the operation 701, for example by measuring SINR l (t) . Then, RX l may determine p l (t+1) from p l (t) and SINR l (t) based on an iteration defined by the above formula (5) .
Then, as illustrated in FIG. 7, in an operation 704, a determination may be made of whether t+1 is a member of a predetermined increasing sequence of integers or not. The predetermined increasing sequence may include at least one integer being equal to or larger than 2, an increment of two successive integers may be larger than 2. If t+1 is not a member of the predetermined increasing sequence , an operation 707 may be performed to notify the power p l (t+1) determined in the operation 704, and t may be updated with t+1 in an operation 708 so that a next reception at time t+1 may be enabled in the operation 701 of the next loop.
If t+1 is a member of a predetermined increasing sequence, an accelerate power 
Figure PCTCN2020110489-appb-000064
may be determined in an operation 705, and may be notified to the TX l in an operation 706. Then, t may be updated with t+1 in the operation 708 so that the next reception may be enabled in the next operation 701.
Similar to the implementation of the operation 206, in the operation 705, the accelerate power
Figure PCTCN2020110489-appb-000065
may be determined based on the principle of the disclosure in any suitable manners.
In various embodiments, any suitable manners may be adopted to notify p l (t+1) or
Figure PCTCN2020110489-appb-000066
For an example, p l (t+1) or
Figure PCTCN2020110489-appb-000067
may be quantized and notified through a power control command. For another example, an increment or decrement of p l (t+1) or
Figure PCTCN2020110489-appb-000068
may be quantized and notified through a power control command.
In the example procedure 700, the powers used by TX l to perform transmissions are notified by the RX l, where a transmit power except for t is a member of the predetermined increasing sequence may be determined for example based on the above formula (5) , and a  more accurate power assignment for actual transmission may be determined for example in response to reaching a predetermined number of transmission that is a member of the predetermined increasing sequence or at the end of the power control.
For example as illustrated in FIG. 8, at time t=0, TX l performs a transmission to RX l with an initial power p l (0) , and RX l measures reception quality of the transmission performed with p l (0) , such as SINR l (0) , and feeds p l (1) back to TX l, p l (1) is determined in the operation 702 based on the formula (5) from p l (0) and SINR l (0) ; at time t=1 subsequent to time t=0, TX l performs a transmission to RX l with the power p l (1) which is notified by RX l at time t=0, and RX l measures reception quality of the transmission performed with p l (1) , such as SINR l (1) , and feeds p l (2) back to TX l, p l (2) is determined in the operation 702 based on the formula (5) from p l (1) and SINR l (1) , and so on.
As illustrated in FIG. 8, in the example procedure 700, at time t=T trans-1, where T trans is a member of a predetermined increasing sequence, TX l performs a transmission to RX l with the power p l (T trans-1) which is notified by RX l at time t=T trans-2, and RX l measures reception quality of the transmission performed with p l (T trans-1) , such as SINR l (T trans-1) , performs the operation 705 to determine an accelerated power
Figure PCTCN2020110489-appb-000069
for example based on the above formula (20) , (21) , (22) , or the like, and feeds the determined accelerated power
Figure PCTCN2020110489-appb-000070
back to TX l. At time t=T trans, TX l may perform a transmission to RX l with the accelerated power
Figure PCTCN2020110489-appb-000071
notified by RX l at time T trans-1.
As illustrated in FIG. 8, at time T trans and subsequent times such as T trans+1, TX l may perform a transmission to RX l with the accelerated power
Figure PCTCN2020110489-appb-000072
Accordingly, in an example, the example procedure 700 may be halted after performing the operation 706 at t=T rans-1. In another example, the powers notified by RX l since t=T trans may be ignored by TX l.
FIG. 7 illustrates another example procedure 900 of the distributed deflation  power control in an embodiment, which is performed in RX l in the network 100.
Several operations in the example procedure 900 are substantially the same with some in the example procedure 700, and thus are denoted with corresponding reference numbers in FIG. 7, details of which are not repeated. A difference between the example procedure 900 and the example procedure 700 includes that, in the example procedure 900, in an operation 901, a determination may be made of whether t+1 reaches a predetermined restarting period or restarting window denoted by T restart≥2 or not. The  operations  705 and 706 are performed in response to t+1=T restart and the power control process will be restarted after time t by updating or resetting t with 0 in operation 902 and returning to the operation 701, and the  operations  707 and 708 are performed otherwise.
For example as illustrated in FIG. 10, at time t=0, TX l performs a transmission to RX l with an initial power p l (0) , and RX l measures reception quality of the transmission performed with p l (0) , such as SINR l (0) , and feeds p l (1) back to TX l, p l (1) is determined in the operation 702 based on the formula (5) from p l (0) and SINR l (0) ; at time t=1 subsequent to time t=0, TX l performs a transmission to RX l with the power p l (1) which is notified by RX l at time t=0, and RX l measures reception quality of the transmission performed with p l (1) , such as SINR l (1) , and feeds p l (2) back to TX l, p l (2) is determined in the operation 702 based on the formula (5) from p l (1) and SINR l (1) , and so on.
As illustrated in FIG. 10, in a current loop starting at t=0, T restart is selected as the restarting period. Then, at time t= T restart-1, TX l performs a transmission to RX l with the power p l (T restart-1) which is notified by RX l at time t=T restart-2, and RX l measures reception quality of the transmission performed with p l (T restart-1) , such as SINR l (T restart-1) , performs the operation 705 to determine an accelerated power
Figure PCTCN2020110489-appb-000073
for example based on the above formula (20) , (21) , (22) , or the like, and feeds the determined accelerated power 
Figure PCTCN2020110489-appb-000074
back to TX l. Then, at the restarting time t=T restart=0' subsequent to time T restart-1, TX l performs a transmission to RX l with an accelerated power
Figure PCTCN2020110489-appb-000075
and RX l measures reception quality of the transmission performed with
Figure PCTCN2020110489-appb-000076
such as SINR l (0') , and feeds p l (1') back to TX l, p l (1') is determined in the operation 702 based on the formula (5) from p l (0') and SINR l (0') . Subsequently, at time t=1' after restarting, TX l performs a transmission to RX l with a power p l (1') which is notified by RX l at time t=0', and so on.
Thus, a restarting mechanism may be implemented in RX l, and one or more features/aspects described above with respect to the restarting mechanism implemented in TX l may also be applied or combined in the restarting mechanism implemented in RX l. For example, for the check in the operation 901, one or more integers (e.g. an increasing sequence of one or more integers) may be configured for the RX l, where the minimum integer of the one or more integers may be larger than 2, and a difference between any two integers of the one or more integers may be larger than 2. For example, the one or more integers may include single integer with a value larger than 2. For example, different restarting periods may be adopted for different target SINRs. Further, for example, restarting periods may be different for different loops of the example procedure 900. Further, for example, the one or more integers may be common for one or more receivers sharing the same physical channel such as RX l and RX l+1 in the network 100, so that the restarting of the power control in the one or more receivers sharing the same physical channel may be synchronized.
FIG. 11 illustrates another example procedure 1100 of the distributed deflation power control in an embodiment, which is performed in RX l in the network 100.
As illustrated in FIG. 11, the example procedure 1100 may include one or more operations in the above example procedures, such as  operations  701, 902, 702, 703, 705, 706, 707, and 708. Different from the  example procedures  700 and 900, in the example procedure 1100, the operation 705 for determining
Figure PCTCN2020110489-appb-000077
is performed in a case where t>0 is determined by an operation 1101 after the operation 703, and then an operation 1102 is included in the example procedure 1100 for checking whether
Figure PCTCN2020110489-appb-000078
satisfies a predetermined convergence condition or whether t+1 is a member of a predetermined increasing sequence of integers. If the check in the operation 1102 returns “Yes” , the  operation 706 may be performed, or otherwise the operation 707 may be performed. For example, the implementation of the operation 1102 may be similar to that of the operation 602, which is not repeated.
It is appreciated that the distributed deflation power control which may be performed in RX l in the network 100 is not limited to the above examples. One or more examples may be combined, and/or one or more features/operations/aspects may be modified, added, or deleted in another example, which may be similar to the distributed deflation power control in TX l in the network 100, details of which are not repeated.
It is appreciated that the disclosure is not limited to the above examples, and one or more modifications and/or variations may be made based on the above examples. For example, one or more operations, orders of operations, implementations, features, or aspects may be added, deleted, modified based on the above examples.
FIG. 12 illustrates an example method 1200 for controlling powers in an embodiment, which may be performed for example in a transmitter such as one or more of TX 1 101, TX 2 103, TX 3 105, …, TX L 107 or the like in the network 100. Implementation examples of the example method 1200 may include, but are not limited to, the  above example procedures  200, 400, 600, 600, 800, and so on.
As illustrated in FIG. 12, the example method 1200 may include an operation 1201 of determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, an operation 1202 of determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and an operation 1203 of performing a next transmission to the receiver with the next power or the accelerated power.
For example, in the operation 1201, the transmitter TX l may receive SINR l (t) from RX l, and may determine the next power p l (t+1) from the current power p l (t) for performing the current transmission to the receiver RX l at the current time t for example based on
Figure PCTCN2020110489-appb-000079
Then, in the operation 1202, the transmitter TX l may determine the accelerated power
Figure PCTCN2020110489-appb-000080
based on the next power p l (t+1) , the current power p l (t) ,  and the previous power p l (t-1) for performing the previous transmission to the receiver RX l at the previous time t-1. Then, in the operation 1202, the transmitter TX l may perform the next transmission at the next time t+1 to the receiver RX l with the next power p l (t+1) or the accelerated power
Figure PCTCN2020110489-appb-000081
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the next transmission may be performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one transmitter sharing a common physical channel, so that a synchronized process of updating the transmission power with the accelerated power may be allowed for the transmitters sharing the common physical channel.
In some embodiments, besides SINR, other reception quality (e.g. signal to noise ratio or SNR etc. ) of the current transmission may be measured and used in the operation 1201.
FIG. 13 illustrates an example apparatus 1300 for controlling powers in an embodiment, which may be for example at least a part of one of TX 1 101, TX 2 103, TX 3 105, …, TX L 107 or the like in the network 100.
As shown in FIG. 13, the example apparatus 1300 may include at least one processor 1301 and at least one memory 1302 that may include computer program code 1303. The at least one memory 1302 and the computer program code 1303 may be configured to,  with the at least one processor 1301, cause the apparatus 1300 at least to perform at least the operations of the example method 1200 described above.
In various embodiments, the at least one processor 1301 in the example apparatus 1300 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a central processing unit (CPU) , a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) . Further, the at least one processor 1301 may also include at least one other circuitry or element not shown in FIG. 13.
In various embodiments, the at least one memory 1302 in the example apparatus 1300 may include at least one storage medium in various forms, such as a volatile memory and/or a non-volatile memory. The volatile memory may include, but not limited to, for example, a random-access memory (RAM) , a cache, and so on. The non-volatile memory may include, but not limited to, for example, a read only memory (ROM) , a hard disk, a flash memory, and so on. Further, the at least memory 1302 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
Further, in various embodiments, the example apparatus 1300 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
In various embodiments, the circuitries, parts, elements, and interfaces in the example apparatus 1300, including the at least one processor 1201 and the at least one memory 1302, may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
FIG. 14 illustrates an example apparatus 1400 for controlling powers in an embodiment, which may be for example at least a part of one of TX 1 101, TX 2 103, TX 3 105, …, TX L 107 or the like in the network 100.
As shown in FIG. 14, the example apparatus 1400 may include means for performing operations of the example method 1300 described above in various embodiments.  For example, the apparatus 1400 may include means 1401 for performing the operation 1201 of the example method 1200, means 1402 for performing the operation 1202 of the example method 1200, and means 1403 for performing the operation 1203 of the example method 1200. In one or more another embodiment, at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 1400.
In some embodiments, examples of means in the apparatus 1400 may include circuitries. For example, an example of means 1401 may include a circuitry configured to perform the operation 1201 of the example method 1200, an example of means 1402 may include a circuitry configured to perform the operation 1202 of the example method 1200, and an example of means 1403 may include a circuitry configured to perform the operation 1203 of the example method 1200. In some embodiments, examples of means may also include software modules and any other suitable function entities.
The term “circuitry” throughout this disclosure may refer to one or more or all of the following: (a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) ; (b) combinations of hardware circuits and software, such as (as applicable) (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) ; and (c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation. This definition of circuitry applies to one or all uses of this term in this disclosure, including in any claims. As a further example, as used in this disclosure, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
FIG. 15 illustrates an example method 1500 for controlling powers in an  embodiment, which may be performed for example in a receiver such as one or more of RX 1 102, RX 2 104, RX 3 106, …, RX L 108 or the like in the network 100. Implementation examples of the example method 1500 may include, but are not limited to, the  above example procedures  700, 900, 1100, and so on.
As illustrated in FIG. 15, the example method 1500 may include an operation 1501 of determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, an operation 1502 of determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and an operation 1503 of notifying the next power or the accelerated power to the transmitter.
For example, in the operation 1501, the receiver RX l may receive data transmitted from the transmitter TX l using the current power p l (t) at current time t, measure SINR l (t) , and determine the next power p l (t+1) from the measured SINR l (t) and the current power p l (t) based on
Figure PCTCN2020110489-appb-000082
Then, in the operation 1502, the receiver RX l may determine the accelerated power
Figure PCTCN2020110489-appb-000083
based on the next power p l (t+1) , the current power p l (t) , and the previous power p l (t-1) with which the transmitter TX l performs the previous transmission to the receiver RX l at the previous time t-1. Then, in the operation 1503, the receiver RX l may notify or transmit information on the next power p l (t+1) or the accelerated power
Figure PCTCN2020110489-appb-000084
to the transmitter TX l, so that the transmitter TX l, may perform the next transmission to the receiver RX l at the next time t+1 with the power notified from the RX l at the current time t.
In some embodiments, the accelerated power may depend on a weighted sum of the next power and the current power, where a ratio of a first weight for the next power to a second weight for the current power may correspond to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight may be 1.
In some embodiments, the accelerated power may be notified to the transmitter  in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
In some embodiments, the at least one predetermined number may be selected from a predetermined increasing sequence of integers, where an increment of two successive integers in the predetermined increasing sequence may be larger than 2.
In some embodiments, the at least one predetermined number may be common for more than one receiver sharing a common physical channel, so that an synchronized process of updating the transmission power with the accelerated power may be allowed for the receivers sharing the common physical channel.
In some embodiments, besides SINR, other reception quality (e.g. signal to noise ratio or SNR etc. ) of the current transmission may be measured and used in the operation 1501.
FIG. 16 illustrates an example apparatus 1600 for controlling powers in an embodiment, which may be for example at least a part of one of RX 1 102, RX 2 104, RX 3 106, …, RX L 108 or the like in the network 100.
As shown in FIG. 16, the example apparatus 1600 may include at least one processor 1601 and at least one memory 1602 that may include computer program code 1603. The at least one memory 1602 and the computer program code 1603 may be configured to, with the at least one processor 1601, cause the apparatus 1600 at least to perform at least the operations of the example method 1500 described above.
In various embodiments, the at least one processor 1601 in the example apparatus 1300 may include, but not limited to, at least one hardware processor, including at least one microprocessor such as a CPU, a portion of at least one hardware processor, and any other suitable dedicated processor such as those developed based on for example FPGA and ASIC. Further, the at least one processor 1601 may also include at least one other circuitry or element not shown in FIG. 16.
In various embodiments, the at least one memory 1602 in the example apparatus 1600 may include at least one storage medium in various forms, such as a volatile memory and/or a non-volatile memory. The volatile memory may include, but not limited to, for  example, a RAM, a cache, and so on. The non-volatile memory may include, but not limited to, for example, a ROM, a hard disk, a flash memory, and so on. Further, the at least memory 1602 may include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
Further, in various embodiments, the example apparatus 1600 may also include at least one other circuitry, element, and interface, for example at least one I/O interface, at least one antenna element, and the like.
In various embodiments, the circuitries, parts, elements, and interfaces in the example apparatus 1600, including the at least one processor 1601 and the at least one memory 1602, may be coupled together via any suitable connections including, but not limited to, buses, crossbars, wiring and/or wireless lines, in any suitable ways, for example electrically, magnetically, optically, electromagnetically, and the like.
FIG. 17 illustrates an example apparatus 1700 for controlling powers in an embodiment, which may be for example at least a part of one of RX 1 102, RX 2 104, RX 3 106, …, RX L 108 or the like in the network 100.
As shown in FIG. 17, the example apparatus 1700 may include means for performing operations of the example method 1500 described above in various embodiments. For example, the apparatus 1700 may include means 1701 for performing the operation 1501 of the example method 1500, means 1702 for performing the operation 1502 of the example method 1500, and means 1703 for performing the operation 1503 of the example method 1500. In one or more another embodiment, at least one I/O interface, at least one antenna element, and the like may also be included in the example apparatus 1700.
In some embodiments, examples of means in the apparatus 1700 may include circuitries. For example, an example of means 1701 may include a circuitry configured to perform the operation 1501 of the example method 1500, an example of means 1702 may include a circuitry configured to perform the operation 1502 of the example method 1500, and an example of means 1703 may include a circuitry configured to perform the operation 1503 of the example method 1500. In some embodiments, examples of means may also include software modules and any other suitable function entities.
In another embodiment, in a case of implementing the solutions for distributed  deflation power control in a receiver such as RX l, corresponding to the operation 1503 performed by the receiver, a transmitter communicating with the receiver, such as TX l, may be configured to receive the next power notified by the receiver, and to perform the next transmission to the receiver with the notified power. In some embodiments, the transmitter such as TX l may include means for receiving the power notified by the receiver, such as one or more circuits or one or more processors.
Another example embodiment may relate to computer program codes or instructions which may cause an apparatus to perform at least respective methods described above. Another example embodiment may be related to a computer readable medium having such computer program codes or instructions stored thereon. In some embodiments, such a computer readable medium may include at least one storage medium in various forms such as a volatile memory and/or a non-volatile memory. The volatile memory may include, but not limited to, for example, a RAM, a cache, and so on. The non-volatile memory may include, but not limited to, a ROM, a hard disk, a flash memory, and so on. The non-volatile memory may also include, but are not limited to, an electric, a magnetic, an optical, an electromagnetic, an infrared, or a semiconductor system, apparatus, or device or any combination of the above.
One or more non-limited examples and aspects of solutions for distributed deflation power control of this disclosure have been described above, which provides a faster approximation towards the optimal power solution. The deflated process mimics a faster iteration based on a deflated matrix whose eigenvalues are same as the original interfering matrix, except that the dominant eigenvalue in original matrix is replaced by zero in the deflated matrix. Therefore, the convergence rate of the accelerated power control is determined by the subdominant eigenvalue with the second largest modulus instead of the dominant eigenvalue with largest modulus, resulting in substantial gain in convergence rate, promising a fast and accurate tracking capability for time-varying wireless channel. Further, the solution of this disclosure modifies the original interfering matrix with a rank-one matrix that is designed for easing distributed implementation. As such, the distributed deflation solution of this disclosure may be carried out in an elegant manner. The solution of this disclosure may be implemented based on the local historical observations of transmit power, without extra cost of measurements and information exchange across distributed links.
For performance evaluation, a wireless network including 5 concurrent links is simulated where all link shares the same target SINR. The simulation is conducted under a given channel gain matrix that is listed in the above Table 1, and performance comparisons between a traditional SINR-tracking power control manner based on Foschini-Miljanic algorithm (shortened as “FM” herein) and the distributed deflation power control solution (shortened as “DDPC” herein) in an embodiment, in terms of normalized absolute error for different target SINRs, respectively.
FIG. 18 illustrates a performance comparison in the case of target SINR of 10 dB and DDPC without restarting mechanism, and FIG. 19 illustrates a performance comparison in the case of target SINR of 12.5 dB and DDPC without restarting mechanism. From FIG. 18 and FIG. 19, it can be seen that the DDPC may significantly reduce the residual error by several orders of magnitude under the same number of iteration. The gain in the convergence rate may be translated to gain in power saving, time saving and signalling reduction, promising fast and accurate tracking capability for time-varying wireless environments. In the case of target SINR of 10 dB, at least 37.5%reduction in iteration time can be achieved for the normalized residual error less than 10 -5. The gain becomes more manifest as ρ A increases and closes to one. In the case of target SINR of 12.5 dB, at least 66%reduction in iteration time can be achieved for the normalized residual error less than 10 -5.
FIG. 20 illustrates a performance comparison in the case of target SINR of 10 dB and DDPC with a restarting period being 20, and FIG. 21 illustrates a performance comparison in the case of target SINR of 12.5 dB and DDPC with a restarting period being 40. From FIG. 20 and FIG. 21, it can be seen that the DDPC may significantly reduce the residual error.
In different embodiments, the receiver and the transmitter herein may include any suitable apparatuses which may communicate based on any suitable communication standards such as New Radio (NR) , Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Examples of the receiver and/or the transmitter may include, but are not limited to, a network device such as a base station (BS) or  an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated and Access Backhaul (IAB) node, a low power node such as a femto, a pico, a non-terrestrial network (NTN) or non-ground network device such as a satellite network device, a low earth orbit (LEO) satellite and a geosynchronous earth orbit (GEO) satellite, an aircraft network device; or a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) , such as a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like.
Unless the context clearly requires otherwise, throughout the description and the claims, the words “comprise, ” “comprising, ” and the like are to be construed in an inclusive sense, as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to. ” The word “coupled” , as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Likewise, the word “connected” , as generally used herein, refers to two or more elements that may be either directly connected, or connected by way of one or more intermediate elements. Additionally, the words “herein, ” “above, ” “below, ” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of this application. Where the context permits, words in the description using the singular or plural number may also include the plural or singular number  respectively. The word “or” in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list, and any combination of the items in the list.
Moreover, conditional language used herein, such as, among others, “can, ” “could, ” “might, ” “may, ” “e.g., ” “for example, ” “such as” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.
While some embodiments have been described, these embodiments have been presented by way of example, and are not intended to limit the scope of the disclosure. Indeed, the apparatus, methods, and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the disclosure. For example, while blocks are presented in a given arrangement, alternative embodiments may perform similar functionalities with different components and/or circuit topologies, and some blocks may be deleted, moved, added, subdivided, combined, and/or modified. At least one of these blocks may be implemented in a variety of different ways. The order of these blocks may also be changed. Any suitable combination of the elements and acts of the some embodiments described above can be combined to provide further embodiments. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.

Claims (38)

  1. A method comprising:
    determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission;
    determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver; and
    performing a next transmission to the receiver with the next power or the accelerated power.
  2. The method of claim 1 wherein the accelerated power depends on a weighted sum of the next power and the current power, a ratio of a first weight for the next power to a second weight for the current power corresponding to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight being 1.
  3. The method of claim 1 or 2 wherein the next transmission is performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  4. The method of claim 3 wherein the at least one predetermined number is selected from a predetermined increasing sequence of integers, an increment of two successive integers in the predetermined increasing sequence being larger than 2.
  5. The method of 3 or 4 wherein the at least one predetermined number is common for more than one transmitter sharing a common physical channel.
  6. The method of any of claims 1 to 5 wherein the quality of the current transmission comprises at least one of a signal to noise ratio or a signal to interference plus noise ratio.
  7. A method comprising:
    determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission;
    determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter; and
    notifying the next power or the accelerated power to the transmitter.
  8. The method of claim 7 wherein the accelerated power depends on a weighted sum of the next power and the current power, a ratio of a first weight for the next power to a second weight for the current power corresponding to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight being 1.
  9. The method of claim 7 or 8 wherein the accelerated power is notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  10. The method of claim 9 wherein the at least one predetermined number is selected from a predetermined increasing sequence of integers, an increment of two successive integers in the predetermined increasing sequence being larger than 2.
  11. The method of claim 9 or 10 wherein the at least one predetermined number is common for more than one receiver sharing a common physical channel.
  12. The method of any of claims 7 to 11 wherein the quality of the current reception comprises at least one of a signal to noise ratio or a signal to interference plus noise ratio.
  13. An apparatus comprising:
    at least one processor; and
    at least one memory including computer program code, the at least one memory and the computer program code being configured to, with the at least one processor, cause the apparatus to perform determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver, and performing a next transmission to the receiver with the next power or the accelerated power.
  14. The apparatus of claim 13 wherein the accelerated power depends on a weighted sum of the next power and the current power, a ratio of a first weight for the next power to a second weight for the current power corresponding to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight being 1.
  15. The apparatus of claim 13 or 14 wherein the next transmission is performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  16. The apparatus of claim 15 wherein the at least one predetermined number is selected from a predetermined increasing sequence of integers, an increment of two successive integers in the predetermined increasing sequence being larger than 2.
  17. The apparatus of 15 or 16 wherein the at least one predetermined number is common for more than one transmitter sharing a common physical channel.
  18. The apparatus of any of claims 13 to 17 wherein the quality of the current transmission comprises at least one of a signal to noise ratio or a signal to interference plus noise ratio.
  19. An apparatus comprising:
    at least one processor; and
    at least one memory including computer program code, the at least one memory and the computer program code being configured to, with the at least one processor, cause the apparatus to perform determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission, determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter, and notifying the next power or the accelerated power to the transmitter.
  20. The apparatus of claim 19 wherein the accelerated power depends on a weighted sum of the next power and the current power, a ratio of a first weight for the next power to a second weight for the current power corresponding to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight being 1.
  21. The apparatus of claim 19 or 20 wherein the accelerated power is notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  22. The apparatus of claim 21 wherein the at least one predetermined number is selected from a predetermined increasing sequence of integers, an increment of two successive integers in the predetermined increasing sequence being larger than 2.
  23. The apparatus of claim 21 or 22 wherein the at least one predetermined number is common for more than one receiver sharing a common physical channel.
  24. The apparatus of any of claims 19 to 23 wherein the quality of the current reception  comprises at least one of a signal to noise ratio or a signal to interference plus noise ratio.
  25. An apparatus comprising:
    means for determining a next power based on a current power for performing a current transmission to a receiver and quality of the current transmission;
    means for determining an accelerated power based on the current power, the next power, and a previous power for performing a previous transmission to the receiver; and
    means for performing a next transmission to the receiver with the next power or the accelerated power.
  26. The apparatus of claim 25 wherein the accelerated power depends on a weighted sum of the next power and the current power, a ratio of a first weight for the next power to a second weight for the current power corresponding to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight being 1.
  27. The apparatus of claim 25 or 26 wherein the next transmission is performed with the accelerated power in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  28. The apparatus of claim 25 wherein the at least one predetermined number is selected from a predetermined increasing sequence of integers, an increment of two successive integers in the predetermined increasing sequence being larger than 2.
  29. The apparatus of 27 or 28 wherein the at least one predetermined number is common for more than one transmitter sharing a common physical channel.
  30. The apparatus of any of claims 25 to 29 wherein the quality of the current transmission comprises at least one of a signal to noise ratio or a signal to interference plus  noise ratio.
  31. An apparatus comprising:
    means for determining a next power based on a current power of a current transmission from a transmitter and quality of the current transmission;
    means for determining an accelerated power based on the current power, the next power, and a previous power of a previous transmission from the transmitter; and
    means for notifying the next power or the accelerated power to the transmitter.
  32. The apparatus of claim 31 wherein the accelerated power depends on a weighted sum of the next power and the current power, a ratio of a first weight for the next power to a second weight for the current power corresponding to a ratio of a difference between the current power and the previous power to a difference between the current power and the next power, and a sum of the first weight and the second weight being 1.
  33. The apparatus of claim 31 or 32 wherein the accelerated power is notified to the transmitter in at least one of a case where the accelerated power satisfies a predetermined convergence condition or a case where a transmission number reaches at least one predetermined number larger than 2.
  34. The apparatus of claim 33 wherein the at least one predetermined number is selected from a predetermined increasing sequence of integers, an increment of two successive integers in the predetermined increasing sequence being larger than 2.
  35. The apparatus of claim 33 or 34 wherein the at least one predetermined number is common for more than one receiver sharing a common physical channel.
  36. The apparatus of any of claims 31 to 35 wherein the quality of the current reception comprises at least one of a signal to noise ratio or a signal to interference plus noise ratio.
  37. A computer readable medium comprising instructions stored thereon for causing an apparatus to perform the method of any one of claims 1 to 6.
  38. A computer readable medium comprising instructions stored thereon for causing an apparatus to perform the method of any one of claims 7 to 12.
PCT/CN2020/110489 2020-08-21 2020-08-21 Methods, apparatuses, and computer readable media for controlling transmit power WO2022036682A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080103323.7A CN115885551A (en) 2020-08-21 2020-08-21 Method, apparatus and computer readable medium for controlling transmit power
PCT/CN2020/110489 WO2022036682A1 (en) 2020-08-21 2020-08-21 Methods, apparatuses, and computer readable media for controlling transmit power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/110489 WO2022036682A1 (en) 2020-08-21 2020-08-21 Methods, apparatuses, and computer readable media for controlling transmit power

Publications (1)

Publication Number Publication Date
WO2022036682A1 true WO2022036682A1 (en) 2022-02-24

Family

ID=80322490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110489 WO2022036682A1 (en) 2020-08-21 2020-08-21 Methods, apparatuses, and computer readable media for controlling transmit power

Country Status (2)

Country Link
CN (1) CN115885551A (en)
WO (1) WO2022036682A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059875A1 (en) * 2002-12-30 2004-07-15 Koninklijke Philips Electronics N.V. An adaptive step size method for power control in wireless communication system and a system for the same
CN101662797A (en) * 2009-09-02 2010-03-03 中兴通讯股份有限公司 Method for power adjustment and base station
CN106455029A (en) * 2015-08-13 2017-02-22 华为技术有限公司 Power control method, power control device, and power control system
WO2018175784A1 (en) * 2017-03-22 2018-09-27 Idac Holdings, Inc. Methods for performing power control in new radio (nr) systems
CN109005581A (en) * 2018-09-27 2018-12-14 维沃移动通信有限公司 A kind of transmission power control method and device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4018580B2 (en) * 2003-03-27 2007-12-05 株式会社エヌ・ティ・ティ・ドコモ Transmission power control method, base station, and mobile communication system
CN1905473A (en) * 2005-07-26 2007-01-31 清华大学 Power and rate combined distributing method and apparatus for wireless self-organizing network
US7983230B1 (en) * 2007-07-11 2011-07-19 Itt Manufacturing Enterprises, Inc. Adaptive power and data rate control for ad-hoc mobile wireless systems
US7899483B2 (en) * 2007-10-08 2011-03-01 Honeywell International Inc. Method and system for performing distributed outer loop power control in wireless communication networks
US20110177838A1 (en) * 2008-07-07 2011-07-21 Zte (Usa) Inc. Method and system for space-time power control for mimo transmissions
GB2472013B (en) * 2009-07-20 2015-04-29 Nvidia Technology Uk Ltd Adaptive transmission
JP4850296B2 (en) * 2010-04-07 2012-01-11 三菱電機株式会社 Base station and transmission control method
CN101998601B (en) * 2010-12-15 2013-11-20 迈普通信技术股份有限公司 Dynamic power control method capable of reducing wireless local area network (WLAN) interference and system thereof
CN202076853U (en) * 2011-03-15 2011-12-14 东南大学 Wireless charging and feeding device of wireless sensor network node
CN104244386B (en) * 2013-06-09 2017-12-22 华为技术有限公司 Poewr control method and device
CN105451317B (en) * 2014-06-26 2019-01-11 联想(北京)有限公司 A kind of Poewr control method and user equipment (UE)
CN105006894B (en) * 2015-06-11 2017-09-15 重庆大学 A kind of wireless charging system of wireless sensor network
CN106921985B (en) * 2015-12-25 2021-02-23 上海诺基亚贝尔股份有限公司 Self-organizing optimization method and device for ultra-dense network
CN110719626A (en) * 2018-07-12 2020-01-21 中兴通讯股份有限公司 WiFi transmission power control method, device, circuit and computer storage medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059875A1 (en) * 2002-12-30 2004-07-15 Koninklijke Philips Electronics N.V. An adaptive step size method for power control in wireless communication system and a system for the same
CN101662797A (en) * 2009-09-02 2010-03-03 中兴通讯股份有限公司 Method for power adjustment and base station
CN106455029A (en) * 2015-08-13 2017-02-22 华为技术有限公司 Power control method, power control device, and power control system
WO2018175784A1 (en) * 2017-03-22 2018-09-27 Idac Holdings, Inc. Methods for performing power control in new radio (nr) systems
CN109005581A (en) * 2018-09-27 2018-12-14 维沃移动通信有限公司 A kind of transmission power control method and device

Also Published As

Publication number Publication date
CN115885551A (en) 2023-03-31

Similar Documents

Publication Publication Date Title
US20190090200A1 (en) Multiuser uplink power control with user grouping
US20230033028A1 (en) Downlink beamforming in mu-mimo system
CN114642019B (en) Method for obtaining channel information
WO2020115523A1 (en) Two-dimensional subspace tracking and beamforming for active antenna systems
CN111630788A (en) Apparatus and method for non-linear precoding
CN109831823B (en) Method for communication, terminal equipment and network equipment
WO2022036682A1 (en) Methods, apparatuses, and computer readable media for controlling transmit power
CN113273106A (en) Processing of uplink data streams
US20230163824A1 (en) Csi feedback with low overhead
US20150256317A1 (en) Method and apparatus for adaptive channel direction information feedback in a heterogeneous system
CN117730330A (en) On-line optimization for joint computation and communication in edge learning
US10250349B2 (en) Coordinated interference cancellation in wireless network
CN113676234A (en) Enhanced CSI feedback in NTN with long propagation delay
WO2020073342A1 (en) Non-linear precoding procedure
WO2020056650A1 (en) Network assisted feedback weight detection for nonlinear precoding
WO2023065150A1 (en) Channel state based beamforming enhancement
Jee et al. Deep Learning-based Joint Optimization of Closed-Loop FDD MmWave Massive MIMO: Pilot Adaptation, CSI Feedback, and Beamforming
CN112640322A (en) User selection for MU-MIMO communication
CN106464316B (en) Interference processing method, device and system in large-scale multi-antenna system
WO2023206556A1 (en) Method and apparatus for csi feedback
US20230216597A1 (en) Reference signal compensation to train neural network
WO2022027646A1 (en) Port selection codebook enhancement by partial channel reciprocity
US20230087742A1 (en) Beamforming technique using approximate channel decomposition
WO2023179473A1 (en) Channel feature information reporting method, channel feature information recovery method, terminal and network side device
CN112425079B (en) Processing of reference signals in precoding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949890

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949890

Country of ref document: EP

Kind code of ref document: A1