WO2017126493A1 - Signal generation circuit and voltage conversion apparatus - Google Patents

Signal generation circuit and voltage conversion apparatus Download PDF

Info

Publication number
WO2017126493A1
WO2017126493A1 PCT/JP2017/001350 JP2017001350W WO2017126493A1 WO 2017126493 A1 WO2017126493 A1 WO 2017126493A1 JP 2017001350 W JP2017001350 W JP 2017001350W WO 2017126493 A1 WO2017126493 A1 WO 2017126493A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
duty
combination
settable
values
Prior art date
Application number
PCT/JP2017/001350
Other languages
French (fr)
Japanese (ja)
Inventor
新太 中島
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2017126493A1 publication Critical patent/WO2017126493A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the present invention relates to a signal generation circuit and a voltage conversion device.
  • This voltage conversion device of the PWM control system calculates a voltage command value based on, for example, a voltage target value, and sets a value corresponding to the calculated voltage command value in a PWM signal generation unit, thereby depending on the target value.
  • a PWM signal with a specified duty is generated.
  • the minimum unit of the value (settable duty) that can be set in the PWM signal generation unit is relatively large, the duty of the PWM signal cannot be changed smoothly with respect to the change in the target value, and the output voltage Will change stepwise.
  • the minimum unit of the settable value (settable duty) is larger than the minimum unit of the target value, There is a problem that the duty of the PWM signal cannot be smoothly changed with respect to the change of the target value and the load fluctuation, and the error of the output voltage becomes large.
  • Patent Document 1 when the on / off time of the PWM signal is calculated for each cycle of PWM control, the remainder of the division with the voltage command value as the dividend is rounded down to calculate on / off.
  • a PWM inverter that calculates time and outputs a PWM pulse based on the calculation result is disclosed. The remainder generated by the above calculation corresponds to a voltage command value that is truncated without being reflected in the on / off time.
  • the remainder that is not reflected in the on / off time in the previous computation is newly added to the next computation by adding the rounded down remainder to the voltage command value in the computation after the next cycle. / It is reflected in the off time, and it is repeated that the remainder at that time is further reflected in the next calculation. For this reason, the average value of the on / off time set for the PWM signal generation unit can be brought close to the target on / off time to be originally set.
  • Patent Document 1 does not assume a configuration in which a plurality of PWM signal output paths exist.
  • the technique of Patent Document 1 is a configuration that corrects a PWM signal of only one output path, and further, a configuration that performs correction by a method that reflects a cumulative value that is rounded down.
  • FIG. 10 illustrates a multiphase converter including four PWM signal generation units.
  • the resolution in the four PWM signal generation units is 0.1 (%)
  • the minimum unit of the settable value (settable duty) is 0.1.
  • the instruction duty given to each PWM signal generation unit is 50.16 (%)
  • the duty cannot be set with an accuracy of 50.16 (%) in each PWM signal generation unit.
  • a method of setting the PWM signal generation unit at 50.1 (%) close to 50.16 (%) is employed.
  • an error from the instruction value of 50.16% becomes large.
  • the inventors of the present application assumed a configuration as shown in FIG. 11 as a method for solving such a problem.
  • 50.16 (%) which is a settable value (settable duty) lower than the instruction value 50.16 (%) is assigned to two PWM signal generation units, 50.16 (% ), which is a settable value (settable duty) higher than 50.2 (%), is assigned to the remaining PWM signal generation units.
  • the average duty of the four PWM signal generation units is 50.15 (%), which is closer to the instruction value of 50.16%.
  • the minimum unit of duty is substantially reduced by making the duty of some phases relatively low and the duty of other phases relatively high in this way, the duty is set high. There is a concern that in the phase, the amount of current accompanying driving increases, and the heat generation points concentrate.
  • the present invention has been made based on the above-described circumstances, and a signal generation circuit and a voltage conversion device that output PWM signals to a plurality of driving objects based on a set target value are determined based on predetermined settable values. Another object of the present invention is to realize a configuration that can substantially reduce the minimum unit of duty and that can suppress concentration of heat generation points.
  • the first invention is The PWM signal is output to a plurality of driving targets, and the duty of the PWM signal output to each of the plurality of driving targets is selected from a plurality of predetermined settable values based on the set target value.
  • Each of the signal generation circuits to be set When the target value satisfies a predetermined condition, a combination of duty of PWM signals output to the plurality of driving targets is determined based on a combination of a plurality of types of the settable values based on the target value, and the settable value Each time the combination is determined, the settable value of each of the determined combinations is assigned to the plurality of driving targets, and a high value is obtained when a plurality of types of the settable values are assigned to the plurality of driving targets. And a control unit that changes the priority order of assigning as time elapses.
  • the average value of the duty given to the plurality of driving targets is other than the settable value. Since the value can be a value, the minimum unit of the duty can be substantially smaller than a predetermined settable value.
  • the control unit changes the priority order for assigning a high value when assigning a plurality of types of settable values to a plurality of drive targets in accordance with the passage of time, the drive that sets the duty relatively high The bias of the object can be suppressed, and the concentration of heat generation points can be effectively suppressed.
  • the second invention is The PWM signal is output to a plurality of driving targets, and the duty of the PWM signal output to each of the plurality of driving targets is selected from a plurality of predetermined settable values based on the set target value.
  • Each of the signal generation circuits to be set A temperature detection unit for detecting the temperature of each of the plurality of driving objects; When the target value satisfies a predetermined condition, a combination of duty of PWM signals output to the plurality of driving targets is determined based on a combination of a plurality of types of the settable values based on the target value, and the settable value Each time the combination is determined, the settable value of each of the determined combinations is assigned to the plurality of driving targets, and a high value is obtained when a plurality of types of the settable values are assigned to the plurality of driving targets.
  • a control unit that determines a priority order for assigning a driving target having a low detection temperature by the temperature detection unit; Have
  • the control unit determines the priority order for assigning a high value when assigning a plurality of types of settable values to a plurality of driving objects in a manner that prioritizes the driving object having a low temperature detected by the temperature detection unit.
  • a drive target having a lower temperature can be selected as a drive target having a relatively large drive current. Therefore, the concentration of heat generation points can be effectively suppressed.
  • FIG. 1 is a block diagram illustrating a configuration example of a voltage conversion device according to a first embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example of a part of the signal generation circuit according to the first embodiment. It is a timing diagram for demonstrating operation
  • 4 is a flowchart illustrating a processing procedure of a CPU that executes a periodic interrupt process in the signal generation circuit according to the first embodiment. It is a flowchart which shows the process sequence of CPU which concerns on the subroutine of a setting value determination.
  • FIG. 10 is an explanatory diagram for explaining a method of determining a priority order according to temperature with respect to the signal generation circuit according to the second embodiment.
  • 6 is an explanatory diagram schematically illustrating a configuration of Comparative Example 1.
  • the control unit sets the combination of the duty ratios of the PWM signals output to the m driving targets to be a minimum value among settable values larger than the target value.
  • 1 duty and a second duty which is the maximum value among settable values smaller than the target value are determined in combination, and m is determined each time a combination of the first duty and the second duty is determined according to the target value.
  • a configuration in which either the first duty or the second duty is assigned to each of the driving targets, and a priority order of the assignment of the first duty in the m driving targets may be changed. .
  • the first duty which is the minimum value among the settable values larger than the target value
  • the second duty which is the maximum value among the settable values smaller than the target value
  • the average value of the duty of the PWM signal output to the m driving objects in that period is finely adjusted from the minimum unit of the settable value, and the average value of the duty given to the m driving objects is determined. It becomes easier to get closer to the target value.
  • any of the signal generation circuits described above a plurality of voltage conversion units that convert voltage by switching according to the duty of each PWM signal generated by the signal generation circuit, and an output detection unit that detects an output from the voltage conversion unit And a setting unit that sets a target value based on the detection result of the output detection unit.
  • reference numeral 100 denotes a voltage converter, and the voltage converter 100 is connected to an external battery 2 and a load 3.
  • the voltage conversion apparatus 100 steps down the DC voltage from the battery 2 and supplies it to the load 3.
  • the voltage conversion apparatus 100 includes m converters (corresponding to voltage conversion circuits) CV1, CV2,... CVm and converters CV1, CV2,.
  • Drive circuit DC1, DC2,... DCm a signal generation circuit 1 that generates m PWM signals, a capacitor C1 that smoothes the voltage stepped down by each converter CV1, CV2,.
  • a current detection circuit 17 for detecting the output current. Output currents from the respective converters CV1, CV2,... CVm are supplied to the load 3 via the current detection circuit 17, and a voltage supplied to the load 3 is supplied to the signal generation circuit 1.
  • Converters CV1, CV2,... CVm are so-called multiphase converters that are connected in parallel to each other, and may boost DC voltage.
  • One converter CVk (k is a natural number less than or equal to m: the same applies below) includes a switching element (hereinafter simply referred to as a switch) Ska that is an N-channel MOSFET to which a DC voltage supplied from the battery 2 is applied to the drain, One end is connected to the capacitor C1, and an inductor Lk whose other end is connected to the source of the switch Ska and a source-grounded switch Skb whose drain is connected to a connection point between the switch Ska and the inductor Lk are provided.
  • the switches Ska and Skb may be P-channel type MOSFETs or other switching elements such as bipolar transistors.
  • temperature sensors TH1, TH2,... THm are provided at positions close to the converters CV1, CV2,.
  • Each of the temperature sensors THk has the shortest distance to the corresponding converter CVk component among the converters CV1, CV2,... CVm, and is specifically provided in the vicinity of the switching element of the corresponding converter CVk. It has been.
  • Such a configuration applies to any case where k is a natural number of 1 to m.
  • the switch Skb can be replaced with a diode whose anode is connected to the ground potential.
  • the switch Skb having a lower on-resistance than the diode performs so-called synchronous rectification, thereby reducing the loss of the converter CVk. .
  • a resistor is inserted in series with the inductor Lk to detect the current of the inductor Lk, and when the reverse current is detected, the drive circuit DCk
  • the on signal of the switch Skb may be stopped at.
  • the one drive circuit DCk applies an ON signal for alternately turning on the switches Ska and Skb in each control cycle to the gates of the switches Ska and Skb based on the PWM signal given from the generating unit SGk.
  • the gate of the switch Skb is supplied with an ON signal whose phase is substantially inverted with respect to the ON signal supplied to the gate of the switch Ska and a so-called dead time is ensured.
  • the signal generation circuit 1 is configured to output a PWM signal to a plurality of driving targets, and based on the set target value, the duty of the PWM signal output to each of the plurality of driving targets is set to a plurality of predetermined settings. It is a circuit that selects and sets each possible value.
  • This signal generation circuit 1 includes generators SG1, SG2,... SGm, and generators SG1, SG2,... SGm that give PWM signals having different phases by 2 ⁇ / m to the drive circuits DC1, DC2,. And a control unit 10 for setting data in each.
  • the generators SG1, SG2,... SGm may be included in the controller 10.
  • the phases of the PWM signals generated by the generators SG1, SG2,..., SGm are referred to as first phase, second phase,.
  • the control unit 10 includes a microcomputer having a CPU 11.
  • the CPU 11 includes a ROM 12 that stores information such as programs, a RAM 13 that stores temporarily generated information, an A / D converter 14 that converts an analog voltage into a digital value, and an interrupt that processes a plurality of interrupt requests.
  • the controller 15 is connected to each other by a bus. Further, generators SG1, SG2,... SGm are connected to the CPU 11 by a bus.
  • the A / D converter 14 is supplied with a detection voltage from the current detection circuit 17 and an output voltage supplied to the load 3. In this configuration, the current detection circuit 17 and the path 18 for inputting a voltage to the A / D converter 14 constitute an output detection unit 19, and output currents from the converters CV1, CV2...
  • CVm voltage conversion unit
  • the path 18 is configured to input the voltage of the output-side conductive path 5 to the A / D converter 14, but the voltage of the output-side conductive path 5 is divided to A / D.
  • the structure which inputs into the converter 14 may be sufficient.
  • the ROM 12 may include a setting value storage table 121 that stores a plurality of setting values determined in association with target values to be described later.
  • the configuration may not include the set value storage table 121.
  • the set value storage table 121 is not used in this configuration.
  • the RAM 13 includes setting value storage areas 131a and 131b that are duplicated in order to store and read a plurality of setting values at different timings.
  • the set values stored in the set value storage area 131a (or 131b) are sequentially set in the generation units SG1, SG2,... SGm in an interrupt process to be described later controlled by the interrupt controller 15. Yes.
  • the generator SG1 includes a register buffer 161 in which set values are set, a duty register 162 in which the contents of the register buffer 161 are periodically loaded, and a PWM signal that generates a PWM signal with a duty corresponding to the contents of the duty register 162 A generation unit 163.
  • the PWM signal generation unit 163 gives a load signal for loading the contents of the register buffer 161 to the duty register 162. The same applies to the other generators SG2, SG3,.
  • the PWM signal generation unit 163 generates a PWM signal having an on time that is an integral multiple of the period of the internal clock, based on an internal clock (not shown) and the contents of the duty register 162.
  • the PWM signal generated by the PWM signal generation unit 163 is supplied to the drive circuit DC1 and is also supplied to the interrupt controller 15 as one of interrupt requests. The same applies to the PWM signal generators 163 of the other generators SG2, SG3,.
  • the interrupt controller 15 gives a signal (so-called INT signal) for requesting an interrupt to the CPU 11, and the CPU 11 receives an acknowledge signal (so-called INTA signal). ) Is sent, the interrupt vector corresponding to each interrupt request is sent to the bus. When the interrupt vector sent to the bus is read by the CPU 11, the CPU 11 executes an interrupt process corresponding to each interrupt request.
  • the current detection circuit 17 includes a resistor R1 and a differential amplifier DA1.
  • the voltage drop generated in the resistor R1 due to the output current is amplified by the differential amplifier DA1 to become a detection voltage corresponding to the output current, and is converted into a digital value by the A / D converter 14.
  • the currents flowing from the battery 2 to the inductors L1, L2,... Lm are switches S1a, S2a,... Sma with a phase difference of 2 ⁇ / m from the drive circuits DC1, DC2,. .., Sma, and the currents flowing through the inductors L1, L2,... Lm return to the switches S1b, S2b,... Smb during the OFF period of each of the switches S1a, S2a,.
  • the CPU 11 of the signal generation circuit 1 controls the voltage supplied to the load 3 by, for example, a current mode control system that executes voltage loop control and current loop control in parallel.
  • the CPU 11 performs an operation to obtain a target current value in the subsequent current loop control based on a deviation obtained by subtracting the digital value obtained by A / D converting the output voltage supplied to the load 3 from the target voltage value. Calculate the quantity.
  • the voltage output from each converter CV1, CV2,... CVm is the control amount.
  • the CPU 11 performs m generation units SG1 based on a deviation obtained by subtracting the digital value obtained by A / D converting the output current supplied to the load 3 from the target current value from the previous voltage loop control. , SG2... SGm is calculated as a target value.
  • the control unit 10 (specifically, the CPU 11) corresponds to an example of a setting unit that sets a target value.
  • the CPU 11 further determines a settable value that can be set in each of the generating units SG1, SG2,... SGm according to the calculated target value.
  • the duty of the PWM signal output from each of the generators SG1, SG2,... SGm is selected from a plurality of predetermined settable values and set.
  • the settable value here refers to a value that is an integral multiple of the minimum unit (minimum increment) that is reflected in the change in the output PWM signal when each generator SG1, SG2,... SGm is set. That is, the duty of the PWM signal output from each of the generators SG1, SG2,... SGm is selected from a value (settable value) that is an integral multiple of the minimum unit.
  • the settable values determined to be set in each of the generating units SG1, SG2,.
  • the generators SG1, SG2,... SGm generate a PWM signal having a duty corresponding to the set value when the determined set value is set. In this current loop control, the current output from each converter CV1, CV2,... CVm is the controlled variable.
  • the control cycle of the voltage loop control and current loop control is n times the PWM cycle (n is a natural number of 1 or more). ) Is sufficient. Therefore, in this configuration, the set values for n cycles for m generators SG1, SG2,... SGm are determined collectively every n cycles of the PWM cycle and stored in the set value storage area 131a or 131b. Each of the m set values is sequentially set in the generators SG1, SG2,..., SGm for each cycle in the interrupt process generated in the PWM cycle, and this is repeated over n cycles.
  • the m set values do not necessarily have to be set for all the generation units SG1, SG2,... SGm every cycle, and the set values change when the set values change between a certain cycle and the next cycle. You may make it set only with respect to a generation
  • FIG. 3 is a timing chart for explaining the operation of the generation unit SG1.
  • the five timing charts shown in FIG. 3 all have the same time axis as the horizontal axis.
  • the vertical axis corresponds to the signal level of the first phase PWM signal and the first phase PWM signal from the top of the figure.
  • Yes, from time t13 to t21 is the third period in the previous n period.
  • the timing when the first phase PWM signal rises coincides with the start time of each cycle.
  • the timing when the PWM signal rises in each of the second phase, the third phase, ..., the m-th phase, and the timing related to processing, signals, etc. are 2 ⁇ / m, 2 ⁇ ⁇ 2 / m ⁇ with respect to the timing shown in FIG. ..
  • the phase is delayed by 2 ⁇ ⁇ (m ⁇ 1) / m.
  • the falling edge when the signal level in each cycle of the PWM signal changes from H to L is accepted as an interrupt request to the interrupt controller 15 and the interrupt process is executed once. Specifically, the interrupt process is executed when the on-time T13, T21, T22, and T23 in each cycle has elapsed from time t13, t21, t22, and t23.
  • the set value for the next PWM cycle is read from the set value storage area 131a or 131b included in the RAM 13 and set in the register buffer 161.
  • the setting value is stored in the setting value storage area 131a (or 131b) for n cycles during which reading from the setting value storage area 131b (or 131a) is performed and from the setting value storage area 131a (or 131b). Is carried out during n cycles preceding the cycle in which reading is started.
  • the setting values read from the setting value storage area 131a (or 131b) in the third period, the first period, and the second period that are continuous from the time t13 are the third period, the first period that is continuous before the time t13, It is calculated during the period and the second period and is stored in the set value storage area 131a (or 131b).
  • the m set values for the first period, the second period, and the third period stored in the set value storage area 131a (or 131b) are the third period that continues after each set value is stored,
  • the data are sequentially read out by the interrupt processing for each phase in the first cycle and the second cycle, and set in the register buffer 161 of the corresponding generation unit.
  • the contents of the register buffer 161 of the corresponding generation unit are the first period, the second period, and the third period. It is rewritten to the set value.
  • the contents of the register buffer 161 are transferred from the PWM signal generation unit 163 to the duty register 162.
  • a load signal for loading is provided.
  • the contents of the duty register 162 are held at the set values for the first period, the second period, and the third period.
  • the duty of the PWM signal in each of the first period, the second period, and the third period is determined by these set values.
  • FIG. 4 is an explanatory diagram for explaining an operation in which an average duty of a PWM signal is determined by m set values for n cycles.
  • the horizontal axis represents time
  • the vertical axis represents the signal levels of the PWM signals of the first phase, the second phase, and the third phase.
  • FIG. 4 shows how the PWM signals from the first phase to the third phase in each of the first cycle, the second cycle, and the third cycle of the PWM cycle change on / off for two consecutive n cycles. is there.
  • the period of the PWM signal generated by each of the generating units SG1, SG2, and SG3 is 10 ⁇ s
  • the minimum unit (that is, the minimum increment) of the set value that can be set in each of the generating units SG1, SG2, and SG3 is 1.
  • the minimum unit of 1 corresponds to 1% of the duty of the PWM signal (that is, the ON time of 0.1 ⁇ s).
  • the duty of the PWM signal generated by each of the generating units SG1, SG2, and SG3 can be set in increments of 1%.
  • the minimum unit of the target duty calculated by the CPU 11 by the PID calculation is smaller than that, for example, 0.1%.
  • the total operation amount as a result of the PID calculation in the previous n cycles is 67.2% at the timing shown in FIG.
  • the set values of the generators SG1, SG2, and SG3 are set to 22 only or 23 only, the set values deviate from the target value 22.4.
  • the combination of the duty ratios of the PWM signals output to the m driving targets is a settable value larger than the target value X.
  • the first duty which is the minimum value
  • the second duty which is the maximum value among the settable values smaller than the target value X.
  • a combination of setting values (duty of PWM signals output to three driving targets) set in the generators SG1, SG2, and SG3 is set to be larger than 22.4. It is determined by combining 23 (first duty), which is the minimum value among possible values, and 22 (second duty), which is the maximum value among settable values smaller than 22.4.
  • the set values in the generators SG1, SG2, and SG3 in the first cycle, the second cycle, and the third cycle of the next n cycles are 23, 23, respectively.
  • 23, 23, 22, 22 and 22, 22, 22 the average value of the duty of the PWM signal from the first phase to the third phase in each of the first period, the second period, and the third period is 22 .4, which approaches the target value as an average.
  • the average value of the n cycles of the set values set for each of the generating units SG1, SG2, and SG3 is set to the minimum unit of settable values ( It is possible to change in units smaller than 1%).
  • the initial value of the cycle number J is n.
  • the m set values for the n periods determined in the process of FIG. 6 are stored in the set value storage area 131a or 131b in the order of addresses.
  • the periodic interrupt that triggers the periodic interrupt process shown in FIG. 5 occurs at the start of each period included in the n period. For example, a periodic interrupt may be generated at the rising edge of the first phase PWM signal generated by the generator SG1.
  • the CPU 11 determines whether or not the periodic number J is n (here, 3) (S10), and when it is n ( (S10: YES), J is set to 1 (S11), and the setting value storage areas 131a and 131b are switched between storing and reading (S12). For example, if the set value storage area 131b (or 131a) is for storage before the process of step S12, the set value storage area 131a (or 131b) is switched for storage in the process of step S12 to store the set value. The area 131b (or 131a) is switched for reading.
  • the set value storage area 131a (or 131b) switched for storage in step S12 is an area in which m set values for n cycles determined in the set value determination subroutine are stored.
  • the setting value storage area 131b (or 131a) switched for reading is an area where setting values are read when setting values are assigned in each cycle.
  • the CPU 11 takes in an output voltage value obtained by converting the output voltage supplied to the load 3 by the A / D converter 14 (S13), and performs an operation related to voltage loop control based on the taken-in voltage value and the target voltage value. (S14) to calculate the target voltage value.
  • the CPU 11 captures an output current value obtained by converting the detection voltage of the current detection circuit 17 by the A / D converter 14 (S15), and performs an operation related to current loop control based on the captured current value and the target current value.
  • the CPU 11 calculates the target value by dividing the target duty by the duty corresponding to the minimum unit of the settable value (S17).
  • the target duty is 0.224
  • the CPU 11 calls and executes a subroutine related to setting value determination (S18), and then returns to the interrupted routine.
  • a subroutine related to setting value determination S18
  • the CPU 11 increments J by 1 (S19), and then returns to the interrupted routine. That is, every time a periodic interrupt occurs n times, the processing from steps S11 to S18 is executed once, and m set values for n periods are determined.
  • the CPU 11 multiplies the target value by m ⁇ n to calculate a total of n target values for n periods, A settable value closest to the calculated sum total of n cycles is specified (S21).
  • the target value is 22.4
  • the CPU 11 calculates the quotient Q and the remainder R by dividing the specified settable value by the number of driving targets (number of phases) m ⁇ (number of periods) n (S22).
  • the settable value 202 is divided by 3 ⁇ 3
  • the quotient Q is calculated as 22
  • the remainder R is calculated as 4.
  • the CPU 11 temporarily stores all the m set values for n cycles as Q in the set value storage area 131a or 131b (S23).
  • Q corresponds to a reference value for n cycles of m settable values.
  • Which of the set value storage areas 131a and 131b is for storage is specified by the switching process in step S12 shown in FIG.
  • the CPU 11 initializes the phase counter K to 1 (S24), and further initializes the period counter L to 1 (S25).
  • the CPU 11 determines whether or not the remainder R calculated in step S22 (R as a calculation result in step S31 when step S31 described later is executed) is 0 (S26). If so (S26: YES), the process returns to the called routine.
  • R is 0 means that the process of dividing the remainder R of the division result into the minimum unit of the settable value and adding it to a part of the reference value is completed, or the remainder R to be divided into the minimum unit is from the beginning. It means 0.
  • the CPU 11 determines whether or not the phase counter K is m + 1, that is, whether or not the phase counter K has overflowed (S27).
  • the CPU 11 initializes the phase counter K to 1 (S28) and increments the period counter L by 1 (S29).
  • the CPU 11 sets the set value for generating the Lth period K-phase PWM signal as the quotient Q.
  • the value is added to the minimum unit of possible values (S30), and the setting value (Q) already stored in the setting value storage area 131a or 131b is overwritten.
  • the process in step S30 can be replaced with a process of incrementing the set value stored in the set value storage area 131a or 131b by 1. .
  • the CPU 11 newly sets a value obtained by subtracting the minimum unit of settable values from R as R (S31), increments the phase counter K by 1 (S32), and moves the process to step S26.
  • the remainder R calculated in step S22 is not 0, the remainder R is divided into the minimum units of settable values, and one or more set values are set. Sequentially added to the reference value.
  • FIG. 7 is a chart showing a list of m set values for n periods determined according to the target value.
  • the target value is expressed by a numerical value of one or two decimal places. Note that the overlap between the boundaries of the target value ranges in adjacent rows means that the set value shown in any row is determined when the target value matches the boundary value.
  • a combination of m set values for n cycles is shown in the same row for each target value range.
  • how m set values for n cycles are allocated is only described. It is an example. A method for determining which phase is preferentially assigned a high set value for each cycle will be described in detail later.
  • the first phase and the second phase are equal to three periods of three set values, that is, the first period, the second period, and the third period, respectively.
  • the combination of set values for generating the third phase PWM signal is determined as 10, 10, 10, 10, 10, 10, 10, 10.
  • the average value of the target values over the n periods of the m phase is 10.00.
  • the combination of m set values for n cycles is determined as 11, 10, 10, 10, 10, 10, 10, 10. .
  • the average value of the target values over the n periods of the m phase is 10.11.
  • m set values for n cycles are 23, 23, 23, 23, 22, 22, 22, 22, and 22.
  • the average value over the n cycles of the added value of the set values for each cycle is 22.44.
  • a set value that can be set for each of the m generation units SG1, SG2, and SG3 is determined and set according to a target value that should be set for each. More specifically, the CPU 11 sets a settable value closest to the sum total of n cycles of the target value for every n (for example, 3) cycles of the PWM signal generated by each of the m generators SG1, SG2, and SG3.
  • the control unit 10 determines the combination of the duty ratios of the PWM signals to be output to a plurality of driving targets by combining a plurality of types of settable values based on the target value. Function.
  • the case where the target value satisfies the predetermined condition is a case where the remainder R described above does not become 0, and a case where all combinations of m set values for n cycles do not have the same value.
  • the drive circuit DCk and the converter CVk correspond to an example of the drive target, and m drive targets are provided in this configuration.
  • the combinations are determined in this way, and the m set values for the n cycles stored in the set value storage area 131a (or 131b) are assigned as the set values for the n cycles continuously performed after the storage. It is decided.
  • the set values determined to be assigned in this way are sequentially read out by phase-specific interrupt processing in each of the n cycles, and set in the corresponding register buffer 161 of the generation unit.
  • setting a set value for n cycles for example, the assignment is performed by an assignment method in which a larger set value is set to an earlier cycle.
  • m set values for n cycles are determined to be 23, 23, 23, 23, 22, 22, 22, 22, 22, 22, 22, 22, 22
  • the combination of the set values of the first cycle is (23, 23, 23)
  • the combination of the set values of the second period is (23, 22, 22)
  • the combination of the set values of the third period is (22, 22, 22).
  • this method is a representative example.
  • the assignment is not limited to this method.
  • the assignment may be performed by an assignment method in which a smaller setting value is set in an earlier cycle.
  • m set values for n cycles are determined to be 23, 23, 23, 23, 22, 22, 22, 22, 22, 22
  • the combination of the set values of the first cycle is (22, 22, 22)
  • the combination of the setting values of the second period is (22, 22, 23)
  • the combination of the setting values of the third period is (23, 23, 23).
  • the assignment table in FIG. 8 is a table that includes a plurality of setting information that defines the priority for each phase in assigning a higher setting value in a combination of m setting values set for each period. Regardless of which setting in the allocation table is selected, higher setting values are allocated in order from the phase with the higher priority order (smaller number).
  • setting 1 is a setting in which the priority of the first phase is 1, the priority of the second phase is 2, and the priority of the third phase is 3. That is, when the first phase set value is D1, the first phase set value is D2, and the third phase set value is D3, D1 ⁇ D2 ⁇ D3.
  • the setting 2 is a setting in which the priority of the first phase is 3, the priority of the second phase is 1, and the priority of the third phase is 2, so that D2 ⁇ D3 ⁇ D1.
  • Setting 3 is a setting in which the priority of the first phase is 2, the priority of the second phase is 3, and the priority of the third phase is 1, and D3 ⁇ D1 ⁇ D2.
  • control unit 10 by switching which setting in the assignment setting table of FIG. 8 is used at predetermined time intervals (for example, every second), a plurality of types of setting values (can be set) for a plurality of driving targets.
  • the priority for assigning a higher value when assigning (value) is changed over time.
  • m set values for n cycles are 23, 23, 23, 23, 22, 22, 22, 22, 22, by the above-described combination determination process. It is determined.
  • the combination of the set values of the first period is (23, 23, 23)
  • the combination of the set values of the second period is (23, 22, 22)
  • the combination of the set values of the third period Is determined to be (22, 22, 22).
  • the time period of the second period that is a combination (23, 22, 22) of a plurality of types of setting values is the time period Ta1 in which the setting 1 is used
  • the first phase, the second phase, and the third phase are set in order. That is, 23 is set for the first phase, and 22 is set for the second phase and the third phase.
  • the target value is set as 22.4%
  • the time period of the second period that is a combination of a plurality of types of setting values (23, 22, 22) is the time period Ta2 in which the setting 2 is used.
  • the second phase, the third phase, and the first phase are set in descending order of the combination values. That is, 23 is set for the second phase, and 22 is set for the first phase and the third phase.
  • the concept is the same.
  • m set values for n cycles are set to 21, 20, 20, 20 by the above-described combination determination process. , 20, 20, 20, 20, 20, 20 are determined.
  • the combination of the setting values of the first period is (21, 20, 20)
  • the combination of the setting values of the second period is (20, 20, 20)
  • the combination of the setting values of the third period Is determined as (20, 20, 20).
  • the time zone of the first period set with the combination (21, 20, 20) of a plurality of types of setting values is the time zone Ta3 in which the setting 3 is used, the value of the combination is large.
  • the third phase, the first phase, and the second phase are set in order from the value. That is, 21 is set for the third phase, and 20 is set for the second and third phases.
  • the combination of the duty ratios of PWM signals output to a plurality of driving targets is a combination of a plurality of settable values as in this configuration, the average value of the duty given to the plurality of driving targets is set to a value other than the settable value. Therefore, the minimum unit of duty can be made substantially smaller than a predetermined settable value.
  • the assigning unit since the assigning unit changes the priority order for assigning a high value when assigning a plurality of types of settable values to a plurality of drive targets according to the passage of time, the drive for setting the duty relatively high
  • the bias of the object can be suppressed, and the concentration of heat generation points can be effectively suppressed.
  • the first duty that is the minimum value among the settable values larger than the target value and the maximum value among the settable values smaller than the target value
  • a certain second duty is assigned to each of the m driving objects, the average value of the duty of the PWM signal output to the m driving objects in the cycle is finely adjusted from the minimum unit of the settable value, The duty given to m driving objects can be made closer to the target value. And if it is the structure which changes the priority of allocation of a relatively high duty (1st duty), concentration of a heat_generation
  • Example 2 Next, Example 2 will be described.
  • the signal generation circuit and the voltage conversion apparatus according to the second embodiment have the same hardware configuration as that of the first embodiment, and the contents described with reference to FIGS. 1 to 7 are the same as those of the first embodiment. Therefore, reference will be made to FIGS. Further, in this configuration, only the allocation method after the combination of m set values for n cycles is determined is different from that in the first embodiment, and therefore only the differences will be described in detail below.
  • a combination of m set values for n cycles is determined every n cycles, and the determination is as shown in FIGS. 5 and 6. Do in the flow. Then, after the combination of m set values for n cycles is determined, the assignment is performed as follows.
  • the temperature sensors TH1, TH2,... THm shown in FIG. 1 correspond to an example of a temperature detection unit, and corresponding driving objects (driving circuit DCk and converter CVk (where k is a natural number of 1 to m)). ) Function to detect each temperature. Specifically, the control unit 10 acquires the detected temperature from the temperature sensors TH1, TH2,... THm at regular intervals, and determines the priority for each time period so that a higher set value is assigned to a phase with a lower temperature. .
  • the temperature detected by the temperature sensor TH1 corresponding to the first phase at the timing of the start of the time zone Tb1 is 90 ° C.
  • the second phase When the temperature detected by the temperature sensor TH2 corresponding to is 82 ° C. and the temperature detected by the temperature sensor TH3 corresponding to the second phase is 89 ° C., the priority of the first phase is 3 in the time zone Tb1.
  • the setting A is adopted in which the priority of the second phase is 1 and the priority of the third phase is 2. In this setting, if the first phase setting value is D1, the first phase setting value is D2, and the third phase setting value is D3, then D2 ⁇ D3 ⁇ D1.
  • the temperature detected by the temperature sensor TH1 corresponding to the first phase at the timing of the start of the time zone Tb2 is 90 ° C.
  • the temperature detected by the temperature sensor TH2 corresponding to the second phase is 88 ° C.
  • the priority of the first phase is 3
  • the priority of the second phase is 2
  • the priority of the third phase is the time zone Tb2.
  • a setting B of 1 is adopted. In this setting, D3 ⁇ D2 ⁇ D1.
  • the detected temperature at the temperature sensor TH1 corresponding to the first phase at the timing of the start of the time zone Tb3 is 90 ° C.
  • the detected temperature at the temperature sensor TH2 corresponding to the second phase is 92 ° C.
  • the third phase When the temperature detected by the temperature sensor TH3 corresponding to is 89 ° C., the priority of the first phase is 2, the priority of the second phase is 3, and the priority of the third phase is 1 in the time zone Tb2.
  • the setting C to be used is adopted. In this setting, D3 ⁇ D1 ⁇ D2.
  • m set values for n cycles are 23, 23, 23, 23, 22, 22, 22, 22, and 22 are determined.
  • the combination of the set values of the first period is (23, 23, 23)
  • the combination of the set values of the second period is (23, 22, 22)
  • the combination of the set values of the third period Is determined to be (22, 22, 22).
  • the time period of the second period which is a combination (23, 22, 22) of a plurality of types of setting values
  • Tb1 in which the setting A is used depending on the temperature state
  • the second phase, the third phase, and the first phase are set in order from the largest value. That is, 23 is set for the second phase having the lowest temperature, and 22 is set for the first phase and the third phase.
  • the target value is set as 22.4%
  • the time period of the second cycle that is a combination of a plurality of types of setting values (23, 22, 22) is the time period Tb2 in which the setting B is used.
  • the third phase, the second phase, and the first phase are set in descending order. That is, 23 is set for the third phase having the lowest temperature, and 22 is set for the first phase and the second phase.
  • the concept is the same.
  • m set values for n cycles are set to 21, 20, 20, 20 when the combination determination process described above is performed. , 20, 20, 20, 20, 20, 20 are determined.
  • the combination of the setting values of the first period is (21, 20, 20)
  • the combination of the setting values of the second period is (20, 20, 20)
  • the combination of the setting values of the third period Is determined as (20, 20, 20).
  • the time zone of the first period set with the combination (21, 20, 20) of a plurality of types of setting values is the time zone Tb3 in which the setting C is used, the combination value is large.
  • the third phase, the first phase, and the second phase are set in order from the value. That is, 21 is set for the third phase at the lowest temperature, and 20 is set for the second phase and the third phase.
  • the control unit 10 when the target value satisfies the predetermined condition, can set a plurality of types of settable values based on the target value for the combination of the duty ratios of the PWM signals output to the plurality of driving targets. Each time a combination of settable values is determined, each settable value of the determined combination is assigned to a plurality of driving targets. And the control part 10 determines the priority which allocates the high value when assigning a multiple types of settable value with respect to several drive object by the system which gives priority to the drive object with low temperature detection by a temperature detection part.
  • the minimum unit of duty can be substantially smaller than a predetermined settable value.
  • the control unit 10 determines the priority order for assigning a high value when assigning a plurality of types of settable values to a plurality of drive targets in a manner that gives priority to a drive target having a low temperature detected by the temperature detection unit.
  • a drive target having a lower temperature can be selected as a drive target having a relatively large drive current. Therefore, the concentration of heat generation points can be effectively suppressed.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the step-down type multi-phase converter is typically exemplified, but a step-up type multi-phase converter or a step-up / step-down type multi-phase converter may be used.
  • the multiphase converter whose output direction is one direction was illustrated, a bidirectional type multiphase converter may be used.
  • the battery 2 and the load 3 in the first and second embodiments are merely examples, and various devices and electronic components can be connected to the input side conductive path and the output side conductive path.
  • the combination of m set values for n cycles is determined by arithmetic processing, temporarily stored in the set value storage area 131a or 131b, and then read. It may be determined from the contents stored in advance in the set value storage table 121 included in the ROM 12. That is, in the setting value storage table 121, combinations of m setting values for n cycles are determined for each target value range, and each time the target value is determined, the setting value storage table 121 is referred to and the target value is handled. You may make it determine the combination of the m setting value for the attached n period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

In the present invention, a signal generation circuit and a voltage conversion apparatus, which output PWM signals to a plurality of objects to be driven on the basis of set target values, are achieved by having a configuration in which the minimum unit of a duty can essentially be set to be less than a predetermined settable value and concentration of heat generation spots can be suppressed. In a signal generation circuit (1), a determination unit determines, when the target values satisfy a prescribed condition, a combination of duties of the PWM signals to be outputted to the objects to be driven, by using a combination of a variety of settable values on the basis of the target values. An allocation unit allocates, each time a combination is determined by the determination unit, the settable values for the determined combination to the objects to be driven, and changes the allocation priority order according to the lapse of time.

Description

信号発生回路及び電圧変換装置Signal generation circuit and voltage converter
 本発明は、信号発生回路及び電圧変換装置に関するものである。 The present invention relates to a signal generation circuit and a voltage conversion device.
 従来から、スイッチング素子をPWM信号で駆動することによって電圧を変換する電圧変換装置が広く利用されている。このPWM制御方式の電圧変換装置は、例えば電圧の目標値に基づいて電圧指令値を算出し、算出した電圧指令値に応じた値をPWM信号の発生部に設定することによって、目標値に応じたデューティのPWM信号を発生させる。 Conventionally, voltage converters that convert voltage by driving a switching element with a PWM signal have been widely used. This voltage conversion device of the PWM control system calculates a voltage command value based on, for example, a voltage target value, and sets a value corresponding to the calculated voltage command value in a PWM signal generation unit, thereby depending on the target value. A PWM signal with a specified duty is generated.
 しかし、PWM信号の生成部に設定可能な値(設定可能デューティ)の最小単位が比較的大きい場合は、目標値の変化に対してPWM信号のデューティを滑らかに変化させることができなくなり、出力電圧が階段状に変化することとなる。例えば、PWM制御での操作量としてPWM信号の生成部に設定すべき目標値が算出される構成では、目標値の最小単位よりも設定可能値(設定可能デューティ)の最小単位のほうが大きい場合、目標値の変化及び負荷変動に対してPWM信号のデューティを滑らかに変化させることができなくなり、出力電圧の誤差が大きくなるという問題がある。 However, if the minimum unit of the value (settable duty) that can be set in the PWM signal generation unit is relatively large, the duty of the PWM signal cannot be changed smoothly with respect to the change in the target value, and the output voltage Will change stepwise. For example, in the configuration in which the target value to be set in the PWM signal generation unit is calculated as the operation amount in PWM control, when the minimum unit of the settable value (settable duty) is larger than the minimum unit of the target value, There is a problem that the duty of the PWM signal cannot be smoothly changed with respect to the change of the target value and the load fluctuation, and the error of the output voltage becomes large.
 これに対し、特許文献1には、PWM信号のオン/オフ時間をPWM制御の1周期毎に演算する際に、電圧指令値を被除数とする除算の剰余を切り捨てて演算することによってオン/オフ時間を算出し、算出結果に基づいてPWMパルスを出力するPWMインバータが開示されている。上記の演算で生じた剰余は、オン/オフ時間に反映されずに切り捨てられた電圧指令値に相当する。 On the other hand, in Patent Document 1, when the on / off time of the PWM signal is calculated for each cycle of PWM control, the remainder of the division with the voltage command value as the dividend is rounded down to calculate on / off. A PWM inverter that calculates time and outputs a PWM pulse based on the calculation result is disclosed. The remainder generated by the above calculation corresponds to a voltage command value that is truncated without being reflected in the on / off time.
 このPWMインバータでは、切り捨てた剰余を次の周期以降の演算における電圧指令値に順次加算することにより、前回の演算でオン/オフ時間に反映されなかった剰余が次回の演算の際に新たなオン/オフ時間に反映され、その際の剰余が更に次の演算に反映されることが繰り返される。このため、PWM信号の発生部に対して設定されるオン/オフ時間の平均値を、本来設定されるべき目標のオン/オフ時間に近づけることができる。 In this PWM inverter, the remainder that is not reflected in the on / off time in the previous computation is newly added to the next computation by adding the rounded down remainder to the voltage command value in the computation after the next cycle. / It is reflected in the off time, and it is repeated that the remainder at that time is further reflected in the next calculation. For this reason, the average value of the on / off time set for the PWM signal generation unit can be brought close to the target on / off time to be originally set.
特開平3-98470号公報Japanese Patent Laid-Open No. 3-98470
 しかし、特許文献1に開示された技術は、PWM信号の出力経路が複数存在する構成を想定したものではない。特に、特許文献1の技術は、1つの出力経路のみのPWM信号の補正を行う構成であり、しかも累積加算される切り捨て値を反映する方法で補正を行う構成であるため、補正がなされるまでの期間が増大することが避けられず、短時間に補正を完結させて分解能を高めることは困難である。 However, the technique disclosed in Patent Document 1 does not assume a configuration in which a plurality of PWM signal output paths exist. In particular, the technique of Patent Document 1 is a configuration that corrects a PWM signal of only one output path, and further, a configuration that performs correction by a method that reflects a cumulative value that is rounded down. However, it is difficult to complete the correction in a short time and increase the resolution.
 一方、PWM信号の出力経路が複数存在する多相コンバータでは事情が異なる。図10には、4つのPWM信号生成部を備えた多相コンバータが例示されている。この例では、4つのPWM信号生成部での分解能が0.1(%)であり、設定可能値(設定可能デューティ)の最小単位が0.1となっている。このような多相コンバータでは、各PWM信号生成部に与える指示デューティが50.16(%)である場合、各PWM信号生成部では50.16(%)の精度でデューティを設定できないため、全てのPWM信号生成部を50.16(%)に近い50.1(%)で設定する方法が採用される。しかし、この方法では、50.1(%)のデューティで出力されるため、指示値である50.16%との誤差が大きくなってしまう。 On the other hand, the situation is different in a multiphase converter in which a plurality of PWM signal output paths exist. FIG. 10 illustrates a multiphase converter including four PWM signal generation units. In this example, the resolution in the four PWM signal generation units is 0.1 (%), and the minimum unit of the settable value (settable duty) is 0.1. In such a multiphase converter, when the instruction duty given to each PWM signal generation unit is 50.16 (%), the duty cannot be set with an accuracy of 50.16 (%) in each PWM signal generation unit. A method of setting the PWM signal generation unit at 50.1 (%) close to 50.16 (%) is employed. However, in this method, since it is output with a duty of 50.1 (%), an error from the instruction value of 50.16% becomes large.
 一方、本願の発明者は、このような問題を解消する方法として、図11のような構成を想定した。図11の方法では、指示値である50.16(%)よりも低い設定可能値(設定可能デューティ)である50.1(%)を2つのPWM信号生成部に割り当て、50.16(%)よりも高い設定可能値(設定可能デューティ)である50.2(%)を残りのPWM信号生成部に割り当てている。この方法によれば、4つのPWM信号生成部の平均のデューティが50.15(%)となり、指示値である50.16%により近い値となる。 On the other hand, the inventors of the present application assumed a configuration as shown in FIG. 11 as a method for solving such a problem. In the method of FIG. 11, 50.16 (%) which is a settable value (settable duty) lower than the instruction value 50.16 (%) is assigned to two PWM signal generation units, 50.16 (% ), Which is a settable value (settable duty) higher than 50.2 (%), is assigned to the remaining PWM signal generation units. According to this method, the average duty of the four PWM signal generation units is 50.15 (%), which is closer to the instruction value of 50.16%.
 しかし、このように一部の相のデューティを相対的に低くし、他の相のデューティを相対的に高くする方法でデューティの最小単位を実質的に小さくしようとすると、デューティが高く設定された相において駆動に伴う電流量が大きくなり、発熱箇所が集中してしまうことが懸念される。 However, if the minimum unit of duty is substantially reduced by making the duty of some phases relatively low and the duty of other phases relatively high in this way, the duty is set high. There is a concern that in the phase, the amount of current accompanying driving increases, and the heat generation points concentrate.
 本発明は上述した事情に基づいてなされたものであり、設定された目標値に基づいて複数の駆動対象にPWM信号を出力する信号発生回路及び電圧変換装置を、予め定められた設定可能値よりもデューティの最小単位を実質的に小さくすることが可能な構成且つ発熱箇所の集中を抑え得る構成で実現することを目的とするものである。 The present invention has been made based on the above-described circumstances, and a signal generation circuit and a voltage conversion device that output PWM signals to a plurality of driving objects based on a set target value are determined based on predetermined settable values. Another object of the present invention is to realize a configuration that can substantially reduce the minimum unit of duty and that can suppress concentration of heat generation points.
 第1の発明は、
 複数の駆動対象にPWM信号を出力する構成をなし、設定された目標値に基づき、前記複数の駆動対象の各々に出力するPWM信号のデューティを、予め定められた複数の設定可能値から選択してそれぞれ設定する信号発生回路であって、
 前記目標値が所定条件を満たす場合に、前記複数の駆動対象に出力するPWM信号のデューティの組み合わせを、前記目標値に基づいて複数種類の前記設定可能値の組み合わせで決定し、前記設定可能値の組み合わせを決定する毎に、決定された組み合わせの各々の前記設定可能値を前記複数の駆動対象にそれぞれ割り当て、前記複数の駆動対象に対して複数種類の前記設定可能値を割り当てるときの高い値を割り当てる優先順位を時間経過に応じて変更する制御部を有する。
The first invention is
The PWM signal is output to a plurality of driving targets, and the duty of the PWM signal output to each of the plurality of driving targets is selected from a plurality of predetermined settable values based on the set target value. Each of the signal generation circuits to be set,
When the target value satisfies a predetermined condition, a combination of duty of PWM signals output to the plurality of driving targets is determined based on a combination of a plurality of types of the settable values based on the target value, and the settable value Each time the combination is determined, the settable value of each of the determined combinations is assigned to the plurality of driving targets, and a high value is obtained when a plurality of types of the settable values are assigned to the plurality of driving targets. And a control unit that changes the priority order of assigning as time elapses.
 第1の発明のように、複数の駆動対象に出力するPWM信号のデューティの組み合わせを複数種類の設定可能値の組み合わせとすれば、複数の駆動対象に与えるデューティの平均値を設定可能値以外の値にすることができるため、予め定められた設定可能値よりもデューティの最小単位を実質的に小さくすることができる。しかも、制御部は、複数の駆動対象に対して複数種類の設定可能値を割り当てるときの高い値を割り当てる優先順位を時間経過に応じて変更しているため、デューティを相対的に高く設定する駆動対象の偏りを抑制することができ、発熱箇所の集中を効果的に抑えることができる。 As in the first invention, if the combination of the duty ratios of the PWM signals output to a plurality of driving targets is a combination of a plurality of types of settable values, the average value of the duty given to the plurality of driving targets is other than the settable value. Since the value can be a value, the minimum unit of the duty can be substantially smaller than a predetermined settable value. In addition, since the control unit changes the priority order for assigning a high value when assigning a plurality of types of settable values to a plurality of drive targets in accordance with the passage of time, the drive that sets the duty relatively high The bias of the object can be suppressed, and the concentration of heat generation points can be effectively suppressed.
 第2の発明は、
 複数の駆動対象にPWM信号を出力する構成をなし、設定された目標値に基づき、前記複数の駆動対象の各々に出力するPWM信号のデューティを、予め定められた複数の設定可能値から選択してそれぞれ設定する信号発生回路であって、
 前記複数の駆動対象のそれぞれの温度を検出する温度検出部と、
 前記目標値が所定条件を満たす場合に、前記複数の駆動対象に出力するPWM信号のデューティの組み合わせを、前記目標値に基づいて複数種類の前記設定可能値の組み合わせで決定し、前記設定可能値の組み合わせを決定する毎に、決定された組み合わせの各々の前記設定可能値を前記複数の駆動対象にそれぞれ割り当て、前記複数の駆動対象に対して複数種類の前記設定可能値を割り当てるときの高い値を割り当てる優先順位を、前記温度検出部による検出温度が低い駆動対象を優先する方式で決定する制御部と、
を有する。
The second invention is
The PWM signal is output to a plurality of driving targets, and the duty of the PWM signal output to each of the plurality of driving targets is selected from a plurality of predetermined settable values based on the set target value. Each of the signal generation circuits to be set,
A temperature detection unit for detecting the temperature of each of the plurality of driving objects;
When the target value satisfies a predetermined condition, a combination of duty of PWM signals output to the plurality of driving targets is determined based on a combination of a plurality of types of the settable values based on the target value, and the settable value Each time the combination is determined, the settable value of each of the determined combinations is assigned to the plurality of driving targets, and a high value is obtained when a plurality of types of the settable values are assigned to the plurality of driving targets. A control unit that determines a priority order for assigning a driving target having a low detection temperature by the temperature detection unit;
Have
 第2の発明のように、複数の駆動対象に出力するPWM信号のデューティの組み合わせを複数種類の設定可能値の組み合わせとすれば、複数の駆動対象に与えるデューティの平均値を設定可能値以外の値にすることができるため、予め定められた設定可能値よりもデューティの最小単位を実質的に小さくすることができる。しかも、制御部は、複数の駆動対象に対して複数種類の設定可能値を割り当てるときの高い値を割り当てる優先順位を、温度検出部による検出温度が低い駆動対象を優先する方式で決定するため、温度がより低い駆動対象を、相対的に駆動電流が大きくなる駆動対象として選定することができる。よって、発熱箇所の集中を効果的に抑えることができる。 If the combination of the duty ratios of the PWM signals output to a plurality of driving targets is a combination of a plurality of settable values as in the second invention, the average value of the duty given to the plurality of driving targets is other than the settable value. Since the value can be a value, the minimum unit of the duty can be substantially smaller than a predetermined settable value. In addition, the control unit determines the priority order for assigning a high value when assigning a plurality of types of settable values to a plurality of driving objects in a manner that prioritizes the driving object having a low temperature detected by the temperature detection unit. A drive target having a lower temperature can be selected as a drive target having a relatively large drive current. Therefore, the concentration of heat generation points can be effectively suppressed.
実施例1に係る電圧変換装置の構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of a voltage conversion device according to a first embodiment. 実施例1に係る信号発生回路の一部の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a part of the signal generation circuit according to the first embodiment. 発生部の動作を説明するためのタイミング図である。It is a timing diagram for demonstrating operation | movement of a generation | occurrence | production part. n周期分のm個の設定値によってPWM信号の平均的なデューティが定まる動作を説明するための説明図である。It is explanatory drawing for demonstrating the operation | movement in which the average duty of a PWM signal is decided by m set value for n period. 実施例1に係る信号発生回路で周期割込処理を実行するCPUの処理手順を示すフローチャートである。4 is a flowchart illustrating a processing procedure of a CPU that executes a periodic interrupt process in the signal generation circuit according to the first embodiment. 設定値決定のサブルーチンに係るCPUの処理手順を示すフローチャートである。It is a flowchart which shows the process sequence of CPU which concerns on the subroutine of a setting value determination. 目標の値に応じて決定されたn周期分のm個の設定値の一覧を示す図表である。It is a graph which shows the list of the m setting values for n periods determined according to the target value. 時間経過に応じて優先順位を切り替える方法を説明する説明図である。It is explanatory drawing explaining the method of switching a priority according to progress of time. 実施例2に係る信号発生回路に関し、温度に応じて優先順位を定める方法を説明する説明図である。FIG. 10 is an explanatory diagram for explaining a method of determining a priority order according to temperature with respect to the signal generation circuit according to the second embodiment. 比較例1の構成を概略的に説明する説明図である。6 is an explanatory diagram schematically illustrating a configuration of Comparative Example 1. FIG. 比較例2の構成を概略的に説明する説明図である。It is explanatory drawing which illustrates the structure of the comparative example 2 roughly.
 発明の望ましい形態を以下に例示する。
 本発明において、制御部は、目標値が所定範囲である場合に、m個の駆動対象に出力するPWM信号のデューティの組み合わせを、目標値よりも大きい設定可能値のうちの最小値である第1デューティと、目標値よりも小さい設定可能値のうちの最大値である第2デューティとを組み合わせて決定し、目標値に応じて第1デューティと第2デューティとの組み合わせを決定する毎にm個の駆動対象のそれぞれに対して第1デューティ及び第2デューティのいずれかをそれぞれ割り当てる構成であり、且つm個の駆動対象における第1デューティの割り当ての優先順位を変更する構成であってもよい。
The desirable form of invention is illustrated below.
In the present invention, when the target value is within the predetermined range, the control unit sets the combination of the duty ratios of the PWM signals output to the m driving targets to be a minimum value among settable values larger than the target value. 1 duty and a second duty which is the maximum value among settable values smaller than the target value are determined in combination, and m is determined each time a combination of the first duty and the second duty is determined according to the target value. A configuration in which either the first duty or the second duty is assigned to each of the driving targets, and a priority order of the assignment of the first duty in the m driving targets may be changed. .
 このように、目標値よりも大きい設定可能値のうちの最小値である第1デューティと、目標値よりも小さい設定可能値のうちの最大値である第2デューティとをm個の駆動対象にそれぞれ割り当てれば、その周期においてm個の駆動対象に出力するPWM信号のデューティの平均的な値が設定可能値の最小単位よりもきめ細かく調整され、m個の駆動対象に与えるデューティの平均値を目標値により近づけやすくなる。 In this way, the first duty, which is the minimum value among the settable values larger than the target value, and the second duty, which is the maximum value among the settable values smaller than the target value, are set as m driving targets. If each is assigned, the average value of the duty of the PWM signal output to the m driving objects in that period is finely adjusted from the minimum unit of the settable value, and the average value of the duty given to the m driving objects is determined. It becomes easier to get closer to the target value.
 上述したいずれかの信号発生回路と、信号発生回路で発生した各々のPWM信号のデューティに応じたスイッチングによって電圧を変換する複数の電圧変換部と、電圧変換部からの出力を検出する出力検出部と、出力検出部の検出結果に基づいて目標値を設定する設定部と、を備えた電圧変換装置を構成すると良い。 Any of the signal generation circuits described above, a plurality of voltage conversion units that convert voltage by switching according to the duty of each PWM signal generated by the signal generation circuit, and an output detection unit that detects an output from the voltage conversion unit And a setting unit that sets a target value based on the detection result of the output detection unit.
 この構成によれば、予め定められた設定可能値よりもデューティの最小単位を実質的に小さくすることができる信号発生回路を電圧変換装置に適用することができ、電圧変換装置において出力電圧の精度を高めることができる。更には、このような電圧変換装置において発熱箇所の集中を抑えることができる。 According to this configuration, it is possible to apply the signal generation circuit that can substantially reduce the minimum unit of the duty to a predetermined settable value to the voltage conversion device, and the accuracy of the output voltage in the voltage conversion device. Can be increased. Furthermore, in such a voltage converter, concentration of heat generation points can be suppressed.
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1における100は電圧変換装置であり、電圧変換装置100は、外部のバッテリ2及び負荷3と接続されている。電圧変換装置100は、バッテリ2からの直流電圧を降圧して負荷3に供給する。
<Example 1>
Embodiment 1 of the present invention will be described below.
In FIG. 1, reference numeral 100 denotes a voltage converter, and the voltage converter 100 is connected to an external battery 2 and a load 3. The voltage conversion apparatus 100 steps down the DC voltage from the battery 2 and supplies it to the load 3.
 電圧変換装置100は、直流電圧を降圧するm個(mは2以上の自然数)のコンバータ(電圧変換回路に相当)CV1,CV2,・・・CVmと、コンバータCV1,CV2,・・・CVm夫々を駆動する駆動回路DC1,DC2,・・・DCmと、m個のPWM信号を発生する信号発生回路1と、各コンバータCV1,CV2,・・・CVmが降圧した電圧を平滑するコンデンサC1と、出力電流を検出するための電流検出回路17とを備える。各コンバータCV1,CV2,・・・CVmからの出力電流が電流検出回路17を介して負荷3に供給され、負荷3に供給される電圧が信号発生回路1に与えられる。 The voltage conversion apparatus 100 includes m converters (corresponding to voltage conversion circuits) CV1, CV2,... CVm and converters CV1, CV2,. Drive circuit DC1, DC2,... DCm, a signal generation circuit 1 that generates m PWM signals, a capacitor C1 that smoothes the voltage stepped down by each converter CV1, CV2,. And a current detection circuit 17 for detecting the output current. Output currents from the respective converters CV1, CV2,... CVm are supplied to the load 3 via the current detection circuit 17, and a voltage supplied to the load 3 is supplied to the signal generation circuit 1.
 コンバータCV1,CV2,・・・CVmは、夫々が互いに並列に接続された所謂多相コンバータであり、直流電圧を昇圧するものであってもよい。一のコンバータCVk(kはm以下の自然数:以下同様)は、バッテリ2から供給された直流電圧がドレインに印加されるNチャネル型のMOSFETであるスイッチング素子(以下、単にスイッチという)Skaと、コンデンサC1に一端が接続されており、スイッチSkaのソースに他端が接続されたインダクタLkと、スイッチSka及びインダクタLkの接続点にドレインが接続されたソース接地のスイッチSkbとを備える。スイッチSka,Skbは、Pチャネル型のMOSFETであってもよいし、バイポーラトランジスタ等の他のスイッチング素子であってもよい。 Converters CV1, CV2,... CVm are so-called multiphase converters that are connected in parallel to each other, and may boost DC voltage. One converter CVk (k is a natural number less than or equal to m: the same applies below) includes a switching element (hereinafter simply referred to as a switch) Ska that is an N-channel MOSFET to which a DC voltage supplied from the battery 2 is applied to the drain, One end is connected to the capacitor C1, and an inductor Lk whose other end is connected to the source of the switch Ska and a source-grounded switch Skb whose drain is connected to a connection point between the switch Ska and the inductor Lk are provided. The switches Ska and Skb may be P-channel type MOSFETs or other switching elements such as bipolar transistors.
 本構成では、コンバータCV1,CV2,・・・CVmのそれぞれに近接する位置に温度センサTH1,TH2,・・・THmが設けられている。温度センサTHkはいずれも、コンバータCV1,CV2,・・・CVmの中で対応するコンバータCVkの部品までの距離が最も小さくなっており、具体的には対応するコンバータCVkのスイッチング素子の近傍に設けられている。このような構成は、kが1~mの自然数のいずれの場合でも当てはまる。 In this configuration, temperature sensors TH1, TH2,... THm are provided at positions close to the converters CV1, CV2,. Each of the temperature sensors THk has the shortest distance to the corresponding converter CVk component among the converters CV1, CV2,... CVm, and is specifically provided in the vicinity of the switching element of the corresponding converter CVk. It has been. Such a configuration applies to any case where k is a natural number of 1 to m.
 スイッチSkbは接地電位にアノードが接続されたダイオードで置き換えることが可能であるが、ここではダイオードよりもオン抵抗が低いスイッチSkbが、いわゆる同期整流を行うことにより、コンバータCVkの損失が低減される。同期整流によってコンバータCVkの軽負荷時にインダクタLkに流れる電流が逆流する場合は、例えばインダクタLkと直列に抵抗器を介装させてインダクタLkの電流を検知し、逆流を検知したときに駆動回路DCkにてスイッチSkbのオン信号を停止すればよい。 The switch Skb can be replaced with a diode whose anode is connected to the ground potential. Here, the switch Skb having a lower on-resistance than the diode performs so-called synchronous rectification, thereby reducing the loss of the converter CVk. . In the case where the current flowing through the inductor Lk reversely flows when the converter CVk is lightly loaded due to synchronous rectification, for example, a resistor is inserted in series with the inductor Lk to detect the current of the inductor Lk, and when the reverse current is detected, the drive circuit DCk The on signal of the switch Skb may be stopped at.
 一の駆動回路DCkは、発生部SGkから与えられたPWM信号に基づいて、スイッチSka,Skb夫々を各制御周期で交互にオンするためのオン信号を、スイッチSka,Skbのゲートに印加する。スイッチSkbのゲートには、スイッチSkaのゲートに与えられるオン信号に対して位相が略反転しており、且つ所謂デッドタイムが確保されたオン信号が与えられる。 The one drive circuit DCk applies an ON signal for alternately turning on the switches Ska and Skb in each control cycle to the gates of the switches Ska and Skb based on the PWM signal given from the generating unit SGk. The gate of the switch Skb is supplied with an ON signal whose phase is substantially inverted with respect to the ON signal supplied to the gate of the switch Ska and a so-called dead time is ensured.
 信号発生回路1は、複数の駆動対象にPWM信号を出力する構成をなし、設定された目標値に基づき、複数の駆動対象の各々に出力するPWM信号のデューティを、予め定められた複数の設定可能値から選択してそれぞれ設定する回路である。この信号発生回路1は、駆動回路DC1,DC2,・・・DCm夫々に位相が2π/mずつ異なるPWM信号を与える発生部SG1,SG2・・・SGmと、発生部SG1,SG2・・・SGm夫々にデータを設定する制御部10とを備える。発生部SG1,SG2・・・SGmが制御部10に含まれていてもよい。以下では、発生部SG1,SG2・・・SGm夫々が発生するPWM信号の位相を第1相,第2相・・・第m相という。 The signal generation circuit 1 is configured to output a PWM signal to a plurality of driving targets, and based on the set target value, the duty of the PWM signal output to each of the plurality of driving targets is set to a plurality of predetermined settings. It is a circuit that selects and sets each possible value. This signal generation circuit 1 includes generators SG1, SG2,... SGm, and generators SG1, SG2,... SGm that give PWM signals having different phases by 2π / m to the drive circuits DC1, DC2,. And a control unit 10 for setting data in each. The generators SG1, SG2,... SGm may be included in the controller 10. Hereinafter, the phases of the PWM signals generated by the generators SG1, SG2,..., SGm are referred to as first phase, second phase,.
 制御部10は、CPU11を有するマイクロコンピュータを含んでなる。CPU11は、プログラム等の情報を記憶するROM12、一時的に発生した情報を記憶するRAM13、アナログの電圧をデジタル値に変換するA/D変換器14、及び複数の割込要求を処理する割込コントローラ15と互いにバス接続されている。CPU11には、更に、発生部SG1,SG2・・・SGmがバス接続されている。A/D変換器14には、電流検出回路17からの検出電圧と、負荷3に供給される出力電圧とが与えられる。本構成では、電流検出回路17及びA/D変換器14に電圧を入力する経路18とが出力検出部19を構成し、コンバータCV1,CV2・・・CVm(電圧変換部)からの出力電流及び出力電圧を検出するように機能する。なお、図1の例では、経路18は、出力側の導電路5の電圧をA/D変換器14に入力する構成であるが、出力側の導電路5の電圧を分圧してA/D変換器14に入力する構成であってもよい。 The control unit 10 includes a microcomputer having a CPU 11. The CPU 11 includes a ROM 12 that stores information such as programs, a RAM 13 that stores temporarily generated information, an A / D converter 14 that converts an analog voltage into a digital value, and an interrupt that processes a plurality of interrupt requests. The controller 15 is connected to each other by a bus. Further, generators SG1, SG2,... SGm are connected to the CPU 11 by a bus. The A / D converter 14 is supplied with a detection voltage from the current detection circuit 17 and an output voltage supplied to the load 3. In this configuration, the current detection circuit 17 and the path 18 for inputting a voltage to the A / D converter 14 constitute an output detection unit 19, and output currents from the converters CV1, CV2... CVm (voltage conversion unit) and It functions to detect the output voltage. In the example of FIG. 1, the path 18 is configured to input the voltage of the output-side conductive path 5 to the A / D converter 14, but the voltage of the output-side conductive path 5 is divided to A / D. The structure which inputs into the converter 14 may be sufficient.
 図2のようにROM12は、後述する目標値に対応付けて決定された複数の設定値を記憶する設定値記憶テーブル121を含んでいてもよい。但し、設定値記憶テーブル121を含まない構成であってもよく、本構成では、設定値記憶テーブル121を用いない例を代表例として説明する。 As shown in FIG. 2, the ROM 12 may include a setting value storage table 121 that stores a plurality of setting values determined in association with target values to be described later. However, the configuration may not include the set value storage table 121. In this configuration, an example in which the set value storage table 121 is not used will be described as a representative example.
 RAM13は、複数の設定値の記憶及び読み出しを各別のタイミングで行うために二重化された設定値記憶領域131a及び131bを含む。設定値記憶領域131a(又は131b)に記憶された設定値は、割込コントローラ15が制御する後述の割込処理にて、順次発生部SG1,SG2・・・SGmに設定されるようになっている。 The RAM 13 includes setting value storage areas 131a and 131b that are duplicated in order to store and read a plurality of setting values at different timings. The set values stored in the set value storage area 131a (or 131b) are sequentially set in the generation units SG1, SG2,... SGm in an interrupt process to be described later controlled by the interrupt controller 15. Yes.
 発生部SG1は、設定値が設定されるレジスタバッファ161と、レジスタバッファ161の内容が周期的にロードされるデューティレジスタ162と、デューティレジスタ162の内容に応じたデューティのPWM信号を生成するPWM信号生成部163とを有する。PWM信号生成部163は、デューティレジスタ162に対してレジスタバッファ161の内容をロードするためのロード信号を与える。他の発生部SG2,SG3・・・SGmについても同様である。 The generator SG1 includes a register buffer 161 in which set values are set, a duty register 162 in which the contents of the register buffer 161 are periodically loaded, and a PWM signal that generates a PWM signal with a duty corresponding to the contents of the duty register 162 A generation unit 163. The PWM signal generation unit 163 gives a load signal for loading the contents of the register buffer 161 to the duty register 162. The same applies to the other generators SG2, SG3,.
 PWM信号生成部163は、不図示の内部クロックと、デューティレジスタ162の内容とに基づいて、内部クロックの周期の整数倍のオン時間を有するPWM信号を生成する。PWM信号生成部163が生成したPWM信号は、駆動回路DC1に与えられると共に、割込要求の1つとして割込コントローラ15に与えられる。他の発生部SG2,SG3,・・・SGm夫々のPWM信号生成部163についても同様である。 The PWM signal generation unit 163 generates a PWM signal having an on time that is an integral multiple of the period of the internal clock, based on an internal clock (not shown) and the contents of the duty register 162. The PWM signal generated by the PWM signal generation unit 163 is supplied to the drive circuit DC1 and is also supplied to the interrupt controller 15 as one of interrupt requests. The same applies to the PWM signal generators 163 of the other generators SG2, SG3,.
 図1に戻って、割込コントローラ15は、上述の何れかの割込要求を受け付けた場合、CPU11に対してインタラプトを要求する信号(所謂INT信号)を与え、CPU11からアクノレッジ信号(所謂INTA信号)が与えられたときに、各割込要求に対応する割込ベクタをバスに送出する。バスに送出された割込ベクタがCPU11に読み込まれた場合、CPU11が各割込要求に対応する割込処理を実行するようになっている。 Returning to FIG. 1, when any of the above interrupt requests is received, the interrupt controller 15 gives a signal (so-called INT signal) for requesting an interrupt to the CPU 11, and the CPU 11 receives an acknowledge signal (so-called INTA signal). ) Is sent, the interrupt vector corresponding to each interrupt request is sent to the bus. When the interrupt vector sent to the bus is read by the CPU 11, the CPU 11 executes an interrupt process corresponding to each interrupt request.
 電流検出回路17は、抵抗器R1及び差動増幅器DA1を有する。出力電流によって抵抗器R1に生じた電圧降下は、差動増幅器DA1で増幅されて出力電流に応じた検出電圧となり、A/D変換器14でデジタル値に変換される。 The current detection circuit 17 includes a resistor R1 and a differential amplifier DA1. The voltage drop generated in the resistor R1 due to the output current is amplified by the differential amplifier DA1 to become a detection voltage corresponding to the output current, and is converted into a digital value by the A / D converter 14.
 上述の構成において、バッテリ2からインダクタL1,L2,・・・Lm夫々に流れる電流は、駆動回路DC1,DC2,・・・DCmから2π/mの位相差でスイッチS1a,S2a,・・・Smaに与えられるオン信号でスイッチングされ、スイッチS1a,S2a,・・・Sma夫々のオフ期間にインダクタL1,L2,・・・Lmに流れる電流がスイッチS1b,S2b,・・・Smbに還流する。 In the above-described configuration, the currents flowing from the battery 2 to the inductors L1, L2,... Lm are switches S1a, S2a,... Sma with a phase difference of 2π / m from the drive circuits DC1, DC2,. .., Sma, and the currents flowing through the inductors L1, L2,... Lm return to the switches S1b, S2b,... Smb during the OFF period of each of the switches S1a, S2a,.
 このようにして、各インダクタL1,L2,・・・Lmの一端から負荷3に対して2π/mの位相差で流れる電流が加算されることにより、各コンバータCV1,CV2,・・・CVmが出力する電力が加算される。各スイッチS1a,S2a,・・・Smaに2π/mの位相差で与えられるオン信号と、各インダクタL1,L2,・・・Lmに流れる電流及び加算されてリップルが低減された出力電流との時間関係を示すタイミング図については、特開2013-46541号公報に詳しい。 In this way, currents flowing with a phase difference of 2π / m from one end of each inductor L1, L2,... Lm to the load 3 are added, so that each converter CV1, CV2,. The output power is added. An ON signal given to each switch S1a, S2a,... Sma with a phase difference of 2π / m, and a current flowing through each inductor L1, L2,. A timing diagram showing the time relationship is detailed in Japanese Patent Application Laid-Open No. 2013-46541.
 さて、信号発生回路1のCPU11は、例えば電圧ループ制御及び電流ループ制御を並列的に実行する電流モード制御方式によって負荷3に供給する電圧を制御する。電圧ループ制御では、CPU11は負荷3に供給される出力電圧をA/D変換したデジタル値を、目標の電圧値から減算した偏差に基づいて、後段の電流ループ制御で目標の電流値となる操作量を演算する。この電圧ループ制御では、各コンバータCV1,CV2,・・・CVmが出力する電圧が制御量である。 Now, the CPU 11 of the signal generation circuit 1 controls the voltage supplied to the load 3 by, for example, a current mode control system that executes voltage loop control and current loop control in parallel. In the voltage loop control, the CPU 11 performs an operation to obtain a target current value in the subsequent current loop control based on a deviation obtained by subtracting the digital value obtained by A / D converting the output voltage supplied to the load 3 from the target voltage value. Calculate the quantity. In this voltage loop control, the voltage output from each converter CV1, CV2,... CVm is the control amount.
 電流ループ制御では、CPU11は負荷3に供給された出力電流をA/D変換したデジタル値を、前段の電圧ループ制御からの目標の電流値から減算した偏差に基づいて、m個の発生部SG1,SG2・・・SGmのそれぞれに対する目標値を演算する。本構成では制御部10(具体的にはCPU11)が目標値を設定する設定部の一例に相当する。CPU11は更に、演算した目標値に応じて各発生部SG1,SG2・・・SGmに設定可能な設定可能値を決定する。このように本構成では、各発生部SG1,SG2・・・SGmが出力するPWM信号のデューティを、予め定められた複数の設定可能値から選択してそれぞれ設定する構成となっている。 In the current loop control, the CPU 11 performs m generation units SG1 based on a deviation obtained by subtracting the digital value obtained by A / D converting the output current supplied to the load 3 from the target current value from the previous voltage loop control. , SG2... SGm is calculated as a target value. In this configuration, the control unit 10 (specifically, the CPU 11) corresponds to an example of a setting unit that sets a target value. The CPU 11 further determines a settable value that can be set in each of the generating units SG1, SG2,... SGm according to the calculated target value. As described above, in this configuration, the duty of the PWM signal output from each of the generators SG1, SG2,... SGm is selected from a plurality of predetermined settable values and set.
 ここでいう設定可能値とは、各発生部SG1,SG2・・・SGmに設定されたときに出力のPWM信号の変化に反映される最小単位(最小の増分)の整数倍の値をいう。つまり、各発生部SG1,SG2・・・SGmが出力するPWM信号のデューティは、上記最小単位の整数倍の値(設定可能値)の中から選択されることになる。以下、簡単のため、各発生部SG1,SG2・・・SGmに設定すべく決定された設定可能値を設定値という。発生部SG1,SG2・・・SGmは、決定された設定値が設定されることにより、設定値に応じたデューティのPWM信号を発生する。この電流ループ制御では、各コンバータCV1,CV2,・・・CVmが出力する電流が制御量である。 The settable value here refers to a value that is an integral multiple of the minimum unit (minimum increment) that is reflected in the change in the output PWM signal when each generator SG1, SG2,... SGm is set. That is, the duty of the PWM signal output from each of the generators SG1, SG2,... SGm is selected from a value (settable value) that is an integral multiple of the minimum unit. Hereinafter, for the sake of simplicity, the settable values determined to be set in each of the generating units SG1, SG2,. The generators SG1, SG2,... SGm generate a PWM signal having a duty corresponding to the set value when the determined set value is set. In this current loop control, the current output from each converter CV1, CV2,... CVm is the controlled variable.
 ここで、電圧変換装置100の出力電圧及び出力電流が時間的に比較的穏やかに変動する場合、上記の電圧ループ制御及び電流ループ制御の制御周期をPWM周期のn倍(nは1以上の自然数)の周期で行っても十分であると言える。そこで本構成では、PWM周期のn周期毎にm個の発生部SG1,SG2・・・SGmに対するn周期分の設定値をまとめて決定して設定値記憶領域131a又は131bに記憶しておき、PWM周期で発生する割込処理にて1周期毎にm個の設定値の夫々を順次発生部SG1,SG2・・・SGmに設定し、これをn周期にわたって繰り返す。 Here, when the output voltage and output current of the voltage converter 100 fluctuate relatively gently in time, the control cycle of the voltage loop control and current loop control is n times the PWM cycle (n is a natural number of 1 or more). ) Is sufficient. Therefore, in this configuration, the set values for n cycles for m generators SG1, SG2,... SGm are determined collectively every n cycles of the PWM cycle and stored in the set value storage area 131a or 131b. Each of the m set values is sequentially set in the generators SG1, SG2,..., SGm for each cycle in the interrupt process generated in the PWM cycle, and this is repeated over n cycles.
 以下では、簡単のためにm=n=3とするが、これに限定されるものではなく、mは2又は4以上であってもよい。nは、3以外の自然数であってもよく、2以上の数であってもよく、1であってもよい。また、mとnとが異なっていてもよい。また、m個の設定値は必ずしも1周期毎に発生部SG1,SG2,・・・SGm全てに設定する必要はなく、ある周期と次の周期とで設定値が変わるときに、設定値が変わる発生部に対してのみ設定するようにしてもよい。 In the following, m = n = 3 for simplicity, but is not limited thereto, and m may be 2 or 4 or more. n may be a natural number other than 3, may be 2 or more, and may be 1. Moreover, m and n may be different. The m set values do not necessarily have to be set for all the generation units SG1, SG2,... SGm every cycle, and the set values change when the set values change between a certain cycle and the next cycle. You may make it set only with respect to a generation | occurrence | production part.
 次に、PWM信号生成部163がデューティレジスタ162の内容に応じたPWM信号を生成する仕組みについて、第1相のPWM信号を発生する発生部SG1を例にして説明する。図3は、発生部SG1の動作を説明するためのタイミング図である。図3に示す5つのタイミング図は、何れも同一の時間軸を横軸としてあり、縦軸には、図の上から、第1相のPWM信号の信号レベル、第1相のPWM信号に応じて実行される割込処理の実行状態、発生部SG1のレジスタバッファ161の内容、レジスタバッファ161の内容をデューティレジスタ162にロードするためのロード信号のオン/オフ状態、及び発生部SG1のデューティレジスタ162の内容を示してある。 Next, a mechanism in which the PWM signal generation unit 163 generates a PWM signal corresponding to the contents of the duty register 162 will be described by taking the generation unit SG1 that generates the first phase PWM signal as an example. FIG. 3 is a timing chart for explaining the operation of the generation unit SG1. The five timing charts shown in FIG. 3 all have the same time axis as the horizontal axis. The vertical axis corresponds to the signal level of the first phase PWM signal and the first phase PWM signal from the top of the figure. The execution state of the interrupt processing to be executed, the contents of the register buffer 161 of the generator SG1, the on / off state of the load signal for loading the contents of the register buffer 161 into the duty register 162, and the duty register of the generator SG1 The contents of 162 are shown.
 各相のPWM信号について、時刻t21からt22まで、時刻t22からt23まで、及び時刻t23からt31までの夫々が、n周期(n=3)における第1周期、第2周期、及び第3周期であり、時刻t13からt21までが、1つ前のn周期における第3周期である。第1相のPWM信号が立ち上がるタイミングは、各周期の開始時点と一致している。第2相,第3相・・・第m相夫々のPWM信号が立ち上がるタイミング及び関連する処理、信号等に係るタイミングは、図3に示すタイミングに対して2π/m,2π×2/m・・・2π×(m-1)/mだけ位相が遅れたものとなる。 Regarding the PWM signal of each phase, each of the period from time t21 to t22, from time t22 to t23, and from time t23 to t31 is the first period, the second period, and the third period in the n period (n = 3). Yes, from time t13 to t21 is the third period in the previous n period. The timing when the first phase PWM signal rises coincides with the start time of each cycle. The timing when the PWM signal rises in each of the second phase, the third phase, ..., the m-th phase, and the timing related to processing, signals, etc. are 2π / m, 2π × 2 / m · with respect to the timing shown in FIG. .. The phase is delayed by 2π × (m−1) / m.
 PWM信号の各周期における信号レベルがHからLに変化する時の立ち下がりが、割込コントローラ15に対する割込要求として受け付けられて割込処理が1回実行される。具体的には、時刻t13、t21、t22及びt23夫々から、各周期におけるオン時間T13、T21、T22及びT23が経過した時に割込処理が実行される。各割込処理では、次のPWM周期のための設定値が、RAM13に含まれる設定値記憶領域131a又は131bから読み出されてレジスタバッファ161に設定される。 The falling edge when the signal level in each cycle of the PWM signal changes from H to L is accepted as an interrupt request to the interrupt controller 15 and the interrupt process is executed once. Specifically, the interrupt process is executed when the on-time T13, T21, T22, and T23 in each cycle has elapsed from time t13, t21, t22, and t23. In each interrupt process, the set value for the next PWM cycle is read from the set value storage area 131a or 131b included in the RAM 13 and set in the register buffer 161.
 設定値記憶領域131a(又は131b)への設定値の記憶は、設定値記憶領域131b(又は131a)からの読み出しが行われているn周期の間、且つ設定値記憶領域131a(又は131b)からの読み出しが開始される周期に先行するn周期の間に行われる。例えば、時刻t13から連続する第3周期、第1周期及び第2周期にて設定値記憶領域131a(又は131b)から読み出される設定値は、時刻t13に先行して連続する第3周期、第1周期及び第2周期の間に算出されて設定値記憶領域131a(又は131b)に記憶される。 The setting value is stored in the setting value storage area 131a (or 131b) for n cycles during which reading from the setting value storage area 131b (or 131a) is performed and from the setting value storage area 131a (or 131b). Is carried out during n cycles preceding the cycle in which reading is started. For example, the setting values read from the setting value storage area 131a (or 131b) in the third period, the first period, and the second period that are continuous from the time t13 are the third period, the first period that is continuous before the time t13, It is calculated during the period and the second period and is stored in the set value storage area 131a (or 131b).
 設定値記憶領域131a(又は131b)に記憶された第1周期分、第2周期分及び第3周期分夫々のm個の設定値は、各設定値が記憶された後に連続する第3周期、第1周期及び第2周期における相別の割込処理により順次読み出されて、対応する発生部のレジスタバッファ161に設定される。これにより、第3周期、第1周期及び第2周期夫々における相別の割込処理では、対応する発生部のレジスタバッファ161の内容が、第1周期分、第2周期分及び第3周期分の設定値に書き替えられる。 The m set values for the first period, the second period, and the third period stored in the set value storage area 131a (or 131b) are the third period that continues after each set value is stored, The data are sequentially read out by the interrupt processing for each phase in the first cycle and the second cycle, and set in the register buffer 161 of the corresponding generation unit. Thus, in the interrupt processing for each phase in the third period, the first period, and the second period, the contents of the register buffer 161 of the corresponding generation unit are the first period, the second period, and the third period. It is rewritten to the set value.
 一方、PWM信号の信号レベルがLからHに変化する時の立ち上がり、即ち時刻t13、t21、t22、t23、及びt31では、PWM信号生成部163からデューティレジスタ162に対してレジスタバッファ161の内容をロードするためのロード信号が与えられる。これにより、第1周期、第2周期及び第3周期夫々の間、デューティレジスタ162の内容は第1周期分、第2周期分及び第3周期分の設定値に保持される。これらの設定値により、第1周期、第2周期及び第3周期夫々におけるPWM信号のデューティが定まる。 On the other hand, at the rise when the signal level of the PWM signal changes from L to H, that is, at times t13, t21, t22, t23, and t31, the contents of the register buffer 161 are transferred from the PWM signal generation unit 163 to the duty register 162. A load signal for loading is provided. Thereby, during each of the first period, the second period, and the third period, the contents of the duty register 162 are held at the set values for the first period, the second period, and the third period. The duty of the PWM signal in each of the first period, the second period, and the third period is determined by these set values.
 次に、目標値に応じた設定値を発生部SG1、SG2及びSG3に設定する具体例について説明する。
 図4は、n周期分のm個の設定値によってPWM信号の平均的なデューティが定まる動作を説明するための説明図である。図の横軸は時間を表し、縦軸は第1相、第2相及び第3相夫々のPWM信号の信号レベルを表す。図4では、2つの連続するn周期について、PWM周期の第1周期、第2周期及び第3周期夫々における第1相から第3相までのPWM信号がオン/オフに変化する様子を示してある。ここでも簡単のためにm=n=3とする。
Next, a specific example in which set values corresponding to target values are set in the generating units SG1, SG2, and SG3 will be described.
FIG. 4 is an explanatory diagram for explaining an operation in which an average duty of a PWM signal is determined by m set values for n cycles. In the figure, the horizontal axis represents time, and the vertical axis represents the signal levels of the PWM signals of the first phase, the second phase, and the third phase. FIG. 4 shows how the PWM signals from the first phase to the third phase in each of the first cycle, the second cycle, and the third cycle of the PWM cycle change on / off for two consecutive n cycles. is there. Again, for simplicity, m = n = 3.
 実施例1では、発生部SG1、SG2及びSG3夫々が発生するPWM信号の周期が10μsであり、発生部SG1、SG2及びSG3夫々に設定可能な設定値の最小単位(即ち最小の増分)が1であって、この最小単位の1がPWM信号のデューティの1%(即ちオン時間の0.1μs)に対応する。換言すれば、発生部SG1、SG2及びSG3夫々が発生するPWM信号のデューティは、1%刻みで設定が可能である。その一方で、CPU11がPID演算によって算出した目標のデューティの最小単位はそれよりも小さく、例えば0.1%であるものとする。 In the first embodiment, the period of the PWM signal generated by each of the generating units SG1, SG2, and SG3 is 10 μs, and the minimum unit (that is, the minimum increment) of the set value that can be set in each of the generating units SG1, SG2, and SG3 is 1. The minimum unit of 1 corresponds to 1% of the duty of the PWM signal (that is, the ON time of 0.1 μs). In other words, the duty of the PWM signal generated by each of the generating units SG1, SG2, and SG3 can be set in increments of 1%. On the other hand, the minimum unit of the target duty calculated by the CPU 11 by the PID calculation is smaller than that, for example, 0.1%.
 図4に示すタイミングにおいて、先のn周期におけるPID演算の結果としての全体の操作量が67.2%である場合を想定する。これは、発生部SG1、SG2及びSG3夫々に設定すべき目標値の加算値が67.2であることを意味する。つまり、目標値は、22.4(=67.2/3)である。この発生部SG1、SG2及びSG3夫々に設定可能な設定値は、目標値22.4(=67.2/3)に近い22又は23と決定される。但し、発生部SG1、SG2及びSG3の設定値を22のみ、又は23のみとした場合、目標値22.4からずれることになる。 Suppose that the total operation amount as a result of the PID calculation in the previous n cycles is 67.2% at the timing shown in FIG. This means that the added value of the target value to be set for each of the generating units SG1, SG2, and SG3 is 67.2. That is, the target value is 22.4 (= 67.2 / 3). The set value that can be set in each of the generating portions SG1, SG2, and SG3 is determined to be 22 or 23 that is close to the target value 22.4 (= 67.2 / 3). However, when the set values of the generators SG1, SG2, and SG3 are set to 22 only or 23 only, the set values deviate from the target value 22.4.
 そこで本構成では、目標値Xが所定範囲である場合に、m個の駆動対象に出力するPWM信号のデューティの組み合わせ(即ち、設定値の組み合わせ)を、目標値Xよりも大きい設定可能値のうちの最小値である第1デューティと、目標値Xよりも小さい設定可能値のうちの最大値である第2デューティとを組み合わせて決定する。例えば、目標値Xが22.4である場合、発生部SG1、SG2及びSG3に設定する設定値(3個の駆動対象に出力するPWM信号のデューティ)の組み合わせを、22.4よりも大きい設定可能値のうちの最小値である23(第1デューティ)と、22.4よりも小さい設定可能値のうちの最大値である22(第2デューティ)とを組み合わせて決定する。 Therefore, in this configuration, when the target value X is within a predetermined range, the combination of the duty ratios of the PWM signals output to the m driving targets (that is, the combination of the set values) is a settable value larger than the target value X. The first duty, which is the minimum value, and the second duty, which is the maximum value among the settable values smaller than the target value X, are determined. For example, when the target value X is 22.4, a combination of setting values (duty of PWM signals output to three driving targets) set in the generators SG1, SG2, and SG3 is set to be larger than 22.4. It is determined by combining 23 (first duty), which is the minimum value among possible values, and 22 (second duty), which is the maximum value among settable values smaller than 22.4.
 具体的には、上記目標値22.4をn×m倍した値(22.4×3×3=201.6)に最も近い設定可能値として202を特定し、特定した202をn×m個の設定可能値にできるだけ均等に割り振って、次のn周期分のm個の設定値を決定する。ここで特定する設定可能値は、例えば上記目標値をn×m倍した値に2番目に近い値である201又はそれ以外の値でもよいが、最も近い202に特定することが好ましい。具体的には、n×m個=9個の設定値のうち、4個の設定値を23(23%のデューティに相当)とし、5個の設定値を22(22%のデューティに相当)と決定する。 Specifically, 202 is specified as a settable value closest to a value obtained by multiplying the target value 22.4 by n × m (22.4 × 3 × 3 = 201.6), and the specified 202 is set to n × m. All settable values are allocated as evenly as possible to determine m set values for the next n cycles. The settable value specified here may be, for example, 201 that is the second closest value to the value obtained by multiplying the target value by n × m or other values, but is preferably specified to the closest 202. Specifically, out of n × m = 9 setting values, 4 setting values are 23 (corresponding to 23% duty), and 5 setting values are 22 (corresponding to 22% duty). And decide.
 各周期における設定値の割り振りの方法は後述するが、例えば、次のn周期の第1周期、第2周期及び第3周期夫々における発生部SG1,SG2,SG3への設定値を、23,23、23,23,22,22及び22,22,22と決定した場合、第1周期、第2周期及び第3周期夫々における第1相から第3相までのPWM信号のデューティの平均値が22.4となり、平均として目標値に近づくことになる。 A method for allocating the set values in each cycle will be described later. For example, the set values in the generators SG1, SG2, and SG3 in the first cycle, the second cycle, and the third cycle of the next n cycles are 23, 23, respectively. , 23, 23, 22, 22 and 22, 22, 22, the average value of the duty of the PWM signal from the first phase to the third phase in each of the first period, the second period, and the third period is 22 .4, which approaches the target value as an average.
 このようにしてn周期分のm個の設定値を決定することにより、発生部SG1、SG2及びSG3夫々に対して設定される設定値のn周期の平均値を、設定可能値の最小単位(1%)よりも小さい単位で変更することが可能となる。 By determining m set values for n cycles in this way, the average value of the n cycles of the set values set for each of the generating units SG1, SG2, and SG3 is set to the minimum unit of settable values ( It is possible to change in units smaller than 1%).
 以下では、上述したn周期分のm個の設定値の組み合わせを決定する信号発生回路1の動作を、図5、図6のフローチャート等を用いて説明する。以下に示す処理は、ROM12に予め格納されている制御プログラムに従って、CPU11により実行される。 Hereinafter, the operation of the signal generation circuit 1 that determines the combination of m set values for the above-described n periods will be described with reference to the flowcharts of FIGS. The following processing is executed by the CPU 11 in accordance with a control program stored in advance in the ROM 12.
 図5における周期番号Jと、設定値記憶領域131a及び131bの何れが記憶用(又は読出用)であるかを示す情報と、図6における相カウンタK及び周期カウンタLとが、RAM13に記憶される。周期番号Jの初期値はnである。図6の処理で決定されたn周期分のm個の設定値は、設定値記憶領域131a又は131bにアドレス順に記憶される。図5に示す周期割込処理の契機となる周期割込は、n周期に含まれる各周期の開始時点で発生する。例えば、発生部SG1が発生する第1相のPWM信号の立ち上がりで周期割込が発生するようにすればよい。 The cycle number J in FIG. 5, information indicating which of the set value storage areas 131 a and 131 b is for storage (or read-out), and the phase counter K and the cycle counter L in FIG. 6 are stored in the RAM 13. The The initial value of the cycle number J is n. The m set values for the n periods determined in the process of FIG. 6 are stored in the set value storage area 131a or 131b in the order of addresses. The periodic interrupt that triggers the periodic interrupt process shown in FIG. 5 occurs at the start of each period included in the n period. For example, a periodic interrupt may be generated at the rising edge of the first phase PWM signal generated by the generator SG1.
 周期割込が発生してCPU11の制御が図5の処理に移った場合、CPU11は、周期番号Jがn(ここでは3)であるか否かを判定し(S10)、nである場合(S10:YES)、Jを1とし(S11)、設定値記憶領域131a及び131bについて、記憶用と読出用とを切り替える(S12)。例えば、ステップS12の処理前に設定値記憶領域131b(又は131a)が記憶用であった場合、ステップS12の処理にて設定値記憶領域131a(又は131b)が記憶用に切り替えられ、設定値記憶領域131b(又は131a)が読出用に切り替えられる。 When a periodic interrupt occurs and the control of the CPU 11 shifts to the processing of FIG. 5, the CPU 11 determines whether or not the periodic number J is n (here, 3) (S10), and when it is n ( (S10: YES), J is set to 1 (S11), and the setting value storage areas 131a and 131b are switched between storing and reading (S12). For example, if the set value storage area 131b (or 131a) is for storage before the process of step S12, the set value storage area 131a (or 131b) is switched for storage in the process of step S12 to store the set value. The area 131b (or 131a) is switched for reading.
 ステップS12で記憶用に切り替えられた設定値記憶領域131a(又は131b)は、設定値決定のサブルーチンにて決定されるn周期分のm個の設定値が記憶される領域となる。一方、読出用に切り替えられた設定値記憶領域131b(又は131a)は、各周期において設定値を割り当てる際に設定値が読み出される領域となる。 The set value storage area 131a (or 131b) switched for storage in step S12 is an area in which m set values for n cycles determined in the set value determination subroutine are stored. On the other hand, the setting value storage area 131b (or 131a) switched for reading is an area where setting values are read when setting values are assigned in each cycle.
 その後、CPU11は、負荷3に供給される出力電圧をA/D変換器14で変換した出力電圧値を取り込み(S13)、取り込んだ電圧値と目標電圧値とに基づいて電圧ループ制御に係る演算を実行し(S14)、目標電圧値を算出する。 Thereafter, the CPU 11 takes in an output voltage value obtained by converting the output voltage supplied to the load 3 by the A / D converter 14 (S13), and performs an operation related to voltage loop control based on the taken-in voltage value and the target voltage value. (S14) to calculate the target voltage value.
 次いで、CPU11は、電流検出回路17の検出電圧をA/D変換器14で変換した出力電流値を取り込み(S15)、取り込んだ電流値と目標電流値とに基づいて電流ループ制御に係る演算を実行し(S16)、各相の目標のデューティを算出する。電流ループ制御を省略するために、ステップS15及びS16を実行しないようにしてもよい。ステップS15及びS16を実行しない場合は、ステップS14で算出される値に基づいて各相の目標のデューティが決定される。 Next, the CPU 11 captures an output current value obtained by converting the detection voltage of the current detection circuit 17 by the A / D converter 14 (S15), and performs an operation related to current loop control based on the captured current value and the target current value. Execute (S16) and calculate the target duty for each phase. In order to omit the current loop control, steps S15 and S16 may not be executed. When steps S15 and S16 are not executed, the target duty of each phase is determined based on the value calculated in step S14.
 次いで、CPU11は、目標のデューティを、設定可能値の最小単位に対応するデューティで除算して目標値を算出する(S17)。図4に示す例では、目標のデューティが0.224であり、設定可能値の最小単位が1であって、この最小単位の1がPWM信号のデューティの1%(=0.01)に対応するから、目標値は0.224/0.01=22.4と算出される。 Next, the CPU 11 calculates the target value by dividing the target duty by the duty corresponding to the minimum unit of the settable value (S17). In the example shown in FIG. 4, the target duty is 0.224, the minimum unit of the settable value is 1, and 1 of the minimum unit corresponds to 1% (= 0.01) of the duty of the PWM signal. Therefore, the target value is calculated as 0.224 / 0.01 = 22.4.
 その後、CPU11は、設定値決定に係るサブルーチンを呼び出して実行した(S18)後、割り込まれたルーチンにリターンする。一方、ステップS10でJがnではない場合(S10:NO)、CPU11は、Jを1だけインクリメントした(S19)後、割り込まれたルーチンにリターンする。つまり、周期割込がn回発生する都度、ステップS11からS18までの処理が1回実行されて、n周期分のm個の設定値が決定される。 After that, the CPU 11 calls and executes a subroutine related to setting value determination (S18), and then returns to the interrupted routine. On the other hand, if J is not n in step S10 (S10: NO), the CPU 11 increments J by 1 (S19), and then returns to the interrupted routine. That is, every time a periodic interrupt occurs n times, the processing from steps S11 to S18 is executed once, and m set values for n periods are determined.
 図6に移って、周期割込処理から設定値決定に係るサブルーチンが呼び出された場合、CPU11は、目標値にm×nを乗算して目標値m個のn周期分の総和を算出し、算出したn周期分の総和に最も近い設定可能値を特定する(S21)。図4に示す例では、目標値が22.4であるから、目標値m個のn周期分の総和が22.4×3×3=201.6と算出され、最も近い設定可能値が202と特定される。 Moving to FIG. 6, when a subroutine related to setting value determination is called from the periodic interrupt processing, the CPU 11 multiplies the target value by m × n to calculate a total of n target values for n periods, A settable value closest to the calculated sum total of n cycles is specified (S21). In the example shown in FIG. 4, since the target value is 22.4, the total sum of m target values for n cycles is calculated as 22.4 × 3 × 3 = 201.6, and the nearest settable value is 202. Identified.
 次いで、CPU11は、特定した設定可能値を駆動対象の個数(相の数)m×(周期の数)nで除算して商Q及び剰余Rを算出する(S22)。図4に示す例では、設定可能値の202が3×3で除算されて商Qが22と算出され、剰余Rが4と算出される。 Next, the CPU 11 calculates the quotient Q and the remainder R by dividing the specified settable value by the number of driving targets (number of phases) m × (number of periods) n (S22). In the example shown in FIG. 4, the settable value 202 is divided by 3 × 3, the quotient Q is calculated as 22, and the remainder R is calculated as 4.
 次いで、CPU11は、n周期分のm個の設定値を仮に全てQとして、設定値記憶領域131a又は131bに記憶する(S23)。ここでのQは、m個の設定可能値夫々のn周期分の基準値に相当する。設定値記憶領域131a又は131bの何れが記憶用であるかは、図5に示すステップS12における切替処理にて特定されている。その後、CPU11は、相カウンタKを1に初期化し(S24)、更に周期カウンタLを1に初期化する(S25)。 Next, the CPU 11 temporarily stores all the m set values for n cycles as Q in the set value storage area 131a or 131b (S23). Here, Q corresponds to a reference value for n cycles of m settable values. Which of the set value storage areas 131a and 131b is for storage is specified by the switching process in step S12 shown in FIG. Thereafter, the CPU 11 initializes the phase counter K to 1 (S24), and further initializes the period counter L to 1 (S25).
 次いで、CPU11は、ステップS22で算出した剰余R(後述するステップS31が実行された場合は、ステップS31の算出結果としてのR)が0であるか否かを判定し(S26)、0である場合(S26:YES)、呼び出されたルーチンにリターンする。Rが0であることは、除算結果の剰余Rを設定可能値の最小単位に分割して基準値の一部に加算する処理が終了したこと、又は最小単位に分割すべき剰余Rが最初から0であることを意味する。 Next, the CPU 11 determines whether or not the remainder R calculated in step S22 (R as a calculation result in step S31 when step S31 described later is executed) is 0 (S26). If so (S26: YES), the process returns to the called routine. The fact that R is 0 means that the process of dividing the remainder R of the division result into the minimum unit of the settable value and adding it to a part of the reference value is completed, or the remainder R to be divided into the minimum unit is from the beginning. It means 0.
 Rが0ではない場合(S26:NO)、CPU11は、相カウンタKがm+1であるか否か、即ち相カウンタKがオーバーフローしたか否かを判定する(S27)。相カウンタKがm+1である場合(S27:YES)、CPU11は、相カウンタKを1に初期化する(S28)と共に、周期カウンタLを1だけインクリメントする(S29)。 When R is not 0 (S26: NO), the CPU 11 determines whether or not the phase counter K is m + 1, that is, whether or not the phase counter K has overflowed (S27). When the phase counter K is m + 1 (S27: YES), the CPU 11 initializes the phase counter K to 1 (S28) and increments the period counter L by 1 (S29).
 相カウンタKがm+1ではない場合(S27:NO)、又はステップS29の処理を終えた場合、CPU11は、第L周期の第K相のPWM信号を発生させるための設定値を、商Qと設定可能値の最小単位との加算値とし(S30)、既に設定値記憶領域131a又は131bに記憶してある設定値(Q)に上書きする。図4に示す例では、設定可能値の最小単位が1であるから、ステップS30における処理は、設定値記憶領域131a又は131bに記憶してある設定値を1だけインクリメントする処理と置き換え可能である。 When the phase counter K is not m + 1 (S27: NO), or when the process of step S29 is completed, the CPU 11 sets the set value for generating the Lth period K-phase PWM signal as the quotient Q. The value is added to the minimum unit of possible values (S30), and the setting value (Q) already stored in the setting value storage area 131a or 131b is overwritten. In the example shown in FIG. 4, since the minimum unit of the settable value is 1, the process in step S30 can be replaced with a process of incrementing the set value stored in the set value storage area 131a or 131b by 1. .
 その後、CPU11は、Rから設定可能値の最小単位を減算した値を新たにRとし(S31)、相カウンタKを1だけインクリメントして(S32)ステップS26に処理を移す。上述のステップS26からS32までの処理を繰り返すことにより、ステップS22で算出された剰余Rが0ではない場合に、剰余Rが設定可能値の最小単位に分割されて、1又は複数の設定値の基準値に順次加算される。 After that, the CPU 11 newly sets a value obtained by subtracting the minimum unit of settable values from R as R (S31), increments the phase counter K by 1 (S32), and moves the process to step S26. By repeating the above-described processing from step S26 to S32, when the remainder R calculated in step S22 is not 0, the remainder R is divided into the minimum units of settable values, and one or more set values are set. Sequentially added to the reference value.
 次に、上述のようにして決定されたn周期分のm個の設定値の具体例について、複数の例を挙げて説明する。図7は、目標値に応じて決定されたn周期分のm個の設定値の一覧を示す図表である。目標値は、小数以下1桁又は2桁の数値で表されるものとする。なお、隣り合う行で目標値の範囲の境界に重なりがあるのは、目標値が境界値と一致する場合に、何れかの行に示される設定値が決定されることを意味する。また、図7では、目標値の範囲毎にn周期分のm個の設定値の組み合わせを同一行で示しているが、n周期分のm個の設定値をどのように割り当てるかについてはあくまで一例である。高い設定値をどの相に優先的に割り当てるかを各周期ごとに決定する方法については後に詳述する。 Next, a specific example of m set values for n cycles determined as described above will be described with a plurality of examples. FIG. 7 is a chart showing a list of m set values for n periods determined according to the target value. The target value is expressed by a numerical value of one or two decimal places. Note that the overlap between the boundaries of the target value ranges in adjacent rows means that the set value shown in any row is determined when the target value matches the boundary value. In FIG. 7, a combination of m set values for n cycles is shown in the same row for each target value range. However, how m set values for n cycles are allocated is only described. It is an example. A method for determining which phase is preferentially assigned a high set value for each cycle will be described in detail later.
 例えば目標値が9.95から10.06の範囲内にある場合、3個の設定値の3周期分、即ち第1周期、第2周期及び第3周期夫々にて第1相,第2相,第3相のPWM信号を発生させるための設定値の組み合わせは、10,10,10,10,10,10,10,10,10と決定される。この場合、m相のn周期にわたる目標値の平均値は10.00となる。目標値が10.06から10.17の範囲内にある場合、n周期分のm個の設定値の組み合わせは、11,10,10,10,10,10,10,10,10と決定され。この場合、m相のn周期にわたる目標値の平均値は10.11となる。また、上述した22.4%の例のように、目標値が22.39から22.50の範囲内にある場合、n周期分のm個の設定値は、23,23,23,23,22,22,22,22,22と決定される。この場合、各周期分の設定値の加算値のn周期にわたる平均値は22.44となる。 For example, when the target value is in the range of 9.95 to 10.06, the first phase and the second phase are equal to three periods of three set values, that is, the first period, the second period, and the third period, respectively. , The combination of set values for generating the third phase PWM signal is determined as 10, 10, 10, 10, 10, 10, 10, 10, 10. In this case, the average value of the target values over the n periods of the m phase is 10.00. When the target value is within the range of 10.06 to 10.17, the combination of m set values for n cycles is determined as 11, 10, 10, 10, 10, 10, 10, 10, 10. . In this case, the average value of the target values over the n periods of the m phase is 10.11. Further, when the target value is within the range of 22.39 to 22.50 as in the example of 22.4% described above, m set values for n cycles are 23, 23, 23, 23, 22, 22, 22, 22, and 22. In this case, the average value over the n cycles of the added value of the set values for each cycle is 22.44.
 本構成では、このような方法により、n周期分のm個の設定値の組み合わせが決定され、制御部10の中枢として機能するCPU11は、m(=3)個の発生部SG1、SG2及びSG3夫々に設定すべき目標値に応じて、m個の発生部SG1、SG2及びSG3夫々に設定可能な設定値を決定して設定する。より具体的には、CPU11は、m個の発生部SG1、SG2及びSG3夫々が発生するPWM信号のn(例えば3)周期毎に、目標値のn周期分の総和に最も近い設定可能値を特定し、特定した設定可能値をm及びnの積で除算して得た商Q及び剰余Rに基づいて、n周期分のm個の設定値を決定する。更には、上述の除算結果の商Qを、n周期分のm個の設定可能値全体についての基準値に特定し、上述の除算結果の剰余Rを設定可能値の最小単位(即ち最小の増分=1)に分割し、分割した最小単位の値をn周期分のm個の基準値の一部に夫々加算してn周期分のm個の設定値を決定する。 In this configuration, a combination of m set values for n cycles is determined by such a method, and the CPU 11 functioning as the center of the control unit 10 has m (= 3) generation units SG1, SG2, and SG3. A set value that can be set for each of the m generation units SG1, SG2, and SG3 is determined and set according to a target value that should be set for each. More specifically, the CPU 11 sets a settable value closest to the sum total of n cycles of the target value for every n (for example, 3) cycles of the PWM signal generated by each of the m generators SG1, SG2, and SG3. Based on the quotient Q and remainder R obtained by specifying and dividing the specified settable value by the product of m and n, m set values for n periods are determined. Further, the quotient Q of the above-mentioned division result is specified as a reference value for all m settable values for n cycles, and the remainder R of the above-described division result is set to the minimum unit (that is, the minimum increment) of the settable value. = 1), and the divided minimum unit value is added to a part of the m reference values for n periods, respectively, to determine m set values for n periods.
 そして、制御部10は、目標値が所定条件を満たす場合に、複数の駆動対象に出力するPWM信号のデューティの組み合わせを、目標値に基づいて複数種類の設定可能値の組み合わせで決定するように機能する。なお、目標値が所定条件を満たす場合とは、上述した剰余Rが0とならない場合であり、n周期分のm個の設定値の組み合わせが全て同じ値の組み合わせとならない場合である。なお、駆動回路DCk及びコンバータCVkが駆動対象の一例に相当し、本構成では、このような駆動対象がm個設けられている。 Then, when the target value satisfies the predetermined condition, the control unit 10 determines the combination of the duty ratios of the PWM signals to be output to a plurality of driving targets by combining a plurality of types of settable values based on the target value. Function. The case where the target value satisfies the predetermined condition is a case where the remainder R described above does not become 0, and a case where all combinations of m set values for n cycles do not have the same value. Note that the drive circuit DCk and the converter CVk correspond to an example of the drive target, and m drive targets are provided in this configuration.
 このように組み合わせが決定され、設定値記憶領域131a(又は131b)に記憶されたn周期分のm個の設定値は、その記憶後に連続して行われるn個の周期の設定値として割り当てが決められる。このように割り当てが決められた設定値は、そのn個の各周期において相別の割込処理により順次読み出されて、対応する発生部のレジスタバッファ161に設定される。 The combinations are determined in this way, and the m set values for the n cycles stored in the set value storage area 131a (or 131b) are assigned as the set values for the n cycles continuously performed after the storage. It is decided. The set values determined to be assigned in this way are sequentially read out by phase-specific interrupt processing in each of the n cycles, and set in the corresponding register buffer 161 of the generation unit.
 例えば、n=3、m=3の場合、3周期分の3個の設定値の組み合わせが決定した後、その後に行われる第1周期、第2周期、第3周期における設定値の割り当て(即ち、各周期における3個の設定値の割り当て)を決定する。n周期分の設定値を設定する場合、例えば、より大きい設定値をより早い周期に設定する割り当てる方式で割り当てを行う。この場合、n周期分のm個の設定値が、23,23,23,23,22,22,22,22,22と決定した場合、第1周期の設定値の組み合わせを(23,23,23)、第2周期の設定値の組み合わせを(23,22,22)、第3周期の設定値の組み合わせを(22,22,22)とする。本構成では、この方式を代表例とする。なお、この方式に限定されず、例えば、より小さい設定値をより早い周期に設定する割り当てる方式で割り当てを行ってもよい。この場合、n周期分のm個の設定値が、23,23,23,23,22,22,22,22,22と決定した場合、第1周期の設定値の組み合わせを(22,22,22)、第2周期の設定値の組み合わせを(22,22,23)、第3周期の設定値の組み合わせを(23,23,23)とする。 For example, in the case of n = 3 and m = 3, after the combination of three set values for three cycles is determined, setting value assignment in the first cycle, the second cycle, and the third cycle performed thereafter (that is, , Allocation of three set values in each cycle). When setting a set value for n cycles, for example, the assignment is performed by an assignment method in which a larger set value is set to an earlier cycle. In this case, when m set values for n cycles are determined to be 23, 23, 23, 23, 22, 22, 22, 22, 22, 22, the combination of the set values of the first cycle is (23, 23, 23), the combination of the set values of the second period is (23, 22, 22), and the combination of the set values of the third period is (22, 22, 22). In this configuration, this method is a representative example. Note that the assignment is not limited to this method. For example, the assignment may be performed by an assignment method in which a smaller setting value is set in an earlier cycle. In this case, when m set values for n cycles are determined to be 23, 23, 23, 23, 22, 22, 22, 22, 22, 22, the combination of the set values of the first cycle is (22, 22, 22), the combination of the setting values of the second period is (22, 22, 23), and the combination of the setting values of the third period is (23, 23, 23).
 各周期においてm個の設定値を割り当てる場合、図8のような割り当てテーブルに従う。図8の割り当てテーブルは、周期毎に設定されるm個の設定値の組み合わせにおいて、より高い設定値を割り当てる上での相毎の優先度を定めた設定情報を複数含んだテーブルである。割り当てテーブルのいずれの設定が選択される場合でも、より高い設定値を、優先度の順位が上(番号が小さい)の相から順に割り当てる。 When assigning m set values in each cycle, follow the assignment table as shown in FIG. The assignment table in FIG. 8 is a table that includes a plurality of setting information that defines the priority for each phase in assigning a higher setting value in a combination of m setting values set for each period. Regardless of which setting in the allocation table is selected, higher setting values are allocated in order from the phase with the higher priority order (smaller number).
 図8の割り当てテーブルにおいて、設定1は、第1相の優先度を1、第2相の優先度を2、第3相の優先度を3とする設定である。即ち、第1相の設定値をD1、第1相の設定値をD2、第3相の設定値をD3とした場合、D1≧D2≧D3とする設定である。設定2は、第1相の優先度を3、第2相の優先度を1、第3相の優先度を2とする設定であり、D2≧D3≧D1とする設定である。設定3は、第1相の優先度を2、第2相の優先度を3、第3相の優先度を1とする設定であり、D3≧D1≧D2とする設定である。 In the assignment table of FIG. 8, setting 1 is a setting in which the priority of the first phase is 1, the priority of the second phase is 2, and the priority of the third phase is 3. That is, when the first phase set value is D1, the first phase set value is D2, and the third phase set value is D3, D1 ≧ D2 ≧ D3. The setting 2 is a setting in which the priority of the first phase is 3, the priority of the second phase is 1, and the priority of the third phase is 2, so that D2 ≧ D3 ≧ D1. Setting 3 is a setting in which the priority of the first phase is 2, the priority of the second phase is 3, and the priority of the third phase is 1, and D3 ≧ D1 ≧ D2.
 制御部10では、図8の割り当て設定テーブルのうちのいずれの設定を用いるかを所定時間毎(例えば1秒毎)に切り替えることで、複数の駆動対象に対して複数種類の設定値(設定可能値)を割り当てるときの高い値を割り当てる優先順位を時間経過に応じて変更している。 In the control unit 10, by switching which setting in the assignment setting table of FIG. 8 is used at predetermined time intervals (for example, every second), a plurality of types of setting values (can be set) for a plurality of driving targets. The priority for assigning a higher value when assigning (value) is changed over time.
 例えば、目標値が22.4%である場合、上述した組み合わせの決定処理により、n周期分のm個の設定値が、23,23,23,23,22,22,22,22,22と決定される。そして、n周期のうちの、第1周期の設定値の組み合わせが(23,23,23)、第2周期の設定値の組み合わせが(23,22,22)、第3周期の設定値の組み合わせが(22,22,22)と決定される。この場合、複数種類の設定値の組み合わせ(23,22,22)となる第2周期の時間帯が、設定1が用いられる時間帯Ta1であれば、その組み合わせの値の中で、大きい値から順に第1相、第2相、第3相と設定される。つまり、第1相に23が設定され、第2相と第3相に22が設定される。 For example, when the target value is 22.4%, m set values for n cycles are 23, 23, 23, 23, 22, 22, 22, 22, 22, by the above-described combination determination process. It is determined. Of the n periods, the combination of the set values of the first period is (23, 23, 23), the combination of the set values of the second period is (23, 22, 22), and the combination of the set values of the third period Is determined to be (22, 22, 22). In this case, if the time period of the second period that is a combination (23, 22, 22) of a plurality of types of setting values is the time period Ta1 in which the setting 1 is used, the value from the larger value of the combinations The first phase, the second phase, and the third phase are set in order. That is, 23 is set for the first phase, and 22 is set for the second phase and the third phase.
 一方、目標値が22.4%として設定された場合、複数種類の設定値の組み合わせ(23,22,22)となる第2周期の時間帯が、設定2が用いられる時間帯Ta2であれば、その組み合わせの値の中で、大きい値から順に第2相、第3相、第1相と設定される。つまり、第2相に23が設定され、第1相と第3相に22が設定される。 On the other hand, when the target value is set as 22.4%, if the time period of the second period that is a combination of a plurality of types of setting values (23, 22, 22) is the time period Ta2 in which the setting 2 is used. The second phase, the third phase, and the first phase are set in descending order of the combination values. That is, 23 is set for the second phase, and 22 is set for the first phase and the third phase.
 別の目標値の場合でも考え方は同じであり、目標値が20.1%である場合、上述した組み合わせの決定処理により、n周期分のm個の設定値が、21,20,20,20,20,20,20,20,20と決定する。そして、n周期のうちの、第1周期の設定値の組み合わせが(21,20,20)、第2周期の設定値の組み合わせが(20,20,20)、第3周期の設定値の組み合わせが(20,20,20)と決定する。この場合、複数種類の設定値の組み合わせ(21,20,20)と設定される第1周期の時間帯が、設定3が用いられる時間帯Ta3であれば、その組み合わせの値の中で、大きい値から順に第3相、第1相、第2相と設定される。つまり、第3相に21が設定され、第2相と第3相に20が設定される。 In the case of another target value, the concept is the same. When the target value is 20.1%, m set values for n cycles are set to 21, 20, 20, 20 by the above-described combination determination process. , 20, 20, 20, 20, 20 are determined. Of the n periods, the combination of the setting values of the first period is (21, 20, 20), the combination of the setting values of the second period is (20, 20, 20), and the combination of the setting values of the third period Is determined as (20, 20, 20). In this case, if the time zone of the first period set with the combination (21, 20, 20) of a plurality of types of setting values is the time zone Ta3 in which the setting 3 is used, the value of the combination is large. The third phase, the first phase, and the second phase are set in order from the value. That is, 21 is set for the third phase, and 20 is set for the second and third phases.
 このように、本構成では、周期毎にm個の設定値の組み合わせが決定するが、どの相に最も高い設定値を割り当て、どの相に最も低い設定値を割り当てるかは時間帯によって異なることになる。 As described above, in this configuration, a combination of m setting values is determined for each period. Which phase is assigned the highest setting value and which phase is assigned the lowest setting value depends on the time zone. Become.
 本構成のように、複数の駆動対象に出力するPWM信号のデューティの組み合わせを複数種類の設定可能値の組み合わせとすれば、複数の駆動対象に与えるデューティの平均値を設定可能値以外の値にすることができるため、予め定められた設定可能値よりもデューティの最小単位を実質的に小さくすることができる。しかも、割当部は、複数の駆動対象に対して複数種類の設定可能値を割り当てるときの高い値を割り当てる優先順位を時間経過に応じて変更しているため、デューティを相対的に高く設定する駆動対象の偏りを抑制することができ、発熱箇所の集中を効果的に抑えることができる。 If the combination of the duty ratios of PWM signals output to a plurality of driving targets is a combination of a plurality of settable values as in this configuration, the average value of the duty given to the plurality of driving targets is set to a value other than the settable value. Therefore, the minimum unit of duty can be made substantially smaller than a predetermined settable value. In addition, since the assigning unit changes the priority order for assigning a high value when assigning a plurality of types of settable values to a plurality of drive targets according to the passage of time, the drive for setting the duty relatively high The bias of the object can be suppressed, and the concentration of heat generation points can be effectively suppressed.
 本構成のように、目標値が所定範囲である場合に、目標値よりも大きい設定可能値のうちの最小値である第1デューティと、目標値よりも小さい設定可能値のうちの最大値である第2デューティとをm個の駆動対象にそれぞれ割り当てれば、その周期においてm個の駆動対象に出力するPWM信号のデューティの平均的な値が設定可能値の最小単位よりもきめ細かく調整され、m個の駆動対象に与えるデューティを目標値により近づけやすくなる。そして、相対的に高いデューティ(第1デューティ)の割り当ての優先順位を変更する構成であれば、発熱箇所の集中を確実に抑制することができる。 As in this configuration, when the target value is within a predetermined range, the first duty that is the minimum value among the settable values larger than the target value and the maximum value among the settable values smaller than the target value If a certain second duty is assigned to each of the m driving objects, the average value of the duty of the PWM signal output to the m driving objects in the cycle is finely adjusted from the minimum unit of the settable value, The duty given to m driving objects can be made closer to the target value. And if it is the structure which changes the priority of allocation of a relatively high duty (1st duty), concentration of a heat_generation | fever location can be suppressed reliably.
 <実施例2>
 次に、実施例2について説明する。
 実施例2の信号発生回路及び電圧変換装置は、ハードウェア構成は実施例1と同一であり、図1~図7を参照して説明した内容は実施例1と同様である。よって、以下では適宜図1~図7を参照する。また、本構成では、n周期分のm個の設定値の組み合わせが決定した後の割り当て方法のみが実施例1と異なるため、以下では異なる点についてのみ詳述する。
<Example 2>
Next, Example 2 will be described.
The signal generation circuit and the voltage conversion apparatus according to the second embodiment have the same hardware configuration as that of the first embodiment, and the contents described with reference to FIGS. 1 to 7 are the same as those of the first embodiment. Therefore, reference will be made to FIGS. Further, in this configuration, only the allocation method after the combination of m set values for n cycles is determined is different from that in the first embodiment, and therefore only the differences will be described in detail below.
 図1と同様のハードウェア構成をなす実施例2の電圧変換装置100でも、n周期毎にn周期分のm個の設定値の組み合わせを決定し、その決定は図5、図6のような流れで行う。そして、n周期分のm個の設定値の組み合わせが決定した後、以下のように割り当てを行う。 Also in the voltage conversion apparatus 100 according to the second embodiment having the same hardware configuration as that in FIG. 1, a combination of m set values for n cycles is determined every n cycles, and the determination is as shown in FIGS. 5 and 6. Do in the flow. Then, after the combination of m set values for n cycles is determined, the assignment is performed as follows.
 本構成では、図1で示す温度センサTH1,TH2・・・THmが温度検出部の一例に相当し、それぞれに対応する駆動対象(駆動回路DCk及びコンバータCVk(但しkは1~mの自然数))のそれぞれの温度を検出するように機能する。具体的には、制御部10が一定時間毎に温度センサTH1,TH2・・・THmから検出温度を取得し、温度が低い相ほどより高い設定値を割り当てるように時間帯毎に優先度を定める。 In this configuration, the temperature sensors TH1, TH2,... THm shown in FIG. 1 correspond to an example of a temperature detection unit, and corresponding driving objects (driving circuit DCk and converter CVk (where k is a natural number of 1 to m)). ) Function to detect each temperature. Specifically, the control unit 10 acquires the detected temperature from the temperature sensors TH1, TH2,... THm at regular intervals, and determines the priority for each time period so that a higher set value is assigned to a phase with a lower temperature. .
 例えば、n=3、m=3の場合において、図9のように、時間帯Tb1開始のタイミングのときに第1相に対応する温度センサTH1での検出温度が90℃であり、第2相に対応する温度センサTH2での検出温度が82℃であり、第2相に対応する温度センサTH3での検出温度が89℃である場合、その時間帯Tb1では、第1相の優先度を3、第2相の優先度を1、第3相の優先度を2とする設定Aを採用する。また、この設定では、第1相の設定値をD1、第1相の設定値をD2、第3相の設定値をD3とした場合、D2≧D3≧D1となる。また、時間帯Tb2開始のタイミングのときに第1相に対応する温度センサTH1での検出温度が90℃であり、第2相に対応する温度センサTH2での検出温度が88℃であり、第2相に対応する温度センサTH3での検出温度が87℃である場合、その時間帯Tb2では、第1相の優先度を3、第2相の優先度を2、第3相の優先度を1とする設定Bを採用する。また、この設定では、D3≧D2≧D1となる。時間帯Tb3開始のタイミングのときに第1相に対応する温度センサTH1での検出温度が90℃であり、第2相に対応する温度センサTH2での検出温度が92℃であり、第3相に対応する温度センサTH3での検出温度が89℃である場合、その時間帯Tb2では、第1相の優先度を2、第2相の優先度を3、第3相の優先度を1とする設定Cを採用する。また、この設定では、D3≧D1≧D2となる。 For example, in the case of n = 3 and m = 3, as shown in FIG. 9, the temperature detected by the temperature sensor TH1 corresponding to the first phase at the timing of the start of the time zone Tb1 is 90 ° C., and the second phase When the temperature detected by the temperature sensor TH2 corresponding to is 82 ° C. and the temperature detected by the temperature sensor TH3 corresponding to the second phase is 89 ° C., the priority of the first phase is 3 in the time zone Tb1. The setting A is adopted in which the priority of the second phase is 1 and the priority of the third phase is 2. In this setting, if the first phase setting value is D1, the first phase setting value is D2, and the third phase setting value is D3, then D2 ≧ D3 ≧ D1. In addition, the temperature detected by the temperature sensor TH1 corresponding to the first phase at the timing of the start of the time zone Tb2 is 90 ° C., the temperature detected by the temperature sensor TH2 corresponding to the second phase is 88 ° C., When the temperature detected by the temperature sensor TH3 corresponding to the two phases is 87 ° C., the priority of the first phase is 3, the priority of the second phase is 2, and the priority of the third phase is the time zone Tb2. A setting B of 1 is adopted. In this setting, D3 ≧ D2 ≧ D1. The detected temperature at the temperature sensor TH1 corresponding to the first phase at the timing of the start of the time zone Tb3 is 90 ° C., the detected temperature at the temperature sensor TH2 corresponding to the second phase is 92 ° C., and the third phase When the temperature detected by the temperature sensor TH3 corresponding to is 89 ° C., the priority of the first phase is 2, the priority of the second phase is 3, and the priority of the third phase is 1 in the time zone Tb2. The setting C to be used is adopted. In this setting, D3 ≧ D1 ≧ D2.
 具体例を挙げると、例えば、目標値が22.4%である場合、上述した組み合わせの決定処理により、n周期分のm個の設定値が、23,23,23,23,22,22,22,22,22と決定する。そして、n周期のうちの、第1周期の設定値の組み合わせが(23,23,23)、第2周期の設定値の組み合わせが(23,22,22)、第3周期の設定値の組み合わせが(22,22,22)と決定する。この場合、複数種類の設定値の組み合わせ(23,22,22)となる第2周期の時間帯が、温度状態によって設定Aが用いられる時間帯Tb1であれば、その組み合わせの値の中で、大きい値から順に第2相、第3相、第1相と設定される。つまり、温度が最も低い第2相に23が設定され、第1相と第3相に22が設定される。 As a specific example, for example, when the target value is 22.4%, m set values for n cycles are 23, 23, 23, 23, 22, 22, 22, 22, and 22 are determined. Of the n periods, the combination of the set values of the first period is (23, 23, 23), the combination of the set values of the second period is (23, 22, 22), and the combination of the set values of the third period Is determined to be (22, 22, 22). In this case, if the time period of the second period, which is a combination (23, 22, 22) of a plurality of types of setting values, is the time period Tb1 in which the setting A is used depending on the temperature state, The second phase, the third phase, and the first phase are set in order from the largest value. That is, 23 is set for the second phase having the lowest temperature, and 22 is set for the first phase and the third phase.
 一方、目標値が22.4%として設定された場合、複数種類の設定値の組み合わせ(23,22,22)となる第2周期の時間帯が、設定Bが用いられる時間帯Tb2であれば、その組み合わせの値の中で、大きい値から順に第3相、第2相、第1相と設定される。つまり、温度が最も低い第3相に23が設定され、第1相と第2相に22が設定される。 On the other hand, when the target value is set as 22.4%, if the time period of the second cycle that is a combination of a plurality of types of setting values (23, 22, 22) is the time period Tb2 in which the setting B is used. In the combination values, the third phase, the second phase, and the first phase are set in descending order. That is, 23 is set for the third phase having the lowest temperature, and 22 is set for the first phase and the second phase.
 別の目標値の場合でも考え方は同じであり、目標値が20.1%である場合、上述した組み合わせの決定処理により、n周期分のm個の設定値が、21,20,20,20,20,20,20,20,20と決定する。そして、n周期のうちの、第1周期の設定値の組み合わせが(21,20,20)、第2周期の設定値の組み合わせが(20,20,20)、第3周期の設定値の組み合わせが(20,20,20)と決定する。この場合、複数種類の設定値の組み合わせ(21,20,20)と設定される第1周期の時間帯が、設定Cが用いられる時間帯Tb3であれば、その組み合わせの値の中で、大きい値から順に第3相、第1相、第2相と設定される。つまり、最も低い温度の第3相に21が設定され、第2相と第3相に20が設定される。 In the case of another target value, the concept is the same. When the target value is 20.1%, m set values for n cycles are set to 21, 20, 20, 20 when the combination determination process described above is performed. , 20, 20, 20, 20, 20 are determined. Of the n periods, the combination of the setting values of the first period is (21, 20, 20), the combination of the setting values of the second period is (20, 20, 20), and the combination of the setting values of the third period Is determined as (20, 20, 20). In this case, if the time zone of the first period set with the combination (21, 20, 20) of a plurality of types of setting values is the time zone Tb3 in which the setting C is used, the combination value is large. The third phase, the first phase, and the second phase are set in order from the value. That is, 21 is set for the third phase at the lowest temperature, and 20 is set for the second phase and the third phase.
 このように、本構成では、周期毎にm個の設定値の組み合わせが決定するが、どの相に最も高い設定値を割り当て、どの相に最も低い設定値を割り当てるかは温度状態によって異なることになる。 As described above, in this configuration, a combination of m setting values is determined for each cycle, and which phase is assigned the highest setting value and which phase is assigned the lowest setting value depends on the temperature state. Become.
 以上のように、本構成でも、制御部10は、目標値が所定条件を満たす場合に、複数の駆動対象に出力するPWM信号のデューティの組み合わせを、目標値に基づいて複数種類の設定可能値の組み合わせで決定し、設定可能値の組み合わせを決定する毎に、決定された組み合わせの各々の設定可能値を複数の駆動対象にそれぞれ割り当てる。そして、制御部10は、複数の駆動対象に対して複数種類の設定可能値を割り当てるときの高い値を割り当てる優先順位を、温度検出部による検出温度が低い駆動対象を優先する方式で決定する。 As described above, also in this configuration, when the target value satisfies the predetermined condition, the control unit 10 can set a plurality of types of settable values based on the target value for the combination of the duty ratios of the PWM signals output to the plurality of driving targets. Each time a combination of settable values is determined, each settable value of the determined combination is assigned to a plurality of driving targets. And the control part 10 determines the priority which allocates the high value when assigning a multiple types of settable value with respect to several drive object by the system which gives priority to the drive object with low temperature detection by a temperature detection part.
 本構成でも、予め定められた設定可能値よりもデューティの最小単位を実質的に小さくすることができる。しかも、制御部10は、複数の駆動対象に対して複数種類の設定可能値を割り当てるときの高い値を割り当てる優先順位を、温度検出部による検出温度が低い駆動対象を優先する方式で決定するため、温度がより低い駆動対象を、相対的に駆動電流が大きくなる駆動対象として選定することができる。よって、発熱箇所の集中を効果的に抑えることができる。 Even in this configuration, the minimum unit of duty can be substantially smaller than a predetermined settable value. In addition, the control unit 10 determines the priority order for assigning a high value when assigning a plurality of types of settable values to a plurality of drive targets in a manner that gives priority to a drive target having a low temperature detected by the temperature detection unit. A drive target having a lower temperature can be selected as a drive target having a relatively large drive current. Therefore, the concentration of heat generation points can be effectively suppressed.
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)実施例1、2では、降圧型の多相コンバータを代表的に例示したが、昇圧型の多相コンバータであってもよく昇降圧型の多相コンバータであってもよい。また、出力方向が一方向である多相コンバータを例示したが、双方向型の多相コンバータであってもよい。
(2)実施例1、2におけるバッテリ2や負荷3はあくまで一例であり、様々な装置や電子部品を入力側導電路や出力側導電路に接続することができる。
(3)実施例1、2では、n周期分のm個の設定値の組み合わせが、演算処理によって決定されて設定値記憶領域131a又は131bに一旦記憶された後、読み出される形態であったが、ROM12に含まれる設定値記憶テーブル121に予め記憶された内容から決定されてもよい。即ち、設定値記憶テーブル121において目標値の範囲毎にn周期分のm個の設定値の組み合わせが定められており、目標値が定まる毎に設定値記憶テーブル121を参照し、目標値に対応付けられたn周期分のm個の設定値の組み合わせを決定するようにしてもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the first and second embodiments, the step-down type multi-phase converter is typically exemplified, but a step-up type multi-phase converter or a step-up / step-down type multi-phase converter may be used. Moreover, although the multiphase converter whose output direction is one direction was illustrated, a bidirectional type multiphase converter may be used.
(2) The battery 2 and the load 3 in the first and second embodiments are merely examples, and various devices and electronic components can be connected to the input side conductive path and the output side conductive path.
(3) In the first and second embodiments, the combination of m set values for n cycles is determined by arithmetic processing, temporarily stored in the set value storage area 131a or 131b, and then read. It may be determined from the contents stored in advance in the set value storage table 121 included in the ROM 12. That is, in the setting value storage table 121, combinations of m setting values for n cycles are determined for each target value range, and each time the target value is determined, the setting value storage table 121 is referred to and the target value is handled. You may make it determine the combination of the m setting value for the attached n period.
1…信号発生回路
10…制御部(設定部)
19…出力検出部
100…電圧変換装置
TH1,TH2・・・Thm…温度センサ(温度検出部)
CV1,CV2・・・CVm…コンバータ(電圧変換部)
DESCRIPTION OF SYMBOLS 1 ... Signal generation circuit 10 ... Control part (setting part)
19 ... Output detection unit 100 ... Voltage converters TH1, TH2 ... Thm ... Temperature sensor (temperature detection unit)
CV1, CV2 ... CVm ... Converter (voltage converter)

Claims (4)

  1.  複数の駆動対象にPWM信号を出力する構成をなし、設定された目標値に基づき、前記複数の駆動対象の各々に出力するPWM信号のデューティを、予め定められた複数の設定可能値から選択してそれぞれ設定する信号発生回路であって、
     前記目標値が所定条件を満たす場合に、前記複数の駆動対象に出力するPWM信号のデューティの組み合わせを、前記目標値に基づいて複数種類の前記設定可能値の組み合わせで決定し、前記設定可能値の組み合わせを決定する毎に、決定された組み合わせの各々の前記設定可能値を前記複数の駆動対象にそれぞれ割り当て、前記複数の駆動対象に対して複数種類の前記設定可能値を割り当てるときの高い値を割り当てる優先順位を時間経過に応じて変更する制御部を有する信号発生回路。
    The PWM signal is output to a plurality of driving targets, and the duty of the PWM signal output to each of the plurality of driving targets is selected from a plurality of predetermined settable values based on the set target value. Each of the signal generation circuits to be set,
    When the target value satisfies a predetermined condition, a combination of duty of PWM signals output to the plurality of driving targets is determined based on a combination of a plurality of types of the settable values based on the target value, and the settable value Each time the combination is determined, the settable value of each of the determined combinations is assigned to the plurality of driving targets, and a high value is obtained when a plurality of types of the settable values are assigned to the plurality of driving targets. The signal generation circuit which has a control part which changes the priority which allocates according to time passage.
  2.  複数の駆動対象にPWM信号を出力する構成をなし、設定された目標値に基づき、前記複数の駆動対象の各々に出力するPWM信号のデューティを、予め定められた複数の設定可能値から選択してそれぞれ設定する信号発生回路であって、
     前記複数の駆動対象のそれぞれの温度を検出する温度検出部と、
     前記目標値が所定条件を満たす場合に、前記複数の駆動対象に出力するPWM信号のデューティの組み合わせを、前記目標値に基づいて複数種類の前記設定可能値の組み合わせで決定し、前記設定可能値の組み合わせを決定する毎に、決定された組み合わせの各々の前記設定可能値を前記複数の駆動対象にそれぞれ割り当て、前記複数の駆動対象に対して複数種類の前記設定可能値を割り当てるときの高い値を割り当てる優先順位を、前記温度検出部による検出温度が低い駆動対象を優先する方式で決定する制御部と、
    を有する信号発生回路。
    The PWM signal is output to a plurality of driving targets, and the duty of the PWM signal output to each of the plurality of driving targets is selected from a plurality of predetermined settable values based on the set target value. Each of the signal generation circuits to be set,
    A temperature detection unit for detecting the temperature of each of the plurality of driving objects;
    When the target value satisfies a predetermined condition, a combination of duty of PWM signals output to the plurality of driving targets is determined based on a combination of a plurality of types of the settable values based on the target value, and the settable value Each time the combination is determined, the settable value of each of the determined combinations is assigned to the plurality of driving targets, and a high value is obtained when a plurality of types of the settable values are assigned to the plurality of driving targets. A control unit that determines a priority order for assigning a driving target having a low detection temperature by the temperature detection unit;
    A signal generating circuit.
  3.  前記制御部は、前記目標値が所定範囲である場合に、m個の駆動対象に出力するPWM信号のデューティの組み合わせを、前記目標値よりも大きい前記設定可能値のうちの最小値である第1デューティと、前記目標値よりも小さい前記設定可能値のうちの最大値である第2デューティとを組み合わせて決定し、前記目標値に応じて前記第1デューティと第2デューティとの組み合わせを決定する毎に前記m個の駆動対象のそれぞれに対して前記第1デューティ及び前記第2デューティのいずれかをそれぞれ割り当てる構成であり、且つ前記m個の駆動対象における前記第1デューティの割り当ての優先順位を変更する構成である請求項1又は請求項2に記載の信号発生回路。 When the target value is within a predetermined range, the control unit sets a duty combination of PWM signals to be output to m driving targets to a minimum value among the settable values larger than the target value. 1 duty and a second duty which is the maximum value among the settable values smaller than the target value are determined in combination, and a combination of the first duty and the second duty is determined according to the target value Each of the m driving objects is assigned with either the first duty or the second duty, and the first duty is assigned to the m driving objects. The signal generation circuit according to claim 1, wherein the signal generation circuit is configured to change the signal.
  4.  請求項1から請求項3のいずれか一項に記載の信号発生回路と、
     前記信号発生回路で発生した各々のPWM信号のデューティに応じたスイッチングによって電圧を変換する複数の電圧変換部と、
     前記電圧変換部からの出力を検出する出力検出部と、
     前記出力検出部の検出結果に基づいて前記目標値を設定する設定部と、
    を備える電圧変換装置。
    A signal generation circuit according to any one of claims 1 to 3,
    A plurality of voltage converters for converting a voltage by switching according to the duty of each PWM signal generated by the signal generation circuit;
    An output detection unit for detecting an output from the voltage conversion unit;
    A setting unit that sets the target value based on a detection result of the output detection unit;
    A voltage conversion device comprising:
PCT/JP2017/001350 2016-01-19 2017-01-17 Signal generation circuit and voltage conversion apparatus WO2017126493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016007710A JP2017131009A (en) 2016-01-19 2016-01-19 Signal generating circuit and voltage converting device
JP2016-007710 2016-01-19

Publications (1)

Publication Number Publication Date
WO2017126493A1 true WO2017126493A1 (en) 2017-07-27

Family

ID=59362364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001350 WO2017126493A1 (en) 2016-01-19 2017-01-17 Signal generation circuit and voltage conversion apparatus

Country Status (2)

Country Link
JP (1) JP2017131009A (en)
WO (1) WO2017126493A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7024445B2 (en) * 2018-01-26 2022-02-24 トヨタ自動車株式会社 Polyphase converter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326486A (en) * 1994-06-01 1995-12-12 Hitachi Ltd Dcdc converter and discharge lamp lighting device using same
JPH1091258A (en) * 1996-09-12 1998-04-10 Ricoh Co Ltd High voltage power unit
JP2008259307A (en) * 2007-04-04 2008-10-23 Mitsubishi Electric Corp Dc/dc converter and discharge lamp lighting apparatus using the dc/dc converter
JP2011205810A (en) * 2010-03-26 2011-10-13 Tdk-Lambda Corp Overvoltage protection circuit of non-insulation converter
JP2013055772A (en) * 2011-09-02 2013-03-21 Mitsubishi Electric Corp Electric power conversion device, freezing air conditioner and control method of electric power conversion device
JP2013176252A (en) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd Power conversion device
JP2015056912A (en) * 2013-09-10 2015-03-23 株式会社デンソー DC-DC converter device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07326486A (en) * 1994-06-01 1995-12-12 Hitachi Ltd Dcdc converter and discharge lamp lighting device using same
JPH1091258A (en) * 1996-09-12 1998-04-10 Ricoh Co Ltd High voltage power unit
JP2008259307A (en) * 2007-04-04 2008-10-23 Mitsubishi Electric Corp Dc/dc converter and discharge lamp lighting apparatus using the dc/dc converter
JP2011205810A (en) * 2010-03-26 2011-10-13 Tdk-Lambda Corp Overvoltage protection circuit of non-insulation converter
JP2013055772A (en) * 2011-09-02 2013-03-21 Mitsubishi Electric Corp Electric power conversion device, freezing air conditioner and control method of electric power conversion device
JP2013176252A (en) * 2012-02-27 2013-09-05 Nissan Motor Co Ltd Power conversion device
JP2015056912A (en) * 2013-09-10 2015-03-23 株式会社デンソー DC-DC converter device

Also Published As

Publication number Publication date
JP2017131009A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP6295982B2 (en) Signal generation circuit, voltage conversion device, and signal generation method
JP6232935B2 (en) Power supply apparatus and abnormality determination method for power supply apparatus
JP6332080B2 (en) Signal generation circuit, voltage conversion device, and signal generation method
EP2784620B1 (en) Feed-forward control method and device
US11424681B2 (en) Multiphase switching power supply device
WO2018061749A1 (en) Signal generating circuit and power supply device
JP2017063604A (en) Controller for power conversion circuit
JP2011166959A (en) Digital control switching power supply device
JP5256844B2 (en) Control device and control method for power conversion device
WO2017126493A1 (en) Signal generation circuit and voltage conversion apparatus
WO2017073497A1 (en) Signal generating circuit, voltage converting device and computer program
JP2018074719A (en) Voltage converter, switching signal generation method, and computer program
JP2018074743A (en) Controller of dc/dc converter
JP5652454B2 (en) Power converter
JP2018085827A (en) Voltage controller
JP6779339B1 (en) Power converter
WO2016121735A1 (en) Signal generation circuit, voltage conversion device, and signal generation method
JP7253203B2 (en) DC/DC converter control program
JP6468046B2 (en) Parallel operation method and parallel operation apparatus for PWM power converter
JP2017085839A (en) Electric power convertor and control method of electric power convertor
JP7538737B2 (en) Apparatus and method for controlling an electric circuit
CN110545042B (en) PWM rectifier control method and device
JP2018137895A (en) Power conversion controller
JP2013198251A (en) Dc/dc converter and output voltage stabilization method thereof
CN111404430A (en) Power unit for controlling variable speed drive based on rectified voltage

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17741371

Country of ref document: EP

Kind code of ref document: A1