WO2017126454A1 - Conductive film laminate - Google Patents
Conductive film laminate Download PDFInfo
- Publication number
- WO2017126454A1 WO2017126454A1 PCT/JP2017/001165 JP2017001165W WO2017126454A1 WO 2017126454 A1 WO2017126454 A1 WO 2017126454A1 JP 2017001165 W JP2017001165 W JP 2017001165W WO 2017126454 A1 WO2017126454 A1 WO 2017126454A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive film
- protective film
- conductive
- transparent substrate
- transparent
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/14—Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
Definitions
- the present invention relates to a conductive film laminate in which a conductive layer is composed of fine metal wires and a protective film having a visible light transmittance adjusted is provided so as to be peelable, and more particularly to a conductive film laminate suitable for 100% inspection.
- the conductive layer is made of a transparent conductive oxide such as ITO (Indium Tin Oxide) or a metal other than the transparent conductive oxide.
- a transparent conductive oxide such as ITO (Indium Tin Oxide) or a metal other than the transparent conductive oxide.
- metal has advantages such as easy patterning, excellent flexibility, and lower resistance. Therefore, metals such as copper and silver are used for conductive thin wires in touch panels. ing.
- Patent Document 1 discloses a film-like electrostatic device having a capacitive touch panel having a mesh structure of fine metal wires on one surface of a film substrate and further having a functional optical film on one or both surfaces. A capacitive touch panel is described.
- Patent Document 2 describes a touch panel using a fine metal wire.
- the touch panel disclosed in Patent Document 2 includes a capacitance sensor including a base material, a plurality of Y electrode patterns, a plurality of X electrode patterns, a plurality of jumper insulating layers, a plurality of jumper wirings, and a transparent insulating layer.
- a capacitance sensor including a base material, a plurality of Y electrode patterns, a plurality of X electrode patterns, a plurality of jumper insulating layers, a plurality of jumper wirings, and a transparent insulating layer.
- Each of the plurality of Y electrode patterns has a substantially rhombus shape, and is arranged in a matrix along the X direction and the Y direction on the surface of the substrate so that the vertices face each other.
- the plurality of X electrode patterns have substantially the same rhombus shape as the Y electrode pattern.
- touch panels having a metal fine wire mesh structure have been proposed.
- a surface inspection using transmitted light, reflected light, or oblique light is performed in the final process of manufacturing by roll-to-roll or at the time of shipping inspection.
- the touch panel film alone is considered to be a failure during surface inspection when it is laminated with various members including a display device represented by a liquid crystal display device or the like. I found that they were very different.
- an optically transparent resin OCR, Optical Clear Resin
- OCA optically transparent adhesive
- UV Ultra Violet
- An object of the present invention is to solve the above-described problems based on the prior art and provide a conductive film laminate suitable for 100% inspection.
- the present invention can be peeled off from a transparent substrate, a transparent conductive film having a conductive layer formed on at least one surface of the transparent substrate, and the first surface side of the transparent conductive film.
- the conductive layer is formed of a thin metal wire
- the visible light transmittance of the first protective film is 72% or less
- the first protective film provides a conductive film laminate having a total light reflectance of 10% or less.
- the second protective film further has a second protective film which is detachably provided on the second surface side opposite to the first surface of the transparent conductive film, and the visible light transmittance of the second protective film is 92.5. % Or more is preferable. Moreover, it is preferable that the haze of a 2nd protective film is 1% or less. It is preferable that the conductive layer is formed on both surfaces of the transparent substrate.
- the visible light transmittance of the first protective film is preferably 16% or less. Moreover, it is preferable that the total light reflectance of a 1st protective film is 6.0% or less. The haze of the first protective film is preferably 1.9% or less.
- the transparent substrate is preferably composed of polyethylene terephthalate, cycloolefin polymer, polyethylene, polypropylene, polycarbonate, or cycloolefin copolymer.
- the conductive layer is preferably composed of at least one metal selected from gold, silver, copper, platinum, tin, zinc, and aluminum.
- the conductive layer preferably has a conductive pattern having a mesh structure formed by a plurality of fine metal wires.
- a transparent conductive film can be protected, and a conductive film laminate suitable for 100% inspection can be obtained.
- Transparent means that the light transmittance is at least 60% or more, preferably 75% or more, more preferably 80% or more, and even more preferably 85% in the visible light wavelength range of 400 to 800 nm. That is all.
- the light transmittance is measured using “Plastic—How to obtain total light transmittance and total light reflectance” defined in JIS K 7375: 2008.
- FIG. 1 is a schematic cross-sectional view showing a first example of the conductive film laminate of the first embodiment of the present invention
- FIG. 2 is a second view of the conductive film laminate of the first embodiment of the present invention. It is typical sectional drawing which shows an example.
- the conductive film laminated body 10 shown in FIG. 1 has the transparent conductive film 12 and the 1st protective film 20 provided in the 1st surface side of the transparent conductive film 12 so that peeling was possible.
- the conductive film laminate 10 is used for a touch sensor, for example.
- the transparent conductive film 12 has a transparent substrate 14 and a conductive layer 16 formed on one surface of the transparent substrate 14, that is, on the surface 14a.
- the conductive layer 16 is composed of fine metal wires 18.
- the 1st protective film 20 protects the transparent conductive film 12 from the back surface 14b side of the transparent substrate 14, and is provided in the 1st surface side, ie, the back surface 14b of the transparent substrate 14, so that peeling is possible.
- the first protective film 20 includes a support 22 and an adhesive layer 23, and the adhesive layer 23 is in contact with the back surface 14 b of the transparent substrate 14.
- being peelable means that when the first protective film 20 is peeled off from the state of being attached to the object, there is no peeling of the structure on the object and the structure is not damaged. .
- a liquid crystal display device In the conductive film laminate 10, a liquid crystal display device, an organic EL (Organic Electro Luminescence) display device, and a display device 24 such as electronic paper are disposed on the back surface 14 b side of the transparent substrate 14.
- an organic EL (Organic Electro Luminescence) display device In the conductive film laminate 10, a liquid crystal display device, an organic EL (Organic Electro Luminescence) display device, and a display device 24 such as electronic paper are disposed on the back surface 14 b side of the transparent substrate 14.
- the transparent substrate 14 is made of, for example, polyethylene terephthalate (PET), cycloolefin polymer (COP), polyethylene (PE), polypropylene (PP), polycarbonate (PC), or cycloolefin copolymer (COC).
- PET polyethylene terephthalate
- COP cycloolefin polymer
- PE polyethylene
- PP polypropylene
- PC polycarbonate
- COC cycloolefin copolymer
- polyesters such as polyethylene naphthalate (PEN), polyolefins such as polystyrene and ethylene vinyl acetate (EVA), vinyl resins, other polyamides, polyimides, acrylic resins, and triacetyl cellulose (TAC).
- TAC triacetyl cellulose
- the conductive layer 16, that is, the thin metal wire 18, is made of, for example, one or more metals selected from gold, silver, copper, platinum, tin, zinc, and aluminum.
- the metal thin wire 18 preferably contains metallic silver, but may contain a metal other than metallic silver, such as gold or copper.
- the fine metal wire 18 preferably contains a metal binder such as metal silver and gelatin.
- the fine metal wire 18 may include, for example, metal oxide particles, a metal paste such as a silver paste and a copper paste, and metal nanowire particles such as a silver nanowire and a copper nanowire.
- the thickness t of the fine metal wire 18 is not particularly limited, but is preferably 0.01 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m or less, further preferably 20 ⁇ m or less, and 0.01 to 9 ⁇ m. Particularly preferred is 0.05 to 5 ⁇ m. Within the above range, an electrode having low resistance and excellent durability can be formed relatively easily.
- the line width w of the fine metal wire 18 is not particularly limited, but is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, further preferably 10 ⁇ m or less, particularly preferably 9 ⁇ m or less, most preferably 7 ⁇ m or less, and 0.5 ⁇ m. The above is preferable, and 1.0 ⁇ m or more is more preferable. If the line width w is in the above range, low resistance can be achieved relatively easily.
- the method for forming the fine metal wire 18 is not particularly limited as long as it can be formed on the transparent substrate 14.
- a plating method, a silver salt method, a vapor deposition method, and a printing method can be appropriately used as a method for forming the fine metal wire 18.
- a method for forming the fine metal wire 18 by plating will be described.
- the thin metal wire 18 can be formed of a metal plating film formed on the underlayer by electroless plating on the electroless plating underlayer.
- the catalyst ink containing at least metal fine particles is formed in a pattern on the substrate, and then the substrate is immersed in an electroless plating bath to form a metal plating film.
- the method for producing a metal-coated substrate described in JP 2014-159620 A can be used.
- a catalyst or a catalyst precursor is applied, and the substrate is immersed in an electroless plating bath. It is formed by forming a metal plating film. More specifically, the method for producing a metal film substrate described in JP 2012-144661 A can be applied.
- a method for forming the fine metal wires 18 by the silver salt method will be described.
- the silver salt emulsion layer containing silver halide is subjected to an exposure treatment using an exposure pattern that becomes the metal fine wire 18, and then developed, whereby the metal fine wire 18 can be formed. More specifically, the method for producing a fine metal wire described in JP-A-2015-22397 can be used.
- a method for forming the fine metal wires 18 by vapor deposition will be described.
- the metal thin wire 18 can be formed by forming a copper foil layer by vapor deposition and forming a copper wiring from the copper foil layer by a photolithography method.
- an electrolytic copper foil can be used in addition to the deposited copper foil.
- the step of forming a copper wiring described in JP 2014-29614 A can be used.
- a method of forming the fine metal wire 18 by the printing method will be described.
- the thin metal wire 18 can be formed by applying a conductive paste containing a conductive powder to the substrate in the same pattern as the fine metal wire 18 and then performing a heat treatment.
- the pattern formation using the conductive paste is performed by, for example, an ink jet method or a screen printing method. More specifically, the conductive paste described in JP 2011-28985 A can be used as the conductive paste.
- inspection of the conductive layer 16 of the conductive film laminated body 10 is enabled by simulating the state where the conductive film laminated body 10 is arrange
- the conductive layer 16 is viewed from the surface 14a side of the transparent substrate of the conductive film laminate 10 and inspected.
- the visible light transmittance of the first protective film 20 is set to 72% or less. Visible light transmittance is 72% or less, and by reducing the visible light transmittance, the influence of disturbance due to transmitted light is kept low, the presence or absence of failure of the fine metal wire 18 that does not transmit light and is not affected by transmitted light The discriminability can be increased.
- the visible light transmittance of the first protective film 20 is more preferably 16% or less.
- the visible light transmittance of the first protective film 20 is based on “Testing method of total light transmittance of plastic-transparent material” defined in JIS K 7361: 1997.
- the visible light transmittance of the first protective film 20 is the visible light transmittance including the support 22 and the adhesive layer 23.
- the first protective film 20 has a total light reflectance of 10% or less. By controlling the total light reflectance to 10% or less, the amount of reflected light is also suppressed simultaneously with the irregular reflection during the inspection, and by increasing the relative intensity of the reflected light of the metal thin wire 18, whether or not the metal thin wire 18 has failed. Decrease in discrimination can be suppressed. Thereby, the fall of the discriminability of the presence or absence of a failure can be suppressed, and the inspection accuracy of the presence or absence of a failure of the thin metal wire 18 of the conductive layer 16 can be increased.
- the total light reflectance of the first protective film 20 is preferably 6.0% or less.
- the total light reflectance is based on “Plastics—How to obtain total light transmittance and total light reflectance” defined in the above-mentioned JIS K 7375: 2008.
- the total light reflectance of the first protective film 20 is the total light reflectance including the support 22 and the adhesive layer 23.
- the haze of the 1st protective film 20 is 1.9% or less.
- the haze of the first protective film 20 is small, the back surface of the transparent conductive film 12, that is, the diffusion component of the transmitted light in the first protective film 20 is suppressed, and the distinguishability of the thin metal wires 18 can be improved.
- the haze of the 1st protective film 20 is small, the effect similar to the effect acquired by lowering
- the haze of the first protective film 20 is based on “Plastics—How to Obtain Haze of Transparent Material” defined in JIS K7136: 2000.
- the haze of the first protective film 20 is a haze including the support 22 and the adhesive layer 23.
- the conductive film laminated body 10 shown in FIG. 1 In the transparent conductive film 12 like the conductive film laminated body 10a shown in FIG. 2, the 2nd protective film on the surface 14a of the transparent substrate 14 is shown. 26 may be provided to be peelable from the transparent substrate 14. The second protective film 26 protects the conductive layer 16.
- symbol is attached
- the second protective film 26 includes a support body 25 and an adhesive layer 23, and the adhesive layer 23 is disposed with the surface 14 a of the transparent substrate 14 facing the surface.
- peelable is as described above. More specifically, when the second protective film 26 is peeled from the transparent substrate 14, the conductive layer 16 is not peeled and the conductive layer 16 is damaged. It means not giving.
- the second protective film 26 preferably has a visible light transmittance of 92.5% or more.
- the visible light transmittance of the second protective film 26 is the visible light transmittance including the support 25 and the adhesive layer 23. If the visible light transmittance of the second protective film 26 is 92.5% or more, a decrease in inspection accuracy of the conductive layer 16 can be suppressed.
- the second protective film 26 preferably has a haze of 1% or less. If the haze is 1% or less, irregular reflection on the surface 26a of the second protective film 26 can be suppressed, and a decrease in inspection accuracy of the conductive layer 16 can be suppressed.
- the haze is based on “Plastics—How to obtain haze of transparent material” defined in JIS K7136: 2000.
- the haze of the second protective film 26 is a haze including the support 25 and the adhesive layer 23.
- the display device 24 is disposed on the back surface 20b side of the first protective film 20.
- the conductive layer 16 is visually recognized from the surface 26a side of the second protective film 26 and inspected, simulating the state of being disposed in the display device 24.
- FIG. 3 is a schematic view showing a first inspection form of the conductive film laminate
- FIG. 4 is a schematic view showing a second inspection form of the conductive film laminate
- FIG. 5 is a third view of the conductive film laminate
- FIG. 6 is a schematic enlarged view of the third inspection form of the conductive film laminate.
- the fine metal wires 18 have high visibility.
- the transparent conductive film 12 is used alone and transmitted light is used when inspecting the conductive layer 16, as shown in FIG. 3, the fine metal wires 18 of the conductive layer 16 are shaded and appear black, and the fine metal wires 18 Even if there is a failure, it is difficult to find.
- the transparent conductive film 12 is used alone and reflected light is used when inspecting the conductive layer 16, the back side of the transparent conductive film 12 is relatively white as shown in FIG. When 100 becomes relatively white, the fine metal wire 18 itself is conspicuous, and the failure of the fine metal wire 18 is small, it is difficult to find.
- the first protective film 20 is used to form the transparent conductive film 12 alone as shown in FIG.
- the fine metal wires 18 of the conductive layer 16 appear relatively white, so that they are easily visible.
- the failure 19 such as a crack of the fine metal wire 18 and the failure 19a of the change in the line width of the fine metal wire 18 can be easily seen as shown in FIG. 6, the failure 19 and 19a of the fine metal wire 18 can be easily found. Can do.
- the surface 18a FIGGS.
- the viewing direction is set at a predetermined angle from the direction perpendicular to the surface 14a of the transparent substrate 14. It can be found by utilizing the fact that the reflection of the fine metal wire 18 changes by tilting. In addition, about the failure where the surface 18a is not flat, it is difficult to find the reflection change of the thin metal wire 18 in the inspection with the transparent conductive film 12 alone.
- Both the conductive film laminate 10 and the transparent conductive film 12 of the conductive film laminate 10a have a configuration in which the conductive layer 16 is provided only on the surface 14a of the transparent substrate 14, but it is not limited to this.
- the structure by which the conductive layer was provided in both surfaces of the transparent substrate 14 like the conductive film laminated body 10b shown in FIG. 7 and the conductive film laminated body 10c shown in FIG. 8 may be sufficient.
- the same components as those of the conductive film laminate 10 shown in FIG. 1 and the conductive film laminate 10a shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
- the transparent conductive film 30 has the first conductive layer 32 provided on the front surface 14a of the transparent substrate 14, and the second conductive layer 34 provided on the back surface 14b.
- the first protective film 20 provided on the back surface 14 b of the transparent substrate 14 protects the second conductive layer 34.
- the structure other than the above is the same structure as the conductive film laminate 10 shown in FIG.
- Each of the first conductive layer 32 and the second conductive layer 34 has the same configuration as the conductive layer 16 of the conductive film laminate 10 shown in FIG.
- the pattern of the fine metal wires 18 of the first conductive layer 32 and the second conductive layer 34 will be described in detail later.
- the adhesive layer 23 has the same configuration as the adhesive layer 23 of the conductive film laminate 10a shown in FIG.
- the conductive film laminate 10b shown in FIG. 7 can also inspect the first conductive layer 32 and the second conductive layer 34 from the surface 14a side of the transparent substrate 14 in the same manner as the conductive film laminate 10 shown in FIG. .
- the conductive film laminate 10c shown in FIG. 8 is different from the conductive film laminate 10b shown in FIG. 7 in that a second protective film 26 is further provided on the surface 14a of the transparent substrate 14 via an adhesive layer 23.
- the other configuration is the same as that of the conductive film laminate 10b shown in FIG.
- the conductive film laminate 10c shown in FIG. 8 can also inspect the first conductive layer 32 and the second conductive layer 34 from the surface 14a side of the transparent substrate 14 in the same manner as the conductive film laminate 10 shown in FIG. .
- a conductive film laminate 10d shown in FIG. 9 is provided with a first protective film 20 on the surface 14a side of the transparent substrate 14 via an adhesive layer 23 after the inspection of the conductive film laminate 10 shown in FIG. is there.
- the configuration of the conductive film laminate 10d may be a configuration in which the first protective film 20 is provided after the inspection.
- the transparent conductive film 30 is not limited to the configuration shown in FIGS. Like the transparent conductive film 31 shown in FIG. 10, the transparent substrate 14 provided with the first conductive layer 32 on the surface 14 a and the transparent substrate 15 provided with the second conductive layer 34 on the surface 15 a are The two conductive layers 34 may be laminated through the adhesive layer 27 toward the back surface 14 b of the transparent substrate 14.
- the transparent substrate 15 has the same configuration as the transparent substrate 14.
- the first protective film 20 is provided on the back surface 15 b of the transparent substrate 15, and the second protective film 26 is provided on the front surface 14 a side of the transparent substrate 14.
- an optically transparent adhesive OCR, Optical Clear Resin
- OCA optically transparent pressure-sensitive adhesive
- UV Ultra Violet
- FIG. 11 is a plan view showing the configuration of the transparent conductive film
- FIG. 12 is a plan view showing the configuration of the conductive layer of the transparent conductive film. 11 and 12, the same components as those of the conductive film laminate 10 shown in FIG. 1 and the conductive film laminate 10a shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
- the transparent conductive film 30 includes a transparent substrate 14, and a first detection unit 40 and a second detection unit 42 provided as conductive layers on both surfaces of the transparent substrate 14.
- the first peripheral wiring 41 electrically connected to the first detection unit 40 and the second peripheral connection electrically connected to the second detection unit 42 are used.
- the transparent conductive film 30 is used for a capacitive touch sensor, for example.
- a plurality of first detections each extending along the first direction D1 on the surface 14a of the transparent substrate 14 and arranged in parallel in a second direction D2 orthogonal to the first direction D1.
- a plurality of first peripheral wirings 41 formed with a portion 40 and electrically connected to the plurality of first detection units 40 are arranged close to each other.
- the plurality of first peripheral wirings 41 are grouped into one terminal 45 on one side 14 c of the transparent substrate 14.
- a plurality of second detectors 42 that extend along the second direction D2 and are arranged in parallel in the first direction D1 are formed.
- a plurality of second peripheral wirings 43 electrically connected to the two detection units 42 are arranged close to each other.
- the plurality of second peripheral wirings 43 are grouped into one terminal 45 on one side 14 c of the transparent substrate 14.
- the plurality of first detection units 40 are the first conductive layers 32, and the second detection unit 42 is the second conductive layer 34.
- a region where the plurality of first detection units 40 and the plurality of second detection units 42 are arranged to overlap each other in plan view is a sensor region 47.
- the sensor region 47 is a region where a touch can be detected in the capacitive touch sensor.
- a transparent view area S1 is defined in the center, and a peripheral region S2 is defined outside the view area S1.
- the first conductive layer 32 of the first detection unit 40 has a mesh-structured conductive pattern formed by the fine metal wires 18.
- the second conductive layer 34 of the second detection unit 42 has a conductive pattern having a mesh structure formed by the fine metal wires 18.
- a conductive pattern having a mesh structure is also referred to as a mesh pattern.
- the mesh pattern will be described later in detail.
- the first peripheral wiring 41 and the second peripheral wiring 43 may be formed by the thin metal wires 18, or may be configured by conductive wirings having a line width, a thickness, and the like different from the thin metal wires 18.
- the first peripheral wiring 41 and the second peripheral wiring 43 may be formed of, for example, a strip-shaped conductor. Similar to the first detection unit 40 and the second detection unit 42, the first peripheral wiring 41 and the second peripheral wiring 43 may be a mesh pattern formed by the thin metal wires 18.
- the line width w of the metal thin wire 18 is preferably 500 ⁇ m or less, more preferably 50 ⁇ m or less, and particularly preferably 30 ⁇ m or less. If the line width w is in the above range, a low resistance peripheral wiring can be formed relatively easily. Further, even when the thin metal wire 18 is applied as a peripheral wiring (leading wiring), it can be a mesh pattern. In this case, the line width w is not particularly limited, but is preferably 30 ⁇ m or less, preferably 15 ⁇ m or less.
- the line width w is in the above range, a low resistance peripheral wiring can be formed relatively easily.
- the uniformity of resistance reduction by irradiation of the conductive layer and the peripheral wiring can be improved, and when the adhesive layer is bonded, the peel strength of the conductive layer and the peripheral wiring is increased. This is preferable in that it can be made constant and the in-plane distribution can be reduced.
- the transparent conductive film 30 is not limited to a capacitive touch sensor, and may be a resistive touch sensor. Even in the resistive touch sensor, a sensor region 47 is a region where the plurality of first detection units 40 and the plurality of second detection units 42 are arranged in a plan view.
- the pattern of the thin metal wires 18 of the first conductive layer 32 and the second conductive layer 34 is not particularly limited, but is a triangle such as an equilateral triangle, an isosceles triangle, a right triangle, a square, a rectangle, a rhombus, and a parallel. It is preferably a geometric figure combining quadrangles, trapezoids, etc., (positive) hexagons, (positive) octagons, etc., (positive) n-gons, circles, ellipses, stars, etc. More preferably, it is a mesh pattern consisting of figures. The mesh pattern is formed by combining a large number of cells configured in a lattice shape by the fine metal wires 18. Specifically, as shown in FIG.
- a pattern in which a plurality of square lattices 48 formed by intersecting metal thin wires 18 formed on the same surface of the transparent substrate 14 are combined is intended.
- the mesh pattern may be a combination of similar and congruent grids, or may be a combination of differently shaped grids.
- the length Pa of one side of the grating 48 is not particularly limited, but is preferably 50 to 500 ⁇ m, and more preferably 150 to 300 ⁇ m.
- the aperture ratio of the conductive layer formed from the thin metal wires 18 is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more. The aperture ratio corresponds to the ratio of the area on the transparent substrate 14 excluding the area where the fine metal wires 18 are present to the whole.
- FIG. 13 is a schematic diagram showing an apparatus for manufacturing a conductive film laminate according to the first embodiment of the present invention
- FIG. 14 is a schematic diagram showing an apparatus for manufacturing a conductive film laminate according to the second embodiment of the present invention. is there.
- the manufacturing apparatus 50 shown in FIG. 13 also serves as an inspection apparatus, and is a roll-to-roll system apparatus.
- the manufacturing apparatus 50 includes a roller 52 around which a long transparent conductive film 12 prepared in advance is wound, a take-up roller 54 around which the conductive film laminate 10 is wound, and a first protective film 20 is wound around.
- a roller 56 and a pair of rollers 58 for providing the first protective film 20 on the back surface of the transparent conductive film 12 are provided.
- the manufacturing apparatus 50 includes a sensor 60 disposed on the downstream side in the conveyance direction F of the pair of rollers 58, and a determination unit 62 connected to the sensor 60. An inspection is performed by the sensor 60 and the determination unit 62.
- the sensor 60 is disposed on the surface 14a (see FIG.
- the sensor 60 acquires an image of the thin metal wire 18.
- the image is acquired by irradiating the thin metal wire 18 with the light L and reading the reflected light.
- the sensor 60 includes an image sensor (not shown) that acquires an image and a light source (not shown) that irradiates the metal thin wire 18 with the light L.
- a fluorescent lamp or an LED (Light Emitting Diode) light is used as the light source.
- the image data of the image acquired by the sensor 60 is output to the determination unit 62, and the determination unit 62 determines whether there is a failure. Thereby, in the state of the conductive film laminated body 10 which provided the 1st protective film 20, the presence or absence of the failure of the metal fine wire 18 can be determined about all the conductive film laminated bodies 10.
- FIG. 1st protective film 20 The image data of the image acquired by the sensor 60 is output to the determination unit 62, and the determination unit 62 determines whether there is a failure.
- the determination unit 62 includes a computer that determines whether or not there is a failure, and software for determination is incorporated in the computer to determine whether or not there is a failure.
- a failure may be set in advance for the image of the thin metal wire 18, and the failure may be specified based on the set failure.
- reflection may be set as luminance, or the shape of the thin metal wire 18 may be set.
- the irradiation angle of the light L is not particularly limited, and may be perpendicular to the surface 14a of the transparent substrate 14 or an angle other than perpendicular.
- the light L is not particularly limited, and may be fluorescent light or LED (Light Emitting Diode) light, and the wavelength, light amount, etc. of the light L are appropriately set.
- the manufacturing apparatus 50 can manufacture the conductive film laminate 10, and the winding roller 54 winds the conductive film laminate 10 in the transport direction F, and inspects all the conductive film laminates 10 for failure of the thin metal wires 18. Can be performed with high inspection accuracy. That is, 100% inspection can be performed on the conductive film laminate 10 with high inspection accuracy.
- the transparent conductive film 12 as the transparent conductive film 30 (see FIG. 7)
- the conductive film laminate 10b can be manufactured, and the failure inspection of the thin metal wires 18 is high for all the conductive film laminates 10b.
- the manufacturing apparatus 51 shown in FIG. 14 is different from the manufacturing apparatus 50 shown in FIG. 13 in that the second protective film 26 can be provided.
- Other configurations are the same as those of the manufacturing apparatus 50 shown in FIG. Since it is the same structure, the detailed description is abbreviate
- the manufacturing apparatus 51 shown in FIG. 14 includes a roller 70 around which the second protective film 26 is wound, and a pair of rollers 72 for providing the second protective film 26 on the surface 14a side of the transparent substrate 14.
- the second protective film 26 is provided on the surface 14 a side of the transparent substrate 14 of the transparent conductive film 12 by a pair of rollers 72.
- the manufacturing apparatus 51 can also manufacture the conductive film laminate 10a, and the winding roller 54 winds the conductive film laminate 10a in the transport direction F, and checks the failure of the thin metal wires 18 for all the conductive film laminates 10a. Can be performed with high inspection accuracy. That is, 100% inspection can be performed with high inspection accuracy on the conductive film laminate 10a.
- the transparent conductive film 12 as the transparent conductive film 30 (see FIG. 8)
- the conductive film laminate 10c can be manufactured, and the failure inspection of the thin metal wires 18 is high for all the conductive film laminates 10b.
- FIG. 15 is a schematic cross-sectional view showing a normal fine metal wire without a failure
- FIG. 16 is a schematic cross-sectional view showing a fine metal wire with a failure.
- the same components as those of the conductive film laminate 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
- the optical sensor 84 detects the reflected light R1 obtained by reflecting the emitted light L1 from the first light source 80 on the surface 18a of the thin metal wire 18.
- the reflected light R2 reflected by the surface 18a of the thin metal wire 18 from the emitted light L2 from the second light source 82 is not detected by the optical sensor 84.
- the surface 18a is flat and the fine metal wire 18 is normal. That is, there is no failure.
- the optical sensor 84 at the arrangement position, the reflected light R1 of the emitted light L1 from the first light source 80 is visually recognized.
- the reflected light reflected by the surface 86 a of the thin metal wire 86 is emitted light L ⁇ b> 1 from the first light source 80.
- R1 is not detected by the optical sensor 84.
- the reflected light R ⁇ b> 2 which is obtained by reflecting the emitted light L ⁇ b> 2 from the second light source 82 on the surface 86 a of the thin metal wire 86, is detected by the optical sensor 84.
- an abnormality of the surface 86a of the thin metal wire 86 that is, a failure can be detected.
- the optical sensor 84 at the arrangement position, the reflected light R1 of the emitted light L1 from the first light source 80 is not visually recognized, but the reflected light R2 of the emitted light L2 from the second light source 82 is visually recognized.
- the arrangement of the first light source 80, the second light source 82, and the optical sensor 84 shown in FIG. 15 is used as the sensor 60 shown in FIGS. 13 and 14, and the light emitted from the first light source 80 and the second light source 82 is emitted.
- the determination unit 62 can determine the presence or absence of a failure based on the presence or absence of detection by the optical sensor 64.
- the first light source 80 and the second light source 82 for example, a fluorescent lamp or an LED light can be used.
- the first protective film 20 is composed of a support 22 and an adhesive layer 23, and the second protective film 26 is composed of a support 25 and an adhesive layer 23. If it satisfy
- the material which comprises the support body 22 and the support body 25 is not specifically limited, For example, it can comprise with the material illustrated by the above-mentioned transparent substrate 14, A suitable aspect is also a polyethylene terephthalate similarly. .
- the supports 22 and 25 for example, polymethyl methacrylate (PMMA), polyarylate (PAR), polysulfone (PSU), or the like can be used.
- the thicknesses of the first protective film 20 and the second protective film 26 are not particularly limited, but are about 30 to 200 ⁇ m.
- the pressure-sensitive adhesive layers of the first protective film 20 and the second protective film 26 are not particularly limited as long as they satisfy the above-described physical property values, and are a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive. Agents and the like. Among these, an acrylic pressure-sensitive adhesive is preferable from the viewpoint of excellent transparency.
- the acrylic pressure-sensitive adhesive is preferably mainly composed of an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate. (Meth) acrylate refers to acrylate and / or methacrylate.
- the acrylic polymer is preferably an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate having an alkyl group having about 1 to 12 carbon atoms.
- An acrylic polymer having a repeating unit derived from an alkyl acrylate having a carbon number of 2 is more preferable.
- a repeating unit derived from (meth) acrylic acid may be contained.
- the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 25 to 300 ⁇ m, and more preferably 50 to 200 ⁇ m.
- the present invention is basically configured as described above. As mentioned above, although the conductive film laminated body of this invention was demonstrated in detail, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the main point of this invention, you may make various improvement or a change. Of course.
- a transparent conductive film in which a failure is recognized for the thin metal wire of the conductive layer is prepared in advance, and the members shown in Table 1 below are arranged on the viewing surface side and the lower surface side on the opposite side, so that the configuration shown in Table 2 below is obtained. It was squeezed and pasted with a roller. In addition, about the member which does not have an adhesion layer, it bonded through 3M company optical adhesive (CS9918), and obtained each experiment example. Thereafter, each experimental example was illuminated with an LED (Light Emitting Diode) light or a fluorescent lamp from the viewing surface side, and the appearance of the failure of the conductive layer was evaluated.
- LED Light Emitting Diode
- a bonded product (Experimental Examples 1 and 2) in which glass was bonded to the viewing surface side, which serves as a reference for comparison, was produced.
- Experimental Example 1 a transparent conductive film is disposed on a liquid crystal display device.
- Experimental example 2 has black PET bonded to the back side.
- the protective film 1 shown in Table 1 below is SAT TM30125 TC-FA (125 ⁇ m polyethylene terephthalate (PET) protective film manufactured by Sanei Kaken Co., Ltd.).
- the protective film 2 is KD23K (38 ⁇ m polypropylene (PP) protective film manufactured by Sanei Kaken Co., Ltd.).
- Black PET is industrial black PET (GPH100E82A04) manufactured by Panac Corporation. Black paper is black drawing paper (commercially available).
- the polyimide tape is a 3M polyimide tape.
- the clean paper is a dust-free paper (color, light blue) for clean rooms manufactured by Oji F-Tex.
- TRANSP is a sublimation type photo paper (FUJIFILM Quality Thermal Photo Paper).
- An ND (Neutral Density) filter (0.2) is a filter for adjusting the amount of light (filter number 0.2) manufactured by FUJIFILM Corporation.
- An ND (Neutral Density) filter (0.8) is a filter for adjusting the amount of light (filter number: 0.8) manufactured by FUJIFILM Corporation.
- No. The 6 filter is a safe light filter (SLF-6 (product name)) manufactured by FUJIFILM Corporation. Corning Eagle Glass (Eagle XG (registered trademark)) was used as the glass.
- the total light reflectance in Table 1 is a value measured based on JIS K 7375: 2008 using a JASCO Corporation V-660 (ultraviolet visible spectrophotometer).
- the visible light transmittance in Table 1 is a value measured based on the provisions of JIS K 7361: 1997 using an automatic haze meter TC-HIIIDPK / II (trade name) manufactured by Tokyo Denshoku.
- the haze in Table 1 is a value measured based on JIS K7136: 2000 using an automatic haze meter TC-HIIIDPK / II (trade name) manufactured by Tokyo Denshoku Co., Ltd. In the haze column of Table 1 below, “-” indicates that measurement is impossible.
- a method for producing the transparent conductive film 12 will be described.
- ⁇ Method for producing transparent conductive film> Preparation of silver halide emulsion
- the following 4 and 5 solutions were added over 8 minutes, and the remaining 10% of the following 2 and 3 solutions were added over 2 minutes to grow to 0.21 ⁇ m.
- 0.15 g of potassium iodide was added and ripened for 5 minutes to complete the grain formation.
- the emulsion after washing with water and desalting was adjusted to pH 6.4 and pAg 7.5, and gelatin 3.9 g, sodium benzenethiosulfonate 10 mg, sodium benzenethiosulfinate 3 mg, sodium thiosulfate 15 mg and chloroauric acid 10 mg were added.
- Chemical sensitization to obtain optimum sensitivity at 0 ° C. 100 mg of 1,3,3a, 7-tetraazaindene as stabilizer and 100 mg of proxel (trade name, manufactured by ICI Co., Ltd.) as preservative It was.
- the finally obtained emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide. It was a silver iodochlorobromide cubic grain emulsion having a coefficient of 9%.
- EPOXY RESIN DY 022 (trade name: manufactured by Nagase ChemteX Corporation) was added as a crosslinking agent.
- the addition amount of the crosslinking agent was adjusted so that the amount of the crosslinking agent in the photosensitive layer described later would be 0.09 g / m 2 .
- a photosensitive layer forming composition was prepared as described above.
- the polymer represented by the above (P-1) was synthesized with reference to Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
- the above-mentioned polymer latex was applied to both surfaces of the transparent substrate 14 to provide an undercoat layer having a thickness of 0.05 ⁇ m.
- a 100 ⁇ m polyethylene terephthalate (PET) film (manufactured by Fuji Film Co., Ltd.) was used for the transparent substrate 14.
- PET polyethylene terephthalate
- an antihalation layer comprising a mixture of the above-described polymer latex and gelatin and a dye having an optical density of about 1.0 and decolorizing with an alkali of a developer was provided on the undercoat layer.
- the mixing mass ratio of polymer to gelatin was 2/1, and the polymer content was 0.65 g / m 2 .
- the above-mentioned composition for forming a photosensitive layer was applied, a gelatin layer having a thickness of 0.15 ⁇ m was further provided, and a support having a photosensitive layer formed on both sides was obtained.
- the support body in which the photosensitive layer was formed in both surfaces be the film A.
- FIG. The formed photosensitive layer had a silver amount of 6.2 g / m 2 and a gelatin amount of 1.0 g / m 2 .
- the photomask having the mesh pattern shown in FIG. 12 described above was disposed on both surfaces of the above-described film A, and exposure was performed using parallel light using a high-pressure mercury lamp as a light source.
- As the mesh pattern one having a length Pa of 150 ⁇ m on one side of the lattice 48 and a line width of 5 ⁇ m was used.
- development was performed with the following developer, and further development processing was performed using a fixing solution (trade name: N3X-R for CN16X, manufactured by Fuji Film Co., Ltd.).
- the support body by which the functional pattern which consists of Ag (silver) fine wire, the pattern for thickness adjustment which consists of Ag fine wire, and the gelatin layer was formed on both surfaces by rinsing with pure water and drying was obtained.
- the gelatin layer was formed between the Ag fine wires.
- the resulting film is referred to as film B.
- the film B was immersed in an aqueous solution (proteolytic enzyme concentration: 0.5 mass%, liquid temperature: 40 ° C.) of a proteolytic enzyme (Biosease AL-15FG manufactured by Nagase ChemteX) for 120 seconds.
- the film B was taken out from the aqueous solution, immersed in warm water (liquid temperature: 50 ° C.) for 120 seconds, and washed.
- the film after gelatin degradation is designated as film C.
- a heat treatment was performed by passing through a superheated steam tank having a temperature of 150 ° C. over 120 seconds.
- the film after the heat treatment is referred to as film D.
- This film D is a transparent conductive film.
- a method for producing a transparent conductive film by a plating method will be described.
- a 100 ⁇ m polyethylene terephthalate (PET) film (manufactured by Fuji Film Co., Ltd.) was used for the transparent substrate, and the composition 1 shown below was applied to one surface of the transparent substrate to a dry film thickness of 0.5 ⁇ m.
- a photomask having the mesh pattern shown in FIG. 12 was placed, and exposure was performed using parallel light using a high-pressure mercury lamp as a light source.
- As the mesh pattern one having a length Pa of 150 ⁇ m on one side of the lattice 48 and a line width of 5 ⁇ m was used.
- substrate containing a pattern-like to-be-plated layer was obtained.
- the obtained substrate was immersed in a 5-fold dilution of only MAT-2A of Pd catalyst imparting liquid MAT-2 (manufactured by Uemura Kogyo) at room temperature for 5 minutes and washed twice with pure water.
- a reducing agent MAB manufactured by Uemura Kogyo
- each was immersed in electroless plating solution sulcup PEA (manufactured by Uemura Kogyo Co., Ltd.) for 60 minutes at room temperature, washed with pure water, and a mesh-like wiring was formed on one surface of the transparent substrate.
- the composition 1 shown below was applied to the other surface of the transparent substrate so as to have a dry film thickness of 0.5 ⁇ m, and exposure, development, and washing were performed. Thereby, the transparent conductive film by the plating method in which the mesh pattern was formed on both surfaces of the transparent substrate was obtained.
- a method for producing a transparent conductive film by a vapor deposition method will be described.
- a 100 ⁇ m polyethylene terephthalate (PET) film (manufactured by Fuji Film) was used for the transparent substrate, and silver was deposited on one surface of the transparent substrate to form a silver foil having a thickness of 8 ⁇ m.
- the negative resist was applied to the silver foil surface with a thickness of about 6 ⁇ m using a roll coater and dried at 90 ° C. for 30 minutes.
- the photomask having the mesh pattern shown in FIG. 12 was placed on the negative resist, and exposure was performed by irradiating with 100 mJ / cm 2 of ultraviolet light using parallel light using a high-pressure mercury lamp as a light source.
- the mesh pattern one having a length Pa of 150 ⁇ m on one side of the lattice 48 and a line width of 5 ⁇ m was used.
- the negative resist was developed.
- a resist pattern was formed in a portion corresponding to the pattern wiring, and the resist in other portions was removed.
- the exposed portion of the silver foil was removed by etching, and the remaining resist was peeled off.
- mesh-like silver wiring was formed on one surface of the transparent substrate.
- silver is vapor-deposited on the other surface of the transparent substrate to form a silver foil having a thickness of 8 ⁇ m, and then a negative resist is formed as described above, and a resist corresponding to the pattern wiring is formed on the portion corresponding to the pattern wiring.
- a pattern was formed. Thereafter, as described above, the exposed portion of the silver foil was removed by etching, and a mesh-like silver wiring was formed on the other surface of the transparent substrate. Thereby, the transparent conductive film by the vapor deposition method in which the mesh pattern was formed on both surfaces of the transparent substrate was obtained.
- a method for producing a transparent conductive film by a printing method will be described.
- a 100 ⁇ m polyethylene terephthalate (PET) film manufactured by FUJIFILM Corporation
- PET polyethylene terephthalate
- a silver conductive paste is formed on both sides of the transparent substrate by a printing method in a pattern that becomes the mesh pattern of FIG. did.
- the transparent substrate was hold
- An Ag paste Dotite FA-401CA (product name), manufactured by Fujikura Kasei) was used as the silver conductive paste.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Provided is a conductive film laminate which is suitable for one hundred percent inspection. This conductive film laminate comprises: a transparent conductive film that comprises a transparent substrate and a conductive layer that is formed on at least one surface of the transparent substrate; and a first protective film that is removably provided on a first surface of the transparent conductive film. The conductive layer is configured of a metal thin wire. The first protective film has a visible light transmittance of 72% or less; and the first protective film has a total light reflectance of 10% or less.
Description
本発明は、導電層が金属細線により構成され、可視光透過率が調整された保護フィルムが剥離可能に設けられた導電フィルム積層体に関し、特に、全数検査に適した導電フィルム積層体に関する。
The present invention relates to a conductive film laminate in which a conductive layer is composed of fine metal wires and a protective film having a visible light transmittance adjusted is provided so as to be peelable, and more particularly to a conductive film laminate suitable for 100% inspection.
近年、タブレット型コンピュータおよびスマートフォン等の携帯情報機器を始めとした各種の電子機器において、液晶表示装置等の表示装置と組み合わせて用いられ、画面に接触することにより電子機器への入力操作を行うタッチパネルの普及が進んでいる。
タッチパネルには、透明基板に導電層が形成された透明導電フィルムが用いられる。 2. Description of the Related Art In recent years, various electronic devices such as tablet computers and mobile information devices such as smartphones are used in combination with a display device such as a liquid crystal display device, and a touch panel that performs an input operation to the electronic device by touching a screen. Is spreading.
A transparent conductive film in which a conductive layer is formed on a transparent substrate is used for the touch panel.
タッチパネルには、透明基板に導電層が形成された透明導電フィルムが用いられる。 2. Description of the Related Art In recent years, various electronic devices such as tablet computers and mobile information devices such as smartphones are used in combination with a display device such as a liquid crystal display device, and a touch panel that performs an input operation to the electronic device by touching a screen. Is spreading.
A transparent conductive film in which a conductive layer is formed on a transparent substrate is used for the touch panel.
導電層は、ITO(Indium Tin Oxide)等の透明導電性酸化物、または透明導電性酸化物以外に金属により形成される。金属は上述の透明導電性酸化物に比べて、パターニングがしやすく、屈曲性に優れ、抵抗がより低い等の利点があるため、タッチパネル等において銅、銀等の金属が導電性細線に用いられている。
The conductive layer is made of a transparent conductive oxide such as ITO (Indium Tin Oxide) or a metal other than the transparent conductive oxide. Compared to the above transparent conductive oxide, metal has advantages such as easy patterning, excellent flexibility, and lower resistance. Therefore, metals such as copper and silver are used for conductive thin wires in touch panels. ing.
例えば、特許文献1には、フィルム基材の一方の面に金属細線のメッシュ構造からなる静電容量型タッチパネルを備え、さらにいずれかの面もしくは両面に機能性光学膜を備えたフィルム状静電容量型タッチパネルが記載されている。
For example, Patent Document 1 discloses a film-like electrostatic device having a capacitive touch panel having a mesh structure of fine metal wires on one surface of a film substrate and further having a functional optical film on one or both surfaces. A capacitive touch panel is described.
また、特許文献2には、金属細線を用いたタッチパネルが記載されている。特許文献2のタッチパネルは、基材と、複数のY電極パターンと、複数のX電極パターンと、複数のジャンパ絶縁層と、複数のジャンパ配線と、透明絶縁層とを備えた静電容量センサーが記載されている。複数のY電極パターンは、それぞれ略菱形形状を有しており、その頂点同士が相互に対向するように、基材の表面上にX方向及びY方向に沿ってマトリクス状に配列されている。複数のX電極パターンは、Y電極パターンと同じ略菱形形状を有している。
Patent Document 2 describes a touch panel using a fine metal wire. The touch panel disclosed in Patent Document 2 includes a capacitance sensor including a base material, a plurality of Y electrode patterns, a plurality of X electrode patterns, a plurality of jumper insulating layers, a plurality of jumper wirings, and a transparent insulating layer. Are listed. Each of the plurality of Y electrode patterns has a substantially rhombus shape, and is arranged in a matrix along the X direction and the Y direction on the surface of the substrate so that the vertices face each other. The plurality of X electrode patterns have substantially the same rhombus shape as the Y electrode pattern.
上述のように、従来から金属細線のメッシュ構造を有するタッチパネルが提案されている。これらは、一般的に、ロールトゥロールでの製造の最終工程、または出荷検査時において、透過光、反射光または偏斜光を用いた面状検査が実施される。
しかしながら、本発明者が鋭意検討したところ、液晶表示装置等に代表される表示機器を含めた各種部材との積層形態をとった際には、タッチパネルフィルム単体とは面状検査時の故障の見え方が大きく異なることを発見した。
ここで、タッチパネルでは、各種部材との積層形態をとる場合、光学的透明な粘着剤(OCA、Optical Clear Adhesive)およびUV(Ultra Violet)硬化樹脂等の光学的透明な樹脂(OCR、Optical Clear Resin)を使用するケースが殆どであり、出荷検査として実施する場合には非破壊検査ができないため、抜き取り検査とせざるを得ず、全数検査が事実上不可能になってしまう。このように、出荷するものについて全数検査ができないことによって、異常品を市場に流出させてしまうリスクが高まる。このため、上述のような表示機器との積層形態であっても全数検査ができるものが望まれている。 As described above, touch panels having a metal fine wire mesh structure have been proposed. In general, a surface inspection using transmitted light, reflected light, or oblique light is performed in the final process of manufacturing by roll-to-roll or at the time of shipping inspection.
However, as a result of diligent investigations by the present inventors, the touch panel film alone is considered to be a failure during surface inspection when it is laminated with various members including a display device represented by a liquid crystal display device or the like. I found that they were very different.
Here, when the touch panel is in a laminated form with various members, an optically transparent resin (OCR, Optical Clear Resin) such as an optically transparent adhesive (OCA, Optical Clear Adhesive) and UV (Ultra Violet) cured resin is used. ) Is used in most cases, and non-destructive inspection cannot be performed when it is carried out as a shipping inspection. Therefore, a sampling inspection is unavoidable, and a complete inspection becomes impossible. As described above, since all the products to be shipped cannot be inspected, the risk of causing abnormal products to flow out to the market increases. For this reason, what can do 100% inspection is desired even if it is a lamination | stacking form with the above display apparatuses.
しかしながら、本発明者が鋭意検討したところ、液晶表示装置等に代表される表示機器を含めた各種部材との積層形態をとった際には、タッチパネルフィルム単体とは面状検査時の故障の見え方が大きく異なることを発見した。
ここで、タッチパネルでは、各種部材との積層形態をとる場合、光学的透明な粘着剤(OCA、Optical Clear Adhesive)およびUV(Ultra Violet)硬化樹脂等の光学的透明な樹脂(OCR、Optical Clear Resin)を使用するケースが殆どであり、出荷検査として実施する場合には非破壊検査ができないため、抜き取り検査とせざるを得ず、全数検査が事実上不可能になってしまう。このように、出荷するものについて全数検査ができないことによって、異常品を市場に流出させてしまうリスクが高まる。このため、上述のような表示機器との積層形態であっても全数検査ができるものが望まれている。 As described above, touch panels having a metal fine wire mesh structure have been proposed. In general, a surface inspection using transmitted light, reflected light, or oblique light is performed in the final process of manufacturing by roll-to-roll or at the time of shipping inspection.
However, as a result of diligent investigations by the present inventors, the touch panel film alone is considered to be a failure during surface inspection when it is laminated with various members including a display device represented by a liquid crystal display device or the like. I found that they were very different.
Here, when the touch panel is in a laminated form with various members, an optically transparent resin (OCR, Optical Clear Resin) such as an optically transparent adhesive (OCA, Optical Clear Adhesive) and UV (Ultra Violet) cured resin is used. ) Is used in most cases, and non-destructive inspection cannot be performed when it is carried out as a shipping inspection. Therefore, a sampling inspection is unavoidable, and a complete inspection becomes impossible. As described above, since all the products to be shipped cannot be inspected, the risk of causing abnormal products to flow out to the market increases. For this reason, what can do 100% inspection is desired even if it is a lamination | stacking form with the above display apparatuses.
本発明の目的は、前述の従来技術に基づく問題点を解消し、全数検査に適した導電フィルム積層体を提供することにある。
An object of the present invention is to solve the above-described problems based on the prior art and provide a conductive film laminate suitable for 100% inspection.
上述の目的を達成するために、本発明は、透明基板、および透明基板の少なくとも一方の面上に形成された導電層を有する透明導電フィルムと、透明導電フィルムの第1の面側に剥離可能に設けられた第1の保護フィルムとを有し、導電層は、金属細線により構成されており、第1の保護フィルムの可視光透過率が72%以下であり、かつ第1の保護フィルムの全光反射率が10%以下であることを特徴とする導電フィルム積層体を提供するものである。
In order to achieve the above-described object, the present invention can be peeled off from a transparent substrate, a transparent conductive film having a conductive layer formed on at least one surface of the transparent substrate, and the first surface side of the transparent conductive film. And the conductive layer is formed of a thin metal wire, the visible light transmittance of the first protective film is 72% or less, and the first protective film The present invention provides a conductive film laminate having a total light reflectance of 10% or less.
透明導電フィルムの第1の面に対して反対側の第2の面側に剥離可能に設けられた第2の保護フィルムをさらに有し、第2の保護フィルムの可視光透過率が92.5%以上であることが好ましい。また、第2の保護フィルムのヘイズが1%以下であることが好ましい。
透明基板の両面に導電層が形成されていることが好ましい。
第1の保護フィルムの可視光透過率が16%以下であることが好ましい。また、第1の保護フィルムの全光反射率が6.0%以下であることが好ましい。第1の保護フィルムのヘイズが1.9%以下であることが好ましい。 The second protective film further has a second protective film which is detachably provided on the second surface side opposite to the first surface of the transparent conductive film, and the visible light transmittance of the second protective film is 92.5. % Or more is preferable. Moreover, it is preferable that the haze of a 2nd protective film is 1% or less.
It is preferable that the conductive layer is formed on both surfaces of the transparent substrate.
The visible light transmittance of the first protective film is preferably 16% or less. Moreover, it is preferable that the total light reflectance of a 1st protective film is 6.0% or less. The haze of the first protective film is preferably 1.9% or less.
透明基板の両面に導電層が形成されていることが好ましい。
第1の保護フィルムの可視光透過率が16%以下であることが好ましい。また、第1の保護フィルムの全光反射率が6.0%以下であることが好ましい。第1の保護フィルムのヘイズが1.9%以下であることが好ましい。 The second protective film further has a second protective film which is detachably provided on the second surface side opposite to the first surface of the transparent conductive film, and the visible light transmittance of the second protective film is 92.5. % Or more is preferable. Moreover, it is preferable that the haze of a 2nd protective film is 1% or less.
It is preferable that the conductive layer is formed on both surfaces of the transparent substrate.
The visible light transmittance of the first protective film is preferably 16% or less. Moreover, it is preferable that the total light reflectance of a 1st protective film is 6.0% or less. The haze of the first protective film is preferably 1.9% or less.
透明基板は、ポリエチレンテレフタレート、シクロオレフィンポリマー、ポリエチレン、ポリプロピレン、ポリカーボネート、またはシクロオレフィンコポリマーにより構成されていることが好ましい。
導電層は、金、銀、銅、白金、錫、亜鉛、およびアルミニウムのうち、いずれか1種類以上の金属により構成されていることが好ましい。
導電層は、複数の金属細線により形成されたメッシュ構造の導電パターンを有することが好ましい。 The transparent substrate is preferably composed of polyethylene terephthalate, cycloolefin polymer, polyethylene, polypropylene, polycarbonate, or cycloolefin copolymer.
The conductive layer is preferably composed of at least one metal selected from gold, silver, copper, platinum, tin, zinc, and aluminum.
The conductive layer preferably has a conductive pattern having a mesh structure formed by a plurality of fine metal wires.
導電層は、金、銀、銅、白金、錫、亜鉛、およびアルミニウムのうち、いずれか1種類以上の金属により構成されていることが好ましい。
導電層は、複数の金属細線により形成されたメッシュ構造の導電パターンを有することが好ましい。 The transparent substrate is preferably composed of polyethylene terephthalate, cycloolefin polymer, polyethylene, polypropylene, polycarbonate, or cycloolefin copolymer.
The conductive layer is preferably composed of at least one metal selected from gold, silver, copper, platinum, tin, zinc, and aluminum.
The conductive layer preferably has a conductive pattern having a mesh structure formed by a plurality of fine metal wires.
本発明によれば、透明導電フィルムを保護することができ、かつ全数検査に適した導電フィルム積層体を得ることができる。
According to the present invention, a transparent conductive film can be protected, and a conductive film laminate suitable for 100% inspection can be obtained.
以下に、添付の図面に示す好適実施形態に基づいて、本発明の導電フィルム積層体を詳細に説明する。
なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
「45°」、「平行」、「垂直」および「直交」等の角度は、技術分野で一般的に許容される誤差範囲を含むものとする。また、「同一」とは、技術分野で一般的に許容される誤差範囲を含むものとする。
透明とは、光透過率が、波長400~800nmの可視光波長域において、少なくとも60%以上のことであり、好ましくは75%以上であり、より好ましくは80%以上、さらにより好ましくは85%以上のことである。光透過率は、JIS K 7375:2008に規定される「プラスチック--全光線透過率及び全光線反射率の求め方」を用いて測定されるものである。 Below, based on preferred embodiment shown in an accompanying drawing, the conductive film layered product of the present invention is explained in detail.
In the following, “to” indicating a numerical range includes numerical values written on both sides. For example, when ε is a numerical value α to a numerical value β, the range of ε is a range including the numerical value α and the numerical value β, and expressed by mathematical symbols, α ≦ ε ≦ β.
Angles such as “45 °”, “parallel”, “vertical”, and “orthogonal” are intended to include error ranges generally accepted in the art. In addition, “same” includes an error range generally allowed in the technical field.
Transparent means that the light transmittance is at least 60% or more, preferably 75% or more, more preferably 80% or more, and even more preferably 85% in the visible light wavelength range of 400 to 800 nm. That is all. The light transmittance is measured using “Plastic—How to obtain total light transmittance and total light reflectance” defined in JIS K 7375: 2008.
なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
「45°」、「平行」、「垂直」および「直交」等の角度は、技術分野で一般的に許容される誤差範囲を含むものとする。また、「同一」とは、技術分野で一般的に許容される誤差範囲を含むものとする。
透明とは、光透過率が、波長400~800nmの可視光波長域において、少なくとも60%以上のことであり、好ましくは75%以上であり、より好ましくは80%以上、さらにより好ましくは85%以上のことである。光透過率は、JIS K 7375:2008に規定される「プラスチック--全光線透過率及び全光線反射率の求め方」を用いて測定されるものである。 Below, based on preferred embodiment shown in an accompanying drawing, the conductive film layered product of the present invention is explained in detail.
In the following, “to” indicating a numerical range includes numerical values written on both sides. For example, when ε is a numerical value α to a numerical value β, the range of ε is a range including the numerical value α and the numerical value β, and expressed by mathematical symbols, α ≦ ε ≦ β.
Angles such as “45 °”, “parallel”, “vertical”, and “orthogonal” are intended to include error ranges generally accepted in the art. In addition, “same” includes an error range generally allowed in the technical field.
Transparent means that the light transmittance is at least 60% or more, preferably 75% or more, more preferably 80% or more, and even more preferably 85% in the visible light wavelength range of 400 to 800 nm. That is all. The light transmittance is measured using “Plastic—How to obtain total light transmittance and total light reflectance” defined in JIS K 7375: 2008.
図1は本発明の第1の実施形態の導電フィルム積層体の第1の例を示す模式的断面図であり、図2は本発明の第1の実施形態の導電フィルム積層体の第2の例を示す模式的断面図である。
図1に示す導電フィルム積層体10は、透明導電フィルム12と、透明導電フィルム12の第1の面側に剥離可能に設けられた第1の保護フィルム20とを有する。導電フィルム積層体10は、例えば、タッチセンサーに利用されるものである。
具体的には、透明導電フィルム12は、透明基板14、および透明基板14の一方の面上、すなわち、表面14a上に形成された導電層16を有する。導電層16は金属細線18により構成されている。 FIG. 1 is a schematic cross-sectional view showing a first example of the conductive film laminate of the first embodiment of the present invention, and FIG. 2 is a second view of the conductive film laminate of the first embodiment of the present invention. It is typical sectional drawing which shows an example.
The conductive film laminatedbody 10 shown in FIG. 1 has the transparent conductive film 12 and the 1st protective film 20 provided in the 1st surface side of the transparent conductive film 12 so that peeling was possible. The conductive film laminate 10 is used for a touch sensor, for example.
Specifically, the transparentconductive film 12 has a transparent substrate 14 and a conductive layer 16 formed on one surface of the transparent substrate 14, that is, on the surface 14a. The conductive layer 16 is composed of fine metal wires 18.
図1に示す導電フィルム積層体10は、透明導電フィルム12と、透明導電フィルム12の第1の面側に剥離可能に設けられた第1の保護フィルム20とを有する。導電フィルム積層体10は、例えば、タッチセンサーに利用されるものである。
具体的には、透明導電フィルム12は、透明基板14、および透明基板14の一方の面上、すなわち、表面14a上に形成された導電層16を有する。導電層16は金属細線18により構成されている。 FIG. 1 is a schematic cross-sectional view showing a first example of the conductive film laminate of the first embodiment of the present invention, and FIG. 2 is a second view of the conductive film laminate of the first embodiment of the present invention. It is typical sectional drawing which shows an example.
The conductive film laminated
Specifically, the transparent
第1の保護フィルム20は、透明導電フィルム12を透明基板14の裏面14b側から保護するものであり、第1の面側、すなわち、透明基板14の裏面14bに剥離可能に設けられている。第1の保護フィルム20は、支持体22と接着層23とで構成されており、接着層23が透明基板14の裏面14bに接する。
ここで、剥離可能とは、第1の保護フィルム20を対象物に貼り付けた状態から剥離した際に、対象物にある構成物の剥離がなく、しかも構成物の損傷を与えないことをいう。 The 1stprotective film 20 protects the transparent conductive film 12 from the back surface 14b side of the transparent substrate 14, and is provided in the 1st surface side, ie, the back surface 14b of the transparent substrate 14, so that peeling is possible. The first protective film 20 includes a support 22 and an adhesive layer 23, and the adhesive layer 23 is in contact with the back surface 14 b of the transparent substrate 14.
Here, being peelable means that when the firstprotective film 20 is peeled off from the state of being attached to the object, there is no peeling of the structure on the object and the structure is not damaged. .
ここで、剥離可能とは、第1の保護フィルム20を対象物に貼り付けた状態から剥離した際に、対象物にある構成物の剥離がなく、しかも構成物の損傷を与えないことをいう。 The 1st
Here, being peelable means that when the first
導電フィルム積層体10では、透明基板14の裏面14b側に、液晶表示装置および有機EL(Organic Electro Luminescence)表示装置、ならびに電子ペーパ等の表示機器24が配置される。
In the conductive film laminate 10, a liquid crystal display device, an organic EL (Organic Electro Luminescence) display device, and a display device 24 such as electronic paper are disposed on the back surface 14 b side of the transparent substrate 14.
透明基板14は、例えば、ポリエチレンテレフタレート(PET)、シクロオレフィンポリマー(COP)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、またはシクロオレフィンコポリマー(COC)により構成される。これ以外にも、ポリエチレンナフタレート(PEN)等のポリエステル類、ポリスチレン、エチレンビニルアセテート(EVA)等のポリオレフィン類、ビニル系樹脂、その他、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)により構成することができる。なお、透明基板14は、光透過性、熱収縮性および加工性等の観点から、ポリエチレンテレフタレートから構成することが好ましい。
The transparent substrate 14 is made of, for example, polyethylene terephthalate (PET), cycloolefin polymer (COP), polyethylene (PE), polypropylene (PP), polycarbonate (PC), or cycloolefin copolymer (COC). In addition to this, it is composed of polyesters such as polyethylene naphthalate (PEN), polyolefins such as polystyrene and ethylene vinyl acetate (EVA), vinyl resins, other polyamides, polyimides, acrylic resins, and triacetyl cellulose (TAC). can do. In addition, it is preferable to comprise the transparent substrate 14 from a polyethylene terephthalate from viewpoints, such as a light transmittance, heat shrinkability, and workability.
導電層16、すなわち、金属細線18は、例えば、金、銀、銅、白金、錫、亜鉛、およびアルミニウムのうち、いずれか1種類以上の金属により構成される。
金属細線18には、金属銀が含まれることが好ましいが、金属銀以外の金属、例えば、金、銅等が含まれていてもよい。また、金属細線18は、金属銀およびゼラチン等の高分子バインダーが含有されたものであることが好ましい。なお、金属細線18は、例えば、金属酸化物粒子、銀ペーストおよびは銅ペースト等の金属ペースト、ならびに銀ナノワイヤおよび銅ナノワイヤ等の金属ナノワイヤ粒子を含むものであってもよい。 Theconductive layer 16, that is, the thin metal wire 18, is made of, for example, one or more metals selected from gold, silver, copper, platinum, tin, zinc, and aluminum.
The metalthin wire 18 preferably contains metallic silver, but may contain a metal other than metallic silver, such as gold or copper. Further, the fine metal wire 18 preferably contains a metal binder such as metal silver and gelatin. The fine metal wire 18 may include, for example, metal oxide particles, a metal paste such as a silver paste and a copper paste, and metal nanowire particles such as a silver nanowire and a copper nanowire.
金属細線18には、金属銀が含まれることが好ましいが、金属銀以外の金属、例えば、金、銅等が含まれていてもよい。また、金属細線18は、金属銀およびゼラチン等の高分子バインダーが含有されたものであることが好ましい。なお、金属細線18は、例えば、金属酸化物粒子、銀ペーストおよびは銅ペースト等の金属ペースト、ならびに銀ナノワイヤおよび銅ナノワイヤ等の金属ナノワイヤ粒子を含むものであってもよい。 The
The metal
金属細線18の厚みtは、特に限定されるものではないが、0.01μm~200μmが好ましく、30μm以下であることがより好ましく、20μm以下であることがさらに好ましく、0.01~9μmであることが特に好ましく、0.05~5μmであることが最も好ましい。上述の範囲であれば、低抵抗で且つ耐久性に優れた電極を比較的容易に形成することができる。
金属細線18の線幅wは、特に限定されるものではないが、30μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、9μm以下が特に好ましく、7μm以下が最も好ましく、0.5μm以上が好ましく、1.0μm以上がより好ましい。線幅wが上述の範囲であれば、低抵抗を比較的容易に達成できる。 The thickness t of thefine metal wire 18 is not particularly limited, but is preferably 0.01 μm to 200 μm, more preferably 30 μm or less, further preferably 20 μm or less, and 0.01 to 9 μm. Particularly preferred is 0.05 to 5 μm. Within the above range, an electrode having low resistance and excellent durability can be formed relatively easily.
The line width w of thefine metal wire 18 is not particularly limited, but is preferably 30 μm or less, more preferably 15 μm or less, further preferably 10 μm or less, particularly preferably 9 μm or less, most preferably 7 μm or less, and 0.5 μm. The above is preferable, and 1.0 μm or more is more preferable. If the line width w is in the above range, low resistance can be achieved relatively easily.
金属細線18の線幅wは、特に限定されるものではないが、30μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、9μm以下が特に好ましく、7μm以下が最も好ましく、0.5μm以上が好ましく、1.0μm以上がより好ましい。線幅wが上述の範囲であれば、低抵抗を比較的容易に達成できる。 The thickness t of the
The line width w of the
次に、金属細線18の形成方法について説明する。金属細線18の形成方法は、透明基板14に形成することができれば、特に限定されるものではない。金属細線18の形成方法には、例えば、めっき法、銀塩法、蒸着法および印刷法等が適宜利用可能である。
めっき法による金属細線18の形成方法について説明する。例えば、金属細線18は、無電解めっき下地層に無電解めっきすることにより下地層上に形成される金属めっき膜によって構成することができる。この場合、少なくとも金属微粒子を含有する触媒インクを基材上にパターン状に形成した後に、基材を無電解めっき浴に浸漬し、金属めっき膜を形成することによって形成される。より具体的には、特開2014-159620号公報に記載の金属被膜基材の製造方法を利用することができる。また、少なくとも金属触媒前駆体と相互作用しうる官能基を有する樹脂組成物を基材上にパターン状に形成した後、触媒または触媒前駆体を付与し、基材を無電解めっき浴に浸漬し、金属めっき膜を形成することによって形成される。より具体的には、特開2012-144761号公報に記載の金属被膜基材の製造方法を応用することができる。 Next, a method for forming thefine metal wire 18 will be described. The method for forming the fine metal wire 18 is not particularly limited as long as it can be formed on the transparent substrate 14. For example, a plating method, a silver salt method, a vapor deposition method, and a printing method can be appropriately used as a method for forming the fine metal wire 18.
A method for forming thefine metal wire 18 by plating will be described. For example, the thin metal wire 18 can be formed of a metal plating film formed on the underlayer by electroless plating on the electroless plating underlayer. In this case, the catalyst ink containing at least metal fine particles is formed in a pattern on the substrate, and then the substrate is immersed in an electroless plating bath to form a metal plating film. More specifically, the method for producing a metal-coated substrate described in JP 2014-159620 A can be used. In addition, after forming a resin composition having a functional group capable of interacting with at least a metal catalyst precursor in a pattern on a substrate, a catalyst or a catalyst precursor is applied, and the substrate is immersed in an electroless plating bath. It is formed by forming a metal plating film. More specifically, the method for producing a metal film substrate described in JP 2012-144661 A can be applied.
めっき法による金属細線18の形成方法について説明する。例えば、金属細線18は、無電解めっき下地層に無電解めっきすることにより下地層上に形成される金属めっき膜によって構成することができる。この場合、少なくとも金属微粒子を含有する触媒インクを基材上にパターン状に形成した後に、基材を無電解めっき浴に浸漬し、金属めっき膜を形成することによって形成される。より具体的には、特開2014-159620号公報に記載の金属被膜基材の製造方法を利用することができる。また、少なくとも金属触媒前駆体と相互作用しうる官能基を有する樹脂組成物を基材上にパターン状に形成した後、触媒または触媒前駆体を付与し、基材を無電解めっき浴に浸漬し、金属めっき膜を形成することによって形成される。より具体的には、特開2012-144761号公報に記載の金属被膜基材の製造方法を応用することができる。 Next, a method for forming the
A method for forming the
銀塩法による金属細線18の形成方法について説明する。まず、ハロゲン化銀が含まれる銀塩乳剤層に、金属細線18となる露光パターンを用いて露光処理を施し、その後現像処理を行うことによって、金属細線18を形成することができる。より具体的には、特開2015-22397号公報に記載の金属細線の製造方法を利用することができる。
蒸着法による金属細線18の形成方法について説明する。まず、蒸着により、銅箔層を形成し、フォトリソグラフィー法により銅箔層から銅配線を形成することにより、金属細線18を形成することができる。銅箔層は、蒸着銅箔以外にも、電解銅箔が利用可能である。より具体的には、特開2014-29614号公報に記載の銅配線を形成する工程を利用することができる。
印刷法による金属細線18の形成方法について説明する。まず、導電性粉末を含有する導電性ペーストを金属細線18と同じパターンで基板に塗布し、その後、加熱処理を施すことにより金属細線18を形成することができる。導電性ペーストを用いたパターン形成は、例えば、インクジェット法またはスクリーン印刷法でなされる。導電性ペーストとしては、より具体的には、特開2011-28985号公報に記載の導電性ペーストを利用することができる。 A method for forming thefine metal wires 18 by the silver salt method will be described. First, the silver salt emulsion layer containing silver halide is subjected to an exposure treatment using an exposure pattern that becomes the metal fine wire 18, and then developed, whereby the metal fine wire 18 can be formed. More specifically, the method for producing a fine metal wire described in JP-A-2015-22397 can be used.
A method for forming thefine metal wires 18 by vapor deposition will be described. First, the metal thin wire 18 can be formed by forming a copper foil layer by vapor deposition and forming a copper wiring from the copper foil layer by a photolithography method. As the copper foil layer, an electrolytic copper foil can be used in addition to the deposited copper foil. More specifically, the step of forming a copper wiring described in JP 2014-29614 A can be used.
A method of forming thefine metal wire 18 by the printing method will be described. First, the thin metal wire 18 can be formed by applying a conductive paste containing a conductive powder to the substrate in the same pattern as the fine metal wire 18 and then performing a heat treatment. The pattern formation using the conductive paste is performed by, for example, an ink jet method or a screen printing method. More specifically, the conductive paste described in JP 2011-28985 A can be used as the conductive paste.
蒸着法による金属細線18の形成方法について説明する。まず、蒸着により、銅箔層を形成し、フォトリソグラフィー法により銅箔層から銅配線を形成することにより、金属細線18を形成することができる。銅箔層は、蒸着銅箔以外にも、電解銅箔が利用可能である。より具体的には、特開2014-29614号公報に記載の銅配線を形成する工程を利用することができる。
印刷法による金属細線18の形成方法について説明する。まず、導電性粉末を含有する導電性ペーストを金属細線18と同じパターンで基板に塗布し、その後、加熱処理を施すことにより金属細線18を形成することができる。導電性ペーストを用いたパターン形成は、例えば、インクジェット法またはスクリーン印刷法でなされる。導電性ペーストとしては、より具体的には、特開2011-28985号公報に記載の導電性ペーストを利用することができる。 A method for forming the
A method for forming the
A method of forming the
本発明では、導電フィルム積層体10が上述の表示機器に配置された状態を模擬して、導電フィルム積層体10の導電層16の検査を可能とするものである。導電フィルム積層体10の透明基板の表面14a側から導電層16が視認されて検査がなされる。この検査を実現するために、第1の保護フィルム20の可視光透過率を72%以下とする。可視光透過率が72%以下と、可視光透過率を低くすることによって、透過光による外乱の影響を低く抑え、光を透過せず、透過光の影響を受けない金属細線18の故障の有無の識別性を高くすることができる。これにより、導電層16の金属細線18の故障の有無の検査精度を高くすることができる。
第1の保護フィルム20の可視光透過率は、より好ましくは16%以下である。
第1の保護フィルム20の可視光透過率は、JIS K 7361:1997に規定される「プラスチック―透明材料の全光線透過率の試験方法」に基づくものである。なお、第1の保護フィルム20の可視光透過率は、支持体22と接着層23とを含めた可視光透過率である。 In this invention, the test | inspection of theconductive layer 16 of the conductive film laminated body 10 is enabled by simulating the state where the conductive film laminated body 10 is arrange | positioned in the above-mentioned display apparatus. The conductive layer 16 is viewed from the surface 14a side of the transparent substrate of the conductive film laminate 10 and inspected. In order to realize this inspection, the visible light transmittance of the first protective film 20 is set to 72% or less. Visible light transmittance is 72% or less, and by reducing the visible light transmittance, the influence of disturbance due to transmitted light is kept low, the presence or absence of failure of the fine metal wire 18 that does not transmit light and is not affected by transmitted light The discriminability can be increased. Thereby, the test | inspection precision of the presence or absence of a failure of the metal fine wire 18 of the conductive layer 16 can be made high.
The visible light transmittance of the firstprotective film 20 is more preferably 16% or less.
The visible light transmittance of the firstprotective film 20 is based on “Testing method of total light transmittance of plastic-transparent material” defined in JIS K 7361: 1997. The visible light transmittance of the first protective film 20 is the visible light transmittance including the support 22 and the adhesive layer 23.
第1の保護フィルム20の可視光透過率は、より好ましくは16%以下である。
第1の保護フィルム20の可視光透過率は、JIS K 7361:1997に規定される「プラスチック―透明材料の全光線透過率の試験方法」に基づくものである。なお、第1の保護フィルム20の可視光透過率は、支持体22と接着層23とを含めた可視光透過率である。 In this invention, the test | inspection of the
The visible light transmittance of the first
The visible light transmittance of the first
第1の保護フィルム20は、全光反射率が10%以下である。全光反射率を10%以下とすることによって検査の際の乱反射と同時に反射光量も抑制し、金属細線18の反射光の相対的な強度を大きくすることによって、金属細線18の故障の有無の識別性の低下を抑制できる。これにより、故障の有無の識別性の低下を抑制でき、導電層16の金属細線18の故障の有無の検査精度を高めることができる。
第1の保護フィルム20の全光反射率は、好ましくは6.0%以下である。
全光反射率は、上述のJIS K 7375:2008に規定される「プラスチック--全光線透過率及び全光線反射率の求め方」に基づくものである。なお、第1の保護フィルム20の全光反射率は、支持体22と接着層23とを含めた全光反射率である。 The firstprotective film 20 has a total light reflectance of 10% or less. By controlling the total light reflectance to 10% or less, the amount of reflected light is also suppressed simultaneously with the irregular reflection during the inspection, and by increasing the relative intensity of the reflected light of the metal thin wire 18, whether or not the metal thin wire 18 has failed. Decrease in discrimination can be suppressed. Thereby, the fall of the discriminability of the presence or absence of a failure can be suppressed, and the inspection accuracy of the presence or absence of a failure of the thin metal wire 18 of the conductive layer 16 can be increased.
The total light reflectance of the firstprotective film 20 is preferably 6.0% or less.
The total light reflectance is based on “Plastics—How to obtain total light transmittance and total light reflectance” defined in the above-mentioned JIS K 7375: 2008. The total light reflectance of the firstprotective film 20 is the total light reflectance including the support 22 and the adhesive layer 23.
第1の保護フィルム20の全光反射率は、好ましくは6.0%以下である。
全光反射率は、上述のJIS K 7375:2008に規定される「プラスチック--全光線透過率及び全光線反射率の求め方」に基づくものである。なお、第1の保護フィルム20の全光反射率は、支持体22と接着層23とを含めた全光反射率である。 The first
The total light reflectance of the first
The total light reflectance is based on “Plastics—How to obtain total light transmittance and total light reflectance” defined in the above-mentioned JIS K 7375: 2008. The total light reflectance of the first
また、第1の保護フィルム20のヘイズは1.9%以下であることが好ましい。第1の保護フィルム20のヘイズが小さいと、透明導電フィルム12の裏面、すなわち、第1の保護フィルム20での透過光の拡散成分が抑制され、金属細線18の識別性を向上させることができる。第1の保護フィルム20のヘイズが小さいと、上述の金属細線18の故障の有無の識別性の低下を抑制できるという全光反射率を下げることによって得られる効果と同様な効果が得られる。このため、第1の保護フィルム20のヘイズは、上述のように1.9%以下であることが好ましい。
第1の保護フィルム20のヘイズは、JIS K7136:2000に規定される「プラスチック―透明材料のヘイズの求め方」に基づくものである。第1の保護フィルム20のヘイズは、支持体22と接着層23とを含めたヘイズである。 Moreover, it is preferable that the haze of the 1stprotective film 20 is 1.9% or less. When the haze of the first protective film 20 is small, the back surface of the transparent conductive film 12, that is, the diffusion component of the transmitted light in the first protective film 20 is suppressed, and the distinguishability of the thin metal wires 18 can be improved. . When the haze of the 1st protective film 20 is small, the effect similar to the effect acquired by lowering | hanging the total light reflectance that the discriminating fall of the presence or absence of the failure of the above-mentioned metal fine wire 18 can be suppressed is acquired. For this reason, it is preferable that the haze of the 1st protective film 20 is 1.9% or less as mentioned above.
The haze of the firstprotective film 20 is based on “Plastics—How to Obtain Haze of Transparent Material” defined in JIS K7136: 2000. The haze of the first protective film 20 is a haze including the support 22 and the adhesive layer 23.
第1の保護フィルム20のヘイズは、JIS K7136:2000に規定される「プラスチック―透明材料のヘイズの求め方」に基づくものである。第1の保護フィルム20のヘイズは、支持体22と接着層23とを含めたヘイズである。 Moreover, it is preferable that the haze of the 1st
The haze of the first
また、図1に示す導電フィルム積層体10に限定されるものではなく、図2に示す導電フィルム積層体10aのように透明導電フィルム12において、透明基板14の表面14a上に第2の保護フィルム26を、透明基板14に対して剥離可能に設けてもよい。第2の保護フィルム26は導電層16を保護するものである。
なお、図2に示す導電フィルム積層体10aにおいて、図1に示す導電フィルム積層体10と同一構成物には、同一符号を付して、その詳細な説明は省略する。 Moreover, it is not limited to the conductive film laminatedbody 10 shown in FIG. 1, In the transparent conductive film 12 like the conductive film laminated body 10a shown in FIG. 2, the 2nd protective film on the surface 14a of the transparent substrate 14 is shown. 26 may be provided to be peelable from the transparent substrate 14. The second protective film 26 protects the conductive layer 16.
In addition, in the conductive film laminatedbody 10a shown in FIG. 2, the same code | symbol is attached | subjected to the same structure as the conductive film laminated body 10 shown in FIG. 1, and the detailed description is abbreviate | omitted.
なお、図2に示す導電フィルム積層体10aにおいて、図1に示す導電フィルム積層体10と同一構成物には、同一符号を付して、その詳細な説明は省略する。 Moreover, it is not limited to the conductive film laminated
In addition, in the conductive film laminated
第2の保護フィルム26は、支持体25と接着層23とで構成されており、接着層23を透明基板14の表面14aに向けて配置されている。ここで、剥離可能とは、上述の通りであり、より具体的には、第2の保護フィルム26を透明基板14から剥離した際に、導電層16の剥離がなく、しかも導電層16に損傷を与えないことをいう。
第2の保護フィルム26は可視光透過率が92.5%以上であることが好ましい。第2の保護フィルム26の可視光透過率は支持体25と接着層23を含めた可視光透過率である。
第2の保護フィルム26の可視光透過率が92.5%以上であれば、導電層16の検査精度の低下を抑制することができる。 The secondprotective film 26 includes a support body 25 and an adhesive layer 23, and the adhesive layer 23 is disposed with the surface 14 a of the transparent substrate 14 facing the surface. Here, “peelable” is as described above. More specifically, when the second protective film 26 is peeled from the transparent substrate 14, the conductive layer 16 is not peeled and the conductive layer 16 is damaged. It means not giving.
The secondprotective film 26 preferably has a visible light transmittance of 92.5% or more. The visible light transmittance of the second protective film 26 is the visible light transmittance including the support 25 and the adhesive layer 23.
If the visible light transmittance of the secondprotective film 26 is 92.5% or more, a decrease in inspection accuracy of the conductive layer 16 can be suppressed.
第2の保護フィルム26は可視光透過率が92.5%以上であることが好ましい。第2の保護フィルム26の可視光透過率は支持体25と接着層23を含めた可視光透過率である。
第2の保護フィルム26の可視光透過率が92.5%以上であれば、導電層16の検査精度の低下を抑制することができる。 The second
The second
If the visible light transmittance of the second
第2の保護フィルム26はヘイズが1%以下であることが好ましい。ヘイズが1%以下であれば、第2の保護フィルム26の表面26aでの乱反射を抑制することができ、導電層16の検査精度の低下を抑制することができる。
ヘイズは、JIS K7136:2000に規定される「プラスチック―透明材料のヘーズの求め方」に基づくものである。第2の保護フィルム26のヘイズは、支持体25と接着層23を含めたヘイズである。 The secondprotective film 26 preferably has a haze of 1% or less. If the haze is 1% or less, irregular reflection on the surface 26a of the second protective film 26 can be suppressed, and a decrease in inspection accuracy of the conductive layer 16 can be suppressed.
The haze is based on “Plastics—How to obtain haze of transparent material” defined in JIS K7136: 2000. The haze of the secondprotective film 26 is a haze including the support 25 and the adhesive layer 23.
ヘイズは、JIS K7136:2000に規定される「プラスチック―透明材料のヘーズの求め方」に基づくものである。第2の保護フィルム26のヘイズは、支持体25と接着層23を含めたヘイズである。 The second
The haze is based on “Plastics—How to obtain haze of transparent material” defined in JIS K7136: 2000. The haze of the second
上述のように、導電フィルム積層体10aでは、第1の保護フィルム20の裏面20b側に表示機器24が配置される。導電フィルム積層体10aでは、表示機器24に配置された状態を模擬して、第2の保護フィルム26の表面26a側から導電層16が視認されて検査がなされる。
As described above, in the conductive film laminate 10a, the display device 24 is disposed on the back surface 20b side of the first protective film 20. In the conductive film laminate 10a, the conductive layer 16 is visually recognized from the surface 26a side of the second protective film 26 and inspected, simulating the state of being disposed in the display device 24.
図3は導電フィルム積層体の第1の検査形態を示す模式図であり、図4は導電フィルム積層体の第2の検査形態を示す模式図であり、図5は導電フィルム積層体の第3の検査形態を示す模式図であり、図6は導電フィルム積層体の第3の検査形態の要部拡大図である。
FIG. 3 is a schematic view showing a first inspection form of the conductive film laminate, FIG. 4 is a schematic view showing a second inspection form of the conductive film laminate, and FIG. 5 is a third view of the conductive film laminate. FIG. 6 is a schematic enlarged view of the third inspection form of the conductive film laminate.
導電層16を金属細線18により構成した場合、金属細線18は視認性が高いことが知られている。透明導電フィルム12単体で、導電層16を検査する際に透過光を用いた場合、図3に示すように、導電層16の金属細線18が陰になり、黒く見えてしまい、金属細線18に故障があっても見つけることが困難である。
また、透明導電フィルム12単体で、導電層16を検査する際に反射光を用いた場合、図4に示すように、透明導電フィルム12の裏面側が相対的に白い状態となり、金属細線18の背景100が相対的に白くなり、金属細線18自体が目立ち、金属細線18の故障が小さい場合には見つけることが困難である。 It is known that when theconductive layer 16 is constituted by the fine metal wires 18, the fine metal wires 18 have high visibility. When the transparent conductive film 12 is used alone and transmitted light is used when inspecting the conductive layer 16, as shown in FIG. 3, the fine metal wires 18 of the conductive layer 16 are shaded and appear black, and the fine metal wires 18 Even if there is a failure, it is difficult to find.
Further, when the transparentconductive film 12 is used alone and reflected light is used when inspecting the conductive layer 16, the back side of the transparent conductive film 12 is relatively white as shown in FIG. When 100 becomes relatively white, the fine metal wire 18 itself is conspicuous, and the failure of the fine metal wire 18 is small, it is difficult to find.
また、透明導電フィルム12単体で、導電層16を検査する際に反射光を用いた場合、図4に示すように、透明導電フィルム12の裏面側が相対的に白い状態となり、金属細線18の背景100が相対的に白くなり、金属細線18自体が目立ち、金属細線18の故障が小さい場合には見つけることが困難である。 It is known that when the
Further, when the transparent
導電フィルム積層体10および導電フィルム積層体10aについて、導電層16を検査する際に、反射光を用いた場合、図5に示すように、第1の保護フィルム20により、透明導電フィルム12単体に比して、導電層16の金属細線18が相対的に白く見えるため視認しやすくなる。これにより、図6に示すような金属細線18の亀裂等の故障19および金属細線18の線幅の変化の故障19aを容易に視認できるため、金属細線18の故障19および19aを容易に見つけることができる。
また、金属細線18の表面18a(図1および図2)に凹凸があり、表面18aが平坦でない故障については、視認方向を、透明基板14の表面14aに対して垂直方向から、予め定めた角度傾けることによって、金属細線18の反射が変化することを利用して見つけることができる。なお、表面18aが平坦でない故障については、上述の透明導電フィルム12単体での検査では、金属細線18の反射の変化を見つけることが困難である。 When theconductive layer 16 is inspected for the conductive film laminate 10 and the conductive film laminate 10a, when the reflected light is used, the first protective film 20 is used to form the transparent conductive film 12 alone as shown in FIG. In comparison, the fine metal wires 18 of the conductive layer 16 appear relatively white, so that they are easily visible. Thereby, since the failure 19 such as a crack of the fine metal wire 18 and the failure 19a of the change in the line width of the fine metal wire 18 can be easily seen as shown in FIG. 6, the failure 19 and 19a of the fine metal wire 18 can be easily found. Can do.
In addition, for a failure in which thesurface 18a (FIGS. 1 and 2) of the thin metal wire 18 is uneven and the surface 18a is not flat, the viewing direction is set at a predetermined angle from the direction perpendicular to the surface 14a of the transparent substrate 14. It can be found by utilizing the fact that the reflection of the fine metal wire 18 changes by tilting. In addition, about the failure where the surface 18a is not flat, it is difficult to find the reflection change of the thin metal wire 18 in the inspection with the transparent conductive film 12 alone.
また、金属細線18の表面18a(図1および図2)に凹凸があり、表面18aが平坦でない故障については、視認方向を、透明基板14の表面14aに対して垂直方向から、予め定めた角度傾けることによって、金属細線18の反射が変化することを利用して見つけることができる。なお、表面18aが平坦でない故障については、上述の透明導電フィルム12単体での検査では、金属細線18の反射の変化を見つけることが困難である。 When the
In addition, for a failure in which the
導電フィルム積層体10および導電フィルム積層体10aの透明導電フィルム12は、いずれも透明基板14の表面14aにだけ導電層16が設けられた構成であるが、これに限定されるものではない。例えば、図7に示す導電フィルム積層体10bおよび図8に示す導電フィルム積層体10cのように、透明基板14の両面に導電層が設けられた構成でもよい。なお、図7および図8において、図1に示す導電フィルム積層体10および図2に示す導電フィルム積層体10aと同一構成物には同一符号を付して、その詳細な説明は省略する。
Both the conductive film laminate 10 and the transparent conductive film 12 of the conductive film laminate 10a have a configuration in which the conductive layer 16 is provided only on the surface 14a of the transparent substrate 14, but it is not limited to this. For example, the structure by which the conductive layer was provided in both surfaces of the transparent substrate 14 like the conductive film laminated body 10b shown in FIG. 7 and the conductive film laminated body 10c shown in FIG. 8 may be sufficient. 7 and 8, the same components as those of the conductive film laminate 10 shown in FIG. 1 and the conductive film laminate 10a shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
図7に示す導電フィルム積層体10bは、透明導電フィルム30が透明基板14の表面14aに第1の導電層32が設けられ、裏面14bに第2の導電層34が設けられている。透明基板14の裏面14bに設けられた第1の保護フィルム20が第2の導電層34を保護する。上述以外の構成は、図1に示す導電フィルム積層体10と同じ構成である。
In the conductive film laminate 10b shown in FIG. 7, the transparent conductive film 30 has the first conductive layer 32 provided on the front surface 14a of the transparent substrate 14, and the second conductive layer 34 provided on the back surface 14b. The first protective film 20 provided on the back surface 14 b of the transparent substrate 14 protects the second conductive layer 34. The structure other than the above is the same structure as the conductive film laminate 10 shown in FIG.
第1の導電層32および第2の導電層34は、いずれも図1に示す導電フィルム積層体10の導電層16と同じ構成であり、金属細線18により構成されている。第1の導電層32および第2の導電層34の金属細線18のパターンについては後に詳細に説明する。
接着層23は、図2に示す導電フィルム積層体10aの接着層23と同じ構成である。 Each of the firstconductive layer 32 and the second conductive layer 34 has the same configuration as the conductive layer 16 of the conductive film laminate 10 shown in FIG. The pattern of the fine metal wires 18 of the first conductive layer 32 and the second conductive layer 34 will be described in detail later.
Theadhesive layer 23 has the same configuration as the adhesive layer 23 of the conductive film laminate 10a shown in FIG.
接着層23は、図2に示す導電フィルム積層体10aの接着層23と同じ構成である。 Each of the first
The
図7に示す導電フィルム積層体10bも、図1に示す導電フィルム積層体10と同様に透明基板14の表面14a側から第1の導電層32および第2の導電層34を検査することができる。
The conductive film laminate 10b shown in FIG. 7 can also inspect the first conductive layer 32 and the second conductive layer 34 from the surface 14a side of the transparent substrate 14 in the same manner as the conductive film laminate 10 shown in FIG. .
図8に示す導電フィルム積層体10cは、図7に示す導電フィルム積層体10bにおいて、さらに透明基板14の表面14aに接着層23を介して第2の保護フィルム26が設けられている点が異なり、それ以外の構成は、図7に示す導電フィルム積層体10bと同じ構成である。
図8に示す導電フィルム積層体10cも、図1に示す導電フィルム積層体10と同様に透明基板14の表面14a側から第1の導電層32および第2の導電層34を検査することができる。 Theconductive film laminate 10c shown in FIG. 8 is different from the conductive film laminate 10b shown in FIG. 7 in that a second protective film 26 is further provided on the surface 14a of the transparent substrate 14 via an adhesive layer 23. The other configuration is the same as that of the conductive film laminate 10b shown in FIG.
Theconductive film laminate 10c shown in FIG. 8 can also inspect the first conductive layer 32 and the second conductive layer 34 from the surface 14a side of the transparent substrate 14 in the same manner as the conductive film laminate 10 shown in FIG. .
図8に示す導電フィルム積層体10cも、図1に示す導電フィルム積層体10と同様に透明基板14の表面14a側から第1の導電層32および第2の導電層34を検査することができる。 The
The
図9に示す導電フィルム積層体10dは、図1に示す導電フィルム積層体10の検査後に、透明基板14の表面14a側に接着層23を介して第1の保護フィルム20を設けられたものである。導電フィルム積層体10dの構成としては、検査後に第1の保護フィルム20を設ける構成でもよい。
A conductive film laminate 10d shown in FIG. 9 is provided with a first protective film 20 on the surface 14a side of the transparent substrate 14 via an adhesive layer 23 after the inspection of the conductive film laminate 10 shown in FIG. is there. The configuration of the conductive film laminate 10d may be a configuration in which the first protective film 20 is provided after the inspection.
透明導電フィルム30については図7~図9に示す構成に限定されるものではない。図10に示す透明導電フィルム31のように、表面14aに第1の導電層32が設けられた透明基板14と、表面15aに第2の導電層34が設けられた透明基板15とが、第2の導電層34を透明基板14の裏面14bに向けて接着層27を介して積層された構成でもよい。透明基板15は透明基板14と同じ構成である。透明導電フィルム31では、透明基板15の裏面15bに第1の保護フィルム20が設けられ、透明基板14の表面14a側に第2の保護フィルム26が設けられる。
接着層27には、例えば、光学的透明な粘着剤(OCA、Optical Clear Adhesive)またはUV(Ultra Violet)硬化樹脂等の光学的透明な樹脂(OCR、Optical Clear Resin)が用いられる。 The transparentconductive film 30 is not limited to the configuration shown in FIGS. Like the transparent conductive film 31 shown in FIG. 10, the transparent substrate 14 provided with the first conductive layer 32 on the surface 14 a and the transparent substrate 15 provided with the second conductive layer 34 on the surface 15 a are The two conductive layers 34 may be laminated through the adhesive layer 27 toward the back surface 14 b of the transparent substrate 14. The transparent substrate 15 has the same configuration as the transparent substrate 14. In the transparent conductive film 31, the first protective film 20 is provided on the back surface 15 b of the transparent substrate 15, and the second protective film 26 is provided on the front surface 14 a side of the transparent substrate 14.
For the adhesive layer 27, for example, an optically transparent adhesive (OCR, Optical Clear Resin) such as an optically transparent pressure-sensitive adhesive (OCA, Optical Clear Adhesive) or UV (Ultra Violet) cured resin is used.
接着層27には、例えば、光学的透明な粘着剤(OCA、Optical Clear Adhesive)またはUV(Ultra Violet)硬化樹脂等の光学的透明な樹脂(OCR、Optical Clear Resin)が用いられる。 The transparent
For the adhesive layer 27, for example, an optically transparent adhesive (OCR, Optical Clear Resin) such as an optically transparent pressure-sensitive adhesive (OCA, Optical Clear Adhesive) or UV (Ultra Violet) cured resin is used.
次に、透明導電フィルム30について詳細に説明する。
図11は透明導電フィルムの構成を示す平面図であり、図12は透明導電フィルムの導電層の構成を示す平面図である。
なお、図11および図12において、図1に示す導電フィルム積層体10および図2に示す導電フィルム積層体10aと同一構成物には同一符号を付して、その詳細な説明は省略する。 Next, the transparentconductive film 30 will be described in detail.
FIG. 11 is a plan view showing the configuration of the transparent conductive film, and FIG. 12 is a plan view showing the configuration of the conductive layer of the transparent conductive film.
11 and 12, the same components as those of theconductive film laminate 10 shown in FIG. 1 and the conductive film laminate 10a shown in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
図11は透明導電フィルムの構成を示す平面図であり、図12は透明導電フィルムの導電層の構成を示す平面図である。
なお、図11および図12において、図1に示す導電フィルム積層体10および図2に示す導電フィルム積層体10aと同一構成物には同一符号を付して、その詳細な説明は省略する。 Next, the transparent
FIG. 11 is a plan view showing the configuration of the transparent conductive film, and FIG. 12 is a plan view showing the configuration of the conductive layer of the transparent conductive film.
11 and 12, the same components as those of the
透明導電フィルム30は、図11に示されるように、透明基板14と、透明基板14の両面にそれぞれ導電層として設けられた第1の検出部40と第2の検出部42とを有する、また、導電層の周辺に形成される周辺配線として、第1の検出部40と電気的に接続された第1の周辺配線41と、第2の検出部42と電気的に接続された第2の周辺配線43とを有する。透明導電フィルム30は、例えば、静電容量式タッチセンサーに用いられる。
As shown in FIG. 11, the transparent conductive film 30 includes a transparent substrate 14, and a first detection unit 40 and a second detection unit 42 provided as conductive layers on both surfaces of the transparent substrate 14. As the peripheral wiring formed around the conductive layer, the first peripheral wiring 41 electrically connected to the first detection unit 40 and the second peripheral connection electrically connected to the second detection unit 42 are used. Peripheral wiring 43. The transparent conductive film 30 is used for a capacitive touch sensor, for example.
より具体的には、透明基板14の表面14a上にそれぞれ第1の方向D1に沿って延び、かつ第1の方向D1に直交する第2の方向D2に並列配置された複数の第1の検出部40が形成され、複数の第1の検出部40に電気的に接続された複数の第1の周辺配線41が互いに近接して配列されている。複数の第1の周辺配線41は透明基板14の一辺14cにて1つの端子45にまとめられている。
同様に、透明基板14の裏面14b上には、それぞれ第2の方向D2に沿って延び、かつ第1の方向D1に並列配置された複数の第2の検出部42が形成され、複数の第2の検出部42に電気的に接続された複数の第2の周辺配線43が互いに近接して配列されている。複数の第2の周辺配線43は透明基板14の一辺14cにて1つの端子45にまとめられている。
複数の第1の検出部40が第1の導電層32であり、第2の検出部42が第2の導電層34である。 More specifically, a plurality of first detections each extending along the first direction D1 on thesurface 14a of the transparent substrate 14 and arranged in parallel in a second direction D2 orthogonal to the first direction D1. A plurality of first peripheral wirings 41 formed with a portion 40 and electrically connected to the plurality of first detection units 40 are arranged close to each other. The plurality of first peripheral wirings 41 are grouped into one terminal 45 on one side 14 c of the transparent substrate 14.
Similarly, on theback surface 14b of the transparent substrate 14, a plurality of second detectors 42 that extend along the second direction D2 and are arranged in parallel in the first direction D1 are formed. A plurality of second peripheral wirings 43 electrically connected to the two detection units 42 are arranged close to each other. The plurality of second peripheral wirings 43 are grouped into one terminal 45 on one side 14 c of the transparent substrate 14.
The plurality offirst detection units 40 are the first conductive layers 32, and the second detection unit 42 is the second conductive layer 34.
同様に、透明基板14の裏面14b上には、それぞれ第2の方向D2に沿って延び、かつ第1の方向D1に並列配置された複数の第2の検出部42が形成され、複数の第2の検出部42に電気的に接続された複数の第2の周辺配線43が互いに近接して配列されている。複数の第2の周辺配線43は透明基板14の一辺14cにて1つの端子45にまとめられている。
複数の第1の検出部40が第1の導電層32であり、第2の検出部42が第2の導電層34である。 More specifically, a plurality of first detections each extending along the first direction D1 on the
Similarly, on the
The plurality of
透明導電フィルム30では、透明基板14において、複数の第1の検出部40と複数の第2の検出部42とが平面視で重なって配置される領域がセンサー領域47である。センサー領域47は、静電容量式タッチセンサーにおいてタッチの検出が可能な領域である。
また、図11に示す透明導電フィルム30では、中央に透明なビューエリアS1が区画され、かつビューエリアS1の外側に周辺領域S2が区画されている。 In the transparentconductive film 30, in the transparent substrate 14, a region where the plurality of first detection units 40 and the plurality of second detection units 42 are arranged to overlap each other in plan view is a sensor region 47. The sensor region 47 is a region where a touch can be detected in the capacitive touch sensor.
Further, in the transparentconductive film 30 shown in FIG. 11, a transparent view area S1 is defined in the center, and a peripheral region S2 is defined outside the view area S1.
また、図11に示す透明導電フィルム30では、中央に透明なビューエリアS1が区画され、かつビューエリアS1の外側に周辺領域S2が区画されている。 In the transparent
Further, in the transparent
図12に示されるように、例えば、第1の検出部40の第1の導電層32は、金属細線18により形成されたメッシュ構造の導電パターンを有する。第2の検出部42の第2の導電層34は、金属細線18により形成されたメッシュ構造の導電パターンを有する。メッシュ構造の導電パターンのことをメッシュパターンともいう。メッシュパターンについては、後に詳細に説明する。
第1の周辺配線41および第2の周辺配線43は、金属細線18により形成されてもよく、また金属細線18とは線幅および厚み等が異なる導電配線により構成されていてもよい。第1の周辺配線41および第2の周辺配線43は、例えば、帯状の導体により形成されていてもよい。第1の周辺配線41および第2の周辺配線43は、第1の検出部40と第2の検出部42と同様に、金属細線18により形成されたメッシュパターンであってもよい。 As shown in FIG. 12, for example, the firstconductive layer 32 of the first detection unit 40 has a mesh-structured conductive pattern formed by the fine metal wires 18. The second conductive layer 34 of the second detection unit 42 has a conductive pattern having a mesh structure formed by the fine metal wires 18. A conductive pattern having a mesh structure is also referred to as a mesh pattern. The mesh pattern will be described later in detail.
The firstperipheral wiring 41 and the second peripheral wiring 43 may be formed by the thin metal wires 18, or may be configured by conductive wirings having a line width, a thickness, and the like different from the thin metal wires 18. The first peripheral wiring 41 and the second peripheral wiring 43 may be formed of, for example, a strip-shaped conductor. Similar to the first detection unit 40 and the second detection unit 42, the first peripheral wiring 41 and the second peripheral wiring 43 may be a mesh pattern formed by the thin metal wires 18.
第1の周辺配線41および第2の周辺配線43は、金属細線18により形成されてもよく、また金属細線18とは線幅および厚み等が異なる導電配線により構成されていてもよい。第1の周辺配線41および第2の周辺配線43は、例えば、帯状の導体により形成されていてもよい。第1の周辺配線41および第2の周辺配線43は、第1の検出部40と第2の検出部42と同様に、金属細線18により形成されたメッシュパターンであってもよい。 As shown in FIG. 12, for example, the first
The first
金属細線18が周辺配線(引き出し配線)として適用される場合には、金属細線18の線幅wは500μm以下が好ましく、50μm以下がより好ましく、30μm以下が特に好ましい。線幅wが上述の範囲であれば、低抵抗の周辺配線を比較的容易に形成できる。
また、金属細線18が周辺配線(引き出し配線)として適用される場合でもメッシュパターンとすることができ、その場合、線幅wは特に限定されるものではないが、30μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、9μm以下が特に好ましく、7μm以下が最も好ましく、0.5μm以上が好ましく、1.0μm以上がより好ましい。線幅wが上述の範囲であれば、低抵抗の周辺配線を比較的容易に形成できる。周辺配線をメッシュパターンとすることによって、導電層と周辺配線の照射による低抵抗化の均一性を高めることができる他、粘着剤層を貼合した場合に、導電層と周辺配線のピール強度を一定にでき、面内分布が小さくできる点で好ましい。 When the metalthin wire 18 is applied as a peripheral wiring (lead-out wiring), the line width w of the metal thin wire 18 is preferably 500 μm or less, more preferably 50 μm or less, and particularly preferably 30 μm or less. If the line width w is in the above range, a low resistance peripheral wiring can be formed relatively easily.
Further, even when thethin metal wire 18 is applied as a peripheral wiring (leading wiring), it can be a mesh pattern. In this case, the line width w is not particularly limited, but is preferably 30 μm or less, preferably 15 μm or less. More preferably, 10 μm or less is more preferable, 9 μm or less is particularly preferable, 7 μm or less is most preferable, 0.5 μm or more is preferable, and 1.0 μm or more is more preferable. If the line width w is in the above range, a low resistance peripheral wiring can be formed relatively easily. By making the peripheral wiring a mesh pattern, the uniformity of resistance reduction by irradiation of the conductive layer and the peripheral wiring can be improved, and when the adhesive layer is bonded, the peel strength of the conductive layer and the peripheral wiring is increased. This is preferable in that it can be made constant and the in-plane distribution can be reduced.
また、金属細線18が周辺配線(引き出し配線)として適用される場合でもメッシュパターンとすることができ、その場合、線幅wは特に限定されるものではないが、30μm以下が好ましく、15μm以下がより好ましく、10μm以下がさらに好ましく、9μm以下が特に好ましく、7μm以下が最も好ましく、0.5μm以上が好ましく、1.0μm以上がより好ましい。線幅wが上述の範囲であれば、低抵抗の周辺配線を比較的容易に形成できる。周辺配線をメッシュパターンとすることによって、導電層と周辺配線の照射による低抵抗化の均一性を高めることができる他、粘着剤層を貼合した場合に、導電層と周辺配線のピール強度を一定にでき、面内分布が小さくできる点で好ましい。 When the metal
Further, even when the
透明導電フィルム30は、静電容量式タッチセンサーに限定されるものではなく、抵抗膜式タッチセンサーでもよい。抵抗膜式タッチセンサーでも複数の第1の検出部40と複数の第2の検出部42とが平面視で重なって配置される領域がセンサー領域47となる。
The transparent conductive film 30 is not limited to a capacitive touch sensor, and may be a resistive touch sensor. Even in the resistive touch sensor, a sensor region 47 is a region where the plurality of first detection units 40 and the plurality of second detection units 42 are arranged in a plan view.
第1の導電層32と第2の導電層34の金属細線18のパターンは、特に限定されるものではないが、正三角形、二等辺三角形、直角三角形等の三角形、正方形、長方形、菱形、平行四辺形、台形等の四角形、(正)六角形、(正)八角形等の(正)n角形、円、楕円、星形等を組み合わせた幾何学図形であることが好ましく、これらの幾何学図形からなるメッシュパターンであることが更に好ましい。メッシュパターンとは、金属細線18により格子状に構成されたセルが多数組み合わされてなるものである。具体的には、図12に示すように、透明基板14の同じ面上に形成された、交差する金属細線18により構成される複数の正方形状の格子48が多数組み合わされたパターンを意図する。メッシュパターンとしては、相似形、合同な形状の格子が組み合わされた構成でもよく、異なる形状の格子が組み合わされたものでもよい。
The pattern of the thin metal wires 18 of the first conductive layer 32 and the second conductive layer 34 is not particularly limited, but is a triangle such as an equilateral triangle, an isosceles triangle, a right triangle, a square, a rectangle, a rhombus, and a parallel. It is preferably a geometric figure combining quadrangles, trapezoids, etc., (positive) hexagons, (positive) octagons, etc., (positive) n-gons, circles, ellipses, stars, etc. More preferably, it is a mesh pattern consisting of figures. The mesh pattern is formed by combining a large number of cells configured in a lattice shape by the fine metal wires 18. Specifically, as shown in FIG. 12, a pattern in which a plurality of square lattices 48 formed by intersecting metal thin wires 18 formed on the same surface of the transparent substrate 14 are combined is intended. The mesh pattern may be a combination of similar and congruent grids, or may be a combination of differently shaped grids.
格子48の一辺の長さPaは特に制限されないが、50~500μmであることが好ましく、150~300μmであることが更に好ましい。単位格子の辺の長さが上述の範囲である場合には、更に透明性も良好に保つことが可能であり、表示機器の前面にとりつけた際に、違和感なく表示を視認することができる。
可視光透過率の点から、金属細線18より形成される導電層の開口率は85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが最も好ましい。開口率とは、金属細線18がある領域を除いた透明基板14上の領域が全体に占める割合に相当する。 The length Pa of one side of the grating 48 is not particularly limited, but is preferably 50 to 500 μm, and more preferably 150 to 300 μm. When the length of the side of the unit cell is in the above-described range, it is possible to keep the transparency even better, and when it is attached to the front surface of the display device, it is possible to visually recognize the display.
From the viewpoint of visible light transmittance, the aperture ratio of the conductive layer formed from thethin metal wires 18 is preferably 85% or more, more preferably 90% or more, and most preferably 95% or more. The aperture ratio corresponds to the ratio of the area on the transparent substrate 14 excluding the area where the fine metal wires 18 are present to the whole.
可視光透過率の点から、金属細線18より形成される導電層の開口率は85%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが最も好ましい。開口率とは、金属細線18がある領域を除いた透明基板14上の領域が全体に占める割合に相当する。 The length Pa of one side of the grating 48 is not particularly limited, but is preferably 50 to 500 μm, and more preferably 150 to 300 μm. When the length of the side of the unit cell is in the above-described range, it is possible to keep the transparency even better, and when it is attached to the front surface of the display device, it is possible to visually recognize the display.
From the viewpoint of visible light transmittance, the aperture ratio of the conductive layer formed from the
次に、導電フィルム積層体の製造方法および検査方法について説明する。
図13は本発明の第1の実施形態の導電フィルム積層体の製造装置を示す模式図であり、図14は本発明の第2の実施形態の導電フィルム積層体の製造装置を示す模式図である。 Next, the manufacturing method and inspection method of a conductive film laminated body are demonstrated.
FIG. 13 is a schematic diagram showing an apparatus for manufacturing a conductive film laminate according to the first embodiment of the present invention, and FIG. 14 is a schematic diagram showing an apparatus for manufacturing a conductive film laminate according to the second embodiment of the present invention. is there.
図13は本発明の第1の実施形態の導電フィルム積層体の製造装置を示す模式図であり、図14は本発明の第2の実施形態の導電フィルム積層体の製造装置を示す模式図である。 Next, the manufacturing method and inspection method of a conductive film laminated body are demonstrated.
FIG. 13 is a schematic diagram showing an apparatus for manufacturing a conductive film laminate according to the first embodiment of the present invention, and FIG. 14 is a schematic diagram showing an apparatus for manufacturing a conductive film laminate according to the second embodiment of the present invention. is there.
図13に示す製造装置50は、検査装置も兼ねるものであり、ロールトゥロール方式の装置である。
製造装置50は、予め作製された長尺の透明導電フィルム12が巻き回されたローラ52と、導電フィルム積層体10を巻き取る巻き取りローラ54と、第1の保護フィルム20が巻き回されたローラ56と、第1の保護フィルム20を透明導電フィルム12の裏面に設けるための1対のローラ58とを有する。
さらに、製造装置50は、1対のローラ58の搬送方向Fの下流側に配置されたセンサー60と、センサー60に接続された判定部62とを有する。センサー60と判定部62で検査がなされる。センサー60は、透明基板14に対して第1の保護フィルム20(図1参照)とは反対側、透明基板14(図1参照)の表面14a(図1参照)に配置されている。センサー60は、金属細線18の画像を取得するものであり、例えば、光Lを金属細線18に照射し、反射光を読み取ることによって画像を取得する。センサー60は、画像を取得する撮像素子(図示せず)と、光Lを金属細線18に照射する光源(図示せず)を有する。光源には、例えば、蛍光灯、またはLED(Light Emitting Diode)ライトが用いられる。 Themanufacturing apparatus 50 shown in FIG. 13 also serves as an inspection apparatus, and is a roll-to-roll system apparatus.
Themanufacturing apparatus 50 includes a roller 52 around which a long transparent conductive film 12 prepared in advance is wound, a take-up roller 54 around which the conductive film laminate 10 is wound, and a first protective film 20 is wound around. A roller 56 and a pair of rollers 58 for providing the first protective film 20 on the back surface of the transparent conductive film 12 are provided.
Further, themanufacturing apparatus 50 includes a sensor 60 disposed on the downstream side in the conveyance direction F of the pair of rollers 58, and a determination unit 62 connected to the sensor 60. An inspection is performed by the sensor 60 and the determination unit 62. The sensor 60 is disposed on the surface 14a (see FIG. 1) of the transparent substrate 14 (see FIG. 1) on the opposite side of the transparent substrate 14 from the first protective film 20 (see FIG. 1). The sensor 60 acquires an image of the thin metal wire 18. For example, the image is acquired by irradiating the thin metal wire 18 with the light L and reading the reflected light. The sensor 60 includes an image sensor (not shown) that acquires an image and a light source (not shown) that irradiates the metal thin wire 18 with the light L. For example, a fluorescent lamp or an LED (Light Emitting Diode) light is used as the light source.
製造装置50は、予め作製された長尺の透明導電フィルム12が巻き回されたローラ52と、導電フィルム積層体10を巻き取る巻き取りローラ54と、第1の保護フィルム20が巻き回されたローラ56と、第1の保護フィルム20を透明導電フィルム12の裏面に設けるための1対のローラ58とを有する。
さらに、製造装置50は、1対のローラ58の搬送方向Fの下流側に配置されたセンサー60と、センサー60に接続された判定部62とを有する。センサー60と判定部62で検査がなされる。センサー60は、透明基板14に対して第1の保護フィルム20(図1参照)とは反対側、透明基板14(図1参照)の表面14a(図1参照)に配置されている。センサー60は、金属細線18の画像を取得するものであり、例えば、光Lを金属細線18に照射し、反射光を読み取ることによって画像を取得する。センサー60は、画像を取得する撮像素子(図示せず)と、光Lを金属細線18に照射する光源(図示せず)を有する。光源には、例えば、蛍光灯、またはLED(Light Emitting Diode)ライトが用いられる。 The
The
Further, the
センサー60で取得した画像の画像データを判定部62に出力し、判定部62にて故障の有無が判定される。これにより、第1の保護フィルム20を設けた導電フィルム積層体10の状態で、全ての導電フィルム積層体10について金属細線18の故障の有無を判定することができる。
The image data of the image acquired by the sensor 60 is output to the determination unit 62, and the determination unit 62 determines whether there is a failure. Thereby, in the state of the conductive film laminated body 10 which provided the 1st protective film 20, the presence or absence of the failure of the metal fine wire 18 can be determined about all the conductive film laminated bodies 10. FIG.
なお、判定部62は、故障の有無を判定するコンピュータを有し、コンピュータには判定のためのソフトが組み込まれており、故障の有無の判定がなされる。
判定部62では、例えば、金属細線18の画像に対して予め故障を設定しておき、設定された故障に基づき、故障を特定するようにしてもよい。故障については、反射を輝度として設定してもよく、金属細線18の形状について設定してもよい。 Note that thedetermination unit 62 includes a computer that determines whether or not there is a failure, and software for determination is incorporated in the computer to determine whether or not there is a failure.
In thedetermination unit 62, for example, a failure may be set in advance for the image of the thin metal wire 18, and the failure may be specified based on the set failure. As for the failure, reflection may be set as luminance, or the shape of the thin metal wire 18 may be set.
判定部62では、例えば、金属細線18の画像に対して予め故障を設定しておき、設定された故障に基づき、故障を特定するようにしてもよい。故障については、反射を輝度として設定してもよく、金属細線18の形状について設定してもよい。 Note that the
In the
また、センサー60では、光Lの照射角度は特に限定されるものではなく、透明基板14の表面14aに対して垂直でも、垂直以外の角度であってもよい。また、光Lは、特に限定されるものではなく、蛍光灯の光でも、LED(Light Emitting Diode)ライトの光でもよく、光Lの波長、および光量等は適宜設定される。
In the sensor 60, the irradiation angle of the light L is not particularly limited, and may be perpendicular to the surface 14a of the transparent substrate 14 or an angle other than perpendicular. The light L is not particularly limited, and may be fluorescent light or LED (Light Emitting Diode) light, and the wavelength, light amount, etc. of the light L are appropriately set.
製造装置50は、導電フィルム積層体10を製造でき、巻き取りローラ54で、導電フィルム積層体10を搬送方向Fに巻き取りつつ、全ての導電フィルム積層体10について金属細線18の故障の検査を、高い検査精度で実施できる。すなわち、導電フィルム積層体10について高い検査精度で全数検査が可能である。
透明導電フィルム12を透明導電フィルム30(図7参照)とすることによって、導電フィルム積層体10bを製造することができ、しかも全ての導電フィルム積層体10bについて金属細線18の故障の検査を、高い検査精度で実施できる。すなわち、導電フィルム積層体10bについて高い検査精度で全数検査が可能である。 Themanufacturing apparatus 50 can manufacture the conductive film laminate 10, and the winding roller 54 winds the conductive film laminate 10 in the transport direction F, and inspects all the conductive film laminates 10 for failure of the thin metal wires 18. Can be performed with high inspection accuracy. That is, 100% inspection can be performed on the conductive film laminate 10 with high inspection accuracy.
By using the transparentconductive film 12 as the transparent conductive film 30 (see FIG. 7), the conductive film laminate 10b can be manufactured, and the failure inspection of the thin metal wires 18 is high for all the conductive film laminates 10b. Can be performed with inspection accuracy. That is, 100% inspection can be performed with high inspection accuracy on the conductive film laminate 10b.
透明導電フィルム12を透明導電フィルム30(図7参照)とすることによって、導電フィルム積層体10bを製造することができ、しかも全ての導電フィルム積層体10bについて金属細線18の故障の検査を、高い検査精度で実施できる。すなわち、導電フィルム積層体10bについて高い検査精度で全数検査が可能である。 The
By using the transparent
図14に示す製造装置51は、図13に示す製造装置50に比して、第2の保護フィルム26を設けることができる点が異なり、それ以外の構成は、図13に示す製造装置50と同じ構成であるため、その詳細な説明は省略する。
図14に示す製造装置51は、第2の保護フィルム26が巻き回されたローラ70と、第2の保護フィルム26を透明基板14の表面14a側に設けるための1対のローラ72を有する。第2の保護フィルム26は1対のローラ72により透明導電フィルム12の透明基板14の表面14a側に設けられる。 Themanufacturing apparatus 51 shown in FIG. 14 is different from the manufacturing apparatus 50 shown in FIG. 13 in that the second protective film 26 can be provided. Other configurations are the same as those of the manufacturing apparatus 50 shown in FIG. Since it is the same structure, the detailed description is abbreviate | omitted.
Themanufacturing apparatus 51 shown in FIG. 14 includes a roller 70 around which the second protective film 26 is wound, and a pair of rollers 72 for providing the second protective film 26 on the surface 14a side of the transparent substrate 14. The second protective film 26 is provided on the surface 14 a side of the transparent substrate 14 of the transparent conductive film 12 by a pair of rollers 72.
図14に示す製造装置51は、第2の保護フィルム26が巻き回されたローラ70と、第2の保護フィルム26を透明基板14の表面14a側に設けるための1対のローラ72を有する。第2の保護フィルム26は1対のローラ72により透明導電フィルム12の透明基板14の表面14a側に設けられる。 The
The
製造装置51でも、導電フィルム積層体10aを製造でき、巻き取りローラ54で、導電フィルム積層体10aを搬送方向Fに巻き取りつつ、全ての導電フィルム積層体10aついて金属細線18の故障の検査を、高い検査精度で実施できる。すなわち、導電フィルム積層体10aについて高い検査精度で全数検査が可能である。
透明導電フィルム12を透明導電フィルム30(図8参照)とすることによって、導電フィルム積層体10cを製造することができ、しかも全ての導電フィルム積層体10bについて金属細線18の故障の検査を、高い検査精度で実施できる。すなわち、導電フィルム積層体10bについて高い検査精度で全数検査が可能である。 Themanufacturing apparatus 51 can also manufacture the conductive film laminate 10a, and the winding roller 54 winds the conductive film laminate 10a in the transport direction F, and checks the failure of the thin metal wires 18 for all the conductive film laminates 10a. Can be performed with high inspection accuracy. That is, 100% inspection can be performed with high inspection accuracy on the conductive film laminate 10a.
By using the transparentconductive film 12 as the transparent conductive film 30 (see FIG. 8), the conductive film laminate 10c can be manufactured, and the failure inspection of the thin metal wires 18 is high for all the conductive film laminates 10b. Can be performed with inspection accuracy. That is, 100% inspection can be performed with high inspection accuracy on the conductive film laminate 10b.
透明導電フィルム12を透明導電フィルム30(図8参照)とすることによって、導電フィルム積層体10cを製造することができ、しかも全ての導電フィルム積層体10bについて金属細線18の故障の検査を、高い検査精度で実施できる。すなわち、導電フィルム積層体10bについて高い検査精度で全数検査が可能である。 The
By using the transparent
次に、金属細線の故障の例について説明する。
図15は故障のない正常な金属細線を示す模式的断面であり、図16は、故障がある金属細線を示す模式的断面図である。図15および図16において、図1に示す導電フィルム積層体10と同一構成物には、同一符号を付して、その詳細な説明は省略する。 Next, an example of a failure of a fine metal wire will be described.
FIG. 15 is a schematic cross-sectional view showing a normal fine metal wire without a failure, and FIG. 16 is a schematic cross-sectional view showing a fine metal wire with a failure. 15 and FIG. 16, the same components as those of theconductive film laminate 10 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
図15は故障のない正常な金属細線を示す模式的断面であり、図16は、故障がある金属細線を示す模式的断面図である。図15および図16において、図1に示す導電フィルム積層体10と同一構成物には、同一符号を付して、その詳細な説明は省略する。 Next, an example of a failure of a fine metal wire will be described.
FIG. 15 is a schematic cross-sectional view showing a normal fine metal wire without a failure, and FIG. 16 is a schematic cross-sectional view showing a fine metal wire with a failure. 15 and FIG. 16, the same components as those of the
図15に示すように、金属細線18の表面18aが平面の場合、表面18aに対して、2方向から光を照射した場合、一方の光の反射光が検出でき、他方の光の反射光が検出されないように、第1の光源80、第2の光源82および光学センサー84を配置する。この場合、第1の光源80からの出射光L1が金属細線18の表面18aで反射した反射光R1が、光学センサー84で検出される。一方、第2の光源82からの出射光L2が金属細線18の表面18aで反射した反射光R2は光学センサー84で検出されない。この場合、表面18aは平面で金属細線18は正常である。すなわち、故障がない。光学センサー84の配置位置で、人が見た場合、第1の光源80からの出射光L1の反射光R1が視認される。
As shown in FIG. 15, when the surface 18a of the thin metal wire 18 is flat, when the surface 18a is irradiated with light from two directions, the reflected light of one light can be detected and the reflected light of the other light is detected. The first light source 80, the second light source 82, and the optical sensor 84 are arranged so as not to be detected. In this case, the optical sensor 84 detects the reflected light R1 obtained by reflecting the emitted light L1 from the first light source 80 on the surface 18a of the thin metal wire 18. On the other hand, the reflected light R2 reflected by the surface 18a of the thin metal wire 18 from the emitted light L2 from the second light source 82 is not detected by the optical sensor 84. In this case, the surface 18a is flat and the fine metal wire 18 is normal. That is, there is no failure. When a person sees the optical sensor 84 at the arrangement position, the reflected light R1 of the emitted light L1 from the first light source 80 is visually recognized.
図16に示すように、金属細線86の表面86aが平面ではなく、谷状に凹んだ故障がある場合、第1の光源80からの出射光L1が金属細線86の表面86aで反射した反射光R1は光学センサー84で検出されない。一方、第2の光源82からの出射光L2が金属細線86の表面86aで反射した反射光R2が光学センサー84で検出される。このように、予め正常な状態での光の検出状態を決めておくことによって、金属細線86の表面86aの異常、すなわち、故障を検出することができる。光学センサー84の配置位置で、人が見た場合、第1の光源80からの出射光L1の反射光R1が視認されず、第2の光源82からの出射光L2の反射光R2が視認される。
図13および図14に示すセンサー60として、図15に示す第1の光源80、第2の光源82および光学センサー84の配置を用い、第1の光源80および第2の光源82の光の出射を切り替え、判定部62では光学センサー64での検出の有無に基づき、故障の有無を判定することができる。第1の光源80および第2の光源82は、例えば、蛍光灯またはLEDライトを用いることができる。 As shown in FIG. 16, when thesurface 86 a of the thin metal wire 86 is not a flat surface and there is a trough-shaped failure, the reflected light reflected by the surface 86 a of the thin metal wire 86 is emitted light L <b> 1 from the first light source 80. R1 is not detected by the optical sensor 84. On the other hand, the reflected light R <b> 2, which is obtained by reflecting the emitted light L <b> 2 from the second light source 82 on the surface 86 a of the thin metal wire 86, is detected by the optical sensor 84. Thus, by determining the detection state of light in a normal state in advance, an abnormality of the surface 86a of the thin metal wire 86, that is, a failure can be detected. When a person sees the optical sensor 84 at the arrangement position, the reflected light R1 of the emitted light L1 from the first light source 80 is not visually recognized, but the reflected light R2 of the emitted light L2 from the second light source 82 is visually recognized. The
The arrangement of thefirst light source 80, the second light source 82, and the optical sensor 84 shown in FIG. 15 is used as the sensor 60 shown in FIGS. 13 and 14, and the light emitted from the first light source 80 and the second light source 82 is emitted. The determination unit 62 can determine the presence or absence of a failure based on the presence or absence of detection by the optical sensor 64. As the first light source 80 and the second light source 82, for example, a fluorescent lamp or an LED light can be used.
図13および図14に示すセンサー60として、図15に示す第1の光源80、第2の光源82および光学センサー84の配置を用い、第1の光源80および第2の光源82の光の出射を切り替え、判定部62では光学センサー64での検出の有無に基づき、故障の有無を判定することができる。第1の光源80および第2の光源82は、例えば、蛍光灯またはLEDライトを用いることができる。 As shown in FIG. 16, when the
The arrangement of the
次に、第1の保護フィルム20および第2の保護フィルム26について説明する。
第1の保護フィルム20は支持体22と接着層23とで構成されたもの、第2の保護フィルム26は支持体25と接着層23とで構成されたものとしているが、それぞれ上述の物性値を満たせば、特に限定されるものではない。
支持体22および支持体25を構成する材料は特に限定されるものではないが、例えば、上述の透明基板14で例示された材料で構成することができ、好適な態様も同様にポリエチレンテレフタレートである。また、支持体22、25としては、例えば、ポリメチルメタクリレート(PMMA)、ポリアリレート(PAR)、ポリスルフォン(PSU)等を用いることができる。
第1の保護フィルム20および第2の保護フィルム26の厚みは特に限定されるものではないが、30~200μm程度である。 Next, the firstprotective film 20 and the second protective film 26 will be described.
The firstprotective film 20 is composed of a support 22 and an adhesive layer 23, and the second protective film 26 is composed of a support 25 and an adhesive layer 23. If it satisfy | fills, it will not specifically limit.
Although the material which comprises thesupport body 22 and the support body 25 is not specifically limited, For example, it can comprise with the material illustrated by the above-mentioned transparent substrate 14, A suitable aspect is also a polyethylene terephthalate similarly. . As the supports 22 and 25, for example, polymethyl methacrylate (PMMA), polyarylate (PAR), polysulfone (PSU), or the like can be used.
The thicknesses of the firstprotective film 20 and the second protective film 26 are not particularly limited, but are about 30 to 200 μm.
第1の保護フィルム20は支持体22と接着層23とで構成されたもの、第2の保護フィルム26は支持体25と接着層23とで構成されたものとしているが、それぞれ上述の物性値を満たせば、特に限定されるものではない。
支持体22および支持体25を構成する材料は特に限定されるものではないが、例えば、上述の透明基板14で例示された材料で構成することができ、好適な態様も同様にポリエチレンテレフタレートである。また、支持体22、25としては、例えば、ポリメチルメタクリレート(PMMA)、ポリアリレート(PAR)、ポリスルフォン(PSU)等を用いることができる。
第1の保護フィルム20および第2の保護フィルム26の厚みは特に限定されるものではないが、30~200μm程度である。 Next, the first
The first
Although the material which comprises the
The thicknesses of the first
第1の保護フィルム20および第2の保護フィルム26の粘着層としては、それぞれ上述の物性値を満たせば、特に限定されるものではなく、ゴム系粘着剤、アクリル系粘着剤、およびシリコーン系粘着剤等が挙げられる。なかでも、透明性に優れる観点から、アクリル系粘着剤が好ましい。
アクリル系粘着剤は、アルキル(メタ)アクリレート由来の繰り返し単位を有するアクリル系ポリマーを主成分としたものであるのが好ましい。なお、(メタ)アクリレートは、アクリレートおよび/またはメタクリレートをいう。アクリル系ポリマーは、アルキル基の炭素数が1~12程度であるアルキル(メタ)アクリレート由来の繰り返し単位を有するアクリル系ポリマーであることが好ましく、上述の炭素数のアルキルメタクリレート由来の繰り返し単位および上述の炭素数のアルキルアクリレート由来の繰り返し単位を有するアクリル系ポリマーがより好ましい。上述のアクリル系ポリマー中の繰り返し単位のなかには、(メタ)アクリル酸由来の繰り返し単位が含まれていてもよい。
粘着剤層の厚みは特に限定されるものではないが、25~300μmであることが好ましく、50~200μmであることがより好ましい。 The pressure-sensitive adhesive layers of the firstprotective film 20 and the second protective film 26 are not particularly limited as long as they satisfy the above-described physical property values, and are a rubber-based pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, and a silicone-based pressure-sensitive adhesive. Agents and the like. Among these, an acrylic pressure-sensitive adhesive is preferable from the viewpoint of excellent transparency.
The acrylic pressure-sensitive adhesive is preferably mainly composed of an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate. (Meth) acrylate refers to acrylate and / or methacrylate. The acrylic polymer is preferably an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate having an alkyl group having about 1 to 12 carbon atoms. An acrylic polymer having a repeating unit derived from an alkyl acrylate having a carbon number of 2 is more preferable. Among the repeating units in the above-mentioned acrylic polymer, a repeating unit derived from (meth) acrylic acid may be contained.
The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 25 to 300 μm, and more preferably 50 to 200 μm.
アクリル系粘着剤は、アルキル(メタ)アクリレート由来の繰り返し単位を有するアクリル系ポリマーを主成分としたものであるのが好ましい。なお、(メタ)アクリレートは、アクリレートおよび/またはメタクリレートをいう。アクリル系ポリマーは、アルキル基の炭素数が1~12程度であるアルキル(メタ)アクリレート由来の繰り返し単位を有するアクリル系ポリマーであることが好ましく、上述の炭素数のアルキルメタクリレート由来の繰り返し単位および上述の炭素数のアルキルアクリレート由来の繰り返し単位を有するアクリル系ポリマーがより好ましい。上述のアクリル系ポリマー中の繰り返し単位のなかには、(メタ)アクリル酸由来の繰り返し単位が含まれていてもよい。
粘着剤層の厚みは特に限定されるものではないが、25~300μmであることが好ましく、50~200μmであることがより好ましい。 The pressure-sensitive adhesive layers of the first
The acrylic pressure-sensitive adhesive is preferably mainly composed of an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate. (Meth) acrylate refers to acrylate and / or methacrylate. The acrylic polymer is preferably an acrylic polymer having a repeating unit derived from an alkyl (meth) acrylate having an alkyl group having about 1 to 12 carbon atoms. An acrylic polymer having a repeating unit derived from an alkyl acrylate having a carbon number of 2 is more preferable. Among the repeating units in the above-mentioned acrylic polymer, a repeating unit derived from (meth) acrylic acid may be contained.
The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 25 to 300 μm, and more preferably 50 to 200 μm.
本発明は、基本的に以上のように構成されるものである。以上、本発明の導電フィルム積層体について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。
The present invention is basically configured as described above. As mentioned above, although the conductive film laminated body of this invention was demonstrated in detail, this invention is not limited to the above-mentioned embodiment, In the range which does not deviate from the main point of this invention, you may make various improvement or a change. Of course.
以下に実験例を挙げて本発明の特徴をさらに具体的に説明する。以下の実験例に示す材料、試薬、使用量、物質量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
本実施例では、図8に示す構成の導電フィルム積層体10cを用い、第1の保護フィルムおよび第2の保護フィルムの構成を変えて、故障部の見え方を評価した。評価結果については下記表2に示す。
透明導電フィルム30に対して、視認側と、視認側とは反対側の裏面側とに、それぞれ保護フィルム等を設け、下記表2に示す構成とした。なお、保護フィルム等の全光反射率、可視光透過率およびヘイズを下記表1に示す。 The features of the present invention will be described more specifically with reference to experimental examples. The materials, reagents, used amounts, substance amounts, ratios, processing details, processing procedures, and the like shown in the following experimental examples can be changed as appropriate without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
In this example, theconductive film laminate 10c having the configuration shown in FIG. 8 was used, and the configuration of the first protective film and the second protective film was changed to evaluate the appearance of the failure part. The evaluation results are shown in Table 2 below.
With respect to the transparentconductive film 30, a protective film or the like was provided on each of the viewing side and the back side opposite to the viewing side, and the configuration shown in Table 2 below was adopted. The total light reflectance, visible light transmittance, and haze of the protective film and the like are shown in Table 1 below.
本実施例では、図8に示す構成の導電フィルム積層体10cを用い、第1の保護フィルムおよび第2の保護フィルムの構成を変えて、故障部の見え方を評価した。評価結果については下記表2に示す。
透明導電フィルム30に対して、視認側と、視認側とは反対側の裏面側とに、それぞれ保護フィルム等を設け、下記表2に示す構成とした。なお、保護フィルム等の全光反射率、可視光透過率およびヘイズを下記表1に示す。 The features of the present invention will be described more specifically with reference to experimental examples. The materials, reagents, used amounts, substance amounts, ratios, processing details, processing procedures, and the like shown in the following experimental examples can be changed as appropriate without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as being limited by the specific examples shown below.
In this example, the
With respect to the transparent
導電層の金属細線について故障が認められる透明導電フィルムを予め用意しておき、視認面側と、逆側の下面側に下記表1に示す部材を、下記表2に示す構成となるように、ローラでしごき、貼りつけた。
なお、粘着層を有さない部材については3M社製光学粘着剤(CS9918)を介して貼合し、各実験例を得た。
その後、各実験例に対して、視認面側からLED(Light Emitting Diode)ライトまたは蛍光灯にて照らし、導電層の故障の見え方を評価した。
比較用に基準となる、視認面側にガラスを貼合した貼合品(実験例1、2)を作製した。実験例1は液晶表示装置上に透明導電フィルムを配置したものである。実験例2は裏面側に黒PETを貼合したものである。 A transparent conductive film in which a failure is recognized for the thin metal wire of the conductive layer is prepared in advance, and the members shown in Table 1 below are arranged on the viewing surface side and the lower surface side on the opposite side, so that the configuration shown in Table 2 below is obtained. It was squeezed and pasted with a roller.
In addition, about the member which does not have an adhesion layer, it bonded through 3M company optical adhesive (CS9918), and obtained each experiment example.
Thereafter, each experimental example was illuminated with an LED (Light Emitting Diode) light or a fluorescent lamp from the viewing surface side, and the appearance of the failure of the conductive layer was evaluated.
A bonded product (Experimental Examples 1 and 2) in which glass was bonded to the viewing surface side, which serves as a reference for comparison, was produced. In Experimental Example 1, a transparent conductive film is disposed on a liquid crystal display device. Experimental example 2 has black PET bonded to the back side.
なお、粘着層を有さない部材については3M社製光学粘着剤(CS9918)を介して貼合し、各実験例を得た。
その後、各実験例に対して、視認面側からLED(Light Emitting Diode)ライトまたは蛍光灯にて照らし、導電層の故障の見え方を評価した。
比較用に基準となる、視認面側にガラスを貼合した貼合品(実験例1、2)を作製した。実験例1は液晶表示装置上に透明導電フィルムを配置したものである。実験例2は裏面側に黒PETを貼合したものである。 A transparent conductive film in which a failure is recognized for the thin metal wire of the conductive layer is prepared in advance, and the members shown in Table 1 below are arranged on the viewing surface side and the lower surface side on the opposite side, so that the configuration shown in Table 2 below is obtained. It was squeezed and pasted with a roller.
In addition, about the member which does not have an adhesion layer, it bonded through 3M company optical adhesive (CS9918), and obtained each experiment example.
Thereafter, each experimental example was illuminated with an LED (Light Emitting Diode) light or a fluorescent lamp from the viewing surface side, and the appearance of the failure of the conductive layer was evaluated.
A bonded product (Experimental Examples 1 and 2) in which glass was bonded to the viewing surface side, which serves as a reference for comparison, was produced. In Experimental Example 1, a transparent conductive film is disposed on a liquid crystal display device. Experimental example 2 has black PET bonded to the back side.
下記表1に示す保護フィルム1は、SAT TM30125 TC-FA(株式会社サンエー化研社製125μmポリエチレンテレフタレート(PET)保護フィルム)である。保護フィルム2は、KD23K(株式会社サンエー化研社製38μmポリプロピレン(PP)保護フィルム)である。
黒PETは、パナック株式会社製 工業用黒PET(GPH100E82A04)である。黒紙は、黒画用紙(市販品)である。ポリイミドテープは、3M社製ポリイミドテープである。
クリーン紙は、王子エフテックス社製クリーンルーム用無塵紙(色、ライトブルー)である。TRANPは、昇華型フォトペーパー(FUJIFILM Quality Thermal Photo Paper)である。
ND(Neutral Density)フィルタ(0.2)は、富士フイルム株式会社製光量調整用フィルター(フィルター号数0.2)である。ND(Neutral Density)フィルタ(0.8)は、富士フイルム株式会社製光量調整用フィルター(フィルター号数0.8)である。No.6フィルタは、富士フイルム株式会社製セーフライトフィルター(SLF-6(製品名))である。
ガラスには、コーニング社製Eagle Glass(Eagle XG(登録商標))を用いた。 The protective film 1 shown in Table 1 below is SAT TM30125 TC-FA (125 μm polyethylene terephthalate (PET) protective film manufactured by Sanei Kaken Co., Ltd.). The protective film 2 is KD23K (38 μm polypropylene (PP) protective film manufactured by Sanei Kaken Co., Ltd.).
Black PET is industrial black PET (GPH100E82A04) manufactured by Panac Corporation. Black paper is black drawing paper (commercially available). The polyimide tape is a 3M polyimide tape.
The clean paper is a dust-free paper (color, light blue) for clean rooms manufactured by Oji F-Tex. TRANSP is a sublimation type photo paper (FUJIFILM Quality Thermal Photo Paper).
An ND (Neutral Density) filter (0.2) is a filter for adjusting the amount of light (filter number 0.2) manufactured by FUJIFILM Corporation. An ND (Neutral Density) filter (0.8) is a filter for adjusting the amount of light (filter number: 0.8) manufactured by FUJIFILM Corporation. No. The 6 filter is a safe light filter (SLF-6 (product name)) manufactured by FUJIFILM Corporation.
Corning Eagle Glass (Eagle XG (registered trademark)) was used as the glass.
黒PETは、パナック株式会社製 工業用黒PET(GPH100E82A04)である。黒紙は、黒画用紙(市販品)である。ポリイミドテープは、3M社製ポリイミドテープである。
クリーン紙は、王子エフテックス社製クリーンルーム用無塵紙(色、ライトブルー)である。TRANPは、昇華型フォトペーパー(FUJIFILM Quality Thermal Photo Paper)である。
ND(Neutral Density)フィルタ(0.2)は、富士フイルム株式会社製光量調整用フィルター(フィルター号数0.2)である。ND(Neutral Density)フィルタ(0.8)は、富士フイルム株式会社製光量調整用フィルター(フィルター号数0.8)である。No.6フィルタは、富士フイルム株式会社製セーフライトフィルター(SLF-6(製品名))である。
ガラスには、コーニング社製Eagle Glass(Eagle XG(登録商標))を用いた。 The protective film 1 shown in Table 1 below is SAT TM30125 TC-FA (125 μm polyethylene terephthalate (PET) protective film manufactured by Sanei Kaken Co., Ltd.). The protective film 2 is KD23K (38 μm polypropylene (PP) protective film manufactured by Sanei Kaken Co., Ltd.).
Black PET is industrial black PET (GPH100E82A04) manufactured by Panac Corporation. Black paper is black drawing paper (commercially available). The polyimide tape is a 3M polyimide tape.
The clean paper is a dust-free paper (color, light blue) for clean rooms manufactured by Oji F-Tex. TRANSP is a sublimation type photo paper (FUJIFILM Quality Thermal Photo Paper).
An ND (Neutral Density) filter (0.2) is a filter for adjusting the amount of light (filter number 0.2) manufactured by FUJIFILM Corporation. An ND (Neutral Density) filter (0.8) is a filter for adjusting the amount of light (filter number: 0.8) manufactured by FUJIFILM Corporation. No. The 6 filter is a safe light filter (SLF-6 (product name)) manufactured by FUJIFILM Corporation.
Corning Eagle Glass (Eagle XG (registered trademark)) was used as the glass.
表1の全光反射率は、日本分光株式会社製 V-660(紫外可視分光光度計)を用いて、JIS K 7375:2008の規定に基づいて測定した値である。
表1の可視光透過率は、東京電色社製 オートマチックヘーズメーター TC-HIIIDPK/II(商品名)を用いて、JIS K 7361:1997の規定に基づいて測定した値である。
表1のヘイズは、東京電色社製 オートマチックヘーズメーター TC-HIIIDPK/II(商品名)を用いて、JIS K7136:2000の規定に基づいて測定した値である。
なお、下記表1のヘイズの欄において、「-」は測定不能であることを示す。下記表1の可視光透過率が0.00%では可視光透過率が存在せず、ヘイズの値を得ることができない。この場合、測定不能となる。また、下記表1の全光反射率の欄において、「-」は未測定であることを示す。 The total light reflectance in Table 1 is a value measured based on JIS K 7375: 2008 using a JASCO Corporation V-660 (ultraviolet visible spectrophotometer).
The visible light transmittance in Table 1 is a value measured based on the provisions of JIS K 7361: 1997 using an automatic haze meter TC-HIIIDPK / II (trade name) manufactured by Tokyo Denshoku.
The haze in Table 1 is a value measured based on JIS K7136: 2000 using an automatic haze meter TC-HIIIDPK / II (trade name) manufactured by Tokyo Denshoku Co., Ltd.
In the haze column of Table 1 below, “-” indicates that measurement is impossible. When the visible light transmittance in Table 1 below is 0.00%, there is no visible light transmittance, and a haze value cannot be obtained. In this case, measurement becomes impossible. In the column of total light reflectance in Table 1 below, “−” indicates that no measurement was performed.
表1の可視光透過率は、東京電色社製 オートマチックヘーズメーター TC-HIIIDPK/II(商品名)を用いて、JIS K 7361:1997の規定に基づいて測定した値である。
表1のヘイズは、東京電色社製 オートマチックヘーズメーター TC-HIIIDPK/II(商品名)を用いて、JIS K7136:2000の規定に基づいて測定した値である。
なお、下記表1のヘイズの欄において、「-」は測定不能であることを示す。下記表1の可視光透過率が0.00%では可視光透過率が存在せず、ヘイズの値を得ることができない。この場合、測定不能となる。また、下記表1の全光反射率の欄において、「-」は未測定であることを示す。 The total light reflectance in Table 1 is a value measured based on JIS K 7375: 2008 using a JASCO Corporation V-660 (ultraviolet visible spectrophotometer).
The visible light transmittance in Table 1 is a value measured based on the provisions of JIS K 7361: 1997 using an automatic haze meter TC-HIIIDPK / II (trade name) manufactured by Tokyo Denshoku.
The haze in Table 1 is a value measured based on JIS K7136: 2000 using an automatic haze meter TC-HIIIDPK / II (trade name) manufactured by Tokyo Denshoku Co., Ltd.
In the haze column of Table 1 below, “-” indicates that measurement is impossible. When the visible light transmittance in Table 1 below is 0.00%, there is no visible light transmittance, and a haze value cannot be obtained. In this case, measurement becomes impossible. In the column of total light reflectance in Table 1 below, “−” indicates that no measurement was performed.
評価は、5人の被験者で以下に示すA~Dの評価基準にて行い、5人の被験者の平均値を求め、この平均値にて評価した。
評価基準
「A」:故障が蛍光灯でも見える。
「B」:故障がLEDライトでも見える。
「C」:故障がLEDライトで非常に薄く見える。
「D」:故障が見えない。 The evaluation was performed on the five test subjects according to the following evaluation criteria A to D, and the average value of the five subjects was obtained, and the average value was evaluated.
Evaluation criteria “A”: The failure is visible even with a fluorescent lamp.
“B”: The failure is visible even with the LED light.
“C”: The failure looks very thin with the LED light.
“D”: The failure is not visible.
評価基準
「A」:故障が蛍光灯でも見える。
「B」:故障がLEDライトでも見える。
「C」:故障がLEDライトで非常に薄く見える。
「D」:故障が見えない。 The evaluation was performed on the five test subjects according to the following evaluation criteria A to D, and the average value of the five subjects was obtained, and the average value was evaluated.
Evaluation criteria “A”: The failure is visible even with a fluorescent lamp.
“B”: The failure is visible even with the LED light.
“C”: The failure looks very thin with the LED light.
“D”: The failure is not visible.
上述の評価の故障については、上述の図15に示すように、金属細線18の表面18aが平面の場合、表面18aに対して、2方向から光を照射した場合、一方の光の反射光が視認でき、他方の光の反射光が視認できない位置に2つの光源を配置する。
2つの光源による2方向の光を切り替えて、金属細線18に照射し、各被験者の反射光の見え方で評価した。光源には蛍光灯とLEDライトを用いた。 Regarding the failure in the above evaluation, as shown in FIG. 15 above, when thesurface 18a of the thin metal wire 18 is flat, when the surface 18a is irradiated with light from two directions, the reflected light of one light is Two light sources are arranged at a position where the reflected light of the other light cannot be visually recognized.
The light of two directions by two light sources was switched, and it irradiated to the metalfine wire 18, and evaluated by how each subject's reflected light was seen. Fluorescent lamps and LED lights were used as light sources.
2つの光源による2方向の光を切り替えて、金属細線18に照射し、各被験者の反射光の見え方で評価した。光源には蛍光灯とLEDライトを用いた。 Regarding the failure in the above evaluation, as shown in FIG. 15 above, when the
The light of two directions by two light sources was switched, and it irradiated to the metal
以下、透明導電フィルム12の作製方法について説明する。
まず、銀塩方法による透明導電フィルムの作製方法について説明する。
<透明導電フィルムの作製方法>
(ハロゲン化銀乳剤の調製)
38℃、pH4.5に保たれた下記1液に、下記2液および3液の各々90%に相当する量を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて下記の4液および5液を8分間にわたって加え、さらに、下記の2液および3液の残りの10%の量を2分間にわたって加え、0.21μmまで成長させた。さらに、ヨウ化カリウム0.15gを加え、5分間熟成し粒子形成を終了した。 Hereinafter, a method for producing the transparentconductive film 12 will be described.
First, a method for producing a transparent conductive film by a silver salt method will be described.
<Method for producing transparent conductive film>
(Preparation of silver halide emulsion)
To the following 1 liquid maintained at 38 ° C. and pH 4.5, 90% of the following 2 and 3 liquids were simultaneously added over 20 minutes while stirring to form 0.16 μm core particles. Subsequently, the following 4 and 5 solutions were added over 8 minutes, and the remaining 10% of the following 2 and 3 solutions were added over 2 minutes to grow to 0.21 μm. Further, 0.15 g of potassium iodide was added and ripened for 5 minutes to complete the grain formation.
まず、銀塩方法による透明導電フィルムの作製方法について説明する。
<透明導電フィルムの作製方法>
(ハロゲン化銀乳剤の調製)
38℃、pH4.5に保たれた下記1液に、下記2液および3液の各々90%に相当する量を攪拌しながら同時に20分間にわたって加え、0.16μmの核粒子を形成した。続いて下記の4液および5液を8分間にわたって加え、さらに、下記の2液および3液の残りの10%の量を2分間にわたって加え、0.21μmまで成長させた。さらに、ヨウ化カリウム0.15gを加え、5分間熟成し粒子形成を終了した。 Hereinafter, a method for producing the transparent
First, a method for producing a transparent conductive film by a silver salt method will be described.
<Method for producing transparent conductive film>
(Preparation of silver halide emulsion)
To the following 1 liquid maintained at 38 ° C. and pH 4.5, 90% of the following 2 and 3 liquids were simultaneously added over 20 minutes while stirring to form 0.16 μm core particles. Subsequently, the following 4 and 5 solutions were added over 8 minutes, and the remaining 10% of the following 2 and 3 solutions were added over 2 minutes to grow to 0.21 μm. Further, 0.15 g of potassium iodide was added and ripened for 5 minutes to complete the grain formation.
1液:
水 750ml
ゼラチン 9g
塩化ナトリウム 3g
1,3-ジメチルイミダゾリジン-2-チオン 20mg
ベンゼンチオスルホン酸ナトリウム 10mg
クエン酸 0.7g
2液:
水 300ml
硝酸銀 150g
3液:
水 300ml
塩化ナトリウム 38g
臭化カリウム 32g
ヘキサクロロイリジウム(III)酸カリウム
(0.005%KCl 20%水溶液) 8ml
ヘキサクロロロジウム酸アンモニウム
(0.001%NaCl 20%水溶液) 10ml
4液:
水 100ml
硝酸銀 50g
5液:
水 100ml
塩化ナトリウム 13g
臭化カリウム 11g
黄血塩 5mg 1 liquid:
750 ml of water
9g gelatin
Sodium chloride 3g
1,3-Dimethylimidazolidine-2-thione 20mg
Sodium benzenethiosulfonate 10mg
Citric acid 0.7g
Two liquids:
300 ml of water
150 g silver nitrate
3 liquids:
300 ml of water
Sodium chloride 38g
Potassium bromide 32g
Potassium hexachloroiridium (III) (0.005% KCl 20% aqueous solution) 8 ml
Ammonium hexachlororhodate (0.001% NaCl 20% aqueous solution) 10 ml
4 liquids:
100ml water
Silver nitrate 50g
5 liquids:
100ml water
Sodium chloride 13g
Potassium bromide 11g
Yellow blood salt 5mg
水 750ml
ゼラチン 9g
塩化ナトリウム 3g
1,3-ジメチルイミダゾリジン-2-チオン 20mg
ベンゼンチオスルホン酸ナトリウム 10mg
クエン酸 0.7g
2液:
水 300ml
硝酸銀 150g
3液:
水 300ml
塩化ナトリウム 38g
臭化カリウム 32g
ヘキサクロロイリジウム(III)酸カリウム
(0.005%KCl 20%水溶液) 8ml
ヘキサクロロロジウム酸アンモニウム
(0.001%NaCl 20%水溶液) 10ml
4液:
水 100ml
硝酸銀 50g
5液:
水 100ml
塩化ナトリウム 13g
臭化カリウム 11g
黄血塩 5mg 1 liquid:
750 ml of water
9g gelatin
Sodium chloride 3g
1,3-Dimethylimidazolidine-2-thione 20mg
Sodium benzenethiosulfonate 10mg
Citric acid 0.7g
Two liquids:
300 ml of water
150 g silver nitrate
3 liquids:
300 ml of water
Sodium chloride 38g
Potassium bromide 32g
Potassium hexachloroiridium (III) (0.005
Ammonium hexachlororhodate (0.001
4 liquids:
100ml water
Silver nitrate 50g
5 liquids:
100ml water
Sodium chloride 13g
Potassium bromide 11g
Yellow blood salt 5mg
その後、常法に従い、フロキュレーション法によって水洗した。具体的には、温度を35℃に下げ、硫酸を用いてハロゲン化銀が沈降するまでpHを下げた(pH3.6±0.2の範囲であった)。次に、上澄み液を約3リットル除去した(第一水洗)。さらに3リットルの蒸留水を加えてから、ハロゲン化銀が沈降するまで硫酸を加えた。再度、上澄み液を3リットル除去した(第二水洗)。第二水洗と同じ操作をさらに1回繰り返して(第三水洗)、水洗・脱塩工程を終了した。水洗・脱塩後の乳剤をpH6.4、pAg7.5に調整し、ゼラチン3.9g、ベンゼンチオスルホン酸ナトリウム10mg、ベンゼンチオスルフィン酸ナトリウム3mg、チオ硫酸ナトリウム15mgと塩化金酸10mgを加え55℃にて最適感度を得るように化学増感を施し、安定剤として1,3,3a,7-テトラアザインデン100mg、防腐剤としてプロキセル(商品名、ICI Co.,Ltd.製)100mgを加えた。最終的に得られた乳剤は、沃化銀を0.08モル%含み、塩臭化銀の比率を塩化銀70モル%、臭化銀30モル%とする、平均粒子径0.22μm、変動係数9%のヨウ塩臭化銀立方体粒子乳剤であった。
Then, it was washed with water by a flocculation method according to a conventional method. Specifically, the temperature was lowered to 35 ° C., and the pH was lowered using sulfuric acid until the silver halide precipitated (the pH was in the range of 3.6 ± 0.2). Next, about 3 liters of the supernatant was removed (first water washing). Further, 3 liters of distilled water was added, and sulfuric acid was added until the silver halide settled. Again, 3 liters of the supernatant was removed (second water wash). The same operation as the second water washing was further repeated once (third water washing) to complete the water washing / desalting step. The emulsion after washing with water and desalting was adjusted to pH 6.4 and pAg 7.5, and gelatin 3.9 g, sodium benzenethiosulfonate 10 mg, sodium benzenethiosulfinate 3 mg, sodium thiosulfate 15 mg and chloroauric acid 10 mg were added. Chemical sensitization to obtain optimum sensitivity at 0 ° C., 100 mg of 1,3,3a, 7-tetraazaindene as stabilizer and 100 mg of proxel (trade name, manufactured by ICI Co., Ltd.) as preservative It was. The finally obtained emulsion contains 0.08 mol% of silver iodide, and the ratio of silver chlorobromide is 70 mol% of silver chloride and 30 mol% of silver bromide. It was a silver iodochlorobromide cubic grain emulsion having a coefficient of 9%.
(感光性層形成用組成物の調製)
上述の乳剤に1,3,3a,7-テトラアザインデン1.2×10-4モル/モルAg、ハイドロキノン1.2×10-2モル/モルAg、クエン酸3.0×10-4モル/モルAg、2,4-ジクロロ-6-ヒドロキシ-1,3,5-トリアジンナトリウム塩0.90g/モルAg、微量の硬膜剤を添加し、クエン酸を用いて塗布液pHを5.6に調整した。
上述の塗布液に、含有するゼラチンに対して、(P-1)で表されるポリマーとジアルキルフェニルPEO硫酸エステルからなる分散剤を含有するポリマーラテックス(分散剤/ポリマーの質量比が2.0/100=0.02)とをポリマー/ゼラチン(質量比)=0.5/1になるように添加した。 (Preparation of photosensitive layer forming composition)
1,3,3a, 7-tetraazaindene 1.2 × 10 −4 mol / mol Ag, hydroquinone 1.2 × 10 −2 mol / mol Ag, citric acid 3.0 × 10 −4 mol / Mol Ag, 2,4-dichloro-6-hydroxy-1,3,5-triazine sodium salt 0.90 g / mol Ag, a trace amount of hardener was added, and the coating solution pH was adjusted to 5. with citric acid. Adjusted to 6.
Polymer latex containing a dispersant represented by (P-1) and a dialkylphenyl PEO sulfate ester (dispersant / polymer mass ratio is 2.0) with respect to gelatin contained in the coating solution. /100=0.02) and polymer / gelatin (mass ratio) = 0.5 / 1.
上述の乳剤に1,3,3a,7-テトラアザインデン1.2×10-4モル/モルAg、ハイドロキノン1.2×10-2モル/モルAg、クエン酸3.0×10-4モル/モルAg、2,4-ジクロロ-6-ヒドロキシ-1,3,5-トリアジンナトリウム塩0.90g/モルAg、微量の硬膜剤を添加し、クエン酸を用いて塗布液pHを5.6に調整した。
上述の塗布液に、含有するゼラチンに対して、(P-1)で表されるポリマーとジアルキルフェニルPEO硫酸エステルからなる分散剤を含有するポリマーラテックス(分散剤/ポリマーの質量比が2.0/100=0.02)とをポリマー/ゼラチン(質量比)=0.5/1になるように添加した。 (Preparation of photosensitive layer forming composition)
1,3,3a, 7-tetraazaindene 1.2 × 10 −4 mol / mol Ag, hydroquinone 1.2 × 10 −2 mol / mol Ag, citric acid 3.0 × 10 −4 mol / Mol Ag, 2,4-dichloro-6-hydroxy-1,3,5-triazine sodium salt 0.90 g / mol Ag, a trace amount of hardener was added, and the coating solution pH was adjusted to 5. with citric acid. Adjusted to 6.
Polymer latex containing a dispersant represented by (P-1) and a dialkylphenyl PEO sulfate ester (dispersant / polymer mass ratio is 2.0) with respect to gelatin contained in the coating solution. /100=0.02) and polymer / gelatin (mass ratio) = 0.5 / 1.
さらに、架橋剤としてEPOXY RESIN DY 022(商品名:ナガセケムテックス社製)を添加した。なお、架橋剤の添加量は、後述する感光性層中における架橋剤の量が0.09g/m2となるように調整した。
以上のようにして感光性層形成用組成物を調製した。
なお、上述の(P-1)で表されるポリマーは、特許第3305459号および特許第3754745号を参照して合成した。 Furthermore, EPOXY RESIN DY 022 (trade name: manufactured by Nagase ChemteX Corporation) was added as a crosslinking agent. In addition, the addition amount of the crosslinking agent was adjusted so that the amount of the crosslinking agent in the photosensitive layer described later would be 0.09 g / m 2 .
A photosensitive layer forming composition was prepared as described above.
The polymer represented by the above (P-1) was synthesized with reference to Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
以上のようにして感光性層形成用組成物を調製した。
なお、上述の(P-1)で表されるポリマーは、特許第3305459号および特許第3754745号を参照して合成した。 Furthermore, EPOXY RESIN DY 022 (trade name: manufactured by Nagase ChemteX Corporation) was added as a crosslinking agent. In addition, the addition amount of the crosslinking agent was adjusted so that the amount of the crosslinking agent in the photosensitive layer described later would be 0.09 g / m 2 .
A photosensitive layer forming composition was prepared as described above.
The polymer represented by the above (P-1) was synthesized with reference to Japanese Patent No. 3305459 and Japanese Patent No. 3754745.
(感光性層形成工程)
透明基板14の両面に、上述のポリマーラテックスを塗布して、厚み0.05μmの下塗り層を設けた。透明基板14には、100μmのポリエチレンテレフタレート(PET)フィルム(富士フイルム社製)を用いた。
次に、下塗り層上に、上述のポリマーラテックスとゼラチン、および光学濃度が約1.0で現像液のアルカリにより脱色する染料の混合物から成るアンチハレーション層を設けた。なお、ポリマーとゼラチンとの混合質量比(ポリマー/ゼラチン)は2/1であり、ポリマーの含有量は0.65g/m2であった。
上述のアンチハレーション層の上に、上述の感光性層形成用組成物を塗布し、さらに厚み0.15μmのゼラチン層を設け、両面に感光性層が形成された支持体を得た。両面に感光性層が形成された支持体をフィルムAとする。形成された感光性層は、銀量6.2g/m2、ゼラチン量1.0g/m2であった。 (Photosensitive layer forming step)
The above-mentioned polymer latex was applied to both surfaces of thetransparent substrate 14 to provide an undercoat layer having a thickness of 0.05 μm. A 100 μm polyethylene terephthalate (PET) film (manufactured by Fuji Film Co., Ltd.) was used for the transparent substrate 14.
Next, an antihalation layer comprising a mixture of the above-described polymer latex and gelatin and a dye having an optical density of about 1.0 and decolorizing with an alkali of a developer was provided on the undercoat layer. The mixing mass ratio of polymer to gelatin (polymer / gelatin) was 2/1, and the polymer content was 0.65 g / m 2 .
On the above-mentioned antihalation layer, the above-mentioned composition for forming a photosensitive layer was applied, a gelatin layer having a thickness of 0.15 μm was further provided, and a support having a photosensitive layer formed on both sides was obtained. Let the support body in which the photosensitive layer was formed in both surfaces be the film A. FIG. The formed photosensitive layer had a silver amount of 6.2 g / m 2 and a gelatin amount of 1.0 g / m 2 .
透明基板14の両面に、上述のポリマーラテックスを塗布して、厚み0.05μmの下塗り層を設けた。透明基板14には、100μmのポリエチレンテレフタレート(PET)フィルム(富士フイルム社製)を用いた。
次に、下塗り層上に、上述のポリマーラテックスとゼラチン、および光学濃度が約1.0で現像液のアルカリにより脱色する染料の混合物から成るアンチハレーション層を設けた。なお、ポリマーとゼラチンとの混合質量比(ポリマー/ゼラチン)は2/1であり、ポリマーの含有量は0.65g/m2であった。
上述のアンチハレーション層の上に、上述の感光性層形成用組成物を塗布し、さらに厚み0.15μmのゼラチン層を設け、両面に感光性層が形成された支持体を得た。両面に感光性層が形成された支持体をフィルムAとする。形成された感光性層は、銀量6.2g/m2、ゼラチン量1.0g/m2であった。 (Photosensitive layer forming step)
The above-mentioned polymer latex was applied to both surfaces of the
Next, an antihalation layer comprising a mixture of the above-described polymer latex and gelatin and a dye having an optical density of about 1.0 and decolorizing with an alkali of a developer was provided on the undercoat layer. The mixing mass ratio of polymer to gelatin (polymer / gelatin) was 2/1, and the polymer content was 0.65 g / m 2 .
On the above-mentioned antihalation layer, the above-mentioned composition for forming a photosensitive layer was applied, a gelatin layer having a thickness of 0.15 μm was further provided, and a support having a photosensitive layer formed on both sides was obtained. Let the support body in which the photosensitive layer was formed in both surfaces be the film A. FIG. The formed photosensitive layer had a silver amount of 6.2 g / m 2 and a gelatin amount of 1.0 g / m 2 .
(露光現像工程)
上述のフィルムAの両面に、上述の図12のメッシュパターンのフォトマスクを配置し、高圧水銀ランプを光源とした平行光を用いて露光を行った。メッシュパターンには、格子48の一辺の長さPaを150μmとし、線幅を5μmと設定したものを用いた。
露光後、下記の現像液で現像し、さらに定着液(商品名:CN16X用N3X-R、富士フィルム社製)を用いて現像処理を行った。さらに、純水でリンスし、乾燥することで、両面にAg(銀)細線からなる機能性パターンとAg細線からなる厚み調整用パターンと、ゼラチン層とが形成された支持体を得た。ゼラチン層はAg細線間に形成されていた。得られたフィルムをフィルムBとする。 (Exposure development process)
The photomask having the mesh pattern shown in FIG. 12 described above was disposed on both surfaces of the above-described film A, and exposure was performed using parallel light using a high-pressure mercury lamp as a light source. As the mesh pattern, one having a length Pa of 150 μm on one side of thelattice 48 and a line width of 5 μm was used.
After the exposure, development was performed with the following developer, and further development processing was performed using a fixing solution (trade name: N3X-R for CN16X, manufactured by Fuji Film Co., Ltd.). Furthermore, the support body by which the functional pattern which consists of Ag (silver) fine wire, the pattern for thickness adjustment which consists of Ag fine wire, and the gelatin layer was formed on both surfaces by rinsing with pure water and drying was obtained. The gelatin layer was formed between the Ag fine wires. The resulting film is referred to as film B.
上述のフィルムAの両面に、上述の図12のメッシュパターンのフォトマスクを配置し、高圧水銀ランプを光源とした平行光を用いて露光を行った。メッシュパターンには、格子48の一辺の長さPaを150μmとし、線幅を5μmと設定したものを用いた。
露光後、下記の現像液で現像し、さらに定着液(商品名:CN16X用N3X-R、富士フィルム社製)を用いて現像処理を行った。さらに、純水でリンスし、乾燥することで、両面にAg(銀)細線からなる機能性パターンとAg細線からなる厚み調整用パターンと、ゼラチン層とが形成された支持体を得た。ゼラチン層はAg細線間に形成されていた。得られたフィルムをフィルムBとする。 (Exposure development process)
The photomask having the mesh pattern shown in FIG. 12 described above was disposed on both surfaces of the above-described film A, and exposure was performed using parallel light using a high-pressure mercury lamp as a light source. As the mesh pattern, one having a length Pa of 150 μm on one side of the
After the exposure, development was performed with the following developer, and further development processing was performed using a fixing solution (trade name: N3X-R for CN16X, manufactured by Fuji Film Co., Ltd.). Furthermore, the support body by which the functional pattern which consists of Ag (silver) fine wire, the pattern for thickness adjustment which consists of Ag fine wire, and the gelatin layer was formed on both surfaces by rinsing with pure water and drying was obtained. The gelatin layer was formed between the Ag fine wires. The resulting film is referred to as film B.
(現像液の組成)
現像液1リットル(L)中に、以下の化合物が含まれる。
ハイドロキノン 0.037mol/L
N-メチルアミノフェノール 0.016mol/L
メタホウ酸ナトリウム 0.140mol/L
水酸化ナトリウム 0.360mol/L
臭化ナトリウム 0.031mol/L
メタ重亜硫酸カリウム 0.187mol/L (Developer composition)
The following compounds are contained in 1 liter (L) of the developer.
Hydroquinone 0.037mol / L
N-methylaminophenol 0.016 mol / L
Sodium metaborate 0.140 mol / L
Sodium hydroxide 0.360 mol / L
Sodium bromide 0.031 mol / L
Potassium metabisulfite 0.187 mol / L
現像液1リットル(L)中に、以下の化合物が含まれる。
ハイドロキノン 0.037mol/L
N-メチルアミノフェノール 0.016mol/L
メタホウ酸ナトリウム 0.140mol/L
水酸化ナトリウム 0.360mol/L
臭化ナトリウム 0.031mol/L
メタ重亜硫酸カリウム 0.187mol/L (Developer composition)
The following compounds are contained in 1 liter (L) of the developer.
Hydroquinone 0.037mol / L
N-methylaminophenol 0.016 mol / L
Sodium metaborate 0.140 mol / L
Sodium hydroxide 0.360 mol / L
Sodium bromide 0.031 mol / L
Potassium metabisulfite 0.187 mol / L
(ゼラチン分解処理)
フィルムBに対して、タンパク質分解酵素(ナガセケムテックス社製ビオプラーゼAL-15FG)の水溶液(タンパク質分解酵素の濃度:0.5質量%、液温:40℃)への浸漬を120秒間行った。フィルムBを水溶液から取り出し、温水(液温:50℃)に120秒間浸漬し、洗浄した。ゼラチン分解処理後のフィルムをフィルムCとする。 (Gelatin decomposition treatment)
The film B was immersed in an aqueous solution (proteolytic enzyme concentration: 0.5 mass%, liquid temperature: 40 ° C.) of a proteolytic enzyme (Biosease AL-15FG manufactured by Nagase ChemteX) for 120 seconds. The film B was taken out from the aqueous solution, immersed in warm water (liquid temperature: 50 ° C.) for 120 seconds, and washed. The film after gelatin degradation is designated as film C.
フィルムBに対して、タンパク質分解酵素(ナガセケムテックス社製ビオプラーゼAL-15FG)の水溶液(タンパク質分解酵素の濃度:0.5質量%、液温:40℃)への浸漬を120秒間行った。フィルムBを水溶液から取り出し、温水(液温:50℃)に120秒間浸漬し、洗浄した。ゼラチン分解処理後のフィルムをフィルムCとする。 (Gelatin decomposition treatment)
The film B was immersed in an aqueous solution (proteolytic enzyme concentration: 0.5 mass%, liquid temperature: 40 ° C.) of a proteolytic enzyme (Biosease AL-15FG manufactured by Nagase ChemteX) for 120 seconds. The film B was taken out from the aqueous solution, immersed in warm water (liquid temperature: 50 ° C.) for 120 seconds, and washed. The film after gelatin degradation is designated as film C.
(低抵抗化処理)
上述のフィルムCに対して、金属製ローラからなるカレンダ装置を用いて、30kNの圧力でカレンダ処理を行った。このとき、線粗さRa=0.2μm、Sm=1.9μm(株式会社キーエンス製形状解析レーザ顕微鏡VK-X110にて測定(JIS-B-0601-1994))の粗面形状を有するPETフィルム2枚を、これらの粗面が上述のフィルムCの表面および裏面と向き合うように共に搬送して、上述のフィルムCの表面および裏面に粗面形状を転写形成した。
上述のカレンダ処理後、温度150℃の過熱蒸気槽を120秒間かけて通過させて、加熱処理を行った。加熱処理後のフィルムをフィルムDとする。このフィルムDが透明導電フィルムである。 (Low resistance treatment)
The above-mentioned film C was calendered at a pressure of 30 kN using a calender device composed of a metal roller. At this time, a PET film having a rough surface shape with a line roughness Ra = 0.2 μm, Sm = 1.9 μm (measured with a shape analysis laser microscope VK-X110 manufactured by Keyence Corporation (JIS-B-0601-1994)). Two sheets were conveyed together so that these rough surfaces face the front and back surfaces of the above-mentioned film C, and a rough surface shape was transferred and formed on the front and back surfaces of the above-mentioned film C.
After the above-described calendar treatment, a heat treatment was performed by passing through a superheated steam tank having a temperature of 150 ° C. over 120 seconds. The film after the heat treatment is referred to as film D. This film D is a transparent conductive film.
上述のフィルムCに対して、金属製ローラからなるカレンダ装置を用いて、30kNの圧力でカレンダ処理を行った。このとき、線粗さRa=0.2μm、Sm=1.9μm(株式会社キーエンス製形状解析レーザ顕微鏡VK-X110にて測定(JIS-B-0601-1994))の粗面形状を有するPETフィルム2枚を、これらの粗面が上述のフィルムCの表面および裏面と向き合うように共に搬送して、上述のフィルムCの表面および裏面に粗面形状を転写形成した。
上述のカレンダ処理後、温度150℃の過熱蒸気槽を120秒間かけて通過させて、加熱処理を行った。加熱処理後のフィルムをフィルムDとする。このフィルムDが透明導電フィルムである。 (Low resistance treatment)
The above-mentioned film C was calendered at a pressure of 30 kN using a calender device composed of a metal roller. At this time, a PET film having a rough surface shape with a line roughness Ra = 0.2 μm, Sm = 1.9 μm (measured with a shape analysis laser microscope VK-X110 manufactured by Keyence Corporation (JIS-B-0601-1994)). Two sheets were conveyed together so that these rough surfaces face the front and back surfaces of the above-mentioned film C, and a rough surface shape was transferred and formed on the front and back surfaces of the above-mentioned film C.
After the above-described calendar treatment, a heat treatment was performed by passing through a superheated steam tank having a temperature of 150 ° C. over 120 seconds. The film after the heat treatment is referred to as film D. This film D is a transparent conductive film.
めっき法による透明導電フィルムの作製方法について説明する。
透明基板に100μmのポリエチレンテレフタレート(PET)フィルム(富士フイルム社製)を用い、透明基板の一方の面に以下に示す組成物1を0.5μmの乾燥膜厚になるよう塗布した。そして、上述の図12のメッシュパターンのフォトマスクを配置し、高圧水銀ランプを光源とした平行光を用いて露光を行った。メッシュパターンには、格子48の一辺の長さPaを150μmとし、線幅を5μmと設定したものを用いた。そして、40℃の1質量%炭酸ナトリウム水溶液に5分間浸漬して現像して、パターン状被めっき層を含む基板を得た。得られた基板を、Pd触媒付与液MAT-2(上村工業製)のMAT-2Aのみを5倍に希釈したものに室温にて5分間浸漬し、純水にて2回洗浄した。次に、還元剤MAB(上村工業製)に36℃にて5分間浸漬し、純水にて2回洗浄した。その後、無電解めっき液スルカップPEA(上村工業製)に室温にてそれぞれ60分浸漬し、純水にて洗浄し、透明基板の一方の面にメッシュ状の配線を形成した。次に、透明基板の他方の面に、上述のように以下に示す組成物1を0.5μmの乾燥膜厚になるよう塗布し、露光、現像および洗浄を行った。これにより、透明基板の両面にメッシュパターンが形成された、めっき法による透明導電フィルムを得た。 A method for producing a transparent conductive film by a plating method will be described.
A 100 μm polyethylene terephthalate (PET) film (manufactured by Fuji Film Co., Ltd.) was used for the transparent substrate, and the composition 1 shown below was applied to one surface of the transparent substrate to a dry film thickness of 0.5 μm. Then, a photomask having the mesh pattern shown in FIG. 12 was placed, and exposure was performed using parallel light using a high-pressure mercury lamp as a light source. As the mesh pattern, one having a length Pa of 150 μm on one side of thelattice 48 and a line width of 5 μm was used. And it developed for 5 minutes by being immersed in 1 mass% sodium carbonate aqueous solution of 40 degreeC, and the board | substrate containing a pattern-like to-be-plated layer was obtained. The obtained substrate was immersed in a 5-fold dilution of only MAT-2A of Pd catalyst imparting liquid MAT-2 (manufactured by Uemura Kogyo) at room temperature for 5 minutes and washed twice with pure water. Next, it was immersed in a reducing agent MAB (manufactured by Uemura Kogyo) at 36 ° C. for 5 minutes and washed twice with pure water. Then, each was immersed in electroless plating solution sulcup PEA (manufactured by Uemura Kogyo Co., Ltd.) for 60 minutes at room temperature, washed with pure water, and a mesh-like wiring was formed on one surface of the transparent substrate. Next, the composition 1 shown below was applied to the other surface of the transparent substrate so as to have a dry film thickness of 0.5 μm, and exposure, development, and washing were performed. Thereby, the transparent conductive film by the plating method in which the mesh pattern was formed on both surfaces of the transparent substrate was obtained.
透明基板に100μmのポリエチレンテレフタレート(PET)フィルム(富士フイルム社製)を用い、透明基板の一方の面に以下に示す組成物1を0.5μmの乾燥膜厚になるよう塗布した。そして、上述の図12のメッシュパターンのフォトマスクを配置し、高圧水銀ランプを光源とした平行光を用いて露光を行った。メッシュパターンには、格子48の一辺の長さPaを150μmとし、線幅を5μmと設定したものを用いた。そして、40℃の1質量%炭酸ナトリウム水溶液に5分間浸漬して現像して、パターン状被めっき層を含む基板を得た。得られた基板を、Pd触媒付与液MAT-2(上村工業製)のMAT-2Aのみを5倍に希釈したものに室温にて5分間浸漬し、純水にて2回洗浄した。次に、還元剤MAB(上村工業製)に36℃にて5分間浸漬し、純水にて2回洗浄した。その後、無電解めっき液スルカップPEA(上村工業製)に室温にてそれぞれ60分浸漬し、純水にて洗浄し、透明基板の一方の面にメッシュ状の配線を形成した。次に、透明基板の他方の面に、上述のように以下に示す組成物1を0.5μmの乾燥膜厚になるよう塗布し、露光、現像および洗浄を行った。これにより、透明基板の両面にメッシュパターンが形成された、めっき法による透明導電フィルムを得た。 A method for producing a transparent conductive film by a plating method will be described.
A 100 μm polyethylene terephthalate (PET) film (manufactured by Fuji Film Co., Ltd.) was used for the transparent substrate, and the composition 1 shown below was applied to one surface of the transparent substrate to a dry film thickness of 0.5 μm. Then, a photomask having the mesh pattern shown in FIG. 12 was placed, and exposure was performed using parallel light using a high-pressure mercury lamp as a light source. As the mesh pattern, one having a length Pa of 150 μm on one side of the
<組成物1の調製>
イソプロパノール(IPA) 94.9質量部
ポリアクリル酸 3質量部
メチレンビスアクリルアミド(MBA) 2質量部
IRGACURE(登録商標)127(BASF製) 0.1質量部
となるように調液し、組成物1を得た。 <Preparation of Composition 1>
Isopropanol (IPA) 94.9 parts by weight Polyacrylic acid 3 parts by weight Methylenebisacrylamide (MBA) 2 parts by weight IRGACURE (registered trademark) 127 (manufactured by BASF) Got.
イソプロパノール(IPA) 94.9質量部
ポリアクリル酸 3質量部
メチレンビスアクリルアミド(MBA) 2質量部
IRGACURE(登録商標)127(BASF製) 0.1質量部
となるように調液し、組成物1を得た。 <Preparation of Composition 1>
Isopropanol (IPA) 94.9 parts by weight Polyacrylic acid 3 parts by weight Methylenebisacrylamide (MBA) 2 parts by weight IRGACURE (registered trademark) 127 (manufactured by BASF) Got.
蒸着法による透明導電フィルムの作製方法について説明する。
透明基板に100μmのポリエチレンテレフタレート(PET)フィルム(富士フイルム社製)を用い、透明基板の一方の面に銀を蒸着し8μmの厚みの銀箔を形成した。
次に、ロールコーターを用いてネガレジストを、銀箔面に6μm程度の厚みで塗布し90℃で30分乾燥した。
上述の図12のメッシュパターンのフォトマスクをネガレジスト上に配置し、高圧水銀ランプを光源とした平行光を用いて、100mJ/cm2の紫外光を照射し、露光を行った。メッシュパターンには、格子48の一辺の長さPaを150μmとし、線幅を5μmと設定したものを用いた。
次に、ネガレジストに現像処理を施した。これにより、パターン配線に対応する部分にレジストパターンが形成され、それ以外の部分のレジストが除去された。
次に、銀箔の露出部をエッチング除去し、残ったレジストを剥離した。これにより、透明基板の一方の面にメッシュ状の銀配線を形成した。次に、透明基板の他方の面に、一方の面と同じく銀を蒸着し8μmの厚みの銀箔を形成し、その後、上述のように、ネガレジストを形成し、パターン配線に対応する部分にレジストパターンを形成した。その後、上述のように、銀箔の露出部をエッチング除去し、透明基板の他方の面にメッシュ状の銀配線を形成した。これにより、透明基板の両面にメッシュパターンが形成された、蒸着法による透明導電フィルムを得た。 A method for producing a transparent conductive film by a vapor deposition method will be described.
A 100 μm polyethylene terephthalate (PET) film (manufactured by Fuji Film) was used for the transparent substrate, and silver was deposited on one surface of the transparent substrate to form a silver foil having a thickness of 8 μm.
Next, the negative resist was applied to the silver foil surface with a thickness of about 6 μm using a roll coater and dried at 90 ° C. for 30 minutes.
The photomask having the mesh pattern shown in FIG. 12 was placed on the negative resist, and exposure was performed by irradiating with 100 mJ / cm 2 of ultraviolet light using parallel light using a high-pressure mercury lamp as a light source. As the mesh pattern, one having a length Pa of 150 μm on one side of thelattice 48 and a line width of 5 μm was used.
Next, the negative resist was developed. As a result, a resist pattern was formed in a portion corresponding to the pattern wiring, and the resist in other portions was removed.
Next, the exposed portion of the silver foil was removed by etching, and the remaining resist was peeled off. Thereby, mesh-like silver wiring was formed on one surface of the transparent substrate. Next, silver is vapor-deposited on the other surface of the transparent substrate to form a silver foil having a thickness of 8 μm, and then a negative resist is formed as described above, and a resist corresponding to the pattern wiring is formed on the portion corresponding to the pattern wiring. A pattern was formed. Thereafter, as described above, the exposed portion of the silver foil was removed by etching, and a mesh-like silver wiring was formed on the other surface of the transparent substrate. Thereby, the transparent conductive film by the vapor deposition method in which the mesh pattern was formed on both surfaces of the transparent substrate was obtained.
透明基板に100μmのポリエチレンテレフタレート(PET)フィルム(富士フイルム社製)を用い、透明基板の一方の面に銀を蒸着し8μmの厚みの銀箔を形成した。
次に、ロールコーターを用いてネガレジストを、銀箔面に6μm程度の厚みで塗布し90℃で30分乾燥した。
上述の図12のメッシュパターンのフォトマスクをネガレジスト上に配置し、高圧水銀ランプを光源とした平行光を用いて、100mJ/cm2の紫外光を照射し、露光を行った。メッシュパターンには、格子48の一辺の長さPaを150μmとし、線幅を5μmと設定したものを用いた。
次に、ネガレジストに現像処理を施した。これにより、パターン配線に対応する部分にレジストパターンが形成され、それ以外の部分のレジストが除去された。
次に、銀箔の露出部をエッチング除去し、残ったレジストを剥離した。これにより、透明基板の一方の面にメッシュ状の銀配線を形成した。次に、透明基板の他方の面に、一方の面と同じく銀を蒸着し8μmの厚みの銀箔を形成し、その後、上述のように、ネガレジストを形成し、パターン配線に対応する部分にレジストパターンを形成した。その後、上述のように、銀箔の露出部をエッチング除去し、透明基板の他方の面にメッシュ状の銀配線を形成した。これにより、透明基板の両面にメッシュパターンが形成された、蒸着法による透明導電フィルムを得た。 A method for producing a transparent conductive film by a vapor deposition method will be described.
A 100 μm polyethylene terephthalate (PET) film (manufactured by Fuji Film) was used for the transparent substrate, and silver was deposited on one surface of the transparent substrate to form a silver foil having a thickness of 8 μm.
Next, the negative resist was applied to the silver foil surface with a thickness of about 6 μm using a roll coater and dried at 90 ° C. for 30 minutes.
The photomask having the mesh pattern shown in FIG. 12 was placed on the negative resist, and exposure was performed by irradiating with 100 mJ / cm 2 of ultraviolet light using parallel light using a high-pressure mercury lamp as a light source. As the mesh pattern, one having a length Pa of 150 μm on one side of the
Next, the negative resist was developed. As a result, a resist pattern was formed in a portion corresponding to the pattern wiring, and the resist in other portions was removed.
Next, the exposed portion of the silver foil was removed by etching, and the remaining resist was peeled off. Thereby, mesh-like silver wiring was formed on one surface of the transparent substrate. Next, silver is vapor-deposited on the other surface of the transparent substrate to form a silver foil having a thickness of 8 μm, and then a negative resist is formed as described above, and a resist corresponding to the pattern wiring is formed on the portion corresponding to the pattern wiring. A pattern was formed. Thereafter, as described above, the exposed portion of the silver foil was removed by etching, and a mesh-like silver wiring was formed on the other surface of the transparent substrate. Thereby, the transparent conductive film by the vapor deposition method in which the mesh pattern was formed on both surfaces of the transparent substrate was obtained.
印刷法による透明導電フィルムの作製方法について説明する。
透明基板に100μmのポリエチレンテレフタレート(PET)フィルム(富士フイルム社製)を用い、透明基板の両面に、銀の導電性ペーストを、上述の図12のメッシュパターンとなるパターン状に、印刷法により形成した。そして、透明基板を、温度150℃の恒温器中で30分間保持して、導電性ペーストを硬化させ乾燥させた。このようにして、印刷法による透明導電フィルムを得た。銀の導電性ペーストには、Agペースト(ドータイト FA-401CA(品名)、藤倉化成製)を用いた。 A method for producing a transparent conductive film by a printing method will be described.
Using a 100 μm polyethylene terephthalate (PET) film (manufactured by FUJIFILM Corporation) on a transparent substrate, a silver conductive paste is formed on both sides of the transparent substrate by a printing method in a pattern that becomes the mesh pattern of FIG. did. And the transparent substrate was hold | maintained for 30 minutes in the thermostat of temperature 150 degreeC, and the electrically conductive paste was hardened and dried. Thus, the transparent conductive film by the printing method was obtained. An Ag paste (Dotite FA-401CA (product name), manufactured by Fujikura Kasei) was used as the silver conductive paste.
透明基板に100μmのポリエチレンテレフタレート(PET)フィルム(富士フイルム社製)を用い、透明基板の両面に、銀の導電性ペーストを、上述の図12のメッシュパターンとなるパターン状に、印刷法により形成した。そして、透明基板を、温度150℃の恒温器中で30分間保持して、導電性ペーストを硬化させ乾燥させた。このようにして、印刷法による透明導電フィルムを得た。銀の導電性ペーストには、Agペースト(ドータイト FA-401CA(品名)、藤倉化成製)を用いた。 A method for producing a transparent conductive film by a printing method will be described.
Using a 100 μm polyethylene terephthalate (PET) film (manufactured by FUJIFILM Corporation) on a transparent substrate, a silver conductive paste is formed on both sides of the transparent substrate by a printing method in a pattern that becomes the mesh pattern of FIG. did. And the transparent substrate was hold | maintained for 30 minutes in the thermostat of temperature 150 degreeC, and the electrically conductive paste was hardened and dried. Thus, the transparent conductive film by the printing method was obtained. An Ag paste (Dotite FA-401CA (product name), manufactured by Fujikura Kasei) was used as the silver conductive paste.
表2に示すように、実験例1、2は基準となるものであり、故障を見ることができた。実験例3、実験例9および実験例10、ならびに実験例19、実験例25および実験例26は故障を見ることができた。一方、実験例4、実験例5および実験例8、実験例11~実験例13、実験例16~実験例18ならびに実験例20、実験例21および実験例24は故障が見えづらかった。実験例6および実験例7、実験例14および実験例15、ならびに実験例22および実験例23は故障が見えなかった。
As shown in Table 2, Experimental Examples 1 and 2 were standards, and a failure could be seen. In Experimental Example 3, Experimental Example 9 and Experimental Example 10, and Experimental Example 19, Experimental Example 25, and Experimental Example 26 were able to see a failure. On the other hand, in Experimental Example 4, Experimental Example 5 and Experimental Example 8, Experimental Example 11 to Experimental Example 13, Experimental Example 16 to Experimental Example 18, Experimental Example 20, Experimental Example 21 and Experimental Example 24, it was difficult to see the failure. In Experimental Examples 6 and 7, Experimental Examples 14 and 15, and Experimental Examples 22 and 23, no failure was seen.
10、10a、10b、10c、10d 導電フィルム積層体
12、30、31 透明導電フィルム
14、15 透明基板
14a、15a、18a、26a、86a 表面
14b、15b、20b 裏面
14c 一辺
16 導電層
18、86 金属細線
19,19a 故障
20 第1の保護フィルム
22、25 支持体
23、27 接着層
24 表示機器
26 第2の保護フィルム
32 第1の導電層
34 第2の導電層
40 第1の検出部
41 第1の周辺配線
42 第2の検出部
43 第2の周辺配線
45 端子
47 センサー領域
48 格子
50、51 製造装置
52、56、58、70、72 ローラ
54 巻き取りローラ
60 センサー
62 判定部
64 光学センサー
80 第1の光源
82 第2の光源
84 光学センサー
100 背景
D1 第1の方向
D2 第2の方向
F 搬送方向
L 光
L1、L2 出射光
R1、R2 反射光
S1 ビューエリア
S2 周辺領域
t 厚み
w 線幅 10, 10a, 10b, 10c, 10d Conductive film laminate 12, 30, 31 Transparent conductive film 14, 15 Transparent substrate 14a, 15a, 18a, 26a, 86a Front surface 14b, 15b, 20b Back surface 14c One side 16 Conductive layer 18, 86 Metal thin wires 19, 19a Failure 20 First protective film 22, 25 Support body 23, 27 Adhesive layer 24 Display device 26 Second protective film 32 First conductive layer 34 Second conductive layer 40 First detection unit 41 First peripheral wiring 42 Second detection unit 43 Second peripheral wiring 45 Terminal 47 Sensor region 48 Grid 50, 51 Manufacturing device 52, 56, 58, 70, 72 Roller 54 Winding roller 60 Sensor 62 Determination unit 64 Optical Sensor 80 first light source 82 second light source 84 optical sensor 100 background D1 first direction D2 Second direction F Transport direction L Light L1, L2 Emission light R1, R2 Reflected light S1 View area S2 Peripheral area t Thickness w Line width
12、30、31 透明導電フィルム
14、15 透明基板
14a、15a、18a、26a、86a 表面
14b、15b、20b 裏面
14c 一辺
16 導電層
18、86 金属細線
19,19a 故障
20 第1の保護フィルム
22、25 支持体
23、27 接着層
24 表示機器
26 第2の保護フィルム
32 第1の導電層
34 第2の導電層
40 第1の検出部
41 第1の周辺配線
42 第2の検出部
43 第2の周辺配線
45 端子
47 センサー領域
48 格子
50、51 製造装置
52、56、58、70、72 ローラ
54 巻き取りローラ
60 センサー
62 判定部
64 光学センサー
80 第1の光源
82 第2の光源
84 光学センサー
100 背景
D1 第1の方向
D2 第2の方向
F 搬送方向
L 光
L1、L2 出射光
R1、R2 反射光
S1 ビューエリア
S2 周辺領域
t 厚み
w 線幅 10, 10a, 10b, 10c, 10d
Claims (10)
- 透明基板、および前記透明基板の少なくとも一方の面上に形成された導電層を有する透明導電フィルムと、
前記透明導電フィルムの第1の面側に剥離可能に設けられた第1の保護フィルムとを有し、
前記導電層は、金属細線により構成されており、
前記第1の保護フィルムの可視光透過率が72%以下であり、かつ前記第1の保護フィルムの全光反射率が10%以下であることを特徴とする導電フィルム積層体。 A transparent conductive film having a transparent substrate and a conductive layer formed on at least one surface of the transparent substrate;
Having a first protective film detachably provided on the first surface side of the transparent conductive film,
The conductive layer is composed of a thin metal wire,
The conductive film laminate, wherein the visible light transmittance of the first protective film is 72% or less and the total light reflectance of the first protective film is 10% or less. - 前記透明導電フィルムの前記第1の面に対して反対側の第2の面側に剥離可能に設けられた第2の保護フィルムをさらに有し、
前記第2の保護フィルムの可視光透過率が92.5%以上である請求項1に記載の導電フィルム積層体。 A second protective film provided to be peelable on the second surface side opposite to the first surface of the transparent conductive film;
The conductive film laminate according to claim 1, wherein the visible light transmittance of the second protective film is 92.5% or more. - 前記第2の保護フィルムのヘイズが1%以下である請求項2に記載の導電フィルム積層体。 The conductive film laminate according to claim 2, wherein the second protective film has a haze of 1% or less.
- 前記第1の保護フィルムの可視光透過率が16%以下である請求項1~3のいずれか1項に記載の導電フィルム積層体。 The conductive film laminate according to any one of claims 1 to 3, wherein the first protective film has a visible light transmittance of 16% or less.
- 前記第1の保護フィルムの全光反射率が6.0%以下である請求項1~4のいずれか1項に記載の導電フィルム積層体。 The conductive film laminate according to any one of claims 1 to 4, wherein the total light reflectance of the first protective film is 6.0% or less.
- 前記第1の保護フィルムのヘイズが1.9%以下である請求項1~5のいずれか1項に記載の導電フィルム積層体。 The conductive film laminate according to any one of claims 1 to 5, wherein the first protective film has a haze of 1.9% or less.
- 前記透明基板の両面に前記導電層が形成されている請求項1~6のいずれか1項に記載の導電フィルム積層体。 The conductive film laminate according to any one of claims 1 to 6, wherein the conductive layer is formed on both surfaces of the transparent substrate.
- 前記透明基板は、ポリエチレンテレフタレート、シクロオレフィンポリマー、ポリエチレン、ポリプロピレン、ポリカーボネート、またはシクロオレフィンコポリマーにより構成されている請求項1~7のいずれか1項に記載の導電フィルム積層体。 The conductive film laminate according to any one of claims 1 to 7, wherein the transparent substrate is made of polyethylene terephthalate, cycloolefin polymer, polyethylene, polypropylene, polycarbonate, or cycloolefin copolymer.
- 前記導電層は、金、銀、銅、白金、錫、亜鉛、およびアルミニウムのうち、いずれか1種類以上の金属により構成されている請求項1~8のいずれか1項に記載の導電フィルム積層体。 The conductive film laminate according to any one of claims 1 to 8, wherein the conductive layer is made of at least one metal selected from gold, silver, copper, platinum, tin, zinc, and aluminum. body.
- 前記導電層は、複数の金属細線により形成されたメッシュ構造の導電パターンを有する請求項1~9のいずれか1項に記載の導電フィルム積層体。
The conductive film laminate according to any one of claims 1 to 9, wherein the conductive layer has a conductive pattern having a mesh structure formed of a plurality of fine metal wires.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017562798A JP6588992B2 (en) | 2016-01-19 | 2017-01-16 | Conductive film laminate |
CN201780005003.6A CN108475142B (en) | 2016-01-19 | 2017-01-16 | Conductive film laminate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-008056 | 2016-01-19 | ||
JP2016008056 | 2016-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017126454A1 true WO2017126454A1 (en) | 2017-07-27 |
Family
ID=59362351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001165 WO2017126454A1 (en) | 2016-01-19 | 2017-01-16 | Conductive film laminate |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6588992B2 (en) |
CN (1) | CN108475142B (en) |
WO (1) | WO2017126454A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020026103A (en) * | 2018-08-14 | 2020-02-20 | 住友ベークライト株式会社 | Resin sheet laminate and protective film set |
EP4026692A4 (en) * | 2019-10-23 | 2022-11-16 | Nissha Co., Ltd. | Touch sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003188576A (en) * | 2001-12-19 | 2003-07-04 | Dainippon Printing Co Ltd | Electromagnetic wave shield sheet |
JP2014199762A (en) * | 2013-03-29 | 2014-10-23 | 株式会社カネカ | Substrate for touch panel provided with transparent electrode and quality management method for the same |
WO2016002974A2 (en) * | 2014-07-03 | 2016-01-07 | リンテック株式会社 | Surface protective film |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6744071B2 (en) * | 2002-01-28 | 2004-06-01 | Nichia Corporation | Nitride semiconductor element with a supporting substrate |
TWI509637B (en) * | 2008-12-26 | 2015-11-21 | Teijin Ltd | Transparent conductive laminates and transparent touch panels |
CN102348827B (en) * | 2009-03-13 | 2015-04-29 | 住友金属矿山株式会社 | Transparent conductive film and transparent conductive film laminate, processes for production of same, and silicon thin film solar cell |
JP5922008B2 (en) * | 2012-11-30 | 2016-05-24 | 富士フイルム株式会社 | TRANSFER FILM AND TRANSPARENT LAMINATE, ITS MANUFACTURING METHOD, CAPACITANCE TYPE INPUT DEVICE, AND IMAGE DISPLAY DEVICE |
JP6129769B2 (en) * | 2013-05-24 | 2017-05-17 | 富士フイルム株式会社 | Transparent conductive film for touch panel, method for manufacturing transparent conductive film, touch panel and display device |
-
2017
- 2017-01-16 JP JP2017562798A patent/JP6588992B2/en not_active Expired - Fee Related
- 2017-01-16 CN CN201780005003.6A patent/CN108475142B/en not_active Expired - Fee Related
- 2017-01-16 WO PCT/JP2017/001165 patent/WO2017126454A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003188576A (en) * | 2001-12-19 | 2003-07-04 | Dainippon Printing Co Ltd | Electromagnetic wave shield sheet |
JP2014199762A (en) * | 2013-03-29 | 2014-10-23 | 株式会社カネカ | Substrate for touch panel provided with transparent electrode and quality management method for the same |
WO2016002974A2 (en) * | 2014-07-03 | 2016-01-07 | リンテック株式会社 | Surface protective film |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020026103A (en) * | 2018-08-14 | 2020-02-20 | 住友ベークライト株式会社 | Resin sheet laminate and protective film set |
JP7151263B2 (en) | 2018-08-14 | 2022-10-12 | 住友ベークライト株式会社 | Resin sheet laminate and protective film set |
EP4026692A4 (en) * | 2019-10-23 | 2022-11-16 | Nissha Co., Ltd. | Touch sensor |
Also Published As
Publication number | Publication date |
---|---|
CN108475142B (en) | 2021-05-11 |
JPWO2017126454A1 (en) | 2018-11-29 |
CN108475142A (en) | 2018-08-31 |
JP6588992B2 (en) | 2019-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7544786B2 (en) | Conductive film for touch panel and touch panel using same | |
JP5808966B2 (en) | Conductive laminate, touch panel and display device | |
JP6858261B2 (en) | Conductive member for touch panel and touch panel | |
JP5827749B2 (en) | Capacitive touch panel, method for manufacturing the same, and input device | |
JP5318998B2 (en) | Conductive sheet and touch panel | |
WO2015146289A1 (en) | Touch panel module and electronic apparatus | |
JP6757417B2 (en) | Touch panel laminates, flexible devices, organic electroluminescent display devices | |
JP5638027B2 (en) | Conductive sheet and capacitive touch panel | |
WO2013089085A1 (en) | Conductive sheet and touch panel | |
US10042497B2 (en) | Sheet-like conductor and touch panel using same | |
CN109564488B (en) | Conductive film and touch panel | |
JP5748647B2 (en) | Conductive sheet and touch panel | |
JPWO2019021760A1 (en) | Conductive member for touch panel and touch panel | |
CN107407981B (en) | Touch panel | |
JP6588992B2 (en) | Conductive film laminate | |
WO2014061591A1 (en) | Electrically conductive sheet, and touch panel | |
JP2019152898A (en) | Conductive sheet for touch panel, manufacturing method of conductive sheet for touch panel and touch panel | |
JP2012218402A (en) | Transparent conductive sheet, photosensitive material for manufacturing the same, method of manufacturing the transparent conductive sheet, and capacitance type touch panel using the transparent conductive sheet | |
JP6235993B2 (en) | Film material and method for producing conductive material | |
WO2018207579A1 (en) | Composite member and touch panel | |
JP2020194196A (en) | Conductive film for touch panel, conductive member and touch panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17741332 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017562798 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17741332 Country of ref document: EP Kind code of ref document: A1 |