WO2017126421A1 - 多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体 - Google Patents

多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体 Download PDF

Info

Publication number
WO2017126421A1
WO2017126421A1 PCT/JP2017/000967 JP2017000967W WO2017126421A1 WO 2017126421 A1 WO2017126421 A1 WO 2017126421A1 JP 2017000967 W JP2017000967 W JP 2017000967W WO 2017126421 A1 WO2017126421 A1 WO 2017126421A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon material
filter
plant
specific gravity
Prior art date
Application number
PCT/JP2017/000967
Other languages
English (en)
French (fr)
Inventor
宏史 武隈
山田 心一郎
和浩 木村
拓洋 石井
丹羽 勝也
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016256447A external-priority patent/JP6175552B2/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020187023303A priority Critical patent/KR102636938B1/ko
Priority to MYPI2018702471A priority patent/MY186965A/en
Priority to CN201780007080.5A priority patent/CN108473319A/zh
Priority to EP17741301.0A priority patent/EP3406566A4/en
Priority to US16/070,303 priority patent/US20190023578A1/en
Publication of WO2017126421A1 publication Critical patent/WO2017126421A1/ja
Priority to US17/380,665 priority patent/US20210347642A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents

Definitions

  • the present invention relates to a porous carbon material, a production method thereof, a filter, a sheet, and a catalyst carrier.
  • Porous carbon materials typified by activated carbon include plant raw materials (for example, wood pulp, coconut shells, rice husks, etc.), mineral raw materials (for example, coal, tar, petroleum pitch, etc.), and synthetic resins as raw materials.
  • plant raw materials for example, wood pulp, coconut shells, rice husks, etc.
  • mineral raw materials for example, coal, tar, petroleum pitch, etc.
  • synthetic resins as raw materials.
  • a plant-derived porous carbon material for example, after carbonizing a plant-derived material, it is obtained by treating with an acid or an alkali, and a specific surface area value by nitrogen BET method is 10 m 2 / gram or more, containing silicon
  • a porous carbon material having a rate of 1% by weight or less and a pore volume of 0.1 cm 3 / gram or more is disclosed (see Patent Document 1).
  • porous carbon materials carbon materials with developed mesopores are excellent in adsorption of large molecules and high-speed adsorption ability.
  • a porous carbon material has many voids and a small bulk specific gravity, for example, when emphasizing the performance per volume of a filter cartridge or the like, compared with general activated carbon derived from coconut shells. Only 1/5 to 1/4 weight can be filled. For this reason, carbon materials with developed mesopores have excellent adsorption characteristics per weight, but in many cases they do not show their superiority when viewed per volume. There was a problem that it was difficult to do.
  • An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention provides a porous carbon material having a large bulk specific gravity while developing mesopores, a method for producing the same, and a filter, a filter cartridge, a sheet, and a catalyst carrier using the porous carbon material. The purpose is to do.
  • Means for solving the problems are as follows. That is, ⁇ 1> The particle diameter is 10 ⁇ m or more and 1 cm or less, The bulk specific gravity is 0.20 g / cm 3 or more, and the mesopore volume is 0.10 cm 3 / g or more. It is a porous carbon material characterized by this. ⁇ 2> The porous carbon material according to ⁇ 1>, which is made of a plant-derived material. ⁇ 3> The porous carbon material according to ⁇ 2>, wherein the plant-derived material is rice husk. ⁇ 4> A filter comprising the porous carbon material according to any one of ⁇ 1> to ⁇ 3>. ⁇ 5> The filter according to ⁇ 4>, which is for water purification.
  • ⁇ 6> The filter according to ⁇ 4>, which is for air purification.
  • a filter cartridge comprising the filter according to any one of ⁇ 4> to ⁇ 6>.
  • a sheet comprising the porous carbon material according to any one of ⁇ 1> to ⁇ 3>.
  • a catalyst carrier comprising the porous carbon material according to any one of ⁇ 1> to ⁇ 3>.
  • ⁇ 11> The method for producing a porous carbon material according to ⁇ 10>, wherein the plant-derived material is rice husk.
  • ⁇ 12> The process according to any one of ⁇ 10> to ⁇ 11>, wherein the step of obtaining the molded product is a step of pressure-molding the plant-derived material having a moisture content of 3% by mass to 30% by mass. It is a manufacturing method of a porous carbon material.
  • the conventional problems can be solved, the object can be achieved, and a porous carbon material having a large bulk specific gravity while developing mesopores, a method for producing the same, and the porous material
  • a filter using a carbon material, a filter cartridge, a sheet, and a catalyst carrier can be provided.
  • FIG. 1 is a graph showing the relationship between the particle diameter and bulk specific gravity of Example 1 and Comparative Example 1.
  • FIG. 2 is a graph showing the residual chlorine removal performance of Example 1 and Comparative Example 1.
  • FIG. 3 is a graph showing the residual chlorine removal performance of Example 2 and Comparative Example 2.
  • the porous carbon material of the present invention satisfies the following (1) to (3).
  • the particle size is 10 ⁇ m or more and 1 cm or less.
  • the bulk specific gravity is 0.20 g / cm 3 or more.
  • the mesopore volume is 0.1 cm 3 / g or more.
  • the porous carbon material having a particle diameter of less than 10 ⁇ m is difficult to have a large bulk specific gravity (for example, 0.2 g / cm 3 or more).
  • the porous carbon material having a particle diameter of more than 1 cm tends to increase the time required for ash removal by acid treatment or alkali treatment, and the production efficiency decreases.
  • the particle size can be determined, for example, by using a laser diffraction / scattering particle size distribution measuring apparatus LA-950 (manufactured by HORIBA). Using LA-950, the particle size distribution is measured in the range of particle size of 0.01 ⁇ m to 3,000 ⁇ m by a wet method.
  • the particle diameter refers to the particle diameter (median diameter) corresponding to the median value of the distribution in the particle diameter distribution in which the horizontal axis represents the particle diameter and the vertical axis represents the number frequency.
  • the bulk density of the porous carbon material is at 0.20 g / cm 3 or more, 0.20 g / cm 3 or more 0.40 g / cm 3 or less is preferred, 0.20 g / cm 3 or more 0.35 g / cm 3
  • a porous carbon material having developed mesopores that is, a mesopore volume of 0.1 cm 3 / g or more
  • a porous carbon material having developed mesopores generally has a bulk specific gravity of about 0.10 g / cm 3 . Therefore, when viewed per volume, superiority such as adsorption of large molecules and excellent high-speed adsorption ability cannot be exhibited.
  • the bulk specific gravity is 0.20 g / cm 3 or more, advantages such as adsorption of large molecules and excellent high-speed adsorption ability can be exhibited, both by volume and by weight.
  • Bulk specific gravity refers to the specific gravity (mass per unit volume) obtained by dividing the mass of the powder into a predetermined shape by, for example, dropping the powder into a fixed volume container and filling it, etc., by the volume at that time. ), The smaller the bulk specific gravity, the larger the bulk.
  • the mesopore volume of the porous carbon material is at 0.1 cm 3 / g or more, 0.1 cm 3 / g or more 0.3 cm 3 / g or less is preferable, 0.1 cm 3 / g or more 0.2 cm 3 / g or less is more preferable. If the mesopore volume is less than 0.1 cm 3 / g, it is difficult to say that mesopores are developed, and superiority such as adsorption of large molecules and excellent high-speed adsorption ability cannot be obtained. On the other hand, if the mesopore volume is too large, it is difficult to obtain a large bulk specific gravity.
  • the porous carbon material has many pores.
  • the pores are classified into mesopores, micropores, and macropores.
  • the mesopore refers to a pore having a pore diameter of 2 nm to 50 nm
  • the micropore refers to a pore having a pore diameter smaller than 2 nm
  • the macropore refers to a pore having a pore diameter larger than 50 nm.
  • the mesopore volume can be measured using, for example, the following apparatus.
  • Nitrogen adsorption isotherm can be measured using 3FLEX manufactured by Micromeritex Japan GK and calculated by BJH method.
  • the BJH method is widely used as a pore distribution analysis method. When performing pore distribution analysis based on the BJH method, first, a desorption isotherm is obtained by adsorbing and desorbing nitrogen as an adsorbed molecule on an adsorbent (porous carbon material).
  • a pore distribution curve can be obtained by plotting the pore volume change rate (dV p / dr p ) against the pore diameter (2r p ) from the pore radius and pore volume (BELSORP-mini manufactured by Nippon Bell Co., Ltd.). And BELSORP analysis software manual, pages 85-88).
  • V pn pore volume when the n-th attachment / detachment of nitrogen occurs
  • dV n amount of change at that time
  • dt n change in the thickness t n of the adsorption layer when the n-th attachment / detachment of nitrogen occurs
  • Amount r kn Core radius at that time c: Fixed value r pn : Pore radius when the nth attachment / detachment of nitrogen occurs.
  • the mesopore volume can be measured using 3FLEX prepared by preparing 30 mg of a porous carbon material and setting the relative pressure (P / P0) in the range of 0.0000001 to 0.995.
  • the raw material of the porous carbon material is preferably a plant-derived material.
  • it When it is derived from a plant, it becomes easy to adjust the mesopore volume value to the desired value. Moreover, there exists an advantage derived from a plant also at a point with little environmental impact.
  • rice husks such as rice (rice), barley, wheat, rye, rice bran, millet
  • cocoons cocoons and stem wakame
  • vascular plants fern plants, moss plants, algae, and seaweeds that are vegetated on land.
  • these materials may be used independently as a raw material, and multiple types may be mixed and used.
  • shape and form of the plant-derived material are not particularly limited, and may be, for example, rice husk or straw itself, or may be a dried product.
  • what processed various processes can also be used in food-drinks processing, such as beer and western liquor.
  • food-drinks processing such as beer and western liquor.
  • straws and rice husks after processing such as threshing from the viewpoint of recycling industrial waste.
  • These processed straws and rice husks can be easily obtained in large quantities from, for example, agricultural cooperatives, liquor manufacturers, and food companies.
  • the method for producing the porous carbon material is not particularly limited and may be appropriately selected depending on the intended purpose. However, the method for producing a porous carbon material described later is preferable.
  • the method for producing a porous carbon material of the present invention includes a molded product production process, a carbide production process, and an activation process, preferably includes a deashing process, and further includes other processes as necessary.
  • the method for producing the porous carbon material is a method for producing the porous carbon material of the present invention.
  • the molded product production step is not particularly limited as long as it is a step in which a plant-derived material is pressure-molded to obtain a molded product, and can be appropriately selected according to the purpose.
  • the plant-derived material is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include the plant-derived material exemplified in the description of the porous carbon material. Among these, rice husk is preferable in that a desired porous carbon material can be easily produced.
  • the shape of the molded product is not particularly limited and can be appropriately selected depending on the purpose.
  • the pressure molding for example, a pelletizer generally used for molding of biomass is used, and the ground rice husk is 3% by mass to 30% by mass, preferably 5% by mass to 20% by mass. Moisture is added to achieve moisture content. Since the pressure at this time is determined by the frictional resistance between the mold and the rice husk when passing through the molding machine, it is desirable to adjust the amount of water according to the size of the molded product. In the pressure molding, heat may be generated by friction, but heat may be further applied by a heating device. By appropriately adjusting moisture, pressure, and heat, water-soluble components contained in the plant-derived material are extracted, and it is assumed that the powders adhere to each other to form a molded product.
  • the carbide production step is not particularly limited as long as it is a step of carbonizing (carbonizing) the molded product to obtain a carbide (carbonaceous material), and can be appropriately selected according to the purpose.
  • the carbonization (carbonization) generally means that an organic substance (in the present invention, a plant-derived material) is heat-treated to convert it into a carbonaceous substance (see, for example, JIS M0104-1984).
  • the atmosphere for carbonization can include an atmosphere in which oxygen is blocked. Specifically, the atmosphere is a vacuum atmosphere, an inert gas atmosphere such as nitrogen gas or argon gas, and the molded product is a kind of steamed state. An atmosphere can be mentioned.
  • the upper limit of the carbonization time can be 10 hours, preferably 7 hours, more preferably 5 hours, but is not limited thereto.
  • the lower limit of the carbonization time may be a time during which the molded product is reliably carbonized.
  • Examples of the heat treatment temperature include 300 ° C. to 1,000 ° C.
  • the activation step is not particularly limited as long as it is a step for activating the carbide, and can be appropriately selected according to the purpose. Examples thereof include a gas activation method and a chemical activation method.
  • activation means developing the pore structure of the carbon material and adding pores.
  • the gas activation method uses oxygen, water vapor, carbon dioxide gas, air, or the like as an activator, and heats the carbide for several tens of minutes to several hours, for example, at 700 ° C. to 1,000 ° C. By doing so, the microstructure is developed by the volatile components and carbon molecules in the carbide.
  • the heating temperature may be appropriately selected based on the type of plant-derived material, the type and concentration of gas, and is preferably 800 ° C. to 950 ° C.
  • the chemical activation method is activated with zinc chloride, iron chloride, calcium phosphate, calcium hydroxide, magnesium carbonate, potassium carbonate, sulfuric acid, etc., instead of oxygen and water vapor used in the gas activation method, and washed with hydrochloric acid. In this method, the pH is adjusted with an alkaline aqueous solution and dried.
  • the deashing step is not particularly limited as long as it is a step of removing ash in the carbide, and can be appropriately selected according to the purpose. For example, a method of immersing the carbide in an acid aqueous solution or an alkali aqueous solution Etc. Before the deashing step, it is preferable that the carbide is pulverized so that the carbide easily penetrates into the aqueous acid solution or the aqueous alkali solution.
  • the rice husk is pressure-molded and heated in a nitrogen stream at 500 ° C. for 5 hours to carbonize to obtain a carbide. Thereafter, 10 g of this carbide is put in an alumina crucible and heated to 1,000 ° C. at a temperature rising rate of 5 ° C./min in a nitrogen stream (10 liters / min). And after carbonizing at 1,000 degreeC for 5 hours and converting into a carbonaceous substance (porous carbon material precursor), it cools to room temperature. In addition, nitrogen gas is kept flowing during carbonization and cooling.
  • the carbonaceous material is coarsely pulverized to a size of 1 cm or less that is easily alkali-treated, and ash content in the material is removed with a 1 mol% aqueous sodium hydroxide solution. Thereafter, the material is washed to remove alkali on the surface of the material, and further washed. Thereafter, the material is heat-treated at 950 ° C. in a steam atmosphere to obtain a plant-derived porous carbon material having a high bulk specific gravity.
  • seat of this invention has the said porous carbon material of this invention, and also has another member as needed.
  • the sheet can be obtained, for example, by wet papermaking a powder containing the porous carbon material.
  • the powder containing the porous carbon material is mixed and sheared using a device such as a pulper, beater, or refiner to produce a uniformly dispersed slurry, and the resulting slurry is placed on a wire at a predetermined flow rate. What is necessary is just to adjust to arbitrary basic weight by pouring and dehydrating.
  • the sheet may be produced by a known technique such as drying the sheet with a dryer part through a press part, smoothing the surface of the sheet with a calendar part, and winding it with a reel.
  • the thickness of the sheet may be adjusted to an arbitrary thickness with a hot press roller or the like.
  • the filter of this invention has the said porous carbon material of this invention, and also has another member as needed.
  • the said filter is used as a filter for water purification, a filter for air purification, etc., for example.
  • the filter is obtained, for example, by molding the sheet.
  • a molding method for obtaining the filter for example, a method of winding the sheet of the present invention and heat-treating it into a columnar or cylindrical filter, or laminating sheets and punching into an arbitrary shape and a filter
  • it is not limited to these.
  • the filter cartridge of the present invention includes at least the filter of the present invention, and further includes other members such as a housing as necessary.
  • the filter is accommodated in the housing, for example.
  • the housing includes, for example, a housing body, a fluid inflow portion, and a fluid outflow portion.
  • the fluid inflow portion is provided in the housing main body and is capable of inflowing a fluid to be filtered.
  • the fluid outflow portion is provided in the housing main body and can flow out the filtered fluid.
  • the catalyst carrier of the present invention includes the porous carbon material of the present invention, and further includes other members as necessary.
  • the catalyst carrier is the porous carbon material itself.
  • the catalyst carrier can hold a large amount of a catalyst such as a noble metal. Therefore, the catalyst support formed by supporting the catalyst on the catalyst support can promote various chemical reactions and improve the yield.
  • porous carbon material of the present invention can be used for capacitor electrode materials, various adsorbents, masks, adsorbing sheets and the like.
  • the particle diameter, bulk specific gravity, and mesopore volume were measured by the methods described above. Residual chlorine removal performance was measured by the following water flow test.
  • Example 1 Rice husk was used as a raw material.
  • the crushed rice husk was molded with an S-5 type flat die pelletizer manufactured by Shinko Koki Co., Ltd. so that the molded product had a diameter of 6 mm and a length of several mm to several tens of meters, to obtain a molded product.
  • Table 1 shows the moisture content at the time of molding, the bulk specific gravity of the molded product, and the state of the molded product.
  • molding was adjusted with spraying water to a raw material with a spray and the spraying amount in that case.
  • the moisture content (% by mass) is the amount of moisture contained in the raw material, and was measured with a heat drying moisture meter. Specifically, ML-50 manufactured by A & D was used, and 1 g of the sample was dried at 150 ° C. for 20 minutes, and the moisture content was measured by the change in weight before and after drying. For example, when 1.0 g of the sample is 0.9 g after drying, the moisture content is 10% by mass.
  • the produced molded product having a water content of 16% by mass was heated at 600 ° C. for 3 hours under a nitrogen stream to obtain a carbide.
  • the carbide was roughly pulverized to a size of about 2 mm, then immersed in a 1 mol% aqueous sodium hydroxide solution to remove ash, and then washed.
  • activation was performed by heating at 950 ° C. for 3.5 hours in a steam atmosphere to obtain a porous carbon material.
  • the obtained porous carbon material was pulverized with a sieve and classified with a sieve.
  • the relationship between a particle diameter and bulk specific gravity was calculated
  • the obtained porous carbon material was pulverized with a sieve and classified with a sieve.
  • the relationship between a particle diameter and bulk specific gravity was calculated
  • the porous carbon material of Comparative Example 1 (existing porous carbon material) has a bulk specific gravity of 0.10 g / cm 3 regardless of the particle diameter, whereas the porous carbon material of Example 1
  • the carbon material clearly has a larger bulk specific gravity than the existing porous carbon material in the region where the particle diameter is 10 ⁇ m or more.
  • the bulk specific gravity was about three times that of the comparative example. Since the bulk specific gravity is about 3 times, the filling weight in the same container is also increased. For example, when used in a water purifier, the water purification performance is greatly improved.
  • the result of having investigated the residual chlorine removal performance in the same volume by the above-mentioned method is shown in FIG.
  • the adsorption capacity is increased. Therefore, for example, the amount of water per material volume at which the removal rate decreases to 80% or less is 27 L / mL in Comparative Example 1.
  • the removal rate still exceeds 80% even when the amount of water flow per material volume exceeds 100 L / mL. This indicates that the lifetime as a residual chlorine removal filter is increased by about four times.
  • Example 2 In Example 1, a porous carbon material was produced in the same manner as in Example 1 except that the activation time was changed from 3.5 hours to 3 hours. Table 4 shows the specific surface area and mesopore volume of the obtained porous carbon material. In addition, the value of the particle diameter and bulk specific gravity in Example 2 was equivalent to Example 1 (FIG. 1).
  • Comparative Example 2 In Comparative Example 1, a porous carbon material was produced in the same manner as Comparative Example 1 except that the activation time was changed from 3.5 hours to 2.5 hours. Table 4 shows the specific surface area and mesopore volume of the obtained porous carbon material. In addition, the value of the particle diameter and bulk specific gravity in the comparative example 2 was equivalent to the comparative example 1 (FIG. 1).
  • Example 2 and Comparative Example 2 the result of having investigated the residual chlorine removal performance in the same volume by the above-mentioned method is shown in FIG.
  • Example 2 and Comparative Example 2 having different specific surface areas and mesopore volumes, the same results as in Example 1 and Comparative Example 1 were obtained.
  • the porous carbon material of the present invention has large mesopores and large bulk specific gravity, it can be used for filters, capacitor electrode materials, various adsorbents, masks, adsorption sheets, catalyst carriers, and the like.

Abstract

粒子径が、10μm以上1cm以下であり、嵩比重が、0.20g/cm以上であり、かつメソ孔容積が、0.10cm/g以上である多孔質炭素材料である。

Description

多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体
 本発明は、多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体に関する。
 活性炭に代表される多孔質炭素材料は、植物性原料(例えば、木材パルプ、ヤシ殻、籾殻等)、鉱物性原料(例えば、石炭、タール、石油ピッチ等)、更には合成樹脂等を原料とした炭素化物を、高温下でガスや薬品で処理して賦活化することにより微細孔が形成されて、得られる。この微細孔は炭素内部に網目状に構成されており、その微細孔が大きい表面積を生じさせることから、前記多孔質炭素材料は吸着能に優れている。そのため、前記多孔質炭素材料は、従来から悪臭の除去、液中の不純物除去、溶剤蒸気の回収、除去などの各種用途に広く使用されている。更には、前記多孔質炭素材料は、触媒を担持するための触媒用担体にも使用されている。
 植物由来の多孔質炭素材料として、例えば、植物由来の材料を炭素化した後、酸又はアルカリで処理することにより得られ、窒素BET法による比表面積の値が10m/グラム以上、ケイ素の含有率が1重量%以下、かつ細孔の容積が0.1cm/グラム以上ある多孔質炭素材料が開示されている(特許文献1参照)。
特開2008-273816号公報
 多孔質炭素材料の中でも、メソ孔が発達した炭素材料は、大きな分子の吸着や、高速吸着能に優れる。しかし、そのような多孔質炭素材料は、空隙が多く、嵩比重が小さいため、例えば、フィルターカードリッジ等の体積あたりでの性能を重視する場合、一般的なヤシ殻由来の活性炭と比較して1/5~1/4の重量しか充填できない。
 そのため、メソ孔が発達した炭素材料は、重量あたりでの吸着特性には優れるものの、体積あたりで見るとその優位性が発揮できないケースが多く、フィルターカードリッジなどとしての性能を従来品以上に発揮する事が難しいという問題があった。
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。
 即ち、本発明は、メソ孔が発達しつつも、嵩比重が大きい多孔質炭素材料、及びその製造方法、並びに前記多孔質炭素材料を用いたフィルター、フィルターカートリッジ、シート、及び触媒用担体を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 <1> 粒子径が、10μm以上1cm以下であり、
 嵩比重が、0.20g/cm以上であり、かつ
 メソ孔容積が、0.10cm/g以上である、
ことを特徴とする多孔質炭素材料である。
 <2> 植物由来の材料からなる前記<1>に記載の多孔質炭素材料である。
 <3> 前記植物由来の材料が、籾殻である前記<2>に記載の多孔質炭素材料である。
 <4> 前記<1>から<3>のいずれかに記載の多孔質炭素材料を有することを特徴とするフィルターである。
 <5> 浄水用である前記<4>に記載のフィルターである。
 <6> 空気浄化用である前記<4>に記載のフィルターである。
 <7> 前記<4>から<6>のいずれかに記載のフィルターを有することを特徴とするフィルターカートリッジである。
 <8> 前記<1>から<3>のいずれかに記載の多孔質炭素材料を有することを特徴とするシートである。
 <9> 前記<1>から<3>のいずれかに記載の多孔質炭素材料を有することを特徴とする触媒用担体である。
 <10> 前記<1>から<3>のいずれかに記載の多孔質炭素材料の製造方法であって、
 植物由来の材料を加圧成型し、成型物を得る工程と、
 前記成型物を炭化し、炭化物を得る工程と、
 前記炭化物を賦活する工程と、
を含むことを特徴とする多孔質炭素材料の製造方法である。
 <11> 前記植物由来の材料が、籾殻である前記<10>に記載の多孔質炭素材料の製造方法である。
 <12> 前記成型物を得る工程が、含水率が3質量%以上30質量%以下の前記植物由来の材料を加圧成型する工程である前記<10>から<11>のいずれかに記載の多孔質炭素材料の製造方法である。
 本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、メソ孔が発達しつつも、嵩比重が大きい多孔質炭素材料、及びその製造方法、並びに前記多孔質炭素材料を用いたフィルター、フィルターカートリッジ、シート、及び触媒用担体を提供することができる。
図1は、実施例1及び比較例1の粒子径と嵩比重との関係を示すグラフである。 図2は、実施例1及び比較例1の残留塩素除去性能を示すグラフである。 図3は、実施例2及び比較例2の残留塩素除去性能を示すグラフである。
(多孔質炭素材料)
 本発明の多孔質炭素材料は、以下の(1)~(3)を満たす。
 (1)粒子径が、10μm以上1cm以下である。
 (2)嵩比重が、0.20g/cm以上である。
 (3)メソ孔容積が、0.1cm/g以上である。
<粒子径>
 前記粒子径が10μm未満の多孔質炭素材料は、嵩比重が大きく(例えば、0.2g/cm以上に)なりにくい。前記粒子径が1cmを超える多孔質炭素材料は、酸処理又はアルカリ処理による灰分除去に要する時間が長くなりやすく、製造効率が低下する。
 前記粒子径は、例えば、レーザ回折/散乱式粒子径分布測定装置LA-950(HORIBA社製)を使用することにより求めることができる。LA-950を用いて、湿式法により粒子径0.01μm~3,000μmの範囲で粒子径分布を測定する。前記粒子径とは、横軸を粒子径、縦軸を個数頻度でプロットした粒子径分布において、分布の中央値に対応した粒子径(メジアン径)をいう。
<嵩比重>
 前記多孔質炭素材料の嵩比重は、0.20g/cm以上であり、0.20g/cm以上0.40g/cm以下が好ましく、0.20g/cm以上0.35g/cm以下がより好ましい。
 メソ孔が発達した(即ち、メソ孔容積が0.1cm/g以上の)多孔質炭素材料は、一般的に、嵩比重が0.10g/cm程度である。そのため、体積あたりで見ると、大きな分子の吸着や、高速吸着能に優れるといった優位性が発揮できない。一方、嵩比重が0.20g/cm以上であると、体積あたりで見ても、重量あたりで見ても、大きな分子の吸着や、高速吸着能に優れるといった優位性が発揮できる。
 嵩比重とは、粉末を一定容積の容器の中に自然落下させて充填する等して、所定形状にした粉末の質量を、そのときの体積で除算して求められる比重(単位体積あたりの質量)をいい、嵩比重が小さいほど嵩張る。
<メソ孔容積>
 前記多孔質炭素材料のメソ孔容積は、0.1cm/g以上であり、0.1cm/g以上0.3cm/g以下が好ましく、0.1cm/g以上0.2cm/g以下がより好ましい。前記メソ孔容積が、0.1cm/g未満であると、メソ孔が発達しているとは言い難く、大きな分子の吸着や、高速吸着能に優れるといった優位性が得られない。一方、前記メソ孔容積が、大きすぎると、大きい嵩比重が得られにくい。
 前記多孔質炭素材料は、細孔(ポア)を多く有している。細孔は、メソ孔、マイクロ孔、マクロ孔に分類される。ここで、メソ孔は孔径が2nm~50nmの細孔をいい、マイクロ孔は孔径が2nmよりも小さい細孔をいい、マクロ孔は孔径が50nmよりも大きい細孔をいう。
 前記メソ孔容積は、例えば、以下の装置を使用して測定することができる。
 マイクロメリテックスジャパン合同会社製の3FLEXを使用して、窒素吸着等温線を測定し、BJH法で算出することができる。
 前記BJH法は、細孔分布解析法として広く用いられている方法である。BJH法に基づき細孔分布解析をする場合、先ず、吸着剤(多孔質炭素材料)に吸着分子として窒素を吸脱着させることにより、脱着等温線を求める。そして、求められた脱着等温線に基づき、細孔が吸着分子(例えば窒素)によって満たされた状態から吸着分子が段階的に着脱する際の吸着層の厚さ、及び、その際に生じた孔の内径(コア半径の2倍)を求め、式(1)に基づき細孔半径rを算出し、式(2)に基づき細孔容積を算出する。そして、細孔半径及び細孔容積から細孔径(2r)に対する細孔容積変化率(dV/dr)をプロットすることにより細孔分布曲線が得られる(日本ベル株式会社製BELSORP-mini及びBELSORP解析ソフトウェアのマニュアル、第85頁~第88頁参照)。
 r=t+r                (1)
 Vpn=R・dV-R・dt・c・ΣApj  (2)
 但し、R=rpn /(rkn-1+dt       (3)
 ここで、
 r:細孔半径
 r:細孔半径rの細孔の内壁にその圧力において厚さtの吸着層が吸着した場合のコア半径(内径/2)
 Vpn:窒素の第n回目の着脱が生じたときの細孔容積
 dV:そのときの変化量
 dt:窒素の第n回目の着脱が生じたときの吸着層の厚さtの変化量
 rkn:その時のコア半径
 c:固定値
 rpn:窒素の第n回目の着脱が生じたときの細孔半径
である。また、ΣApjは、j=1からj=n-1までの細孔の壁面の面積の積算値を表す。
[具体的な測定方法]
 多孔質炭素材料を30mg用意し、相対圧(P/P0)0.0000001から0.995の範囲を測定する条件に設定した3FLEXを使用して、メソ孔容積を測定することができる。
<多孔質炭素材料の原材料>
 前記多孔質炭素材料の原材料は、植物由来の材料であることが好ましい。植物由来であると、メソ孔容積値を上記所望の値に調整することが容易となる。また、環境負荷が少ない点でも、植物由来とする利点がある。
 前記植物由来の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、米(稲)、大麦、小麦、ライ麦、稗(ヒエ)、粟(アワ)等の籾殻や藁、あるいは、葦、茎ワカメを挙げることができる。更には、例えば、陸上に植生する維管束植物、シダ植物、コケ植物、藻類、海草を挙げることができる。尚、これらの材料を、原料として、単独で用いてもよいし、複数種を混合して用いてもよい。また、植物由来の材料の形状や形態も特に限定はなく、例えば、籾殻や藁そのものでもよいし、あるいは乾燥処理品でもよい。更には、ビールや洋酒等の飲食品加工において、発酵処理、焙煎処理、抽出処理等の種々の処理を施されたものを使用することもできる。特に、産業廃棄物の資源化を図るという観点から、脱穀等の加工後の藁や籾殻を使用することが好ましい。これらの加工後の藁や籾殻は、例えば、農業協同組合や酒類製造会社、食品会社から、大量、且つ、容易に入手することができる。
 前記多孔質炭素材料の製造方法としては、特に制限はなく、目的に応じて適宜選択することができるが、後述する多孔質炭素材料の製造方法が好ましい。
(多孔質炭素材料の製造方法)
 本発明の多孔質炭素材料の製造方法は、成型物作製工程と、炭化物作製工程と、賦活工程とを含み、好ましくは脱灰分工程を含み、更に必要に応じて、その他の工程を含む。
 前記多孔質炭素材料の製造方法は、本発明の前記多孔質炭素材料を製造する方法である。
<成型物作製工程>
 前記成型物作製工程としては、植物由来の材料を加圧成型し、成型物を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記植物由来の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記多孔質炭素材料の説明で例示した前記植物由来の材料が挙げられる。これらの中でも、所望の多孔質炭素材料を製造しやすい点で、籾殻が好ましい。
 前記成型物の形状としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記加圧成型においては、例えば、バイオマスの成型に一般的に使われているペレタイザーを用いて行い、すり潰した籾殻を3質量%以上30質量%以下、好ましくは5質量%以上20質量%以下の含水率になるよう水分を加え成型する。この時の圧力は成型機を通過する際の金型と籾殻の摩擦抵抗によって決まるため、成型物の大きさによって水分量を調整することが望ましい。
 また、前記加圧成型において、摩擦により熱が発生することがあるが、さらに加熱装置により熱を加えても良い。
 水分と圧力と熱とを適度に調整することにより、前記植物由来の材料中に含まれる水溶性成分が抽出され、これが粉体同士を接着し、成型物ができると推測される。
 前記植物由来の材料を加圧成型することにより、加圧成型しない場合に比べて、メソ孔が発達しつつも、嵩比重が大きい多孔質炭素材料が得られる。
<炭化物作製工程>
 前記炭化物作製工程としては、前記成型物を炭化(炭素化)し、炭化物(炭素質物質)を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記炭化(炭素化)とは、一般に、有機物質(本発明においては、植物由来の材料)を熱処理して炭素質物質に変換することを意味する(例えば、JIS M0104-1984参照)。尚、炭素化のための雰囲気として、酸素を遮断した雰囲気を挙げることができ、具体的には、真空雰囲気、窒素ガスやアルゴンガスといった不活性ガス雰囲気、前記成型物を一種の蒸し焼き状態とする雰囲気を挙げることができる。炭素化温度に至るまでの昇温速度として、係る雰囲気下、1℃/分以上、好ましくは3℃/分以上、より好ましくは5℃/分以上を挙げることができる。また、炭素化時間の上限として、10時間、好ましくは7時間、より好ましくは5時間を挙げることができるが、これに限定するものではない。炭素化時間の下限は、前記成型物が確実に炭素化される時間とすればよい。
 前記熱処理の温度としては、例えば、300℃~1,000℃などが挙げられる。
<賦活工程>
 前記賦活工程としては、前記炭化物を賦活する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガス賦活法、薬品賦活法などが挙げられる。
 ここで、賦活とは、炭素材料の細孔構造を発達させ、細孔を付加することをいう。
 前記ガス賦活法とは、賦活剤として酸素や水蒸気、炭酸ガス、空気等を用い、係るガス雰囲気下、例えば、700℃~1,000℃にて、数十分~数時間、前記炭化物を加熱することにより、前記炭化物中の揮発成分や炭素分子により微細構造を発達させる方法である。尚、加熱温度は、植物由来の材料の種類、ガスの種類や濃度等に基づき、適宜、選択すればよいが、好ましくは、800℃~950℃である。
 前記薬品賦活法とは、ガス賦活法で用いられる酸素や水蒸気の替わりに、塩化亜鉛、塩化鉄、リン酸カルシウム、水酸化カルシウム、炭酸マグネシウム、炭酸カリウム、硫酸等を用いて賦活させ、塩酸で洗浄、アルカリ性水溶液でpHを調整し、乾燥させる方法である。
<脱灰分工程>
 前記脱灰分工程としては、前記炭化物中の灰分を除去する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸水溶液又はアルカリ水溶液に前記炭化物を浸漬する方法などが挙げられる。
 前記脱灰分工程の前は、前記炭化物を粉砕して、前記炭化物を酸水溶液又はアルカリ水溶液が浸透し易い大きさにすることが好ましい。
 前記多孔質炭素材料の製造方法の一例を以下に示す。
 籾殻を加圧成型したものを、窒素気流中において500℃、5時間、加熱することにより炭化させ炭化物を得る。その後、この炭化物の10gをアルミナ製の坩堝に入れ、窒素気流中(10リットル/分)において5℃/分の昇温速度で1,000℃まで昇温させる。そして、1,000℃で5時間、炭素化して、炭素質物質(多孔質炭素材料前駆体)に変換した後、室温まで冷却する。尚、炭素化及び冷却中、窒素ガスを流し続ける。次に、炭素質物質をアルカリ処理がしやすい1cm以下の大きさに粗粉砕し、1mol%の水酸化ナトリウム水溶液で材料内の灰分を除去する。その後、材料を洗浄し材料表面のアルカリを除去し、更に洗浄する。その後、材料を水蒸気雰囲気下で950℃の熱処理をして嵩比重の高い植物由来の多孔質炭素材料を得る。
(シート)
 本発明のシートは、本発明の前記多孔質炭素材料を有し、更に必要に応じて、その他の部材を有する。
 前記シートは、例えば、前記多孔質炭素材料を含有する粉末を、湿式抄紙することによって得られる。例えば、前記多孔質炭素材料を含有する粉末を、パルパー、ビーター、リファイナーなどの装置を用いて混合、せん断し、均一に分散したスラリーを作製し、得られたスラリーを所定の流量でワイヤー上に流し、脱水することで、任意の坪量に調整すればよい。その後プレスパートを経てドライヤーパートでシートを乾燥し、カレンダーパートでシート表面を平滑にしてからリールで巻き取るなどの公知の技術でシートを製造すればよい。シートの厚みは熱プレスローラーなどで任意の厚みに調整するなどすればよい。
(フィルター)
 本発明のフィルターは、本発明の前記多孔質炭素材料を有し、更に必要に応じて、その他の部材を有する。
 前記フィルターは、例えば、浄水用フィルター、空気浄化用フィルターなどとして用いられる。
 前記フィルターは、例えば、前記シートを成型して得られる。
 前記フィルターを得るための成型法としては、例えば、本発明の前記シートを捲回し、熱処理して円柱状あるいは円筒状のフィルターとする方法、あるいはシートを積層して任意の形状に打ち抜いてフィルターとする方法などが挙げられるが、これらに限定されるものではない。
(フィルターカートリッジ)
 本発明のフィルターカートリッジは、本発明の前記フィルターを少なくとも有し、更に必要に応じて、ハウジングなどのその他の部材を有する。
 前記フィルターは、例えば、前記ハウジングに収容される。
 前記ハウジングは、例えば、ハウジング本体と、流体流入部と、流体流出部とを有する。
 前記流体流入部は、前記ハウジング本体に設けられ、被濾過流体を流入可能である。
 前記流体流出部は、前記ハウジング本体に設けられ、濾過された流体を流出可能である。
(触媒用担体)
 本発明の触媒用担体は、本発明の前記多孔質炭素材料を有し、更に必要に応じて、その他の部材を有する。
 例えば、前記触媒用担体は、前記多孔質炭素材料自体である。
 前記触媒用担体は、貴金属等の触媒を多量に保持できる。そのため、前記触媒用担体に触媒を担持してなる触媒担持体は、各種化学反応を促進し、収率を向上できる。
 また、本発明の前記多孔質炭素材料は、上記以外にも、キャパシタの電極材料、各種吸着剤、マスク、吸着シート等に使用することができる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
 本実施例において、粒子径、嵩比重、メソ孔容積は、前述の方法で測定した。
 残留塩素除去性能は、以下の通水試験により測定した。
<通水試験、及び残留塩素測定>
 実施例、比較例共に10meshの篩いを通過し、かつ32meshの篩を通過しなかった試料をカラムに充填し、入口の残留塩素濃度0.5±0.1mg/Lで送液し、空間速度SV=2000/hで通水試験を行った。
 o-トリジン法によって435nmの発色を分光光度計で測定して、カラム通過後の液中の遊離残留塩素を定量した。
(実施例1)
 原材料として籾殻を用いた。粉砕した籾殻を、成型物の直径が6mm、長さ数mm~数十mとなるよう、新興工機株式会社製S-5型フラットダイ式ペレタイザーで成型し、成型物を得た。成型時の含水率と成型物の嵩比重、成型物の状態を表1に示した。
 なお、成型時の含水率は、原材料に霧吹きで水を噴霧すること、及びその際の噴霧量により調整した。
Figure JPOXMLDOC01-appb-T000001
 含水率(質量%)とは、原材料に含まれる水分量であり、加熱乾燥式水分計により測定した。具体的には、エー・アンド・デイ社のML-50を用い、試料1gを150℃で20分乾燥させ、乾燥前後の重量変化によって含水率を測定した。例えば、試料1.0gが乾燥後に0.9gになっている場合、含水率は10質量%である。
 次に、作製した含水率16質量%の成型物を、窒素気流下、600℃で3時間加熱し、炭化物を得た。
 次に、炭化物を、2mm程度の大きさに粗粉砕した後に、1mol%の水酸化ナトリウム水溶液に浸漬して、灰分を除去した後、洗浄した。
 次に、水蒸気雰囲気下、950℃で3.5時間加熱して賦活化を行い、多孔質炭素材料を得た。
 得られた多孔質炭素材料をらいかい機により粉砕し、篩により分級した。
 分級後の多孔質炭素材料について、粒子径と、嵩比重との関係を求め、図1に示した。
 また、分級後の多孔質炭素材料の比表面積、メソ孔容積を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 尚、図1にプロットした各粒子径のサンプル全てについて、比表面積とメソ孔容積は同一であった。
(比較例1)
 原材料として籾殻を用いた。
 次に、籾殻を窒素気流下、600℃で3時間加熱し、炭化物を得た。
 次に、炭化物を1mol%の水酸化ナトリウム水溶液に浸漬して、灰分を除去した後、洗浄した。
 次に、水蒸気雰囲気下、950℃で3時間加熱して賦活化を行い、多孔質炭素材料を得た。
 得られた多孔質炭素材料をらいかい機により粉砕し、篩により分級した。
 分級後の多孔質炭素材料について、粒子径と、嵩比重との関係を求め、図1に示した。
 また、分級後の多孔質炭素材料の比表面積、メソ孔容積を、表3に示した。
Figure JPOXMLDOC01-appb-T000003
 尚、図1にプロットした各粒子径のサンプル全てについて、比表面積とメソ孔容積は同一であった。
 図1より、比較例1の多孔質炭素材料(既存の多孔質炭素材料)は、粒子径に関係なく、嵩比重が0.10g/cmであるのに対して、実施例1の多孔質炭素材料は、粒子径が10μm以上の領域で、既存の多孔質炭素材料よりも明らかに嵩比重が大きくなっていた。
 特に粒子径が100μm以上の領域では、嵩比重が比較例の約3倍になっていた。嵩比重が約3倍になっているため、同一容器内の充填重量も大きくなり、例えば、浄水用フルターに用いた場合、浄水性能が大幅に向上する。
 また、前述の方法で、同一体積での残留塩素除去性能を調べた結果を、図2に示す。
 嵩比重を改善したことにより、吸着容量が上がる。そのため、例えば、除去率が80%以下に低下する材料体積あたりの通水量は、比較例1が27L/mLである。それに対して、実施例1では材料体積あたりの通水量が100L/mLを超えてもまだ除去率は80%を超えている。これは、残留塩素除去フィルターとしての寿命が4倍程度長くなることを示している。
(実施例2)
 実施例1において、賦活化の時間を、3.5時間から3時間に変更した以外は、実施例1と同様にして、多孔質炭素材料を作製した。得られた多孔質炭素材料の比表面積、及びメソ孔容積を表4に示した。
 尚、実施例2における粒子径と嵩比重の値は、実施例1(図1)と同等であった。
(比較例2)
 比較例1において、賦活化の時間を、3.5時間から2.5時間に変更した以外は、比較例1と同様にして、多孔質炭素材料を作製した。得られた多孔質炭素材料の比表面積、及びメソ孔容積を表4に示した。
 尚、比較例2における粒子径と嵩比重の値は、比較例1(図1)と同等であった。
 また、実施例2及び比較例2で得られた多孔質炭素材料について、また、前述の方法で、同一体積での残留塩素除去性能を調べた結果を、図3に示す。
比表面積、及びメソ孔容積が異なる実施例2、及び比較例2においても実施例1、及び比較例1と同様の結果が得られた。
Figure JPOXMLDOC01-appb-T000004
 本発明の多孔質炭素材料は、メソ孔が発達しつつも、嵩比重が大きいため、フィルター、キャパシタの電極材料、各種吸着剤、マスク、吸着シート、触媒用担体等に使用することができる。

Claims (12)

  1.  粒子径が、10μm以上1cm以下であり、
     嵩比重が、0.20g/cm以上であり、かつ
     メソ孔容積が、0.10cm/g以上である、
    ことを特徴とする多孔質炭素材料。
  2.  植物由来の材料からなる請求項1に記載の多孔質炭素材料。
  3.  前記植物由来の材料が、籾殻である請求項2に記載の多孔質炭素材料。
  4.  請求項1から3のいずれかに記載の多孔質炭素材料を有することを特徴とするフィルター。
  5.  浄水用である請求項4に記載のフィルター。
  6.  空気浄化用である請求項4に記載のフィルター。
  7.  請求項4から6のいずれかに記載のフィルターを有することを特徴とするフィルターカートリッジ。
  8.  請求項1から3のいずれかに記載の多孔質炭素材料を有することを特徴とするシート。
  9.  請求項1から3のいずれかに記載の多孔質炭素材料を有することを特徴とする触媒用担体。
  10.  請求項1から3のいずれかに記載の多孔質炭素材料の製造方法であって、
     植物由来の材料を加圧成型し、成型物を得る工程と、
     前記成型物を炭化し、炭化物を得る工程と、
     前記炭化物を賦活する工程と、
    を含むことを特徴とする多孔質炭素材料の製造方法。
  11.  前記植物由来の材料が、籾殻である請求項10に記載の多孔質炭素材料の製造方法。
  12.  前記成型物を得る工程が、含水率が3質量%以上30質量%以下の前記植物由来の材料を加圧成型する工程である請求項10から11のいずれかに記載の多孔質炭素材料の製造方法。
PCT/JP2017/000967 2016-01-19 2017-01-13 多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体 WO2017126421A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187023303A KR102636938B1 (ko) 2016-01-19 2017-01-13 다공질 탄소 재료, 및 그 제조 방법, 그리고 필터, 시트 및 촉매용 담체
MYPI2018702471A MY186965A (en) 2016-01-19 2017-01-13 Porous carbon material, method for manufacturing same, filter, sheet, and catalyst carrier
CN201780007080.5A CN108473319A (zh) 2016-01-19 2017-01-13 多孔质碳材料及其制造方法、以及过滤器、片材和催化剂用载体
EP17741301.0A EP3406566A4 (en) 2016-01-19 2017-01-13 POROUS CARBON MATERIAL, METHOD FOR THE MANUFACTURE THEREOF, FILTER, FOIL AND CATALYST SUPPORT
US16/070,303 US20190023578A1 (en) 2016-01-19 2017-01-13 Porous Carbon Material, Method for Manufacturing Same, Filter, Sheet, and Catalyst Carrier
US17/380,665 US20210347642A1 (en) 2016-01-19 2021-07-20 Porous Carbon Material, Method for Manufacturing Same, Filter, Sheet, and Catalyst Carrier

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016007915 2016-01-19
JP2016-007915 2016-01-19
JP2016-256447 2016-12-28
JP2016256447A JP6175552B2 (ja) 2016-01-19 2016-12-28 多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/070,303 A-371-Of-International US20190023578A1 (en) 2016-01-19 2017-01-13 Porous Carbon Material, Method for Manufacturing Same, Filter, Sheet, and Catalyst Carrier
US17/380,665 Division US20210347642A1 (en) 2016-01-19 2021-07-20 Porous Carbon Material, Method for Manufacturing Same, Filter, Sheet, and Catalyst Carrier

Publications (1)

Publication Number Publication Date
WO2017126421A1 true WO2017126421A1 (ja) 2017-07-27

Family

ID=59361703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000967 WO2017126421A1 (ja) 2016-01-19 2017-01-13 多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体

Country Status (2)

Country Link
MY (1) MY186965A (ja)
WO (1) WO2017126421A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297912A (ja) * 1997-02-26 1998-11-10 Kanebo Ltd メソポアカーボンおよびその製造方法
JP2005087993A (ja) * 2003-08-12 2005-04-07 Toray Ind Inc 燃料電池用触媒組成物
JP2007141857A (ja) * 2006-12-28 2007-06-07 Aisin Seiki Co Ltd 燃料電池システム
JP2008535754A (ja) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド 多孔性カーボン材料ならびに当該材料を含む喫煙品および煙用フィルター
JP2008273816A (ja) 2007-04-04 2008-11-13 Sony Corp 多孔質炭素材料及びその製造方法、並びに、吸着剤、マスク、吸着シート及び担持体
JP2009072712A (ja) * 2007-09-21 2009-04-09 Japan Energy Corp 炭化水素油中の微量成分を除去する吸着剤の製造方法及び吸着剤
JP2012520230A (ja) * 2009-03-11 2012-09-06 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド ミクロ孔炭素内にメソ細孔を増加させる方法
JP2012179589A (ja) * 2011-02-10 2012-09-20 Sony Corp 汚染物質除去剤、炭素/ポリマー複合体、汚染物質除去シート部材及び濾材
JP2013203614A (ja) * 2012-03-29 2013-10-07 Japan Enviro Chemicals Ltd 活性炭及びその製造方法
JP2014511322A (ja) * 2010-12-28 2014-05-15 エナジー2 テクノロジーズ,インコーポレイテッド 電気化学特性が向上した炭素材料

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10297912A (ja) * 1997-02-26 1998-11-10 Kanebo Ltd メソポアカーボンおよびその製造方法
JP2005087993A (ja) * 2003-08-12 2005-04-07 Toray Ind Inc 燃料電池用触媒組成物
JP2008535754A (ja) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド 多孔性カーボン材料ならびに当該材料を含む喫煙品および煙用フィルター
JP2007141857A (ja) * 2006-12-28 2007-06-07 Aisin Seiki Co Ltd 燃料電池システム
JP2008273816A (ja) 2007-04-04 2008-11-13 Sony Corp 多孔質炭素材料及びその製造方法、並びに、吸着剤、マスク、吸着シート及び担持体
JP2009072712A (ja) * 2007-09-21 2009-04-09 Japan Energy Corp 炭化水素油中の微量成分を除去する吸着剤の製造方法及び吸着剤
JP2012520230A (ja) * 2009-03-11 2012-09-06 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド ミクロ孔炭素内にメソ細孔を増加させる方法
JP2014511322A (ja) * 2010-12-28 2014-05-15 エナジー2 テクノロジーズ,インコーポレイテッド 電気化学特性が向上した炭素材料
JP2012179589A (ja) * 2011-02-10 2012-09-20 Sony Corp 汚染物質除去剤、炭素/ポリマー複合体、汚染物質除去シート部材及び濾材
JP2013203614A (ja) * 2012-03-29 2013-10-07 Japan Enviro Chemicals Ltd 活性炭及びその製造方法

Also Published As

Publication number Publication date
MY186965A (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP6175552B2 (ja) 多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体
Islam et al. Adsorption capability of activated carbon synthesized from coconut shell
Ma Comparison of activated carbons prepared from wheat straw via ZnCl 2 and KOH activation
JP7255647B2 (ja) 機能性材料が付着された材料及びその製造方法、浄水器及びその製造方法 、浄水器カートリッジ及びその製造方法、空気清浄機及びその製造方法、フィルター部材及びその製造方法、支持部材及びその製造方法、発泡ポリウレタンフォーム及びその製造方法、ボトル及びその製造方法、容器及びその製造方法、キャップ又は蓋から成る部材及びその製造方法、固形化された多孔質炭素材料又は該多孔質炭素材料の粉砕品と結着剤とから成る材料及びその製造方法、並びに、多孔質炭素材料及びその製造方法
Gao et al. Adsorption of methylene blue onto activated carbon produced from tea (Camellia sinensis L.) seed shells: kinetics, equilibrium, and thermodynamics studies
Deng et al. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—application in methylene blue adsorption from aqueous solution
Goscianska et al. Adsorption of solophenyl red 3BL polyazo dye onto amine-functionalized mesoporous carbons
Paredes-Laverde et al. Selective removal of acetaminophen in urine with activated carbons from rice (Oryza sativa) and coffee (Coffea arabica) husk: Effect of activating agent, activation temperature and analysis of physical-chemical interactions
Tounsadi et al. Experimental design for the optimization of preparation conditions of highly efficient activated carbon from Glebionis coronaria L. and heavy metals removal ability
JP6290900B2 (ja) 浄水器用活性炭
Kong et al. Highly adsorptive mesoporous carbon from biomass using molten-salt route
Manap et al. Adsorption isotherm and kinetic study of gas-solid system of formaldehyde on oil palm mesocarp bio-char: pyrolysis effect
WO2018056126A1 (ja) 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒
Aremu et al. Improved phenol sequestration from aqueous solution using silver nanoparticle modified Palm Kernel Shell Activated Carbon
Somyanonthanakun et al. Studies on the adsorption of Pb (II) from aqueous solutions using sugarcane bagasse-based modified activated carbon with nitric acid: kinetic, isotherm and desorption
Joshi et al. Sodium hydroxide activated nanoporous carbons based on Lapsi seed stone
Aldawsari et al. Development of activated carbon from Phoenix dactylifera fruit pits: process optimization, characterization, and methylene blue adsorption
Luka et al. The promising precursors for development of activated carbon: Agricultural waste materials-A review
Joshi Optimization of Conditions for the Preparation of Activated Carbon from Lapsi (Choerospondias axillaris) Seed Stone Using ZnCl 2.
CN110479209A (zh) 一种天然矿物/活性炭复合材料及其制备方法
Nuilerd et al. Pellet activated carbon production using parawood charcoal from gasifier by KOH activation for adsorption of iron in water.
WO2017126421A1 (ja) 多孔質炭素材料、及びその製造方法、並びにフィルター、シート、及び触媒用担体
Thithai et al. Physicochemical properties of activated carbon produced from corn stover by chemical activation under various catalysts and temperatures
Heidarinejad et al. Production of KOH-activated carbon from date press cake: effect of the activating agent on its properties and Pb (II) adsorption potential
WO2020065930A1 (ja) 活性炭、及び該活性炭の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741301

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187023303

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187023303

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2017741301

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017741301

Country of ref document: EP

Effective date: 20180820