WO2017126206A1 - 装置、方法及びプログラム - Google Patents

装置、方法及びプログラム Download PDF

Info

Publication number
WO2017126206A1
WO2017126206A1 PCT/JP2016/083971 JP2016083971W WO2017126206A1 WO 2017126206 A1 WO2017126206 A1 WO 2017126206A1 JP 2016083971 W JP2016083971 W JP 2016083971W WO 2017126206 A1 WO2017126206 A1 WO 2017126206A1
Authority
WO
WIPO (PCT)
Prior art keywords
subsymbols
subcarriers
odd
filter
unit
Prior art date
Application number
PCT/JP2016/083971
Other languages
English (en)
French (fr)
Inventor
吉澤 淳
眞田 幸俊
優香 圓城寺
雄太 赤井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to AU2016387773A priority Critical patent/AU2016387773B2/en
Priority to BR112018014420-7A priority patent/BR112018014420A2/pt
Priority to US16/069,081 priority patent/US10505771B2/en
Priority to EP19218846.4A priority patent/EP3654602B1/en
Priority to JP2017562449A priority patent/JP6828694B2/ja
Priority to EP16886445.2A priority patent/EP3407554B1/en
Priority to CN201680078839.4A priority patent/CN108476191B/zh
Publication of WO2017126206A1 publication Critical patent/WO2017126206A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26416Filtering per subcarrier, e.g. filterbank multicarrier [FBMC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26534Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/2654Filtering per subcarrier, e.g. filterbank multicarrier [FBMC]

Definitions

  • the present disclosure relates to an apparatus, a method, and a program.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM is resistant to multipath propagation paths, and by employing CP (Cyclic Prefix), it is possible to avoid the occurrence of intersymbol interference due to multipath delay waves.
  • CP Cyclic Prefix
  • a disadvantage of OFDM is that the level of out-of-band radiation is large.
  • PAPR Peak-to-Average Power Ratio
  • This modulation technique introduces a new concept of sub-symbols and divides one symbol into an arbitrary number of sub-symbols, thereby enabling flexible symbol time and frequency design.
  • this modulation technology can reduce the radiation of unnecessary signals outside the band by applying a pulse shaping filter to the symbol, thereby improving the frequency utilization efficiency.
  • This modulation technique enables flexible resource setting by introducing sub-symbols, it becomes a means for realizing diversity that will be required in the future.
  • UF-OFDM Universal Filtered-OFDM
  • UFMC Universal Filtered Multi-Carrier
  • FBMC Fan Bank Multi-Carrier
  • GOFDM Generalized OFDM
  • this modulation technique can be said to be generalized OFDM, it may also be called GFDM (Generalized Frequency Division Multiplexing), and this name is adopted in this specification.
  • Basic techniques related to GFDM are disclosed in, for example, Patent Document 1 and Non-Patent Document 1 below.
  • setting of a sub symbol length and setting of a sub carrier frequency that is, setting of the number of sub symbols and the number of sub carriers in a unit resource can be flexibly set.
  • the resource setting is substantially limited. For this reason, it is desirable to provide a mechanism capable of successfully demodulating on the receiving side even if the restriction on resource settings is released.
  • At least one of the number of subcarriers or the number of subsymbols included in a unit resource including one or more subcarriers or one or more subsymbols is variably set, and the subcarriers included in the unit resource are configured.
  • An apparatus comprising a processing unit that sets filter coefficients to be applied according to different rules depending on whether the number of symbols is even or odd.
  • an apparatus comprising: a processing unit that sets a filter coefficient to be performed according to a different rule depending on whether the number of sub-symbols included in the unit resource is an even number or an odd number.
  • At least one of the number of subcarriers or the number of subsymbols included in a unit resource composed of one or more subcarriers or one or more subsymbols is variably set and included in the unit resource Set by the processor filter coefficients to be applied according to different rules depending on whether the number of subsymbols is even or odd.
  • a filter coefficient is set by a processor according to different rules depending on whether the number of sub-symbols included in the unit resource is even or odd.
  • the computer variably sets at least one of the number of subcarriers or the number of subsymbols included in a unit resource composed of one or more subcarriers or one or more subsymbols, and the unit A program for functioning as a processing unit that sets filter coefficients to be applied according to different rules depending on whether the number of sub-symbols included in a resource is an even number or an odd number is provided.
  • the computer is transmitted with at least one of the number of subcarriers or the number of subsymbols included in a unit resource including one or more subcarriers or one or more subsymbols variably set.
  • elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numerals.
  • a plurality of elements having substantially the same functional configuration are differentiated as necessary, such as the terminal devices 200A, 200B, and 200C.
  • the terminal devices 200A, 200B, and 200C are simply referred to as the terminal device 200 when it is not necessary to distinguish between them.
  • FIG. 1 is an explanatory diagram for explaining the concept of symbols in GFDM.
  • Reference numeral 10 indicates a radio resource per symbol of OFDM.
  • the radio resource indicated by reference numeral 10 includes a number of subcarriers in the frequency direction while one symbol section is occupied by a single symbol.
  • a CP is added for each symbol.
  • Reference numeral 12 denotes a radio resource in a section corresponding to one OFDM symbol in an SC-FDM (Single Carrier Frequency Division Multiplexing) signal.
  • the radio resource indicated by reference numeral 12 is occupied by a single symbol over the carrier frequency, but has a shorter symbol length than OFDM and includes a large number of symbols in the time direction.
  • Reference numeral 11 denotes a radio resource in a section corresponding to one OFDM symbol in GFDM.
  • the radio resource indicated by reference numeral 11 has an intermediate structure between the radio resource indicated by reference numeral 10 and the radio resource indicated by reference numeral 12. That is, in GFDM, a section corresponding to one OFDM symbol is divided into an arbitrary number of sub-symbols, and accordingly, the number of subcarriers is smaller than that of OFDM.
  • Such a radio resource structure allows a symbol length to be changed by a parameter, and can provide a more flexible transmission format.
  • FIG. 2 is a diagram illustrating an example of a configuration example of a transmission apparatus that supports GFDM.
  • the transmission apparatus performs mapping of input data in order to apply filtering corresponding to the variably set number of subcarriers and number of subsymbols. Note that the mapping for the sub-symbol here has an effect equivalent to performing oversampling as compared with OFDM.
  • the transmission apparatus applies a pulse shaping filter to a predetermined number of subcarriers and a predetermined number of subsymbols (more specifically, a predetermined filter coefficient is multiplied).
  • the transmitter generates a symbol by performing frequency-time conversion on the pulse-shaped waveform.
  • the transmission device adds a CP, applies a DAC (Digital to Analog Converter), and outputs an RF (Radio Frequency) signal to the high frequency circuit.
  • DAC Digital to Analog Converter
  • GFDM modulation is expressed by the following equation.
  • K is the number of subcarriers
  • M is the number of subsymbols
  • d k, m is input data corresponding to the mth subsymbol of the kth subcarrier
  • g k, m [n] is a filter coefficient.
  • the nth output sample value x [n] of the GFDM symbol is obtained by multiplying the mapped input data by the corresponding GFDM coefficients and then summing all of them.
  • the filter coefficient changes according to the above equation (2), and a total of N sample values are obtained per symbol.
  • a time waveform sample value oversampled K times with respect to the sub-symbol is generated.
  • the transmitting apparatus performs D / A conversion on the GFDM symbol obtained in this way, performs desired amplification and frequency conversion by a high-frequency circuit, and then transmits from the antenna.
  • an RC filter Raised Cosine Filter
  • an RRC filter Root Raised Cosine Filter
  • an IOTA filter Isotropic Orthogonal Transfer Algorithm filter
  • This transformation matrix A is a square matrix having a complex number element of size KM * KM.
  • the number of subsymbols is the number of subsymbols included in a unit resource (for example, the radio resource shown in FIG. 1).
  • the number of subcarriers is the number of subcarriers included in the unit resource.
  • the frequency domain GFDM is a modulation method in which input data is converted into the frequency domain, a pulse shaping filter is applied in the frequency domain, and then mapping to subcarriers is performed.
  • the matrix related to the GFDM modulation processing is a matrix in which many elements are zero, and high-speed arithmetic processing such as FFT (Fast Fourier Transform) and IFFT (Inverse FFT) can be used for domain conversion. It becomes. Therefore, the transmission apparatus can perform GFDM modulation with a small calculation amount.
  • FFT Fast Fourier Transform
  • IFFT Inverse FFT
  • “*” in the above formula (4) represents a cyclic convolution with a period KM.
  • the above equation (4) represents the kth subcarrier component.
  • the above equation (5) represents mapping K subcarrier components in a predetermined band.
  • the above equation (4) is transformed into the following equation, taking into account the transformation from the time domain to the frequency domain by FFT and the transformation from the frequency domain to the time domain by IFFT.
  • the above formula (6) represents that the pulse shaping filter is applied in the frequency domain.
  • the transformation matrix A has a full rank that can be demodulated on the receiving side, but the demodulated data has a significant bit error rate degradation There is a problem that occurs.
  • the present embodiment provides a mechanism for successful demodulation on the receiving side even if the number of subsymbols is an odd number.
  • FIG. 4 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to an embodiment of the present disclosure.
  • the system 1 includes a base station 100 and a terminal device 200.
  • the terminal device 200 is also called a user.
  • the user may also be called user equipment (UE).
  • the UE here may be a UE defined in LTE or LTE-A, and may more generally mean a communication device.
  • Base station 100 is a base station of a cellular system (or mobile communication system).
  • the base station 100 performs wireless communication with a terminal device (for example, the terminal device 200) located in the cell 101 of the base station 100.
  • a terminal device for example, the terminal device 200
  • the base station 100 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • Terminal device 200 The terminal device 200 can communicate in a cellular system (or mobile communication system).
  • the terminal device 200 performs wireless communication with a base station (for example, the base station 100) of the cellular system.
  • a base station for example, the base station 100
  • the terminal device 200 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • the base station 100 performs wireless communication with a plurality of terminal devices by orthogonal multiple access / non-orthogonal multiple access. More specifically, the base station 100 performs wireless communication with a plurality of terminal devices 200 by multiplexing / multiple access using GFDM.
  • the base station 100 performs wireless communication with a plurality of terminal devices 200 by multiplexing / multiple access using GFDM in the downlink. More specifically, for example, the base station 100 multiplexes signals to a plurality of terminal devices 200 using GFDM. In this case, for example, the terminal device 200 removes one or more other signals as interference from the multiplexed signal including the desired signal (that is, the signal to the terminal device 200), and decodes the desired signal.
  • the desired signal that is, the signal to the terminal device 200
  • the base station 100 may perform wireless communication with a plurality of terminal apparatuses by multiplexing / multiple access using GFDM instead of the downlink or together with the downlink.
  • the base station 100 may decode each of the signals from a multiplexed signal including signals transmitted by the plurality of terminal devices.
  • This technology can also be applied to multi-cell systems such as HetNet (Heterogeneous Network) or SCE (Small Cell Enhancement).
  • HetNet Heterogeneous Network
  • SCE Small Cell Enhancement
  • the present technology can also be applied to an MTC device, an IoT device, and the like.
  • FIG. 5 is a block diagram illustrating an exemplary configuration of the base station 100 according to an embodiment of the present disclosure.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals.
  • the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • Storage unit 140 The storage unit 140 temporarily or permanently stores a program for operating the base station 100 and various data.
  • Processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes a transmission processing unit 151 and a filter setting unit 153.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • FIG. 6 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • Storage unit 230 The storage unit 230 temporarily or permanently stores a program for operating the terminal device 200 and various data.
  • the processing unit 240 provides various functions of the terminal device 200.
  • the processing unit 240 includes a reception processing unit 241 and a filter setting unit 243.
  • the processing unit 240 may further include other components than this component. In other words, the processing unit 240 can perform operations other than the operation of this component.
  • reception processing unit 241 and the filter setting unit 243 The functions of the reception processing unit 241 and the filter setting unit 243 will be described in detail later.
  • the base station 100 (for example, the transmission processing unit 151) performs GFDM modulation. That is, the base station 100 variably sets at least one of the number of subcarriers or the number of subsymbols included in a unit resource composed of one or more subcarriers or one or more subsymbols. Then, the base station 100 performs filtering by a pulse shaping filter for each subcarrier (that is, multiplies by a filter coefficient).
  • the base station 100 performs GFDM modulation in the framework of the frequency domain GFDM. That is, the base station 100 applies upsampling in the frequency domain, and performs filtering using the filter coefficient after the upsampling. This makes it possible to perform GFDM modulation with a small amount of calculation.
  • FIG. 7 is a block diagram illustrating an example of the configuration of the transmission apparatus (that is, the base station 100) according to the present embodiment.
  • FIG. 7 shows a configuration example in the case of MIMO (multiple-input and multiple-output).
  • the transmission device may be a symbol (for example, a complex symbol) from FEC (Forward Error Correction) coding, rate matching, scrambling, interleaving, and a bit sequence for each transmission data to be multiplexed.
  • Perform mapping Constellation Mapping
  • the transmission apparatus multiplexes by transmission layer mapping and performs precoding for each multiplexed signal.
  • the subsequent processing is performed for each multiplexed signal.
  • the transmission device performs GFDM modulation on each multiplexed signal, performs signal processing by analog FE (Front End), and transmits a radio signal from the antenna.
  • the analog FE may correspond to the wireless communication unit 120, the antenna may correspond to the antenna unit 110, and other components may correspond to the processing unit 150. Of course, any other corresponding relationship is allowed.
  • FIG. 8 is a block diagram showing an example of the configuration of a GFDM modulator in the frequency domain GFDM.
  • the GFDM modulator divides the input signal into K subcarriers to make M complex signals, respectively, and converts them into the frequency domain by applying FFT to each.
  • the GFDM converter then applies upsampling to each frequency domain signal and applies a pulse shaping filter.
  • the setting of the filter coefficient of the pulse shaping filter will be described in detail later.
  • the upsampling ratio is 2, and an RC filter or RRC filter is used as the pulse shaping filter.
  • the upsampling ratio may be a value other than 2, and an arbitrary filter may be used as the pulse shaping filter.
  • the GFDM converter maps the filtered signal to the frequency of the corresponding subcarrier.
  • the GFDM converter frequency-multiplexes the K signals generated in this way, converts the signals into a time domain signal by IFFT, and generates and outputs a GFDM modulated signal.
  • the GFDM modulation in the frequency domain GFDM described above can be represented by the following equivalent matrix expression.
  • L represents an upsample ratio (that is, an oversample ratio) in upsampling.
  • W H KM represents the IFFT of KM * KM.
  • P (k) represents a frequency mapping matrix of KM * LM corresponding to the kth subcarrier.
  • ⁇ (L) represents a filter coefficient matrix of a pulse shaping filter of LM * LM.
  • R (L) represents an LM * M upsampling matrix.
  • W M represents M * M FFT.
  • a transformation matrix A F in the frequency domain GFDM is expressed by the following equation.
  • the matrix A ′ F that determines regular / non-regularity of the transformation matrix A F becomes irregular and there is no inverse matrix. Therefore, demodulation on the receiving side is difficult.
  • the base station 100 determines whether the number of sub-symbols included in a unit resource is an even number or an odd number.
  • the filter coefficient to be applied to the transmission signal (more specifically, the signal in the frequency domain mapped to each subcarrier) is set according to different rules according to.
  • the rule when the number is odd is also referred to as a first rule
  • the rule when the number is even is also referred to as a second rule.
  • the base station 100 sets a value obtained by sampling the prototype filter at a predetermined interval (that is, sampling frequency) from a predetermined position (that is, sampling start position) on the frequency axis as a filter coefficient.
  • Base station 100 samples the prototype filter at equal intervals by the number of products of the upsampling oversample ratio and the number of subsymbols.
  • the sampling start position differs depending on whether the number of sub-symbols included in the unit resource is an even number or an odd number. That is, the sampling start position differs between the first rule and the second rule.
  • the sampling start position when the number of subsymbols is odd is the default position. This is because when the number of sub-symbols is odd, the transformation matrix A F is regular and an inverse matrix exists even if the default position is maintained. Note that the default position is the period start position of the sampling angular frequency (ie, ⁇ ).
  • the sampling start position when the number of subsymbols is an even number is a position obtained by adding an offset to the default position.
  • the offset may correspond to 1/2 of the sample frequency related to sampling from the prototype filter. This maximizes the difference in filter coefficients applied at frequencies that overlap or are close to each other in the signals corresponding to each of the two adjacent subcarriers, so that interference between subcarriers can be minimized. It becomes. As a result, the bit error rate is not significantly degraded, and the decoding performance on the receiving side is improved. This point will be described later in detail with reference to FIG.
  • FIGS. 9 to 13 show the frequency characteristics of the prototype filter, the horizontal axis is frequency, the vertical axis is amplitude value, and the amplitude value at the sampled position is adopted as the filter coefficient.
  • FIG. 9 is a diagram showing an example of frequency characteristics of the prototype filter of the pulse shaping filter.
  • an RC filter is used as a pulse shaping filter will be described as an example.
  • the frequency characteristic changes depending on the value of the roll-off factor ⁇ .
  • 0.9 as an example.
  • the value of ⁇ may be other than 0.9.
  • This matrix A ′ F is full rank and is therefore regular. Thus, when the number of subsymbols M is an odd number, demodulation on the receiving side is successful.
  • This matrix A ′ F has rank 3 and is not full rank. Accordingly, since there is no inverse matrix, the receiving side fails in demodulation.
  • the base station 100 employs a sampled value shifted by an offset (ie, 1 ⁇ 2 sample frequency) as a filter coefficient.
  • an offset ie, 1 ⁇ 2 sample frequency
  • four filter coefficient values [0.117, 0.883, 0.883, 0.117] are obtained as shown in FIG.
  • sampling is started from a position obtained by adding an offset corresponding to a 1 ⁇ 2 sample frequency to the default position of ⁇ .
  • the matrix A ′ F is expressed by the following equation.
  • This matrix A ′ F has a rank of 4 and a full rank. Therefore, since the inverse matrix exists, demodulation at the receiving side is successful. Further, with reference to FIG. 13, the advantage of the offset being 1/2 sample frequency will be described.
  • FIG. 13 is a diagram illustrating a relationship between filter coefficients applied to each of signals corresponding to two adjacent subcarriers when the offset is 1 ⁇ 2 of the sample frequency.
  • Reference numeral 301 indicates the frequency characteristics of the prototype filter and the filter coefficient of the pulse shaping filter applied to the signal corresponding to the first subcarrier. The values of the frequencies ⁇ and ⁇ and the sampling index m for the code 301 are underlined.
  • Reference numeral 302 indicates the frequency characteristics of the prototype filter and the filter coefficient of the pulse shaping filter applied to the signal corresponding to the second subcarrier adjacent to the first subcarrier. The values of the frequencies ⁇ and ⁇ and the sampling index m relating to the reference numeral 302 are overlined. As shown in FIG.
  • the prototype filter indicated by reference numeral 301 and the prototype filter indicated by reference numeral 302 have some frequencies overlapping. However, the filter coefficients applied at the overlapping or near frequencies of the signals corresponding to the first or second subcarrier are different. The smaller value of the differences 311 and 312 between the filter coefficients applied in the overlapping or near frequencies of the signals corresponding to the first or second subcarriers has an offset of 1 ⁇ 2 sample frequency. The case will be the largest. For this reason, when the offset is a 1 ⁇ 2 sample frequency, the interference between subcarriers is the lowest, so that the bit error rate is not significantly deteriorated, and the decoding performance on the receiving side is improved.
  • the base station 100 can successfully perform demodulation on the reception side by providing an offset at the sampling start position in the second rule. .
  • the bandwidth (that is, 2 ⁇ ) of the pulse shaping filter is applied to a band obtained by expanding the original subcarrier bandwidth f sub by L times. That is, the following equation holds.
  • the sample frequency (that is, sampling interval) f s corresponds to a width obtained by dividing the filter bandwidth into LM as shown in the following equation.
  • the 1 ⁇ 2 sample frequency is ⁇ / 4.
  • this 1 ⁇ 2 sample frequency is expressed by the following equation using the subcarrier frequency (that is, the bandwidth of the subcarrier).
  • the offset when the number of subsymbols is an even number corresponds to a value obtained by dividing the subcarrier frequency by a multiple of the number of subsymbols M. It should be noted that the offset does not depend on the oversampling ratio L, but is a value that depends only on the subcarrier frequency and the number of subsymbols M.
  • FIG. 14 is a flowchart showing an example of the flow of transmission processing executed in the base station 100 according to the present embodiment.
  • the transmission processing unit 151 sets the number of subsymbols and the number of subcarriers (step S102).
  • the filter setting unit 153 sets a filter coefficient based on the setting of the number of subsymbols (Step S104). Specifically, the filter setting unit 153 sets the filter coefficient sampled from the prototype filter according to the first rule when the number of subsymbols is odd, and according to the second rule when the number of subsymbols is even.
  • the transmission processing unit 151 applies FFT to the signal that has been subjected to each process from FEC encoding to precoding shown in FIG. 7 to convert the signal into a frequency domain signal (step S106).
  • the transmission processing unit 151 divides the input signal into K subcarriers to form M complex signals, and applies FFT to each of them. And convert it to the frequency domain.
  • the transmission processing unit 151 applies upsampling to each frequency domain signal (step S108), and performs filtering using the filter coefficient set in step S104 (step S110).
  • the transmission processing unit 151 performs frequency multiplexing by mapping each signal after filtering to the frequency of the corresponding subcarrier (step S112).
  • the transmission processing unit 151 converts the frequency-multiplexed signal into a time domain signal by IFFT (step S114) and transmits the signal (step S116).
  • the process ends.
  • step S104 Next, the flow of processing in step S104 will be described with reference to FIG.
  • FIG. 15 is a flowchart illustrating an example of the flow of filter coefficient setting processing executed in the base station 100 according to the present embodiment.
  • the terminal device 200 receives a signal transmitted by GFDM modulation and performs GFDM demodulation. That is, terminal apparatus 200 receives a signal transmitted with at least one of the number of subcarriers or the number of subsymbols included in a unit resource composed of one or more subcarriers or one or more subsymbols variably set. And demodulate and acquire data. At that time, the terminal apparatus 200 applies a pulse shaping filter corresponding to the pulse shaping filter applied on the transmission side (that is, multiplies the filter coefficient), and performs downsampling corresponding to the upsampling applied on the transmission side. Do.
  • the terminal device 200 performs GFDM demodulation in the framework of the frequency domain GFDM. That is, the terminal device 200 performs filtering using the filter coefficient in the frequency domain, and then applies downsampling. As a result, GFDM demodulation can be performed with a small amount of calculation.
  • FIG. 16 is a block diagram illustrating a configuration example of the receiving device (that is, the terminal device 200).
  • the receiving apparatus performs signal processing by analog FE on the signal received by the antenna and performs GFDM demodulation.
  • the receiving apparatus performs processing for extracting original data from the received symbol.
  • the GFDM demodulator multiplies a circuit that multiplies the conjugate transpose matrix A H of A to be matched filter reception for the transformation matrix A of GFDM used for transmission, and a circuit that multiplies the inverse matrix A -1 to be zero-force reception.
  • it may be a MMSE (Minimum Mean Square Error) receiving circuit.
  • the receiving apparatus performs MIMO equalization and demapping of the transmission layer.
  • the receiving apparatus performs deinterleaving, descrambling, rate matching, and FEC decoding for each received data, and outputs data.
  • analog FE may correspond to the wireless communication unit 220
  • the antenna may correspond to the antenna unit 210
  • other components may correspond to the reception processing unit 241.
  • any other corresponding relationship is allowed.
  • FIG. 17 is a block diagram showing an example of the configuration of a GFDM demodulator in the frequency domain GFDM.
  • the GFDM demodulator converts the received GFDM codeword into the frequency domain by applying FFT.
  • the GFDM demodulator applies a pulse shaping filter to every K subbands, as in the transmission process. The setting of the filter coefficient of the pulse shaping filter will be described in detail later.
  • the GFDM demodulator performs downsampling using the same oversampling ratio as the upsampling on the transmission side. Then, the GFDM demodulator outputs data obtained by applying IFFT to the K signals thus obtained.
  • the terminal device 200 (for example, the filter setting unit 243) according to the present embodiment sets the filter coefficient in the same manner as the transmission side. More specifically, terminal apparatus 200 sets filter coefficients to be applied to a signal transmitted after GFDM modulation according to different rules depending on whether the number of sub-symbols included in a unit resource is even or odd. .
  • the rule when the number is odd is the first rule as with the transmission side, and the rule when the number is even is the second rule as with the transmission side. In this way, the terminal device 200 can appropriately perform GFDM demodulation by performing filtering according to the same rule as that on the transmission side.
  • FIG. 18 is a flowchart illustrating an example of a flow of reception processing executed in the terminal device 200 according to the present embodiment.
  • the reception processing unit 241 sets the number of subsymbols and the number of subcarriers (step S302). This setting content is the same as that on the transmission side, and, for example, a common one in the system 1 is used or notified from the transmission side.
  • the filter setting unit 243 sets a filter coefficient based on the setting of the number of subsymbols (Step S304).
  • the filter setting unit 243 sets the filter coefficient sampled from the prototype filter according to the first rule when the number of subsymbols is odd, and according to the second rule when the number of subsymbols is even.
  • the reception processing unit 241 converts the received signal into the frequency domain by applying FFT (step S306).
  • the reception processing unit 241 filters the frequency domain signal corresponding to each subcarrier using the filter coefficient set in step S304 (step S308).
  • the reception processing unit 241 downsamples each filtered signal (step S310), maps the downsampled signal to a corresponding frequency, and frequency-multiplexes the signal (step S312).
  • the reception processing unit 241 converts the frequency-multiplexed signal into a time domain signal by IFFT (step S314), performs each process from MIMO equalization to FEC decoding shown in FIG. Data is output (step S316). Thus, the process ends.
  • FIG. 19 is a diagram illustrating the values of the determinant det (A ′ F ) of the matrix A ′ F when the first rule is adopted regardless of whether the number of sub-symbols is even or odd.
  • FIG. 19 shows a state where the number M of sub-symbols and the number K of sub-carriers are changed from 2 to 10, respectively.
  • An X mark is marked at a location where the value of the determinant is zero.
  • the irregularity of a matrix can be evaluated by the value of the determinant. Specifically, when the value of the determinant becomes zero, the matrix is irregular. When the value of the determinant does not become zero, the matrix is regular.
  • FIG. 20 shows the determinant det (A ′ F of the matrix A ′ F when the first rule is adopted when the number of sub-symbols is odd and the second rule is adopted when the number of sub-symbols is even. It is a figure which shows the value of).
  • FIG. 20 shows a state where the number of subsymbols M and the number of subcarriers K are changed from 2 to 10, respectively.
  • the value of the determinant when the number of subsymbols and the number of subcarriers are both even is an intermediate value between the values of other determinants adjacent in the subcarrier number direction or in the subsymbol number direction.
  • the value of the determinant decreases monotonically and there is no unevenness. This is evidence of the validity of the second rule.
  • FIG. 21 is a diagram illustrating an example of a bit error rate with respect to Eb / No of a signal to which the GFDM modulation according to the present embodiment is applied.
  • the symbol mapping method is QPSK
  • the pulse shaping filter is an RC filter
  • the roll-off factor ⁇ is 0.5
  • the oversample ratio L 2.
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
  • RRHs Remote Radio Heads
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 22 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 22, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 22 shows an example in which the eNB 800 includes a plurality of antennas 810, but the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the radio communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 22, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 22, and the plurality of RF circuits 827 may respectively correspond to a plurality of antenna elements, for example. 22 illustrates an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the eNB 800 illustrated in FIG. 22 one or more components (the transmission processing unit 151 and / or the filter setting unit 153) included in the processing unit 150 described with reference to FIG. 5 are implemented in the wireless communication interface 825. May be. Alternatively, at least some of these components may be implemented in the controller 821.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 5 may be implemented in the wireless communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • the storage unit 140 may be implemented in the memory 822.
  • FIG. 23 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 23, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Note that although FIG. 23 illustrates an example in which the eNB 830 includes a plurality of antennas 840, the eNB 830 may include a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 22 except that it is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 23, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • 23 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as illustrated in FIG. 23, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 23 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
  • one or more components included in the processing unit 150 described with reference to FIG. 5 include the wireless communication interface 855 and / or The wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 5 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • the storage unit 140 may be mounted in the memory 852.
  • FIG. 24 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure can be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 24 shows an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that FIG. 24 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, but the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies electric power to each block of the smartphone 900 shown in FIG. 24 through a power supply line partially shown by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • one or more components included in the processing unit 240 described with reference to FIG. 6 are implemented in the wireless communication interface 912. May be. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 6 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • the storage unit 230 may be mounted in the memory 902.
  • FIG. 25 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. FIG. 25 shows an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935. However, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. FIG. 25 illustrates an example in which the car navigation device 920 includes a plurality of antennas 937, but the car navigation device 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation apparatus 920 shown in FIG. 25 through a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program.
  • the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 6 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • the storage unit 230 may be implemented in the memory 922.
  • an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, an in-vehicle system (or vehicle) 940 may be provided as a device including the reception processing unit 241 and the filter setting unit 243.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the transmission apparatus variably sets at least one of the number of subcarriers or the number of subsymbols included in a unit resource composed of one or more subcarriers or one or more subsymbols. Then, filter coefficients to be applied are set according to different rules depending on whether the number of sub-symbols included in the unit resource is an even number or an odd number.
  • the GFDM conversion matrix is always regular without changing the frequency characteristics of the pulse shaping filter. Therefore, since an inverse matrix of the transformation matrix exists, demodulation by zero forcing on the receiving side is possible.
  • the present technology is not limited to such an example.
  • the terminal device 200 may be a transmission device and the base station 100 may be a reception device.
  • the processing unit 240 has functions as the transmission processing unit 151 and the filter setting unit 153
  • the processing unit 150 has functions as the reception processing unit 241 and the filter setting unit 243.
  • both the transmission device and the reception device may be the terminal device 200.
  • At least one of the number of subcarriers included in a unit resource composed of one or more subcarriers or one or more subsymbols or the number of subsymbols is variably set, and the number of subsymbols included in the unit resource is an even number.
  • a processing unit for setting filter coefficients to be applied according to different rules depending on whether they are odd or odd An apparatus comprising: (2) The processing unit sets a value obtained by sampling the prototype filter at a predetermined interval from a predetermined position on the frequency axis as the filter coefficient, The apparatus according to (1), wherein the predetermined position differs depending on whether the number of sub-symbols included in the unit resource is an even number or an odd number. (3) The apparatus according to (2), wherein the predetermined position when the number of sub-symbols included in the unit resource is an even number is a position obtained by adding an offset to a default position.
  • the offset corresponds to a value obtained by dividing a subcarrier frequency by a multiple of the number of subsymbols.
  • the offset corresponds to a half of a sample frequency.
  • the predetermined position when the number of sub-symbols included in the unit resource is an odd number is a default position.
  • the default position is a cycle start position of a sampling angular frequency.
  • a processing unit configured to set according to different rules depending on whether the number of sub-symbols contained in is even or odd
  • An apparatus comprising: (11) At least one of the number of subcarriers included in a unit resource composed of one or more subcarriers or one or more subsymbols or the number of subsymbols is variably set, and the number of subsymbols included in the unit resource is an even number. Setting the filter coefficients to be applied according to different rules depending on whether they are odd or odd, Including methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Error Detection And Correction (AREA)
  • Radio Transmission System (AREA)

Abstract

【課題】リソース設定の制限を解除しても受信側での復調を成功させることが可能な仕組みを提供する。 【解決手段】ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数を設定する処理部、を備える、装置。

Description

装置、方法及びプログラム
 本開示は、装置、方法及びプログラムに関する。
 近年、マルチキャリア変調技術(即ち、多重技術又はマルチアクセス技術)の代表として、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)、及びOFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)が、多様な無線システムで実用化されている。実用例としては、ディジタル放送、無線LAN、及びセルラーシステムが挙げられる。OFDMは、マルチパス伝搬路に対する耐性があり、CP(Cyclic Prefix:サイクリックプリフィックス)を採用することで、マルチパス遅延波に起因するシンボル間干渉の発生を回避することが可能である。一方で、OFDMの欠点として、帯域外輻射のレベルが大きい点が挙げられる。また、PAPR(Peak-to-Average Power Ratio:ピーク対平均電力比)が高くなる傾向があり、送受信装置で発生する歪に弱いことも、欠点として挙げられる。
 このようなOFDMの欠点である帯域外輻射を抑制可能な、新たな変調技術が登場している。本変調技術は、サブシンボルという新たな概念を導入し、1シンボルを任意の個数のサブシンボルに分割することで、柔軟なシンボルの時間及び周波数の設計を行うことが可能である。また、本変調技術は、シンボルに対しパルス整形フィルタ(Pulse Shape Filter)を適用して波形整形することによって、帯域外の不要信号の輻射を低減することができ、周波数利用効率の向上が期待される。さらに、本変調技術は、サブシンボルの導入により柔軟なリソース設定が可能となるので、今後求められるであろう多様性に対する実現手段となる。
 本変調技術の呼び名については、UF-OFDM(Universal Filtered-OFDM)、UFMC(Universal Filtered Multi-Carrier)、FBMC(Filter Bank Multi-Carrier)、GOFDM(Generalized OFDM)など、多様に存在する。とりわけ、本変調技術は、一般化されたOFDMであるとも言えることから、GFDM(Generalized Frequency Division Multiplexing)とも称される場合があり、本明細書ではこの名称を採用する。GFDMに関する基本的な技術については、例えば下記特許文献1及び非特許文献1に開示されている。
米国特許出願公開第2010/0189132A1号明細書
N. Michailow, et al., "Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks," IEEE Trans. Commun., vol.62, no.9, Sept. 2014.
 GFDMでは、サブシンボル長の設定及びサブキャリア周波数の設定、即ち単位リソースにおけるサブシンボル数及びサブキャリア数の設定は柔軟に設定可能である。しかしながら、受信側での復調を成功させるために、実質的にはこのリソース設定に制限が掛けられる場合があった。そのため、リソース設定の制限を解除しても受信側での復調を成功させることが可能な仕組みが提供されることが望ましい。
 本開示によれば、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数を設定する処理部、を備える、装置が提供される。
 また、本開示によれば、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定され送信された信号に適用するフィルタ係数を、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って設定する処理部、を備える、装置が提供される。
 また、本開示によれば、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数をプロセッサにより設定すること、を含む方法が提供される。
 また、本開示によれば、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定され送信された信号に適用するフィルタ係数を、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従ってプロセッサにより設定すること、を含む方法が提供される。
 また、本開示によれば、コンピュータを、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数を設定する処理部、として機能させるためのプログラムが提供される。
 また、本開示によれば、コンピュータを、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定され送信された信号に適用するフィルタ係数を、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って設定する処理部、として機能させるためのプログラムが提供される。
 以上説明したように本開示によれば、リソース設定の制限を解除しても受信側での復調を成功させることが可能な仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
GFDMに関する技術を説明するための説明図である。 GFDMに関する技術を説明するための説明図である。 GFDMに関する技術を説明するための説明図である。 本実施形態に係るシステムの概略的な構成の一例を示す説明図である。 本実施形態に係る基地局の構成の一例を示すブロック図である。 本実施形態に係る端末装置の構成の一例を示すブロック図である。 本実施形態に係る送信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る送信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る送信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る送信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る送信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る送信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る送信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る送信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る送信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る受信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る受信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係る受信処理に関する技術的特徴を説明するための説明図である。 本実施形態に係るシミュレーション結果を説明するための説明図である。 本実施形態に係るシミュレーション結果を説明するための説明図である。 本実施形態に係るシミュレーション結果を説明するための説明図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。 スマートフォンの概略的な構成の一例を示すブロック図である。 カーナビゲーション装置の概略的な構成の一例を示すブロック図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて端末装置200A、200B及び200Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、端末装置200A、200B及び200Cを特に区別する必要が無い場合には、単に端末装置200と称する。
 なお、説明は以下の順序で行うものとする。
  1.はじめに
   1.1.GFDM
   1.2.技術的課題
  2.システムの概略的な構成
  3.各装置の構成
   3.1.基地局の構成
   3.2.端末装置の構成
  4.技術的特徴
   4.1.送信処理
   4.2.受信処理
  5.シミュレーション結果
  6.応用例
  7.まとめ
 <<1.はじめに>>
  <1.1.GFDM>
 まず、図1~図3を参照して、GFDMについて説明する。
 図1は、GFDMにおけるシンボルの概念を説明するための説明図である。符号10は、OFDMの1シンボル当たりの無線リソースを示している。符号10に示した無線リソースは、1シンボル区間が単一のシンボルで占有されている一方で、周波数方向に多数のサブキャリアを含む。また、OFDMでは、シンボル毎にCPが付加される。符号12は、SC-FDM(Single Carrier Frequency Division Multiplexing)信号における、OFDMの1シンボルに相当する区間の無線リソースを示している。符号12に示した無線リソースは、キャリア周波数に渡って単一のシンボルで専有されている一方で、シンボル長はOFDMと比較して短く、時間方向に多数のシンボルを含む。符号11は、GFDMにおける、OFDMの1シンボルに相当する区間の無線リソースを示している。符号11に示した無線リソースは、符号10に示した無線リソースと符号12に示した無線リソースとの中間の構造を有する。すなわち、GFDMでは、OFDMの1シンボルに相当する区間が任意の数のサブシンボルに分割され、それに伴いサブキャリア数がOFDMよりも少なくなる。このような無線リソースの構造は、パラメータによるシンボル長の変更を可能とし、より柔軟性に富んだ送信フォーマットを提供可能である。
 図2は、GFDMをサポートする送信装置の構成例の一例を示す図である。まず、データが入力されると、送信装置は、可変に設定されたサブキャリア数及びサブシンボル数に対応するフィルタリングを適用するために、入力データのマッピングを行う。なお、ここでのサブシンボルに対するマッピングは、OFDMに比べて、オーバーサンプリングを施すことと等価の効果を有する。次いで、送信装置は、所定数のサブキャリア及び所定数のサブシンボルに対してパルス整形フィルタを適用する(より具体的には、所定のフィルタ係数を乗じる)。そして、送信装置は、パルス整形後の波形を周波数-時間変換してシンボルを生成する。最後に、送信装置は、CPを追加し、DAC(Digital to Analog Converter)を適用してRF(Radio Frequency)信号を高周波回路へ出力する。
 ここで、GFDM変調は次式により表現される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ただし、Kはサブキャリア数であり、Mはサブシンボル数であり、dk,m、はk番目のサブキャリアのm番目のサブシンボルに対応する入力データであり、x[n]はN=KM個の出力データのn番目の値であり、gk,m[n]はフィルタの係数である。
 GFDMシンボルのn番目の出力サンプル値x[n]は、マッピングされた入力データに対応するGFDM係数をそれぞれ掛け合わせたのち、それらすべての和をとったものである。nが0からNまで変化するとき、フィルタ係数は上記数式(2)に従って変化し、1シンボルあたり合計N個のサンプル値が得られる。この結果、サブシンボルに対してK倍にオーバーサンプリングされた時間波形のサンプル値が生成される。この場合、M個のサブシンボルに対してK倍、すなわちKM=N個の出力値が得られる。送信装置は、このようにして得られたGFDMシンボルをD/A変換し、高周波回路により所望の増幅及び周波数変換を施した後、アンテナから送信する。
 なお、パルス整形フィルタとしては、例えば、RCフィルタ(Raised Cosine Filter)、RRCフィルタ(Root Raised Cosine Filter)又はIOTAフィルタ(Isotropic Orthogonal Transfer Algorithm filter)等が採用され得る。
 上記定式化したGFDM変調における、入力データ(ベクトル)と出力データ(ベクトル)との関係を、次式のように行列Aで表す。
Figure JPOXMLDOC01-appb-M000003
 この変換行列Aは、サイズがKM*KMの、複素数の要素を持つ正方行列である。図3に、変換行列Aの要素(即ち、フィルタ係数)の振幅値(絶対値)をプロットした図を示す。本図は、K=4とし、M=7とし、波形整形のプロトタイプフィルタとしてRCフィルタ(α=0.4)を採用した場合を示している。
 なお、本明細書では、サブシンボル数とは、単位リソース(例えば、図1に示した無線リソース)に含まれるサブシンボル数である。また、サブキャリア数とは、単位リソースに含まれるサブキャリアの数である。
 GFDM変調の実装方法のひとつに、周波数ドメインGFDMがある。周波数ドメインGFDMとは、入力データを周波数ドメインに変換した後に、周波数ドメインでパルス整形フィルタを適用し、その後サブキャリアへのマッピングを行う変調方法である。本変調方法では、GFDM変調処理に関わる行列が多くの要素がゼロである行列となる上、ドメイン変換にFFT(Fast Fourier Transform)及びIFFT(Inverse FFT)といった高速な演算処理を利用することが可能となる。よって、送信装置は、少ない計算量でGFDM変調を行うことが可能である。受信装置に関しても同様の利点がある。なお、周波数ドメインGFDMの詳細な説明は、例えば「N. Michailow et al., “Generalized Frequency Division Multiplexing: Analysis of an Alternative Multi-Carrier Technique for Next Generation Cellular Systems,” IEEE International Symposium on Wireless Communication Systems (ISWCS), 2012.」に詳しく開示されている。
 周波数ドメインGFDMでは、上記数式(1)が下記数式(4)に、上記数式(2)が下記数式(5)に、それぞれ変形される。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 なお、上記数式(4)における「*」は、周期KMでの巡回畳み込みを表している。また、上記数式(4)は、k番目のサブキャリア成分を表している。また、上記数式(5)は、このようなサブキャリア成分を所定の帯域内にK個マッピングすることを表している。
 上記数式(4)は、FFTによる時間ドメインから周波数ドメインへの変換、及びIFFTによる周波数ドメインから時間ドメインへの変換を加味すると、次式のように変形される。
Figure JPOXMLDOC01-appb-M000006
 上記数式(6)は、周波数ドメインにおいてパルス整形フィルタの適用が行われることを表している。
  <1.2.技術的課題>
 GFDMにおいては、単位リソースにおけるサブシンボル数及びサブキャリア数がともに偶数である場合、変換行列Aが正則にならず、逆行列を持たないため、受信側においてゼロフォーシングによる復調が困難になるという問題があることが指摘されている。かかる問題は、例えば上記非特許文献1及び「M. Matthe et al., “Generalized Frequency Division Multiplexing in a Gabor Transform Setting,” IEEE COMUNICATIONS LETTERS, vol. 18, no. 8, Aug 2014.」において指摘されている。
 さらに、単位リソースにおけるサブシンボル数が偶数でありサブキャリア数が奇数の場合、変換行列Aは受信側での復調が可能なフルランクにはなるものの、その復調データには著しいビットエラーレートの劣化が生じるという問題がある。
 このように、受信側で逆行列を用いた復調を可能とし、且つビットエラーレートの著しい劣化防止を可能とするためには、即ち受信側での復調を成功させるためには、単位リソースにおけるサブシンボル数を奇数に設定するという制限が課されていた。そこで、本実施形態では、サブシンボル数が奇数であっても、受信側の復調を成功させるための仕組みを提供する。
 <<2.システムの概略的な構成>>
 続いて、図4を参照して、本開示の一実施形態に係るシステム1の概略的な構成を説明する。図4は、本開示の一実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図4を参照すると、システム1は、基地局100及び端末装置200を含む。ここでは、端末装置200は、ユーザとも呼ばれる。当該ユーザは、ユーザ機器(User Equipment:UE)とも呼ばれ得る。ここでのUEは、LTE又はLTE-Aにおいて定義されているUEであってもよく、より一般的に通信機器を意味してもよい。
 (1)基地局100
 基地局100は、セルラーシステム(又は移動体通信システム)の基地局である。基地局100は、基地局100のセル101内に位置する端末装置(例えば、端末装置200)との無線通信を行う。例えば、基地局100は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 (2)端末装置200
 端末装置200は、セルラーシステム(又は移動体通信システム)において通信可能である。端末装置200は、セルラーシステムの基地局(例えば、基地局100)との無線通信を行う。例えば、端末装置200は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
 (3)多重化/多元接続
 とりわけ本開示の一実施形態では、基地局100は、直交多元接続/非直交多元接続により、複数の端末装置との無線通信を行う。より具体的には、基地局100は、GFDMを用いた多重化/多元接続により、複数の端末装置200との無線通信を行う。
 例えば、基地局100は、ダウンリンクにおいて、GFDMを用いた多重化/多元接続により、複数の端末装置200との無線通信を行う。より具体的には、例えば、基地局100は、複数の端末装置200への信号を、GFDMを用いて多重化する。この場合に、例えば、端末装置200は、所望信号(即ち、端末装置200への信号)を含む多重化信号から、干渉として1つ以上の他の信号を除去し、上記所望信号を復号する。
 なお、基地局100は、ダウンリンクの代わりに、又はダウンリンクとともに、アップリンクにおいて、GFDMを用いた多重化/多元接続により、複数の端末装置との無線通信を行ってもよい。この場合に、基地局100は、当該複数の端末装置により送信される信号を含む多重化信号から、当該信号の各々を復号してもよい。
 (4)補足
 本技術は、HetNet(Heterogeneous Network)又はSCE(Small Cell Enhancement)などのマルチセルシステムにおいても適用可能である。また、本技術は、MTC装置及びIoT装置等に関しても適用可能である。
 <<3.各装置の構成>>
 続いて、図5及び図6を参照して、本開示の実施形態に係る基地局100及び端末装置200の構成を説明する。
  <3.1.基地局の構成>
 まず、図5を参照して、本開示の一実施形態に係る基地局100の構成の一例を説明する。図5は、本開示の一実施形態に係る基地局100の構成の一例を示すブロック図である。図5を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
 (1)アンテナ部110
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
 (2)無線通信部120
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
 (3)ネットワーク通信部130
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
 (4)記憶部140
 記憶部140は、基地局100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (5)処理部150
 処理部150は、基地局100の様々な機能を提供する。処理部150は、送信処理部151及びフィルタ設定部153を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
 送信処理部151及びフィルタ設定部153の機能は、後に詳細に説明する。
  <3.2.端末装置の構成>
 まず、図6を参照して、本開示の一実施形態に係る端末装置200の構成の一例を説明する。図6は、本開示の一実施形態に係る端末装置200の構成の一例を示すブロック図である。図6を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
 (1)アンテナ部210
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
 (2)無線通信部220
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
 (3)記憶部230
 記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
 (4)処理部240
 処理部240は、端末装置200の様々な機能を提供する。処理部240は、受信処理部241及びフィルタ設定部243を含む。なお、処理部240は、この構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、この構成要素の動作以外の動作も行い得る。
 受信処理部241及びフィルタ設定部243の機能は、後に詳細に説明する。
 <<4.技術的特徴>>
 以下では、基地局100が送信装置であり、端末装置200が受信装置であるものとして、本実施形態の技術的特徴を説明する。
  <4.1.送信処理>
 まず、図7~図15を参照して、送信処理に関する技術的特徴を説明する。
  (1)送信装置の構成例
 基地局100(例えば、送信処理部151)は、GFDM変調を行う。即ち、基地局100は、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定する。そして、基地局100は、サブキャリアごとにパルス整形フィルタによるフィルタリングを行う(即ち、フィルタ係数を乗算する)。
 とりわけ、本実施形態に係る基地局100は、周波数ドメインGFDMの枠組みにおいて、GFDM変調を行う。即ち、基地局100は、周波数ドメインでアップサンプリングを適用し、このアップサンプリングより後にフィルタ係数を用いてフィルタリングする。これにより、少ない計算量でGFDM変調を行うことが可能となる。
 以下、図7及び図8を参照しながら、周波数ドメインGFDMの枠組みにおいて行われる、GFDM変調を伴う送信処理について説明する。
 図7は、本実施形態に係る送信装置(即ち、基地局100)の構成の一例を示すブロック図である。図7では、MIMO(multiple-input and multiple-output)の場合の構成例を示している。図7に示すように、送信装置は、多重する送信データごとに、FEC(Forward Error Correction)符号化、レートマッチング、スクランブリング、インタリービング及びビット列からシンボル(例えば、複素シンボルであってもよく、信号点とも称され得る)へのマッピング(Constellation Mapping)を行う。次いで、送信装置は、送信レイヤマッピングにより多重化して、多重化信号ごとにプリコーディングを行う。この後の処理は、多重化信号ごとに行われる。送信装置は、各々の多重化信号についてGFDM変調を行い、アナログFE(Front End)による信号処理を行って、アンテナから無線信号を送信する。
 なお、アナログFEは無線通信部120に相当してもよく、アンテナはアンテナ部110に相当してもよく、その他の構成要素は処理部150に相当してもよい。もちろん、その他の任意の対応関係も許容される。
 続いて、図8を参照して、図7に示したGFDM変調器について詳細に説明する。
 図8は、周波数ドメインGFDMにおけるGFDM変調器の構成の一例を示すブロック図である。図8に示すように、GFDM変調器は、入力信号をサブキャリア数K個に分割して、それぞれM個の複素信号とした上で、それぞれにFFTを適用して周波数ドメインに変換する。次いで、GFDM変換器は、各々の周波数ドメインの信号にアップサンプリングを適用し、パルス整形フィルタを適用する。パルス整形フィルタのフィルタ係数の設定については、後に詳しく説明する。典型的な周波数ドメインGFDMでは、アップサンプリング比は2であり、パルス整形フィルタには、RCフィルタあるいはRRCフィルタが使用される。もちろん、アップサンプリング比は2以外の値であってもよいし、パルス整形フィルタには任意のフィルタが使用されてもよい。次に、GFDM変換器は、フィルタリング後の信号を、対応するサブキャリアの周波数にマッピングする。最後に、GFDM変換器は、このようにして生成されたK個の信号を周波数多重し、IFFTにより時間ドメインの信号に変換することで、GFDM変調された信号を生成し、出力する。
 以上説明した、周波数ドメインGFDMにおけるGFDM変調を、次のような等価な行列表現によって表すことができる。
Figure JPOXMLDOC01-appb-M000007
 なお、Lは、アップサンプリングにおけるアップサンプル比(即ち、オーバーサンプル比)を表している。また、W KMは、KM*KMのIFFTを表している。また、P(k)は、k番目のサブキャリアに対応するKM*LMの周波数マッピング行列を表している。また、Γ(L)は、LM*LMのパルス整形フィルタのフィルタ係数行列を表している。また、R(L)は、LM*Mのアップサンプリング行列を表している。また、Wは、M*MのFFTを表している。
 周波数ドメインGFDMにおける変換行列Aは、次式で表される。
Figure JPOXMLDOC01-appb-M000008
 ただし、W KM及びWは常に正則であることが知られている。よって、上記数式(8)に示した変換行列Aが正則であるか非正則であるかは、次式で表される行列が正則であるか非正則であるかに依存する。
Figure JPOXMLDOC01-appb-M000009
 周波数ドメインGFDMにおいても、単位リソースにおけるサブシンボル数及びサブキャリア数が偶数である場合には、変換行列Aの正則/非正則を決定付ける行列A´が非正則となり、逆行列が存在しないので受信側での復調が困難となっていた。
  (2)フィルタ係数の設定
 このような事情を鑑み、本実施形態に係る基地局100(例えば、フィルタ設定部153)は、単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って、送信信号(より詳しくは、各サブキャリアにマッピングされる周波数ドメインの信号)に適用するフィルタ係数を設定する。以下では、奇数である場合の規則を第1の規則とも称し、偶数である場合の規則を第2の規則とも称する。
 基地局100は、プロトタイプフィルタを周波数軸上の所定位置(即ち、サンプリング開始位置)から所定間隔(即ち、サンプリング周波数)でサンプリングした値をフィルタ係数として設定する。そして、基地局100は、プロトタイプフィルタをアップサンプリングのオーバーサンプル比とサブシンボル数との積の数だけ等間隔でサンプリングする。ここで、このサンプリング開始位置は、単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じて異なる。即ち、第1の規則と第2の規則とで、サンプリング開始位置が異なる。
 サブシンボル数が奇数の場合のサンプリング開始位置は、デフォルトの位置である。これは、サブシンボル数が奇数の場合、デフォルトの位置のままであっても、変換行列Aが正則となり逆行列が存在するためである。なお、デフォルトの位置は、サンプリング角周波数の周期開始位置(即ち、-π)である。
 一方で、サブシンボル数が偶数の場合のサンプリング開始位置は、デフォルトの位置にオフセットを加えた位置である。オフセットが設けられることにより、変換行列Aの逆行列が存在することとなり、受信側でのゼロフォーシングによる復調が可能となる。
 例えば、オフセットは、プロトタイプフィルタからのサンプリングに係るサンプル周波数の1/2に相当していてもよい。これにより、隣接する2つのサブキャリアの各々に対応する信号の互いに重複する又は近い周波数において各々適用されるフィルタ係数の差が最大化されるので、サブキャリア間の干渉を最も低下させることが可能となる。これにより、ビットエラーレートの著しい劣化が防止され、受信側での復号性能の向上が実現される。この点については、後に図13を参照して詳しく説明する。
 以下、図9~図13を参照して、フィルタ係数の設定について具体例を挙げながら説明する。図9~図13では、プロトタイプフィルタの周波数特性が図示されており、横軸は周波数であり、縦軸は振幅値であり、サンプリングされた位置の振幅値が、フィルタ係数として採用される。
 図9は、パルス整形フィルタのプロトタイプフィルタの周波数特性の一例を示す図である。ここでは、一例として、パルス整形フィルタとしてRCフィルタが使用される例を説明する。図9に示すように、RCフィルタでは、ロールオフファクタαの値によって周波数特性が変化する。以下では、一例としてα=0.9であるものとする。もちろん、αの値は0.9以外であってもよい。
 まず、サブシンボル数Mが奇数であり第1の規則が適用される場合について説明する。サブシンボル数M=3、オーバーサンプル比L=2である場合、図10に示すように、周波数ドメインでのサンプリングにより、[0, 0.225, 0.775, 1, 0.775, 0.225]の6つのフィルタ係数値が得られる。図中のmの値は、サンプリングインデックスを示す。図10に示すように、サンプリングは、デフォルトの位置である-πから開始されている。サブキャリア数K=2とおくと、行列A´は、次式で表現される。
Figure JPOXMLDOC01-appb-M000010
 この行列A´は、フルランクであり、ゆえに正則である。このように、サブシンボル数Mが奇数である場合、受信側での復調は成功する。
 続いて、比較例として、サブシンボル数Mが偶数であり第1の規則が適用される場合について説明する。サブシンボル数M=2、オーバーサンプル比L=2である場合、図11に示すように、周波数ドメインでのサンプリングにより、[0, 0.5, 1, 0.5]の4つのフィルタ係数値が得られる。図11に示すように、サンプリングは、デフォルトの位置である-πから開始されている。サブキャリア数K=2とおくと、行列A´は、次式で表現される。
Figure JPOXMLDOC01-appb-M000011
 この行列A´は、ランクが3でありフルランクではない。従って、逆行列が存在しないため、受信側は復調に失敗することとなる。
 続いて、サブシンボル数Mが偶数であり第2の規則が適用される場合について説明する。具体的には、基地局100は、オフセット(即ち、1/2サンプル周波数)分だけずらしてサンプリングした値を、フィルタ係数として採用する。例えば、図11に示した例に関しては、図12に示すように、[0.117, 0.883, 0.883, 0.117]の4つのフィルタ係数値が得られる。図12に示すように、サンプリングは、デフォルトの位置である-πに1/2サンプル周波数に相当するオフセットを加えた位置から開始されている。サブキャリア数K=2とおくと、行列A´は、次式で表現される。
Figure JPOXMLDOC01-appb-M000012
 この行列A´は、ランクが4でありフルランクである。従って、逆行列が存在するので、受信側での復調は成功する。さらに、図13を参照して、オフセットが1/2サンプル周波数であることの利点を説明する。
 図13は、オフセットがサンプル周波数の1/2である場合の、隣接する2つのサブキャリアに対応する信号の各々に適用されるフィルタ係数の関係を示す図である。符号301は、第1のサブキャリアに対応する信号に適用されるパルス整形フィルタの、プロトタイプフィルタの周波数特性、及びフィルタ係数を示している。符号301に関する周波数π及び-π並びにサンプリングインデックスmの値には、下線が付されている。符号302は、第1のサブキャリアに隣接する第2のサブキャリアに対応する信号に適用されるパルス整形フィルタの、プロトタイプフィルタの周波数特性、及びフィルタ係数を示している。符号302に関する周波数π及び-π並びにサンプリングインデックスmの値には、上線が付されている。図13に示すように、符号301に示したプロトタイプフィルタと符号302に示したプロトタイプフィルタは、一部の周波数が重複している。しかし、第1又は第2のサブキャリアに対応する信号の重複する又は近い周波数において適用されるフィルタ係数は異なる。そして、第1又は第2のサブキャリアに対応する信号の重複する又は近い周波数において各々適用されるフィルタ係数同士の差311及び312のうち小さい方の値は、オフセットが1/2サンプル周波数である場合に最も大きくなる。このため、オフセットが1/2サンプル周波数である場合、サブキャリア間の干渉が最も低くなるので、ビットエラーレートの著しい劣化が防止され、受信側での復号性能の向上が実現される。
 以上説明したように、基地局100は、サブシンボル数が偶数であっても、第2の規則においてサンプリング開始位置にオフセットを持たせることで、受信側での復調を成功させることが可能である。
 以下、フィルタ係数のサンプリングに関してより詳しく説明する。
 パルス整形フィルタの帯域幅(即ち、2π)は、もとのサブキャリア帯域幅fsubをL倍に拡大した帯域に対して適用される。即ち、次式が成り立つ。
Figure JPOXMLDOC01-appb-M000013
 一方、サンプル周波数(即ち、サンプリング間隔)fは、次式に示すように、フィルタ帯域幅をLM個に分割した幅に相当する。
Figure JPOXMLDOC01-appb-M000014
 よって、オフセットの1/2サンプル周波数は、次式で表される。
Figure JPOXMLDOC01-appb-M000015
 例えば、L=2、M=2の場合、1/2サンプル周波数は、π/4である。
 式(13)を式(15)に代入することで、この1/2サンプル周波数は、サブキャリア周波数(即ち、サブキャリアの帯域幅)を用いると次式で表される。
Figure JPOXMLDOC01-appb-M000016
 このように、サブシンボル数が偶数である場合のオフセット(即ち、1/2サンプル周波数)は、サブキャリア周波数をサブシンボル数Mの倍数で割った値に相当する。注目すべきは、オフセットは、オーバーサンプル比Lに依存せず、サブキャリア周波数及びサブシンボル数Mにのみ依存する値である点である。
 以上説明した事項をまとめると、サブシンボル数が奇数の場合、プロトタイプフィルタからサンプリングされた、i=0,・・・,LM-1で、-π+i*2π/LMのLM個の値がフィルタ係数となる。また、サブシンボル数が偶数の場合、プロトタイプフィルタからサンプリングされた、i=0,・・・,LM-1で、-π+i*2π/LM+π/LMのLM個の値がフィルタ係数となる。
  (3)処理の流れ
 以下、図14及び図15を参照して、送信装置における処理の流れを説明する。
 図14は、本実施形態に係る基地局100において実行される送信処理の流れの一例を示すフローチャートである。図14に示すように、まず、送信処理部151は、サブシンボル数及びサブキャリア数を設定する(ステップS102)。次いで、フィルタ設定部153は、サブシンボル数の設定に基づいてフィルタ係数を設定する(ステップS104)。詳しくは、フィルタ設定部153は、サブシンボル数が奇数の場合は第1の規則により、サブシンボル数が偶数の場合は第2の規則により、プロトタイプフィルタからサンプリングしたフィルタ係数を設定する。次に、送信処理部151は、図7に示したFEC符号化からプリコーディングまでの各処理を行った信号にFFTを適用して周波数ドメインの信号に変換する(ステップS106)。その際、送信処理部151は、図8を参照して上記説明したように、入力信号をサブキャリア数K個に分割して、それぞれM個の複素信号とした上で、それぞれにFFTを適用して周波数ドメインに変換する。次いで、送信処理部151は、各々の周波数ドメインの信号にアップサンプリングを適用し(ステップS108)、ステップS104において設定されたフィルタ係数を用いてフィルタリングする(ステップS110)。次に、送信処理部151は、フィルタリング後の各信号を、対応するサブキャリアの周波数にマッピングして周波数多重する(ステップS112)。次いで、送信処理部151は、周波数多重された信号をIFFTにより時間ドメインの信号に変換して(ステップS114)、送信する(ステップS116)。以上により、処理は終了する。
 次いで、ステップS104における処理の流れを、図15を参照して説明する。
 図15は、本実施形態に係る基地局100において実行されるフィルタ係数の設定処理の流れの一例を示すフローチャートである。図15に示したように、まず、フィルタ設定部153は、サブシンボル数が奇数であるか否かを判定する(ステップS202)。サブシンボル数が奇数であると判定された場合(ステップS202/YES)、フィルタ設定部153は、プロトタイプフィルタから、i=0,・・・,LM-1で、-π+i*2π/LMのLM個の値をサンプリングして、フィルタ係数とする(ステップS204)。一方で、サブシンボル数が偶数であると判定された場合(ステップS202/NO)、フィルタ設定部153は、プロトタイプフィルタから、i=0,・・・,LM-1で、-π+i*2π/LM+π/LMのLM個の値をサンプリングして、フィルタ係数とする(ステップS206)。以上により、処理は終了する。
  <4.2.受信処理>
 続いて、図16~図18を参照して、受信処理に関する技術的特徴を説明する。
  (1)受信装置の構成例
 端末装置200(例えば、受信処理部241)は、GFDM変調されて送信された信号を受信してGFDM復調を行う。即ち、端末装置200は、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定されて送信された信号を受信及び復調して、データを取得する。その際、端末装置200は、送信側で適用されたパルス整形フィルタに対応するパルス整形フィルタを適用し(即ち、フィルタ係数を乗算する)、送信側で適用されたアップサンプリングに対応するダウンサンプリングを行う。
 とりわけ、本実施形態に係る端末装置200は、周波数ドメインGFDMの枠組みにおいて、GFDM復調を行う。即ち、端末装置200は、周波数ドメインでフィルタ係数を用いてフィルタリングを行い、その後ダウンサンプリングを適用する。これにより、少ない計算量でGFDM復調を行うことが可能となる。
 以下、図16及び図17を参照しながら、周波数ドメインGFDMの枠組みにおいて行われる、GFDM復調を伴う受信処理について説明する。
 図16は、受信装置(即ち、端末装置200)の構成例を示すブロック図である。受信装置は、アンテナにより受信された信号に対し、アナログFEによる信号処理を行い、GFDM復調を行う。GFDM復調器においては、受信装置は、受信したシンボルから元のデータを取り出すための処理を行う。そのためには、GFDM復調器は、送信に用いられたGFDMの変換行列Aに対する整合フィルタ受信となるAの共役転置行列Aを乗じる回路、ゼロフォース受信となる逆行列A-1を掛け合わせる回路、あるいは、MMSE(Minimum Mean Square Error)受信回路などであってもよい。その後、受信装置は、MIMO等化、送信レイヤのデマッピングを行う。その後、受信装置は、受信データごとにデインタリービング、デスクランブリング、レートマッチング及びFEC復号化を行い、データを出力する。
 なお、アナログFEは無線通信部220に相当してもよく、アンテナはアンテナ部210に相当してもよく、その他の構成要素は受信処理部241に相当してもよい。もちろん、その他の任意の対応関係も許容される。
 続いて、図17を参照して、図16に示したGFDM復調器について詳細に説明する。
 図17は、周波数ドメインGFDMにおけるGFDM復調器の構成の一例を示すブロック図である。図17に示すように、GFDM復調器は、受信したGFDMコードワードにFFTを適用して周波数ドメインに変換する。次いで、GFDM復調器は、送信処理と同様に、K個のサブバンドごとにパルス整形フィルタを適用する。パルス整形フィルタのフィルタ係数の設定については、後に詳しく説明する。次に、GFDM復調器は、送信側でのアップサンプリングと同一のオーバーサンプル比を用いてダウンサンプリングを行う。そして、GFDM復調器は、このようにして得られたK個の信号にIFFTを適用して連結したデータを出力する。
  (2)フィルタ係数の設定
 本実施形態に係る端末装置200(例えば、フィルタ設定部243)は、送信側と同様にしてフィルタ係数を設定する。より詳しくは、端末装置200は、GFDM変調されて送信された信号に適用するフィルタ係数を、単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って設定する。奇数である場合の規則は送信側と同様に第1の規則であり、偶数である場合の規則は送信側と同様に第2の規則である。このように、端末装置200は、送信側と同様の規則によりフィルタリングを行うことで、GFDM復調を適切に行うことが可能となる。
  (3)処理の流れ
 以下、図18を参照して、受信装置における処理の流れを説明する。
 図18は、本実施形態に係る端末装置200において実行される受信処理の流れの一例を示すフローチャートである。図18に示すように、まず、受信処理部241は、サブシンボル数及びサブキャリア数を設定する(ステップS302)。この設定内容は送信側と同一であり、例えばシステム1内で共通のものが用いられる、又は送信側から通知される。次いで、フィルタ設定部243は、サブシンボル数の設定に基づいてフィルタ係数を設定する(ステップS304)。詳しくは、フィルタ設定部243は、サブシンボル数が奇数の場合は第1の規則により、サブシンボル数が偶数の場合は第2の規則により、プロトタイプフィルタからサンプリングしたフィルタ係数を設定する。次に、受信処理部241は、受信信号にFFTを適用して周波数ドメインに変換する(ステップS306)。次いで、受信処理部241は、各サブキャリアに対応する周波数ドメインの信号を、ステップS304において設定されたフィルタ係数を用いてフィルタリングする(ステップS308)。次に、受信処理部241は、フィルタリングされた各信号をダウンサンプリングして(ステップS310)、ダウンサンプリングされた信号を対応する周波数にマッピングして周波数多重する(ステップS312)。次いで、受信処理部241は、周波数多重された信号をIFFTにより時間ドメインの信号に変換して(ステップS314)、図16に示したMIMO等化からFEC復号化までの各処理を行って、復号データを出力する(ステップS316)。以上により、処理は終了する。
 <<5.シミュレーション結果>>
 以下、図19~図21を参照して、本実施形態に係る基地局100及び端末装置200に関するシミュレーション結果を参照しながら、本実施形態に係るGFDM変調の効果を説明する。
 図19は、サブシンボル数が偶数であっても奇数であっても第1の規則が採用される場合の行列A´の行列式det(A´)の値を示す図である。図19では、サブシンボル数M及びサブキャリア数Kを、それぞれ2から10まで変化させた場合の様子を示している。行列式の値がゼロである箇所には、×印が記されている。
 一般的に、行列の非正則性は、その行列式の値により評価することが可能である。具体的には、行列式の値がゼロになる場合、当該行列は非正則であり、行列式の値がゼロにならない場合、当該行列は正則である。
 図19に示すように、サブシンボル数及びサブキャリア数が共に偶数の場合、行列式の値が0となっており、逆行列が存在しないことが分かる。よって、サブシンボル数が偶数であっても奇数であっても第1の規則が採用される場合、受信側は復調に失敗することとなる。
 図20は、サブシンボル数が奇数の場合に第1の規則が採用され、サブシンボル数が偶数の場合に第2の規則が採用される場合の行列A´の行列式det(A´)の値を示す図である。図20では、サブシンボル数M及びサブキャリア数Kを、それぞれ2から10まで変化させた場合の様子を示している。
 図20に示すように、×印が記されている箇所はない。即ち、サブシンボル数及びサブキャリア数のどの組み合わせにおいても行列式の値はゼロではなく、行列A´に逆行列が存在することが分かる。特に、図19においては×印が記されていた、サブシンボル数及びサブキャリア数が共に偶数の場合であっても、図20においては行列式の値はゼロではなく、行列A´に逆行列が存在することが分かる。即ち、本実施形態に係るGFDM変調では、サブシンボル数が偶数であっても、受信側での復調を成功させることが可能である。
 さらに、サブシンボル数及びサブキャリア数が共に偶数である場合の行列式の値は、サブキャリア数方向で又はサブシンボル数方向で隣接する他の行列式の値の中間の値となっている。言い換えれば、サブシンボル数が増加するほど、又はサブシンボル数が増加するほど行列式の値が単調減少しており、且つ、凸凹はない。このことは、第2の規則が妥当性を有することの証左である。
 図21は、本実施形態に係るGFDM変調が適用された信号の、Eb/Noに対するビットエラーレートの一例を示す図である。図21では、比較のため、サブシンボル数及びサブキャリア数が共に偶数(サブシンボル数M=4、サブキャリア数K=4)である場合の例と、サブシンボル数が奇数(サブシンボル数M=5、サブキャリア数K=4)である場合の例とを示した。なお、シンボルマッピング方式はQPSKであり、パルス整形フィルタはRCフィルタであり、ロールオフファクタα=0.5であり、オーバーサンプル比L=2である。このように、サブシンボル数Mが偶数である場合でも、奇数である場合と比較してビットエラーレートに著しい劣化は認められないので、復調可能であり、且つ十分なビットエラーレートが実現されていることが確認される。
 <<6.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。
  <6.1.基地局に関する応用例>
 (第1の応用例)
 図22は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図22に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図22にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
 無線通信インタフェース825は、図22に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図22に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図22には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
 図22に示したeNB800において、図5を参照して説明した処理部150に含まれる1つ以上の構成要素(送信処理部151及び/又はフィルタ設定部153)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図22に示したeNB800において、図5を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。
 (第2の応用例)
 図23は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図23に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図23にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図22を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図22を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図23に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図23には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図23に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図23には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
 図23に示したeNB830において、図5を参照して説明した処理部150に含まれる1つ以上の構成要素(送信処理部151及び/又はフィルタ設定部153)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図23に示したeNB830において、例えば、図5を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。
  <6.2.端末装置に関する応用例>
 (第1の応用例)
 図24は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図24に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図24には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図24に示したように複数のアンテナ916を有してもよい。なお、図24にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図24に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。
 図24に示したスマートフォン900において、図6を参照して説明した処理部240に含まれる1つ以上の構成要素(受信処理部241及び/又はフィルタ設定部243)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図24に示したスマートフォン900において、例えば、図6を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。
 (第2の応用例)
 図25は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図25に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図25には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図25に示したように複数のアンテナ937を有してもよい。なお、図25にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図25に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。
 図25に示したカーナビゲーション装置920において、図6を参照して説明した処理部240に含まれる1つ以上の構成要素(受信処理部241及び/又はフィルタ設定部243)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
 また、図25に示したカーナビゲーション装置920において、例えば、図6を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、受信処理部241及びフィルタ設定部243を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。
 <<7.まとめ>>
 以上、図1~図25を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係る送信装置は、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数を設定する。これにより、サブシンボル数が偶数であっても奇数であっても、パルス整形フィルタの周波数特性を変更せずともGFDMの変換行列が常に正則となる。そのため、変換行列の逆行列が存在することとなるので、受信側でのゼロフォーシングによる復調が可能となる。さらに、サンプル周波数の1/2に相当するオフセットを持たせてプロトタイプフィルタからフィルタ係数をサンプリングすることにより、サブシンボル数が偶数であっても、著しいビットエラーレートの劣化を防止することが可能となる。このようにして、サブシンボル数を奇数にするというリソース設定の制限を解除しても、受信側での復調を成功させることが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、基地局100が送信装置であり端末装置200が受信装置である例を説明したが、本技術はかかる例に限定されない。例えば、端末装置200が送信装置で、基地局100が受信装置であってもよい。その場合、処理部240が送信処理部151及びフィルタ設定部153としての機能を有し、処理部150が受信処理部241及びフィルタ設定部243としての機能を有することとなる。他にもD2D(Device to Device)通信を考慮すれば、送信装置及び受信装置が共に端末装置200であってもよい。
 また、本明細書においてフローチャートを用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。図7、及び図16に示した信号処理の各種ブロックの順序に関しても同様である。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数を設定する処理部、
を備える、装置。
(2)
 前記処理部は、プロトタイプフィルタを周波数軸上の所定位置から所定間隔でサンプリングした値を前記フィルタ係数として設定し、
 前記所定位置は、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じて異なる、前記(1)に記載の装置。
(3)
 前記単位リソースに含まれるサブシンボルの数が偶数の場合の前記所定位置は、デフォルトの位置にオフセットを加えた位置である、前記(2)に記載の装置。
(4)
 前記オフセットは、サブキャリア周波数をサブシンボルの数の倍数で割った値に相当する、前記(3)に記載の装置。
(5)
 前記オフセットは、サンプル周波数の1/2に相当する、前記(3)に記載の装置。
(6)
 前記単位リソースに含まれるサブシンボルの数が奇数の場合の前記所定位置は、デフォルトの位置である、前記(2)~(5)のいずれか一項に記載の装置。
(7)
 前記デフォルトの位置は、サンプリング角周波数の周期開始位置である、前記(3)~(6)のいずれか一項に記載の装置。
(8)
 前記処理部は、周波数ドメインでアップサンプリングを適用し、前記アップサンプリングより後に前記フィルタ係数を用いてフィルタリングする、前記(1)~(7)のいずれか一項に記載の装置。
(9)
 前記アップサンプリングでのオーバーサンプル比は2である、前記(8)に記載の装置。
(10)
 ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定され送信された信号に適用するフィルタ係数を、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って設定する処理部、
を備える、装置。
(11)
 ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数をプロセッサにより設定すること、
を含む方法。
(12)
 ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定され送信された信号に適用するフィルタ係数を、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従ってプロセッサにより設定すること、
を含む方法。
(13)
 コンピュータを、
 ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数を設定する処理部、
として機能させるためのプログラム。
(14)
 コンピュータを、
 ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定され送信された信号に適用するフィルタ係数を、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って設定する処理部、
として機能させるためのプログラム。
 1  システム
 100  基地局
 110  アンテナ部
 120  無線通信部
 130  ネットワーク通信部
 140  記憶部
 150  処理部
 151  送信処理部
 153  フィルタ設定部
 200  端末装置
 210  アンテナ部
 220  無線通信部
 230  記憶部
 240  処理部
 241  受信処理部
 243  フィルタ設定部

Claims (14)

  1.  ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数を設定する処理部、
    を備える、装置。
  2.  前記処理部は、プロトタイプフィルタを周波数軸上の所定位置から所定間隔でサンプリングした値を前記フィルタ係数として設定し、
     前記所定位置は、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じて異なる、請求項1に記載の装置。
  3.  前記単位リソースに含まれるサブシンボルの数が偶数の場合の前記所定位置は、デフォルトの位置にオフセットを加えた位置である、請求項2に記載の装置。
  4.  前記オフセットは、サブキャリア周波数をサブシンボルの数の倍数で割った値に相当する、請求項3に記載の装置。
  5.  前記オフセットは、サンプル周波数の1/2に相当する、請求項3に記載の装置。
  6.  前記単位リソースに含まれるサブシンボルの数が奇数の場合の前記所定位置は、デフォルトの位置である、請求項2に記載の装置。
  7.  前記デフォルトの位置は、サンプリング角周波数の周期開始位置である、請求項3に記載の装置。
  8.  前記処理部は、周波数ドメインでアップサンプリングを適用し、前記アップサンプリングより後に前記フィルタ係数を用いてフィルタリングする、請求項1に記載の装置。
  9.  前記アップサンプリングでのオーバーサンプル比は2である、請求項8に記載の装置。
  10.  ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定され送信された信号に適用するフィルタ係数を、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って設定する処理部、
    を備える、装置。
  11.  ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数をプロセッサにより設定すること、
    を含む方法。
  12.  ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定され送信された信号に適用するフィルタ係数を、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従ってプロセッサにより設定すること、
    を含む方法。
  13.  コンピュータを、
     ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかを可変に設定し、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って適用するフィルタ係数を設定する処理部、
    として機能させるためのプログラム。
  14.  コンピュータを、
     ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの数又はサブシンボルの数の少なくともいずれかが可変に設定され送信された信号に適用するフィルタ係数を、前記単位リソースに含まれるサブシンボルの数が偶数であるか奇数であるかに応じた異なる規則に従って設定する処理部、
    として機能させるためのプログラム。
PCT/JP2016/083971 2016-01-21 2016-11-16 装置、方法及びプログラム WO2017126206A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2016387773A AU2016387773B2 (en) 2016-01-21 2016-11-16 Device, method and program
BR112018014420-7A BR112018014420A2 (pt) 2016-01-21 2016-11-16 aparelho, método, e, programa.
US16/069,081 US10505771B2 (en) 2016-01-21 2016-11-16 Apparatus, method, and program
EP19218846.4A EP3654602B1 (en) 2016-01-21 2016-11-16 Apparatus, method and program
JP2017562449A JP6828694B2 (ja) 2016-01-21 2016-11-16 装置、方法及びプログラム
EP16886445.2A EP3407554B1 (en) 2016-01-21 2016-11-16 Device, method and program
CN201680078839.4A CN108476191B (zh) 2016-01-21 2016-11-16 装置、方法和介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-009626 2016-01-21
JP2016009626 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017126206A1 true WO2017126206A1 (ja) 2017-07-27

Family

ID=59361612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083971 WO2017126206A1 (ja) 2016-01-21 2016-11-16 装置、方法及びプログラム

Country Status (7)

Country Link
US (1) US10505771B2 (ja)
EP (2) EP3407554B1 (ja)
JP (1) JP6828694B2 (ja)
CN (1) CN108476191B (ja)
AU (1) AU2016387773B2 (ja)
BR (1) BR112018014420A2 (ja)
WO (1) WO2017126206A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11057261B2 (en) 2018-12-26 2021-07-06 Cable Television Laboratories, Inc. Systems and methods for transmitting data via an electrical cable
WO2021112726A1 (en) * 2019-12-02 2021-06-10 Telefonaktiebolaget Lm Ericsson (Publ) Pulse-shaping optimization for high frequency radio networks

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100189132A1 (en) 2008-12-18 2010-07-29 Vodafone Holding Gmbh Method and apparatus for multi-carrier frequency division multiplexing transmission

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921464B (zh) * 2005-08-22 2010-05-05 松下电器产业株式会社 频域信道预测算法
US8675744B1 (en) * 2007-09-24 2014-03-18 Atmel Corporation Channel tracking in an orthogonal frequency-division multiplexing system
CN101764783B (zh) * 2010-02-01 2012-07-18 上海交通大学 正交频分复用系统中低复杂度载波间干扰消除的方法
KR20150091370A (ko) * 2012-11-29 2015-08-10 인터디지탈 패튼 홀딩스, 인크 Ofdm 시스템에서의 스펙트럼 누출 감소 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100189132A1 (en) 2008-12-18 2010-07-29 Vodafone Holding Gmbh Method and apparatus for multi-carrier frequency division multiplexing transmission

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FARHANG ARMAN ET AL.: "Low complexity GFDM receiver design: A new approach", IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 8 June 2015 (2015-06-08), pages 4775 - 4780, XP055248958 *
M. MATTHE ET AL.: "Generalized Frequency Division Multiplexing in a Gabor Transform Setting", IEEE COMUNICATIONS LETTERS, vol. 18, no. 8, August 2014 (2014-08-01), XP011555759, DOI: doi:10.1109/LCOMM.2014.2332155
MATTHE M., ET AL.: "Generalized Frequency Division Multiplexing in a Gabor Transform Setting", IEEE COMMUNICATIONS LETTERS, vol. 18, no. 8, August 2014 (2014-08-01), pages 1379 - 1382, XP011555759 *
N. MICHAILOW ET AL.: "Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks", IEEE TRANS. COMMUN., vol. 62, no. 9, September 2014 (2014-09-01), XP011559563, DOI: doi:10.1109/TCOMM.2014.2345566
N. MICHAILOW ET AL.: "Generalized Frequency Division Multiplexing: Analysis of an Alternative Multi-Carrier Technique for Next Generation Cellular Systems", IEEE INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS, 2012
QUALCOMM INCORPORATED: "Waveform Candidates", 3 GPP TSG-RAN WG1#84B, R1-162199, 11 April 2016 (2016-04-11), XP051080027, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg-ran/WG1-RL1/TSGR1_84b/Docs/R1-162199.zip> *
WEI PENG ET AL.: "Fast DGT-Based Receivers for GFDMin Broadband Channels", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 64, no. 10, 8 August 2016 (2016-08-08), pages 4331 - 4345, XP011625797 *

Also Published As

Publication number Publication date
CN108476191A (zh) 2018-08-31
EP3407554A4 (en) 2018-12-05
US10505771B2 (en) 2019-12-10
US20190020515A1 (en) 2019-01-17
AU2016387773B2 (en) 2019-09-19
BR112018014420A2 (pt) 2019-02-19
EP3654602A1 (en) 2020-05-20
JPWO2017126206A1 (ja) 2018-11-15
EP3407554B1 (en) 2020-01-01
AU2016387773A1 (en) 2018-06-21
EP3407554A1 (en) 2018-11-28
CN108476191B (zh) 2021-05-07
EP3654602B1 (en) 2021-08-25
JP6828694B2 (ja) 2021-02-10

Similar Documents

Publication Publication Date Title
US10805930B2 (en) Device, method, and program
JP7039864B2 (ja) 送信装置、受信装置、方法及び記録媒体
CN112236984B (zh) 电子设备和通信方法
US20220109595A1 (en) Apparatus and method
JP6828694B2 (ja) 装置、方法及びプログラム
JP6848879B2 (ja) 装置、方法及びプログラム
JPWO2019181535A1 (ja) 送信装置、方法及び記録媒体
WO2017145477A1 (ja) 装置及び方法
EP4333529A1 (en) Multi-user communication method and related communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017562449

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016387773

Country of ref document: AU

Date of ref document: 20161116

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018014420

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2016886445

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016886445

Country of ref document: EP

Effective date: 20180821

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112018014420

Country of ref document: BR

Free format text: REAPRESENTE A DECLARACAO REFERENTE AO DOCUMENTO DE PRIORIDADE DEVIDAMENTE ASSINADA, CONFORME ART. 408 C/C ART. 410, II, DO CODIGO DE PROCESSO CIVIL.

ENP Entry into the national phase

Ref document number: 112018014420

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180713