WO2017126135A1 - Double-sided adhesive tape - Google Patents

Double-sided adhesive tape Download PDF

Info

Publication number
WO2017126135A1
WO2017126135A1 PCT/JP2016/059895 JP2016059895W WO2017126135A1 WO 2017126135 A1 WO2017126135 A1 WO 2017126135A1 JP 2016059895 W JP2016059895 W JP 2016059895W WO 2017126135 A1 WO2017126135 A1 WO 2017126135A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive adhesive
double
adhesive tape
weight
pressure
Prior art date
Application number
PCT/JP2016/059895
Other languages
French (fr)
Japanese (ja)
Inventor
徳之 内田
勇樹 岩井
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201680035144.8A priority Critical patent/CN107709495A/en
Priority to KR1020187000066A priority patent/KR20180101316A/en
Priority to JP2016521365A priority patent/JP6687515B2/en
Publication of WO2017126135A1 publication Critical patent/WO2017126135A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J193/00Adhesives based on natural resins; Adhesives based on derivatives thereof
    • C09J193/04Rosin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/24Presence of a foam
    • C09J2400/243Presence of a foam in the substrate

Definitions

  • the present invention relates to a double-sided pressure-sensitive adhesive tape excellent in shearing adhesive force, which is used for adhesive fixing of parts constituting portable electronic devices, adhesive fixing of automobile members, and the like.
  • Mobile electronic devices such as mobile phones and personal information terminals (Personal Digital Assistants, PDAs) are designed so that they do not come off or break even if an impact is applied in consideration of falling from the user's hand to the foot.
  • PDAs Personal Digital Assistants
  • Fixed arrangements or device body designs are being considered. Therefore, a double-sided pressure-sensitive adhesive tape that is used for fixing the component to the main body of the device is desired to prevent the component from coming off even when an impact is applied, and not to apply a strong shock to the component. ing.
  • a double-sided pressure-sensitive adhesive tape having a base material made of a polyolefin foam has been studied as an impact absorbing tape for fixing a component constituting a portable electronic device to the device body.
  • an acrylic pressure-sensitive adhesive layer is laminated and integrated on at least one surface of a base material layer, and the base material layer has a specific cross-linking degree and a foam aspect ratio.
  • a shock absorbing tape is described.
  • double-sided pressure-sensitive adhesive tapes are also used for fixing automobile members (for example, in-vehicle panels) to the automobile body, and as such double-sided pressure-sensitive adhesive tapes, a base made of a polyolefin foam having excellent shock absorbing performance is also used. A double-sided adhesive tape having a material is used.
  • An object of this invention is to provide the double-sided adhesive tape excellent in the shear adhesive force used for the adhesion fixation of the components which comprise a portable electronic device, the adhesion fixation of a motor vehicle member, etc.
  • the present invention is a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both surfaces of a substrate, wherein the substrate is made of a foam, and has an interlayer strength of 10 N / 5 mm or more and 30 N / 5 mm or less.
  • the acrylic pressure-sensitive adhesive layer is a double-sided pressure-sensitive adhesive tape having a storage elastic modulus G ′ at 20 ° C. of 2.5 ⁇ 10 5 Pa or more and a loss elastic modulus G ′′ at 20 ° C. of 2 ⁇ 10 5 Pa or more.
  • the present invention is described in detail below.
  • the inventors adjusted the storage elastic modulus G ′ and loss elastic modulus G ′′ of the acrylic pressure-sensitive adhesive layer at 20 ° C. to a specific range, It has been found that the acrylic pressure-sensitive adhesive layer has an appropriate hardness, and an excellent shear adhesive strength can be obtained.However, when the base material is a foam, the base material can withstand a load in the shear direction. On the other hand, the inventor of the present invention prevents such interlayer breakdown of the base material by adjusting the interlayer strength of the base material to a specific range. The present inventors have found that the present invention can be accomplished and have completed the present invention.
  • the double-sided pressure-sensitive adhesive tape of the present invention has a base material made of a foam.
  • the said foam will not be specifically limited if it is a foam in which the bubble exists in resin, A polyolefin foam is preferable.
  • the base material has an interlayer strength of 10 N / 5 mm or more and 30 N / 5 mm or less.
  • the interlayer strength of the substrate is less than 10 N / 5 mm, when a load in a large shearing direction is applied to the double-sided pressure-sensitive adhesive tape, the interlayer fracture of the substrate occurs.
  • the interlayer strength of the substrate is preferably 15 N / 5 mm or more. When the interlayer strength of the substrate exceeds 30 N / 5 mm, the flexibility of the substrate is impaired.
  • the interlayer strength of the substrate is preferably 20 N / 5 mm or less.
  • the interlayer strength of the substrate can be measured as follows. In FIG. 1, the schematic diagram which shows the measuring method of the interlayer intensity
  • an adhesive (not shown) is applied to both sides of a substrate (width 5 mm) 1 to a thickness of 50 ⁇ m, and one side of this substrate is lined with a PET film having a thickness of 23 ⁇ m (illustration). No), the other surface is bonded to the SUS plate 2 and cured for 48 hours to prepare a test sample.
  • the base material 1 is peeled off at a speed of 100 m / min in the 180 ° direction at 23 ° C. and 50% RH, and the peel strength when the base material 1 causes interlaminar fracture is defined as the interlayer strength.
  • the interlayer strength of the base material can be adjusted to a desired range by the density of the base material, the expansion ratio, the degree of crosslinking, and the stretch ratio.
  • the thickness of the said base material is not specifically limited, A preferable minimum is 80 micrometers and a preferable upper limit is 300 micrometers.
  • a preferable minimum is 80 micrometers and a preferable upper limit is 300 micrometers.
  • the thickness of the base material is less than 80 ⁇ m, the strength of the base material may be reduced, and the base material may be easily broken between layers, or the impact resistance of the double-sided pressure-sensitive adhesive tape may be reduced. If the thickness of the base material exceeds 300 ⁇ m, the flexibility of the base material may be reduced and the impact resistance of the double-sided pressure-sensitive adhesive tape may be reduced, and the total thickness of the double-sided pressure-sensitive adhesive tape may be increased. It may not be suitable for applications such as adhesive fixing of components to be configured, and adhesive fixing of automobile members.
  • the minimum with more preferable thickness of the said base material is 100 micrometers, and a more preferable upper limit is 200 micrometers.
  • the density of the base material is preferably 0.35 g / cm 3 or more and 0.7 g / cm 3 or less.
  • Density is more preferably 0.45 g / cm 3 or more of the substrate, 0.5 g / cm 3 or more is more preferable.
  • the density of the substrate is 0.7 g / cm 3 or less, the impact resistance of the double-sided pressure-sensitive adhesive tape can be further increased.
  • a more preferable upper limit of the density of the base material is 0.6 g / cm 3 .
  • the density of the substrate can be measured and calculated using an electronic hydrometer (trade name “ED120T”) manufactured by Mirage in accordance with JISK-6767.
  • a preferable lower limit is 1.2 times and a preferable upper limit is 2.8 times.
  • the expansion ratio of the base material is 1.2 times or more, the flexibility and impact resistance of the double-sided pressure-sensitive adhesive tape can be improved. Since the foaming ratio of the base material is 2.8 times or less, the base material can not withstand a load in the shearing direction and is prevented from being broken (interlaminar fracture), and both surfaces have excellent shear adhesive strength. An adhesive tape can be obtained.
  • the more preferable lower limit of the foaming ratio of the substrate is 1.4 times, the more preferable upper limit is 2.2 times, the more preferable lower limit is 1.7 times, and the more preferable upper limit is 2 times.
  • the expansion ratio of the substrate can be calculated from the reciprocal of the density of the substrate.
  • a conventionally known method such as foaming after crosslinking a resin composition as a raw material as necessary
  • the method can be used.
  • the substrate is a polyolefin resin composition
  • it can be produced by a method having the following steps (1) to (3).
  • Step (1) Polyolefin resin composition, which is made into a sheet by supplying a polyolefin resin, a pyrolytic foaming agent, and other additives to an extruder, melt-kneading, and extruding the sheet from the extruder Step (2) for obtaining a product Step (3) for crosslinking the sheet-shaped polyolefin resin composition
  • Step (3) Heating the cross-linked sheet-shaped polyolefin resin composition to foam a pyrolytic foaming agent And a step of stretching in either or both of the MD direction and the TD direction.
  • the method described in International Publication No. 2005/007731 is a method for producing a crosslinked polyolefin resin foam. Can also be manufactured.
  • Examples of the polyolefin resin in the step (1) include a polyethylene resin, a polypropylene resin, or a mixture thereof.
  • the polyethylene resin may be an ethylene homopolymer, but is preferably a polyethylene- ⁇ -olefin copolymer obtained by copolymerizing ethylene and a small amount of ⁇ -olefin, and among them, Linear low density polyethylene is more preferable.
  • the polyethylene resin a copolymer of ethylene and a small amount of ⁇ -olefin, the flexibility of the foam can be increased and the impact resistance can be further improved.
  • Examples of the ⁇ -olefin in the polyethylene- ⁇ -olefin copolymer include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene. Can be mentioned. Of these, ⁇ -olefins having 4 to 10 carbon atoms are preferable.
  • the preferable lower limit of the ⁇ -olefin in the polyethylene- ⁇ -olefin copolymer is 30% by weight, and the more preferable lower limit is 10% by weight.
  • an ethylene-vinyl acetate copolymer is also preferable.
  • the ethylene-vinyl acetate copolymer is a copolymer containing 50% by weight or more of a structural unit derived from ethylene.
  • the polyethylene-based resin preferably has a low density from the viewpoint of enhancing the flexibility of the foam and enhancing the impact resistance.
  • the density of the polyethylene resin is preferably from 0.920 g / cm 3 or less, more preferably 0.880 ⁇ 0.915g / cm 3, more preferably 0.885 ⁇ 0.910g / cm 3.
  • the density is a value measured according to ASTM D792.
  • polypropylene resin examples include a propylene homopolymer, a propylene- ⁇ -olefin copolymer containing 50% by weight or more of a structural unit derived from propylene, and the like. These may be used alone or in combination of two or more.
  • ⁇ -olefin in the propylene- ⁇ -olefin copolymer examples include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene and the like. It is done. Among these, ⁇ -olefins having 6 to 12 carbon atoms are preferable.
  • the polyolefin resin is a polyethylene resin, a polypropylene resin polymerized by using a metallocene compound, a Ziegler-Natta compound, a chromium oxide compound or the like as a catalyst, or these Preferably, it is a linear low density polyethylene.
  • the metallocene compound is preferably a compound such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between ⁇ -electron unsaturated compounds.
  • a tetravalent transition metal such as titanium, zirconium, nickel, palladium, hafnium, and platinum has one or more cyclopentadienyl rings or analogs thereof as a ligand (ligand).
  • ligand ligand
  • the polymer synthesized using the above metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., and thus when a sheet containing a polymer synthesized using the above metallocene compound is crosslinked. In this case, the crosslinking proceeds uniformly. Since the uniformly crosslinked sheet is easily stretched uniformly, the thickness of the crosslinked polyolefin resin foam is easily uniformed.
  • the ligand examples include cyclic compounds such as a cyclopentadienyl ring and an indenyl ring.
  • the cyclic compound may have a substituent such as a hydrocarbon group, a substituted hydrocarbon group, or a hydrocarbon-substituted metalloid group.
  • the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups.
  • “various” means various isomers such as n-, sec-, tert-, iso- and the like.
  • what polymerized the said cyclic compound as an oligomer may be used as a ligand.
  • monovalent anion ligands such as chlorine and bromine, divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
  • metallocene compound containing the tetravalent transition metal and the ligand examples include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), and bis (cyclopentadienyl) titanium dichloride. And dimethylsilyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
  • the said metallocene compound exhibits the effect
  • cocatalyst include methylaluminoxane (MAO) and boron compounds.
  • the use ratio of the cocatalyst to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
  • the content is preferably 40% by weight or more of the total polyolefin resin, % By weight or more is more preferable, 60% by weight or more is more preferable, and 100% by weight is particularly preferable.
  • the polyolefin foam is thin because the content of the polyethylene resin, ethylene-vinyl acetate copolymer, or mixture thereof obtained by using the metallocene compound as a catalyst is 40% by weight or more Even so, a high compressive strength can be obtained.
  • the Ziegler-Natta compound is a triethylaluminum-titanium tetrachloride solid composite, which is obtained by reducing titanium tetrachloride with an organoaluminum compound and then treating with various electron donors and electron acceptors.
  • a method of combining a titanium composition, an organoaluminum compound and an aromatic carboxylic acid ester see JP-A 56-1000080, JP-A 56-120712, JP-A 58-104907
  • Method of supported catalyst in which titanium tetrachloride and various electron donors are brought into contact with magnesium halide see JP-A-57-63310, JP-A-63-43915, JP-A-63-83116
  • the said polyolefin resin composition may contain arbitrary components, such as resin other than the polyolefin resin mentioned above.
  • gum are mentioned.
  • the total content of these optional components is preferably less than that of the polyolefin resin. Specifically, the content is preferably 50 parts by weight or less and 100 parts by weight or less with respect to 100 parts by weight of the polyolefin resin. Is more preferable.
  • the pyrolytic foaming agent is not particularly limited, and examples thereof include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, p-toluenesulfonyl semicarbazide, and among them, azodicarbonamide is preferable.
  • the said thermal decomposition type foaming agent may be used independently and may be used in combination of 2 or more type.
  • the content of the pyrolytic foaming agent is preferably 1 to 12 parts by weight, more preferably 1 to 8 parts by weight, based on 100 parts by weight of the polyolefin resin.
  • the content of the pyrolytic foaming agent is within the above range, the foamability of the polyolefin resin composition is improved, and it becomes easier to obtain a polyolefin resin foam having a desired expansion ratio and interlayer strength. , Tensile strength and compression recovery can be improved.
  • Examples of the other additives include a decomposition temperature adjusting agent, a crosslinking aid, and an antioxidant.
  • the said decomposition temperature regulator is mix
  • Examples of the decomposition temperature adjusting agent include zinc oxide, zinc stearate, urea and the like.
  • the content of the decomposition temperature adjusting agent with respect to 100 parts by weight of the polyolefin resin is preferably 0.01 to 5 parts by weight.
  • the crosslinking aid is added to the polyolefin resin to reduce the amount of ionizing radiation irradiated in the crosslinking of the polyolefin resin, which will be described later, and to prevent the resin molecules from being cut and deteriorated by the irradiation of the ionizing radiation. Is blended into.
  • a polyfunctional monomer etc. are mentioned, for example. Specifically, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, trimellitic acid triallyl ester, 1,2,4-benzenetricarboxylic acid triallyl ester, triallyl isocyanurate, etc.
  • the addition amount of the crosslinking aid is preferably 0.2 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, and still more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the polyolefin resin.
  • the addition amount of the crosslinking aid is 0.2 parts by weight or more, a foam having a desired degree of crosslinking can be stably obtained.
  • the addition amount of the crosslinking aid is 10 parts by weight or less, the degree of crosslinking of the foam can be easily controlled.
  • the antioxidant is blended to prevent oxidative deterioration due to heat.
  • examples of the antioxidant include phenolic antioxidants such as 2,6-di-t-butyl-p-cresol.
  • examples of the method of crosslinking the polyolefin resin composition include a method of irradiating the polyolefin resin composition with ionizing radiation such as electron beam, ⁇ ray, ⁇ ray, ⁇ ray, Examples include a method in which an organic peroxide is blended in advance when forming the resin composition, and then the organic peroxide is decomposed by heating the polyolefin resin composition. These methods may be used alone or in combination of two or more. From the viewpoint of homogeneous crosslinking, a method of irradiating ionizing radiation is preferable.
  • the dose of ionizing radiation in the method of irradiating with ionizing radiation is preferably adjusted so that the gel fraction is 5 to 45% by weight.
  • a specific irradiation amount is preferably 0.5 to 20 Mrad, and more preferably 3 to 12 Mrad.
  • Examples of the organic peroxide in the method of previously blending the organic peroxide with the resin composition include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1- Examples thereof include bis (t-butylperoxy) cyclohexane. These may be used alone or in combination of two or more.
  • the amount of the organic peroxide added is preferably 0.01 to 5 parts by weight and more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the polyolefin resin. When the addition amount of the organic peroxide is within the above range, the crosslinking of the resin composition is likely to proceed, and the amount of decomposition residue of the organic peroxide present in the obtained polyolefin foam is suppressed. be able to.
  • the method of foaming the polyolefin resin composition is not particularly limited.
  • the method of heating the polyolefin resin composition with hot air the method of heating with infrared rays, the method of heating with a salt bath, the oil bath The method of heating by, etc. are mentioned, These may be used together.
  • the foaming method of a polyolefin-type resin composition is not limited to the method of using a thermal decomposition type foaming agent, You may use physical foaming by a butane gas etc.
  • the polyolefin resin composition is foamed to obtain a foam, and then stretched, or the polyolefin resin composition is stretched while being foamed. Methods and the like.
  • foaming a polyolefin-based resin composition to obtain a foam it is preferable to stretch the foam while maintaining the molten state at the time of foaming without cooling the foam.
  • the foam may be stretched after the cooled foam is heated again to a molten or softened state.
  • the draw ratio in the MD direction of the polyolefin-based resin composition is preferably 1.1 to 3.0 times, and more preferably 1.7 to 2.8 times.
  • the draw ratio in the MD direction of the polyolefin resin composition is preferably 1.1 to 3.0 times, and more preferably 1.7 to 2.8 times.
  • the MD direction (Machine Direction) is used when extruding a polyolefin foam into a sheet shape.
  • the direction of extrusion refers to the TD direction (Transverse Direction) refers to the direction perpendicular to the MD direction.
  • At least one acrylic pressure-sensitive adhesive layer has a storage elastic modulus G ′ at 20 ° C. of 2.5 ⁇ 10 5 Pa or more and a loss elastic modulus G ′′ at 20 ° C. of 2 ⁇ 10 5 Pa or more. It is.
  • the acrylic pressure-sensitive adhesive layer has an appropriate hardness, and has excellent shear adhesive strength.
  • double-sided pressure-sensitive adhesive tape of the present invention if at least one acrylic pressure-sensitive adhesive layer has a storage elastic modulus G ′ and a loss elastic modulus G ′′ within the above range, double-sided acrylic pressure-sensitive adhesive is used.
  • the layers may have the same composition or different compositions.
  • the storage elastic modulus G ′ at 20 ° C. is less than 2.5 ⁇ 10 5 Pa, the shear adhesive strength of the double-sided pressure-sensitive adhesive tape decreases, and when a large load in the shear direction is applied, the double-sided pressure-sensitive adhesive tape peels off.
  • the storage elastic modulus G ′ at 20 ° C. is preferably 4.0 ⁇ 10 5 Pa or more, and more preferably 6.0 ⁇ 10 5 Pa or more.
  • the upper limit of the storage elastic modulus G ′ at 20 ° C. is not particularly limited, but if it is too high, the tackiness of the acrylic pressure-sensitive adhesive layer may be lost, and the initial adhesiveness may be lowered. 10 6 Pa, and a more preferable upper limit is 3.0 ⁇ 10 6 Pa.
  • the loss elastic modulus G ′′ at 20 ° C. is less than 2 ⁇ 10 5 Pa, the shear adhesive strength of the double-sided pressure-sensitive adhesive tape decreases, and the double-sided pressure-sensitive adhesive tape peels off when a large load in the shear direction is applied.
  • the loss elastic modulus G ′′ at ° C. is preferably 4.0 ⁇ 10 5 Pa or more, and more preferably 6.0 ⁇ 10 5 Pa or more.
  • the upper limit of the loss elastic modulus G ′′ at 20 ° C. is not particularly limited. However, if it is too high, the tackiness of the acrylic pressure-sensitive adhesive layer is lost and the initial adhesiveness may be lowered. 10 6 Pa, and a more preferable upper limit is 3.0 ⁇ 10 6 Pa.
  • the storage elastic modulus G ′ and loss elastic modulus G ′′ at 20 ° C. were measured using a dynamic viscoelasticity measuring device (for example, DVA-200 manufactured by IT Measurement Control Co., Ltd.) at a frequency of 10 Hz and a heating rate of 3 ° C. It can be obtained by measuring from ⁇ 40 ° C. to 140 ° C. at / min and reading storage elastic modulus G ′ and loss elastic modulus G ′′ at 20 ° C.
  • a dynamic viscoelasticity measuring device for example, DVA-200 manufactured by IT Measurement Control Co., Ltd.
  • the composition, weight average molecular weight, molecular weight distribution, etc. of the acrylic copolymer are adjusted.
  • Methods, methods of mixing acrylic copolymers of different compositions, weight average molecular weight, molecular weight distribution, etc., methods of adjusting the softening point, content, etc. of tackifying resins, methods of adjusting the degree of crosslinking of the acrylic pressure-sensitive adhesive layer, etc. Is mentioned.
  • the acrylic copolymer constituting the acrylic pressure-sensitive adhesive layer is preferably obtained by copolymerizing a monomer mixture containing butyl acrylate and 2-ethylhexyl acrylate.
  • the preferred content of butyl acrylate in the total monomer mixture is 40 to 80% by weight.
  • the acrylic pressure-sensitive adhesive layer becomes too soft and the cohesive force may be reduced, and the shear adhesive force of the double-sided pressure-sensitive adhesive tape may be reduced.
  • the acrylic pressure-sensitive adhesive layer becomes hard and the adhesive strength or tack may decrease, and the shear adhesive strength of the double-sided adhesive tape may decrease.
  • the preferred content of 2-ethylhexyl acrylate in the total monomer mixture is 10 to 40% by weight. If the content of 2-ethylhexyl acrylate is less than 10% by weight, the adhesive strength of the acrylic pressure-sensitive adhesive layer may be reduced, and the shear adhesive strength of the double-sided pressure-sensitive adhesive tape may be reduced. When the content of 2-ethylhexyl acrylate exceeds 40% by weight, the acrylic pressure-sensitive adhesive layer becomes too soft and the cohesive strength is lowered, and the shear pressure-sensitive adhesive strength of the double-sided pressure-sensitive adhesive tape may be lowered.
  • the monomer mixture may contain other copolymerizable monomers other than butyl acrylate and 2-ethylhexyl acrylate as necessary.
  • examples of other polymerizable monomers that can be copolymerized include, for example, carbon number of alkyl groups such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and isopropyl (meth) acrylate.
  • (Meth) acrylic acid alkyl ester having 1 to 3 carbon atoms such as (meth) acrylic acid alkyl ester, tridecyl methacrylate, stearyl (meth) acrylate, and the like, and (meth) acrylic acid hydroxyalkyl And functional monomers such as glycerin dimethacrylate, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate, (meth) acrylic acid, itaconic acid, maleic anhydride, crotonic acid, maleic acid and fumaric acid.
  • the monomer mixture may be radically reacted in the presence of a polymerization initiator.
  • a method of radical reaction of the monomer mixture that is, a polymerization method
  • examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like.
  • the said polymerization initiator is not specifically limited, For example, an organic peroxide, an azo compound, etc. are mentioned.
  • organic peroxide examples include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, t-hexylperoxypivalate, t-butylperoxypivalate, 2,5 -Dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxy Examples include isobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate, and t-butylperoxylaurate.
  • the azo compound examples include azobisisobutyronitrile and azobiscyclohexanecarbonitrile. These polymerization initiators may be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the said acrylic copolymer a preferable minimum is 400,000 and a preferable upper limit is 1 million.
  • the weight average molecular weight is less than 400,000, the cohesive force of the acrylic pressure-sensitive adhesive layer may be reduced, and the shear adhesive force of the double-sided pressure-sensitive adhesive tape may be reduced.
  • a weight average molecular weight exceeds 1 million, the adhesive force of the said acrylic adhesive layer may fall, and the shear adhesive force of a double-sided adhesive tape may fall.
  • a more preferable lower limit of the weight average molecular weight is 500,000, and a more preferable upper limit is 700,000.
  • a weight average molecular weight is a weight average molecular weight of standard polystyrene conversion by GPC (Gel Permeation Chromatography: gel permeation chromatography).
  • the acrylic pressure-sensitive adhesive layer may contain a tackifier resin.
  • tackifier resins include rosin ester resins, hydrogenated rosin resins, terpene resins, terpene phenol resins, coumarone indene resins, alicyclic saturated hydrocarbon resins, C5 petroleum resins, and C9 resins. Examples include petroleum resins and C5-C9 copolymer petroleum resins. These tackifying resins may be used alone or in combination of two or more.
  • content of the said tackifying resin is not specifically limited,
  • the preferable minimum with respect to 100 weight part of said acrylic copolymers is 10 weight part, and a preferable upper limit is 60 weight part.
  • the content of the tackifying resin is less than 10 parts by weight, the adhesive strength of the acrylic pressure-sensitive adhesive layer may be reduced, and the shear adhesive strength of the double-sided pressure-sensitive adhesive tape may be reduced.
  • the content of the tackifying resin exceeds 60 parts by weight, the acrylic pressure-sensitive adhesive layer is hardened, the adhesive strength or tack may be reduced, and the shear adhesive strength of the double-sided adhesive tape may be reduced.
  • a crosslinking structure is formed between the main chains of the resin (the acrylic copolymer and / or the tackifying resin) constituting the acrylic pressure-sensitive adhesive layer by adding a crosslinking agent.
  • a crosslinking agent is not specifically limited, For example, an isocyanate type crosslinking agent, an aziridine type crosslinking agent, an epoxy-type crosslinking agent, a metal chelate type crosslinking agent etc. are mentioned. Of these, isocyanate-based crosslinking agents are preferred.
  • the isocyanate group of the isocyanate-based cross-linking agent reacts with the alcoholic hydroxyl group in the resin constituting the acrylic pressure-sensitive adhesive layer, and the acrylic pressure-sensitive adhesive layer.
  • the cross-linking becomes loose. Accordingly, the acrylic pressure-sensitive adhesive layer can disperse the intermittently applied peeling stress, and the shear adhesive strength of the double-sided pressure-sensitive adhesive tape is further improved.
  • the addition amount of the crosslinking agent is preferably 0.01 to 10 parts by weight and more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the acrylic copolymer.
  • the degree of cross-linking of the acrylic pressure-sensitive adhesive layer is preferably 5 to 40% by weight, because it may be easily peeled off from the adherend when a load in a large shear direction is applied, whether it is too high or too low. More preferred is 40% by weight, and particularly preferred is 15 to 35% by weight.
  • the thickness of the acrylic pressure-sensitive adhesive layer is not particularly limited, but the thickness of the single-sided acrylic pressure-sensitive adhesive layer is preferably 10 to 100 ⁇ m. When the thickness of the acrylic pressure-sensitive adhesive layer is less than 10 ⁇ m, the impact resistance or shear adhesive strength of the double-sided pressure-sensitive adhesive tape may be lowered. When the thickness of the acrylic pressure-sensitive adhesive layer exceeds 100 ⁇ m, the reworkability or removability of the double-sided pressure-sensitive adhesive tape may be impaired.
  • the double-sided pressure-sensitive adhesive tape of the present invention preferably has a total thickness of 50 to 400 ⁇ m. If the total thickness of the double-sided pressure-sensitive adhesive tape is less than 50 ⁇ m, the impact resistance or shear adhesive strength of the double-sided pressure-sensitive adhesive tape may be lowered. If the total thickness of the double-sided pressure-sensitive adhesive tape exceeds 400 ⁇ m, it may not be suitable for applications such as adhesive fixing of parts constituting portable electronic devices and adhesive fixing of automobile members.
  • the minimum with more preferable total thickness of a double-sided adhesive tape is 100 micrometers, and a more preferable upper limit is 300 micrometers.
  • a solution of an adhesive A is prepared by adding a solvent to an acrylic copolymer, a tackifier resin, and a cross-linking agent as necessary, and the solution of the adhesive A is applied to the surface of the substrate.
  • the acrylic adhesive layer A is formed by completely removing and removing the solvent.
  • a release film is overlaid on the formed acrylic pressure-sensitive adhesive layer A so that the release treatment surface faces the acrylic pressure-sensitive adhesive layer A.
  • a release film different from the above release film is prepared, the adhesive B solution is applied to the release treatment surface of the release film, and the solvent in the solution is completely removed by drying, thereby releasing the release film.
  • a laminated film in which the acrylic pressure-sensitive adhesive layer B is formed on the surface of the mold film is produced.
  • the obtained laminated film is superposed on the back surface of the base material on which the acrylic pressure-sensitive adhesive layer A is formed, with the acrylic pressure-sensitive adhesive layer B facing the back surface of the base material to produce a laminate.
  • a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both surfaces of the base material and having the surface of the acrylic pressure-sensitive adhesive layer covered with a release film can be obtained. it can.
  • two sets of laminated films are produced in the same manner, and a laminated body is produced by superposing these laminated films on both sides of the base material with the acrylic adhesive layer of the laminated film facing the base material. Then, by pressing this laminate with a rubber roller or the like, a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both surfaces of the base material and the surface of the acrylic pressure-sensitive adhesive layer covered with a release film can be obtained. Good.
  • the use of the double-sided pressure-sensitive adhesive tape of the present invention is not particularly limited, it can be used for bonding and fixing parts constituting a portable electronic device to the device main body, and can be used for bonding and fixing an automobile member to the vehicle main body.
  • the double-sided pressure-sensitive adhesive tape of the present invention can be used for adhesive fixing of components in large-sized portable electronic devices, adhesive fixing of automobile members (for example, in-vehicle panels), and the like.
  • the shape of the double-sided pressure-sensitive adhesive tape of the present invention in these applications is not particularly limited, and examples thereof include a rectangle, a frame shape, a circle, an ellipse, and a donut shape.
  • the double-sided adhesive tape excellent in the shear adhesive force used for the adhesion fixation of the components which comprise a portable electronic device, the adhesion fixation of a motor vehicle member, etc. can be provided.
  • a reactor equipped with a thermometer, a stirrer, and a condenser tube is 70 parts by weight of butyl acrylate, 27 parts by weight of 2-ethylhexyl acrylate, 3 parts by weight of acrylic acid, 0.2 parts by weight of 2-hydroxyethyl acrylate, and 80 parts by weight of ethyl acetate.
  • the reactor was heated to start refluxing.
  • 0.1 part by weight of azobisisobutyronitrile was added as a polymerization initiator in the reactor.
  • the solution was refluxed at 70 ° C. for 5 hours to obtain a solution of the acrylic copolymer (a).
  • a pressure-sensitive adhesive (F) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 15 parts by weight of a polymerized rosin ester having a softening point of 150 ° C. was used as the tackifier resin.
  • a pressure-sensitive adhesive (G) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 10 parts by weight of the ester was used.
  • a pressure-sensitive adhesive (H) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 10 parts by weight of a polymerized rosin ester having a softening point of 150 ° C. and 8 parts by weight of a rosin ester having a softening point of 100 ° C. were used as the tackifier resin. .
  • a pressure-sensitive adhesive (J) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 15 parts by weight of ester was used.
  • polyolefin foam (A) 100 parts by weight of a linear low density polyethylene (exon chemical company, trade name “Exact3027”, density: 0.900 g / cm 3 ) as a polyolefin-based resin, 2 parts by weight of azodicarbonamide as a thermally decomposable foaming agent, 1 part by weight of zinc oxide as a decomposition temperature adjusting agent and 0.5 part by weight of 2,6-di-t-butyl-p-cresol as an antioxidant are supplied to an extruder and melt-kneaded at 130 ° C., A long sheet-like polyolefin resin composition having a thickness of about 0.3 mm was extruded.
  • a linear low density polyethylene exon chemical company, trade name “Exact3027”, density: 0.900 g / cm 3
  • azodicarbonamide as a thermally decomposable foaming agent
  • zinc oxide as a decomposition temperature adjusting agent
  • the polyolefin resin composition in the form of a long sheet is cross-linked by irradiating 4.5 Mrad of an electron beam with an acceleration voltage of 500 kV on both sides, and then maintained in a foaming furnace maintained at 250 ° C. with hot air and an infrared heater.
  • Polyolefin foam having a thickness of 0.14 mm by continuously feeding to foam and heating and foaming, and by stretching the foam with a stretch ratio of MD of 1.5 times and a stretch ratio of TD of 2.0 times (A) was obtained.
  • the density and interlayer strength of the obtained foam were measured.
  • the density of the polyolefin foam was measured and calculated using an electronic hydrometer (trade name “ED120T”) manufactured by Mirage in accordance with JISK-6767.
  • the interlayer strength of the polyolefin foam was measured by the measurement method shown in FIG. 1 as described above.
  • a polyolefin foam (B) was obtained in the same manner as in the production of the polyolefin foam (A) except that the draw ratio of TD was 2.2 times. The density and interlayer strength of the obtained foam were measured.
  • a polyolefin foam (C) was obtained in the same manner as in the production of the polyolefin foam (A) except that the amount of azodicarbonamide to be blended was 2.2 parts by weight and the draw ratio of TD was 1.8 times. The density and interlayer strength of the obtained foam were measured.
  • a polyolefin foam (D) was obtained in the same manner as in the production of the polyolefin foam (A) except that the amount of azodicarbonamide to be blended was 1.9 parts by weight and the draw ratio of TD was 1.9 times. The density and interlayer strength of the obtained foam were measured.
  • a polyolefin foam (E) was obtained in the same manner as in the production of the polyolefin foam (A) except that the amount of azodicarbonamide to be blended was 3 parts by weight and the draw ratio of TD was 3 times. The density and interlayer strength of the obtained foam were measured.
  • a polyolefin foam (F) was obtained in the same manner as in the production of the polyolefin foam (A) except that the amount of azodicarbonamide to be blended was 2.8 parts by weight and the draw ratio of TD was 2.8 times. The density and interlayer strength of the obtained foam were measured.
  • Example 1 A release paper having a thickness of 150 ⁇ m was prepared, an adhesive (J) was applied to the release-treated surface of the release paper, and dried at 100 ° C. for 5 minutes to form an acrylic adhesive layer having a thickness of 50 ⁇ m.
  • This acrylic pressure-sensitive adhesive layer was bonded to the surface of the polyolefin foam (A).
  • the same acrylic pressure-sensitive adhesive layer as above was bonded to the opposite surface of the polyolefin foam.
  • curing was performed by heating at 40 ° C. for 48 hours. This obtained the double-sided adhesive tape of the total thickness shown in Table 1 covered with the 150-micrometer-thick release paper.
  • the acrylic pressure-sensitive adhesive layer was measured from ⁇ 40 ° C. to 140 ° C.
  • Example 2 Example 1 except that the type of the pressure-sensitive adhesive was changed to the pressure-sensitive adhesive (A), and the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ′′ at 20 ° C. shown in Table 1 was changed. Similarly, a double-sided adhesive tape was obtained.
  • Example 3 A double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 2 except that the polyolefin foam (B) was changed to one having the density, thickness and interlayer strength shown in Table 1 by changing the type of the polyolefin foam. It was.
  • Example 4 In the same manner as in Example 3, except that the polyolefin foam was changed to one having the density, thickness and interlayer strength shown in Table 1 by changing the type of polyolefin foam to polyolefin foam (C). An adhesive tape was obtained.
  • Example 5 Example 4 except that the acrylic adhesive layer having the storage elastic modulus G ′ and the loss elastic modulus G ′′ at 20 ° C. shown in Table 1 was changed by changing the type of the adhesive to the adhesive (B). Similarly, a double-sided adhesive tape was obtained.
  • Example 6 Example 4 except that the type of the pressure-sensitive adhesive was changed to the pressure-sensitive adhesive (C), and the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ′′ at 20 ° C. shown in Table 1 was changed. Similarly, a double-sided adhesive tape was obtained.
  • Example 7 By changing the type of polyolefin foam to polyolefin foam (D), the polyolefin foam is changed to one having the density, thickness and interlayer strength shown in Table 1, and the type of pressure-sensitive adhesive is changed to pressure-sensitive adhesive (D).
  • a double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 3 except that the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ′′ at 20 ° C. shown in Table 1 was changed.
  • Example 8 By changing the type of polyolefin foam to polyolefin foam (D), the polyolefin foam is changed to one having the density, thickness and interlayer strength shown in Table 1, and the type of pressure-sensitive adhesive is changed to pressure-sensitive adhesive (E).
  • a double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 3 except that the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ′′ at 20 ° C. shown in Table 1 was changed.
  • Example 1 By changing the type of polyolefin foam to polyolefin foam (E), the polyolefin foam is changed to one having the density, thickness and interlayer strength shown in Table 2, and the type of pressure-sensitive adhesive is changed to pressure-sensitive adhesive (F).
  • a double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 3 except that the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ′′ at 20 ° C. shown in Table 2 was changed.
  • Comparative Example 2 Comparative Example 1 with the exception of changing the adhesive type to an adhesive (G) and changing to an acrylic adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ′′ at 20 ° C. shown in Table 2 Similarly, a double-sided adhesive tape was obtained.
  • Comparative Example 3 By changing the type of the polyolefin foam to the polyolefin foam (F), the polyolefin foam was changed to one having the density, thickness and interlayer strength shown in Table 2, and the both sides were the same as in Comparative Example 1. An adhesive tape was obtained.
  • Example 4 Example 4 with the exception that the pressure-sensitive adhesive (H) was changed to an acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ′′ at 20 ° C. shown in Table 2 by changing the type of the pressure-sensitive adhesive. Similarly, a double-sided adhesive tape was obtained.
  • FIG. 2 is a schematic diagram showing a method for measuring the shear adhesive strength of a double-sided adhesive tape.
  • two 2 mm-thick polycarbonate plates (PC plates) 3 are bonded with double-sided adhesive tape (vertical 1 cm ⁇ width 1 cm) 4, pressed with 5 kg for 10 seconds, and then allowed to stand at 23 ° C. for 24 hours.
  • double-sided adhesive tape vertical 1 cm ⁇ width 1 cm
  • a test piece was prepared.
  • two 20 mm-thick polycarbonate plates (PC plates) 3 having a thickness of 2 mm are peeled off at a rate of 10 mm / min in the shear direction of the double-sided pressure-sensitive adhesive tape 4 (arrow direction in FIG. 2).
  • the maximum value of force was defined as shear adhesive strength.
  • shear adhesive strength was 175 N / cm 2 or more ⁇ , 100 N / cm 2 or more, the case was less than 175 N / cm 2 ⁇ , was determined as ⁇ when was less than 100 N / cm 2. Moreover, the peeling state was observed and it was evaluated whether peeling mode was interface peeling or delamination.
  • the double-sided adhesive tape excellent in the shear adhesive force used for the adhesion fixation of the components which comprise a portable electronic device, the adhesion fixation of a motor vehicle member, etc. can be provided.

Abstract

The purpose of the present invention is to provide a double-sided adhesive tape of excellent shear adhesive strength to be used for adhesion and fixing of parts configuring portable electronic devices, adhesion and fixing of car components, etc. The present invention is a double-sided adhesive tape with an acrylic adhesive layer on both surfaces of a substrate, wherein: the substrate is made of foam and the interlayer strength thereof is 10 N/5 mm to 30 N/5 mm; and for at least one of the acrylic adhesive layers, storage modulus G' at 20°C is at least 2.5 × 105 Pa and the loss modulus G" at 20°C is at least 2 × 105 Pa.

Description

両面粘着テープDouble-sided adhesive tape
本発明は、携帯電子機器を構成する部品の接着固定、自動車部材の接着固定等に用いられる、せん断粘着力に優れた両面粘着テープに関する。 The present invention relates to a double-sided pressure-sensitive adhesive tape excellent in shearing adhesive force, which is used for adhesive fixing of parts constituting portable electronic devices, adhesive fixing of automobile members, and the like.
携帯電話、携帯情報端末(Personal Digital Assistants、PDA)等の携帯電子機器は、使用者の手元から足元に落下することを考慮して衝撃が加わっても部品が外れたり破損したりしないよう部品の固定配置又は機器本体のデザインが検討されている。従って、部品を機器本体に固定するために用いられる両面粘着テープとしても、衝撃が加わった場合であっても部品が外れることがなく、かつ、部品に強い衝撃が加わらない両面粘着テープが望まれている。 Mobile electronic devices such as mobile phones and personal information terminals (Personal Digital Assistants, PDAs) are designed so that they do not come off or break even if an impact is applied in consideration of falling from the user's hand to the foot. Fixed arrangements or device body designs are being considered. Therefore, a double-sided pressure-sensitive adhesive tape that is used for fixing the component to the main body of the device is desired to prevent the component from coming off even when an impact is applied, and not to apply a strong shock to the component. ing.
携帯電子機器を構成する部品を機器本体に固定する衝撃吸収テープとして、例えば、ポリオレフィン発泡体からなる基材を有する両面粘着テープが検討されている。
特許文献1及び2には、基材層の少なくとも片面にアクリル系粘着剤層が積層一体化されており、基材層が、特定の架橋度及び気泡のアスペクト比を有する架橋ポリオレフィン系樹脂発泡シートである衝撃吸収テープが記載されている。
For example, a double-sided pressure-sensitive adhesive tape having a base material made of a polyolefin foam has been studied as an impact absorbing tape for fixing a component constituting a portable electronic device to the device body.
In Patent Documents 1 and 2, an acrylic pressure-sensitive adhesive layer is laminated and integrated on at least one surface of a base material layer, and the base material layer has a specific cross-linking degree and a foam aspect ratio. A shock absorbing tape is described.
また、自動車部材(例えば、車載用パネル)を自動車本体に固定する用途にも両面粘着テープが用いられており、このような両面粘着テープとしても、衝撃吸収性能に優れたポリオレフィン発泡体からなる基材を有する両面粘着テープが用いられている。 In addition, double-sided pressure-sensitive adhesive tapes are also used for fixing automobile members (for example, in-vehicle panels) to the automobile body, and as such double-sided pressure-sensitive adhesive tapes, a base made of a polyolefin foam having excellent shock absorbing performance is also used. A double-sided adhesive tape having a material is used.
近年、大型の携帯電子機器における部品の接着固定、自動車部材の接着固定等の用途においては、重量の大きな部品又は部材を貼り合わせる必要があり、両面粘着テープにかかるせん断方向への負荷が大きくなっている。このため、従来の両面粘着テープでは、このような大きなせん断方向の負荷に耐えることができず、剥離してしまうという問題があった。 In recent years, in applications such as adhesive fixing of parts in large-sized portable electronic devices and adhesive fixing of automobile members, it is necessary to bond heavy parts or members, and the load on the double-sided adhesive tape in the shearing direction has increased. ing. For this reason, the conventional double-sided pressure-sensitive adhesive tape has a problem that it cannot withstand such a large load in the shearing direction and peels off.
特開2009-242541号公報JP 2009-242541 A 特開2009-258274号公報JP 2009-258274 A
本発明は、携帯電子機器を構成する部品の接着固定、自動車部材の接着固定等に用いられる、せん断粘着力に優れた両面粘着テープを提供することを目的とする。 An object of this invention is to provide the double-sided adhesive tape excellent in the shear adhesive force used for the adhesion fixation of the components which comprise a portable electronic device, the adhesion fixation of a motor vehicle member, etc.
本発明は、基材の両面にアクリル粘着剤層を有する両面粘着テープであって、前記基材は、発泡体からなり、層間強度が10N/5mm以上、30N/5mm以下であり、少なくとも一方のアクリル粘着剤層は、20℃における貯蔵弾性率G’が2.5×10Pa以上、20℃における損失弾性率G”が2×10Pa以上である両面粘着テープである。
以下、本発明を詳述する。
The present invention is a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both surfaces of a substrate, wherein the substrate is made of a foam, and has an interlayer strength of 10 N / 5 mm or more and 30 N / 5 mm or less. The acrylic pressure-sensitive adhesive layer is a double-sided pressure-sensitive adhesive tape having a storage elastic modulus G ′ at 20 ° C. of 2.5 × 10 5 Pa or more and a loss elastic modulus G ″ at 20 ° C. of 2 × 10 5 Pa or more.
The present invention is described in detail below.
本発明者らは、基材の両面にアクリル粘着剤層を有する両面粘着テープにおいて、アクリル粘着剤層の20℃における貯蔵弾性率G’及び損失弾性率G”を特定範囲に調整することで、アクリル粘着剤層が適度な硬さを有するものとなり、優れたせん断粘着力が得られることを見出した。しかしながら、基材が発泡体である場合には、基材がせん断方向の負荷に耐えられず破壊(層間破壊)が生じてしまうという問題があった。これに対して、本発明者は、基材の層間強度を特定範囲に調整することで、このような基材の層間破壊を防止できることを見出し、本発明を完成させるに至った。 In the double-sided pressure-sensitive adhesive tape having the acrylic pressure-sensitive adhesive layer on both surfaces of the substrate, the inventors adjusted the storage elastic modulus G ′ and loss elastic modulus G ″ of the acrylic pressure-sensitive adhesive layer at 20 ° C. to a specific range, It has been found that the acrylic pressure-sensitive adhesive layer has an appropriate hardness, and an excellent shear adhesive strength can be obtained.However, when the base material is a foam, the base material can withstand a load in the shear direction. On the other hand, the inventor of the present invention prevents such interlayer breakdown of the base material by adjusting the interlayer strength of the base material to a specific range. The present inventors have found that the present invention can be accomplished and have completed the present invention.
本発明の両面粘着テープは発泡体からなる基材を有する。上記発泡体は、樹脂中に気泡が存在している発泡体であれば特に限定されないが、ポリオレフィン発泡体が好ましい。 The double-sided pressure-sensitive adhesive tape of the present invention has a base material made of a foam. Although the said foam will not be specifically limited if it is a foam in which the bubble exists in resin, A polyolefin foam is preferable.
上記基材は、層間強度が10N/5mm以上、30N/5mm以下である。
上記基材の層間強度を上記範囲に調整することで、上記基材がせん断方向の負荷に耐えられず破壊(層間破壊)が生じてしまうことを防止し、せん断粘着力に優れた両面粘着テープを得ることができる。
The base material has an interlayer strength of 10 N / 5 mm or more and 30 N / 5 mm or less.
By adjusting the interlaminar strength of the base material to the above range, the double-sided adhesive tape that prevents the base material from being able to withstand the load in the shearing direction and causing fracture (interlaminar fracture) and having excellent shear adhesive strength Can be obtained.
上記基材の層間強度が10N/5mm未満であると、大きなせん断方向の負荷が両面粘着テープに加わると、上記基材の層間破壊が生じてしまう。上記基材の層間強度は15N/5mm以上が好ましい。
上記基材の層間強度が30N/5mmを超えると、上記基材の柔軟性が損なわれてしまう。上記基材の層間強度は、20N/5mm以下が好ましい。
なお、基材の層間強度は、次のように測定できる。図1に、基材の層間強度の測定方法を示す模式図を示す。
図1に示すように、基材(幅5mm)1の両面に粘着剤(図示しない)を50μmの厚みに塗工し、この基材の一方の面を厚み23μmのPETフィルムで裏打ちし(図示しない)、他方の面をSUS板2に貼り合わせ、48時間養生して試験サンプルを作製する。次いで、23℃、50%RHにて180°方向に100m/minの速度で基材1を引き剥がし、基材1が層間破壊を起こしたときの引き剥がし強度を層間強度とする。
上記基材の層間強度は、上記基材の密度、発泡倍率、架橋の度合い、延伸倍率により所期の範囲に調整することができる。
When the interlayer strength of the substrate is less than 10 N / 5 mm, when a load in a large shearing direction is applied to the double-sided pressure-sensitive adhesive tape, the interlayer fracture of the substrate occurs. The interlayer strength of the substrate is preferably 15 N / 5 mm or more.
When the interlayer strength of the substrate exceeds 30 N / 5 mm, the flexibility of the substrate is impaired. The interlayer strength of the substrate is preferably 20 N / 5 mm or less.
The interlayer strength of the substrate can be measured as follows. In FIG. 1, the schematic diagram which shows the measuring method of the interlayer intensity | strength of a base material is shown.
As shown in FIG. 1, an adhesive (not shown) is applied to both sides of a substrate (width 5 mm) 1 to a thickness of 50 μm, and one side of this substrate is lined with a PET film having a thickness of 23 μm (illustration). No), the other surface is bonded to the SUS plate 2 and cured for 48 hours to prepare a test sample. Next, the base material 1 is peeled off at a speed of 100 m / min in the 180 ° direction at 23 ° C. and 50% RH, and the peel strength when the base material 1 causes interlaminar fracture is defined as the interlayer strength.
The interlayer strength of the base material can be adjusted to a desired range by the density of the base material, the expansion ratio, the degree of crosslinking, and the stretch ratio.
上記基材の厚みは特に限定されないが、好ましい下限は80μm、好ましい上限は300μmである。上記基材の厚みが80μm未満であると、上記基材の強度が低下し、上記基材が層間破壊しやすくなったり、両面粘着テープの耐衝撃性が低下したりすることがある。上記基材の厚みが300μmを超えると、上記基材の柔軟性が低下して両面粘着テープの耐衝撃性が低下することがあり、また、両面粘着テープの総厚みが増し、携帯電子機器を構成する部品の接着固定、自動車部材の接着固定等の用途に適さなくなることがある。上記基材の厚みのより好ましい下限は100μm、より好ましい上限は200μmである。 Although the thickness of the said base material is not specifically limited, A preferable minimum is 80 micrometers and a preferable upper limit is 300 micrometers. When the thickness of the base material is less than 80 μm, the strength of the base material may be reduced, and the base material may be easily broken between layers, or the impact resistance of the double-sided pressure-sensitive adhesive tape may be reduced. If the thickness of the base material exceeds 300 μm, the flexibility of the base material may be reduced and the impact resistance of the double-sided pressure-sensitive adhesive tape may be reduced, and the total thickness of the double-sided pressure-sensitive adhesive tape may be increased. It may not be suitable for applications such as adhesive fixing of components to be configured, and adhesive fixing of automobile members. The minimum with more preferable thickness of the said base material is 100 micrometers, and a more preferable upper limit is 200 micrometers.
上記基材の密度は、0.35g/cm以上、0.7g/cm以下であることが好ましい。上記基材の密度が0.35g/cm以上であることで、大きなせん断方向の負荷が両面粘着テープに加わった場合であっても、上記基材の層間破壊が生じにくい。上記基材の密度は0.45g/cm以上がより好ましく、0.5g/cm以上が更に好ましい。
上記基材の密度が0.7g/cm以下であることで両面粘着テープの耐衝撃性をより高めることができる。上記基材の密度のより好ましい上限は0.6g/cmである。
なお、基材の密度は、JISK-6767に準拠してミラージュ社製の電子比重計(商品名「ED120T」)を使用して測定し算出できる。
The density of the base material is preferably 0.35 g / cm 3 or more and 0.7 g / cm 3 or less. When the density of the base material is 0.35 g / cm 3 or more, even when a load in a large shear direction is applied to the double-sided pressure-sensitive adhesive tape, interlaminar fracture of the base material hardly occurs. Density is more preferably 0.45 g / cm 3 or more of the substrate, 0.5 g / cm 3 or more is more preferable.
When the density of the substrate is 0.7 g / cm 3 or less, the impact resistance of the double-sided pressure-sensitive adhesive tape can be further increased. A more preferable upper limit of the density of the base material is 0.6 g / cm 3 .
The density of the substrate can be measured and calculated using an electronic hydrometer (trade name “ED120T”) manufactured by Mirage in accordance with JISK-6767.
上記基材の発泡倍率は、好ましい下限が1.2倍、好ましい上限が2.8倍である。上記基材の発泡倍率が1.2倍以上であることで、両面粘着テープの柔軟性及び耐衝撃性を向上させることができる。上記基材の発泡倍率が2.8倍以下であることで、上記基材がせん断方向の負荷に耐えられず破壊(層間破壊)が生じてしまうことを防止し、せん断粘着力に優れた両面粘着テープを得ることができる。上記基材の発泡倍率のより好ましい下限は1.4倍、より好ましい上限は2.2倍であり、更に好ましい下限は1.7倍、更に好ましい上限は2倍である。
なお、上記基材の発泡倍率は、上記基材の密度の逆数から算出できる。
As for the foaming ratio of the base material, a preferable lower limit is 1.2 times and a preferable upper limit is 2.8 times. When the expansion ratio of the base material is 1.2 times or more, the flexibility and impact resistance of the double-sided pressure-sensitive adhesive tape can be improved. Since the foaming ratio of the base material is 2.8 times or less, the base material can not withstand a load in the shearing direction and is prevented from being broken (interlaminar fracture), and both surfaces have excellent shear adhesive strength. An adhesive tape can be obtained. The more preferable lower limit of the foaming ratio of the substrate is 1.4 times, the more preferable upper limit is 2.2 times, the more preferable lower limit is 1.7 times, and the more preferable upper limit is 2 times.
The expansion ratio of the substrate can be calculated from the reciprocal of the density of the substrate.
上記層間強度が10N/5mm以上、30N/5mm以下である、発泡体からなる基材の製造方法としては、原料となる樹脂組成物を必要に応じて架橋した後に発泡する方法等、従来公知の方法を用いることができる。
具体的には、例えば、基材がポリオレフィン系樹脂組成物の場合には、以下の工程(1)~(3)を有する方法により製造することができる。
工程(1):ポリオレフィン系樹脂、熱分解型発泡剤、及びその他の添加剤を押出機に供給して溶融混練し、押出機からシート状に押出すことによってシート状にされたポリオレフィン系樹脂組成物を得る工程
工程(2):シート状にされたポリオレフィン系樹脂組成物を架橋する工程
工程(3):架橋させたシート状のポリオレフィン系樹脂組成物を加熱し、熱分解型発泡剤を発泡させて、MD方向又はTD方向の何れか一方又は双方に延伸する工程
なお、架橋ポリオレフィン系樹脂発泡体の製造方法としては、この方法のほかに、国際公開第2005/007731号に記載された方法により製造することもできる。
As a method for producing a base material made of a foam having an interlayer strength of 10 N / 5 mm or more and 30 N / 5 mm or less, a conventionally known method such as foaming after crosslinking a resin composition as a raw material as necessary The method can be used.
Specifically, for example, when the substrate is a polyolefin resin composition, it can be produced by a method having the following steps (1) to (3).
Step (1): Polyolefin resin composition, which is made into a sheet by supplying a polyolefin resin, a pyrolytic foaming agent, and other additives to an extruder, melt-kneading, and extruding the sheet from the extruder Step (2) for obtaining a product Step (3) for crosslinking the sheet-shaped polyolefin resin composition Step (3): Heating the cross-linked sheet-shaped polyolefin resin composition to foam a pyrolytic foaming agent And a step of stretching in either or both of the MD direction and the TD direction. In addition to this method, the method described in International Publication No. 2005/007731 is a method for producing a crosslinked polyolefin resin foam. Can also be manufactured.
工程(1)におけるポリオレフィン系樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、又はこれらの混合物が挙げられる。
上記ポリエチレン系樹脂は、エチレン単独重合体であってもよいが、エチレンと、少量のα-オレフィンとを共重合することにより得られるポリエチレン-α-オレフィン共重合体であることが好ましく、その中でも、直鎖状低密度ポリエチレンがより好ましい。上記ポリエチレン系樹脂をエチレンと少量のα-オレフィンとの共重合体とすることで、発泡体の柔軟性を高めて耐衝撃吸収性をより高めることができる。
Examples of the polyolefin resin in the step (1) include a polyethylene resin, a polypropylene resin, or a mixture thereof.
The polyethylene resin may be an ethylene homopolymer, but is preferably a polyethylene-α-olefin copolymer obtained by copolymerizing ethylene and a small amount of α-olefin, and among them, Linear low density polyethylene is more preferable. By making the polyethylene resin a copolymer of ethylene and a small amount of α-olefin, the flexibility of the foam can be increased and the impact resistance can be further improved.
上記ポリエチレン-α-オレフィン共重合体におけるα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、及び1-オクテン等が挙げられる。中でも、炭素数4~10のα-オレフィンが好ましい。
上記ポリエチレン-α-オレフィン共重合体におけるα-オレフィンの好ましい下限は30重量%、より好ましい下限は10重量%である。
Examples of the α-olefin in the polyethylene-α-olefin copolymer include propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, and 1-octene. Can be mentioned. Of these, α-olefins having 4 to 10 carbon atoms are preferable.
The preferable lower limit of the α-olefin in the polyethylene-α-olefin copolymer is 30% by weight, and the more preferable lower limit is 10% by weight.
上記ポリエチレン系樹脂としては、エチレン-酢酸ビニル共重合体も好ましい。エチレン-酢酸ビニル共重合体は、エチレンに由来する構成単位を50重量%以上含有する共重合体である。 As the polyethylene resin, an ethylene-vinyl acetate copolymer is also preferable. The ethylene-vinyl acetate copolymer is a copolymer containing 50% by weight or more of a structural unit derived from ethylene.
上記ポリエチレン系樹脂は、発泡体の柔軟性を高めて、耐衝撃吸収性を高める観点から、低密度であることが好ましい。上記ポリエチレン系樹脂の密度は、0.920g/cm3以下が好ましく、0.880~0.915g/cm3がより好ましく、0.885~0.910g/cm3が更に好ましい。
なお、密度はASTM D792に準拠して測定された値である。
The polyethylene-based resin preferably has a low density from the viewpoint of enhancing the flexibility of the foam and enhancing the impact resistance. The density of the polyethylene resin is preferably from 0.920 g / cm 3 or less, more preferably 0.880 ~ 0.915g / cm 3, more preferably 0.885 ~ 0.910g / cm 3.
The density is a value measured according to ASTM D792.
上記ポリプロピレン系樹脂としては、例えば、プロピレン単独重合体、プロピレンに由来する構成単位を50重量%以上含有するプロピレン-α-オレフィン共重合体等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
上記プロピレン-α-オレフィン共重合体におけるα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、4-メチル-1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等が挙げられる。中でも、炭素数6~12のα-オレフィンであることが好ましい。
Examples of the polypropylene resin include a propylene homopolymer, a propylene-α-olefin copolymer containing 50% by weight or more of a structural unit derived from propylene, and the like. These may be used alone or in combination of two or more.
Examples of the α-olefin in the propylene-α-olefin copolymer include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-heptene, 1-octene and the like. It is done. Among these, α-olefins having 6 to 12 carbon atoms are preferable.
上記ポリオレフィン系樹脂は、柔軟性、及び衝撃吸収性を向上させる観点から、メタロセン化合物、チーグラー・ナッタ化合物、酸化クロム化合物等を触媒として用いることにより重合されたポリエチレン系樹脂、ポリプロピレン系樹脂、又はこれらの混合物であることが好ましく、直鎖状低密度ポリエチレンであることがより好ましい。 From the viewpoint of improving flexibility and impact absorption, the polyolefin resin is a polyethylene resin, a polypropylene resin polymerized by using a metallocene compound, a Ziegler-Natta compound, a chromium oxide compound or the like as a catalyst, or these Preferably, it is a linear low density polyethylene.
上記メタロセン化合物は、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物が好ましい。具体的には、例えば、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物が挙げられる。
このようなメタロセン化合物は、活性点の性質が均一であり各活性点が同じ活性度を備えている。その結果、上記メタロセン化合物を用いて合成した重合体は、分子量、分子量分布、組成、組成分布等の均一性が高くなるため、上記メタロセン化合物を用いて合成した重合体を含むシートを架橋した場合には、架橋が均一に進行する。均一に架橋されたシートは、均一に延伸しやすくなるため、架橋ポリオレフィン系樹脂発泡体の厚さを均一にしやすくなる。
The metallocene compound is preferably a compound such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. Specifically, for example, a tetravalent transition metal such as titanium, zirconium, nickel, palladium, hafnium, and platinum has one or more cyclopentadienyl rings or analogs thereof as a ligand (ligand). The compound which exists is mentioned.
Such metallocene compounds have uniform active site properties and each active site has the same activity. As a result, the polymer synthesized using the above metallocene compound has high uniformity in molecular weight, molecular weight distribution, composition, composition distribution, etc., and thus when a sheet containing a polymer synthesized using the above metallocene compound is crosslinked. In this case, the crosslinking proceeds uniformly. Since the uniformly crosslinked sheet is easily stretched uniformly, the thickness of the crosslinked polyolefin resin foam is easily uniformed.
上記リガンドとしては、例えば、シクロペンタジエニル環、インデニル環等の環式化合物が挙げられる。上記環式化合物は、炭化水素基、置換炭化水素基又は炭化水素-置換メタロイド基等の置換基を有していてもよい。上記炭化水素基としては、例えば、メチル基、エチル基、各種プロピル基、各種ブチル基、各種アミル基、各種ヘキシル基、2-エチルヘキシル基、各種ヘプチル基、各種オクチル基、各種ノニル基、各種デシル基、各種セチル基、フェニル基等が挙げられる。なお、ここで「各種」とは、n-、sec-、tert-、iso-等の各種異性体を意味する。
また、上記環式化合物をオリゴマーとして重合したものをリガンドとして用いてもよい。
更に、π電子系の不飽和化合物以外にも、塩素や臭素等の一価のアニオンリガンド、二価のアニオンキレートリガンド、炭化水素、アルコキシド、アリールアミド、アリールオキシド、アミド、アリールアミド、ホスフィド、アリールホスフィド等を用いてもよい。
Examples of the ligand include cyclic compounds such as a cyclopentadienyl ring and an indenyl ring. The cyclic compound may have a substituent such as a hydrocarbon group, a substituted hydrocarbon group, or a hydrocarbon-substituted metalloid group. Examples of the hydrocarbon group include a methyl group, an ethyl group, various propyl groups, various butyl groups, various amyl groups, various hexyl groups, 2-ethylhexyl groups, various heptyl groups, various octyl groups, various nonyl groups, and various decyl groups. Groups, various cetyl groups, phenyl groups and the like. Here, “various” means various isomers such as n-, sec-, tert-, iso- and the like.
Moreover, what polymerized the said cyclic compound as an oligomer may be used as a ligand.
In addition to π-electron unsaturated compounds, monovalent anion ligands such as chlorine and bromine, divalent anion chelate ligands, hydrocarbons, alkoxides, arylamides, aryloxides, amides, arylamides, phosphides, aryls Phosphide or the like may be used.
上記四価の遷移金属や上記リガンドを含むメタロセン化合物としては、例えば、シクロペンタジエニルチタニウムトリス(ジメチルアミド)、メチルシクロペンタジエニルチタニウムトリス(ジメチルアミド)、ビス(シクロペンタジエニル)チタニウムジクロリド、ジメチルシリルテトラメチルシクロペンタジエニル-t-ブチルアミドジルコニウムジクロリド等が挙げられる。 Examples of the metallocene compound containing the tetravalent transition metal and the ligand include, for example, cyclopentadienyl titanium tris (dimethylamide), methylcyclopentadienyl titanium tris (dimethylamide), and bis (cyclopentadienyl) titanium dichloride. And dimethylsilyltetramethylcyclopentadienyl-t-butylamidozirconium dichloride.
上記メタロセン化合物は、特定の共触媒(助触媒)と組み合わせることにより、各種オレフィンの重合の際に触媒としての作用を発揮する。上記共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。上記メタロセン化合物に対する上記共触媒の使用割合は、10~100万モル倍が好ましく、50~5,000モル倍がより好ましい。 The said metallocene compound exhibits the effect | action as a catalyst in the case of superposition | polymerization of various olefins by combining with a specific cocatalyst (promoter). Examples of the cocatalyst include methylaluminoxane (MAO) and boron compounds. The use ratio of the cocatalyst to the metallocene compound is preferably 100,000 to 1,000,000 mole times, more preferably 50 to 5,000 mole times.
上記メタロセン化合物を触媒として用いることにより得られたポリエチレン系樹脂、エチレン-酢酸ビニル共重合体、又はこれらの混合物を用いる場合、その含有量は、ポリオレフィン系樹脂全体の40重量%以上が好ましく、50重量%以上がより好ましく、60重量%以上が更に好ましく、100重量%が特に好ましい。上記メタロセン化合物を触媒として用いることにより得られたポリエチレン系樹脂、エチレン-酢酸ビニル共重合体、又はこれらの混合物の含有量が40重量%以上であることで、上記ポリオレフィン発泡体の厚みが薄い場合であっても高い圧縮強度を得ることができる。 When a polyethylene resin obtained by using the metallocene compound as a catalyst, an ethylene-vinyl acetate copolymer, or a mixture thereof is used, the content is preferably 40% by weight or more of the total polyolefin resin, % By weight or more is more preferable, 60% by weight or more is more preferable, and 100% by weight is particularly preferable. When the polyolefin foam is thin because the content of the polyethylene resin, ethylene-vinyl acetate copolymer, or mixture thereof obtained by using the metallocene compound as a catalyst is 40% by weight or more Even so, a high compressive strength can be obtained.
上記チーグラー・ナッタ化合物は、トリエチルアルミニウム-四塩化チタン固体複合物であって、四塩化チタンを有機アルミニウム化合物で還元し、更に各種の電子供与体及び電子受容体で処理して得られた三塩化チタン組成物と、有機アルミニウム化合物と、芳香族カルボン酸エステルとを組み合わせる方法(特開昭56-100806号、特開昭56-120712号、特開昭58-104907号の各公報参照)や、ハロゲン化マグネシウムに四塩化チタンと各種の電子供与体を接触させる担持型触媒の方法(特開昭57-63310号、特開昭63-43915号、特開昭63-83116号の各公報参照)等で製造されたものを用いることが好ましい。 The Ziegler-Natta compound is a triethylaluminum-titanium tetrachloride solid composite, which is obtained by reducing titanium tetrachloride with an organoaluminum compound and then treating with various electron donors and electron acceptors. A method of combining a titanium composition, an organoaluminum compound and an aromatic carboxylic acid ester (see JP-A 56-1000080, JP-A 56-120712, JP-A 58-104907), Method of supported catalyst in which titanium tetrachloride and various electron donors are brought into contact with magnesium halide (see JP-A-57-63310, JP-A-63-43915, JP-A-63-83116) It is preferable to use what was manufactured by the above.
上記ポリオレフィン系樹脂組成物は、上述したポリオレフィン系樹脂以外の樹脂等の任意成分を含有してもよい。
上記任意成分としては、ポリオレフィン系樹脂以外の樹脂、ゴムが挙げられる。これらの任意成分は、合計でポリオレフィン系樹脂よりも少ない含有量であることが好ましく、具体的には、ポリオレフィン系樹脂100重量部に対して50重量部以下が好ましく、30重量部以下であることがより好ましい。
The said polyolefin resin composition may contain arbitrary components, such as resin other than the polyolefin resin mentioned above.
As said arbitrary component, resin other than polyolefin resin and rubber | gum are mentioned. The total content of these optional components is preferably less than that of the polyolefin resin. Specifically, the content is preferably 50 parts by weight or less and 100 parts by weight or less with respect to 100 parts by weight of the polyolefin resin. Is more preferable.
上記熱分解型発泡剤は、特に制限されず、例えば、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン、p-トルエンスルホニルセミカルバジド等が挙げられ、中でもアゾジカルボンアミドが好ましい。上記熱分解型発泡剤は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The pyrolytic foaming agent is not particularly limited, and examples thereof include azodicarbonamide, N, N′-dinitrosopentamethylenetetramine, p-toluenesulfonyl semicarbazide, and among them, azodicarbonamide is preferable. The said thermal decomposition type foaming agent may be used independently and may be used in combination of 2 or more type.
上記熱分解型発泡剤の含有量は、ポリオレフィン系樹脂100重量部に対して1~12重量部が好ましく、1~8重量部がより好ましい。上記熱分解型発泡剤の含有量が上記範囲内であることで、上記ポリオレフィン系樹脂組成物の発泡性が向上し、所望の発泡倍率及び層間強度を有するポリオレフィン系樹脂発泡体を得やすくなると共に、引張強度及び圧縮回復性を向上させることができる。 The content of the pyrolytic foaming agent is preferably 1 to 12 parts by weight, more preferably 1 to 8 parts by weight, based on 100 parts by weight of the polyolefin resin. When the content of the pyrolytic foaming agent is within the above range, the foamability of the polyolefin resin composition is improved, and it becomes easier to obtain a polyolefin resin foam having a desired expansion ratio and interlayer strength. , Tensile strength and compression recovery can be improved.
上記その他の添加剤としては、分解温度調整剤、架橋助剤、酸化防止剤等が挙げられる。
上記分解温度調整剤は、熱分解型発泡剤の分解温度を低くしたり、分解速度を速めたりすることで、発泡体の表面状態等を調整するものとして配合されるものである。分解温度調整剤としては、例えば、酸化亜鉛、ステアリン酸亜鉛、尿素等が挙げられる。
上記ポリオレフィン系樹脂100重量部に対する上記分解温度調整剤の含有量は、0.01~5重量部が好ましい。
Examples of the other additives include a decomposition temperature adjusting agent, a crosslinking aid, and an antioxidant.
The said decomposition temperature regulator is mix | blended as what adjusts the surface state etc. of a foam by lowering | hanging the decomposition temperature of a thermal decomposition type foaming agent, or accelerating | stimulating a decomposition speed. Examples of the decomposition temperature adjusting agent include zinc oxide, zinc stearate, urea and the like.
The content of the decomposition temperature adjusting agent with respect to 100 parts by weight of the polyolefin resin is preferably 0.01 to 5 parts by weight.
上記架橋助剤は、ポリオレフィン系樹脂に添加することによって、後述するポリオレフィン系樹脂の架橋において照射する電離性放射線量を低減し、電離性放射線の照射に伴う樹脂分子の切断、劣化を防止するために配合される。
上記架橋助剤としては、例えば、多官能モノマー等が挙げられる。具体的には、トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート、トリメリット酸トリアリルエステル、1,2,4-ベンゼントリカルボン酸トリアリルエステル、トリアリルイソシアヌレート等の1分子中に3個の官能基を持つ化合物や、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジビニルベンゼン等の1分子中に2個の官能基を持つ化合物、フタル酸ジアリル、テレフタル酸ジアリル、イソフタル酸ジアリル、エチルビニルベンゼン、ネオペンチルグリコールジメタクリレート、ラウリルメタクリレート、ステアリルメタクリレート等が挙げられる。
これらの架橋助剤は、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
The crosslinking aid is added to the polyolefin resin to reduce the amount of ionizing radiation irradiated in the crosslinking of the polyolefin resin, which will be described later, and to prevent the resin molecules from being cut and deteriorated by the irradiation of the ionizing radiation. Is blended into.
As said crosslinking adjuvant, a polyfunctional monomer etc. are mentioned, for example. Specifically, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, trimellitic acid triallyl ester, 1,2,4-benzenetricarboxylic acid triallyl ester, triallyl isocyanurate, etc. Compounds having functional groups and compounds having two functional groups in one molecule such as 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, divinylbenzene, etc. , Diallyl phthalate, diallyl terephthalate, diallyl isophthalate, ethyl vinyl benzene, neopentyl glycol dimethacrylate, lauryl methacrylate, stearyl methacrylate and the like.
These crosslinking aids may be used alone or in combination of two or more.
架橋助剤の添加量は、ポリオレフィン系樹脂100重量部に対して0.2~10重量部が好ましく、0.3~5重量部がより好ましく、0.5~5重量部が更に好ましい。上記架橋助剤の添加量が0.2重量部以上であることで、所望の架橋度を持つ発泡体を安定して得ることができる。上記架橋助剤の添加量が10重量部以下であることで、発泡体の架橋度の制御を容易にすることができる。 The addition amount of the crosslinking aid is preferably 0.2 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, and still more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the polyolefin resin. When the addition amount of the crosslinking aid is 0.2 parts by weight or more, a foam having a desired degree of crosslinking can be stably obtained. When the addition amount of the crosslinking aid is 10 parts by weight or less, the degree of crosslinking of the foam can be easily controlled.
上記酸化防止剤は、熱による酸化劣化を防止するために配合される。上記酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール等のフェノール系酸化防止剤等が挙げられる。 The antioxidant is blended to prevent oxidative deterioration due to heat. Examples of the antioxidant include phenolic antioxidants such as 2,6-di-t-butyl-p-cresol.
工程(2)において、ポリオレフィン系樹脂組成物を架橋する方法としては、例えば、ポリオレフィン系樹脂組成物に電子線、α線、β線、γ線等の電離性放射線を照射する方法や、ポリオレフィン系樹脂組成物を形成する際に予め有機過酸化物を配合しておき、その後、ポリオレフィン系樹脂組成物を加熱して有機過酸化物を分解させる方法等が挙げられる。これらの方法は単独で用いてもよいし、2種類以上を併用してもよいが、均質に架橋を行う観点から、電離性放射線を照射する方法が好ましい。 In the step (2), examples of the method of crosslinking the polyolefin resin composition include a method of irradiating the polyolefin resin composition with ionizing radiation such as electron beam, α ray, β ray, γ ray, Examples include a method in which an organic peroxide is blended in advance when forming the resin composition, and then the organic peroxide is decomposed by heating the polyolefin resin composition. These methods may be used alone or in combination of two or more. From the viewpoint of homogeneous crosslinking, a method of irradiating ionizing radiation is preferable.
上記電離性放射線を照射する方法における電離性放射線の照射量は、ゲル分率が5~45重量%となるように調節することが好ましい。具体的な照射量としては、0.5~20Mradが好ましく、3~12Mradがより好ましい。 The dose of ionizing radiation in the method of irradiating with ionizing radiation is preferably adjusted so that the gel fraction is 5 to 45% by weight. A specific irradiation amount is preferably 0.5 to 20 Mrad, and more preferably 3 to 12 Mrad.
上記樹脂組成物に予め有機過酸化物を配合する方法における、有機過酸化物としては、例えば、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
上記有機過酸化物の添加量は、ポリオレフィン系樹脂100重量部に対し、0.01~5重量部が好ましく、0.1~3重量部がより好ましい。上記有機過酸化物の添加量が上記範囲内であることで、樹脂組成物の架橋が進行しやすく、また、得られるポリオレフィン発泡体中に存在する有機過酸化物の分解残渣の量を抑制することができる。
Examples of the organic peroxide in the method of previously blending the organic peroxide with the resin composition include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, 1,1- Examples thereof include bis (t-butylperoxy) cyclohexane. These may be used alone or in combination of two or more.
The amount of the organic peroxide added is preferably 0.01 to 5 parts by weight and more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the polyolefin resin. When the addition amount of the organic peroxide is within the above range, the crosslinking of the resin composition is likely to proceed, and the amount of decomposition residue of the organic peroxide present in the obtained polyolefin foam is suppressed. be able to.
工程(3)において、ポリオレフィン系樹脂組成物を発泡させる方法は特に限定されず、例えば、ポリオレフィン系樹脂組成物を熱風により加熱する方法、赤外線により加熱する方法、塩浴により加熱する方法、オイルバスにより加熱する方法等が挙げられ、これらは併用してもよい。
なお、ポリオレフィン系樹脂組成物の発泡方法は、熱分解型発泡剤を用いる方法に限定されず、ブタンガス等による物理発泡を用いてもよい。
In the step (3), the method of foaming the polyolefin resin composition is not particularly limited. For example, the method of heating the polyolefin resin composition with hot air, the method of heating with infrared rays, the method of heating with a salt bath, the oil bath The method of heating by, etc. are mentioned, These may be used together.
In addition, the foaming method of a polyolefin-type resin composition is not limited to the method of using a thermal decomposition type foaming agent, You may use physical foaming by a butane gas etc.
工程(3)において、ポリオレフィン系樹脂組成物を延伸する方法としては、ポリオレフィン系樹脂組成物を発泡させて、発泡体を得た後に延伸する方法や、ポリオレフィン系樹脂組成物を発泡させつつ延伸する方法等が挙げられる。なお、ポリオレフィン系樹脂組成物を発泡させて、発泡体を得た後に延伸を行う場合には、発泡体を冷却することなく発泡時の溶融状態を維持したまま続けて発泡体を延伸したほうが好ましいが、冷却した発泡体を再度加熱して、溶融又は軟化状態とした後に発泡体を延伸してもよい。 In the step (3), as a method of stretching the polyolefin resin composition, the polyolefin resin composition is foamed to obtain a foam, and then stretched, or the polyolefin resin composition is stretched while being foamed. Methods and the like. In addition, when foaming a polyolefin-based resin composition to obtain a foam, it is preferable to stretch the foam while maintaining the molten state at the time of foaming without cooling the foam. However, the foam may be stretched after the cooled foam is heated again to a molten or softened state.
上記ポリオレフィン系樹脂組成物のMD方向における延伸倍率は、1.1~3.0倍が好ましく、1.7~2.8倍がより好ましい。上記ポリオレフィン系樹脂組成物のMD方向における延伸倍率を上記下限値以上とすることで、上記ポリオレフィン系樹脂組成物の柔軟性及び引張強度が良好になりやすくなる。また、延伸倍率を上限値以下とすることで、基材が延伸中に破断したり、発泡中の樹脂組成物から発泡ガスが抜けて発泡倍率が低下したりすることが防止され、発泡体の柔軟性や引張強度が良好になり、品質も均一なものとしやすくなる。また、上記ポリオレフィン系樹脂組成物は、TD方向にも上記範囲の延伸倍率で延伸されてもよい
なお、ここでMD方向(Machine Direction)とは、ポリオレフィン発泡体をシート状に押出加工する際の押出方向をいい、TD方向(Transverse Direction)とはMD方向に対して垂直方向をいう。
The draw ratio in the MD direction of the polyolefin-based resin composition is preferably 1.1 to 3.0 times, and more preferably 1.7 to 2.8 times. By setting the draw ratio in the MD direction of the polyolefin resin composition to the above lower limit value or more, the flexibility and tensile strength of the polyolefin resin composition are likely to be good. Further, by setting the draw ratio to the upper limit value or less, it is possible to prevent the base material from being broken during the drawing, or the foaming gas to escape from the foaming resin composition and the foaming ratio to be lowered. Flexibility and tensile strength are improved, and quality is easily uniform. In addition, the polyolefin resin composition may be stretched in the TD direction at a stretching ratio in the above range. Here, the MD direction (Machine Direction) is used when extruding a polyolefin foam into a sheet shape. The direction of extrusion refers to the TD direction (Transverse Direction) refers to the direction perpendicular to the MD direction.
上記アクリル粘着剤層のうち、少なくとも一方のアクリル粘着剤層は、20℃における貯蔵弾性率G’が2.5×10Pa以上、20℃における損失弾性率G”が2×10Pa以上である。
上記アクリル粘着剤層の20℃における貯蔵弾性率G’及び損失弾性率G”を上記範囲に調整することで、上記アクリル粘着剤層が適度な硬さを有するものとなり、優れたせん断粘着力を得ることができる。なお、本発明の両面粘着テープにおいては、少なくとも一方のアクリル粘着剤層が上記範囲の貯蔵弾性率G’及び損失弾性率G”を有していれば、両面のアクリル粘着剤層は同じ組成であってもよいし、それぞれ異なる組成であってもよい。
Among the acrylic pressure-sensitive adhesive layers, at least one acrylic pressure-sensitive adhesive layer has a storage elastic modulus G ′ at 20 ° C. of 2.5 × 10 5 Pa or more and a loss elastic modulus G ″ at 20 ° C. of 2 × 10 5 Pa or more. It is.
By adjusting the storage elastic modulus G ′ and loss elastic modulus G ″ at 20 ° C. of the acrylic pressure-sensitive adhesive layer to the above ranges, the acrylic pressure-sensitive adhesive layer has an appropriate hardness, and has excellent shear adhesive strength. In the double-sided pressure-sensitive adhesive tape of the present invention, if at least one acrylic pressure-sensitive adhesive layer has a storage elastic modulus G ′ and a loss elastic modulus G ″ within the above range, double-sided acrylic pressure-sensitive adhesive is used. The layers may have the same composition or different compositions.
上記20℃における貯蔵弾性率G’が2.5×10Pa未満であると、両面粘着テープのせん断粘着力が低下し、大きなせん断方向の負荷が加わると両面粘着テープが剥離してしまう。上記20℃における貯蔵弾性率G’は4.0×10Pa以上が好ましく、6.0×10Pa以上がより好ましい。
上記20℃における貯蔵弾性率G’の上限は特に限定されないが、高すぎると上記アクリル粘着剤層のタックが失われ、初期粘着性が低下する恐れがあることから、好ましい上限は5.0×10Pa、より好ましい上限は3.0×10Paである。
When the storage elastic modulus G ′ at 20 ° C. is less than 2.5 × 10 5 Pa, the shear adhesive strength of the double-sided pressure-sensitive adhesive tape decreases, and when a large load in the shear direction is applied, the double-sided pressure-sensitive adhesive tape peels off. The storage elastic modulus G ′ at 20 ° C. is preferably 4.0 × 10 5 Pa or more, and more preferably 6.0 × 10 5 Pa or more.
The upper limit of the storage elastic modulus G ′ at 20 ° C. is not particularly limited, but if it is too high, the tackiness of the acrylic pressure-sensitive adhesive layer may be lost, and the initial adhesiveness may be lowered. 10 6 Pa, and a more preferable upper limit is 3.0 × 10 6 Pa.
上記20℃における損失弾性率G”が2×10Pa未満であると、両面粘着テープのせん断粘着力が低下し、大きなせん断方向の負荷が加わると両面粘着テープが剥離してしまう。上記20℃における損失弾性率G”は4.0×10Pa以上が好ましく、6.0×10Pa以上がより好ましい。
上記20℃における損失弾性率G”の上限は特に限定されないが、高すぎると上記アクリル粘着剤層のタックが失われ、初期粘着性が低下する恐れがあることから、好ましい上限は5.0×10Pa、より好ましい上限は3.0×10Paである。
When the loss elastic modulus G ″ at 20 ° C. is less than 2 × 10 5 Pa, the shear adhesive strength of the double-sided pressure-sensitive adhesive tape decreases, and the double-sided pressure-sensitive adhesive tape peels off when a large load in the shear direction is applied. The loss elastic modulus G ″ at ° C. is preferably 4.0 × 10 5 Pa or more, and more preferably 6.0 × 10 5 Pa or more.
The upper limit of the loss elastic modulus G ″ at 20 ° C. is not particularly limited. However, if it is too high, the tackiness of the acrylic pressure-sensitive adhesive layer is lost and the initial adhesiveness may be lowered. 10 6 Pa, and a more preferable upper limit is 3.0 × 10 6 Pa.
なお、20℃における貯蔵弾性率G’及び損失弾性率G”は、動的粘弾性測定装置(例えば、アイティー計測制御社製のDVA-200)を用いて、周波数10Hz、昇温速度3℃/minで-40℃から140℃まで測定を行い、20℃における貯蔵弾性率G’及び損失弾性率G”を読み取ることで求めることができる。 The storage elastic modulus G ′ and loss elastic modulus G ″ at 20 ° C. were measured using a dynamic viscoelasticity measuring device (for example, DVA-200 manufactured by IT Measurement Control Co., Ltd.) at a frequency of 10 Hz and a heating rate of 3 ° C. It can be obtained by measuring from −40 ° C. to 140 ° C. at / min and reading storage elastic modulus G ′ and loss elastic modulus G ″ at 20 ° C.
上記アクリル粘着剤層の20℃における貯蔵弾性率G’及び損失弾性率G”を目的とする範囲に調整する方法として、例えば、アクリル共重合体の組成、重量平均分子量、分子量分布等を調整する方法、異なる組成、重量平均分子量、分子量分布等のアクリル共重合体を混合する方法、粘着付与樹脂の軟化点、含有量等を調整する方法、上記アクリル粘着剤層の架橋度を調整する方法等が挙げられる。 As a method for adjusting the storage elastic modulus G ′ and loss elastic modulus G ″ at 20 ° C. of the acrylic pressure-sensitive adhesive layer to the intended ranges, for example, the composition, weight average molecular weight, molecular weight distribution, etc. of the acrylic copolymer are adjusted. Methods, methods of mixing acrylic copolymers of different compositions, weight average molecular weight, molecular weight distribution, etc., methods of adjusting the softening point, content, etc. of tackifying resins, methods of adjusting the degree of crosslinking of the acrylic pressure-sensitive adhesive layer, etc. Is mentioned.
上記アクリル粘着剤層を構成するアクリル共重合体は、ブチルアクリレートと2-エチルヘキシルアクリレートとを含むモノマー混合物を共重合して得られることが好ましい。
全モノマー混合物に占めるブチルアクリレートの好ましい含有量は、40~80重量%である。ブチルアクリレートの含有量が40重量%未満であると、上記アクリル粘着剤層が柔らかくなりすぎて凝集力が低下し、両面粘着テープのせん断粘着力が低下することがある。ブチルアクリレートの含有量が80重量%を超えると、上記アクリル粘着剤層が硬くなって粘着力又はタックが低下し、両面粘着テープのせん断粘着力が低下することがある。
全モノマー混合物に占める2-エチルヘキシルアクリレートの好ましい含有量は、10~40重量%である。2-エチルヘキシルアクリレートの含有量が10重量%未満であると、上記アクリル粘着剤層の粘着力が低下し、両面粘着テープのせん断粘着力が低下することがある。2-エチルヘキシルアクリレートの含有量が40重量%を超えると、上記アクリル粘着剤層が柔らかくなりすぎて凝集力が低下し、両面粘着テープのせん断粘着力が低下することがある。
The acrylic copolymer constituting the acrylic pressure-sensitive adhesive layer is preferably obtained by copolymerizing a monomer mixture containing butyl acrylate and 2-ethylhexyl acrylate.
The preferred content of butyl acrylate in the total monomer mixture is 40 to 80% by weight. When the content of butyl acrylate is less than 40% by weight, the acrylic pressure-sensitive adhesive layer becomes too soft and the cohesive force may be reduced, and the shear adhesive force of the double-sided pressure-sensitive adhesive tape may be reduced. When the content of butyl acrylate exceeds 80% by weight, the acrylic pressure-sensitive adhesive layer becomes hard and the adhesive strength or tack may decrease, and the shear adhesive strength of the double-sided adhesive tape may decrease.
The preferred content of 2-ethylhexyl acrylate in the total monomer mixture is 10 to 40% by weight. If the content of 2-ethylhexyl acrylate is less than 10% by weight, the adhesive strength of the acrylic pressure-sensitive adhesive layer may be reduced, and the shear adhesive strength of the double-sided pressure-sensitive adhesive tape may be reduced. When the content of 2-ethylhexyl acrylate exceeds 40% by weight, the acrylic pressure-sensitive adhesive layer becomes too soft and the cohesive strength is lowered, and the shear pressure-sensitive adhesive strength of the double-sided pressure-sensitive adhesive tape may be lowered.
上記モノマー混合物は、必要に応じてブチルアクリレート及び2-エチルヘキシルアクリレート以外の共重合可能な他の重合性モノマーを含んでいてもよい。
上記共重合可能な他の重合性モノマーとして、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル等のアルキル基の炭素数が1~3の(メタ)アクリル酸アルキルエステル、メタクリル酸トリデシル、(メタ)アクリル酸ステアリル等のアルキル基の炭素数が13~18の(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸ヒドロキシアルキル、グリセリンジメタクリレート、(メタ)アクリル酸グリシジル、2-メタクリロイルオキシエチルイソシアネート、(メタ)アクリル酸、イタコン酸、無水マレイン酸、クロトン酸、マレイン酸、フマル酸等の官能性モノマーが挙げられる。
The monomer mixture may contain other copolymerizable monomers other than butyl acrylate and 2-ethylhexyl acrylate as necessary.
Examples of other polymerizable monomers that can be copolymerized include, for example, carbon number of alkyl groups such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and isopropyl (meth) acrylate. (Meth) acrylic acid alkyl ester having 1 to 3 carbon atoms, such as (meth) acrylic acid alkyl ester, tridecyl methacrylate, stearyl (meth) acrylate, and the like, and (meth) acrylic acid hydroxyalkyl And functional monomers such as glycerin dimethacrylate, glycidyl (meth) acrylate, 2-methacryloyloxyethyl isocyanate, (meth) acrylic acid, itaconic acid, maleic anhydride, crotonic acid, maleic acid and fumaric acid.
上記モノマー混合物を共重合して上記アクリル共重合体を得るには、上記モノマー混合物を、重合開始剤の存在下にてラジカル反応させればよい。上記モノマー混合物をラジカル反応させる方法、即ち、重合方法としては、従来公知の方法が用いられ、例えば、溶液重合(沸点重合又は定温重合)、乳化重合、懸濁重合、塊状重合等が挙げられる。
上記重合開始剤は特に限定されず、例えば、有機過酸化物、アゾ化合物等が挙げられる。上記有機過酸化物として、例えば、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート等が挙げられる。上記アゾ化合物として、例えば、アゾビスイソブチロニトリル、アゾビスシクロヘキサンカルボニトリル等が挙げられる。これらの重合開始剤は単独で用いてもよいし、2種以上を併用してもよい。
In order to copolymerize the monomer mixture to obtain the acrylic copolymer, the monomer mixture may be radically reacted in the presence of a polymerization initiator. As a method of radical reaction of the monomer mixture, that is, a polymerization method, a conventionally known method is used, and examples thereof include solution polymerization (boiling point polymerization or constant temperature polymerization), emulsion polymerization, suspension polymerization, bulk polymerization and the like.
The said polymerization initiator is not specifically limited, For example, an organic peroxide, an azo compound, etc. are mentioned. Examples of the organic peroxide include 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane, t-hexylperoxypivalate, t-butylperoxypivalate, 2,5 -Dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t-hexylperoxy-2-ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxy Examples include isobutyrate, t-butylperoxy-3,5,5-trimethylhexanoate, and t-butylperoxylaurate. Examples of the azo compound include azobisisobutyronitrile and azobiscyclohexanecarbonitrile. These polymerization initiators may be used alone or in combination of two or more.
上記アクリル共重合体の重量平均分子量(Mw)は、好ましい下限が40万、好ましい上限が100万である。重量平均分子量が40万未満であると、上記アクリル粘着剤層の凝集力が低下し、両面粘着テープのせん断粘着力が低下することがある。重量平均分子量が100万を超えると、上記アクリル粘着剤層の粘着力が低下し、両面粘着テープのせん断粘着力が低下することがある。重量平均分子量のより好ましい下限は50万、より好ましい上限は70万である。
重量平均分子量を上記範囲に調整するためには、重合開始剤、重合温度等の重合条件を調整すればよい。
なお、重量平均分子量(Mw)とは、GPC(Gel Permeation Chromatography:ゲルパーミエーションクロマトグラフィ)による標準ポリスチレン換算の重量平均分子量である。
As for the weight average molecular weight (Mw) of the said acrylic copolymer, a preferable minimum is 400,000 and a preferable upper limit is 1 million. When the weight average molecular weight is less than 400,000, the cohesive force of the acrylic pressure-sensitive adhesive layer may be reduced, and the shear adhesive force of the double-sided pressure-sensitive adhesive tape may be reduced. When a weight average molecular weight exceeds 1 million, the adhesive force of the said acrylic adhesive layer may fall, and the shear adhesive force of a double-sided adhesive tape may fall. A more preferable lower limit of the weight average molecular weight is 500,000, and a more preferable upper limit is 700,000.
In order to adjust the weight average molecular weight within the above range, polymerization conditions such as a polymerization initiator and a polymerization temperature may be adjusted.
In addition, a weight average molecular weight (Mw) is a weight average molecular weight of standard polystyrene conversion by GPC (Gel Permeation Chromatography: gel permeation chromatography).
上記アクリル粘着剤層は、粘着付与樹脂を含有してもよい。
上記粘着付与樹脂として、例えば、ロジンエステル系樹脂、水添ロジン系樹脂、テルペン系樹脂、テルペンフェノール系樹脂、クマロンインデン系樹脂、脂環族飽和炭化水素系樹脂、C5系石油樹脂、C9系石油樹脂、C5-C9共重合系石油樹脂等が挙げられる。これらの粘着付与樹脂は単独で用いてもよいし、2種以上を併用してもよい。
The acrylic pressure-sensitive adhesive layer may contain a tackifier resin.
Examples of the tackifier resins include rosin ester resins, hydrogenated rosin resins, terpene resins, terpene phenol resins, coumarone indene resins, alicyclic saturated hydrocarbon resins, C5 petroleum resins, and C9 resins. Examples include petroleum resins and C5-C9 copolymer petroleum resins. These tackifying resins may be used alone or in combination of two or more.
上記粘着付与樹脂の含有量は特に限定されないが、上記アクリル共重合体100重量部に対する好ましい下限は10重量部、好ましい上限は60重量部である。上記粘着付与樹脂の含有量が10重量部未満であると、上記アクリル粘着剤層の粘着力が低下し、両面粘着テープのせん断粘着力が低下することがある。上記粘着付与樹脂の含有量が60重量部を超えると、上記アクリル粘着剤層が硬くなって粘着力又はタックが低下し、両面粘着テープのせん断粘着力が低下することがある。 Although content of the said tackifying resin is not specifically limited, The preferable minimum with respect to 100 weight part of said acrylic copolymers is 10 weight part, and a preferable upper limit is 60 weight part. When the content of the tackifying resin is less than 10 parts by weight, the adhesive strength of the acrylic pressure-sensitive adhesive layer may be reduced, and the shear adhesive strength of the double-sided pressure-sensitive adhesive tape may be reduced. When the content of the tackifying resin exceeds 60 parts by weight, the acrylic pressure-sensitive adhesive layer is hardened, the adhesive strength or tack may be reduced, and the shear adhesive strength of the double-sided adhesive tape may be reduced.
上記アクリル粘着剤層は、架橋剤が添加されることにより上記アクリル粘着剤層を構成する樹脂(上記アクリル共重合体及び/又は上記粘着付与樹脂)の主鎖間に架橋構造が形成されていることが好ましい。
上記架橋剤は特に限定されず、例えば、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、金属キレート型架橋剤等が挙げられる。なかでも、イソシアネート系架橋剤が好ましい。上記アクリル粘着剤層にイソシアネート系架橋剤が添加されることで、イソシアネート系架橋剤のイソシアネート基と上記アクリル粘着剤層を構成する樹脂中のアルコール性水酸基とが反応して、上記アクリル粘着剤層の架橋が緩くなる。従って、上記アクリル粘着剤層は、断続的に加わる剥離応力を分散させることができ、両面粘着テープのせん断粘着力がより向上する。
上記架橋剤の添加量は、上記アクリル共重合体100重量部に対して0.01~10重量部が好ましく、0.1~3重量部がより好ましい。
In the acrylic pressure-sensitive adhesive layer, a crosslinking structure is formed between the main chains of the resin (the acrylic copolymer and / or the tackifying resin) constituting the acrylic pressure-sensitive adhesive layer by adding a crosslinking agent. It is preferable.
The said crosslinking agent is not specifically limited, For example, an isocyanate type crosslinking agent, an aziridine type crosslinking agent, an epoxy-type crosslinking agent, a metal chelate type crosslinking agent etc. are mentioned. Of these, isocyanate-based crosslinking agents are preferred. By adding an isocyanate-based crosslinking agent to the acrylic pressure-sensitive adhesive layer, the isocyanate group of the isocyanate-based cross-linking agent reacts with the alcoholic hydroxyl group in the resin constituting the acrylic pressure-sensitive adhesive layer, and the acrylic pressure-sensitive adhesive layer. The cross-linking becomes loose. Accordingly, the acrylic pressure-sensitive adhesive layer can disperse the intermittently applied peeling stress, and the shear adhesive strength of the double-sided pressure-sensitive adhesive tape is further improved.
The addition amount of the crosslinking agent is preferably 0.01 to 10 parts by weight and more preferably 0.1 to 3 parts by weight with respect to 100 parts by weight of the acrylic copolymer.
上記アクリル粘着剤層の架橋度は、高すぎても低すぎても、大きなせん断方向の負荷が加わると被着体から剥離しやすくなることがあるので、5~40重量%が好ましく、10~40重量%がより好ましく、15~35重量%が特に好ましい。
なお、アクリル粘着剤層の架橋度は、アクリル粘着剤層をW1(g)採取し、このアクリル粘着剤層を酢酸エチル中に23℃にて24時間浸漬して不溶解分を200メッシュの金網で濾過し、金網上の残渣を真空乾燥して乾燥残渣の重量W2(g)を測定し、下記式(1)により算出する。
架橋度(重量%)=100×W2/W1    (1)
The degree of cross-linking of the acrylic pressure-sensitive adhesive layer is preferably 5 to 40% by weight, because it may be easily peeled off from the adherend when a load in a large shear direction is applied, whether it is too high or too low. More preferred is 40% by weight, and particularly preferred is 15 to 35% by weight.
The degree of cross-linking of the acrylic pressure-sensitive adhesive layer was determined by taking W1 (g) of the acrylic pressure-sensitive adhesive layer and immersing this acrylic pressure-sensitive adhesive layer in ethyl acetate at 23 ° C. for 24 hours to make the insoluble matter 200 mesh wire mesh. The residue on the wire mesh is vacuum-dried, and the weight W2 (g) of the dried residue is measured, and calculated by the following formula (1).
Crosslinking degree (% by weight) = 100 × W2 / W1 (1)
上記アクリル粘着剤層の厚みは特に限定されないが、片面のアクリル粘着剤層の厚みが10~100μmであることが好ましい。上記アクリル粘着剤層の厚みが10μm未満であると、両面粘着テープの耐衝撃性又はせん断粘着力が低下することがある。上記アクリル粘着剤層の厚みが100μmを超えると、両面粘着テープのリワーク性又は再剥離性が損なわれることがある。 The thickness of the acrylic pressure-sensitive adhesive layer is not particularly limited, but the thickness of the single-sided acrylic pressure-sensitive adhesive layer is preferably 10 to 100 μm. When the thickness of the acrylic pressure-sensitive adhesive layer is less than 10 μm, the impact resistance or shear adhesive strength of the double-sided pressure-sensitive adhesive tape may be lowered. When the thickness of the acrylic pressure-sensitive adhesive layer exceeds 100 μm, the reworkability or removability of the double-sided pressure-sensitive adhesive tape may be impaired.
本発明の両面粘着テープは、両面粘着テープの総厚みが50~400μmであることが好ましい。両面粘着テープの総厚みが50μm未満であると、両面粘着テープの耐衝撃性又はせん断粘着力が低下することがある。両面粘着テープの総厚みが400μmを超えると、携帯電子機器を構成する部品の接着固定、自動車部材の接着固定等の用途に適さなくなることがある。両面粘着テープの総厚みのより好ましい下限は100μm、より好ましい上限は300μmである。 The double-sided pressure-sensitive adhesive tape of the present invention preferably has a total thickness of 50 to 400 μm. If the total thickness of the double-sided pressure-sensitive adhesive tape is less than 50 μm, the impact resistance or shear adhesive strength of the double-sided pressure-sensitive adhesive tape may be lowered. If the total thickness of the double-sided pressure-sensitive adhesive tape exceeds 400 μm, it may not be suitable for applications such as adhesive fixing of parts constituting portable electronic devices and adhesive fixing of automobile members. The minimum with more preferable total thickness of a double-sided adhesive tape is 100 micrometers, and a more preferable upper limit is 300 micrometers.
本発明の両面粘着テープの製造方法として、例えば、以下のような方法が挙げられる。
まず、アクリル共重合体、粘着付与樹脂、必要に応じて架橋剤等に溶剤を加えて粘着剤Aの溶液を作製して、この粘着剤Aの溶液を基材の表面に塗布し、溶液中の溶剤を完全に乾燥除去してアクリル粘着剤層Aを形成する。次に、形成されたアクリル粘着剤層Aの上に離型フィルムをその離型処理面がアクリル粘着剤層Aに対向した状態に重ね合わせる。
次いで、上記離型フィルムとは別の離型フィルムを用意し、この離型フィルムの離型処理面に粘着剤Bの溶液を塗布し、溶液中の溶剤を完全に乾燥除去することにより、離型フィルムの表面にアクリル粘着剤層Bが形成された積層フィルムを作製する。得られた積層フィルムをアクリル粘着剤層Aが形成された基材の裏面に、アクリル粘着剤層Bが基材の裏面に対向した状態に重ね合わせて積層体を作製する。そして、上記積層体をゴムローラ等によって加圧することによって、基材の両面にアクリル粘着剤層を有し、かつ、アクリル粘着剤層の表面が離型フィルムで覆われた両面粘着テープを得ることができる。
As a manufacturing method of the double-sided adhesive tape of this invention, the following methods are mentioned, for example.
First, a solution of an adhesive A is prepared by adding a solvent to an acrylic copolymer, a tackifier resin, and a cross-linking agent as necessary, and the solution of the adhesive A is applied to the surface of the substrate. The acrylic adhesive layer A is formed by completely removing and removing the solvent. Next, a release film is overlaid on the formed acrylic pressure-sensitive adhesive layer A so that the release treatment surface faces the acrylic pressure-sensitive adhesive layer A.
Next, a release film different from the above release film is prepared, the adhesive B solution is applied to the release treatment surface of the release film, and the solvent in the solution is completely removed by drying, thereby releasing the release film. A laminated film in which the acrylic pressure-sensitive adhesive layer B is formed on the surface of the mold film is produced. The obtained laminated film is superposed on the back surface of the base material on which the acrylic pressure-sensitive adhesive layer A is formed, with the acrylic pressure-sensitive adhesive layer B facing the back surface of the base material to produce a laminate. Then, by pressing the laminate with a rubber roller or the like, a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both surfaces of the base material and having the surface of the acrylic pressure-sensitive adhesive layer covered with a release film can be obtained. it can.
また、同様の要領で積層フィルムを2組作製し、これらの積層フィルムを基材の両面のそれぞれに、積層フィルムのアクリル粘着剤層を基材に対向させた状態に重ね合わせて積層体を作製し、この積層体をゴムローラ等によって加圧することによって、基材の両面にアクリル粘着剤層を有し、かつ、アクリル粘着剤層の表面が離型フィルムで覆われた両面粘着テープを得てもよい。 In addition, two sets of laminated films are produced in the same manner, and a laminated body is produced by superposing these laminated films on both sides of the base material with the acrylic adhesive layer of the laminated film facing the base material. Then, by pressing this laminate with a rubber roller or the like, a double-sided pressure-sensitive adhesive tape having an acrylic pressure-sensitive adhesive layer on both surfaces of the base material and the surface of the acrylic pressure-sensitive adhesive layer covered with a release film can be obtained. Good.
本発明の両面粘着テープの用途は特に限定されないが、携帯電子機器を構成する部品を機器本体に接着固定するために用いられること、自動車部材を自動車本体に接着固定するために用いられること等が好ましい。具体的には、大型の携帯電子機器における部品の接着固定、自動車部材(例えば、車載用パネル)の接着固定等に、本発明の両面粘着テープを用いることができる。
これらの用途における本発明の両面粘着テープの形状は特に限定されないが、長方形、額縁状、円形、楕円形、ドーナツ型等が挙げられる。
Although the use of the double-sided pressure-sensitive adhesive tape of the present invention is not particularly limited, it can be used for bonding and fixing parts constituting a portable electronic device to the device main body, and can be used for bonding and fixing an automobile member to the vehicle main body. preferable. Specifically, the double-sided pressure-sensitive adhesive tape of the present invention can be used for adhesive fixing of components in large-sized portable electronic devices, adhesive fixing of automobile members (for example, in-vehicle panels), and the like.
The shape of the double-sided pressure-sensitive adhesive tape of the present invention in these applications is not particularly limited, and examples thereof include a rectangle, a frame shape, a circle, an ellipse, and a donut shape.
本発明によれば、携帯電子機器を構成する部品の接着固定、自動車部材の接着固定等に用いられる、せん断粘着力に優れた両面粘着テープを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the double-sided adhesive tape excellent in the shear adhesive force used for the adhesion fixation of the components which comprise a portable electronic device, the adhesion fixation of a motor vehicle member, etc. can be provided.
基材の層間強度の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of the interlayer intensity | strength of a base material. 両面粘着テープのせん断粘着力の測定方法を示す模式図である。It is a schematic diagram which shows the measuring method of the shear adhesive force of a double-sided adhesive tape.
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
(粘着剤(A)の調製)
温度計、攪拌機、冷却管を備えた反応器にブチルアクリレート70重量部、2-エチルヘキシルアクリレート27重量部、アクリル酸3重量部、2-ヒドロキシエチルアクリレート0.2重量部、及び、酢酸エチル80重量部を加え、窒素置換した後、反応器を加熱して還流を開始した。続いて、上記反応器内に、重合開始剤としてアゾビスイソブチロニトリル0.1重量部を添加した。70℃、5時間還流させて、アクリル共重合体(a)の溶液を得た。得られたアクリル共重合体(a)について、カラムとしてWater社製「2690 Separations Model」を用いてGPC法により重量平均分子量を測定したところ、71万であった。
得られたアクリル共重合体(a)の溶液に含まれるアクリル共重合体(a)の固形分100重量部に対して、軟化点150℃の重合ロジンエステル15重量部、軟化点145℃のテルペンフェノール10重量部、軟化点70℃のロジンエステル10重量部、酢酸エチル(不二化学薬品社製)125重量部、イソシアネート系架橋剤(日本ポリウレタン社製 商品名「コロネートL45」)2.2重量部を添加し、攪拌して、粘着剤(A)を得た。
(Preparation of adhesive (A))
A reactor equipped with a thermometer, a stirrer, and a condenser tube is 70 parts by weight of butyl acrylate, 27 parts by weight of 2-ethylhexyl acrylate, 3 parts by weight of acrylic acid, 0.2 parts by weight of 2-hydroxyethyl acrylate, and 80 parts by weight of ethyl acetate. After adding nitrogen and replacing with nitrogen, the reactor was heated to start refluxing. Subsequently, 0.1 part by weight of azobisisobutyronitrile was added as a polymerization initiator in the reactor. The solution was refluxed at 70 ° C. for 5 hours to obtain a solution of the acrylic copolymer (a). When the weight average molecular weight of the obtained acrylic copolymer (a) was measured by a GPC method using “2690 Separations Model” manufactured by Water as a column, it was 710,000.
15 parts by weight of a polymerized rosin ester having a softening point of 150 ° C. and a terpene having a softening point of 145 ° C. with respect to 100 parts by weight of the solid content of the acrylic copolymer (a) contained in the resulting solution of the acrylic copolymer (a) 10 parts by weight of phenol, 10 parts by weight of rosin ester having a softening point of 70 ° C., 125 parts by weight of ethyl acetate (Fuji Chemical Co., Ltd.), 2.2 parts of isocyanate crosslinking agent (trade name “Coronate L45” manufactured by Nippon Polyurethane Co., Ltd.) Part was added and stirred to obtain an adhesive (A).
(粘着剤(B)の調製)
粘着付与樹脂として軟化点130℃の重合ロジンエステル15重量部、軟化点130℃のテルペンフェノール10重量部、軟化点100℃のロジンエステル10重量部を用いたこと以外は粘着剤(A)と同様にして、粘着剤(B)を得た。
(Preparation of adhesive (B))
Similar to the adhesive (A) except that 15 parts by weight of polymerized rosin ester having a softening point of 130 ° C., 10 parts by weight of terpene phenol having a softening point of 130 ° C., and 10 parts by weight of rosin ester having a softening point of 100 ° C. were used as the tackifier resin. Thus, a pressure-sensitive adhesive (B) was obtained.
(粘着剤(C)の調製 )
粘着付与樹脂として軟化点130℃の重合ロジンエステル12重量部、軟化点150℃のテルペンフェノール10重量部、軟化点100℃のロジンエステル10重量部を用いたこと以外は粘着剤(A)と同様にして、粘着剤(C)を得た。
(Preparation of adhesive (C))
Similar to the adhesive (A) except that 12 parts by weight of polymerized rosin ester having a softening point of 130 ° C., 10 parts by weight of terpene phenol having a softening point of 150 ° C., and 10 parts by weight of rosin ester having a softening point of 100 ° C. were used as the tackifier resin. Thus, a pressure-sensitive adhesive (C) was obtained.
(粘着剤(D)の調製)
2-エチルヘキシルアクリレートの添加量を20重量部に変更し、更に、エチルアクリレート7重量部を添加したこと以外はアクリル共重合体(a)と同様にして、重量平均分子量67万のアクリル共重合体(c)の溶液を得た。
得られたアクリル共重合体(c)の溶液を用いたこと、粘着付与樹脂として軟化点150℃の重合ロジンエステル15重量部、軟化点130℃のテルペンフェノール10重量部、軟化点70℃のロジンエステル10重量部を用いたこと以外は粘着剤(A)と同様にして、粘着剤(D)を得た。
(Preparation of adhesive (D))
An acrylic copolymer having a weight average molecular weight of 670,000 was changed in the same manner as the acrylic copolymer (a) except that the addition amount of 2-ethylhexyl acrylate was changed to 20 parts by weight and 7 parts by weight of ethyl acrylate was further added. A solution of (c) was obtained.
Use of the resulting acrylic copolymer (c) solution, 15 parts by weight of polymerized rosin ester having a softening point of 150 ° C., 10 parts by weight of terpene phenol having a softening point of 130 ° C., and rosin having a softening point of 70 ° C. A pressure-sensitive adhesive (D) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 10 parts by weight of the ester was used.
(粘着剤(E)の調製)
2-エチルヘキシルアクリレートの添加量を15重量部に変更し、更に、エチルアクリレート7重量部、ビニルアセテート5重量部を添加したこと以外はアクリル共重合体(a)と同様にして、重量平均分子量75万のアクリル共重合体(d)の溶液を得た。
得られたアクリル共重合体(d)の溶液を用いたこと、粘着付与樹脂として軟化点130℃の重合ロジンエステル10重量部、軟化点130℃のテルペンフェノール8重量部、軟化点70℃のロジンエステル6重量部を用いたこと以外は粘着剤(A)と同様にして、粘着剤(E)を得た。
(Preparation of adhesive (E))
The weight average molecular weight of 75 was changed in the same manner as in the acrylic copolymer (a) except that the amount of 2-ethylhexyl acrylate was changed to 15 parts by weight and that 7 parts by weight of ethyl acrylate and 5 parts by weight of vinyl acetate were further added. A solution of 10,000 acrylic copolymer (d) was obtained.
Use of the resulting solution of acrylic copolymer (d), 10 parts by weight of polymerized rosin ester having a softening point of 130 ° C., 8 parts by weight of terpene phenol having a softening point of 130 ° C., and rosin having a softening point of 70 ° C. A pressure-sensitive adhesive (E) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 6 parts by weight of ester was used.
(粘着剤(F)の調製)
粘着付与樹脂として軟化点150℃の重合ロジンエステル15重量部を用いたこと以外は粘着剤(A)と同様にして、粘着剤(F)を得た。
(Preparation of adhesive (F))
A pressure-sensitive adhesive (F) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 15 parts by weight of a polymerized rosin ester having a softening point of 150 ° C. was used as the tackifier resin.
(粘着剤(G)の調製)
2-エチルヘキシルアクリレートの添加量を20重量部に変更し、更に、エチルアクリレート7重量部を添加し、アゾビスイソブチロニトリルの添加量を0.05重量部に変更したこと以外はアクリル共重合体(a)と同様にして、重量平均分子量122万のアクリル共重合体(f)の溶液を得た。
得られたアクリル共重合体(f)の溶液を用いたこと、粘着付与樹脂として軟化点150℃の重合ロジンエステル15重量部、軟化点150℃のテルペンフェノール10重量部、軟化点100℃のロジンエステル10重量部を用いたこと以外は粘着剤(A)と同様にして、粘着剤(G)を得た。
(Preparation of adhesive (G))
Acrylic copolymer except that the addition amount of 2-ethylhexyl acrylate was changed to 20 parts by weight, 7 parts by weight of ethyl acrylate was added, and the addition amount of azobisisobutyronitrile was changed to 0.05 parts by weight. In the same manner as in the union (a), a solution of the acrylic copolymer (f) having a weight average molecular weight of 1,220,000 was obtained.
Use of the resulting acrylic copolymer (f) solution, 15 parts by weight of a polymerized rosin ester having a softening point of 150 ° C., 10 parts by weight of terpene phenol having a softening point of 150 ° C., and rosin having a softening point of 100 ° C. A pressure-sensitive adhesive (G) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 10 parts by weight of the ester was used.
(粘着剤(H)の調製)
粘着付与樹脂として軟化点150℃の重合ロジンエステル10重量部、軟化点100℃のロジンエステル8重量部を用いたこと以外は粘着剤(A)と同様にして、粘着剤(H)を得た。
(Preparation of adhesive (H))
A pressure-sensitive adhesive (H) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 10 parts by weight of a polymerized rosin ester having a softening point of 150 ° C. and 8 parts by weight of a rosin ester having a softening point of 100 ° C. were used as the tackifier resin. .
(粘着剤(I)の調製)
ブチルアクリレートの添加量を77重量部に変更し、更に、2-エチルヘキシルアクリレート27重量部の代わりにメチルメタクリレート20重量部を添加したこと以外はアクリル共重合体(a)と同様にして、重量平均分子量60万のアクリル共重合体(h)の溶液を得た。
得られたアクリル共重合体(h)の溶液を用いたこと、粘着付与樹脂を用いなかったこと以外は粘着剤(A)と同様にして、粘着剤(I)を得た。
(Preparation of adhesive (I))
The weight average was changed in the same manner as in the acrylic copolymer (a) except that the amount of butyl acrylate was changed to 77 parts by weight and that 20 parts by weight of methyl methacrylate was added instead of 27 parts by weight of 2-ethylhexyl acrylate. A solution of an acrylic copolymer (h) having a molecular weight of 600,000 was obtained.
A pressure-sensitive adhesive (I) was obtained in the same manner as the pressure-sensitive adhesive (A) except that the obtained acrylic copolymer (h) solution was used and no tackifying resin was used.
(粘着剤(J)の調製)
ブチルアクリレートの添加量を77重量部に変更し、更に、2-エチルヘキシルアクリレート27重量部の代わりにメチルアクリレート20重量部を添加したこと以外はアクリル共重合体(a)と同様にして、重量平均分子量60万のアクリル共重合体(h)の溶液を得た。
得られたアクリル共重合体(h)の溶液を用いたこと、粘着付与樹脂として軟化点150℃の重合ロジンエステル15重量部、軟化点150℃のテルペンフェノール15重量部、軟化点100℃のロジンエステル15重量部を用いたこと以外は粘着剤(A)と同様にして、粘着剤(J)を得た。
(Preparation of adhesive (J))
The weight average was changed in the same manner as in the acrylic copolymer (a) except that the amount of butyl acrylate was changed to 77 parts by weight and that 20 parts by weight of methyl acrylate was added instead of 27 parts by weight of 2-ethylhexyl acrylate. A solution of an acrylic copolymer (h) having a molecular weight of 600,000 was obtained.
Use of the resulting solution of acrylic copolymer (h), 15 parts by weight of polymerized rosin ester having a softening point of 150 ° C., 15 parts by weight of terpene phenol having a softening point of 150 ° C., and rosin having a softening point of 100 ° C. A pressure-sensitive adhesive (J) was obtained in the same manner as the pressure-sensitive adhesive (A) except that 15 parts by weight of ester was used.
(ポリオレフィン発泡体(A)の製造)
ポリオレフィン系樹脂としての直鎖状低密度ポリエチレン(エクソンケミカル社製、商品名「Exact3027」、密度:0.900g/cm3)100重量部、熱分解型発泡剤としてのアゾジカルボンアミド2重量部、分解温度調整剤としての酸化亜鉛1重量部、及び酸化防止剤としての2,6-ジ-t-ブチル-p-クレゾール0.5重量部を押出機に供給して130℃で溶融混練し、厚さ約0.3mmの長尺シート状のポリオレフィン系樹脂組成物を押出した。
次に、上記長尺シート状のポリオレフィン系樹脂組成物を、その両面に加速電圧500kVの電子線を4.5Mrad照射して架橋した後、熱風及び赤外線ヒーターにより250℃に保持された発泡炉内に連続的に送り込んで加熱して発泡させると共に、発泡させながらMDの延伸倍率を1.5倍、TDの延伸倍率を2.0倍として延伸させることにより、厚さ0.14mmのポリオレフィン発泡体(A)を得た。得られた発泡体について密度と層間強度を測定した。なお、ポリオレフィン発泡体の密度は、JISK-6767に準拠してミラージュ社製の電子比重計(商品名「ED120T」)を使用して測定し算出した。ポリオレフィン発泡体の層間強度は、上述したような図1に示す測定方法で測定した。
(Production of polyolefin foam (A))
100 parts by weight of a linear low density polyethylene (exon chemical company, trade name “Exact3027”, density: 0.900 g / cm 3 ) as a polyolefin-based resin, 2 parts by weight of azodicarbonamide as a thermally decomposable foaming agent, 1 part by weight of zinc oxide as a decomposition temperature adjusting agent and 0.5 part by weight of 2,6-di-t-butyl-p-cresol as an antioxidant are supplied to an extruder and melt-kneaded at 130 ° C., A long sheet-like polyolefin resin composition having a thickness of about 0.3 mm was extruded.
Next, the polyolefin resin composition in the form of a long sheet is cross-linked by irradiating 4.5 Mrad of an electron beam with an acceleration voltage of 500 kV on both sides, and then maintained in a foaming furnace maintained at 250 ° C. with hot air and an infrared heater. Polyolefin foam having a thickness of 0.14 mm by continuously feeding to foam and heating and foaming, and by stretching the foam with a stretch ratio of MD of 1.5 times and a stretch ratio of TD of 2.0 times (A) was obtained. The density and interlayer strength of the obtained foam were measured. The density of the polyolefin foam was measured and calculated using an electronic hydrometer (trade name “ED120T”) manufactured by Mirage in accordance with JISK-6767. The interlayer strength of the polyolefin foam was measured by the measurement method shown in FIG. 1 as described above.
(ポリオレフィン発泡体(B)の製造)
TDの延伸倍率を2.2倍とした以外はポリオレフィン発泡体(A)の製造と同様にしてポリオレフィン発泡体(B)を得た。得られた発泡体について密度と層間強度を測定した。
(Manufacture of polyolefin foam (B))
A polyolefin foam (B) was obtained in the same manner as in the production of the polyolefin foam (A) except that the draw ratio of TD was 2.2 times. The density and interlayer strength of the obtained foam were measured.
(ポリオレフィン発泡体(C)の製造)
配合するアゾジカルボンアミドの量を2.2重量部とし、TDの延伸倍率を1.8倍とした以外はポリオレフィン発泡体(A)の製造と同様にしてポリオレフィン発泡体(C)を得た。得られた発泡体について密度と層間強度を測定した。
(Manufacture of polyolefin foam (C))
A polyolefin foam (C) was obtained in the same manner as in the production of the polyolefin foam (A) except that the amount of azodicarbonamide to be blended was 2.2 parts by weight and the draw ratio of TD was 1.8 times. The density and interlayer strength of the obtained foam were measured.
(ポリオレフィン発泡体(D)の製造)
配合するアゾジカルボンアミドの量を1.9重量部とし、TDの延伸倍率を1.9倍とした以外はポリオレフィン発泡体(A)の製造と同様にしてポリオレフィン発泡体(D)を得た。得られた発泡体について密度と層間強度を測定した。
(Manufacture of polyolefin foam (D))
A polyolefin foam (D) was obtained in the same manner as in the production of the polyolefin foam (A) except that the amount of azodicarbonamide to be blended was 1.9 parts by weight and the draw ratio of TD was 1.9 times. The density and interlayer strength of the obtained foam were measured.
(ポリオレフィン発泡体(E)の製造)
配合するアゾジカルボンアミドの量を3重量部とし、TDの延伸倍率を3倍とした以外はポリオレフィン発泡体(A)の製造と同様にしてポリオレフィン発泡体(E)を得た。得られた発泡体について密度と層間強度を測定した。
(Manufacture of polyolefin foam (E))
A polyolefin foam (E) was obtained in the same manner as in the production of the polyolefin foam (A) except that the amount of azodicarbonamide to be blended was 3 parts by weight and the draw ratio of TD was 3 times. The density and interlayer strength of the obtained foam were measured.
(ポリオレフィン発泡体(F)の製造)
配合するアゾジカルボンアミドの量を2.8重量部とし、TDの延伸倍率を2.8倍とした以外はポリオレフィン発泡体(A)の製造と同様にしてポリオレフィン発泡体(F)を得た。得られた発泡体について密度と層間強度を測定した。
(Manufacture of polyolefin foam (F))
A polyolefin foam (F) was obtained in the same manner as in the production of the polyolefin foam (A) except that the amount of azodicarbonamide to be blended was 2.8 parts by weight and the draw ratio of TD was 2.8 times. The density and interlayer strength of the obtained foam were measured.
(実施例1)
厚み150μmの離型紙を用意し、この離型紙の離型処理面に粘着剤(J)を塗布し、100℃で5分間乾燥させることにより、厚み50μmのアクリル粘着剤層を形成した。このアクリル粘着剤層を、ポリオレフィン発泡体(A)の表面と貼り合わせた。次いで、同様の要領で、このポリオレフィン発泡体の反対の表面にも上記と同じアクリル粘着剤層を貼り合わせた。その後40℃で48時間加熱することで養生を行った。これにより、厚み150μmの離型紙で覆われた表1に示す総厚みの両面粘着テープを得た。
アクリル粘着剤層について、動的粘弾性測定装置(アイティー計測制御社製のDVA-200)を用いて、周波数10Hz、昇温速度3℃/minで-40℃から140℃まで測定を行い、20℃における貯蔵弾性率G’及び損失弾性率G”を読み取り、表1に示した。
Example 1
A release paper having a thickness of 150 μm was prepared, an adhesive (J) was applied to the release-treated surface of the release paper, and dried at 100 ° C. for 5 minutes to form an acrylic adhesive layer having a thickness of 50 μm. This acrylic pressure-sensitive adhesive layer was bonded to the surface of the polyolefin foam (A). Next, in the same manner, the same acrylic pressure-sensitive adhesive layer as above was bonded to the opposite surface of the polyolefin foam. Then, curing was performed by heating at 40 ° C. for 48 hours. This obtained the double-sided adhesive tape of the total thickness shown in Table 1 covered with the 150-micrometer-thick release paper.
The acrylic pressure-sensitive adhesive layer was measured from −40 ° C. to 140 ° C. at a frequency of 10 Hz and a temperature increase rate of 3 ° C./min using a dynamic viscoelasticity measuring device (DVA-200 manufactured by IT Measurement Control). The storage elastic modulus G ′ and loss elastic modulus G ″ at 20 ° C. were read and shown in Table 1.
(実施例2)
粘着剤の種類を粘着剤(A)に変更することで、表1に示す20℃における貯蔵弾性率G’及び損失弾性率G”を有するアクリル粘着剤層に変更したこと以外は実施例1と同様にして、両面粘着テープを得た。
(Example 2)
Example 1 except that the type of the pressure-sensitive adhesive was changed to the pressure-sensitive adhesive (A), and the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ″ at 20 ° C. shown in Table 1 was changed. Similarly, a double-sided adhesive tape was obtained.
(実施例3)
ポリオレフィン発泡体の種類をポリオレフィン発泡体(B)に変更することで、表1に示す密度、厚み及び層間強度を有するものに変更したこと以外は実施例2と同様にして、両面粘着テープを得た。
(Example 3)
A double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 2 except that the polyolefin foam (B) was changed to one having the density, thickness and interlayer strength shown in Table 1 by changing the type of the polyolefin foam. It was.
(実施例4)
ポリオレフィン発泡体の種類をポリオレフィン発泡体(C)に変更することで、ポリオレフィン発泡体を表1に示す密度、厚み及び層間強度を有するものに変更したこと以外は実施例3と同様にして、両面粘着テープを得た。
Example 4
In the same manner as in Example 3, except that the polyolefin foam was changed to one having the density, thickness and interlayer strength shown in Table 1 by changing the type of polyolefin foam to polyolefin foam (C). An adhesive tape was obtained.
(実施例5)
粘着剤の種類を粘着剤(B)に変更することで、表1に示す20℃における貯蔵弾性率G’及び損失弾性率G”を有するアクリル粘着剤層に変更したこと以外は実施例4と同様にして、両面粘着テープを得た。
(Example 5)
Example 4 except that the acrylic adhesive layer having the storage elastic modulus G ′ and the loss elastic modulus G ″ at 20 ° C. shown in Table 1 was changed by changing the type of the adhesive to the adhesive (B). Similarly, a double-sided adhesive tape was obtained.
(実施例6)
粘着剤の種類を粘着剤(C)に変更することで、表1に示す20℃における貯蔵弾性率G’及び損失弾性率G”を有するアクリル粘着剤層に変更したこと以外は実施例4と同様にして、両面粘着テープを得た。
(Example 6)
Example 4 except that the type of the pressure-sensitive adhesive was changed to the pressure-sensitive adhesive (C), and the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ″ at 20 ° C. shown in Table 1 was changed. Similarly, a double-sided adhesive tape was obtained.
(実施例7)
ポリオレフィン発泡体の種類をポリオレフィン発泡体(D)に変更することで、ポリオレフィン発泡体を表1に示す密度、厚み及び層間強度を有するものに変更し、粘着剤の種類を粘着剤(D)に変更することで、表1に示す20℃における貯蔵弾性率G’及び損失弾性率G”を有するアクリル粘着剤層に変更したこと以外は実施例3と同様にして、両面粘着テープを得た。
(Example 7)
By changing the type of polyolefin foam to polyolefin foam (D), the polyolefin foam is changed to one having the density, thickness and interlayer strength shown in Table 1, and the type of pressure-sensitive adhesive is changed to pressure-sensitive adhesive (D). A double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 3 except that the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ″ at 20 ° C. shown in Table 1 was changed.
(実施例8)
ポリオレフィン発泡体の種類をポリオレフィン発泡体(D)に変更することで、ポリオレフィン発泡体を表1に示す密度、厚み及び層間強度を有するものに変更し、粘着剤の種類を粘着剤(E)に変更することで、表1に示す20℃における貯蔵弾性率G’及び損失弾性率G”を有するアクリル粘着剤層に変更したこと以外は実施例3と同様にして、両面粘着テープを得た。
(Example 8)
By changing the type of polyolefin foam to polyolefin foam (D), the polyolefin foam is changed to one having the density, thickness and interlayer strength shown in Table 1, and the type of pressure-sensitive adhesive is changed to pressure-sensitive adhesive (E). A double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 3 except that the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ″ at 20 ° C. shown in Table 1 was changed.
(比較例1)
ポリオレフィン発泡体の種類をポリオレフィン発泡体(E)に変更することで、ポリオレフィン発泡体を表2に示す密度、厚み及び層間強度を有するものに変更し、粘着剤の種類を粘着剤(F)に変更することで、表2に示す20℃における貯蔵弾性率G’及び損失弾性率G”を有するアクリル粘着剤層に変更したこと以外は実施例3と同様にして、両面粘着テープを得た。
(Comparative Example 1)
By changing the type of polyolefin foam to polyolefin foam (E), the polyolefin foam is changed to one having the density, thickness and interlayer strength shown in Table 2, and the type of pressure-sensitive adhesive is changed to pressure-sensitive adhesive (F). A double-sided pressure-sensitive adhesive tape was obtained in the same manner as in Example 3 except that the acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ″ at 20 ° C. shown in Table 2 was changed.
(比較例2)
粘着剤の種類を粘着剤(G)に変更することで、表2に示す20℃における貯蔵弾性率G’及び損失弾性率G”を有するアクリル粘着剤層に変更したこと以外は比較例1と同様にして、両面粘着テープを得た。
(Comparative Example 2)
Comparative Example 1 with the exception of changing the adhesive type to an adhesive (G) and changing to an acrylic adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ″ at 20 ° C. shown in Table 2 Similarly, a double-sided adhesive tape was obtained.
(比較例3)
ポリオレフィン発泡体の種類をポリオレフィン発泡体(F)に変更することで、ポリオレフィン発泡体を表2に示す密度、厚み及び層間強度を有するものに変更したこと以外は比較例1と同様にして、両面粘着テープを得た。
(Comparative Example 3)
By changing the type of the polyolefin foam to the polyolefin foam (F), the polyolefin foam was changed to one having the density, thickness and interlayer strength shown in Table 2, and the both sides were the same as in Comparative Example 1. An adhesive tape was obtained.
(比較例4)
粘着剤の種類を粘着剤(H)に変更することで、表2に示す20℃における貯蔵弾性率G’及び損失弾性率G”を有するアクリル粘着剤層に変更したこと以外は実施例4と同様にして、両面粘着テープを得た。
(Comparative Example 4)
Example 4 with the exception that the pressure-sensitive adhesive (H) was changed to an acrylic pressure-sensitive adhesive layer having a storage elastic modulus G ′ and a loss elastic modulus G ″ at 20 ° C. shown in Table 2 by changing the type of the pressure-sensitive adhesive. Similarly, a double-sided adhesive tape was obtained.
(比較例5)
粘着剤の種類を粘着剤(I)に変更することで、表2に示す20℃における貯蔵弾性率G’及び損失弾性率G”を有するアクリル粘着剤層に変更したこと以外は比較例3と同様にして、両面粘着テープを得た。
(Comparative Example 5)
Comparative Example 3 with the exception of changing the type of adhesive to adhesive (I) to an acrylic adhesive layer having storage elastic modulus G ′ and loss elastic modulus G ″ at 20 ° C. shown in Table 2 Similarly, a double-sided adhesive tape was obtained.
<評価>
実施例、比較例で得られた両面粘着テープについて以下の評価を行った。結果を表1及び表2に示した。
<Evaluation>
The following evaluation was performed about the double-sided adhesive tape obtained by the Example and the comparative example. The results are shown in Tables 1 and 2.
(1)せん断粘着力の測定
図2に、両面粘着テープのせん断粘着力の測定方法を示す模式図を示す。
図2に示すように、2枚の厚み2mmのポリカーボネート板(PC板)3を両面粘着テープ(縦1cm×横1cm)4で貼り合わせ、5kgで10秒間圧着後、23℃で24時間静置して試験片を作製した。次いで、20℃において2枚の厚み2mmのポリカーボネート板(PC板)3を両面粘着テープ4のせん断方向(図2の矢印方向)に10mm/minの速度で引き剥がし、引き剥がされたときの剥離力の最大値をせん断粘着力とした。
せん断粘着力が175N/cm以上であった場合を◎、100N/cm以上、175N/cm未満であった場合を○、100N/cm未満であった場合を×と判定した。また、剥離状態を観察し、剥離モードが界面剥離か層間剥離かを評価した。
(1) Measurement of shear adhesive strength FIG. 2 is a schematic diagram showing a method for measuring the shear adhesive strength of a double-sided adhesive tape.
As shown in FIG. 2, two 2 mm-thick polycarbonate plates (PC plates) 3 are bonded with double-sided adhesive tape (vertical 1 cm × width 1 cm) 4, pressed with 5 kg for 10 seconds, and then allowed to stand at 23 ° C. for 24 hours. Thus, a test piece was prepared. Next, two 20 mm-thick polycarbonate plates (PC plates) 3 having a thickness of 2 mm are peeled off at a rate of 10 mm / min in the shear direction of the double-sided pressure-sensitive adhesive tape 4 (arrow direction in FIG. 2). The maximum value of force was defined as shear adhesive strength.
Where shear adhesive strength was 175 N / cm 2 or more ◎, 100 N / cm 2 or more, the case was less than 175 N / cm 2 ○, was determined as × when was less than 100 N / cm 2. Moreover, the peeling state was observed and it was evaluated whether peeling mode was interface peeling or delamination.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
本発明によれば、携帯電子機器を構成する部品の接着固定、自動車部材の接着固定等に用いられる、せん断粘着力に優れた両面粘着テープを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the double-sided adhesive tape excellent in the shear adhesive force used for the adhesion fixation of the components which comprise a portable electronic device, the adhesion fixation of a motor vehicle member, etc. can be provided.
1 基材
2 SUS板
3 厚み2mmのポリカーボネート板(PC板)
4 両面粘着テープ
1 Base material 2 SUS plate 3 2 mm thick polycarbonate plate (PC plate)
4 Double-sided adhesive tape

Claims (7)

  1. 基材の両面にアクリル粘着剤層を有する両面粘着テープであって、
    前記基材は、発泡体からなり、層間強度が10N/5mm以上、30N/5mm以下であり、
    少なくとも一方のアクリル粘着剤層は、20℃における貯蔵弾性率G’が2.5×10Pa以上、20℃における損失弾性率G”が2×10Pa以上である
    ことを特徴とする両面粘着テープ。
    A double-sided adhesive tape having an acrylic adhesive layer on both sides of a substrate,
    The base material is made of a foam and has an interlayer strength of 10 N / 5 mm or more and 30 N / 5 mm or less,
    At least one of the acrylic pressure-sensitive adhesive layers has a storage elastic modulus G ′ at 20 ° C. of 2.5 × 10 5 Pa or more and a loss elastic modulus G ″ at 20 ° C. of 2 × 10 5 Pa or more. Adhesive tape.
  2. 両面粘着テープの総厚みが50~400μmであることを特徴とする請求項1記載の両面粘着テープ。 2. The double-sided pressure-sensitive adhesive tape according to claim 1, wherein the total thickness of the double-sided pressure-sensitive adhesive tape is 50 to 400 μm.
  3. 片面のアクリル粘着剤層の厚みが10~100μmであることを特徴とする請求項1又は2記載の両面粘着テープ。 The double-sided pressure-sensitive adhesive tape according to claim 1 or 2, wherein the single-sided acrylic pressure-sensitive adhesive layer has a thickness of 10 to 100 µm.
  4. 発泡体は、ポリオレフィン発泡体であることを特徴とする請求項1、2又は3記載の両面粘着テープ。 The double-sided pressure-sensitive adhesive tape according to claim 1, 2 or 3, wherein the foam is a polyolefin foam.
  5. 基材の密度が0.35g/cm以上、0.7g/cm以下であることを特徴とする請求項1、2、3又は4記載の両面粘着テープ。 5. The double-sided pressure-sensitive adhesive tape according to claim 1, wherein the density of the base material is 0.35 g / cm 3 or more and 0.7 g / cm 3 or less.
  6. 携帯電子機器を構成する部品を機器本体に接着固定するために用いられることを特徴とする請求項1、2、3、4又は5記載の両面粘着テープ。 6. The double-sided pressure-sensitive adhesive tape according to claim 1, 2, 3, 4 or 5, wherein the double-sided pressure-sensitive adhesive tape is used for bonding and fixing a component constituting a portable electronic device to the device body.
  7. 自動車部材を自動車本体に接着固定するために用いられることを特徴とする請求項1、2、3、4又は5記載の両面粘着テープ。 6. The double-sided pressure-sensitive adhesive tape according to claim 1, wherein the double-sided pressure-sensitive adhesive tape is used for adhesively fixing an automobile member to an automobile body.
PCT/JP2016/059895 2016-01-21 2016-03-28 Double-sided adhesive tape WO2017126135A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680035144.8A CN107709495A (en) 2016-01-21 2016-03-28 Double-faced adhesive tape
KR1020187000066A KR20180101316A (en) 2016-01-21 2016-03-28 Double-sided adhesive tape
JP2016521365A JP6687515B2 (en) 2016-01-21 2016-03-28 Double-sided adhesive tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016010065 2016-01-21
JP2016-010065 2016-01-21

Publications (1)

Publication Number Publication Date
WO2017126135A1 true WO2017126135A1 (en) 2017-07-27

Family

ID=59362286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059895 WO2017126135A1 (en) 2016-01-21 2016-03-28 Double-sided adhesive tape

Country Status (4)

Country Link
JP (1) JP6687515B2 (en)
KR (1) KR20180101316A (en)
CN (1) CN107709495A (en)
WO (1) WO2017126135A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099806A (en) * 2017-12-04 2019-06-24 積水化学工業株式会社 Double-sided adhesive tape
JP2019099635A (en) * 2017-11-30 2019-06-24 日東電工株式会社 Pressure sensitive adhesive sheet
WO2021106997A1 (en) * 2019-11-26 2021-06-03 積水化学工業株式会社 Double-sided pressure-sensitive adhesive tape
JP7115623B1 (en) 2021-12-02 2022-08-09 東洋インキScホールディングス株式会社 A foamed adhesive tape for fixing electronic device parts, and an electronic device using the foamed adhesive tape for fixing electronic device parts.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260880A (en) * 2009-04-09 2010-11-18 Dic Corp Double-sided adhesive tape
JP2012072393A (en) * 2010-08-31 2012-04-12 Sekisui Plastics Co Ltd Foamed pressure-sensitive adhesive sheet
JP2016069611A (en) * 2014-09-29 2016-05-09 積水化学工業株式会社 Double-sided adhesive tape

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242541A (en) 2008-03-31 2009-10-22 Sekisui Chem Co Ltd Impact-absorbing tape
JP5249625B2 (en) 2008-04-15 2013-07-31 積水化学工業株式会社 Adhesive sheet for display device front plate
KR101181335B1 (en) * 2009-04-09 2012-09-11 디아이씨 가부시끼가이샤 Double sided pressure sensitive adhesive tape
US10316221B2 (en) * 2012-03-22 2019-06-11 Dic Corporation Adhesive tape
JP5700180B1 (en) * 2013-05-27 2015-04-15 Dic株式会社 Double-sided adhesive tape

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260880A (en) * 2009-04-09 2010-11-18 Dic Corp Double-sided adhesive tape
JP2012072393A (en) * 2010-08-31 2012-04-12 Sekisui Plastics Co Ltd Foamed pressure-sensitive adhesive sheet
JP2016069611A (en) * 2014-09-29 2016-05-09 積水化学工業株式会社 Double-sided adhesive tape

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099635A (en) * 2017-11-30 2019-06-24 日東電工株式会社 Pressure sensitive adhesive sheet
JP7125259B2 (en) 2017-11-30 2022-08-24 日東電工株式会社 Adhesive sheet
JP2019099806A (en) * 2017-12-04 2019-06-24 積水化学工業株式会社 Double-sided adhesive tape
JP7260999B2 (en) 2017-12-04 2023-04-19 積水化学工業株式会社 double sided adhesive tape
WO2021106997A1 (en) * 2019-11-26 2021-06-03 積水化学工業株式会社 Double-sided pressure-sensitive adhesive tape
CN113924350A (en) * 2019-11-26 2022-01-11 积水化学工业株式会社 Double-sided adhesive tape
JP7115623B1 (en) 2021-12-02 2022-08-09 東洋インキScホールディングス株式会社 A foamed adhesive tape for fixing electronic device parts, and an electronic device using the foamed adhesive tape for fixing electronic device parts.
JP2023082458A (en) * 2021-12-02 2023-06-14 東洋インキScホールディングス株式会社 Foamed adhesive tape for fixing electronic apparatus parts, and electronic apparatus including foamed adhesive tape for fixing electronic apparatus parts

Also Published As

Publication number Publication date
CN107709495A (en) 2018-02-16
JPWO2017126135A1 (en) 2018-11-15
KR20180101316A (en) 2018-09-12
JP6687515B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
JP6709300B2 (en) Polyolefin resin foam sheet and adhesive tape
JP6370477B2 (en) Double-sided adhesive tape, double-sided adhesive tape for fixing automotive parts, and double-sided adhesive tape for fixing automotive head-up display covers
JP6672439B2 (en) Polyolefin resin foam sheet and adhesive tape
WO2017131082A1 (en) Double-sided adhesive tape
JP6496414B2 (en) Polyolefin resin foam sheet and adhesive tape
JP2010215906A (en) Adhesive sheet for use in electronic device
WO2017126135A1 (en) Double-sided adhesive tape
JP2011168727A (en) Adhesive sheet for electronic device
JP6496407B2 (en) Cross-linked polyolefin resin foam sheet and method for producing the same
JP2016069611A (en) Double-sided adhesive tape
JP6974655B1 (en) Foam sheet
JP6475599B2 (en) Adhesive tape
JP7128062B2 (en) Adhesive tape
JP7316061B2 (en) foam sheet and adhesive tape
WO2023204216A1 (en) Resin foam sheet and adhesive tape
JP2021028386A (en) Double-sided adhesive tape

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016521365

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886375

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187000066

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886375

Country of ref document: EP

Kind code of ref document: A1