WO2017126112A1 - Power transmission device, high-frequency power supply, and high-frequency rectification circuit - Google Patents

Power transmission device, high-frequency power supply, and high-frequency rectification circuit Download PDF

Info

Publication number
WO2017126112A1
WO2017126112A1 PCT/JP2016/051887 JP2016051887W WO2017126112A1 WO 2017126112 A1 WO2017126112 A1 WO 2017126112A1 JP 2016051887 W JP2016051887 W JP 2016051887W WO 2017126112 A1 WO2017126112 A1 WO 2017126112A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
full
frequency
resonant
commercial
Prior art date
Application number
PCT/JP2016/051887
Other languages
French (fr)
Japanese (ja)
Inventor
阿久澤 好幸
Original Assignee
三菱電機エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機エンジニアリング株式会社 filed Critical 三菱電機エンジニアリング株式会社
Priority to PCT/JP2016/051887 priority Critical patent/WO2017126112A1/en
Priority to JP2016525628A priority patent/JP6113360B1/en
Priority to TW105117176A priority patent/TW201728045A/en
Publication of WO2017126112A1 publication Critical patent/WO2017126112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power transmission device, a high-frequency power source, and a high-frequency rectifier circuit that receive commercial AC and transmit power and output AC having the same frequency as the commercial AC.
  • Patent Document 1 a power transmission device that performs wireless power transmission by inputting commercial alternating current is known (see, for example, Patent Document 1).
  • a converter having a bridge-connected rectifier diode converts input commercial alternating current into direct current.
  • the inverter converts the direct current into high frequency alternating current (10 kHz).
  • This converted high-frequency alternating current is contactlessly transmitted by a dielectric line (transmission / reception antenna).
  • bridging converts the said transmitted high frequency alternating current into direct current
  • the inverter converts the said direct current into a high frequency alternating current, and outputs it to the motor used as a load.
  • FIG. 8 is a diagram showing a conventional power transmission device in a more general functional block.
  • AC / DC converter 101 converts the input commercial alternating current (50 Hz in FIG. 8) into direct current.
  • the DC / AC inverter 102 converts the direct current into high-frequency alternating current (6.78 MHz in FIG. 8). This converted high-frequency alternating current is contactlessly transmitted by the resonant transmission / reception antennas 103 and 104.
  • the AC / DC rectifier circuit 105 converts the transmitted high-frequency alternating current into direct current.
  • the DC / AC inverter 106 converts the direct current into alternating current (50 Hz in FIG. 8) having the same frequency as the commercial alternating current, and outputs the alternating current to the load.
  • the present invention has been made in order to solve the above-described problems, and without using an AC / DC converter and a DC / AC inverter, commercial AC is input to transmit power, and the same frequency as that of the commercial AC. It is an object of the present invention to provide a power transmission device, a high-frequency power supply, and a high-frequency rectifier circuit that can output the alternating current.
  • the power transmission device receives a commercial alternating current, converts the commercial alternating current into a full-wave rectification, and converts the full-wave rectified power into a power having a frequency higher than the frequency of the commercial alternating current.
  • a high frequency power source having an inverter, a resonant transmission antenna that transmits power converted by the inverter, a resonant reception antenna that receives power transmitted by the resonant transmission antenna, and power received by the resonant reception antenna
  • a full-wave rectifier circuit that performs full-wave rectification, and a high-frequency rectifier circuit that includes an output circuit that converts the full-wave rectified power by the full-wave rectifier circuit into an alternating current having a half frequency.
  • FIG. 1 is a diagram illustrating a configuration example of a power transmission device according to Embodiment 1 of the present invention.
  • the power transmission device receives commercial alternating current and performs power transmission to output alternating current having the same frequency as the commercial alternating current.
  • the commercial AC includes low-frequency AC such as AC at a standard frequency (50 Hz or 60 Hz) used at home and abroad and AC at a frequency used for industrial use.
  • a standard frequency 50 Hz or 60 Hz
  • the power transmission apparatus performs wireless power transmission will be described as an example.
  • this power transmission apparatus includes a transmission side AC / AC converter (high frequency power source) 1, a resonance type transmission antenna 2, a resonance type reception antenna 3, and a reception side AC / AC converter (high frequency rectifier circuit) 4.
  • the transmission-side AC / AC converter 1 and the resonance-type transmission antenna 2 constitute a transmission device 5
  • the resonance-type reception antenna 3 and the reception-side AC / AC converter 4 constitute a reception device 6.
  • the transmission-side AC / AC converter 1 receives the commercial alternating current (50 Hz in FIG. 1), and has amplitude modulation of the commercial alternating current having a frequency (100 Hz in FIG. 1) twice that of the commercial alternating current. The power is converted into power having a frequency higher than the frequency (6.78 MHz in FIG. 1).
  • the transmission side AC / AC converter 1 includes an input circuit 11, an inverter 12, and a resonance matching circuit 13.
  • the input circuit 11 receives the commercial alternating current and performs full-wave rectification on the commercial alternating current.
  • the power that is full-wave rectified by the input circuit 11 is output to the inverter 12.
  • the inverter 12 converts the power output from the input circuit 11 to the high frequency power by switching at the high frequency.
  • the electric power converted by the inverter 12 is output to the resonant transmission antenna 2 via the resonant matching circuit 13.
  • the resonance matching circuit 13 matches the output impedance of the inverter 12 and the input impedance of the resonant transmission antenna 2 (matches the resonance conditions with the resonant transmission antenna 2).
  • the resonance matching circuit 13 includes a fixed matching type in which the constant of each element constituting the resonance matching circuit 13 is fixed, a variable matching type in which the constant of each element is variable, and the constant of each element is automatically changed to perform matching. Any of the automatic alignment types that take
  • the resonance-type transmitting antenna 2 performs a resonance operation by inputting the power converted by the inverter 12 and generates a non-radiation type electromagnetic field in the vicinity so as to transmit power to the resonance-type receiving antenna 3.
  • Type power transmitting antenna
  • the resonant receiving antenna 3 is a resonant power receiving antenna that receives power by performing a resonant coupling operation with a non-radiating electromagnetic field from the resonant transmitting antenna 2.
  • the electric power received by the resonance type reception antenna 3 is output to the full wave rectification circuit 42 via a resonance matching circuit 41 (to be described later) of the reception side AC / AC converter 4.
  • the wireless power transmission method between the resonant transmission antenna 2 and the resonant reception antenna 3 is not particularly limited, and may be any one of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method. Also good.
  • the receiving-side AC / AC converter 4 converts the power received by the resonant receiving antenna 3 into an alternating current having the same frequency as the commercial alternating current (50 Hz in FIG. 1).
  • the reception-side AC / AC converter 4 includes a resonance matching circuit 41, a full-wave rectification circuit 42, and an output circuit 43.
  • the resonance matching circuit 41 matches the output impedance of the resonance receiving antenna 3 and the input impedance of the full-wave rectification circuit 42 (matches the resonance condition with the resonance receiving antenna 3).
  • the resonance matching circuit 41 includes a fixed matching type in which the constant of each element constituting the resonance matching circuit 41 is fixed, a variable matching type in which the constant of each element is variable, and a constant of each element that is automatically changed to perform matching. Any of the automatic alignment types that take
  • the full-wave rectification circuit 42 performs full-wave rectification on the electric power received by the resonant receiving antenna 3.
  • the electric power that has been full-wave rectified by the full-wave rectifier circuit 42 is output to the output circuit 43.
  • the output circuit 43 converts the power that has been full-wave rectified by the full-wave rectifier circuit 42 into an alternating current having a half frequency. Thereby, the alternating current of the same frequency as the said commercial alternating current can be obtained.
  • the electric power converted by the output circuit 43 is output to a load (not shown).
  • FIG. 2 is a diagram showing a circuit configuration example of the transmission device 5 according to Embodiment 1 of the present invention.
  • FIG. 2 shows a case where a commercial AC source 7 that outputs commercial AC is connected to the input terminal of the transmission device 5.
  • FIG. 2 shows a case where a bridge rectifier circuit is used as the input circuit 11 and a class E inverter is used as the inverter 12.
  • the input circuit 11 of the transmission side AC / AC converter 1 includes rectifier diodes D11 to D14.
  • the rectifier diodes D11 to D14 are bridge-connected and perform full-wave rectification on the power input from the commercial AC source 7.
  • the rectifier diodes D11 to D14 have the cathode of the rectifier diode D11 and the anode of the rectifier diode D13 connected to one end (plus terminal) of the commercial AC source 7, and the cathode of the rectifier diode D12 and the anode of the rectifier diode D14 of the commercial AC source 7. Connected to the other end (minus terminal).
  • the inverter 12 of the transmission side AC / AC converter 1 includes an inductor L11, resonant circuit elements (capacitors C11 and C12 and an inductor L12), and a switching element Q11.
  • the inductor L11 functions to temporarily hold the power input from the input circuit 11 for each operation of the switching element Q11.
  • One end of the inductor L11 is connected to the cathode of the rectifier diode D13 and the cathode of the rectifier diode D14.
  • the resonant circuit elements are for switching the switching operation of the switching element Q11 to a resonant switching operation. That is, with this resonance circuit element, the switching condition of the switching element Q11 is set so that ZVS (zero voltage switching) is established so that the switching loss due to the Ids current and the Vds voltage product is minimized. Yes.
  • the capacitor C11 has one end connected to the other end of the inductor L11 and the other end connected to the anode of the rectifier diode D11 and the anode of the rectifier diode D12.
  • the inductor L12 has one end connected to the other end of the inductor L11.
  • the capacitor C12 has one end connected to the other end of the inductor L12.
  • the switching element Q11 performs a switching operation at the above high frequency.
  • the switching element Q11 has a drain terminal connected to the other end of the inductor L11, and a source terminal connected to the anode of the rectifier diode D11 and the anode of the rectifier diode D12.
  • the resonance matching circuit 13 of the transmission-side AC / AC converter 1 includes capacitors C13 and C14 and an inductor L13.
  • One end of the capacitor C13 is connected to the other end of the capacitor C12, and the other end is connected to the anode of the rectifier diode D11 and the anode of the rectifier diode D12.
  • one end of the inductor L13 is connected to the other end of the capacitor C12.
  • Capacitor C14 has one end connected to the other end of inductor L13 and the other end connected to the anode of rectifier diode D11 and the anode of rectifier diode D12.
  • the resonant transmission antenna 2 includes capacitors C15 and C16 and an inductor L14.
  • the capacitors C15 and C16 and the inductor L14 set the resonance conditions of the resonant transmission antenna 2.
  • the inductor L14 is also used as an antenna in addition to the function of setting the resonance condition of the resonant transmission antenna 2.
  • the capacitor C15 has one end connected to the other end of the inductor L13.
  • One end of the capacitor C16 is connected to the anode of the rectifier diode D11 and the anode of the rectifier diode D12.
  • the inductor L14 has one end connected to the other end of the capacitor C15 and the other end connected to the other end of the capacitor C16.
  • FIG. 3 is a diagram showing a circuit configuration example of the receiving device 6 according to the first embodiment of the present invention.
  • FIG. 3 shows a case where a bridge rectifier circuit is used as the full-wave rectifier circuit 42 and the output circuit 43 is configured using switching elements Q21 to Q24.
  • the resonant receiving antenna 3 includes an inductor L21 and capacitors C21 and C22.
  • the inductor L21 and the capacitors C21 and C22 set the resonance condition of the resonance type receiving antenna 3.
  • the inductor L21 is also used as an antenna in addition to the function of setting the resonance condition of the resonant receiving antenna 3.
  • the inductor L21 has a capacitor C21 connected to one end and a capacitor C22 connected to the other end.
  • the resonance matching circuit 41 of the receiving side AC / AC converter 4 includes an inductor L22 and a capacitor C23.
  • One end of the inductor L22 is connected to the other end of the capacitor C21.
  • Capacitor C23 has one end connected to the other end of inductor L22 and the other end connected to the other end of capacitor C22.
  • the full-wave rectifier circuit 42 of the reception-side AC / AC converter 4 includes rectifier diodes D21 to D24 and a capacitor C24.
  • the rectifier diodes D21 to D24 are bridge-connected and perform full-wave rectification on the electric power input from the resonant receiving antenna 3.
  • the cathode of the rectifier diode D21 and the anode of the rectifier diode D23 are connected to the other end of the inductor L22, and the cathode of the rectifier diode D22 and the anode of the rectifier diode D24 are connected to the other end of the capacitor C22.
  • the capacitor C24 smoothes the power that has been full-wave rectified by the rectifier diodes D21 to D24 while leaving the AC component (the waveform shown in FIG. 5B). That is, the capacity of the capacitor C24 is set to a small value such that an AC component (50 Hz, which is the same as that of commercial AC) remains in the output waveform.
  • One end of the capacitor C24 is connected to the cathode of the rectifier diode D23 and the cathode of the rectifier diode D24, and the other end is connected to the anode of the rectifier diode D21 and the anode of the rectifier diode D22.
  • the output circuit 43 of the receiving side AC / AC converter 4 includes switching elements Q21 to Q24.
  • the switching element Q21 has a drain terminal connected to the cathode of the rectifier diode D23 and the cathode of the rectifier diode D24, and a source terminal connected to the drain terminal of the switching element Q24.
  • the switching element Q22 has a drain terminal connected to the cathode of the rectifier diode D23 and the cathode of the rectifier diode D24, and a source terminal connected to the drain terminal of the switching element Q23.
  • the switching element Q23 has a source terminal connected to the anode of the rectifier diode D21 and the anode of the rectifier diode D22.
  • the switching element Q24 has a source terminal connected to the anode of the rectifier diode D21 and the anode of the rectifier diode D22.
  • the HOT terminal is connected to the source terminal of the switching element Q21 and the drain terminal of the switching element Q24, and the RTN terminal is the source terminal of the switching element Q22 and the switching element Q23. Connected to the drain terminal.
  • the frequency of the commercial AC input to the power transmission device is 50 Hz and the high frequency used in the power transmission device is 6.78 MHz.
  • the transmission device 5 when a commercial AC Vin (AC) of 50 Hz is input from the commercial AC source 7 to the input circuit 11 of the transmission-side AC / AC converter 1 (FIG. 4A), the commercial AC is full-wave rectified. (FIG. 4B).
  • AC AC Vin
  • the inverter 12 converts the electric power from the input circuit 11 into the electric power of 6.78 MHz (FIG. 4C).
  • the peak of the drain-source voltage Vds (Q11) switched at 6.78 MHz by the switching element Q11 changes to a full-wave rectified waveform (100 Hz) of 50 Hz.
  • a waveform indicated by a solid line indicates a waveform of power (6.78 MHz) converted by the inverter 12, and a waveform indicated by a broken line indicates a peak of the power.
  • a locus (100 Hz) is shown.
  • the resonant transmission antenna 2 transmits 6.78 MHz power (transmission wave) having amplitude modulation of 100 Hz (FIG. 4D).
  • a waveform indicated by a solid line indicates a waveform of power (6.78 MHz) transmitted by the resonant transmission antenna 2, and a waveform indicated by a broken line indicates the power
  • the peak locus (100 Hz) is shown.
  • the resonant receiving antenna 3 receives the 6.78 MHz power (transmitted wave) having the amplitude modulation of 100 Hz transmitted by the resonant transmitting antenna 2 (FIG. 5A).
  • the waveform shown in FIG. 5A is the same as the waveform shown in FIG. 4D.
  • the full-wave rectification circuit 42 of the reception-side AC / AC converter 4 performs full-wave rectification on the power received by the resonant receiving antenna 3 (FIG. 5B).
  • the voltage V (C24) of the capacitor C24 becomes a value rectified into a full-wave rectified waveform (100 Hz) of 50 Hz.
  • the output circuit 43 converts the full-wave rectified power by the full-wave rectifier circuit 42 into half-frequency power.
  • the gate-source voltage Vgs of the switching elements Q21, Q23 and the switching elements Q22, Q24 in accordance with the period of the full-wave rectified by the full-wave rectifier circuit 42. Toggle on / off alternately. Thereby, the output of the receiving device 6 becomes a sine wave having the same frequency as 50 Hz, which is the frequency of the commercial power input to the power transmission device (FIG. 5C).
  • FIG. 6 shows a case where the fixing unit 51 is a road surface, and only the resonant transmission antenna 2 of the transmission device 5 and the resonant reception antenna 3 of the reception device 6 are illustrated.
  • the resonant transmission antenna 2 is installed in a fixed portion 51 such as a road surface or a parking lot, and the resonant reception antenna 3 is fixed when stopped or moving. It can be installed on a moving body 52 such as a vehicle facing the section 51. As shown in FIG.
  • a plurality of resonant transmission antennas 2 are provided along the traveling direction of the moving body 52. Accordingly, power can be transmitted from the resonant transmission antenna 2 to the resonant reception antenna 3 when the moving body 52 is stopped or moving facing the fixed portion 51, and power is supplied to the moving body 52. be able to.
  • the resonant transmission antenna 2 is configured from a single coil.
  • the present invention is not limited to this, and the resonant transmission antenna 2 may be composed of two or more coils, for example, a power feeding coil and a resonance coil.
  • the resonant receiving antenna 3 is constituted by a single coil has been described.
  • the present invention is not limited to this, and the resonant receiving antenna 3 may be composed of two or more coils, for example, a power feeding coil and a resonance coil.
  • the power transmission method between the resonant transmission antenna 2 and the resonant reception antenna 3 is a wireless transmission method.
  • the present invention is not limited to this.
  • a contact-type resonant coupling transmission in which the resonant transmission antenna 2 and the resonant reception antenna 3 are connected by a conducting wire 8 so as to be equivalently connected at one point. It is good.
  • FIG. 7 only the resonant transmission antenna 2 of the transmission device 5 and the resonant reception antenna 3 of the reception device 6 are illustrated.
  • an E-class inverter is used as the inverter 12 in the above description.
  • the present invention is not limited to this, and any inverter that converts input power to the high frequency power by switching at the high frequency may be used.
  • the inverter 12 a bridge type inverter, a class D inverter, or a class DE inverter may be used.
  • the diode-type bridge rectifier circuit is used as the input circuit 11 and the full-wave rectifier circuit 42.
  • the present invention is not limited to this, and any circuit may be used as long as the input power is full-wave rectified.
  • the input circuit 11 and the full-wave rectifier circuit 42 may be configured using field effect transistors (FETs) instead of the rectifier diodes D11 to D14 and D21 to D24.
  • FETs field effect transistors
  • the resonance matching circuit 13 is provided outside the inverter 12.
  • the inverter 12 may incorporate the resonance matching circuit 13.
  • the resonance matching circuit 41 is provided outside the full-wave rectifier circuit 42.
  • the present invention is not limited to this, and the resonance matching circuit 41 may be built in the full-wave rectifier circuit 42.
  • the resonance matching circuit 41 may be built in the full-wave rectifier circuit 42.
  • the resonance matching circuit 41 is a fixed matching type, it may be built in the full wave rectification circuit 42, and when it is a variable matching type or an automatic matching type, it may be provided as an external circuit of the full wave rectification circuit 42.
  • the output circuit 43 is configured using the switching elements Q21 to Q24.
  • the present invention is not limited to this, and any circuit that converts input electric power into half-frequency alternating current may be used.
  • a thyristor, triac, or the like may be used.
  • commercial alternating current is input, the input circuit 11 that performs full-wave rectification of the commercial alternating current, and the electric power that has been full-wave rectified by the input circuit 11 than the frequency of the commercial alternating current.
  • a transmission-side AC / AC converter 1 having an inverter 12 that converts power to high frequency power, a resonant transmission antenna 2 that transmits power converted by the inverter 12, and power transmitted by the resonant transmission antenna 2 are received.
  • the resonant receiving antenna 3, the full wave rectification circuit 42 that performs full wave rectification on the power received by the resonant reception antenna 3, and the power that is full wave rectified by the full wave rectification circuit 42 is converted into an alternating current having a half frequency.
  • the receiving side AC / AC converter 4 having the output circuit 43 is provided, the AC / DC converter 101 and the DC / AC inverter 106 are not used. Use AC is inputted can perform power transmission outputs an AC of the same frequency as the commercial AC. As a result, the entire apparatus can be reduced in size, weight, and cost as compared with the conventional configuration.
  • the conversion efficiency is higher than that of the conventional configuration, and the input / output power transmission efficiency in the entire apparatus can be increased.
  • the power transmission efficiency of input / output in the entire device can be improved compared to the conventional configuration.
  • the heat sink structure for heat dissipation can be downsized. Also by this, the whole apparatus can be reduced in size, weight, and cost compared with the conventional configuration.
  • any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
  • the power transmission device can output AC with the same frequency as the commercial AC by inputting commercial AC and transmitting power without using an AC / DC converter and a DC / AC inverter, It is suitable for use in a power transmission device or the like that receives commercial AC and transmits power and outputs AC of the same frequency as the commercial AC.
  • 1 AC side AC / AC converter (high frequency power supply), 2 resonance type transmission antenna, 3 resonance type reception antenna, 4 AC side AC / AC converter (high frequency rectification circuit), 5 transmission device, 6 reception device, 7 commercial AC source, 8 conductors, 11 input circuits, 12 inverters, 13 resonance matching circuits, 41 resonance matching circuits, 42 full-wave rectification circuits, 43 output circuits, 51 fixed parts, 52 moving bodies.

Abstract

The present invention is provided with: a transmission-side AC/AC converter (1) provided with an input circuit (11) into which a commercial alternating current is inputted, and which subjects the commercial alternating current to full-wave rectification, and an inverter (12) which converts the power that has been subjected to full-wave rectification by the input circuit (11), to power having a higher frequency than the frequency of the commercial alternating current; a resonant transmission antenna (2) for transmitting the power that has been converted by the inverter (12); a resonant reception antenna (3) for receiving the power transmitted by the resonant transmission antenna (2); and a reception-side AC/AC converter (4) provided with a full-wave rectification circuit (42) which subjects the power received by the resonant reception antenna (3) to full-wave rectification, and an output circuit (43) which converts the power that has been subjected to full-wave rectification by the full-wave rectification circuit (42), to alternating current having half the frequency.

Description

電力伝送装置、高周波電源及び高周波整流回路Power transmission device, high frequency power supply and high frequency rectifier circuit
 この発明は、商用交流が入力されて電力伝送を行って当該商用交流と同じ周波数の交流を出力する電力伝送装置、高周波電源及び高周波整流回路に関するものである。 The present invention relates to a power transmission device, a high-frequency power source, and a high-frequency rectifier circuit that receive commercial AC and transmit power and output AC having the same frequency as the commercial AC.
 従来から、商用交流が入力されて無線電力伝送を行う電力伝送装置が知られている(例えば特許文献1参照)。特許文献1に開示された電力伝送装置(無接触給電設備)では、まず、ブリッジ接続された整流ダイオードを有するコンバータは、入力された商用交流を直流へ変換する。そして、インバータは、当該直流を高周波交流(10kHz)に変換する。この変換された高周波交流は、誘電線路(送受信アンテナ)によって無接触電力伝送される。そして、ブリッジ接続された整流ダイオードを有するコンバータは、当該伝送された高周波交流を直流へ変換する。そして、インバータは、当該直流を高周波交流に変換し、負荷となるモータに出力している。 2. Description of the Related Art Conventionally, a power transmission device that performs wireless power transmission by inputting commercial alternating current is known (see, for example, Patent Document 1). In the power transmission device (contactless power supply facility) disclosed in Patent Document 1, first, a converter having a bridge-connected rectifier diode converts input commercial alternating current into direct current. Then, the inverter converts the direct current into high frequency alternating current (10 kHz). This converted high-frequency alternating current is contactlessly transmitted by a dielectric line (transmission / reception antenna). And the converter which has the rectifier diode connected by bridge | bridging converts the said transmitted high frequency alternating current into direct current | flow. And the inverter converts the said direct current into a high frequency alternating current, and outputs it to the motor used as a load.
 図8は、従来の電力伝送装置をより一般的な機能ブロックで示した図である。
 図8に示す電力伝送装置では、まず、AC/DCコンバータ101は、入力された商用交流(図8では50Hz)を直流へ変換する。そして、DC/ACインバータ102は、当該直流を高周波交流(図8では6.78MHz)へ変換する。この変換された高周波交流は、共振型送受信アンテナ103,104によって非接触電力伝送される。そして、AC/DC整流回路105は、当該伝送された高周波交流を直流へ変換する。そして、DC/ACインバータ106は、当該直流を上記商用交流と同じ周波数の交流(図8では50Hz)に変換し、負荷へ出力している。
FIG. 8 is a diagram showing a conventional power transmission device in a more general functional block.
In the power transmission apparatus shown in FIG. 8, first, AC / DC converter 101 converts the input commercial alternating current (50 Hz in FIG. 8) into direct current. Then, the DC / AC inverter 102 converts the direct current into high-frequency alternating current (6.78 MHz in FIG. 8). This converted high-frequency alternating current is contactlessly transmitted by the resonant transmission / reception antennas 103 and 104. The AC / DC rectifier circuit 105 converts the transmitted high-frequency alternating current into direct current. The DC / AC inverter 106 converts the direct current into alternating current (50 Hz in FIG. 8) having the same frequency as the commercial alternating current, and outputs the alternating current to the load.
特開平2005-162119号公報Japanese Patent Laid-Open No. 2005-162119
 しかしながら、従来の電力伝送装置では、図8に示すように、送信側にAC/DCコンバータ101を設け、受信側にDC/ACインバータ106を設ける必要がある。そのため、装置全体が大型化、重量化、高コスト化するという課題がある。
 また、従来の構成では、入力された電力に対して直流への変換と周波数変換を繰り返すため、装置全体における入出力の電力伝送効率が低く、発熱量が多くなるため、その放熱のためのヒートシンク構造が大型化する。よって、これによっても、装置全体が大型化、重量化、高コスト化するという課題がある。
However, in the conventional power transmission apparatus, as shown in FIG. 8, it is necessary to provide an AC / DC converter 101 on the transmission side and a DC / AC inverter 106 on the reception side. Therefore, there is a problem that the entire apparatus is increased in size, weight, and cost.
In addition, in the conventional configuration, since the input power is repeatedly converted to DC and frequency converted, the input / output power transmission efficiency in the entire apparatus is low and the amount of heat generation is large. The structure becomes larger. Therefore, this also has a problem that the entire apparatus is increased in size, weight, and cost.
 この発明は、上記のような課題を解決するためになされたもので、AC/DCコンバータ及びDC/ACインバータを用いずに、商用交流が入力されて電力伝送を行って当該商用交流と同じ周波数の交流を出力することができる電力伝送装置、高周波電源及び高周波整流回路を提供することを目的としている。 The present invention has been made in order to solve the above-described problems, and without using an AC / DC converter and a DC / AC inverter, commercial AC is input to transmit power, and the same frequency as that of the commercial AC. It is an object of the present invention to provide a power transmission device, a high-frequency power supply, and a high-frequency rectifier circuit that can output the alternating current.
 この発明に係る電力伝送装置は、商用交流が入力され、当該商用交流を全波整流する入力回路、及び入力回路により全波整流された電力を商用交流の周波数よりも高い周波数の電力に変換するインバータを有する高周波電源と、インバータにより変換された電力を伝送する共振型送信アンテナと、共振型送信アンテナにより伝送された電力を受信する共振型受信アンテナと、共振型受信アンテナにより受信された電力を全波整流する全波整流回路、及び全波整流回路により全波整流された電力を半分の周波数の交流に変換する出力回路を有する高周波整流回路とを備えたものである。 The power transmission device according to the present invention receives a commercial alternating current, converts the commercial alternating current into a full-wave rectification, and converts the full-wave rectified power into a power having a frequency higher than the frequency of the commercial alternating current. A high frequency power source having an inverter, a resonant transmission antenna that transmits power converted by the inverter, a resonant reception antenna that receives power transmitted by the resonant transmission antenna, and power received by the resonant reception antenna A full-wave rectifier circuit that performs full-wave rectification, and a high-frequency rectifier circuit that includes an output circuit that converts the full-wave rectified power by the full-wave rectifier circuit into an alternating current having a half frequency.
 この発明によれば、上記のように構成したので、AC/DCコンバータ及びDC/ACインバータを用いずに、商用交流が入力されて電力伝送を行って当該商用交流と同じ周波数の交流を出力することができる。 According to this invention, since it comprised as mentioned above, without using an AC / DC converter and a DC / AC inverter, commercial alternating current is input, electric power transmission is performed, and alternating current of the same frequency as the said commercial alternating current is output. be able to.
この発明の実施の形態1に係る電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the electric power transmission apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1における送信装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the transmitter in Embodiment 1 of this invention. この発明の実施の形態1における受信装置の回路構成例を示す図である。It is a figure which shows the circuit structural example of the receiver in Embodiment 1 of this invention. 図4A~図4Dは、この発明の実施の形態1における送信装置の動作例を説明する図である。4A to 4D are diagrams for explaining an operation example of the transmission apparatus according to Embodiment 1 of the present invention. 図5A~図5Cは、この発明の実施の形態1における受信装置の動作例を説明する図である。5A to 5C are diagrams for explaining an operation example of the receiving apparatus according to Embodiment 1 of the present invention. この発明の実施の形態1に係る電力伝送装置の適用例を示す図であり、送信装置を固定部に設け、受信装置を移動体に設けた場合の側面図である。It is a figure which shows the example of application of the electric power transmission apparatus which concerns on Embodiment 1 of this invention, and is a side view at the time of providing a transmitter in a fixing | fixed part and providing a receiver in a mobile body. この発明の実施の形態1における共振型送信アンテナと共振型受信アンテナを有線接続した場合の構成例を示す図である。It is a figure which shows the structural example at the time of wire-connecting the resonance type transmission antenna and resonance type reception antenna in Embodiment 1 of this invention. 従来の電力伝送装置の構成例を示す図である。It is a figure which shows the structural example of the conventional power transmission apparatus.
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る電力伝送装置の構成例を示す図である。
 電力伝送装置は、商用交流が入力されて電力伝送を行って当該商用交流と同じ周波数の交流を出力するものである。なお、商用交流としては、国内外で使用されている標準の周波数(50Hz又は60Hz)の交流、工業用として使用されている周波数の交流等の、低周波数の交流が挙げられる。また以下では、電力伝送装置が無線電力伝送を行う場合を例に説明を行う。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
1 is a diagram illustrating a configuration example of a power transmission device according to Embodiment 1 of the present invention.
The power transmission device receives commercial alternating current and performs power transmission to output alternating current having the same frequency as the commercial alternating current. The commercial AC includes low-frequency AC such as AC at a standard frequency (50 Hz or 60 Hz) used at home and abroad and AC at a frequency used for industrial use. In the following, a case where the power transmission apparatus performs wireless power transmission will be described as an example.
 この電力伝送装置は、図1に示すように、送信側AC/ACコンバータ(高周波電源)1、共振型送信アンテナ2、共振型受信アンテナ3及び受信側AC/ACコンバータ(高周波整流回路)4を備えている。なお、送信側AC/ACコンバータ1及び共振型送信アンテナ2は送信装置5を構成し、共振型受信アンテナ3及び受信側AC/ACコンバータ4は受信装置6を構成している。 As shown in FIG. 1, this power transmission apparatus includes a transmission side AC / AC converter (high frequency power source) 1, a resonance type transmission antenna 2, a resonance type reception antenna 3, and a reception side AC / AC converter (high frequency rectifier circuit) 4. I have. The transmission-side AC / AC converter 1 and the resonance-type transmission antenna 2 constitute a transmission device 5, and the resonance-type reception antenna 3 and the reception-side AC / AC converter 4 constitute a reception device 6.
 送信側AC/ACコンバータ1は、上記商用交流(図1では50Hz)が入力され、当該商用交流を、当該商用交流の倍の周波数(図1では100Hz)の振幅変調を持ち、当該商用交流の周波数よりも高い周波数(図1では6.78MHz)の電力に変換するものである。この送信側AC/ACコンバータ1は、入力回路11、インバータ12及び共振整合回路13を有している。 The transmission-side AC / AC converter 1 receives the commercial alternating current (50 Hz in FIG. 1), and has amplitude modulation of the commercial alternating current having a frequency (100 Hz in FIG. 1) twice that of the commercial alternating current. The power is converted into power having a frequency higher than the frequency (6.78 MHz in FIG. 1). The transmission side AC / AC converter 1 includes an input circuit 11, an inverter 12, and a resonance matching circuit 13.
 入力回路11は、上記商用交流が入力され、当該商用交流を全波整流するものである。この入力回路11により全波整流された電力は、インバータ12に出力される。 The input circuit 11 receives the commercial alternating current and performs full-wave rectification on the commercial alternating current. The power that is full-wave rectified by the input circuit 11 is output to the inverter 12.
 インバータ12は、入力回路11から出力された電力を、上記高い周波数でスイッチングすることで、当該高い周波数の電力に変換するものである。このインバータ12により変換された電力は、共振整合回路13を介して共振型送信アンテナ2に出力される。 The inverter 12 converts the power output from the input circuit 11 to the high frequency power by switching at the high frequency. The electric power converted by the inverter 12 is output to the resonant transmission antenna 2 via the resonant matching circuit 13.
 共振整合回路13は、インバータ12の出力インピーダンスと共振型送信アンテナ2の入力インピーダンスとの整合を取る(共振型送信アンテナ2との間で共振条件を合わせる)ものである。なお、共振整合回路13は、共振整合回路13を構成する各素子の定数が固定である固定整合型、各素子の定数が可変である可変整合型、各素子の定数が自動で可変されて整合を取る自動整合型の何れであってもよい。 The resonance matching circuit 13 matches the output impedance of the inverter 12 and the input impedance of the resonant transmission antenna 2 (matches the resonance conditions with the resonant transmission antenna 2). The resonance matching circuit 13 includes a fixed matching type in which the constant of each element constituting the resonance matching circuit 13 is fixed, a variable matching type in which the constant of each element is variable, and the constant of each element is automatically changed to perform matching. Any of the automatic alignment types that take
 共振型送信アンテナ2は、インバータ12により変換された電力を入力して共振動作を行い、非放射型の電磁界を近傍に発生させることで、共振型受信アンテナ3に対して電力伝送を行う共振型の電力送信アンテナである。 The resonance-type transmitting antenna 2 performs a resonance operation by inputting the power converted by the inverter 12 and generates a non-radiation type electromagnetic field in the vicinity so as to transmit power to the resonance-type receiving antenna 3. Type power transmitting antenna.
 共振型受信アンテナ3は、共振型送信アンテナ2からの非放射型の電磁界と共振結合動作を行うことで電力を受信する共振型の電力受信アンテナである。この共振型受信アンテナ3により受信された電力は、受信側AC/ACコンバータ4の後述する共振整合回路41を介して全波整流回路42に出力される。 The resonant receiving antenna 3 is a resonant power receiving antenna that receives power by performing a resonant coupling operation with a non-radiating electromagnetic field from the resonant transmitting antenna 2. The electric power received by the resonance type reception antenna 3 is output to the full wave rectification circuit 42 via a resonance matching circuit 41 (to be described later) of the reception side AC / AC converter 4.
 なお、共振型送信アンテナ2と共振型受信アンテナ3との間の電力の無線伝送方式は特に限定されるものではなく、磁界共鳴による方式、電界共鳴による方式、電磁誘導による方式の何れであってもよい。 The wireless power transmission method between the resonant transmission antenna 2 and the resonant reception antenna 3 is not particularly limited, and may be any one of a magnetic field resonance method, an electric field resonance method, and an electromagnetic induction method. Also good.
 受信側AC/ACコンバータ4は、共振型受信アンテナ3により受信された電力を、上記商用交流と同じ周波数(図1では50Hz)の交流に変換するものである。この受信側AC/ACコンバータ4は、共振整合回路41、全波整流回路42及び出力回路43を有している。 The receiving-side AC / AC converter 4 converts the power received by the resonant receiving antenna 3 into an alternating current having the same frequency as the commercial alternating current (50 Hz in FIG. 1). The reception-side AC / AC converter 4 includes a resonance matching circuit 41, a full-wave rectification circuit 42, and an output circuit 43.
 共振整合回路41は、共振型受信アンテナ3の出力インピーダンスと全波整流回路42の入力インピーダンスとの整合を取る(共振型受信アンテナ3との間で共振条件を合わせる)ものである。なお、共振整合回路41は、共振整合回路41を構成する各素子の定数が固定である固定整合型、各素子の定数が可変である可変整合型、各素子の定数が自動で可変されて整合を取る自動整合型の何れであってもよい。 The resonance matching circuit 41 matches the output impedance of the resonance receiving antenna 3 and the input impedance of the full-wave rectification circuit 42 (matches the resonance condition with the resonance receiving antenna 3). The resonance matching circuit 41 includes a fixed matching type in which the constant of each element constituting the resonance matching circuit 41 is fixed, a variable matching type in which the constant of each element is variable, and a constant of each element that is automatically changed to perform matching. Any of the automatic alignment types that take
 全波整流回路42は、共振型受信アンテナ3により受信された電力を全波整流するものである。この全波整流回路42により全波整流された電力は、出力回路43に出力される。 The full-wave rectification circuit 42 performs full-wave rectification on the electric power received by the resonant receiving antenna 3. The electric power that has been full-wave rectified by the full-wave rectifier circuit 42 is output to the output circuit 43.
 出力回路43は、全波整流回路42により全波整流された電力を、半分の周波数の交流に変換するものである。これにより、上記商用交流と同じ周波数の交流を得ることができる。この出力回路43により変換された電力は、負荷(不図示)に出力される。 The output circuit 43 converts the power that has been full-wave rectified by the full-wave rectifier circuit 42 into an alternating current having a half frequency. Thereby, the alternating current of the same frequency as the said commercial alternating current can be obtained. The electric power converted by the output circuit 43 is output to a load (not shown).
 次に、送信装置5の具体的な回路構成例について、図2を参照しながら説明する。
 図2はこの発明の実施の形態1における送信装置5の回路構成例を示す図である。なお図2では、送信装置5の入力端に、商用交流を出力する商用交流源7が接続された場合を示している。また図2では、入力回路11としてブリッジ整流回路を用い、インバータ12としてE級型のインバータを用いた場合を示している。
Next, a specific circuit configuration example of the transmission device 5 will be described with reference to FIG.
FIG. 2 is a diagram showing a circuit configuration example of the transmission device 5 according to Embodiment 1 of the present invention. FIG. 2 shows a case where a commercial AC source 7 that outputs commercial AC is connected to the input terminal of the transmission device 5. FIG. 2 shows a case where a bridge rectifier circuit is used as the input circuit 11 and a class E inverter is used as the inverter 12.
 まず、送信側AC/ACコンバータ1の回路構成例について説明する。
 図2では、送信側AC/ACコンバータ1の入力回路11は、整流ダイオードD11~D14により構成されている。
First, a circuit configuration example of the transmission side AC / AC converter 1 will be described.
In FIG. 2, the input circuit 11 of the transmission side AC / AC converter 1 includes rectifier diodes D11 to D14.
 整流ダイオードD11~D14は、ブリッジ接続され、商用交流源7から入力された電力を全波整流するものである。
 整流ダイオードD11~D14は、整流ダイオードD11のカソード及び整流ダイオードD13のアノードが商用交流源7の一端(プラス端子)に接続され、整流ダイオードD12のカソード及び整流ダイオードD14のアノードが商用交流源7の他端(マイナス端子)に接続されている。
The rectifier diodes D11 to D14 are bridge-connected and perform full-wave rectification on the power input from the commercial AC source 7.
The rectifier diodes D11 to D14 have the cathode of the rectifier diode D11 and the anode of the rectifier diode D13 connected to one end (plus terminal) of the commercial AC source 7, and the cathode of the rectifier diode D12 and the anode of the rectifier diode D14 of the commercial AC source 7. Connected to the other end (minus terminal).
 また、送信側AC/ACコンバータ1のインバータ12は、インダクタL11、共振回路素子(コンデンサC11,C12及びインダクタL12)及びスイッチング素子Q11により構成されている。 Further, the inverter 12 of the transmission side AC / AC converter 1 includes an inductor L11, resonant circuit elements (capacitors C11 and C12 and an inductor L12), and a switching element Q11.
 インダクタL11は、入力回路11から入力された電力を、スイッチング素子Q11の動作毎に一時的に保持する働きをするものである。このインダクタL11は、一端が整流ダイオードD13のカソード及び整流ダイオードD14のカソードに接続されている。 The inductor L11 functions to temporarily hold the power input from the input circuit 11 for each operation of the switching element Q11. One end of the inductor L11 is connected to the cathode of the rectifier diode D13 and the cathode of the rectifier diode D14.
 共振回路素子(コンデンサC11,C12及びインダクタL12)は、スイッチング素子Q11のスイッチング動作を共振スイッチング動作とさせるものである。すなわち、この共振回路素子により、スイッチング素子Q11のスイッチング動作が、Ids電流とVds電圧積によるスイッチング損失が最も小さくなるように、ZVS(ゼロボルテージスイッチング)が成立するように、スイッチング条件が設定されている。 The resonant circuit elements (capacitors C11 and C12 and the inductor L12) are for switching the switching operation of the switching element Q11 to a resonant switching operation. That is, with this resonance circuit element, the switching condition of the switching element Q11 is set so that ZVS (zero voltage switching) is established so that the switching loss due to the Ids current and the Vds voltage product is minimized. Yes.
 コンデンサC11は、一端がインダクタL11の他端に接続され、他端が整流ダイオードD11のアノード及び整流ダイオードD12のアノードに接続されている。また、インダクタL12は、一端がインダクタL11の他端に接続されている。また、コンデンサC12は、一端がインダクタL12の他端に接続されている。 The capacitor C11 has one end connected to the other end of the inductor L11 and the other end connected to the anode of the rectifier diode D11 and the anode of the rectifier diode D12. The inductor L12 has one end connected to the other end of the inductor L11. The capacitor C12 has one end connected to the other end of the inductor L12.
 スイッチング素子Q11は、上記高い周波数でスイッチング動作を行うものである。このスイッチング素子Q11は、ドレイン端子がインダクタL11の他端に接続され、ソース端子が整流ダイオードD11のアノード及び整流ダイオードD12のアノードに接続されている。 The switching element Q11 performs a switching operation at the above high frequency. The switching element Q11 has a drain terminal connected to the other end of the inductor L11, and a source terminal connected to the anode of the rectifier diode D11 and the anode of the rectifier diode D12.
 また、送信側AC/ACコンバータ1の共振整合回路13は、コンデンサC13,C14及びインダクタL13により構成されている。
 コンデンサC13は、一端がコンデンサC12の他端に接続され、他端が整流ダイオードD11のアノード及び整流ダイオードD12のアノードに接続されている。また、インダクタL13は、一端がコンデンサC12の他端に接続されている。また、コンデンサC14は、一端がインダクタL13の他端に接続され、他端が整流ダイオードD11のアノード及び整流ダイオードD12のアノードに接続されている。
The resonance matching circuit 13 of the transmission-side AC / AC converter 1 includes capacitors C13 and C14 and an inductor L13.
One end of the capacitor C13 is connected to the other end of the capacitor C12, and the other end is connected to the anode of the rectifier diode D11 and the anode of the rectifier diode D12. Further, one end of the inductor L13 is connected to the other end of the capacitor C12. Capacitor C14 has one end connected to the other end of inductor L13 and the other end connected to the anode of rectifier diode D11 and the anode of rectifier diode D12.
 次に、共振型送信アンテナ2の回路構成例について説明する。
 図2では、共振型送信アンテナ2は、コンデンサC15,C16及びインダクタL14により構成されている。このコンデンサC15,C16及びインダクタL14は共振型送信アンテナ2の共振条件を設定するものである。なお、インダクタL14は、共振型送信アンテナ2の共振条件を設定する機能の他、アンテナとしても兼用されている。
Next, a circuit configuration example of the resonant transmission antenna 2 will be described.
In FIG. 2, the resonant transmission antenna 2 includes capacitors C15 and C16 and an inductor L14. The capacitors C15 and C16 and the inductor L14 set the resonance conditions of the resonant transmission antenna 2. The inductor L14 is also used as an antenna in addition to the function of setting the resonance condition of the resonant transmission antenna 2.
 コンデンサC15は、一端がインダクタL13の他端に接続されている。また、コンデンサC16は、一端が整流ダイオードD11のアノード及び整流ダイオードD12のアノードに接続されている。また、インダクタL14は、一端がコンデンサC15の他端に接続され、他端がコンデンサC16の他端に接続されている。 The capacitor C15 has one end connected to the other end of the inductor L13. One end of the capacitor C16 is connected to the anode of the rectifier diode D11 and the anode of the rectifier diode D12. The inductor L14 has one end connected to the other end of the capacitor C15 and the other end connected to the other end of the capacitor C16.
 次に、受信装置6の具体的な回路構成例について、図3を参照しながら説明する。
 図3はこの発明の実施の形態1における受信装置6の回路構成例を示す図である。なお図3では、全波整流回路42としてブリッジ整流回路を用い、出力回路43をスイッチング素子Q21~Q24を用いて構成した場合を示している。
Next, a specific circuit configuration example of the receiving device 6 will be described with reference to FIG.
FIG. 3 is a diagram showing a circuit configuration example of the receiving device 6 according to the first embodiment of the present invention. FIG. 3 shows a case where a bridge rectifier circuit is used as the full-wave rectifier circuit 42 and the output circuit 43 is configured using switching elements Q21 to Q24.
 まず、共振型受信アンテナ3の回路構成例について説明する。
 図3では、共振型受信アンテナ3は、インダクタL21及びコンデンサC21,C22により構成されている。このインダクタL21及びコンデンサC21,C22は共振型受信アンテナ3の共振条件を設定するものである。なお、インダクタL21は、共振型受信アンテナ3の共振条件を設定する機能の他、アンテナとしても兼用されている。
 インダクタL21は、一端にコンデンサC21が接続され、他端にコンデンサC22が接続されている。
First, a circuit configuration example of the resonant receiving antenna 3 will be described.
In FIG. 3, the resonant receiving antenna 3 includes an inductor L21 and capacitors C21 and C22. The inductor L21 and the capacitors C21 and C22 set the resonance condition of the resonance type receiving antenna 3. The inductor L21 is also used as an antenna in addition to the function of setting the resonance condition of the resonant receiving antenna 3.
The inductor L21 has a capacitor C21 connected to one end and a capacitor C22 connected to the other end.
 次に、受信側AC/ACコンバータ4の回路構成例について説明する。
 図3では、受信側AC/ACコンバータ4の共振整合回路41は、インダクタL22及びコンデンサC23により構成されている。
 インダクタL22は、一端がコンデンサC21の他端に接続されている。また、コンデンサC23は、一端がインダクタL22の他端に接続され、他端がコンデンサC22の他端に接続されている。
Next, a circuit configuration example of the receiving side AC / AC converter 4 will be described.
In FIG. 3, the resonance matching circuit 41 of the receiving side AC / AC converter 4 includes an inductor L22 and a capacitor C23.
One end of the inductor L22 is connected to the other end of the capacitor C21. Capacitor C23 has one end connected to the other end of inductor L22 and the other end connected to the other end of capacitor C22.
 また、受信側AC/ACコンバータ4の全波整流回路42は、整流ダイオードD21~D24及びコンデンサC24により構成されている。 In addition, the full-wave rectifier circuit 42 of the reception-side AC / AC converter 4 includes rectifier diodes D21 to D24 and a capacitor C24.
 整流ダイオードD21~D24は、ブリッジ接続され、共振型受信アンテナ3から入力された電力を全波整流するものである。
 整流ダイオードD21~D24は、整流ダイオードD21のカソード及び整流ダイオードD23のアノードがインダクタL22の他端に接続され、整流ダイオードD22のカソード及び整流ダイオードD24のアノードがコンデンサC22の他端に接続されている。
The rectifier diodes D21 to D24 are bridge-connected and perform full-wave rectification on the electric power input from the resonant receiving antenna 3.
In the rectifier diodes D21 to D24, the cathode of the rectifier diode D21 and the anode of the rectifier diode D23 are connected to the other end of the inductor L22, and the cathode of the rectifier diode D22 and the anode of the rectifier diode D24 are connected to the other end of the capacitor C22. .
 コンデンサC24は、整流ダイオードD21~D24により全波整流された電力を、交流成分(図5Bに示す波形)を残しつつ平滑するものである。すなわち、コンデンサC24の容量は、出力波形に交流成分(図の例は商用交流と同じ50Hz)が残る程度の小さな値に設定されている。このコンデンサC24は、一端が整流ダイオードD23のカソード及び整流ダイオードD24のカソードに接続され、他端が整流ダイオードD21のアノード及び整流ダイオードD22のアノードに接続されている。 The capacitor C24 smoothes the power that has been full-wave rectified by the rectifier diodes D21 to D24 while leaving the AC component (the waveform shown in FIG. 5B). That is, the capacity of the capacitor C24 is set to a small value such that an AC component (50 Hz, which is the same as that of commercial AC) remains in the output waveform. One end of the capacitor C24 is connected to the cathode of the rectifier diode D23 and the cathode of the rectifier diode D24, and the other end is connected to the anode of the rectifier diode D21 and the anode of the rectifier diode D22.
 また、受信側AC/ACコンバータ4の出力回路43は、スイッチング素子Q21~24により構成されている。
 スイッチング素子Q21は、ドレイン端子が整流ダイオードD23のカソード及び整流ダイオードD24のカソードに接続され、ソース端子がスイッチング素子Q24のドレイン端子に接続されている。また、スイッチング素子Q22は、ドレイン端子が整流ダイオードD23のカソード及び整流ダイオードD24のカソードに接続され、ソース端子がスイッチング素子Q23のドレイン端子に接続されている。また、スイッチング素子Q23は、ソース端子が整流ダイオードD21のアノード及び整流ダイオードD22のアノードに接続されている。また、スイッチング素子Q24は、ソース端子が整流ダイオードD21のアノード及び整流ダイオードD22のアノードに接続されている。
The output circuit 43 of the receiving side AC / AC converter 4 includes switching elements Q21 to Q24.
The switching element Q21 has a drain terminal connected to the cathode of the rectifier diode D23 and the cathode of the rectifier diode D24, and a source terminal connected to the drain terminal of the switching element Q24. The switching element Q22 has a drain terminal connected to the cathode of the rectifier diode D23 and the cathode of the rectifier diode D24, and a source terminal connected to the drain terminal of the switching element Q23. The switching element Q23 has a source terminal connected to the anode of the rectifier diode D21 and the anode of the rectifier diode D22. The switching element Q24 has a source terminal connected to the anode of the rectifier diode D21 and the anode of the rectifier diode D22.
 なお、受信側AC/ACコンバータ4の一対の出力端子のうち、HOT端子はスイッチング素子Q21のソース端子及びスイッチング素子Q24のドレイン端子に接続され、RTN端子はスイッチング素子Q22のソース端子及びスイッチング素子Q23のドレイン端子に接続されている。 Of the pair of output terminals of the receiving AC / AC converter 4, the HOT terminal is connected to the source terminal of the switching element Q21 and the drain terminal of the switching element Q24, and the RTN terminal is the source terminal of the switching element Q22 and the switching element Q23. Connected to the drain terminal.
 次に、上記のように構成された電力伝送装置の動作例について、図1~5を参照しながら説明する。なお以下では、電力伝送装置に入力される上記商用交流の周波数を50Hzとし、電力伝送装置で用いる上記高い周波数を6.78MHzとした場合を例に説明を行う。
 まず、送信装置5では、送信側AC/ACコンバータ1の入力回路11は、商用交流源7から50Hzの商用交流Vin(AC)が入力されると(図4A)、当該商用交流を全波整流する(図4B)。
Next, an operation example of the power transmission device configured as described above will be described with reference to FIGS. In the following description, an example is described in which the frequency of the commercial AC input to the power transmission device is 50 Hz and the high frequency used in the power transmission device is 6.78 MHz.
First, in the transmission device 5, when a commercial AC Vin (AC) of 50 Hz is input from the commercial AC source 7 to the input circuit 11 of the transmission-side AC / AC converter 1 (FIG. 4A), the commercial AC is full-wave rectified. (FIG. 4B).
 そして、インバータ12は、入力回路11からの電力を6.78MHzの電力に変換する(図4C)。ここで、スイッチング素子Q11により6.78MHzでスイッチングされたドレイン-ソース間電圧Vds(Q11)のピークは、50Hzの全波整流波状(100Hz)に変化する。なお、図4Cにおいて、実線で示す波形(ハッチングされた部分に含まれる波形)は、インバータ12により変換された電力(6.78MHz)の波形を示し、破線で示す波形は、当該電力のピークの軌跡(100Hz)を示している。 And the inverter 12 converts the electric power from the input circuit 11 into the electric power of 6.78 MHz (FIG. 4C). Here, the peak of the drain-source voltage Vds (Q11) switched at 6.78 MHz by the switching element Q11 changes to a full-wave rectified waveform (100 Hz) of 50 Hz. In FIG. 4C, a waveform indicated by a solid line (a waveform included in a hatched portion) indicates a waveform of power (6.78 MHz) converted by the inverter 12, and a waveform indicated by a broken line indicates a peak of the power. A locus (100 Hz) is shown.
 そして、共振型送信アンテナ2は、100Hzの振幅変調を持つ6.78MHzの電力(伝送波)を伝送する(図4D)。なお、図4Dにおいて、実線で示す波形(ハッチングされた部分に含まれる波形)は、共振型送信アンテナ2により伝送される電力(6.78MHz)の波形を示し、破線で示す波形は、当該電力のピークの軌跡(100Hz)を示している。 The resonant transmission antenna 2 transmits 6.78 MHz power (transmission wave) having amplitude modulation of 100 Hz (FIG. 4D). In FIG. 4D, a waveform indicated by a solid line (a waveform included in a hatched portion) indicates a waveform of power (6.78 MHz) transmitted by the resonant transmission antenna 2, and a waveform indicated by a broken line indicates the power The peak locus (100 Hz) is shown.
 一方、受信装置6では、共振型受信アンテナ3は、共振型送信アンテナ2により伝送された100Hzの振幅変調を持つ6.78MHzの電力(伝送波)を受信する(図5A)。なお図5Aに示す波形は、図4Dに示す波形と同一である。 On the other hand, in the receiving device 6, the resonant receiving antenna 3 receives the 6.78 MHz power (transmitted wave) having the amplitude modulation of 100 Hz transmitted by the resonant transmitting antenna 2 (FIG. 5A). The waveform shown in FIG. 5A is the same as the waveform shown in FIG. 4D.
 そして、受信側AC/ACコンバータ4の全波整流回路42は、共振型受信アンテナ3により受信された電力を全波整流する(図5B)。これにより、コンデンサC24の電圧V(C24)は、50Hzの全波整流波状(100Hz)に整流された値となる。 Then, the full-wave rectification circuit 42 of the reception-side AC / AC converter 4 performs full-wave rectification on the power received by the resonant receiving antenna 3 (FIG. 5B). Thereby, the voltage V (C24) of the capacitor C24 becomes a value rectified into a full-wave rectified waveform (100 Hz) of 50 Hz.
 そして、出力回路43は、全波整流回路42により全波整流された電力を半分の周波数の電力に変換する。この際、例えば図5B及び図5Cに示すように、全波整流回路42により全波整流された電力の周期に合わせて、スイッチング素子Q21,Q23とスイッチング素子Q22,Q24のゲート-ソース間電圧Vgsのオンオフを交互に切替える。これにより、受信装置6の出力は、電力伝送装置に入力された商用電力の周波数である50Hzと同じ周波数のサイン波となる(図5C)。 Then, the output circuit 43 converts the full-wave rectified power by the full-wave rectifier circuit 42 into half-frequency power. At this time, for example, as shown in FIG. 5B and FIG. 5C, the gate-source voltage Vgs of the switching elements Q21, Q23 and the switching elements Q22, Q24 in accordance with the period of the full-wave rectified by the full-wave rectifier circuit 42. Toggle on / off alternately. Thereby, the output of the receiving device 6 becomes a sine wave having the same frequency as 50 Hz, which is the frequency of the commercial power input to the power transmission device (FIG. 5C).
 次に、実施の形態1に係る電力伝送装置の適用例について、図6を参照しながら説明する。なお図6では、固定部51が道路面の場合を示し、送信装置5のうちの共振型送信アンテナ2及び受信装置6のうちの共振型受信アンテナ3のみを図示している。
 実施の形態1に係る電力伝送装置の適用例としては、共振型送信アンテナ2を道路面や駐車場等の固定部51に設置し、共振型受信アンテナ3を、停止した際又は移動中に固定部51と対向する車両等の移動体52に設置することが可能である。なお、図6に示すように、固定部51が道路面である場合には、共振型送信アンテナ2は、移動体52の走行方向に沿って複数設けられる。これにより、移動体52が固定部51に対向して停止又は移動している際に共振型送信アンテナ2から共振型受信アンテナ3に電力伝送を行うことができ、移動体52に電力を供給することができる。
Next, an application example of the power transmission device according to Embodiment 1 will be described with reference to FIG. FIG. 6 shows a case where the fixing unit 51 is a road surface, and only the resonant transmission antenna 2 of the transmission device 5 and the resonant reception antenna 3 of the reception device 6 are illustrated.
As an application example of the power transmission device according to the first embodiment, the resonant transmission antenna 2 is installed in a fixed portion 51 such as a road surface or a parking lot, and the resonant reception antenna 3 is fixed when stopped or moving. It can be installed on a moving body 52 such as a vehicle facing the section 51. As shown in FIG. 6, when the fixed portion 51 is a road surface, a plurality of resonant transmission antennas 2 are provided along the traveling direction of the moving body 52. Accordingly, power can be transmitted from the resonant transmission antenna 2 to the resonant reception antenna 3 when the moving body 52 is stopped or moving facing the fixed portion 51, and power is supplied to the moving body 52. be able to.
 なお上記では、共振型送信アンテナ2を単一のコイルから構成した場合について示した。しかしながら、これに限るものではなく、共振型送信アンテナ2を、2個以上のコイルで構成してもよく、例えば給電用コイル及び共鳴用コイルから構成してもよい。
 同様に、上記では、共振型受信アンテナ3を単一のコイルから構成した場合について示した。しかしながら、これに限るものではなく、共振型受信アンテナ3を、2個以上のコイルで構成してもよく、例えば給電用コイル及び共鳴用コイルから構成してもよい。
In the above description, the resonant transmission antenna 2 is configured from a single coil. However, the present invention is not limited to this, and the resonant transmission antenna 2 may be composed of two or more coils, for example, a power feeding coil and a resonance coil.
Similarly, in the above description, the case where the resonant receiving antenna 3 is constituted by a single coil has been described. However, the present invention is not limited to this, and the resonant receiving antenna 3 may be composed of two or more coils, for example, a power feeding coil and a resonance coil.
 また上記では、共振型送信アンテナ2と共振型受信アンテナ3との間の電力の伝送方式が無線伝送方式であるとして説明を行った。しかしながら、これに限るものではなく、例えば図7に示すように、共振型送信アンテナ2と共振型受信アンテナ3とを等価的に1点接続となるよう導線8で接続した接触型の共振結合伝送としてもよい。なお図7では、送信装置5のうちの共振型送信アンテナ2及び受信装置6のうちの共振型受信アンテナ3のみを図示している。 In the above description, it is assumed that the power transmission method between the resonant transmission antenna 2 and the resonant reception antenna 3 is a wireless transmission method. However, the present invention is not limited to this. For example, as shown in FIG. 7, a contact-type resonant coupling transmission in which the resonant transmission antenna 2 and the resonant reception antenna 3 are connected by a conducting wire 8 so as to be equivalently connected at one point. It is good. In FIG. 7, only the resonant transmission antenna 2 of the transmission device 5 and the resonant reception antenna 3 of the reception device 6 are illustrated.
 また上記では、インバータ12としてE級型のインバータを用いた場合を示した。しかしながら、これに限るものではなく、入力された電力を、上記高い周波数でスイッチングすることで、当該高い周波数の電力に変換するインバータであればよい。例えば、インバータ12として、ブリッジ型のインバータ、D級型のインバータ、DE級型のインバータを用いてもよい。 In the above description, a case where an E-class inverter is used as the inverter 12 is shown. However, the present invention is not limited to this, and any inverter that converts input power to the high frequency power by switching at the high frequency may be used. For example, as the inverter 12, a bridge type inverter, a class D inverter, or a class DE inverter may be used.
 また上記では、入力回路11及び全波整流回路42としてダイオード型のブリッジ整流回路を用いた場合を示した。しかしながら、これに限るものではなく、入力された電力を全波整流する回路であればよい。例えば、整流ダイオードD11~D14,D21~D24に代えて電界効果トランジスタ(FET:Field Effect Transistor)を用いて入力回路11及び全波整流回路42を構成してもよい。 In the above description, the diode-type bridge rectifier circuit is used as the input circuit 11 and the full-wave rectifier circuit 42. However, the present invention is not limited to this, and any circuit may be used as long as the input power is full-wave rectified. For example, the input circuit 11 and the full-wave rectifier circuit 42 may be configured using field effect transistors (FETs) instead of the rectifier diodes D11 to D14 and D21 to D24.
 また上記では、インバータ12の外部に共振整合回路13を設けた場合を示した。しかしながら、これに限るものではなく、インバータ12に共振整合回路13を内蔵してもよい。例えば、共振整合回路13が固定整合型の場合にはインバータ12に内蔵し、可変整合型又は自動整合型の場合にはインバータ12の外部回路として設けてもよい。
 また上記では、全波整流回路42の外部に共振整合回路41を設けた場合を示した。しかしながら、これに限るものではなく、全波整流回路42に共振整合回路41を内蔵してもよい。例えば、共振整合回路41が固定整合型の場合には全波整流回路42に内蔵し、可変整合型又は自動整合型の場合には全波整流回路42の外部回路として設けてもよい。
In the above description, the resonance matching circuit 13 is provided outside the inverter 12. However, the present invention is not limited to this, and the inverter 12 may incorporate the resonance matching circuit 13. For example, when the resonance matching circuit 13 is a fixed matching type, it may be built in the inverter 12, and when it is a variable matching type or an automatic matching type, it may be provided as an external circuit of the inverter 12.
In the above description, the resonance matching circuit 41 is provided outside the full-wave rectifier circuit 42. However, the present invention is not limited to this, and the resonance matching circuit 41 may be built in the full-wave rectifier circuit 42. For example, when the resonance matching circuit 41 is a fixed matching type, it may be built in the full wave rectification circuit 42, and when it is a variable matching type or an automatic matching type, it may be provided as an external circuit of the full wave rectification circuit 42.
 また上記では、出力回路43を、スイッチング素子Q21~Q24を用いて構成した場合を示した。しかしながら、これに限るものではなく、入力された電力を半分の周波数の交流に変換する回路であればよく、例えば、サイリスタ、トライアック等を用いて構成してもよい。 In the above description, the output circuit 43 is configured using the switching elements Q21 to Q24. However, the present invention is not limited to this, and any circuit that converts input electric power into half-frequency alternating current may be used. For example, a thyristor, triac, or the like may be used.
 以上のように、この実施の形態1によれば、商用交流が入力され、当該商用交流を全波整流する入力回路11、及び入力回路11により全波整流された電力を商用交流の周波数よりも高い周波数の電力に変換するインバータ12を有する送信側AC/ACコンバータ1と、インバータ12により変換された電力を伝送する共振型送信アンテナ2と、共振型送信アンテナ2により伝送された電力を受信する共振型受信アンテナ3と、共振型受信アンテナ3により受信された電力を全波整流する全波整流回路42、及び全波整流回路42により全波整流された電力を半分の周波数の交流に変換する出力回路43を有する受信側AC/ACコンバータ4とを備えたので、AC/DCコンバータ101及びDC/ACインバータ106を用いずに、商用交流が入力されて電力伝送を行って当該商用交流と同じ周波数の交流を出力することができる。その結果、従来構成に対して装置全体を小型化、軽量化、低コスト化することができる。 As described above, according to the first embodiment, commercial alternating current is input, the input circuit 11 that performs full-wave rectification of the commercial alternating current, and the electric power that has been full-wave rectified by the input circuit 11 than the frequency of the commercial alternating current. A transmission-side AC / AC converter 1 having an inverter 12 that converts power to high frequency power, a resonant transmission antenna 2 that transmits power converted by the inverter 12, and power transmitted by the resonant transmission antenna 2 are received. The resonant receiving antenna 3, the full wave rectification circuit 42 that performs full wave rectification on the power received by the resonant reception antenna 3, and the power that is full wave rectified by the full wave rectification circuit 42 is converted into an alternating current having a half frequency. Since the receiving side AC / AC converter 4 having the output circuit 43 is provided, the AC / DC converter 101 and the DC / AC inverter 106 are not used. Use AC is inputted can perform power transmission outputs an AC of the same frequency as the commercial AC. As a result, the entire apparatus can be reduced in size, weight, and cost as compared with the conventional configuration.
 また、従来構成に対して変換効率が高くなり、装置全体における入出力の電力伝送効率を高めることができる。このように、実施の形態1に係る電力伝送装置では、送信側及び受信側で直流への変換を行っていないため、従来構成に対して、装置全体における入出力の電力伝送効率を高めることができ、発熱量が小さくなるため、その放熱のためのヒートシンク構造を小型化できる。これによっても、従来構成に対して装置全体を小型化、軽量化、低コスト化することができる。 Also, the conversion efficiency is higher than that of the conventional configuration, and the input / output power transmission efficiency in the entire apparatus can be increased. As described above, in the power transmission device according to the first embodiment, since conversion to DC is not performed on the transmission side and the reception side, the power transmission efficiency of input / output in the entire device can be improved compared to the conventional configuration. In addition, since the amount of generated heat is small, the heat sink structure for heat dissipation can be downsized. Also by this, the whole apparatus can be reduced in size, weight, and cost compared with the conventional configuration.
 また、このように、装置全体の小型化、軽量化、低コスト化を図りつつ、商用交流の無線電力伝送が可能となるため、既存の商用交流で動作する機器(負荷)に対して、非接触電力伝送システムを容易に構成することができる。よって、非接触電力伝送用の受電機能を内蔵した機器の登場を待たずに非接触電力伝送の実用化と普及に効果がある。 In addition, as described above, since the wireless power transmission of commercial alternating current is possible while reducing the overall size, weight, and cost of the apparatus, it is possible to prevent non-existing equipment (load) that operates with existing commercial alternating current. A contact power transmission system can be easily configured. Therefore, it is effective for practical use and spread of non-contact power transmission without waiting for the appearance of a device incorporating a power receiving function for non-contact power transmission.
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。 In the present invention, any component of the embodiment can be modified or any component of the embodiment can be omitted within the scope of the invention.
 この発明に係る電力伝送装置は、AC/DCコンバータ及びDC/ACインバータを用いずに、商用交流が入力されて電力伝送を行って当該商用交流と同じ周波数の交流を出力することができるため、商用交流が入力されて電力伝送を行って当該商用交流と同じ周波数の交流を出力する電力伝送装置等に用いるのに適している。 Since the power transmission device according to the present invention can output AC with the same frequency as the commercial AC by inputting commercial AC and transmitting power without using an AC / DC converter and a DC / AC inverter, It is suitable for use in a power transmission device or the like that receives commercial AC and transmits power and outputs AC of the same frequency as the commercial AC.
 1 送信側AC/ACコンバータ(高周波電源)、2 共振型送信アンテナ、3 共振型受信アンテナ、4 受信側AC/ACコンバータ(高周波整流回路)、5 送信装置、6 受信装置、7 商用交流源、8 導線、11 入力回路、12 インバータ、13 共振整合回路、41 共振整合回路、42 全波整流回路、43 出力回路、51 固定部、52 移動体。 1 AC side AC / AC converter (high frequency power supply), 2 resonance type transmission antenna, 3 resonance type reception antenna, 4 AC side AC / AC converter (high frequency rectification circuit), 5 transmission device, 6 reception device, 7 commercial AC source, 8 conductors, 11 input circuits, 12 inverters, 13 resonance matching circuits, 41 resonance matching circuits, 42 full-wave rectification circuits, 43 output circuits, 51 fixed parts, 52 moving bodies.

Claims (9)

  1.  商用交流が入力され、当該商用交流を全波整流する入力回路、及び前記入力回路により全波整流された電力を前記商用交流の周波数よりも高い周波数の電力に変換するインバータを有する高周波電源と、
     前記インバータにより変換された電力を伝送する共振型送信アンテナと、
     前記共振型送信アンテナにより伝送された電力を受信する共振型受信アンテナと、
     前記共振型受信アンテナにより受信された電力を全波整流する全波整流回路、及び前記全波整流回路により全波整流された電力を半分の周波数の交流に変換する出力回路を有する高周波整流回路と
     を備えた電力伝送装置。
    A high-frequency power source having a commercial AC input, an input circuit for full-wave rectification of the commercial AC, and an inverter that converts the full-wave rectified power by the input circuit into power having a frequency higher than the frequency of the commercial AC;
    A resonant transmitting antenna for transmitting the power converted by the inverter;
    A resonant receiving antenna for receiving the power transmitted by the resonant transmitting antenna;
    A full-wave rectifier circuit that full-wave rectifies the power received by the resonant receiving antenna, and a high-frequency rectifier circuit that has an output circuit that converts the full-wave rectified power by the full-wave rectifier circuit into half-frequency alternating current; A power transmission device comprising:
  2.  前記インバータは、E級型のインバータである
     ことを特徴とする請求項1記載の電力伝送装置。
    The power transmission device according to claim 1, wherein the inverter is a class E inverter.
  3.  前記全波整流回路は、ブリッジ整流回路である
     ことを特徴とする請求項1記載の電力伝送装置。
    The power transmission device according to claim 1, wherein the full-wave rectifier circuit is a bridge rectifier circuit.
  4.  前記共振型送信アンテナと前記共振型受信アンテナは、磁界共鳴、電界共鳴又は電磁誘導により電力伝送を行う
     ことを特徴とする請求項1記載の電力伝送装置。
    The power transmission device according to claim 1, wherein the resonant transmission antenna and the resonant reception antenna perform power transmission by magnetic field resonance, electric field resonance, or electromagnetic induction.
  5.  前記共振型送信アンテナと前記共振型受信アンテナは等価的に1点接続された
     ことを特徴とする請求項1記載の電力伝送装置。
    The power transmission device according to claim 1, wherein the resonant transmission antenna and the resonant reception antenna are equivalently connected at one point.
  6.  前記共振型送信アンテナ及び前記共振型受信アンテナの両方又はどちらか一方は2個以上のコイルから構成された
     ことを特徴とする請求項1記載の電力伝送装置。
    The power transmission device according to claim 1, wherein both or one of the resonant transmission antenna and the resonant reception antenna is configured by two or more coils.
  7.  前記共振型送信アンテナは固定部に設置され、
     前記共振型受信アンテナは、停止した際又は移動中に前記固定部と対向する移動体に設置された
     ことを特徴とする請求項1記載の電力伝送装置。
    The resonant transmission antenna is installed in a fixed part,
    The power transmission device according to claim 1, wherein the resonant receiving antenna is installed on a moving body that faces the fixed portion when stopped or during movement.
  8.  商用交流が入力されて電力伝送を行って当該商用交流と同じ周波数の交流を出力する電力伝送装置に用いられる高周波電源であって、
     前記商用交流が入力され、当該商用交流を全波整流する入力回路と、
     前記入力回路により全波整流された電力を前記商用交流の周波数よりも高い周波数の電力に変換するインバータと
     を有することを特徴とする高周波電源。
    A high-frequency power source used in a power transmission device that receives commercial AC and transmits power and outputs AC of the same frequency as the commercial AC,
    An input circuit that receives the commercial alternating current and performs full-wave rectification of the commercial alternating current;
    A high-frequency power source comprising: an inverter that converts electric power that has been full-wave rectified by the input circuit into electric power having a frequency higher than the frequency of the commercial AC.
  9.  商用交流が入力されて電力伝送を行って当該商用交流と同じ周波数の交流を出力する電力伝送装置に用いられる高周波整流回路であって、
     入力された電力を全波整流する全波整流回路と、
     前記全波整流回路により全波整流された電力を半分の周波数の交流に変換することで前記交流を得る出力回路と
     を有することを特徴とする高周波整流回路。
    A high-frequency rectifier circuit used in a power transmission device that receives commercial AC and performs power transmission to output AC of the same frequency as the commercial AC,
    A full-wave rectifier circuit that full-wave rectifies the input power;
    A high-frequency rectifier circuit comprising: an output circuit that obtains the alternating current by converting electric power that has been full-wave rectified by the full-wave rectifier circuit into an alternating current having a half frequency.
PCT/JP2016/051887 2016-01-22 2016-01-22 Power transmission device, high-frequency power supply, and high-frequency rectification circuit WO2017126112A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/051887 WO2017126112A1 (en) 2016-01-22 2016-01-22 Power transmission device, high-frequency power supply, and high-frequency rectification circuit
JP2016525628A JP6113360B1 (en) 2016-01-22 2016-01-22 Power transmission device and high frequency power supply
TW105117176A TW201728045A (en) 2016-01-22 2016-06-01 Power transmitting device, high frequency power source and high frequency rectification circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/051887 WO2017126112A1 (en) 2016-01-22 2016-01-22 Power transmission device, high-frequency power supply, and high-frequency rectification circuit

Publications (1)

Publication Number Publication Date
WO2017126112A1 true WO2017126112A1 (en) 2017-07-27

Family

ID=58666650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/051887 WO2017126112A1 (en) 2016-01-22 2016-01-22 Power transmission device, high-frequency power supply, and high-frequency rectification circuit

Country Status (3)

Country Link
JP (1) JP6113360B1 (en)
TW (1) TW201728045A (en)
WO (1) WO2017126112A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854968B1 (en) * 2019-09-11 2021-04-07 三菱電機株式会社 Lid for vertical hole and measurement system in pipe
CN113381520B (en) * 2021-05-31 2022-11-08 电子科技大学 2.4G microwave wireless single-phase AC-AC conversion circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520178A (en) * 2004-11-10 2008-06-12 モストヴォイ、アレキサンダー Voltage signal conversion adjustment method and apparatus
US20140252877A1 (en) * 2011-10-18 2014-09-11 Paul Vahle Gmbh & Co. Kg Artificial mains network in the secondary circuit of the contactless energy transfer
WO2015025881A1 (en) * 2013-08-23 2015-02-26 三菱電機エンジニアリング株式会社 Resonant electrical power transmission device and resonant electrical power multiplexed transmission system
WO2015081065A1 (en) * 2013-11-27 2015-06-04 Momentum Dynamics Corporation Wireless transmission of line-frequency and line-voltage ac
JP5738497B1 (en) * 2014-09-02 2015-06-24 三菱電機エンジニアリング株式会社 Resonant coupled power transmission system, resonant power transmitter, and resonant power receiver

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9954480B2 (en) * 2013-05-23 2018-04-24 Zinnatek Limited Photovoltaic systems
US20160226312A1 (en) * 2013-08-30 2016-08-04 Pioneer Corporation Wireless power reception system, wireless power transmission system, control method, computer program, and recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520178A (en) * 2004-11-10 2008-06-12 モストヴォイ、アレキサンダー Voltage signal conversion adjustment method and apparatus
US20140252877A1 (en) * 2011-10-18 2014-09-11 Paul Vahle Gmbh & Co. Kg Artificial mains network in the secondary circuit of the contactless energy transfer
WO2015025881A1 (en) * 2013-08-23 2015-02-26 三菱電機エンジニアリング株式会社 Resonant electrical power transmission device and resonant electrical power multiplexed transmission system
WO2015081065A1 (en) * 2013-11-27 2015-06-04 Momentum Dynamics Corporation Wireless transmission of line-frequency and line-voltage ac
JP5738497B1 (en) * 2014-09-02 2015-06-24 三菱電機エンジニアリング株式会社 Resonant coupled power transmission system, resonant power transmitter, and resonant power receiver

Also Published As

Publication number Publication date
JPWO2017126112A1 (en) 2018-01-25
JP6113360B1 (en) 2017-04-12
TW201728045A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
CN106602733B (en) Magnetic coupling resonance electric energy transmitting end, receiving end and system with multiple parallel resonance circuits
KR102236047B1 (en) Resonance coupling power transmission system, resonance coupling power transmission device, and resonance coupling power reception device
US9484147B2 (en) Wired-wireless combined power transmission apparatus and the method using the same
KR20130043629A (en) Wireless power receiving apparatus capable of providing a high q value
JP5853889B2 (en) Power receiving device and power transmission system
JP5832317B2 (en) Contactless power supply circuit
US10511194B2 (en) Wireless power transfer system
JP6665392B2 (en) Non-contact power transmission system and power receiving device
KR102019064B1 (en) Wireless power transmitting apparatus and method
KR101994740B1 (en) Non contact type power transmitting appratus, non contact type power transmitting-receiving appratus, contact-non contact type power transmitting appratus and contact-non contact type power transmitting-receiving appratus
JP6113360B1 (en) Power transmission device and high frequency power supply
WO2014045873A1 (en) Power receiving device and contactless power transmitting equipment
JP5989285B1 (en) Power transmission device, high frequency power supply and high frequency rectifier circuit
JP6058222B1 (en) Power transmission device, high frequency power supply and high frequency rectifier circuit
JP2017539194A (en) Induction power receiver
WO2016170735A1 (en) Terminating device and wireless power supply system
KR102479005B1 (en) Wireless power receiving apparatus
CN105871076A (en) Close-range wireless power transmission device
CA3034072A1 (en) Method and device for wireless charging of electrical energy storage in a fixed or mobile consumer
KR102628673B1 (en) Wireless power transmission device with increased power transmission efficiency
CN217692813U (en) Wireless charging system of wireless power transmission system and wearable device
KR102655303B1 (en) Non-contact power transmission system
KR102483566B1 (en) Wire type and wireless type power supplying apparatus
CN114709935A (en) Wireless charging system of wireless power transmission system and wearable device
CN112753151A (en) System for transmitting electric power to an electric load

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016525628

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886353

Country of ref document: EP

Kind code of ref document: A1