WO2017125986A1 - Power transmitting device, power receiving device, and power transmitting/receiving system - Google Patents

Power transmitting device, power receiving device, and power transmitting/receiving system Download PDF

Info

Publication number
WO2017125986A1
WO2017125986A1 PCT/JP2016/005202 JP2016005202W WO2017125986A1 WO 2017125986 A1 WO2017125986 A1 WO 2017125986A1 JP 2016005202 W JP2016005202 W JP 2016005202W WO 2017125986 A1 WO2017125986 A1 WO 2017125986A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
power transmission
power
coupling coefficient
reception
Prior art date
Application number
PCT/JP2016/005202
Other languages
French (fr)
Japanese (ja)
Inventor
修 大橋
小南 智
太田 智浩
竹志 山本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017125986A1 publication Critical patent/WO2017125986A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • H02J50/502Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices the energy repeater being integrated together with the emitter or the receiver
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a power transmission device, a power reception device, and a power transmission / reception system for transmitting power to a vehicle having a power reception coil.
  • an electromagnetic induction method that uses electromagnetic induction between coils that are spaced apart and a magnetic resonance method that uses resonance coupling of electromagnetic fields are known. It has been.
  • the non-contact power transmission system using the magnetic resonance method is realized by using a resonance circuit including a coil and a capacitor.
  • the magnetic resonance type non-contact power transmission system can increase the transmission distance between the power transmission coil and the power reception coil by increasing the Q value of the coil as compared with the electromagnetic induction system.
  • a non-contact power transmission system using such a magnetic resonance method for example, there is a technique disclosed in Patent Document 1.
  • the present invention provides a power transmission device, a power reception device, and a power transmission / reception system capable of performing efficient non-contact power transmission while avoiding a complicated configuration and an increase in circuit scale.
  • the power transmission device of the present invention includes a power transmission coil that performs power transmission using electromagnetic force and a third coil that relays power transmission from the power transmission coil to the power reception coil with respect to the power reception coil of the power reception device.
  • the power transmission device has both a range of deviation amounts in which the first coupling coefficient is greater than the second coupling coefficient and a range of deviation amounts in which the second coupling coefficient is greater than the first coupling coefficient.
  • the distance from the center position of the power transmission coil to the center position of the power reception coil is defined as a deviation amount
  • the coupling coefficient between the power transmission coil and the power reception coil is defined as the first coupling coefficient
  • the coupling coefficient between the power reception coil and the third coil is defined as Let it be the second coupling coefficient.
  • the resonance frequency of the third coil is larger than the minimum value of the drive frequency of the power transmission coil.
  • the power receiving device of the present invention includes a power receiving coil that receives power from a power transmitting coil that transmits power using electromagnetic force, and a third coil that relays power transmission from the power transmitting coil to the power receiving coil.
  • the power receiving apparatus has both a range of deviation amounts in which the first coupling coefficient is larger than the third coupling coefficient and a range of deviation amounts in which the third coupling coefficient is larger than the first coupling coefficient.
  • the distance from the center position of the power transmission coil to the center position of the power reception coil is the amount of deviation
  • the coupling coefficient between the power transmission coil and the power reception coil is the first coupling coefficient
  • the coupling coefficient between the power transmission coil and the third coil is Let it be the third coupling coefficient.
  • the resonance frequency of the third coil is larger than the minimum value of the driving frequency of the power receiving coil.
  • the power transmission / reception system of the present invention is a power transmission / reception system having a power transmission device that transmits power to a vehicle having a power reception device having a power reception coil using electromagnetic force.
  • the power transmission device includes a power transmission coil and a third coil that relays power transmission from the power transmission coil to the power reception coil.
  • the power transmission / reception system has both a range of deviation in which the first coupling coefficient is greater than the second coupling coefficient and a range of deviation in which the second coupling coefficient is greater than the first coupling coefficient. To do.
  • the distance from the center position of the power transmission coil to the center position of the power reception coil is defined as a deviation amount
  • the coupling coefficient between the power transmission coil and the power reception coil is defined as the first coupling coefficient
  • the coupling coefficient between the power reception coil and the third coil is defined as Let it be the second coupling coefficient.
  • the resonance frequency of the third coil is larger than the minimum value of the drive frequency of the power transmission coil.
  • the figure which shows the structure of the power transmission / reception system in the 1st Embodiment of this invention The figure which shows a receiving coil, a power transmission coil, and a relay coil in the power transmission / reception system in 1st Embodiment in the case where the position of the center of a receiving coil is located just above the position of the center of a power transmission coil.
  • the figure which shows a receiving coil, a power transmission coil, and a relay coil in the power transmission / reception system in 1st Embodiment in the case where the position of the center of a receiving coil is located just above the position of the center of a power transmission coil The figure which shows a receiving coil, a power transmission coil, and a relay coil in the power transmission / reception system in 1st Embodiment in the case where the position of the center of a receiving coil is in the position shifted
  • Equivalent circuit diagram for calculating the resonance frequency of the relay coil The figure for demonstrating the effect of the power transmission / reception system which concerns on 1st Embodiment.
  • a power reception coil, a power transmission coil, and a relay coil in the case where the position of the center of the power reception coil is shifted from the position directly above the position of the center of the power transmission coil by a shift amount G ′ are shown.
  • Figure 1r Figure 1r, and the magnitude of k 12, and k 2r, the variation of the coupling coefficient corresponding to the deviation amount G 'of the receiving coil as viewed from the power transmitting coil
  • Patent Document 1 includes a resonance circuit including a resonance coil and a resonance capacitor as a power transmission antenna, and a first coil arranged to be magnetically coupled to the resonance coil, and the resonance frequency of the resonance circuit is output as transmission power.
  • a non-contact power transmission system that performs control to short-circuit or open both ends of a first coil so as to approach the frequency of the transmitted power signal is disclosed.
  • the contactless power transmission system disclosed in Patent Document 1 prevents a shift between the frequency of the power transmission signal output from the power transmission device and the resonance frequency of the resonance circuit, and performs efficient contactless power transmission.
  • the purpose is that.
  • the contactless power transmission system disclosed in Patent Document 1 includes a detection unit for detecting the amount of reflection of an AC signal supplied from the power supply unit to the resonance circuit, and a detection unit in addition to the power transmission device and the power reception device. And a controller that switches between short-circuiting and opening-up of both ends of the first coil so that the amount of reflection is minimized based on the detected amount of reflection.
  • FIG. 1 is a diagram showing a configuration of a power transmission / reception system 10 according to the first embodiment of the present invention.
  • the power transmission / reception system 10 includes a power transmission device 100, a vehicle 150, and a power transmission side operation unit 160.
  • FIG. 1 shows a state where the vehicle 150 is stopped at a position where power can be received from the power transmission device 100.
  • the power transmission device 100 is provided in a parking space, for example. When there is a vehicle 150 parked within a predetermined range of the parking space, the power transmission device 100 transmits power to a power receiving coil 154a (details will be described later) included in the vehicle 150.
  • a power receiving coil 154a (details will be described later) included in the vehicle 150.
  • standby power transmission that supplies a small amount of power to the power receiving coil 154a and a book that supplies large power to supply power to the storage battery 152 are provided. There is power transmission.
  • the term “power transmission” includes both standby power transmission and main power transmission.
  • the vehicle 150 is a vehicle that can be driven by electric power, such as HEV (Hybrid Electric Vehicle), PEV (Plug-in Electric Vehicle), or EV (Electric Vehicle). Details of the configuration of the vehicle 150 will be described later.
  • HEV Hybrid Electric Vehicle
  • PEV Plug-in Electric Vehicle
  • EV Electric Vehicle
  • the power transmission side operation unit 160 receives an operation from the outside and outputs a power transmission start signal indicating the start of power transmission or a power transmission stop signal indicating the stop of power transmission to the power transmission device 100.
  • Vehicle configuration The configuration of vehicle 150 in the first embodiment of the present invention will be described.
  • the vehicle 150 includes a vehicle-side operation unit 151, a storage battery 152, a vehicle-side control unit 153, a power receiving coil 154a, and a vehicle-side communication unit 155.
  • the vehicle side operation unit 151 accepts various operations by the driver of the vehicle 150 and outputs a signal corresponding to the accepted operation to the vehicle side control unit 153.
  • the storage battery 152 stores electric power supplied from the power transmission device 100 via the power receiving coil 154a.
  • the storage battery 152 supplies electric power to each component (not shown) of the vehicle 150 when the vehicle 150 is traveling.
  • the vehicle-side control unit 153 controls the vehicle 150 to perform various processes associated with power transmission or various processes associated with power transmission stop based on various signals input from the vehicle-side operation unit 151.
  • the power receiving coil 154 a receives power transmission using electromagnetic force such as magnetic resonance from the power transmission coil 104 a of the power transmission device 100.
  • the electric power received by the power receiving coil 154 a is supplied to the storage battery 152 according to the control of the vehicle side control unit 153.
  • the vehicle side communication unit 155 exchanges various information necessary for power reception with the power transmission side communication unit 101. For example, the vehicle-side communication unit 155 transmits the received power information input from the vehicle-side control unit 153 to the power transmission-side communication unit 101 during the main power transmission. In addition, the vehicle-side communication unit 155 generates a power-receivable signal that permits charging or a power-reception-impossible signal that does not permit charging in accordance with control of the vehicle-side control unit 153, and transmits the generated power-receivable signal or power-reception-impossible signal It transmits to the part 101.
  • the power reception impossibility signal is transmitted, for example, when the storage battery 152 is fully charged.
  • the vehicle 150 corresponds to the power receiving device of the present invention. However, the vehicle 150 may have a configuration corresponding to the power receiving device of the present invention.
  • the power transmission device 100 includes a power transmission side communication unit 101, a storage unit 102, a power transmission side control unit 103, a power transmission coil 104a, and a relay coil 104b (third coil).
  • the power transmission side communication unit 101 exchanges various information necessary for power transmission with the vehicle side communication unit 155.
  • the power transmission side communication unit 101 receives a power reception enabled signal or a power reception disabled signal from the vehicle side communication unit 155.
  • the power transmission side communication unit 101 outputs the received power reception enabled signal or power reception disabled signal to the power transmission side control unit 103.
  • the power transmission side control unit 103 controls various power transmission devices 100 related to power transmission. For example, when a power transmission start signal is input from the power transmission side operation unit 160, the power transmission side control unit 103 controls the power transmission device 100 to perform standby power transmission. In addition, the power transmission side control unit 103 controls the power transmission device 100 to start the main power transmission when a power reception enable signal is input from the power transmission side communication unit 101.
  • the power transmission side control unit 103 is a CPU (Central Processing Unit), for example, and performs various controls by executing arithmetic processing based on various control programs stored in the storage unit 102.
  • the storage unit 102 is a memory that temporarily or permanently stores calculation results in the power transmission side control unit 103, data input from each sensor, and the like.
  • the power transmission side control unit 103 does not start power transmission or stops power transmission when a power transmission stop signal is input from the power transmission side operation unit 160 or when a power reception impossible signal is input from the power transmission side communication unit 101. Thus, the power transmission device 100 is controlled.
  • the power transmission coil 104a and the relay coil 104b are installed, for example, on the ground of the parking space of the vehicle 150 or buried in the ground near the ground surface.
  • the relay coil 104b is a coil disposed outside the power transmission coil 104a.
  • power transmission coil 104a and relay coil 104b are assumed to be planar coils.
  • the power transmission coil 104a is a coil for transmitting power to the power reception coil 154a of the vehicle 150
  • the relay coil 104b is a coil for relaying power transmission between the power transmission coil 104a and the power reception coil 154a.
  • the power transmission coil 104a and the relay coil 104b are installed on the ground such as a parking space or in the vicinity of the ground surface. For this reason, the positional relationship between the power transmission coil 104a and the relay coil 104b is unchanged. However, since the vehicle 150 moves by the driving of the driver, the position of the power receiving coil 154a changes every time the vehicle 150 is parked in the parking space.
  • FIG. 2A and 2B show a positional relationship when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a.
  • FIG. 2A is a view of the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b viewed from the side when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a.
  • FIG. 2B is a diagram in which the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b are viewed from directly above when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a. is there.
  • FIG. 2A the “x” mark means the cross section of the coil. That is, FIG. 2A is a view showing a cross section in the vertical direction of each coil bundled in a ring shape. As shown in FIGS. 2A and 2B, a relay coil 104b having a diameter larger than that of the power transmission coil 104a is disposed outside the power transmission coil 104a.
  • the coupling coefficient is a dimensionless number indicating the degree of coupling between two coils.
  • the method for calculating the coupling coefficient is not limited in the present invention, but the coupling coefficient is generally determined based on the distance between the two coils, the size ratio of the two coils, and the like.
  • FIGS. 3A and 3B show the positional relationship when the power receiving coil 154a is in a position shifted in the radial direction of the coil, that is, in the horizontal direction from the position immediately above the power transmitting coil 104a.
  • FIG. 3A shows that the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b are located from the side when the center position of the power receiving coil 154a is shifted in the horizontal direction by a shift amount G from immediately above the center position of the power transmitting coil 104a.
  • FIG. On the other hand, FIG.
  • 3B illustrates the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b in the case where the center position of the power receiving coil 154a is shifted in the horizontal direction from the position immediately above the center position of the power transmitting coil 104a. It is the figure seen from right above.
  • FIG. 4A is a diagram for explaining coupling coefficients among the power transmission coil 104a, the relay coil 104b, and the power reception coil 154a.
  • the power transmission coil 104a and the relay coil 104b are actually arranged on the same plane as shown in FIG. 1, but in FIG. 4A, between the power transmission coil 104a, the relay coil 104b, and the power reception coil 154a. In order to show the coupling coefficients, these are arranged in a ring shape.
  • the coupling coefficient between the power transmission coil 104a and the relay coil 104b is described as k 1r
  • the coupling coefficient between the power transmission coil 104a and the power reception coil 154a is described as k 12
  • the power reception coil 154a is described as k2r .
  • the coupling coefficient k 12 of the power transmission coil 104a and the receiving coil 154a is the first coupling coefficient of the present invention
  • the coupling coefficient k 2r in the receiving coil 154a and a relay coil 104b The coupling coefficient between the power transmission coil 104a and the relay coil 104b corresponds to the second coupling coefficient of the present invention
  • k1r corresponds to the third coupling coefficient of the present invention.
  • FIG. 4B shows the coupling coefficient k 1r , k 12 , and k 2r and the coupling coefficient corresponding to the shift amount G, which is the distance from the center position of the power transmission coil 104a to the center position of the power receiving coil 154a. It is a figure which shows a change. As shown in FIG. 4B, the coupling coefficient changes according to the distance between the coils, and generally the coupling coefficient decreases as the distance between the coils increases. In FIG. 4B, since the distance between the power transmission coil 104a and the relay coil 104b is not changed, the coupling coefficient k1r between the power transmission coil 104a and the relay coil 104b does not change greatly depending on the shift amount G.
  • the distance between the power transmission coil 104a and the power reception coil 154a and the distance between the relay coil 104b and the power reception coil 154a change according to the shift amount G.
  • the deviation amount G 1 towards the coupling coefficient k 12 of the power transmission coil 104a and the receiving coil 154a is larger than the coupling coefficient k 2r in the receiving coil 154a and a relay coil 104b.
  • the deviation amount G 1 to deviation amount G L is towards k 2r is larger than k 12.
  • the range is switched in deviation amount G 1.
  • the deviation amount GL is the maximum value (limit value) of the deviation amount, and corresponds to the predetermined deviation amount of the present invention.
  • the deviation amount GL is an amount that makes it impossible to suitably transmit power from the power transmission coil 104a to the relay coil 104b when the deviation amount becomes larger than this.
  • the deviation amount GL may be determined experimentally.
  • the relay coil 104b does not relay the power transmitting coil 104a to the power receiving coil 154a. Power transmission is performed.
  • the position of the center of the power receiving coil 154a is shifted from immediately above the position of the center of the power transmitting coil 104a, the power transmitted from the power transmitting coil 104a is transmitted to the power receiving coil 154a via the relay coil 104b. .
  • a power transmission route that is performed from the power transmission coil 104a to the power reception coil 154a without relaying by the relay coil 104b is a first power transmission route, and a power transmission route that is performed from the power transmission coil 104a to the power reception coil 154a via the relay coil 104b. This is called the second power transmission route.
  • Whether the first power transmission route or the second power transmission route is used to transmit power from the power transmission coil 104a to the power reception coil 154a is determined simply by whether or not the power reception coil 154a is shifted from directly above the power transmission coil 104a.
  • the shift amount G of the power receiving coil 154a viewed from directly above the power transmitting coil 104a is small, the power transmission efficiency may be higher when power is transmitted without being relayed by the relay coil 104b. This is because when the amount of deviation is small, energy may be consumed in the relay coil 104b having high coupling when the power transmission coil 104a is resonated with both the relay coil 104b and the power reception coil 154a.
  • the resonance frequency is configured by a coil such that the value f r described previously below.
  • the transmission impedance from the power transmission coil 104a to the power reception coil 154a can be suitably controlled.
  • FIG. 5 is an equivalent circuit diagram for calculating the resonance frequency of the relay coil 104b.
  • FIG. 5 shows parameters for calculating the resonance frequency of the relay coil 104b.
  • the inductance L 1 of the power transmission coil 104a and the capacitance C 1 of the capacitor connected to the power transmission coil 104a are used as parameters.
  • the inductance L r of the relay coil 104b and the capacitance C r of the capacitor connected to the relay coil 104b are used.
  • the inductance L 2 of the power receiving coil 154a, the resistance value R L of the load resistance connected to the power receiving coil 154a, and the capacitance C 2 of the capacitor connected to the power receiving coil 154a are used.
  • each coil current is calculated using a simple equivalent circuit shown in FIG.
  • the power transmission efficiency (power transmission efficiency) ⁇ considering the copper loss of the coil is calculated using the following formula (1).
  • the power transmission efficiency ⁇ is a parameter representing the efficiency of power transmission in the power transmission / reception system 10.
  • I 1 is the coil current in the transmitting coil 104a
  • I 2 is the coil current of the power receiving coil 154a
  • the I r is the coil current of the relay coil 104b.
  • r 1 is a parasitic resistance in series with L 1 of the power transmission coil 104a
  • r 2 is a parasitic resistance in series with L 2 of the power receiving coil 154a
  • r r is in series with L r of the relay coil 104b. Parasitic resistance.
  • the power transmission coil 104a and the relay coil 104b are arranged on the same plane.
  • the distance between the power transmission coil 104a and the relay coil 104b is larger than the distance between the power transmission coil 104a and the power reception coil 154a and the distance between the power reception coil 154a and the relay coil 104b (see FIG. 1). Therefore, the coupling coefficient k 1r between the power transmission coil 104a and the relay coil 104b is larger than the coupling coefficient k 12 between the power transmission coil 104a and the power reception coil 154a and the coupling coefficient k 2r between the power reception coil 154a and the relay coil 104b. large. For this reason, in the curly brackets in the route of Expression (2), the previous two terms are much smaller than the three items, and can be ignored in an approximate manner. For this reason, Formula (2) can be approximated to the following Formula (3).
  • the optimum resonance frequency f r ideal of the relay coil 104b that maximizes the power transmission efficiency ⁇ can be calculated.
  • the parking position of the vehicle 150, the deviation amount G of the position of the center of the power receiving coil 154a from directly above the position of the center of the power transmission coil 104a in other words, the coupling coefficient k 12 and k 2r changes.
  • the height of the vehicle may change depending on the weight of the load loaded on the vehicle, and the distance between the power transmission coil 104a and the power reception coil 154a may change due to the change, and the coupling coefficient may change accordingly.
  • set the range of the resonance frequency f r of the relay coil 104b is not set to the resonance frequency f r ideal is one optimum value, the following equation (4) It is desirable to do.
  • k 12 max is the maximum value of k 12, as shown in FIG. 4B, the values of k 12 when shift amount is minimum (0).
  • k 2r min is a minimum value within the range of the shift amount as shown in FIG. 4B from the minimum (0) to the maximum (shift amount G L ).
  • fmin is the minimum value of the drive frequency of the power transmission coil 104a
  • fmax is the maximum value of the drive frequency of the power transmission coil 104a.
  • the following selective power transmission can be performed without the need for control. That is, when the deviation amount G of the position of the center position and the receiving coil 154a of the center of the power transmission coil 104a is G 1 or less, as shown in Figure 4B, between the power transmission coil 104a and the receiving coil 154a towards the coupling coefficient is a k 12 is larger than k 2r is the coupling coefficient between the power receiving coil 154a and a relay coil 104b, without relaying the relay coil 104b, and a power transmission coil 104a to the power receiving coil 154a Direct power transmission.
  • the deviation amount G is larger than G 1, as shown in FIG. 4B, since towards k 2r from k 12 becomes larger, and the power transmission from the power transmission coil 104a to the power receiving coil 154a that relayed the relay coil 104b .
  • FIG. 6 is a diagram for explaining the effect of the power transmission and reception system 10 according to the first embodiment.
  • the power transmission efficiency with and without the relay coil 104b is shown as a function of the deviation amount G.
  • the horizontal axis indicates the amount of deviation, and the vertical axis indicates the power transmission efficiency.
  • the X direction means the front-rear direction in the power transmission / reception system 10
  • the Y direction means the left-right direction.
  • the transmission impedance of the power transmission via the second power transmission route relayed from the power transmission coil 104a to the power transmission coil 104a via the relay coil 104b is smaller than that of the first power transmission route. This is because power transmission through the second power transmission route is performed, so that a decrease in efficiency can be suppressed.
  • the shift amount G between the center position of the power transmission coil 104a and the center position of the power reception coil 154a is 0 to G L (predetermined shift amount). ), The power transmission efficiency can be improved regardless of the amount of deviation.
  • the power transmission device includes a power transmission coil that performs power transmission using electromagnetic force including magnetic resonance, and a power transmission coil.
  • the power transmission device has both a range of deviation amounts in which the first coupling coefficient is greater than the second coupling coefficient and a range of deviation amounts in which the second coupling coefficient is greater than the first coupling coefficient.
  • the distance from the center position of the power transmission coil to the center position of the power reception coil is defined as a deviation amount
  • the coupling coefficient between the power transmission coil and the power reception coil is defined as the first coupling coefficient
  • the coupling coefficient between the power reception coil and the third coil is defined as Let it be the second coupling coefficient.
  • the resonance frequency of the relay coil is larger than the minimum value of the driving frequency of the power transmission coil.
  • the shift amount G between the center position of the power transmission coil 104a and the center position of the power reception coil 154a is 0 to GL (predetermined). Power transmission efficiency can be improved with any amount of deviation.
  • the relay coil 104b is larger than the power transmission coil 104a and the relay coil 104b is disposed outside the power transmission coil 104a.
  • the power transmission coil 104a and the relay coil 104b The size is not particularly limited in the present invention.
  • the size of the power transmission coil 104a may be the same as the size of the power transmission coil in the conventional power transmission and reception system, and a larger relay coil 104b may be disposed outside the power transmission coil 104a.
  • the size of the power transmission coil 104a inside thereof may be smaller than that of the conventional power transmission coil. In the former case, relaying by the relay coil 104b is possible even when the shift amount G is relatively large. In the latter case, since the coil can be housed in the same housing as the conventional case, the manufacturing cost can be reduced.
  • the resonance frequency f r of the relay coil 104b is set to be in the range of formula (4), for example, the resonant frequency of the relay coil 104b within the scope of formula (4) It may be variable.
  • a resonance frequency control unit for controlling the resonance frequency of the relay coil 104b may be further provided so that the resonance frequency of the relay coil 104b is suitably controlled based on the deviation amount G or the like.
  • FIG. 7 is a diagram showing a configuration of a power transmission / reception system 10 ′ according to the second embodiment of the present invention. As shown in FIG. 7, in the power transmission / reception system 10 ′ according to the second embodiment of the present invention, the first described above except that the relay coil 104b ′ is arranged inside the power transmission coil 104a. This is the same as the power transmission / reception system 10 according to the embodiment.
  • FIGS. 8A and 8B are diagrams showing the positional relationship among the power transmission coil 104a, the power reception coil 154a, and the relay coil 104b '.
  • FIG. 8A is a view of the power reception coil 154a, the power transmission coil 104a, and the relay coil 104b 'seen from the side when the center position of the power reception coil 154a is located almost immediately above the center position of the power transmission coil 104a.
  • FIG. 8B is a diagram in which the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b ′ are viewed from directly above when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a. It is.
  • a relay coil 104b 'having a smaller diameter than the power transmission coil 104a is disposed inside the power transmission coil 104a.
  • the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a.
  • the distance between the power receiving coil 154a and the relay coil 104b ' is shorter than the distance between the power transmitting coil 104a and the power receiving coil 154a.
  • the power transmission efficiency is improved by relaying the relay coil 104b ′ from the power transmission coil 104a to the power reception coil 154a rather than performing power transmission directly from the power transmission coil 104a to the power reception coil 154a. be able to.
  • FIG. 9A and FIG. 9B show the positional relationship when the center position of the power receiving coil 154a is shifted from immediately above the center position of the power transmitting coil 104a.
  • FIG. 9A shows the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b ′ viewed from the side when the position of the center of the power receiving coil 154a is shifted by a shift amount G ′ from directly above the position of the center of the power transmitting coil 104a. It is a figure.
  • FIG. 9A shows the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b ′ viewed from the side when the position of the center of the power receiving coil 154a is shifted by a shift amount G ′ from directly above the position of the center of the power transmitting coil 104a. It is a figure.
  • FIG. 9A shows the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b ′ viewed
  • the distance between the power transmission coil 104a and the power reception coil 154a is closer than the distance between the relay coil 104b 'and the power reception coil 154a.
  • the transmission efficiency is almost the same when the power transmission coil 104a relays the relay coil 104b ′ to transmit power to the power reception coil 154a and when power transmission is performed directly from the power transmission coil 104a to the power reception coil 154a.
  • the power transmission efficiency can be improved by repeating the same or no relay coil 104b ′.
  • FIG. 10 shows the magnitudes of the coupling coefficients k 1r , k 12 , and k 2r and the shift amount G ′ of the power receiving coil 154a viewed from the power transmitting coil 104a in the power transmitting / receiving system 10 ′ according to the second embodiment. It is a figure which shows the change of the coupling coefficient. As described above, the coupling coefficient changes in accordance with the distance between the coils. Generally, the coupling coefficient decreases as the distance between the coils increases. In FIG. 10, since the distance between the power transmission coil 104a and the relay coil 104b ′ is not changed, the coupling coefficient k 1r between the power transmission coil 104a and the relay coil 104b ′ does not change greatly depending on the shift amount G ′.
  • the distance between the power transmission coil 104a and the power reception coil 154a and the distance between the relay coil 104b ′ and the power reception coil 154a vary according to the deviation amount G ′.
  • the deviation amount G 1 'until towards the coupling coefficient k 12 of the power transmission coil 104a and the receiving coil 154a is a power receiving coil 154a relay coil 104b' is smaller than the coupling coefficient k 2r and Yes.
  • the shift amount G 1 ′ shown in FIG. 10 is a shift amount at which the distance between the power transmission coil 104a and the power reception coil 154a and the power reception coil 154a and the relay coil 104b ′ are equal.
  • the deviation amount G L ′ is the maximum value (limit value) of the deviation amount and corresponds to the predetermined deviation amount of the present invention.
  • the relay coil 104b ′ is disposed inside the power transmission coil 104a.
  • the shift amount G ′ from the center position of the power transmission coil 104a to the center position of the power reception coil 154a is smaller than the shift amount G 1 ′, the distance between the power transmission coil 104a and the power reception coil 154a.
  • the distance between the power receiving coil 154a and the relay coil 104b ′ is closer.
  • the power transmission efficiency can be improved by relaying the relay coil 104b ′ from the power transmission coil 104a and performing power transmission to the power reception coil 154a rather than performing power transmission directly from the power transmission coil 104a to the power reception coil 154a.
  • the power transmission / reception system 10 ′ when the deviation amount G ′ is between 0 and the predetermined deviation amount G L ′, what is the deviation amount? Even power transmission efficiency can be improved.
  • the non-contact power transmission / reception system using the magnetic resonance method has been described.
  • the present invention is not limited to this, and other power transmission / reception systems such as an electromagnetic induction system can be applied to a system using LC resonance.
  • the present invention can be applied to, for example, a power transmission device and a power transmission / reception system that transmit power to a vehicle having a power reception coil.
  • Power transmission device 101 Power transmission side communication unit 102 Storage unit 103 Power transmission side control unit 104a Power transmission coil 104b, 104b' Relay coil (third coil) 150 vehicle (power receiving device) 151 vehicle side operation unit 152 storage battery 153 vehicle side control unit 154a power receiving coil 155 vehicle side communication unit 160 power transmission side operation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a power transmitting device comprising: a power transmitting coil that utilizes an electromagnetic force to perform power transmission to a power receiving coil of a power receiving device; and a third coil that relays the power transmission from the power transmitting coil to the power receiving coil. The power transmitting device includes both a deviation range in which a first coupling coefficient is larger than a second coupling coefficient, and a deviation range in which the second coupling coefficient is larger than the first coupling coefficient, where a distance from a center position of the power transmitting coil to a center position of the power receiving coil is the deviation, a coupling coefficient between the power transmitting coil and the power receiving coil is the first coupling coefficient, and a coupling coefficient between the power receiving coil and the third coil is the second coupling coefficient. A resonance frequency of the third coil is greater than the minimum value of a drive frequency of the power transmitting coil.

Description

送電装置、受電装置および送受電システムPower transmission device, power reception device and power transmission / reception system
 本発明は、受電コイルを有する車輌に送電する送電装置、受電装置および送受電システムに関する。 The present invention relates to a power transmission device, a power reception device, and a power transmission / reception system for transmitting power to a vehicle having a power reception coil.
 近年、蓄電池の電力を動力として用いる電気自動車やハイブリッド車が普及している。そして、このような電気自動車やハイブリッド車の蓄電池に電力伝送(送電)する手段として、非接触送電を用いる技術が開発されている。 In recent years, electric vehicles and hybrid vehicles that use the power of storage batteries as power have become widespread. And the technique using non-contact power transmission is developed as a means to transmit electric power (power transmission) to the storage battery of such an electric vehicle or a hybrid vehicle.
 非接触で電力の送電を行う非接触送電の仕組みとしては、例えば、離間して配置されたコイル間の電磁誘導を利用した電磁誘導方式や、電磁界の共振結合を利用した磁気共鳴方式が知られている。 As a contactless power transmission mechanism that performs power transmission in a contactless manner, for example, an electromagnetic induction method that uses electromagnetic induction between coils that are spaced apart and a magnetic resonance method that uses resonance coupling of electromagnetic fields are known. It has been.
 このうち、磁気共鳴方式を用いた非接触送電システムは、コイルとコンデンサを含む共振回路を用いて実現される。磁気共鳴方式の非接触送電システムは、コイルのQ値を高くすることにより、電磁誘導方式に比べて、送電用のコイルと受電用のコイルとの間の伝送距離を大きくとることができる。このような磁気共鳴方式を用いた非接触送電システムとして、例えば特許文献1に開示された技術がある。 Among these, the non-contact power transmission system using the magnetic resonance method is realized by using a resonance circuit including a coil and a capacitor. The magnetic resonance type non-contact power transmission system can increase the transmission distance between the power transmission coil and the power reception coil by increasing the Q value of the coil as compared with the electromagnetic induction system. As a non-contact power transmission system using such a magnetic resonance method, for example, there is a technique disclosed in Patent Document 1.
特開2015-8578号公報Japanese Patent Laying-Open No. 2015-8578
 本発明は、構成の複雑化や回路規模の増大を回避しつつ、効率のよい非接触送電を行うことができる送電装置、受電装置および送受電システムを提供する。 The present invention provides a power transmission device, a power reception device, and a power transmission / reception system capable of performing efficient non-contact power transmission while avoiding a complicated configuration and an increase in circuit scale.
 本発明の送電装置は、受電装置の受電コイルに対して、電磁力を利用して送電を行う送電コイルと、送電コイルから受電コイルへの送電を中継する第3のコイルと、を有する。送電装置には、第1の結合係数が第2の結合係数より大きくなるずれ量の範囲と、第2の結合係数が第1の結合係数より大きくなるずれ量の範囲と、の両方が存在する。但し、送電コイルの中心位置から受電コイルの中心位置までの距離をずれ量とし、送電コイルと受電コイルとの結合係数を第1の結合係数とし、受電コイルと第3のコイルとの結合係数を第2の結合係数とする。第3のコイルの共振周波数は、送電コイルの駆動周波数の最小値よりも大きい。 The power transmission device of the present invention includes a power transmission coil that performs power transmission using electromagnetic force and a third coil that relays power transmission from the power transmission coil to the power reception coil with respect to the power reception coil of the power reception device. The power transmission device has both a range of deviation amounts in which the first coupling coefficient is greater than the second coupling coefficient and a range of deviation amounts in which the second coupling coefficient is greater than the first coupling coefficient. . However, the distance from the center position of the power transmission coil to the center position of the power reception coil is defined as a deviation amount, the coupling coefficient between the power transmission coil and the power reception coil is defined as the first coupling coefficient, and the coupling coefficient between the power reception coil and the third coil is defined as Let it be the second coupling coefficient. The resonance frequency of the third coil is larger than the minimum value of the drive frequency of the power transmission coil.
 本発明の受電装置は、電磁力を利用して送電を行う送電コイルから受電する受電コイルと、送電コイルから受電コイルへの送電を中継する第3のコイルと、を有する。受電装置には、第1の結合係数が第3の結合係数より大きくなるずれ量の範囲と、第3の結合係数が第1の結合係数より大きくなるずれ量の範囲と、の両方が存在する。但し、送電コイルの中心位置から受電コイルの中心位置までの距離をずれ量とし、送電コイルと受電コイルとの結合係数を第1の結合係数とし、送電コイルと第3のコイルとの結合係数を第3の結合係数とする。第3のコイルの共振周波数は、受電コイルの駆動周波数の最小値よりも大きい。 The power receiving device of the present invention includes a power receiving coil that receives power from a power transmitting coil that transmits power using electromagnetic force, and a third coil that relays power transmission from the power transmitting coil to the power receiving coil. The power receiving apparatus has both a range of deviation amounts in which the first coupling coefficient is larger than the third coupling coefficient and a range of deviation amounts in which the third coupling coefficient is larger than the first coupling coefficient. . However, the distance from the center position of the power transmission coil to the center position of the power reception coil is the amount of deviation, the coupling coefficient between the power transmission coil and the power reception coil is the first coupling coefficient, and the coupling coefficient between the power transmission coil and the third coil is Let it be the third coupling coefficient. The resonance frequency of the third coil is larger than the minimum value of the driving frequency of the power receiving coil.
 本発明の送受電システムは、受電コイルを有する受電装置を有する車輌に対して、電磁力を利用して送電を行う送電装置を有する送受電システムである。送電装置は、送電コイルと、送電コイルから受電コイルへの送電を中継する第3のコイルと、を有する。送受電システムには、第1の結合係数が第2の結合係数より大きくなるずれ量の範囲と、第2の結合係数が第1の結合係数より大きくなるずれ量の範囲と、の両方が存在する。但し、送電コイルの中心位置から受電コイルの中心位置までの距離をずれ量とし、送電コイルと受電コイルとの結合係数を第1の結合係数とし、受電コイルと第3のコイルとの結合係数を第2の結合係数とする。第3のコイルの共振周波数は、送電コイルの駆動周波数の最小値よりも大きい。 The power transmission / reception system of the present invention is a power transmission / reception system having a power transmission device that transmits power to a vehicle having a power reception device having a power reception coil using electromagnetic force. The power transmission device includes a power transmission coil and a third coil that relays power transmission from the power transmission coil to the power reception coil. The power transmission / reception system has both a range of deviation in which the first coupling coefficient is greater than the second coupling coefficient and a range of deviation in which the second coupling coefficient is greater than the first coupling coefficient. To do. However, the distance from the center position of the power transmission coil to the center position of the power reception coil is defined as a deviation amount, the coupling coefficient between the power transmission coil and the power reception coil is defined as the first coupling coefficient, and the coupling coefficient between the power reception coil and the third coil is defined as Let it be the second coupling coefficient. The resonance frequency of the third coil is larger than the minimum value of the drive frequency of the power transmission coil.
 本発明によれば、構成の複雑化や回路規模の増大を回避しつつ、効率のよい非接触送電を行うことができる。 According to the present invention, it is possible to perform efficient non-contact power transmission while avoiding a complicated configuration and an increase in circuit scale.
本発明の第1の実施の形態における送受電システムの構成を示す図The figure which shows the structure of the power transmission / reception system in the 1st Embodiment of this invention 第1の実施の形態における送受電システムにおいて、受電コイルの中心の位置が送電コイルの中心の位置のほぼ直上に位置している場合の受電コイル、送電コイル、中継コイルを示す図The figure which shows a receiving coil, a power transmission coil, and a relay coil in the power transmission / reception system in 1st Embodiment in the case where the position of the center of a receiving coil is located just above the position of the center of a power transmission coil 第1の実施の形態における送受電システムにおいて、受電コイルの中心の位置が送電コイルの中心の位置のほぼ直上に位置している場合の受電コイル、送電コイル、中継コイルを示す図The figure which shows a receiving coil, a power transmission coil, and a relay coil in the power transmission / reception system in 1st Embodiment in the case where the position of the center of a receiving coil is located just above the position of the center of a power transmission coil 第1の実施の形態における送受電システムにおいて、受電コイルの中心の位置が送電コイルの中心の位置の直上からずれ量Gだけずれた位置にある場合の受電コイル、送電コイル、中継コイルを示す図The figure which shows a receiving coil, a power transmission coil, and a relay coil in the power transmission / reception system in 1st Embodiment in the case where the position of the center of a receiving coil is in the position shifted | deviated by the deviation | shift amount G from right above the center position of a power transmission coil 第1の実施の形態における送受電システムにおいて、受電コイルの中心の位置が送電コイルの中心の位置の直上からずれ量Gだけずれた位置にある場合の受電コイル、送電コイル、中継コイルを示す図The figure which shows a receiving coil, a power transmission coil, and a relay coil in the power transmission / reception system in 1st Embodiment in the case where the position of the center of a receiving coil is in the position shifted | deviated by the deviation | shift amount G from right above the center position of a power transmission coil 第1の実施の形態における送受電システムにおいて、送電コイル、中継コイル、および受電コイルそれぞれの間の結合係数について説明するための図The figure for demonstrating the coupling coefficient between each of a power transmission coil, a relay coil, and a power receiving coil in the power transmission / reception system in 1st Embodiment. 第1の実施の形態における送受電システムにおいて、送電コイル、中継コイル、および受電コイルそれぞれの間の結合係数について説明するための図The figure for demonstrating the coupling coefficient between each of a power transmission coil, a relay coil, and a power receiving coil in the power transmission / reception system in 1st Embodiment. 中継コイルの共振周波数を算出するための等価回路図Equivalent circuit diagram for calculating the resonance frequency of the relay coil 第1の実施の形態に係る送受電システムの効果について説明するための図The figure for demonstrating the effect of the power transmission / reception system which concerns on 1st Embodiment 本発明の第2の実施の形態に係る送受電システムの構成を示す図The figure which shows the structure of the power transmission / reception system which concerns on the 2nd Embodiment of this invention. 第2の実施の形態における送受電システムにおいて、受電コイルの中心の位置が送電コイルの中心の位置のほぼ直上に位置している場合の受電コイル、送電コイル、中継コイルを示す図The figure which shows a receiving coil, a power transmission coil, and a relay coil in the power transmission / reception system in 2nd Embodiment when the position of the center of a receiving coil is located in the just above the position of the center of a power transmission coil. 第2の実施の形態における送受電システムにおいて、受電コイルの中心の位置が送電コイルの中心の位置のほぼ直上に位置している場合の受電コイル、送電コイル、中継コイルを示す図The figure which shows a receiving coil, a power transmission coil, and a relay coil in the power transmission / reception system in 2nd Embodiment when the position of the center of a receiving coil is located in the just above the position of the center of a power transmission coil. 第2の実施の形態における送受電システムにおいて、受電コイルの中心の位置が送電コイルの中心の位置の直上からずれ量G’だけずれた位置にある場合の受電コイル、送電コイル、中継コイルを示す図In the power transmission / reception system according to the second embodiment, a power reception coil, a power transmission coil, and a relay coil in the case where the position of the center of the power reception coil is shifted from the position directly above the position of the center of the power transmission coil by a shift amount G ′ are shown. Figure 第2の実施の形態における送受電システムにおいて、受電コイルの中心の位置が送電コイルの中心の位置の直上からずれ量G’だけずれた位置にある場合の受電コイル、送電コイル、中継コイルを示す図In the power transmission / reception system according to the second embodiment, a power reception coil, a power transmission coil, and a relay coil in the case where the position of the center of the power reception coil is shifted from the position directly above the position of the center of the power transmission coil by a shift amount G ′ are shown. Figure 第2の実施の形態に係る送受電システムにおける、結合係数k1r、k12、およびk2rの大きさと、送電コイルから見た受電コイルのずれ量G’に応じた結合係数の変化を示す図Drawing showing power transmitting and receiving system according to a second embodiment, the coupling coefficient k 1r, and the magnitude of k 12, and k 2r, the variation of the coupling coefficient corresponding to the deviation amount G 'of the receiving coil as viewed from the power transmitting coil
 本発明の実施の形態の説明に先立ち、従来の技術における問題点を簡単に説明する。特許文献1には、送電アンテナとしての共鳴コイル及び共振容量を含む共振回路と、共鳴コイルと磁気的に結合可能に配置された第1コイルとを含み、共振回路の共振周波数が送電電力として出力される送電信号の周波数に近づくように、第1コイルの両端を短絡または開放する制御を行う非接触送電システムが開示されている。特許文献1に開示された非接触送電システムは、このような構成により、送電装置から出力される送電信号の周波数と共振回路の共振周波数とのずれを防止し、効率のよい非接触送電を行うことを目的としている。 Prior to the description of the embodiment of the present invention, the problems in the prior art will be briefly described. Patent Document 1 includes a resonance circuit including a resonance coil and a resonance capacitor as a power transmission antenna, and a first coil arranged to be magnetically coupled to the resonance coil, and the resonance frequency of the resonance circuit is output as transmission power. A non-contact power transmission system that performs control to short-circuit or open both ends of a first coil so as to approach the frequency of the transmitted power signal is disclosed. With such a configuration, the contactless power transmission system disclosed in Patent Document 1 prevents a shift between the frequency of the power transmission signal output from the power transmission device and the resonance frequency of the resonance circuit, and performs efficient contactless power transmission. The purpose is that.
 しかしながら、特許文献1に開示された非接触送電システムは、送電装置と受電装置の他に、電源部から共振回路に供給される交流信号の反射量を検出するための検出部と、検出部が検出した反射量に基づいて、反射量が最も小さくなるように、第1コイル両端の短絡または開放を切り替える制御部とを備えている。これにより、特許文献1に開示された非接触送電システムでは、システムの構成が複雑化すると共に、回路規模が増大してしまう。 However, the contactless power transmission system disclosed in Patent Document 1 includes a detection unit for detecting the amount of reflection of an AC signal supplied from the power supply unit to the resonance circuit, and a detection unit in addition to the power transmission device and the power reception device. And a controller that switches between short-circuiting and opening-up of both ends of the first coil so that the amount of reflection is minimized based on the detected amount of reflection. Thereby, in the non-contact power transmission system disclosed in Patent Document 1, the configuration of the system becomes complicated and the circuit scale increases.
 以下、本発明の各実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1の実施の形態]
 <構成説明>
 図1は、本発明の第1の実施の形態における送受電システム10の構成を示す図である。
[First Embodiment]
<Description of configuration>
FIG. 1 is a diagram showing a configuration of a power transmission / reception system 10 according to the first embodiment of the present invention.
 送受電システム10は、送電装置100と、車輌150と、送電側操作部160とを有している。なお、図1は、車輌150が送電装置100からの送電を受けることができる位置に停止している状態を示す。 The power transmission / reception system 10 includes a power transmission device 100, a vehicle 150, and a power transmission side operation unit 160. FIG. 1 shows a state where the vehicle 150 is stopped at a position where power can be received from the power transmission device 100.
 送電装置100は、例えば駐車スペース等に設けられる。送電装置100は、駐車スペースの所定範囲内に駐車した車輌150がある場合に、車輌150が有する受電コイル154a(詳細は後述する)に対して送電する。なお、送電には、車輌150が有する蓄電池152に電力を供給する前に、受電コイル154aに対して少ない電力を供給する予備送電と、蓄電池152に電力を供給するために大きな電力を供給する本送電とがある。以下の説明において、「送電」という記載は、予備送電と本送電の両方を含むものとする。 The power transmission device 100 is provided in a parking space, for example. When there is a vehicle 150 parked within a predetermined range of the parking space, the power transmission device 100 transmits power to a power receiving coil 154a (details will be described later) included in the vehicle 150. For power transmission, before power is supplied to the storage battery 152 of the vehicle 150, standby power transmission that supplies a small amount of power to the power receiving coil 154a and a book that supplies large power to supply power to the storage battery 152 are provided. There is power transmission. In the following description, the term “power transmission” includes both standby power transmission and main power transmission.
 車輌150は、例えば、HEV(Hybrid Electric Vehicle)、PEV(Plug-in Electric Vehicle)またはEV(Electric Vehicle)等の、電力で走行することができる自動車である。なお、車輌150の構成の詳細については後述する。 The vehicle 150 is a vehicle that can be driven by electric power, such as HEV (Hybrid Electric Vehicle), PEV (Plug-in Electric Vehicle), or EV (Electric Vehicle). Details of the configuration of the vehicle 150 will be described later.
 送電側操作部160は、外部からの操作を受け付け、送電の開始を示す送電開始信号または送電の停止を示す送電停止信号を送電装置100に出力する。 The power transmission side operation unit 160 receives an operation from the outside and outputs a power transmission start signal indicating the start of power transmission or a power transmission stop signal indicating the stop of power transmission to the power transmission device 100.
 <車輌の構成>
 本発明の第1の実施の形態における車輌150の構成について説明する。
<Vehicle configuration>
The configuration of vehicle 150 in the first embodiment of the present invention will be described.
 車輌150は、車輌側操作部151と、蓄電池152と、車輌側制御部153と、受電コイル154aと、車輌側通信部155とを有する。 The vehicle 150 includes a vehicle-side operation unit 151, a storage battery 152, a vehicle-side control unit 153, a power receiving coil 154a, and a vehicle-side communication unit 155.
 車輌側操作部151は、車輌150の運転者等による各種操作を受け付け、受け付けた操作に応じた信号を車輌側制御部153に出力する。 The vehicle side operation unit 151 accepts various operations by the driver of the vehicle 150 and outputs a signal corresponding to the accepted operation to the vehicle side control unit 153.
 蓄電池152は、送電装置100から受電コイル154aを介して供給される電力を蓄える。また、蓄電池152は、車輌150の走行時等に、車輌150の各構成(図示は省略する)に対して電力を供給する。 The storage battery 152 stores electric power supplied from the power transmission device 100 via the power receiving coil 154a. The storage battery 152 supplies electric power to each component (not shown) of the vehicle 150 when the vehicle 150 is traveling.
 車輌側制御部153は、車輌側操作部151から入力された各種信号に基づいて、送電に伴う各種処理または送電停止に伴う各種処理を行うように車輌150を制御する。 The vehicle-side control unit 153 controls the vehicle 150 to perform various processes associated with power transmission or various processes associated with power transmission stop based on various signals input from the vehicle-side operation unit 151.
 受電コイル154aは、送電装置100の送電コイル104aから磁気共鳴等の電磁力を利用した送電を受ける。受電コイル154aで受電した電力は、車輌側制御部153の制御に従って、蓄電池152に供給される。 The power receiving coil 154 a receives power transmission using electromagnetic force such as magnetic resonance from the power transmission coil 104 a of the power transmission device 100. The electric power received by the power receiving coil 154 a is supplied to the storage battery 152 according to the control of the vehicle side control unit 153.
 車輌側通信部155は、受電のために必要な様々な情報を、送電側通信部101との間でやり取りする。例えば、車輌側通信部155は、本送電時に、車輌側制御部153から入力された受電電力情報を送電側通信部101に対して送信する。また、車輌側通信部155は、車輌側制御部153の制御に従って、充電を許可する受電可信号または充電を許可しない受電不可信号を生成し、生成した受電可信号または受電不可信号を送電側通信部101に対して送信する。ここで、受電不可信号は、蓄電池152が満充電の状態である場合等に送信される。 The vehicle side communication unit 155 exchanges various information necessary for power reception with the power transmission side communication unit 101. For example, the vehicle-side communication unit 155 transmits the received power information input from the vehicle-side control unit 153 to the power transmission-side communication unit 101 during the main power transmission. In addition, the vehicle-side communication unit 155 generates a power-receivable signal that permits charging or a power-reception-impossible signal that does not permit charging in accordance with control of the vehicle-side control unit 153, and transmits the generated power-receivable signal or power-reception-impossible signal It transmits to the part 101. Here, the power reception impossibility signal is transmitted, for example, when the storage battery 152 is fully charged.
 車輌150は、本発明の受電装置に対応する。ただし、車輌150の一部が本発明の受電装置に対応する構成であってもよい。 The vehicle 150 corresponds to the power receiving device of the present invention. However, the vehicle 150 may have a configuration corresponding to the power receiving device of the present invention.
 <送電装置の構成>
 本発明の第1の実施の形態に係る送電装置100の構成について説明する。
<Configuration of power transmission device>
A configuration of the power transmission device 100 according to the first embodiment of the present invention will be described.
 送電装置100は、送電側通信部101と、記憶部102と、送電側制御部103と、送電コイル104aと、中継コイル104b(第3のコイル)と、を有する。 The power transmission device 100 includes a power transmission side communication unit 101, a storage unit 102, a power transmission side control unit 103, a power transmission coil 104a, and a relay coil 104b (third coil).
 送電側通信部101は、車輌側通信部155との間で送電に必要な様々な情報をやりとりする。例えば、送電側通信部101は、車輌側通信部155からの受電可信号または受電不可信号を受信する。送電側通信部101は、受信した受電可信号または受電不可信号を送電側制御部103に出力する。 The power transmission side communication unit 101 exchanges various information necessary for power transmission with the vehicle side communication unit 155. For example, the power transmission side communication unit 101 receives a power reception enabled signal or a power reception disabled signal from the vehicle side communication unit 155. The power transmission side communication unit 101 outputs the received power reception enabled signal or power reception disabled signal to the power transmission side control unit 103.
 送電側制御部103は、送電に関する様々な送電装置100の制御を行う。例えば、送電側制御部103は、送電側操作部160から送電開始信号が入力された際に、予備送電を行うように送電装置100を制御する。また、送電側制御部103は、送電側通信部101から受電可信号が入力された際に、本送電を開始するように送電装置100を制御する。 The power transmission side control unit 103 controls various power transmission devices 100 related to power transmission. For example, when a power transmission start signal is input from the power transmission side operation unit 160, the power transmission side control unit 103 controls the power transmission device 100 to perform standby power transmission. In addition, the power transmission side control unit 103 controls the power transmission device 100 to start the main power transmission when a power reception enable signal is input from the power transmission side communication unit 101.
 送電側制御部103は、例えばCPU(Central Processing Unit)であり、記憶部102に記憶された各種制御プログラム等に基づいて演算処理を実行することで各種制御を行う。なお、記憶部102は、送電側制御部103での演算結果や各センサから入力されたデータ等を一時的あるいは永続的に記憶するメモリである。 The power transmission side control unit 103 is a CPU (Central Processing Unit), for example, and performs various controls by executing arithmetic processing based on various control programs stored in the storage unit 102. Note that the storage unit 102 is a memory that temporarily or permanently stores calculation results in the power transmission side control unit 103, data input from each sensor, and the like.
 また、送電側制御部103は、送電側操作部160より送電停止信号が入力された場合、または送電側通信部101より受電不可信号が入力された場合に、送電を開始させないかまたは送電を停止するように送電装置100を制御する。 Further, the power transmission side control unit 103 does not start power transmission or stops power transmission when a power transmission stop signal is input from the power transmission side operation unit 160 or when a power reception impossible signal is input from the power transmission side communication unit 101. Thus, the power transmission device 100 is controlled.
 送電コイル104aおよび中継コイル104bは、例えば車輌150の駐車スペースの地上に設置される、あるいは地表付近の地中に埋設される。本実施の形態において、中継コイル104bは、送電コイル104aの外側に配置されたコイルである。送電コイル104aおよび中継コイル104bは、本実施の形態において、平面コイルであると想定されている。 The power transmission coil 104a and the relay coil 104b are installed, for example, on the ground of the parking space of the vehicle 150 or buried in the ground near the ground surface. In the present embodiment, the relay coil 104b is a coil disposed outside the power transmission coil 104a. In the present embodiment, power transmission coil 104a and relay coil 104b are assumed to be planar coils.
 送電コイル104aは、車輌150の受電コイル154aに対して電力を送電するためのコイルであり、中継コイル104bは、送電コイル104aと受電コイル154aとの間の電力送信を中継するためのコイルである。 The power transmission coil 104a is a coil for transmitting power to the power reception coil 154a of the vehicle 150, and the relay coil 104b is a coil for relaying power transmission between the power transmission coil 104a and the power reception coil 154a. .
 <コイルの位置関係>
 以下、車輌150が有する受電コイル154aと、送電装置100が有する送電コイル104aおよび中継コイル104bの詳細について説明する。
<Position of coil>
Hereinafter, details of the power receiving coil 154a included in the vehicle 150 and the power transmitting coil 104a and the relay coil 104b included in the power transmitting apparatus 100 will be described.
 送電コイル104aおよび中継コイル104bは、図1に示すように、駐車スペース等の地上あるいは地表付近の地中に設置される。このため、送電コイル104aと中継コイル104bとの位置関係は不変である。しかし、車輌150は運転者の運転によって移動するため、受電コイル154aの位置は車輌150が駐車スペースに駐車される度に変化することになる。 As shown in FIG. 1, the power transmission coil 104a and the relay coil 104b are installed on the ground such as a parking space or in the vicinity of the ground surface. For this reason, the positional relationship between the power transmission coil 104a and the relay coil 104b is unchanged. However, since the vehicle 150 moves by the driving of the driver, the position of the power receiving coil 154a changes every time the vehicle 150 is parked in the parking space.
 以下では、受電コイル154aの中心の位置が送電コイル104aの中心の位置のほぼ直上に位置している場合と、受電コイル154aの中心の位置が送電コイル104aの中心の位置の直上からコイルの径方向、すなわち水平方向にずれている場合と、のそれぞれについて、コイルの位置関係について説明する。 In the following description, when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmission coil 104a, and the diameter of the coil from the position directly above the center position of the power transmission coil 104a. The positional relationship of the coils will be described for each of the directions, that is, the case where they are displaced in the horizontal direction.
 図2Aおよび図2Bは、受電コイル154aの中心の位置が送電コイル104aの中心の位置のほぼ直上に位置している場合の位置関係を示している。図2Aは、受電コイル154aの中心の位置が送電コイル104aの中心の位置のほぼ直上に位置している場合の受電コイル154a、送電コイル104a、中継コイル104bを真横から見た図である。一方、図2Bは、受電コイル154aの中心の位置が送電コイル104aの中心の位置のほぼ直上に位置している場合の受電コイル154a、送電コイル104a、中継コイル104bを真上から見た図である。 2A and 2B show a positional relationship when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a. FIG. 2A is a view of the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b viewed from the side when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a. On the other hand, FIG. 2B is a diagram in which the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b are viewed from directly above when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a. is there.
 なお、図2Aにおいて、「×」印はコイルの断面を意味している。すなわち、図2Aは輪状に束ねられた各コイルの垂直方向の断面を示した図である。図2Aおよび図2Bに示すように、送電コイル104aの外側に、送電コイル104aよりも径が大きい中継コイル104bが配置されている。 In FIG. 2A, the “x” mark means the cross section of the coil. That is, FIG. 2A is a view showing a cross section in the vertical direction of each coil bundled in a ring shape. As shown in FIGS. 2A and 2B, a relay coil 104b having a diameter larger than that of the power transmission coil 104a is disposed outside the power transmission coil 104a.
 図2Aおよび図2Bに示すように、送電コイル104aの中心の位置のほぼ直上に受電コイル154aの中心の位置が位置している場合には、送電コイル104aと受電コイル154aとの距離が、他の位置関係と比較して比較的近くなり、送電コイル104aと受電コイル154aとの結合係数がほぼ最大となる。このため、送電コイル104aは受電コイル154aに対して、比較的効率のよい電力伝送を行うことができる。なお、結合係数とは、2つのコイル間の結合の度合いを示す無次元数である。結合係数の算出方法については本発明では限定しないが、結合係数は、一般に2つのコイル間の距離、および2つのコイルのサイズ比率等に基づいて決定される。 As shown in FIGS. 2A and 2B, when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a, the distance between the power transmitting coil 104a and the power receiving coil 154a is other than And the coupling coefficient between the power transmission coil 104a and the power reception coil 154a is almost maximized. For this reason, the power transmission coil 104a can perform relatively efficient power transmission to the power reception coil 154a. The coupling coefficient is a dimensionless number indicating the degree of coupling between two coils. The method for calculating the coupling coefficient is not limited in the present invention, but the coupling coefficient is generally determined based on the distance between the two coils, the size ratio of the two coils, and the like.
 一方、図3Aおよび図3Bは、受電コイル154aが送電コイル104aの直上からずれ量Gだけコイルの径方向、すなわち水平方向にずれた位置にある場合の位置関係を示している。図3Aは、受電コイル154aの中心の位置が送電コイル104aの中心の位置の直上からずれ量Gだけ水平方向にずれた位置にある場合の受電コイル154a、送電コイル104a、中継コイル104bを真横から見た図である。一方、図3Bは、受電コイル154aの中心の位置が送電コイル104aの中心の位置の直上からずれ量Gだけ水平方向にずれた位置にある場合の受電コイル154a、送電コイル104a、中継コイル104bを真上から見た図である。 On the other hand, FIGS. 3A and 3B show the positional relationship when the power receiving coil 154a is in a position shifted in the radial direction of the coil, that is, in the horizontal direction from the position immediately above the power transmitting coil 104a. FIG. 3A shows that the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b are located from the side when the center position of the power receiving coil 154a is shifted in the horizontal direction by a shift amount G from immediately above the center position of the power transmitting coil 104a. FIG. On the other hand, FIG. 3B illustrates the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b in the case where the center position of the power receiving coil 154a is shifted in the horizontal direction from the position immediately above the center position of the power transmitting coil 104a. It is the figure seen from right above.
 図3Aおよび図3Bに示すように、送電コイル104aの中心の位置の直上から水平方向にずれた位置に受電コイル154aの中心の位置が位置している場合には、送電コイル104aと受電コイル154aとの距離が離れてしまい、送電コイル104aと受電コイル154aとの結合係数が小さくなる。このため、図2Aおよび図2Bに示す場合(送電コイル104aの中心の位置のほぼ直上に受電コイル154aの中心の位置が位置している場合)と比較して、送電コイル104aから受電コイル154aへの電力伝送効率が低下してしまう。 As shown in FIGS. 3A and 3B, when the center position of the power receiving coil 154a is located at a position shifted in the horizontal direction from directly above the center position of the power transmitting coil 104a, the power transmitting coil 104a and the power receiving coil 154a are disposed. And the coupling coefficient between the power transmission coil 104a and the power reception coil 154a is reduced. Therefore, compared with the case shown in FIGS. 2A and 2B (when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a), the power transmitting coil 104a is changed to the power receiving coil 154a. The power transmission efficiency will decrease.
 しかし、図3Aに示すように、送電コイル104aの中心の位置の直上から水平方向にずれた位置に受電コイル154aの中心の位置が位置している場合には、中継コイル104bの一部が送電コイル104aよりも受電コイル154aに近くなる。このような場合には、送電コイル104aから中継コイル104bを介して受電コイル154aに電力伝送が行われる。すなわち、中継コイル104bが、送電コイル104aと受電コイル154aとの間の電力伝送を中継する。 However, as shown in FIG. 3A, when the center position of the power receiving coil 154a is located at a position shifted in the horizontal direction from directly above the center position of the power transmitting coil 104a, a part of the relay coil 104b transmits power. It is closer to the power receiving coil 154a than the coil 104a. In such a case, power is transmitted from the power transmission coil 104a to the power reception coil 154a via the relay coil 104b. That is, the relay coil 104b relays power transmission between the power transmission coil 104a and the power reception coil 154a.
 図4Aは、送電コイル104a、中継コイル104b、および受電コイル154aそれぞれの間の結合係数について説明するための図である。送電コイル104aおよび中継コイル104bは、実際には図1に示すように同一平面上に配置されているが、図4Aにおいては、送電コイル104a、中継コイル104b、および受電コイル154aのそれぞれの間の結合係数を示すために、これらが輪状に配置された図となっている。 FIG. 4A is a diagram for explaining coupling coefficients among the power transmission coil 104a, the relay coil 104b, and the power reception coil 154a. The power transmission coil 104a and the relay coil 104b are actually arranged on the same plane as shown in FIG. 1, but in FIG. 4A, between the power transmission coil 104a, the relay coil 104b, and the power reception coil 154a. In order to show the coupling coefficients, these are arranged in a ring shape.
 以下では、図4Aに示すように、送電コイル104aと中継コイル104bとの結合係数をk1rと記載し、送電コイル104aと受電コイル154aとの結合係数をk12と記載し、受電コイル154aと中継コイル104bとの結合係数をk2rと記載する。ここで、本第1の実施の形態において、送電コイル104aと受電コイル154aとの結合係数k12が本発明の第1の結合係数に、受電コイル154aと中継コイル104bとの結合係数k2rが本発明の第2の結合係数に、送電コイル104aと中継コイル104bとの結合係数をk1rが本発明の第3の結合係数に、それぞれ対応している。 In the following, as shown in FIG. 4A, the coupling coefficient between the power transmission coil 104a and the relay coil 104b is described as k 1r , the coupling coefficient between the power transmission coil 104a and the power reception coil 154a is described as k 12, and the power reception coil 154a The coupling coefficient with the relay coil 104b is described as k2r . Here, in the present first embodiment, the coupling coefficient k 12 of the power transmission coil 104a and the receiving coil 154a is the first coupling coefficient of the present invention, the coupling coefficient k 2r in the receiving coil 154a and a relay coil 104b The coupling coefficient between the power transmission coil 104a and the relay coil 104b corresponds to the second coupling coefficient of the present invention, and k1r corresponds to the third coupling coefficient of the present invention.
 図4Bは、結合係数k1r、k12、およびk2rの大きさと、送電コイル104aの中心の位置から見た受電コイル154aの中心の位置までの距離であるずれ量Gに応じた結合係数の変化を示す図である。図4Bに示すように、結合係数はコイル間の距離に応じて変化し、一般にコイル間の距離が遠くなるほど結合係数は小さくなる。図4Bにおいて、送電コイル104aと中継コイル104bとの距離は不変であるため、送電コイル104aと中継コイル104bとの結合係数k1rはずれ量Gによって大きくは変化しない。 FIG. 4B shows the coupling coefficient k 1r , k 12 , and k 2r and the coupling coefficient corresponding to the shift amount G, which is the distance from the center position of the power transmission coil 104a to the center position of the power receiving coil 154a. It is a figure which shows a change. As shown in FIG. 4B, the coupling coefficient changes according to the distance between the coils, and generally the coupling coefficient decreases as the distance between the coils increases. In FIG. 4B, since the distance between the power transmission coil 104a and the relay coil 104b is not changed, the coupling coefficient k1r between the power transmission coil 104a and the relay coil 104b does not change greatly depending on the shift amount G.
 一方、送電コイル104aと受電コイル154aとの距離、および中継コイル104bと受電コイル154aとの距離は、ずれ量Gに応じて変化する。図4Bに示す例では、ずれ量Gまでは送電コイル104aと受電コイル154aとの結合係数k12の方が、受電コイル154aと中継コイル104bとの結合係数k2rよりも大きくなっている。そして、ずれ量Gからずれ量Gまでは、k2rの方がk12よりも大きくなっている。換言すれば、ずれ量Gが0からGまで変化する場合に、k12と、k2rのいずれも他方より大きくなる範囲が存在し、ずれ量Gにおいてその範囲が切り替わる。 On the other hand, the distance between the power transmission coil 104a and the power reception coil 154a and the distance between the relay coil 104b and the power reception coil 154a change according to the shift amount G. In the example shown in FIG. 4B, until the deviation amount G 1 towards the coupling coefficient k 12 of the power transmission coil 104a and the receiving coil 154a is larger than the coupling coefficient k 2r in the receiving coil 154a and a relay coil 104b. Then, the deviation amount G 1 to deviation amount G L is towards k 2r is larger than k 12. In other words, when changing from the deviation amount G is 0 to G L, and k 12, none of the k 2r there is a range larger than the other, the range is switched in deviation amount G 1.
 なお、図4Bにおいて、ずれ量Gはずれ量の最大値(限度値)であり、本発明の所定のずれ量に対応している。ずれ量Gは、これ以上ずれ量が大きくなると、送電コイル104aから中継コイル104bへと好適に電力伝送を行うことができなくなる量であり、例えば実験的に求めて設定すればよい。 In FIG. 4B, the deviation amount GL is the maximum value (limit value) of the deviation amount, and corresponds to the predetermined deviation amount of the present invention. The deviation amount GL is an amount that makes it impossible to suitably transmit power from the power transmission coil 104a to the relay coil 104b when the deviation amount becomes larger than this. For example, the deviation amount GL may be determined experimentally.
 以上説明したように、受電コイル154aの中心の位置が送電コイル104aの中心の位置のほぼ直上に位置している場合には、中継コイル104bによる中継なしで、送電コイル104aから受電コイル154aへの送電が行われる。一方、受電コイル154aの中心の位置が送電コイル104aの中心の位置の直上からずれている場合には、送電コイル104aから送電される電力が、中継コイル104bを介して受電コイル154aに送電される。なお、以下では、中継コイル104bによる中継なしで、送電コイル104aから受電コイル154aへ行われる送電ルートを第1送電ルート、送電コイル104aから中継コイル104bを介して受電コイル154aへ行われる送電ルートを第2送電ルートと称する。 As described above, when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a, the relay coil 104b does not relay the power transmitting coil 104a to the power receiving coil 154a. Power transmission is performed. On the other hand, when the position of the center of the power receiving coil 154a is shifted from immediately above the position of the center of the power transmitting coil 104a, the power transmitted from the power transmitting coil 104a is transmitted to the power receiving coil 154a via the relay coil 104b. . In the following, a power transmission route that is performed from the power transmission coil 104a to the power reception coil 154a without relaying by the relay coil 104b is a first power transmission route, and a power transmission route that is performed from the power transmission coil 104a to the power reception coil 154a via the relay coil 104b. This is called the second power transmission route.
 第1送電ルートと第2送電ルートのいずれによって送電コイル104aから受電コイル154aへの送電が行われるかは、単に送電コイル104aの直上から受電コイル154aがずれているか否かによって決定される。ただし、送電コイル104aの直上から見た受電コイル154aのずれ量Gが小さい場合には、中継コイル104bによる中継を受けずに電力の送電を行った方が送電効率が高くなる場合もある。これは、ずれ量が小さい場合、送電コイル104aと、中継コイル104bおよび受電コイル154aの両方とを共振させると、結合が高い中継コイル104bにおいてエネルギーが消費されてしまう可能性があるからである。 Whether the first power transmission route or the second power transmission route is used to transmit power from the power transmission coil 104a to the power reception coil 154a is determined simply by whether or not the power reception coil 154a is shifted from directly above the power transmission coil 104a. However, when the shift amount G of the power receiving coil 154a viewed from directly above the power transmitting coil 104a is small, the power transmission efficiency may be higher when power is transmitted without being relayed by the relay coil 104b. This is because when the amount of deviation is small, energy may be consumed in the relay coil 104b having high coupling when the power transmission coil 104a is resonated with both the relay coil 104b and the power reception coil 154a.
 従って、ずれ量Gが所定のずれ量G以下である場合には、送電コイル104aから中継コイル104bによる中継を経た送電が行われないようにすることが望ましい。これを実現するために、例えば、中継コイル104bを、その共振周波数が予め以下説明する値fとなるようなコイルによって構成する。これにより、送電コイル104aから受電コイル154aへの伝送インピーダンスを好適に制御することができるようになる。 Therefore, when the deviation amount G is a predetermined deviation amount G 1 or less, it is desirable to power transmission through the relay by the relay coil 104b from the power transmission coil 104a is not performed. To achieve this, for example, the relay coil 104b, the resonance frequency is configured by a coil such that the value f r described previously below. Thereby, the transmission impedance from the power transmission coil 104a to the power reception coil 154a can be suitably controlled.
 <中継コイル104bの共振周波数算出方法>
 以下では、好適な中継コイル104bの共振周波数fの算出方法について説明する。図5は、中継コイル104bの共振周波数を算出するための等価回路図である。図5には、中継コイル104bの共振周波数を算出するためのパラメータが示されている。図5に示すように、パラメータとして、送電コイル104aのインダクタンスL、送電コイル104aに接続されるキャパシタの静電容量Cが使用される。また、パラメータとして、中継コイル104bのインダクタンスL、中継コイル104bに接続されるキャパシタの静電容量Cが使用される。また、パラメータとして、受電コイル154aのインダクタンスL、受電コイル154aに接続される負荷抵抗の抵抗値R、受電コイル154aに接続されるキャパシタの静電容量Cが使用される。
<Resonance frequency calculation method of relay coil 104b>
Hereinafter, a method for calculating the resonance frequency f r of suitable relay coil 104b. FIG. 5 is an equivalent circuit diagram for calculating the resonance frequency of the relay coil 104b. FIG. 5 shows parameters for calculating the resonance frequency of the relay coil 104b. As shown in FIG. 5, the inductance L 1 of the power transmission coil 104a and the capacitance C 1 of the capacitor connected to the power transmission coil 104a are used as parameters. Further, as parameters, the inductance L r of the relay coil 104b and the capacitance C r of the capacitor connected to the relay coil 104b are used. As parameters, the inductance L 2 of the power receiving coil 154a, the resistance value R L of the load resistance connected to the power receiving coil 154a, and the capacitance C 2 of the capacitor connected to the power receiving coil 154a are used.
 まず、図5に示す簡易等価回路を用いて、各コイル電流を算出する。ここで、コイルの銅損を考慮した送電効率(電力伝送効率)ηを以下の式(1)を用いて算出する。送電効率ηは、送受電システム10における電力伝送の効率を表すパラメータである。 First, each coil current is calculated using a simple equivalent circuit shown in FIG. Here, the power transmission efficiency (power transmission efficiency) η considering the copper loss of the coil is calculated using the following formula (1). The power transmission efficiency η is a parameter representing the efficiency of power transmission in the power transmission / reception system 10.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、Iは送電コイル104aのコイル電流、Iは受電コイル154aのコイル電流、Iは中継コイル104bのコイル電流である。また、式(1)において、rは送電コイル104aのLに直列の寄生抵抗、rは受電コイル154aのLに直列の寄生抵抗、rは中継コイル104bのLに直列の寄生抵抗である。 In the equation (1), I 1 is the coil current in the transmitting coil 104a, I 2 is the coil current of the power receiving coil 154a, the I r is the coil current of the relay coil 104b. In Equation (1), r 1 is a parasitic resistance in series with L 1 of the power transmission coil 104a, r 2 is a parasitic resistance in series with L 2 of the power receiving coil 154a, and r r is in series with L r of the relay coil 104b. Parasitic resistance.
 上記した式(1)は中継コイル104bの共振周波数fを含む関数である。送電効率ηが最大となる中継コイル104bの最適共振周波数f idealは、以下の式(2)のように求められる。ただし、式(2)は駆動周波数fと受信側の共振周波数とが等しいという条件で導出されたものである。 Above formula (1) is a function including a resonant frequency f r of the relay coil 104b. The optimum resonance frequency f r ideal of the relay coil 104b that maximizes the power transmission efficiency η is obtained as in the following equation (2). However, Expression (2) is derived under the condition that the driving frequency f is equal to the resonance frequency on the receiving side.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、送電コイル104aと中継コイル104bとは同一平面上に配置されている。また送電コイル104aと中継コイル104bとの距離は送電コイル104aと受電コイル154aとの距離、および受電コイル154aと中継コイル104bとの距離より大きい(図1参照)。これらのことから、送電コイル104aと中継コイル104bとの結合係数k1rは、送電コイル104aと受電コイル154aとの結合係数k12、および受電コイル154aと中継コイル104bとの結合係数k2rよりも大きい。このため、式(2)のルート内の波括弧において、前2項は3項目に比べて非常に小さくなり、近似的には無視できる。このため、式(2)は以下の式(3)に近似することができる。 Here, the power transmission coil 104a and the relay coil 104b are arranged on the same plane. The distance between the power transmission coil 104a and the relay coil 104b is larger than the distance between the power transmission coil 104a and the power reception coil 154a and the distance between the power reception coil 154a and the relay coil 104b (see FIG. 1). Therefore, the coupling coefficient k 1r between the power transmission coil 104a and the relay coil 104b is larger than the coupling coefficient k 12 between the power transmission coil 104a and the power reception coil 154a and the coupling coefficient k 2r between the power reception coil 154a and the relay coil 104b. large. For this reason, in the curly brackets in the route of Expression (2), the previous two terms are much smaller than the three items, and can be ignored in an approximate manner. For this reason, Formula (2) can be approximated to the following Formula (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 以上のように送電効率ηが最大となる中継コイル104bの最適共振周波数f idealを算出することができる。しかしながら、車輌150の駐車位置によって、換言すれば送電コイル104aの中心の位置の直上からの受電コイル154aの中心の位置のずれ量Gによって、結合係数k12およびk2rは変化する。また、車輌に積載された荷物の重量等によって、車輌の高さが変化し、その影響で送電コイル104aと受電コイル154aとの距離が変化し、それによって結合係数が変化する場合もある。このような結合係数の変化に対応するため、中継コイル104bの共振周波数fは1つの最適な値である共振周波数f idealに設定するのではなく、以下の式(4)の範囲に設定することが望ましい。 As described above, the optimum resonance frequency f r ideal of the relay coil 104b that maximizes the power transmission efficiency η can be calculated. However, the parking position of the vehicle 150, the deviation amount G of the position of the center of the power receiving coil 154a from directly above the position of the center of the power transmission coil 104a in other words, the coupling coefficient k 12 and k 2r changes. In addition, the height of the vehicle may change depending on the weight of the load loaded on the vehicle, and the distance between the power transmission coil 104a and the power reception coil 154a may change due to the change, and the coupling coefficient may change accordingly. To respond to such changes in the coupling coefficient, set the range of the resonance frequency f r of the relay coil 104b is not set to the resonance frequency f r ideal is one optimum value, the following equation (4) It is desirable to do.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここで、k12 maxは、k12の最大値であり、図4Bに示すように、ずれ量が最小(0)である場合におけるk12の値である。また、k2r minは、図4Bに示すようなずれ量が最小(0)から最大(ずれ量G)の範囲内における最小値である。 Here, k 12 max is the maximum value of k 12, as shown in FIG. 4B, the values of k 12 when shift amount is minimum (0). Further, k 2r min is a minimum value within the range of the shift amount as shown in FIG. 4B from the minimum (0) to the maximum (shift amount G L ).
 また、式(4)において、fminは送電コイル104aの駆動周波数の最小値であり、fmaxは送電コイル104aの駆動周波数の最大値である。このようなパラメータを用いることにより、数式(4)に示す範囲内に中継コイル104bの好適な共振周波数が確実に含まれる。 Moreover, in Formula (4), fmin is the minimum value of the drive frequency of the power transmission coil 104a, and fmax is the maximum value of the drive frequency of the power transmission coil 104a. By using such a parameter, a suitable resonance frequency of the relay coil 104b is surely included in the range shown in Expression (4).
 中継コイル104bの共振周波数をこのような範囲内とすることにより、以下のような選択的な送電が制御の必要なく行われるようになる。すなわち、送電コイル104aの中心の位置と受電コイル154aの中心の位置とのずれ量GがG以下である場合には、図4Bに示すように、送電コイル104aと受電コイル154aとの間の結合係数であるk12の方が、受電コイル154aと中継コイル104bとの間の結合係数であるk2rよりも大きいため、中継コイル104bを中継せずに、送電コイル104aから受電コイル154aへと直接送電される。一方、ずれ量GがGより大きい場合には、図4Bに示すように、k12よりk2rの方が大きくなるので、送電コイル104aから中継コイル104bを中継した受電コイル154aへ送電される。 By setting the resonance frequency of the relay coil 104b within such a range, the following selective power transmission can be performed without the need for control. That is, when the deviation amount G of the position of the center position and the receiving coil 154a of the center of the power transmission coil 104a is G 1 or less, as shown in Figure 4B, between the power transmission coil 104a and the receiving coil 154a towards the coupling coefficient is a k 12 is larger than k 2r is the coupling coefficient between the power receiving coil 154a and a relay coil 104b, without relaying the relay coil 104b, and a power transmission coil 104a to the power receiving coil 154a Direct power transmission. On the other hand, when the deviation amount G is larger than G 1, as shown in FIG. 4B, since towards k 2r from k 12 becomes larger, and the power transmission from the power transmission coil 104a to the power receiving coil 154a that relayed the relay coil 104b .
 図6は、第1の実施の形態に係る送受電システム10の効果について説明するための図である。図6では、中継コイル104bがある場合とない場合の送電効率を、ずれ量Gの関数として示している。図6において、横軸はずれ量、縦軸は送電効率をそれぞれ示している。また、図6において、例えば、ずれ量「X=50mm,Y=50mm」はずれ量Gの一例であり、ずれ量「X=100mm,Y=100mm」はずれ量Gの一例である。なお、X方向とは送受電システム10における前後方向を、Y方向は左右方向を、それぞれ意味している。 FIG. 6 is a diagram for explaining the effect of the power transmission and reception system 10 according to the first embodiment. In FIG. 6, the power transmission efficiency with and without the relay coil 104b is shown as a function of the deviation amount G. In FIG. 6, the horizontal axis indicates the amount of deviation, and the vertical axis indicates the power transmission efficiency. In FIG. 6, for example, the displacement amount “X = 50 mm, Y = 50 mm” is an example of the displacement amount G 1 , and the displacement amount “X = 100 mm, Y = 100 mm” is an example of the displacement amount GL . The X direction means the front-rear direction in the power transmission / reception system 10, and the Y direction means the left-right direction.
 図6に示すように、ずれ量G以下では中継コイル104bがある場合とそうでない場合との送電効率はほぼ同じである。これは、上記説明したように、中継コイル104bがある場合でも、ずれ量G以下では中継コイル104bによる中継がない送電ルート(第1送電ルート)を介した送電が行われるからである。 As shown in FIG. 6, in the following shift amount G 1 power transmission efficiency between otherwise and if there is a relay coil 104b are substantially the same. This is because, as described above, even if there is a relay coil 104b, the following deviation amount G 1 because transmission through the power transmission route is no relay by the relay coil 104b (first transmission route) is carried out.
 一方、ずれ量がGより大きい場合、中継コイル104bがない場合よりある場合の方が送電効率が高くなっている。これは、上記説明したように、送電コイル104aから中継コイル104bを中継して送電コイル104aに送電される第2送電ルートを介した送電の方が第1送電ルートよりも伝送インピーダンスが小さくなり、第2送電ルートによる送電が行われるので、効率の低下を抑えることができるからである。 On the other hand, when the deviation amount is greater than G 1, who when there than without relay coil 104b is power transmission efficiency is high. As described above, the transmission impedance of the power transmission via the second power transmission route relayed from the power transmission coil 104a to the power transmission coil 104a via the relay coil 104b is smaller than that of the first power transmission route. This is because power transmission through the second power transmission route is performed, so that a decrease in efficiency can be suppressed.
 このように、第1の実施の形態に係る送受電システム10によれば、送電コイル104aの中心の位置と受電コイル154aの中心の位置とのずれ量Gが0からG(所定のずれ量)の間であるとき、どのようなずれ量であっても、送電効率を向上させることができるようになる。 As described above, according to the power transmission / reception system 10 according to the first embodiment, the shift amount G between the center position of the power transmission coil 104a and the center position of the power reception coil 154a is 0 to G L (predetermined shift amount). ), The power transmission efficiency can be improved regardless of the amount of deviation.
 以上説明したように、本発明の第1の実施の形態において、送電装置は、受電装置の受電コイルに対して、磁気共鳴も含めた電磁力を利用する送電を行う送電コイルと、送電コイルから受電コイルへの送電を中継する中継コイルと、を有する。送電装置には、第1の結合係数が第2の結合係数より大きくなるずれ量の範囲と、第2の結合係数が第1の結合係数より大きくなるずれ量の範囲と、の両方が存在する。但し、送電コイルの中心位置から受電コイルの中心位置までの距離をずれ量とし、送電コイルと受電コイルとの結合係数を第1の結合係数とし、受電コイルと第3のコイルとの結合係数を第2の結合係数とする。中継コイルの共振周波数は、送電コイルの駆動周波数の最小値よりも大きい。 As described above, in the first embodiment of the present invention, the power transmission device includes a power transmission coil that performs power transmission using electromagnetic force including magnetic resonance, and a power transmission coil. A relay coil that relays power transmission to the power receiving coil. The power transmission device has both a range of deviation amounts in which the first coupling coefficient is greater than the second coupling coefficient and a range of deviation amounts in which the second coupling coefficient is greater than the first coupling coefficient. . However, the distance from the center position of the power transmission coil to the center position of the power reception coil is defined as a deviation amount, the coupling coefficient between the power transmission coil and the power reception coil is defined as the first coupling coefficient, and the coupling coefficient between the power reception coil and the third coil is defined as Let it be the second coupling coefficient. The resonance frequency of the relay coil is larger than the minimum value of the driving frequency of the power transmission coil.
 このような構成により、本発明の第1の実施の形態に係る送受電システム10において、送電コイル104aの中心の位置と受電コイル154aの中心の位置とのずれ量Gが0からG(所定のずれ量)であるとき、どのようなずれ量であっても、送電効率を向上させることができる。 With such a configuration, in the power transmission / reception system 10 according to the first exemplary embodiment of the present invention, the shift amount G between the center position of the power transmission coil 104a and the center position of the power reception coil 154a is 0 to GL (predetermined). Power transmission efficiency can be improved with any amount of deviation.
 なお、上述した第1の実施の形態において、送電コイル104aより中継コイル104bの方が大きく、中継コイル104bを送電コイル104aの外側に配置するように説明したが、送電コイル104aと中継コイル104bの大きさについては本発明では特に限定しない。送電コイル104aの大きさを従来の送受電システムにおける送電コイルの大きさと同じ大きさとし、その外側により大きい中継コイル104bを配置してもよいし、中継コイル104bの大きさを従来の送電コイルの大きさと同じ大きさとし、その内側の送電コイル104aの大きさを従来の送電コイルより小さくしてもよい。前者の場合には、ずれ量Gが比較的大きい場合にも中継コイル104bによる中継が可能となる。後者の場合には、従来と同様の筐体にコイルを収めることができるので、製作コストを抑えることができる。 In the first embodiment described above, the relay coil 104b is larger than the power transmission coil 104a and the relay coil 104b is disposed outside the power transmission coil 104a. However, the power transmission coil 104a and the relay coil 104b The size is not particularly limited in the present invention. The size of the power transmission coil 104a may be the same as the size of the power transmission coil in the conventional power transmission and reception system, and a larger relay coil 104b may be disposed outside the power transmission coil 104a. And the size of the power transmission coil 104a inside thereof may be smaller than that of the conventional power transmission coil. In the former case, relaying by the relay coil 104b is possible even when the shift amount G is relatively large. In the latter case, since the coil can be housed in the same housing as the conventional case, the manufacturing cost can be reduced.
 また、上述した第1の実施の形態において、中継コイル104bの共振周波数fは式(4)の範囲内に設定するとしたが、例えば中継コイル104bの共振周波数を式(4)の範囲内で可変としてもよい。この場合、中継コイル104bの共振周波数を制御するための例えば共振周波数制御部をさらに設け、ずれ量G等に基づいて中継コイル104bの共振周波数を好適に制御するようにすればよい。 In the first embodiment described above, the resonance frequency f r of the relay coil 104b is set to be in the range of formula (4), for example, the resonant frequency of the relay coil 104b within the scope of formula (4) It may be variable. In this case, for example, a resonance frequency control unit for controlling the resonance frequency of the relay coil 104b may be further provided so that the resonance frequency of the relay coil 104b is suitably controlled based on the deviation amount G or the like.
 [第2の実施の形態]
 以下では、本発明の第2の実施の形態について説明する。図7は、本発明の第2の実施の形態に係る送受電システム10’の構成を示す図である。図7に示すように、本発明の第2の実施の形態に係る送受電システム10’は、送電コイル104aの内側に中継コイル104b’が配置されている点を除いて、上記説明した第1の実施の形態に係る送受電システム10と同様である。
[Second Embodiment]
Below, the 2nd Embodiment of this invention is described. FIG. 7 is a diagram showing a configuration of a power transmission / reception system 10 ′ according to the second embodiment of the present invention. As shown in FIG. 7, in the power transmission / reception system 10 ′ according to the second embodiment of the present invention, the first described above except that the relay coil 104b ′ is arranged inside the power transmission coil 104a. This is the same as the power transmission / reception system 10 according to the embodiment.
 図8Aおよび図8Bは、送電コイル104aと、受電コイル154aと、中継コイル104b’の位置関係を示す図である。図8Aは、受電コイル154aの中心の位置が送電コイル104aの中心の位置のほぼ直上に位置している場合の受電コイル154a、送電コイル104a、中継コイル104b’を真横から見た図である。一方、図8Bは、受電コイル154aの中心の位置が送電コイル104aの中心の位置のほぼ直上に位置している場合の受電コイル154a、送電コイル104a、中継コイル104b’を真上から見た図である。図8Aおよび図8Bに示すように、送電コイル104aの内側に、送電コイル104aよりも径が小さい中継コイル104b’が配置されている。 8A and 8B are diagrams showing the positional relationship among the power transmission coil 104a, the power reception coil 154a, and the relay coil 104b '. FIG. 8A is a view of the power reception coil 154a, the power transmission coil 104a, and the relay coil 104b 'seen from the side when the center position of the power reception coil 154a is located almost immediately above the center position of the power transmission coil 104a. On the other hand, FIG. 8B is a diagram in which the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b ′ are viewed from directly above when the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a. It is. As shown in FIGS. 8A and 8B, a relay coil 104b 'having a smaller diameter than the power transmission coil 104a is disposed inside the power transmission coil 104a.
 図8Aおよび図8Bに例示するように、受電コイル154aの中心の位置が送電コイル104aの中心の位置のほぼ直上に位置している。換言すれば、送電コイル104aと受電コイル154aとの距離よりも、受電コイル154aと中継コイル104b’との距離の方が近い。このような場合には、送電コイル104aから直接受電コイル154aに電力伝送を行うよりも、送電コイル104aから中継コイル104b’を中継して受電コイル154aに電力伝送を行う方が送電効率を向上させることができる。 8A and 8B, the center position of the power receiving coil 154a is located almost immediately above the center position of the power transmitting coil 104a. In other words, the distance between the power receiving coil 154a and the relay coil 104b 'is shorter than the distance between the power transmitting coil 104a and the power receiving coil 154a. In such a case, the power transmission efficiency is improved by relaying the relay coil 104b ′ from the power transmission coil 104a to the power reception coil 154a rather than performing power transmission directly from the power transmission coil 104a to the power reception coil 154a. be able to.
 一方、図9Aおよび図9Bは、受電コイル154aの中心の位置が送電コイル104aの中心の位置の直上からずれている場合の位置関係を示している。図9Aは、受電コイル154aの中心の位置が送電コイル104aの中心の位置の直上からずれ量G’だけずれた位置にある場合の受電コイル154a、送電コイル104a、中継コイル104b’を真横から見た図である。一方、図9Bは、受電コイル154aの中心の位置が送電コイル104aの中心の位置の直上からずれ量G’だけずれた位置にある場合の受電コイル154a、送電コイル104a、中継コイル104b’を真上から見た図である。 On the other hand, FIG. 9A and FIG. 9B show the positional relationship when the center position of the power receiving coil 154a is shifted from immediately above the center position of the power transmitting coil 104a. FIG. 9A shows the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b ′ viewed from the side when the position of the center of the power receiving coil 154a is shifted by a shift amount G ′ from directly above the position of the center of the power transmitting coil 104a. It is a figure. On the other hand, FIG. 9B shows that the power receiving coil 154a, the power transmitting coil 104a, and the relay coil 104b ′ are true when the position of the center of the power receiving coil 154a is shifted by a shift amount G ′ from directly above the position of the center of the power transmitting coil 104a. It is the figure seen from the top.
 図9Aおよび図9Bに例示するように、中継コイル104b’と受電コイル154aとの距離よりも、送電コイル104aと受電コイル154aとの距離の方が近い。このような場合には、送電コイル104aから中継コイル104b’を中継して受電コイル154aに電力伝送を行う場合と、送電コイル104aから直接受電コイル154aに電力伝送を行う場合との送電効率がほぼ同じ、あるいは中継コイル104b’を中継しない方が送電効率を向上させることができる。 9A and 9B, the distance between the power transmission coil 104a and the power reception coil 154a is closer than the distance between the relay coil 104b 'and the power reception coil 154a. In such a case, the transmission efficiency is almost the same when the power transmission coil 104a relays the relay coil 104b ′ to transmit power to the power reception coil 154a and when power transmission is performed directly from the power transmission coil 104a to the power reception coil 154a. The power transmission efficiency can be improved by repeating the same or no relay coil 104b ′.
 図10は、第2の実施の形態に係る送受電システム10’における、結合係数k1r、k12、およびk2rの大きさと、送電コイル104aから見た受電コイル154aのずれ量G’に応じた結合係数の変化を示す図である。上述したように、結合係数はコイル間の距離に応じて変化し、一般にコイル間の距離が遠くなるほど結合係数は小さくなる。図10において、送電コイル104aおよび中継コイル104b’との距離は不変であるため、送電コイル104aおよび中継コイル104b’との結合係数k1rはずれ量G’によって大きくは変化しない。一方、送電コイル104aと受電コイル154aとの距離、および中継コイル104b’と受電コイル154aとの距離は、ずれ量G’に応じて変化する。図10に示す例では、ずれ量G’までは送電コイル104aと受電コイル154aとの結合係数k12の方が、受電コイル154aと中継コイル104b’との結合係数k2rよりも小さくなっている。なお、図10に示すずれ量G’とは、送電コイル104aと受電コイル154aとの距離と、受電コイル154aと中継コイル104b’とが等しくなるずれ量である。なお、図10において、ずれ量G’はずれ量の最大値(限度値)であり、本発明の所定のずれ量に対応している。 FIG. 10 shows the magnitudes of the coupling coefficients k 1r , k 12 , and k 2r and the shift amount G ′ of the power receiving coil 154a viewed from the power transmitting coil 104a in the power transmitting / receiving system 10 ′ according to the second embodiment. It is a figure which shows the change of the coupling coefficient. As described above, the coupling coefficient changes in accordance with the distance between the coils. Generally, the coupling coefficient decreases as the distance between the coils increases. In FIG. 10, since the distance between the power transmission coil 104a and the relay coil 104b ′ is not changed, the coupling coefficient k 1r between the power transmission coil 104a and the relay coil 104b ′ does not change greatly depending on the shift amount G ′. On the other hand, the distance between the power transmission coil 104a and the power reception coil 154a and the distance between the relay coil 104b ′ and the power reception coil 154a vary according to the deviation amount G ′. In the example shown in FIG. 10, the deviation amount G 1 'until towards the coupling coefficient k 12 of the power transmission coil 104a and the receiving coil 154a is a power receiving coil 154a relay coil 104b' is smaller than the coupling coefficient k 2r and Yes. The shift amount G 1 ′ shown in FIG. 10 is a shift amount at which the distance between the power transmission coil 104a and the power reception coil 154a and the power reception coil 154a and the relay coil 104b ′ are equal. In FIG. 10, the deviation amount G L ′ is the maximum value (limit value) of the deviation amount and corresponds to the predetermined deviation amount of the present invention.
 以上説明したように、本発明の第2の実施の形態において、中継コイル104b’は、送電コイル104aより内側に配置される。このような構成により、送電コイル104aの中心の位置から受電コイル154aの中心の位置までのずれ量G’がずれ量G’より小さい場合には、送電コイル104aと受電コイル154aとの距離よりも、受電コイル154aと中継コイル104b’との距離の方が近くなる。この場合、送電コイル104aから直接受電コイル154aに電力伝送を行うよりも、送電コイル104aから中継コイル104b’を中継して受電コイル154aに電力伝送を行う方が送電効率を向上させることができる。 As described above, in the second embodiment of the present invention, the relay coil 104b ′ is disposed inside the power transmission coil 104a. With such a configuration, when the shift amount G ′ from the center position of the power transmission coil 104a to the center position of the power reception coil 154a is smaller than the shift amount G 1 ′, the distance between the power transmission coil 104a and the power reception coil 154a. However, the distance between the power receiving coil 154a and the relay coil 104b ′ is closer. In this case, the power transmission efficiency can be improved by relaying the relay coil 104b ′ from the power transmission coil 104a and performing power transmission to the power reception coil 154a rather than performing power transmission directly from the power transmission coil 104a to the power reception coil 154a.
 また、ずれ量G’がG’より大きい場合には、送電コイル104aから中継コイル104b’を中継して受電コイル154aに電力伝送を行う場合と、送電コイル104aから直接受電コイル154aに電力伝送を行う場合との送電効率がほぼ同じ、あるいは中継コイル104b’を中継しない方が送電効率を向上させることができる。 When the deviation G ′ is larger than G 1 ′, power is transmitted from the power transmission coil 104a to the power receiving coil 154a through the relay coil 104b ′, and power is transmitted directly from the power transmission coil 104a to the power receiving coil 154a. The power transmission efficiency can be improved if the power transmission efficiency is substantially the same as in the case of performing the above or if the relay coil 104b ′ is not relayed.
 このように、第2の実施の形態に係る送受電システム10’によれば、ずれ量G’が0から所定のずれ量G’までの間であるとき、どのようなずれ量であっても、送電効率を向上させることができるようになる。 Thus, according to the power transmission / reception system 10 ′ according to the second embodiment, when the deviation amount G ′ is between 0 and the predetermined deviation amount G L ′, what is the deviation amount? Even power transmission efficiency can be improved.
 [本発明の変形例]
 上述した実施の形態では、送電コイル104a側に中継コイル104bあるいは104b’を設ける例について説明した。本発明の変形例として、例えば車輌150が有する受電コイル154a側に中継コイルを設けるようにしてもよい。
[Modification of the present invention]
In the above-described embodiment, the example in which the relay coil 104b or 104b ′ is provided on the power transmission coil 104a side has been described. As a modification of the present invention, for example, a relay coil may be provided on the power receiving coil 154a side of the vehicle 150.
 また、上述した実施の形態では、磁気共鳴方式を利用した非接触の送受電システムについて説明した。しかしながら、本発明はこれに限定されず、例えば電磁誘導方式等、他の方式の送受電システムでも、LC共振を利用したシステムに対しては適用することができる。 In the above-described embodiment, the non-contact power transmission / reception system using the magnetic resonance method has been described. However, the present invention is not limited to this, and other power transmission / reception systems such as an electromagnetic induction system can be applied to a system using LC resonance.
 本発明は、例えば受電コイルを有する車輌に送電する送電装置および送受電システムに適用することができる。 The present invention can be applied to, for example, a power transmission device and a power transmission / reception system that transmit power to a vehicle having a power reception coil.
 10,10’ 送受電システム
 100 送電装置
 101 送電側通信部
 102 記憶部
 103 送電側制御部
 104a 送電コイル
 104b,104b’ 中継コイル(第3のコイル)
 150 車輌(受電装置)
 151 車輌側操作部
 152 蓄電池
 153 車輌側制御部
 154a 受電コイル
 155 車輌側通信部
 160 送電側操作部
10, 10 'Power transmission / reception system 100 Power transmission device 101 Power transmission side communication unit 102 Storage unit 103 Power transmission side control unit 104a Power transmission coil 104b, 104b' Relay coil (third coil)
150 vehicle (power receiving device)
151 vehicle side operation unit 152 storage battery 153 vehicle side control unit 154a power receiving coil 155 vehicle side communication unit 160 power transmission side operation unit

Claims (12)

  1.  受電装置の受電コイルに対して、電磁力を利用して送電を行う送電コイルと、
     前記送電コイルから前記受電コイルへの送電を中継する第3のコイルと、
     を備え、
     前記送電コイルの中心位置から前記受電コイルの中心位置までの距離をずれ量とし、前記送電コイルと前記受電コイルとの結合係数を第1の結合係数とし、前記受電コイルと前記第3のコイルとの結合係数を第2の結合係数とすると、前記第1の結合係数が前記第2の結合係数より大きくなるずれ量の範囲と、前記第2の結合係数が前記第1の結合係数より大きくなるずれ量の範囲と、の両方が存在し、
     前記第3のコイルの共振周波数は、前記送電コイルの駆動周波数の最小値よりも大きい、
     送電装置。
    A power transmission coil that transmits power using electromagnetic force with respect to the power reception coil of the power reception device;
    A third coil that relays power transmission from the power transmission coil to the power reception coil;
    With
    The distance from the center position of the power transmission coil to the center position of the power reception coil is a shift amount, the coupling coefficient between the power transmission coil and the power reception coil is a first coupling coefficient, and the power reception coil and the third coil If the second coupling coefficient is the second coupling coefficient, the range of deviations in which the first coupling coefficient is larger than the second coupling coefficient, and the second coupling coefficient is larger than the first coupling coefficient. Both the range of the deviation amount,
    The resonance frequency of the third coil is greater than the minimum value of the drive frequency of the power transmission coil,
    Power transmission device.
  2.  前記第3のコイルの共振周波数は、前記送電コイルから前記受電コイルに対する送電の効率が最大となる周波数以下である、
     請求項1に記載の送電装置。
    The resonance frequency of the third coil is equal to or lower than a frequency at which power transmission efficiency from the power transmission coil to the power reception coil is maximized.
    The power transmission device according to claim 1.
  3.  前記第3のコイルの共振周波数は、以下の数式(5)の範囲内である、
     請求項2に記載の送電装置:
    Figure JPOXMLDOC01-appb-M000005
    The resonance frequency of the third coil is within the range of the following formula (5).
    The power transmission device according to claim 2:
    Figure JPOXMLDOC01-appb-M000005
  4.  前記第3のコイルは、前記送電コイルよりも外側に配置される、
     請求項1に記載の送電装置。
    The third coil is disposed outside the power transmission coil.
    The power transmission device according to claim 1.
  5.  前記第3のコイルは、前記送電コイルの内側に配置される、
     請求項1に記載の送電装置。
    The third coil is disposed inside the power transmission coil;
    The power transmission device according to claim 1.
  6.  前記ずれ量は、平面コイルである前記送電コイルおよび前記受電コイルのそれぞれの中心位置の水平距離である、
     請求項1に記載の送電装置。
    The deviation amount is a horizontal distance between the center positions of the power transmission coil and the power reception coil that are planar coils.
    The power transmission device according to claim 1.
  7.  電磁力を利用して送電を行う送電コイルから受電する受電コイルと、
     前記送電コイルから前記受電コイルへの送電を中継する第3のコイルと、
     を備え、
     前記送電コイルの中心位置から前記受電コイルの中心位置までの距離をずれ量とし、前記送電コイルと前記受電コイルとの結合係数を第1の結合係数とし、前記送電コイルと前記第3のコイルとの結合係数を第3の結合係数とすると、前記第1の結合係数が前記第3の結合係数より大きくなるずれ量の範囲と、前記第3の結合係数が前記第1の結合係数より大きくなるずれ量の範囲と、の両方が存在し、
     前記第3のコイルの共振周波数は、前記受電コイルの駆動周波数の最小値よりも大きい、
     受電装置。
    A power receiving coil that receives power from a power transmitting coil that transmits power using electromagnetic force;
    A third coil that relays power transmission from the power transmission coil to the power reception coil;
    With
    The distance from the center position of the power transmission coil to the center position of the power reception coil is a shift amount, the coupling coefficient between the power transmission coil and the power reception coil is a first coupling coefficient, and the power transmission coil and the third coil If the third coupling coefficient is the third coupling coefficient, the range of deviations in which the first coupling coefficient is greater than the third coupling coefficient, and the third coupling coefficient is greater than the first coupling coefficient. Both the range of the deviation amount,
    The resonance frequency of the third coil is greater than the minimum value of the driving frequency of the power receiving coil,
    Power receiving device.
  8.  前記第3のコイルの共振周波数は、前記送電コイルから前記受電コイルに対する送電の効率が最大となる周波数以下である、
     請求項7に記載の受電装置。
    The resonance frequency of the third coil is equal to or lower than a frequency at which power transmission efficiency from the power transmission coil to the power reception coil is maximized.
    The power receiving device according to claim 7.
  9.  前記第3のコイルの共振周波数は、以下の数式(6)の範囲内である、
     請求項8に記載の受電装置:
    Figure JPOXMLDOC01-appb-M000006
    The resonance frequency of the third coil is within the range of the following mathematical formula (6).
    The power receiving device according to claim 8:
    Figure JPOXMLDOC01-appb-M000006
  10.  受電コイルを有する受電装置を備える車輌に対して、電磁力を利用して送電を行う送電装置を備える送受電システムであって、
     前記送電装置は、
     送電コイルと、
     前記送電コイルから前記受電コイルへの送電を中継する第3のコイルと、
     を有し、
     前記送電コイルの中心位置から前記受電コイルの中心位置までの距離をずれ量とし、前記送電コイルと前記受電コイルとの結合係数を第1の結合係数とし、前記受電コイルと前記第3のコイルとの結合係数を第2の結合係数とすると、前記第1の結合係数が前記第2の結合係数より大きくなるずれ量の範囲と、前記第2の結合係数が前記第1の結合係数より大きくなるずれ量の範囲と、の両方が存在し、
     前記第3のコイルの共振周波数は、送電コイルの駆動周波数の最小値よりも大きい、
     送受電システム。
    A power transmission / reception system including a power transmission device that transmits power using electromagnetic force to a vehicle including a power reception device having a power reception coil,
    The power transmission device is:
    A power transmission coil;
    A third coil that relays power transmission from the power transmission coil to the power reception coil;
    Have
    The distance from the center position of the power transmission coil to the center position of the power reception coil is a shift amount, the coupling coefficient between the power transmission coil and the power reception coil is a first coupling coefficient, and the power reception coil and the third coil If the second coupling coefficient is the second coupling coefficient, the range of deviations in which the first coupling coefficient is larger than the second coupling coefficient, and the second coupling coefficient is larger than the first coupling coefficient. Both the range of the deviation amount,
    The resonance frequency of the third coil is greater than the minimum value of the drive frequency of the power transmission coil,
    Power transmission / reception system.
  11.  前記第3のコイルの共振周波数は、前記送電コイルから前記受電コイルに対する送電の効率が最大となる周波数以下である、
     請求項10に記載の送受電システム。
    The resonance frequency of the third coil is equal to or lower than a frequency at which power transmission efficiency from the power transmission coil to the power reception coil is maximized.
    The power transmission / reception system according to claim 10.
  12.  前記第3のコイルの共振周波数は、以下の数式(7)の範囲内である、
     請求項11に記載の送受電システム:
    Figure JPOXMLDOC01-appb-M000007
    The resonance frequency of the third coil is within the range of the following mathematical formula (7).
    The power transmission / reception system according to claim 11:
    Figure JPOXMLDOC01-appb-M000007
PCT/JP2016/005202 2016-01-18 2016-12-21 Power transmitting device, power receiving device, and power transmitting/receiving system WO2017125986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016007246A JP2017130996A (en) 2016-01-18 2016-01-18 Power transmission device, power reception device and power transmission/reception system
JP2016-007246 2016-01-18

Publications (1)

Publication Number Publication Date
WO2017125986A1 true WO2017125986A1 (en) 2017-07-27

Family

ID=59361631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/005202 WO2017125986A1 (en) 2016-01-18 2016-12-21 Power transmitting device, power receiving device, and power transmitting/receiving system

Country Status (2)

Country Link
JP (1) JP2017130996A (en)
WO (1) WO2017125986A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6693556B2 (en) * 2016-03-18 2020-05-13 株式会社村田製作所 Wireless power supply system and power transmission device thereof
JP7172900B2 (en) * 2019-07-26 2022-11-16 株式会社デンソー Power supply system while driving
CN113595263B (en) * 2021-09-29 2022-04-29 成都斯普奥汀科技有限公司 Magnetic resonance wireless charging system for prolonging transverse coupling distance of transmitting and receiving antenna

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148273A (en) * 2007-12-14 2010-07-01 Darfon Electronics Corp Energy transfer system and energy transfer method
JP2011130614A (en) * 2009-12-18 2011-06-30 Nissan Motor Co Ltd Noncontact power supply
WO2013065277A1 (en) * 2011-10-31 2013-05-10 日本電気株式会社 Wireless power supply device and coil usage method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148273A (en) * 2007-12-14 2010-07-01 Darfon Electronics Corp Energy transfer system and energy transfer method
JP2011130614A (en) * 2009-12-18 2011-06-30 Nissan Motor Co Ltd Noncontact power supply
WO2013065277A1 (en) * 2011-10-31 2013-05-10 日本電気株式会社 Wireless power supply device and coil usage method

Also Published As

Publication number Publication date
JP2017130996A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
EP2528193B1 (en) Contactless electric power receiving apparatus, contactless electric power transmitting apparatus, contactless electric power feeding system, and vehicle
US9142986B2 (en) Coil unit, non-contact power transmitting apparatus, non-contact power receiving apparatus, vehicle, and non-contact power supply system
JP6119756B2 (en) Non-contact power supply system and power transmission device
US9666359B2 (en) Vehicle, power receiving device, power transmitting device, and contactless power supply system
JP5643270B2 (en) Vehicle and contactless power supply system
JP5537981B2 (en) Mobile power feeder
JP5648694B2 (en) Non-contact power supply system and power supply equipment
JP5083480B2 (en) Non-contact power supply facility, vehicle, and control method for non-contact power supply system
JP5347708B2 (en) Coil unit, non-contact power transmission device, non-contact power feeding system, and vehicle
US20160241061A1 (en) Clover leaf and butterfly coil structures for flat wireless coupling profiles in wireless power transfer applications
WO2011118404A1 (en) Power-feed device
JP2011147213A (en) Electric power transmission system and power feeder for vehicle
WO2010041312A1 (en) Vehicle supplied with energy from outside by non-contacting method and vehicle control method
WO2013061441A1 (en) Non-contact power receiving apparatus, non-contact power transmitting apparatus, and non-contact power transmitting/receiving system
JP2011167036A (en) Electric power feed device for vehicle, and electric power reception device
JP6222107B2 (en) vehicle
CN104426247A (en) Power reception device, power transmission device and power transfer system
WO2017125986A1 (en) Power transmitting device, power receiving device, and power transmitting/receiving system
JP5287115B2 (en) Vehicle power reception control device and vehicle including the same
JP2013132141A (en) Power transmission system
JP2014103823A (en) Power transmission device, power reception device, vehicle having power reception device and power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886230

Country of ref document: EP

Kind code of ref document: A1