WO2017124989A1 - 一种ue、基站中的调度方法和装置 - Google Patents

一种ue、基站中的调度方法和装置 Download PDF

Info

Publication number
WO2017124989A1
WO2017124989A1 PCT/CN2017/071299 CN2017071299W WO2017124989A1 WO 2017124989 A1 WO2017124989 A1 WO 2017124989A1 CN 2017071299 W CN2017071299 W CN 2017071299W WO 2017124989 A1 WO2017124989 A1 WO 2017124989A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
signaling
frequency
resource
Prior art date
Application number
PCT/CN2017/071299
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2017124989A1 publication Critical patent/WO2017124989A1/zh
Priority to US15/856,093 priority Critical patent/US10506624B2/en
Priority to US16/679,854 priority patent/US11224061B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to transmission schemes in wireless communication systems, and more particularly to methods and apparatus for supporting downlink scheduling for narrowband transmission.
  • NB-IOT NarrowBand Internet of Things
  • Protection band operation that is, deployment on unused resource blocks in the guard band of LTE (Long Term Evolution) carrier.
  • the UE User Equipment
  • the UE supports a radio frequency (Radio Frequency) bandwidth of 180 kHz (kiloHertz, kilohertz) in both uplink and downlink, that is, a PRB (Physical Resource Block).
  • Radio Frequency Radio Frequency
  • PRB Physical Resource Block
  • the NB-IOT system introduced the concept of Single-tone (multi-frequency) transmission and Multi-tone (multi-frequency) transmission on the uplink.
  • Single-tone means that when the UE transmits in the uplink, it will only transmit on one subcarrier.
  • Multi-tone transmission uses the LTE (Long Term Evolution) uplink SC-FDMA (Single Carrier-Frequency Division Multiple Access) transmission method, that is, PRB (Physical) composed of multiple subcarriers. Resource Block, physical resource block pair) is transmitted.
  • LTE Long Term Evolution
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • PRB Physical
  • Resource Block Physical resource block pair
  • the downlink HARQ-ACK can be uploaded on the PHICH (Physical Hybrid ARQ Indicator Channel) or the PDCCH (Physical Downlink Control Channel). lose.
  • PHICH Physical Hybrid ARQ Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • the inventors have found through research that if the downlink HARQ-ACK and downlink data are transmitted on one physical layer channel, how to configure the time-frequency resource occupied by the downlink HARQ-ACK and the time-frequency resource occupied by the downlink data for the UE is a problem to be solved. problem.
  • An intuitive solution is that the base station sends two independent downlink signalings to indicate the time-frequency resources occupied by the downlink HARQ-ACK and the time-frequency resources occupied by the downlink data. The above intuitive solution may result in excessive signaling redundancy or waste of resources.
  • the downlink HARQ-ACK may exist only in a part of the PRBs occupied by the downlink data, that is, the time-frequency resources occupied by the downlink data in each PRB are changed. Therefore, scheduling signaling for uplink data may require allocating resources for each PRB.
  • the present invention provides a solution to the above problems. It should be noted that, in the case of no conflict, the features in the embodiments and embodiments in the UE (User Equipment) of the present application can be applied to the base station, and vice versa. Further, the features of the embodiments and the embodiments of the present application may be combined with each other arbitrarily without conflict.
  • the invention discloses a method in a UE supporting narrowband communication, which comprises the following steps:
  • Step B Receive a wireless signal on the target time-frequency resource.
  • the first time-frequency resource includes a first time-frequency resource, and the first time-frequency resource includes a second time-frequency resource.
  • the target time-frequency resource includes a time-frequency resource in the first time-frequency resource and outside the second time-frequency resource.
  • the target time-frequency resource and the second time-frequency resource are orthogonal.
  • the first time-frequency resource includes T1 subframes in the time domain and P1 subcarriers in the frequency domain.
  • the second time-frequency resource includes T2 subframes in the T1 subframes in the time domain.
  • the T1 and the P1 are respectively positive integers, and the T2 is smaller than the T1.
  • the essence of the foregoing method is that the UE is indicated by the first signaling.
  • the wireless signal is transmitted on part of the time-frequency resources in the first time-frequency resource.
  • the first signaling does not need to explicitly indicate the target time-frequency resource, which saves signaling overhead.
  • the transport channel corresponding to the wireless signal is a DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • the UE does not need to occupy the second time-frequency resource to send the wireless signal by default, that is, the configuration of the first signaling is not required, and the overhead of the first signaling is further saved.
  • the second time-frequency resource is idle, the above method cannot flexibly utilize the second time-frequency resource.
  • the following method solves this problem.
  • the invention discloses a method in a UE supporting narrowband communication, which comprises the following steps:
  • Step B Send a wireless signal on the target time-frequency resource.
  • the first time-frequency resource includes a first time-frequency resource, and the first time-frequency resource includes a second time-frequency resource.
  • the target time-frequency resource includes a time-frequency resource in the first time-frequency resource and outside the second time-frequency resource.
  • the first signaling indicates whether the target time-frequency resource includes the second time-frequency resource.
  • the first time-frequency resource includes T1 subframes in the time domain and P1 subcarriers in the frequency domain.
  • the second time-frequency resource includes T2 subframes in the T1 subframes in the time domain.
  • the T1 and the P1 are respectively positive integers, and the T2 is smaller than the T1.
  • the first signaling indicates whether the target time-frequency resource includes a second time-frequency resource, and determining whether the wireless signal can occupy the second time-frequency resource according to the usage of the second time-frequency resource .
  • the above method improves the resource utilization efficiency, at the cost of slightly increasing the overhead caused by the first signaling.
  • whether the target time-frequency resource includes the second time-frequency resource is indicated by one bit in the first signaling.
  • the first signaling is physical layer signaling.
  • the first signaling is physical layer signaling, and the first signaling includes scheduling information of the wireless signal.
  • the frequency band occupied by the wireless signal at any time does not exceed 180 kHz.
  • the first signaling is DCI (Downlink Control Information) for downlink grant.
  • DCI Downlink Control Information
  • the location of the second time-frequency resource in the first time-frequency resource is fixed.
  • the first signaling is a DCI for downlink grant
  • the transport channel corresponding to the wireless signal is a DL-SCH.
  • the step A further includes the following steps:
  • the second signaling indicates a third time-frequency resource, and the second time-frequency resource is a part of the third time-frequency resource.
  • the second signaling is high layer signaling.
  • the base station can reserve time-frequency resources for HARQ-ACK dynamically or semi-statically.
  • the above method is more flexible than a fixed (i.e., non-configurable) second time-frequency resource scheme, i.e., an existing system PHICH scheme.
  • the third time-frequency resource is a time-frequency resource reserved for the downlink HARQ-ACK corresponding to the UL-SCH (Uplink Shared Channel).
  • the second signaling is high layer signaling
  • the third time frequency resource is periodic in the time domain.
  • the third time-frequency resources are distributed in a positive integer number of time windows in the time domain.
  • the time window occupies M consecutive milliseconds (ms) in the time domain, and the positive integer time windows are periodically distributed in the time domain.
  • the second signaling is higher layer signaling.
  • the second signaling is cell common signaling.
  • the second signaling is RRC (Radio Resource Control) common signaling.
  • the second signaling is RRC-specific signaling.
  • the second signaling is physical layer signaling.
  • the step A further includes the following steps:
  • the determining the second time-frequency resource refers to determining, by the UE, the location of the time domain and the frequency domain resource occupied by the second time-frequency resource by default.
  • the UE determines the second time-frequency resource in the downlink subframe corresponding to the (m+m1) millisecond.
  • the location of the second time-frequency resource in the first time-frequency resource is fixed.
  • the location of the second time-frequency resource in the first time-frequency resource is fixed, and the UE acquires the downlink feedback corresponding to the uplink data transmission by using a fixed DL HARQ-ACK timing relationship.
  • the advantage of this method is that for the user waiting for the HARQ-ACK feedback after transmitting the uplink data, no additional signaling is required to indicate the location of the time-frequency resource where the waiting HARQ-ACK is located.
  • the step A further includes the following step A2, the step B further comprising the following step B1:
  • Step B1. Receive a first HARQ-ACK indicating whether the uplink signal is correctly decoded.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, or the first HARQ-ACK is transmitted in the third time-frequency resource.
  • the transport channel used to carry the uplink signal is a UL-SCH.
  • the uplink signal occupies no more than 180 kHz at any time.
  • the bandwidth occupied by the first HARQ-ACK at any time does not exceed 180 kHz.
  • the operation start time of receiving the first HARQ-ACK is not earlier than the n1+k millisecond.
  • k is a positive integer greater than or equal to 4
  • k is a predefined or system high layer signaling configuration.
  • the operation start time of receiving the first HARQ-ACK is the n1+k1 millisecond.
  • k1 is a positive integer greater than or equal to 4
  • k1 is a predefined or system high layer signaling configuration.
  • the operation start time of receiving the first HARQ-ACK is the n1+k1 millisecond.
  • k1 is a positive integer greater than or equal to 4
  • LTE corresponding to n1+k1 milliseconds The subframe includes a partial time-frequency resource of a third time-frequency resource, where the partial time-frequency resource is used for transmission of the first HARQ-ACK.
  • the first signaling is physical layer signaling, and the first signaling includes scheduling information of the wireless signal.
  • the first signaling indicates that the target time-frequency resource does not include the second time-frequency resource and the wireless signal adopts a rate matching scheme to avoid occupying the second time-frequency resource.
  • the first signaling indicates whether the target time-frequency resource includes a second time-frequency resource
  • the UE can perform resource mapping on the wireless signal by using a rate matching manner to avoid using The Puncturing mode performs resource mapping. Rate matching corresponds to better reception performance than puncturing.
  • the use of the rate matching scheme of the wireless signal to avoid occupying the second time-frequency resource means that the modulation symbols included in the wireless signal are sequentially mapped to the ⁇ frequency domain first, time domain second ⁇ manner.
  • the RU (Resource Unit) included in the target time-frequency resource is removed.
  • the RU includes an OFDM (Orthogonal Frequency Division Multiplexing) symbol in the time domain, and includes one subcarrier in the frequency domain.
  • the target time-frequency resource is a portion of the first time-frequency resource other than the second time-frequency resource.
  • the use of the rate matching scheme of the wireless signal to avoid occupying the second time-frequency resource means that the modulation symbols included in the wireless signal are sequentially mapped to the ⁇ time domain first, frequency domain second ⁇ manner.
  • the target time-frequency resource is included in the RU.
  • the target time-frequency resource is a portion of the first time-frequency resource other than the second time-frequency resource.
  • the bandwidth of the subcarrier in the present invention is 15 kHz.
  • the bandwidth of the subcarrier in the present invention is 3.75 kHz.
  • the scheduling information includes at least one of ⁇ MCS (Modulation Coding Status), NDI (New Data Indicator), TBS (Transport Block Size).
  • MCS Modulation Coding Status
  • NDI New Data Indicator
  • TBS Transport Block Size
  • the step A1 further includes the following steps:
  • Step A10 Receive third signaling.
  • the second signaling is high layer signaling
  • the third signaling includes scheduling information of the uplink signal.
  • the first HARQ-ACK is transmitted in the second time-frequency resource and the third signaling indicates the time-frequency resource occupied by the first HARQ-ACK from the second time-frequency resource.
  • the bandwidth occupied by the second time-frequency resource and the first time-frequency resource in the frequency domain is equal.
  • the first HARQ-ACK is transmitted in the third time-frequency resource and the third signaling indicates the time-frequency resource occupied by the first HARQ-ACK from the third time-frequency resource.
  • the bandwidth occupied by the second time-frequency resource and the first time-frequency resource in the frequency domain is different.
  • the scheduling information of the uplink signal refers to a DCI for scheduling UL grant of the uplink signal.
  • the third time-frequency resource includes a sub-resource periodically appearing in the time domain, and the second time-frequency resource is a sub-resource that occurs once; or the UE according to the given information Determining a time domain location of the second time-frequency resource in the third time-frequency resource.
  • the given information is at least one of the following:
  • the current operation mode refers to which of the ⁇ independent operation, guard interval operation, in-band operation ⁇ currently used.
  • the duplex mode refers to which of the currently used duplex modes is ⁇ FDD (Frequency Division Duplexing) and TDD (Time Division Duplexing).
  • the transmission mode of the uplink signal refers to which one of ⁇ single frequency, multi-frequency ⁇ is transmitted by the uplink signal.
  • the subcarrier spacing of the uplink signal refers to which of the subcarrier spacings used in the uplink signal transmission is ⁇ 3.75 kHz, 15 kHz ⁇ .
  • the independent operation means that the narrowband communication is deployed on a spectrum used by the GERAN system.
  • the guard interval operation means that the narrowband communication is deployed on an unused resource block in a guard band of an LTE carrier.
  • the in-band operation refers to the narrowband communication on an LTE carrier. Deploy on the resource block.
  • the second signaling configures an independent third time-frequency resource for different operating modes, and the UE selects a corresponding third time-frequency resource according to the operating mode in which the UE determines the location of the second time-frequency resource.
  • the second signaling configures independent third time-frequency resources for different duplex modes, and the UE selects a corresponding third time-frequency resource according to the duplex mode in which the UE determines the location of the second time-frequency resource.
  • the second signaling configures an independent third time-frequency resource for the transmission mode of the different uplink signals, and the UE selects the corresponding third time-frequency resource according to the transmission mode of the uplink signal to determine the location of the second time-frequency resource.
  • the third time-frequency resource indicated by the second signaling is used for multi-frequency transmission, and the first HARQ-ACK for single-frequency transmission is transmitted on the fourth time-frequency resource, where the fourth time-frequency resource is A subset of the third time-frequency resource.
  • the third time-frequency resources are distributed in a positive integer time window in the time domain, and the positive integer time windows are periodically distributed in the time domain, and the period is Q1.
  • the fourth time-frequency resource is distributed in a positive integer time window in the time domain, and the positive integer time windows are periodically distributed in the time domain, and the period is Q2.
  • Q2 is a positive integer multiple of Q1.
  • the third time-frequency resource indicated by the second signaling is used in a scenario where the sub-carrier spacing of the uplink signal is 15 kHz, and the first HARQ-ACK of the scenario in which the sub-carrier spacing of the uplink signal is 3.75 kHz is in the fourth.
  • the time-frequency resource is transmitted, and the fourth time-frequency resource is a subset of the third time-frequency resource.
  • the third time-frequency resources are distributed in a positive integer time window in the time domain, and the positive integer time windows are periodically distributed in the time domain, and the period is Q1.
  • the fourth time-frequency resource is distributed in a positive integer time window in the time domain, and the positive integer time windows are periodically distributed in the time domain, and the period is Q2.
  • Q2 is a positive integer multiple of Q1.
  • the invention discloses a method in a base station supporting narrowband communication, which comprises the following steps:
  • Step B Send a wireless signal on the target time-frequency resource.
  • the first time-frequency resource includes a first time-frequency resource, and the first time-frequency resource includes a second time-frequency resource.
  • the target time-frequency resource includes a time-frequency resource in the first time-frequency resource and outside the second time-frequency resource.
  • the target time-frequency resource and the second time-frequency resource are orthogonal, or the first signaling indicates whether the target time-frequency resource includes the second time-frequency resource.
  • the first time-frequency resource includes T1 subframes in the time domain and P1 subcarriers in the frequency domain.
  • the second time-frequency resource includes T2 subframes in the T1 subframes in the time domain.
  • the T1 and the P1 are respectively positive integers, and the T2 is smaller than the T1.
  • the location of the second time-frequency resource in the first time-frequency resource is fixed, that is, it is not required to be configured by downlink signaling.
  • the first signaling is a DCI for downlink grant
  • the transport channel corresponding to the wireless signal is a DL-SCH.
  • the step A further includes the following steps:
  • the second signaling indicates a third time-frequency resource, and the second time-frequency resource is a part of the third time-frequency resource.
  • the second signaling is high layer signaling.
  • the third time-frequency resource includes a sub-resource that periodically appears in the time domain, and the second time-frequency resource is a sub-resource that occurs once.
  • the step A further includes the following steps:
  • Step A1 Select the second time-frequency resource.
  • the selecting the second time-frequency resource refers to the location of the time domain and the frequency domain resource occupied by the base station by default.
  • the base station selects the second time-frequency resource in the first time-frequency resource in the downlink subframe corresponding to (m+m1) milliseconds.
  • m and m1 are both positive integers, and m1 is greater than 4 and is predefined.
  • the step A further includes the following step A2, the step B further comprising the following step B1:
  • Step B1 Transmitting a first HARQ-ACK, the first HARQ-ACK indicating whether the uplink signal is correctly decoded.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, or the first HARQ-ACK is transmitted in the third time-frequency resource.
  • the first signaling is physical layer signaling, and the first signaling includes scheduling information of the wireless signal.
  • the first signaling indicates that the target time-frequency resource does not include the second time-frequency resource and the wireless signal adopts a rate matching scheme to avoid occupying the second time-frequency resource.
  • the step A1 further includes the following steps:
  • the second signaling is high layer signaling
  • the third signaling includes scheduling information of the uplink signal.
  • the first HARQ-ACK is transmitted in the second time-frequency resource
  • the third signaling indicates the time-frequency resource occupied by the first HARQ-ACK from the second time-frequency resource, or the first HARQ-ACK is in the third time-frequency resource.
  • transmitting, and the third signaling indicates, from the third time-frequency resource, a time-frequency resource occupied by the first HARQ-ACK.
  • the third time-frequency resource includes a sub-resource periodically appearing in the time domain, and the second time-frequency resource is a sub-resource that occurs once; or the base station according to The information selects the time domain location of the second time-frequency resource in the third time-frequency resource.
  • the given information is at least one of the following:
  • the current operation mode refers to which of the ⁇ independent operation, guard interval operation, in-band operation ⁇ currently used.
  • Duplex mode refers to which of the ⁇ FDD, TDD ⁇ is currently used.
  • the transmission mode of the uplink signal refers to which one of ⁇ single frequency, multi-frequency ⁇ is transmitted by the uplink signal.
  • the subcarrier spacing of the uplink signal refers to which of the subcarrier spacings used in the uplink signal transmission is ⁇ 3.75 kHz, 15 kHz ⁇ .
  • the invention discloses a user equipment supporting narrowband communication, wherein the following modules are included:
  • - Third module for receiving wireless signals on target time-frequency resources.
  • the first time-frequency resource includes a first time-frequency resource, and the first time-frequency resource includes a second time-frequency resource.
  • the target time-frequency resource includes a time-frequency resource in the first time-frequency resource and outside the second time-frequency resource.
  • the target time-frequency resource and the second time-frequency resource are orthogonal, or the first signaling indicates whether the target time-frequency resource includes the second time-frequency resource.
  • the first time-frequency resource includes T1 subframes in the time domain and P1 subcarriers in the frequency domain.
  • the second time-frequency resource includes T2 subframes in the T1 subframes in the time domain.
  • the T1 and the P1 are respectively positive integers, and the T2 is smaller than the T1.
  • the user equipment is characterized in that the first signaling is a DCI for downlink grant, and the transport channel corresponding to the wireless signal is a DL-SCH.
  • the foregoing user equipment is characterized in that the second module is further configured to receive the second signaling.
  • the second signaling indicates a third time-frequency resource, and the second time-frequency resource is a part of the third time-frequency resource.
  • the second signaling is high layer signaling.
  • the foregoing user equipment is characterized in that the third time-frequency resource includes a sub-resource that periodically appears in the time domain, and the second time-frequency resource is a sub-resource that appears once.
  • the foregoing user equipment is characterized in that the second module is further configured to determine a second time-frequency resource.
  • the foregoing user equipment is characterized by:
  • the third module is further configured to receive a first HARQ-ACK, where the first HARQ-ACK indicates whether the uplink signal is correctly decoded.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, or the first HARQ-ACK is transmitted in the third time-frequency resource.
  • the foregoing user equipment is characterized in that the first signaling is physical layer signaling, and the first signaling includes scheduling information of the wireless signal.
  • the first signaling indicates that the target time-frequency resource does not include the second time-frequency resource, and the wireless signal adopts a rate matching scheme to avoid occupying the second time-frequency resource, or the first signaling indicates that the target time-frequency resource includes the first Two time-frequency resources.
  • the foregoing user equipment is characterized in that the third module is further configured to receive the third signaling.
  • the second signaling is high layer signaling, and the third signaling includes the uplink signal. Scheduling information.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, and the third signaling indicates the time-frequency resource occupied by the first HARQ-ACK from the second time-frequency resource, or the first HARQ-ACK is in the third time-frequency resource. And transmitting, and the third signaling indicates, from the third time-frequency resource, a time-frequency resource occupied by the first HARQ-ACK.
  • the invention discloses a base station device supporting narrowband communication, which comprises the following modules:
  • - First module for receiving uplink signals.
  • - Third module for transmitting a wireless signal on the target time-frequency resource.
  • the first time-frequency resource includes a first time-frequency resource, and the first time-frequency resource includes a second time-frequency resource.
  • the target time-frequency resource includes a time-frequency resource in the first time-frequency resource and outside the second time-frequency resource.
  • the target time-frequency resource and the second time-frequency resource are orthogonal, or the first signaling indicates whether the target time-frequency resource includes the second time-frequency resource.
  • the first time-frequency resource includes T1 subframes in the time domain and P1 subcarriers in the frequency domain.
  • the second time-frequency resource includes T2 subframes in the T1 subframes in the time domain.
  • the T1 and the P1 are respectively positive integers, and the T2 is smaller than the T1.
  • the foregoing base station device is characterized in that: the first signaling is a DCI for downlink grant, and the transport channel corresponding to the wireless signal is a DL-SCH.
  • the foregoing base station device is characterized in that the second module is further configured to send the second signaling.
  • the second signaling indicates a third time-frequency resource, and the second time-frequency resource is a part of the third time-frequency resource.
  • the second signaling is high layer signaling.
  • the foregoing base station device is characterized in that the third time-frequency resource includes a sub-resource periodically appearing in the time domain, and the second time-frequency resource is a sub-resource that occurs once.
  • the foregoing base station device is characterized in that the second module is further configured to select a second time-frequency resource.
  • the foregoing base station device is characterized by:
  • the third module is further configured to send a first HARQ-ACK, where the first HARQ-ACK indicates whether the uplink signal is correctly decoded.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, or the first HARQ-ACK is transmitted in the third time-frequency resource.
  • the foregoing base station device is characterized in that the first signaling is a physical layer signaling.
  • the first signaling includes scheduling information of the wireless signal.
  • the first signaling indicates that the target time-frequency resource does not include the second time-frequency resource, and the wireless signal adopts a rate matching scheme to avoid occupying the second time-frequency resource, or the first signaling indicates that the target time-frequency resource includes the first Two time-frequency resources.
  • the foregoing base station device is characterized in that the third module is further configured to send the third signaling.
  • the second signaling is high layer signaling, and the third signaling includes scheduling information of the uplink signal.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, and the third signaling indicates the time-frequency resource occupied by the first HARQ-ACK from the second time-frequency resource, or the first HARQ-ACK is in the third time-frequency resource. And transmitting, and the third signaling indicates, from the third time-frequency resource, a time-frequency resource occupied by the first HARQ-ACK.
  • the present invention has the following technical advantages:
  • FIG. 1 shows a flow chart of downlink transmission of a wireless signal according to an embodiment of the present invention
  • FIG. 2 shows a flow chart of downlink HARQ-ACK transmission in accordance with one embodiment of the present invention
  • FIG. 3 shows a schematic diagram showing a first time-frequency resource and a second time-frequency resource in a given time window, in accordance with an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing first time-frequency resources and second time-frequency resources in a given time window according to still another embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing a first time-frequency resource in a given time window according to still another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of resource blocks occupied by a first time-frequency resource and a second time-frequency resource according to an embodiment of the present invention
  • FIG. 7 illustrates a first time-frequency resource and a second time-frequency resource according to still another embodiment of the present invention. Schematic diagram of resource blocks occupied by the source;
  • FIG. 8 is a schematic diagram showing resource blocks occupied by a third time-frequency resource according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing resource blocks occupied by a third time-frequency resource and a fourth time-frequency resource according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing resource blocks occupied by a third time-frequency resource and a fourth time-frequency resource according to still another embodiment of the present invention.
  • Figure 11 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present invention.
  • Figure 12 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present invention.
  • Embodiment 1 illustrates a flow chart of downlink transmission of a wireless signal, as shown in FIG.
  • base station N1 is the maintenance base station of the serving cell of UE U2, and the steps identified in block F1 are optional.
  • the second signaling is transmitted in step S101
  • the first signaling is transmitted in step S102
  • the wireless signal is transmitted on the target time-frequency resource in step S103.
  • the second signaling is received in step S201, the first signaling is received in step S202, and the wireless signal is received on the target time-frequency resource in step S203.
  • the second signaling indicates a third time-frequency resource
  • the second time-frequency resource is a portion in which the third time-frequency resource and the first time-frequency resource overlap each other.
  • the first signaling indicates a first time-frequency resource
  • the first time-frequency resource includes a second time-frequency resource.
  • the target time-frequency resource includes a time-frequency resource other than the second time-frequency resource in the first time-frequency resource.
  • the target time-frequency resource and the second time-frequency resource are orthogonal (ie, do not include the second time-frequency resource), or the first signaling indicates whether the target time-frequency resource includes the second time-frequency resource (first letter) And indicating that the target time-frequency resource includes a second time-frequency resource, where the target time-frequency resource is the first time-frequency resource).
  • the second signaling is high layer signaling.
  • the first signaling is physical layer signaling
  • the second signaling is RRC.
  • Common signaling The bearer channel corresponding to the wireless signal is a DL-SCH.
  • the first time-frequency resource includes T1 consecutive subframes in the time domain, and includes P1 consecutive subcarriers in the frequency domain in each subframe, the T1 and the P1 is a positive integer, respectively, and the second time-frequency resource includes T2 subframes in the T1 subframes in the time domain, and the T2 is smaller than the T1.
  • the first signaling includes scheduling information of the wireless signal.
  • the first signaling indicates that the target time-frequency resource does not include the second time-frequency resource, and the wireless signal adopts a rate matching scheme to avoid occupying the second time-frequency resource, or the first signaling indicates that the target time-frequency resource includes the first
  • the second time-frequency resource and the target time-frequency resource include a second time-frequency resource.
  • Embodiment 2 illustrates a flow chart of downlink HARQ-ACK transmission, as shown in FIG.
  • base station N1 is the serving base station of the serving cell of UE U2, and the steps identified in blocks F2 and F3 are optional.
  • the third signaling is transmitted in step S104, the uplink signal is received in step S105, the second time-frequency resource is selected in step S106, and the first HARQ-ACK is transmitted in step S107.
  • the third signaling is received in step S204, the uplink signal is transmitted in step S205, the second time-frequency resource is determined in step S206, and the first HARQ-ACK is received in step S207.
  • the first HARQ-ACK indicates whether the uplink signal is correctly decoded, and the first HARQ-ACK is transmitted in the third time-frequency resource.
  • the second signaling in the present invention is high layer signaling, and the third signaling is included in scheduling information of the uplink signal.
  • the first HARQ-ACK is transmitted in the third time-frequency resource and the third signaling indicates the time-frequency resource occupied by the first HARQ-ACK from the third time-frequency resource.
  • the time domain resources occupied by the first HARQ-ACK and the radio signal in the present invention are orthogonal (i.e., non-overlapping).
  • the third signaling is physical layer signaling.
  • the downlink signal includes a transport block.
  • Embodiment 3 illustrates a schematic diagram of a first time-frequency resource and a second time-frequency resource in a given time window, as shown in FIG.
  • the thick line frame identifies the first time-frequency resource in a time window.
  • the occupied time-frequency resource, the backslash identifies the time-frequency resource occupied by the second time-frequency resource in a time window.
  • the first time-frequency resource occupies the entire narrowband in a given time window, occupying the entire time window in the time domain.
  • the second time-frequency resource occupies the entire narrowband in a given time window, occupying a portion of the OFDM symbols in a given time window in the time domain.
  • the bandwidth of the narrow band does not exceed 180 kHz.
  • the duration of the time window is T milliseconds, and the T is a positive integer.
  • the first time-frequency resource occupies only one time window in the time domain.
  • the first time-frequency resource occupies a plurality of time windows in the time domain.
  • the time window contains a positive integer number of consecutive subframes.
  • the time window is an LTE downlink subframe.
  • Embodiment 4 illustrates another schematic diagram of the first time-frequency resource and the second time-frequency resource in a given time window, as shown in FIG.
  • the thick line frame identifies the time-frequency resource occupied by the first time-frequency resource in a time window
  • the back-slash line identifies the time-frequency resource occupied by the second time-frequency resource in a time window.
  • the first time-frequency resource occupies the entire narrowband in a given time window, occupying the entire time window in the time domain.
  • the second time-frequency resource occupies part of the sub-carriers in the entire narrowband in a given time window, occupying the entire given time window in the time domain.
  • Embodiment 5 illustrates a schematic diagram of a first time-frequency resource in a given time window, as shown in FIG.
  • the thick dotted line frame identifies the time-frequency resource occupied by the first time-frequency resource in a time window
  • the back-slash line identifies the resource block occupied by the first time-frequency resource in a time window.
  • the second time-frequency resource in a time window occupied by the first time-frequency resource, is composed of U resource subsets.
  • U is a positive integer.
  • Each of the resource subsets occupies S OFDM symbols in the time domain and contiguous R subcarriers in the frequency domain.
  • the time-frequency resources occupied by the U resource subsets all belong to the first time-frequency resource.
  • Embodiment 6 exemplifies a resource block occupied by the first time-frequency resource and the second time-frequency resource, as shown in FIG. 6.
  • the thick line frame identifies the resource block occupied by the second time-frequency resource
  • the cross line identifies the resource block occupied by the first time-frequency resource.
  • Each two-way arrow ⁇ #1, #2,... ⁇ identifies a time window.
  • the resource block occupies a time window in the time domain and occupies a narrow band in the frequency domain.
  • the first time-frequency resources are distributed over a narrow band.
  • the resource block occupied by the second time-frequency resource is a part of the resource block occupied by the first time-frequency resource.
  • the RU pattern occupied by the first time-frequency resource in each resource block is the same.
  • the first time-frequency resource occupies only a part of the RU in each resource block.
  • the time window contains a positive integer number of consecutive subframes.
  • the time window is an LTE downlink subframe.
  • Embodiment 7 illustrates a schematic diagram of resource blocks occupied by the first time-frequency resource and the second time-frequency resource, as shown in FIG.
  • the thick line frame identifies the resource block occupied by the second time-frequency resource
  • the cross line identifies the resource block occupied by the first time-frequency resource.
  • Each two-way arrow ⁇ #1, #2,... ⁇ identifies a time window.
  • the resource block occupies a time window in the time domain and occupies a narrow band in the frequency domain.
  • the first time-frequency resource hops on the first narrowband and the second narrowband.
  • the resource block occupied by the second time-frequency resource is a part of the resource block occupied by the first time-frequency resource.
  • the RU patterns occupied by the first time-frequency resource in each resource block are the same.
  • the first time-frequency resource occupies only a part of the RU in each resource block.
  • the time window contains a positive integer number of consecutive subframes.
  • the time window is an LTE downlink subframe.
  • Embodiment 8 exemplifies a resource block occupied by a third time-frequency resource, as shown in FIG. In Figure 8, the backslash identifies the resource block occupied by the third time-frequency resource. Each two-way arrow ⁇ #1, #2,... ⁇ identifies a time window.
  • the resource blocks occupied by the third time-frequency resource are discontinuous in the time domain, and the resource blocks occupy a narrow band in the frequency domain and occupy a time window in the time domain.
  • the resource blocks occupied by the third time-frequency resource are periodically appearing in the time domain, and the appearance period is n time windows.
  • the n is a positive integer greater than one.
  • the second time-frequency resource occupies only one resource block of the third time-frequency resource.
  • the first HARQ-ACK in the present invention is transmitted in the third time-frequency resource, and the third signaling in the present invention is instructed from the resource block occupied by the third time-frequency resource.
  • the time-frequency resources occupied by the first HARQ-ACK in the resource block are default (ie, no signaling configuration is required).
  • the bandwidth of the narrow band is 180 kHz.
  • the RU occupied by the third time-frequency resource in the resource block is fixed (ie, does not require signaling configuration).
  • the time window contains a positive integer number of consecutive subframes.
  • the time window is an LTE downlink subframe.
  • Embodiment 9 shows a schematic diagram of resource blocks occupied by a third time-frequency resource and a fourth time-frequency resource according to the present invention; as shown in FIG.
  • the thick line frame identifies the resource block occupied by the fourth time-frequency resource
  • the cross line identifies the resource block occupied by the third time-frequency resource.
  • Each two-way arrow ⁇ #1, #2,... ⁇ identifies a time window.
  • the resource block occupies a time window in the time domain and occupies a narrow band in the frequency domain.
  • the third time-frequency resource is distributed over a narrow band.
  • the resource block occupied by the fourth time-frequency resource is a part of the resource block occupied by the third time-frequency resource.
  • Q1, Q2 and P are both positive integers, and the product of P and Q1 is greater than Q2.
  • the RU pattern occupied by the third time-frequency resource in each resource block is the same.
  • the third time-frequency resource occupies only a part of the RU in each resource block.
  • the time window contains a positive integer number of consecutive subframes.
  • the time window is an LTE downlink subframe.
  • the resource block occupied by the third time-frequency resource is in the time domain. It occurs periodically, and the appearance period is Q1 time window.
  • the resource block occupied by the fourth time-frequency resource periodically appears in the time domain, and the appearance period is Q2 time windows.
  • Q1, Q2 are both positive integers, and Q2 is a positive integer multiple of Q1.
  • Embodiment 10 shows a schematic diagram of resource blocks occupied by still another third time-frequency resource and fourth time-frequency resource according to the present invention; as shown in FIG.
  • the thick line frame identifies the resource block occupied by the fourth time-frequency resource
  • the cross line identifies the resource block occupied by the third time-frequency resource.
  • Each two-way arrow ⁇ #1, #2,... ⁇ identifies a time window.
  • the resource block occupies a time window in the time domain and a narrow band in the frequency domain.
  • the third time-frequency resource is distributed over a plurality of narrow bands.
  • the resource block occupied by the fourth time-frequency resource is a part of the resource block occupied by the third time-frequency resource.
  • Q1, Q2 and P are both positive integers, and the product of P and Q1 is greater than Q2.
  • the RU pattern occupied by the third time-frequency resource in each resource block is the same.
  • the third time-frequency resource occupies only a part of the RU within each resource block.
  • the time window contains a positive integer number of consecutive subframes.
  • the time window is an LTE downlink subframe.
  • the resource blocks occupied by the third time-frequency resource periodically appear in the time domain, and the appearance period is Q1 time windows.
  • the resource block occupied by the fourth time-frequency resource periodically appears in the time domain, and the appearance period is Q2 time windows.
  • Q1, Q2 are both positive integers, and Q2 is a positive integer multiple of Q1.
  • Embodiment 11 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 200 is mainly composed of a first module 201, a second module 202, and a third module 203.
  • the first module 201 is optional.
  • the first module 201 is configured to send an uplink signal.
  • the second module 202 is configured to receive the first signaling and receive the second signaling.
  • the third module 203 is configured to receive a wireless signal on the target time-frequency resource.
  • the first signaling is physical layer signaling
  • the second signaling is high layer signaling.
  • the first signaling indicates a first time-frequency resource
  • the first time-frequency resource includes a second time-frequency resource.
  • the target time-frequency resource includes a time-frequency resource in the first time-frequency resource and outside the second time-frequency resource.
  • Target time and frequency The source and the second time-frequency resource are orthogonal, or the first signaling indicates whether the target time-frequency resource includes the second time-frequency resource.
  • the second signaling indicates a third time-frequency resource, and the second time-frequency resource is a part of the third time-frequency resource.
  • the second module 202 is further configured to determine a second time-frequency resource.
  • the third module 203 is further configured to receive the third signaling.
  • the second signaling is high layer signaling, and the third signaling includes scheduling information of the uplink signal.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, and the third signaling indicates the time-frequency resource occupied by the first HARQ-ACK from the second time-frequency resource, or the first HARQ-ACK is in the third time-frequency resource. And transmitting, and the third signaling indicates, from the third time-frequency resource, a time-frequency resource occupied by the first HARQ-ACK.
  • the third module 203 is further configured to receive the first HARQ-ACK.
  • the first HARQ-ACK indicates whether the uplink signal is correctly decoded.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, or the first HARQ-ACK is transmitted in the third time-frequency resource.
  • Embodiment 12 exemplifies a structural block diagram of a processing device in a base station, as shown in FIG.
  • the base station processing apparatus 300 is mainly composed of a first module 301, a second module 302, and a third module 303.
  • the first module 301 is optional.
  • the first module 301 is configured to receive an uplink signal.
  • the second module 302 is configured to send the first signaling and send the second signaling.
  • the third module 303 is configured to send a wireless signal on the target time-frequency resource.
  • the first signaling is physical layer signaling
  • the second signaling is high layer signaling.
  • the first signaling indicates a first time-frequency resource
  • the first time-frequency resource includes a second time-frequency resource.
  • the target time-frequency resource includes a time-frequency resource in the first time-frequency resource and outside the second time-frequency resource.
  • the target time-frequency resource and the second time-frequency resource are orthogonal, or the first signaling indicates whether the target time-frequency resource includes a second time-frequency resource.
  • the second signaling indicates a third time-frequency resource, and the second time-frequency resource is a part of the third time-frequency resource.
  • the second module 302 is further configured to select a second time-frequency resource.
  • the third module 303 is further configured to send the third signaling.
  • the second signaling is high layer signaling, and the third signaling includes scheduling information of the uplink signal.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, and the third signaling indicates the time-frequency resource occupied by the first HARQ-ACK from the second time-frequency resource, or the first HARQ-ACK is in the third time-frequency resource. And transmitting, and the third signaling indicates, from the third time-frequency resource, a time-frequency resource occupied by the first HARQ-ACK.
  • the third module 303 is further configured to send the first HARQ-ACK.
  • the first HARQ-ACK indicates whether the uplink signal is correctly decoded.
  • the first HARQ-ACK is transmitted in the second time-frequency resource, or the first HARQ-ACK is transmitted in the third time-frequency resource.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE and the terminal in the present invention include but are not limited to RFID, IoT terminal equipment, MTC (Machine Type Communication) terminal, vehicle communication device, wireless sensor, network card, mobile phone, tablet computer, notebook and other wireless communication devices.
  • the base station and the base station device in the present invention include, but are not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种UE、基站中的调度方法和装置。UE首先接收第一信令,然后在目标时频资源上接收无线信号。第一信令指示第一时频资源,第一时频资源包括第二时频资源。所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源。所述目标时频资源和所述第二时频资源是正交的,或者所述第一信令指示所述目标时频资源是否包括所述第二时频资源。第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波。第二时频资源在时域上包括所述T1个子帧中的T2个子帧。所述T1和所述P1分别是正整数,所述T2小于所述T1。本发明避免了下行子帧被连续占用而导致的信道无法释放。此外,本发明能避免HARQ-ACK和上行数据的冲突,并尽可能充分利用物理层数据信道的资源。

Description

一种UE、基站中的调度方法和装置 技术领域
本发明涉及无线通信系统中的传输方案,特别是涉及支持窄带传输的下行调度的方法和装置。
背景技术
在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#69次全会上,NB-IOT(NarrowBand Internet of Things,窄带物联网)被立项。NB-IOT支持3种不同的操作模式(RP-151621):
1.独立(Stand-alone)操作,即在GERAN系统使用的频谱上部署。
2.保护带操作,即在LTE(Long Term Evolution,长期演进)载波的保护带中的未使用的资源块上部署。
3.带内操作,即在LTE载波上的资源块上部署。
进一步的,NB-IOT中,UE(User Equipment,用户设备)在上行和下行都支持180kHz(kiloHertz,千赫兹)的RF(Radio Frequency,射频)带宽,即一个PRB(Physical Resource Block,物理资源块)。
3GPP RAN1#83次会议,NB-IOT系统在上行引入了Single-tone(单频)传输和Multi-tone(多频)传输的概念。Single-tone是指UE在上行发送时,只会在一个子载波上进行传输。Multi-tone传输则沿用现在LTE(Long Term Evolution,长期演进)上行SC-FDMA(Single Carrier-Frequency Division Multiple Access,单载波频分多址)的传输方式,即在多个子载波组成的PRB(Physical Resource Block,物理资源块对)上进行传输。单频传输的一个好处就是,UE上行射频实现简单,没有PAPR(Peak to Average Power Ratio,峰值平均功率比)的问题,且实现成本低,并可以保持较低的功耗,以提高终端电池的可用时间。
对于传统的LTE系统,下行HARQ-ACK能够在PHICH(Physical Hybrid ARQ Indicator Channel,物理混合自动重传请求指示信道)或者PDCCH(Physical downlink Control Channel,物理下行控制信道)上传 输。而对于NB-IOT,一个直观的想法是尽可能的减少物理层信道的种类,以降低UE的复杂度。因此,一个可能的方案是HARQ-ACK在物理层数据信道上传输,即不会专门为了HARQ-ACK设计物理信道。基于上述方案,一个需要解决的问题是如何实现在物理层数据信道上传输的数据和HARQ-ACK的共存,即避免二者的碰撞。
发明内容
发明人通过研究发现,如果下行HARQ-ACK和下行数据在一个物理层信道上传输,如何为UE配置下行HARQ-ACK所占用的时频资源和下行数据所占用的时频资源是一个需要解决的问题。一种直观的方案是基站发送两个独立的下行信令分别指示下行HARQ-ACK所占用的时频资源和下行数据所占用的时频资源。上述直观的方案可能会导致过多的信令冗余或者资源浪费。例如下行HARQ-ACK可能仅在下行数据所占用的部分PRB中存在,即下行数据在每个PRB中所占用时频资源是变化的。因此,针对上行数据的调度信令可能需要针对每个PRB分配资源。
本发明针对上述问题提供了解决方案。需要说明的是,在不冲突的情况下,本申请的UE(User Equipment,用户设备)中的实施例和实施例中的特征可以应用到基站中,反之亦然。进一步的,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
本发明公开了一种支持窄带通信的UE中的方法,其中,包括如下步骤:
-步骤A.接收第一信令;
-步骤B.在目标时频资源上接收无线信号。
其中,第一信令指示第一时频资源,第一时频资源包括第二时频资源。所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源。所述目标时频资源和所述第二时频资源是正交的。第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波。第二时频资源在时域上包括所述T1个子帧中的T2个子帧。所述T1和所述P1分别是正整数,所述T2小于所述T1。
作为一个实施例,上述方法的本质是,所述UE在第一信令所指示 的第一时频资源中的部分时频资源上发送无线信号。上述方法中,第一信令不需要显式的指示所述目标时频资源,节省了信令开销。
作为一个实施例,所述无线信号对应的传输信道是DL-SCH(Downlink Shared Channel,下行共享信道)。
上述方法中,UE缺省的避免占用第二时频资源发送所述无线信号,即不需要第一信令的配置,进一步节省了第一信令的开销。然而,当第二时频资源空闲时,上述方法无法灵活的利用第二时频资源。作为一种替代方案,下述方法解决了这一问题。
本发明公开了一种支持窄带通信的UE中的方法,其中,包括如下步骤:
-步骤A.接收第一信令;
-步骤B.在目标时频资源上发送无线信号。
其中,第一信令指示第一时频资源,第一时频资源包括第二时频资源。所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源。所述第一信令指示所述目标时频资源是否包括所述第二时频资源。第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波。第二时频资源在时域上包括所述T1个子帧中的T2个子帧。所述T1和所述P1分别是正整数,所述T2小于所述T1。
作为一个实施例,上述方法中,第一信令指示所述目标时频资源是否包括第二时频资源,根据第二时频资源的使用情况确定所述无线信号是否能占用第二时频资源。相比完全不占用第二时频资源,上述方法提高了资源利用效率,代价是轻微增加了第一信令所带来的开销。
作为一个实施例,所述目标时频资源是否包括第二时频资源由第一信令中的一个比特所指示。
作为一个实施例,第一信令是物理层信令。
作为一个实施例,第一信令是物理层信令,第一信令包括所述无线信号的调度信息。
作为一个实施例,所述无线信号在任意时刻所占用的频带不超过180kHz。
作为一个实施例,第一信令是用于下行授予(Grant)的DCI(Downlink Control Information,下行控制信息)。
作为一个实施例,第二时频资源在第一时频资源中的位置是固定。
具体的,根据本发明的一个方面,其特征在于,第一信令是用于下行授予的DCI,所述无线信号对应的传输信道是DL-SCH。
具体的,根据本发明的一个方面,其特征在于,其特征在于,所述步骤A还包括如下步骤:
-步骤A0.接收第二信令。
其中,第二信令指示第三时频资源,第二时频资源是第三时频资源中的一部分。所述第二信令是高层信令。
上述方面中,基站能够动态或者半静态的为HARQ-ACK预留时频资源。相比于固定的(即不可配置的)第二时频资源的方案,即例如现有系统PHICH的方案,上述方法更加灵活。
作为一个实施例,第三时频资源是预留给UL-SCH(Uplink Shared Channel,上行共享信道)对应的下行HARQ-ACK的时频资源。
作为一个实施例,第二信令是高层信令,第三时频资源在时域上是周期性的。
作为该实施例的一个子实施例,第三时频资源在时域上分布在正整数个时间窗中。其中,所述时间窗在时域上占用M个连续的毫秒(ms),且所述正整数个时间窗在时域上是周期分布的。
作为一个实施例,第二信令是高层信令。
作为一个实施例,第二信令是小区公共信令。
作为一个实施例,第二信令是RRC(Radio Resource Control,无线资源控制)公共信令。
作为一个实施例,第二信令是RRC专属信令。
作为一个实施例,第二信令是物理层信令。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A1.确定第二时频资源。
作为一个实施例,所述确定第二时频资源是指UE缺省的确定第二时频资源所占用的时域和频域资源的位置。
作为该实施例的一个子实施例,若UE在第m毫秒完成上行信号发送,所述UE在第(m+m1)毫秒对应的下行子帧中确定第二时频资源在第 一时频资源中所占用的时域和频域资源的位置。其中,m和m1均为正整数,且m1是大于4且预定义的。
作为该子实施例的一个附属实施例,第二时频资源在第一时频资源中的位置是固定。
作为一个实施例,上述方面中,第二时频资源在第一时频资源中的位置是固定,且UE通过固定的DL HARQ-ACK的时序关系,获取上行数据传输对应的下行反馈的发送起始子帧,此方法的好处在于,对于发送上行数据后等待HARQ-ACK反馈的用户,不需要额外的信令指示所述等待的HARQ-ACK所在的时频资源位置。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤A2,所述步骤B还包括如下步骤B1:
-步骤A2.发送上行信号;
-步骤B1.接收第一HARQ-ACK,第一HARQ-ACK指示所述上行信号是否被正确译码。
其中,第一HARQ-ACK在第二时频资源中传输,或者第一HARQ-ACK在第三时频资源中传输。
作为一个实施例,用于承载所述上行信号的传输信道是UL-SCH。
作为一个实施例,所述上行信号在任意时刻所占用的带宽不超过180kHz。
作为一个实施例,第一HARQ-ACK在任意时刻所占用的带宽不超过180kHz。
作为一个实施例,若所述发送上行信号的操作结束时刻是第n1毫秒,所述接收第一HARQ-ACK的操作起始时刻不早于第n1+k毫秒。其中,k是大于等于4的正整数,且k是预定义的或系统高层信令配置的。
作为该实施例的一个子实施例,若所述发送上行信号的操作结束时刻是第n1毫秒,所述接收第一HARQ-ACK的操作起始时刻是第n1+k1毫秒。其中,k1是大于等于4的正整数,且k1是预定义的或系统高层信令配置的。
作为该实施例的一个子实施例,若所述发送上行信号的操作结束时刻是第n1毫秒,所述接收第一HARQ-ACK的操作起始时刻是第n1+k1毫秒。其中,k1是大于等于4的正整数,且第n1+k1毫秒对应的LTE 子帧上包含第三时频资源的部分时频资源,所述部分时频资源用于第一HARQ-ACK的传输。
具体的,根据本发明的一个方面,其特征在于,第一信令是物理层信令,第一信令包括所述无线信号的调度信息。第一信令指示所述目标时频资源不包括第二时频资源且所述无线信号采用速率匹配的方案避免占用第二时频资源。
作为一个实施例,上述方面中,由于第一信令指示所述目标时频资源是否包括第二时频资源,所述UE能够采用速率匹配的方式对所述无线信号执行资源映射,避免使用打孔(Puncturing)的方式执行资源映射。相比打孔,速率匹配对应更好的接收性能。
作为一个实施例,所述无线信号采用速率匹配的方案避免占用第二时频资源是指:所述无线信号所包括的调制符号以{频域第一,时域第二}的方式依次映射到所述目标时频资源所包括的RU(Resource Unit,资源单位)中去。所述RU在时域上包括一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,在频域上包括一个子载波。所述目标时频资源是第一时频资源之中除了第二时频资源之外的部分。
作为一个实施例,所述无线信号采用速率匹配的方案避免占用第二时频资源是指:所述无线信号所包括的调制符号以{时域第一,频域第二}的方式依次映射到所述目标时频资源所包括的RU中去。所述目标时频资源是第一时频资源之中除了第二时频资源之外的部分。
作为一个实施例,本发明中的所述子载波的带宽是15kHz。
作为一个实施例,本发明中的所述子载波的带宽是3.75kHz。
作为一个实施例,所述调度信息包括{MCS(Modulation Coding Status,调制编码方式),NDI(New Data Indicator,新数据指示),TBS(Transport Block Size,传输块尺寸)}中的至少之一。
具体的,根据本发明的一个方面,其特征在于,所述步骤A1还包括如下步骤:
-步骤A10.接收第三信令。
其中,第二信令是高层信令,第三信令包括所述上行信号的调度信息。
作为上述方面的一个实施例,第一HARQ-ACK在第二时频资源中传输且第三信令从第二时频资源中指示第一HARQ-ACK所占用的时频资源。
作为上述实施例的一个子实施例,第二时频资源和第一时频资源在频域上占用的带宽是相等的。
作为上述方面的一个实施例,第一HARQ-ACK在第三时频资源中传输且第三信令从第三时频资源中指示第一HARQ-ACK所占用的时频资源。
作为上述实施例的一个子实施例,第二时频资源和第一时频资源在频域上占用的带宽是不同的。
作为上述方面的一个实施例,所述上行信号的调度信息是指用于调度所述上行信号的UL授予的DCI。
具体的,根据本发明的一个方面,其特征在于,第三时频资源包括在时域上周期性出现的子资源,第二时频资源是其中一次出现的子资源;或者UE根据给定信息确定第二时频资源在第三时频资源中的时域位置。其中,所述给定信息是以下至少之一:
-当前操作模式;
-双工模式;
-所述上行信号的传输方式;
-所述上行信号的子载波间隔;
其中,当前操作模式是指当前采用的操作模式是{独立操作,保护间隔操作,带内操作}中的哪一种。双工模式是指当前采用的双工模式是{FDD(Frequency Division Duplexing,频分双工),TDD(Time Division Duplexing,时分双工)}中的哪一种。所述上行信号的传输方式是指上行信号的传输是{单频,多频}中的哪一种。所述上行信号的子载波间隔指所述上行信号传输所采用的子载波间隔是{3.75kHz,15kHz}中的哪一种。
作为一个实施例,所述独立操作是指所述窄带通信在GERAN系统使用的频谱上部署。
作为一个实施例,所述保护间隔操作是指所述窄带通信在LTE载波的保护带中的未使用的资源块上部署。
作为一个实施例,所述带内操作是指所述窄带通信在LTE载波上的 资源块上部署。
作为一个实施例,第二信令针对不同的操作模式配置独立的第三时频资源,UE根据所处的操作模式选择对应的第三时频资源以确定第二时频资源的位置。
作为一个实施例,第二信令针对不同的双工模式配置独立的第三时频资源,UE根据所处的双工模式选择对应的第三时频资源以确定第二时频资源的位置。
作为一个实施例,第二信令针对不同的上行信号的传输方式配置独立的第三时频资源,UE根据上行信号的传输方式选择对应的第三时频资源以确定第二时频资源的位置。
作为一个实施例,第二信令指示的第三时频资源用于多频传输,且针对单频传输的第一HARQ-ACK在第四时频资源上传输,所述第四时频资源是第三时频资源的子集。
作为该实施例的一个子实施例,第三时频资源在时域上分布在正整数个时间窗中,且所述正整数个时间窗在时域上是周期分布的,周期是Q1。第四时频资源在时域上分布在正整数个时间窗中,且所述正整数个时间窗在时域上是周期分布的,周期是Q2。其中,Q2是Q1的正整数倍。
作为一个实施例,第二信令指示的第三时频资源用于上行信号的子载波间隔是15kHz的场景,针对上行信号的子载波间隔是3.75kHz的场景的第一HARQ-ACK在第四时频资源上传输,所述第四时频资源是第三时频资源的子集。
作为该实施例的一个子实施例,第三时频资源在时域上分布在正整数个时间窗中,且所述正整数个时间窗在时域上是周期分布的,周期是Q1。第四时频资源在时域上分布在正整数个时间窗中,且所述正整数个时间窗在时域上是周期分布的,周期是Q2。其中,Q2是Q1的正整数倍。
本发明公开了一种支持窄带通信的基站中的方法,其中,包括如下步骤:
-步骤A.发送第一信令;
-步骤B.在目标时频资源上发送无线信号。
其中,第一信令指示第一时频资源,第一时频资源包括第二时频资源。所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源。所述目标时频资源和所述第二时频资源是正交的,或者所述第一信令指示所述目标时频资源是否包括所述第二时频资源。第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波。第二时频资源在时域上包括所述T1个子帧中的T2个子帧。所述T1和所述P1分别是正整数,所述T2小于所述T1。
作为一个实施例,第二时频资源在第一时频资源中的位置是固定的,即不需要由下行信令配置的。
具体的,根据本发明的一个方面,其特征在于,第一信令是用于下行授予的DCI,所述无线信号对应的传输信道是DL-SCH。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A0.发送第二信令。
其中,第二信令指示第三时频资源,第二时频资源是第三时频资源中的一部分。所述第二信令是高层信令。
作为一个实施例,第三时频资源包括在时域上周期性出现的子资源,第二时频资源是其中一次出现的子资源。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A1.选择第二时频资源。
作为一个实施例,所述选择第二时频资源是指基站缺省的选择第二时频资源所占用的时域和频域资源的位置。
作为该实施例的一个子实施例,若基站在第m毫秒完成上行信号接收,所述基站在第(m+m1)毫秒对应的下行子帧中选择第二时频资源在第一时频资源中所占用的时域和频域资源的位置。其中,m和m1均为正整数,且m1是大于4且预定义的。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤A2,所述步骤B还包括如下步骤B1:
-步骤A2.接收上行信号;
-步骤B1.发送第一HARQ-ACK,第一HARQ-ACK指示所述上行信号是否被正确译码。
其中,第一HARQ-ACK在第二时频资源中传输,或者第一HARQ-ACK在第三时频资源中传输。
具体的,根据本发明的一个方面,其特征在于,第一信令是物理层信令,第一信令包括所述无线信号的调度信息。第一信令指示所述目标时频资源不包括第二时频资源且所述无线信号采用速率匹配的方案避免占用第二时频资源。
具体的,根据本发明的一个方面,其特征在于,所述步骤A1还包括如下步骤:
-步骤A10.发送第三信令。
其中,第二信令是高层信令,第三信令包括所述上行信号的调度信息。第一HARQ-ACK在第二时频资源中传输且第三信令从第二时频资源中指示第一HARQ-ACK所占用的时频资源,或者第一HARQ-ACK在第三时频资源中传输且第三信令从第三时频资源中指示第一HARQ-ACK所占用的时频资源。
具体的,根据本发明的一个方面,其特征在于,第三时频资源包括在时域上周期性出现的子资源,第二时频资源是其中一次出现的子资源;或者所述基站根据给定信息选择第二时频资源在第三时频资源中的时域位置。其中,所述给定信息是以下至少之一:
-当前操作模式;
-双工模式;
-所述上行信号的传输方式;
-所述上行信号的子载波间隔;
其中,当前操作模式是指当前采用的操作模式是{独立操作,保护间隔操作,带内操作}中的哪一种。双工模式是指当前采用的双工模式是{FDD,TDD}中的哪一种。所述上行信号的传输方式是指上行信号的传输是{单频,多频}中的哪一种。所述上行信号的子载波间隔指所述上行信号传输所采用的子载波间隔是{3.75kHz,15kHz}中的哪一种。
本发明公开了一种支持窄带通信的用户设备,其中,包括如下模块:
-第一模块:用于发送上行信号。
-第二模块:用于接收第一信令。
-第三模块:用于在目标时频资源上接收无线信号。
其中,第一信令指示第一时频资源,第一时频资源包括第二时频资源。所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源。所述目标时频资源和所述第二时频资源是正交的,或者所述第一信令指示所述目标时频资源是否包括所述第二时频资源。第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波。第二时频资源在时域上包括所述T1个子帧中的T2个子帧。所述T1和所述P1分别是正整数,所述T2小于所述T1。
作为一个实施例,上述用户设备的特征在于,第一信令是用于下行授予的DCI,所述无线信号对应的传输信道是DL-SCH。
作为一个实施例,上述用户设备的特征在于,第二模块还用于接收第二信令。其中,第二信令指示第三时频资源,第二时频资源是第三时频资源中的一部分。所述第二信令是高层信令。
作为一个实施例,上述用户设备的特征在于,第三时频资源包括在时域上周期性出现的子资源,第二时频资源是其中一次出现的子资源。
作为一个实施例,上述用户设备的特征在于,第二模块还用于确定第二时频资源。
作为一个实施例,上述用户设备的特征在于:
第三模块还用于接收第一HARQ-ACK,第一HARQ-ACK指示所述上行信号是否被正确译码。
其中,第一HARQ-ACK在第二时频资源中传输,或者第一HARQ-ACK在第三时频资源中传输。
作为一个实施例,上述用户设备的特征在于,第一信令是物理层信令,第一信令包括所述无线信号的调度信息。第一信令指示所述目标时频资源不包括第二时频资源且所述无线信号采用速率匹配的方案避免占用第二时频资源,或者第一信令指示所述目标时频资源包括第二时频资源。
作为一个实施例,上述用户设备的特征在于,第三模块还用于接收第三信令。其中,第二信令是高层信令,第三信令包括所述上行信号的 调度信息。第一HARQ-ACK在第二时频资源中传输且第三信令从第二时频资源中指示第一HARQ-ACK所占用的时频资源,或者第一HARQ-ACK在第三时频资源中传输且第三信令从第三时频资源中指示第一HARQ-ACK所占用的时频资源。
本发明公开了一种支持窄带通信的基站设备,其中,包括如下模块:
-第一模块:用于接收上行信号。
-第二模块:用于发送第一信令。
-第三模块:用于在目标时频资源上发送无线信号。
其中,第一信令指示第一时频资源,第一时频资源包括第二时频资源。所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源。所述目标时频资源和所述第二时频资源是正交的,或者所述第一信令指示所述目标时频资源是否包括所述第二时频资源。第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波。第二时频资源在时域上包括所述T1个子帧中的T2个子帧。所述T1和所述P1分别是正整数,所述T2小于所述T1。
作为一个实施例,上述基站设备的特征在于,,第一信令是用于下行授予的DCI,所述无线信号对应的传输信道是DL-SCH。
作为一个实施例,上述基站设备的特征在于,第二模块还用于发送第二信令。其中,第二信令指示第三时频资源,第二时频资源是第三时频资源中的一部分。所述第二信令是高层信令。
作为一个实施例,上述基站设备的特征在于,第三时频资源包括在时域上周期性出现的子资源,第二时频资源是其中一次出现的子资源。
作为一个实施例,上述基站设备的特征在于,第二模块还用于选择第二时频资源。
作为一个实施例,上述基站设备的特征在于:
第三模块还用于发送第一HARQ-ACK,第一HARQ-ACK指示所述上行信号是否被正确译码。
其中,第一HARQ-ACK在第二时频资源中传输,或者第一HARQ-ACK在第三时频资源中传输。
作为一个实施例,上述基站设备的特征在于,第一信令是物理层信 令,第一信令包括所述无线信号的调度信息。第一信令指示所述目标时频资源不包括第二时频资源且所述无线信号采用速率匹配的方案避免占用第二时频资源,或者第一信令指示所述目标时频资源包括第二时频资源。
作为一个实施例,上述基站设备的特征在于,第三模块还用于发送第三信令。其中,第二信令是高层信令,第三信令包括所述上行信号的调度信息。第一HARQ-ACK在第二时频资源中传输且第三信令从第二时频资源中指示第一HARQ-ACK所占用的时频资源,或者第一HARQ-ACK在第三时频资源中传输且第三信令从第三时频资源中指示第一HARQ-ACK所占用的时频资源。
相比现有公开技术,本发明具有如下技术优势:
-.避免了下行子帧被连续占用而导致的信道无法释放;
-.避免了HARQ-ACK和下行数据的冲突,同时尽可能充分利用物理层数据信道的资源。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的无线信号下行传输的流程图;
图2示出了根据本发明的一个实施例的下行HARQ-ACK传输的流程图;
图3示出了示出了根据本发明的一个实施例的给定时间窗中的第一时频资源和第二时频资源的示意图;
图4示出了根据本发明的又一个实施例的给定时间窗中的第一时频资源和第二时频资源的示意图;
图5示出了根据本发明的又一个实施例的给定时间窗中的第一时频资源的示意图;
图6示出了根据本发明的一个实施例的第一时频资源和第二时频资源所占用的资源块的示意图;
图7示出了根据本发明的又一个实施例的第一时频资源和第二时频资 源所占用的资源块的示意图;
图8示出了根据本发明的一个实施例的第三时频资源所占用的资源块的示意图;
图9示出了根据本发明的一个实施例的第三时频资源和第四时频资源所占用的资源块的示意图;
图10示出了根据本发明的又一个实施例的第三时频资源和第四时频资源所占用的资源块的示意图;
图11示出了根据本发明的一个实施例的UE中的处理装置的结构框图;
图12示出了根据本发明的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了无线信号下行传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区的维持基站,方框F1中标识的步骤是可选的。
对于基站N1,在步骤S101中发送第二信令,在步骤S102中发送第一信令,在步骤S103中在目标时频资源上发送无线信号。
对于UE U2,在步骤S201中接收第二信令,在步骤S202中接收第一信令,在步骤S203中目标时频资源上接收无线信号。
实施例1中,第二信令指示第三时频资源,第二时频资源是第三时频资源和第一时频资源相互重叠的部分。第一信令指示第一时频资源,第一时频资源包括第二时频资源。所述目标时频资源包括第一时频资源中除了第二时频资源之外的时频资源。所述目标时频资源和第二时频资源是正交的(即不包括第二时频资源),或者第一信令指示所述目标时频资源是否包括第二时频资源(第一信令指示所述目标时频资源包括第二时频资源,所述目标时频资源即是第一时频资源)。第二信令是高层信令。
作为实施例1的子实施例1,第一信令是物理层信令,第二信令是RRC 公共信令。所述无线信号对应的承载信道是DL-SCH。
作为实施例1的子实施例2,第一时频资源在时域上包括T1个连续的子帧,在每个子帧中的频域上包括P1个连续的子载波,所述T1和所述P1分别是正整数,第二时频资源在时域上包括所述T1个子帧中的T2个子帧,所述T2小于所述T1。
作为实施例1的子实施例3,第一信令包括所述无线信号的调度信息。第一信令指示所述目标时频资源不包括第二时频资源且所述无线信号采用速率匹配的方案避免占用第二时频资源,或者第一信令指示所述目标时频资源包括第二时频资源且所述目标时频资源包括第二时频资源。
实施例2
实施例2示例了下行HARQ-ACK传输的流程图,如附图2所示。附图2中,基站N1是UE U2的服务小区的维持基站,方框F2和F3中标识的步骤是可选的。
对于基站N1,在步骤S104中发送第三信令,在步骤S105中接收上行信号,在步骤S106中选择第二时频资源,在步骤S107中发送第一HARQ-ACK。
对于UE U2,在步骤S204中接收第三信令,在步骤S205中发送上行信号,在步骤S206中确定第二时频资源,在步骤S207中接收第一HARQ-ACK。
实施例2中,第一HARQ-ACK指示所述上行信号是否被正确译码,第一HARQ-ACK在第三时频资源中传输。本发明中的第二信令是高层信令,第三信令包括于所述上行信号的调度信息中。第一HARQ-ACK在第三时频资源中传输且第三信令从第三时频资源中指示第一HARQ-ACK所占用的时频资源。
作为实施例2的子实施例1,第一HARQ-ACK和本发明中的无线信号所占用的时域资源是正交的(即不重叠的)。
作为实施例2的子实施例2,第三信令是物理层信令。
作为实施例2的子实施例3,所述下行信号包括一个传输块。
实施例3
实施例3示例了给定时间窗中的第一时频资源和第二时频资源的示意图,如附图3所示。附图3中,粗线框标识第一时频资源在一个时间窗中 所占用的时频资源,反斜线标识第二时频资源在一个时间窗中所占用的时频资源。
实施例3中,第一时频资源在给定时间窗中占用了整个窄带,在时域上占用了整个时间窗。第二时频资源在给定时间窗中占用了整个窄带,在时域上占用了给定时间窗中的部分OFDM符号。
作为实施例3的子实施例1,所述窄带的带宽不超过180kHz。
作为实施例3的子实施例2,所述时间窗的持续时间是T毫秒,所述T是正整数。
作为实施例3的子实施例3,第一时频资源在时域上仅占用了一个时间窗。
作为实施例3的子实施例4,第一时频资源在时域上占用了多个时间窗。
作为实施例3的子实施例5,所述时间窗包含正整数个连续的子帧。
作为实施例3的子实施例6,所述时间窗是一个LTE下行子帧。
实施例4
实施例4示例了给定时间窗中的第一时频资源和第二时频资源另一个示意图,如附图4所示。附图4中,粗线框标识第一时频资源在一个时间窗中所占用的时频资源,反斜线标识第二时频资源在一个时间窗中所占用的时频资源。
实施例4中,第一时频资源在给定时间窗中占用了整个窄带,在时域上占用了整个时间窗。第二时频资源给定时间窗中占用了整个窄带中的部分子载波,在时域上占用了整个给定时间窗。
实施例5
实施例5示例了给定时间窗中的第一时频资源的示意图,如附图5所示。附图5中,粗虚线框标识第一时频资源在一个时间窗中所占用的时频资源,反斜线标识第一时频资源在一个时间窗中所占用的资源块。
实施例5中,在第一时频资源占用的一个时间窗中,第二时频资源由U个资源子集组成。其中,U是正整数。所述每个资源子集在时域上占用S个OFDM符号,在频域上占用连续的R个子载波。所述U个资源子集所占用的时频资源均属于第一时频资源。
实施例6
实施例6示例了第一时频资源和第二时频资源所占用的资源块的示意图,如附图6所示。附图6中,粗线框标识第二时频资源所占用的资源块,交叉线标识第一时频资源所占用的资源块。每个双向箭头{#1,#2,…}分别标识一个时间窗。
实施例6中,资源块在时域上占用一个时间窗,在频域上占用一个窄带。第一时频资源在一个窄带上分布。第二时频资源所占用的资源块是第一时频资源所占用的资源块中的一部分。
作为实施例6的子实施例1,第一时频资源在每个资源块内所占用的RU图案是相同的。
作为实施例6的子实施例2,第一时频资源在每个资源块内仅占用部分RU。
作为实施例6的子实施例3,所述时间窗包含正整数个连续的子帧。
作为实施例6的子实施例4,所述时间窗是一个LTE下行子帧。
实施例7
实施例7示例了第一时频资源和第二时频资源所占用的资源块的示意图,如附图7所示。附图7中,粗线框标识第二时频资源所占用的资源块,交叉线标识第一时频资源所占用的资源块。每个双向箭头{#1,#2,…}分别标识一个时间窗。
实施例7中,资源块在时域上占用一个时间窗,在频域上占用一个窄带。第一时频资源在第一窄带和第二窄带上跳跃(hopping)。第二时频资源所占用的资源块是第一时频资源所占用的资源块中的一部分。
作为实施例7的子实施例1,第一时频资源在每个资源块内所占用的RU图案是相同的。
作为实施例7的子实施例2,第一时频资源在每个资源块内仅占用部分RU。
作为实施例7的子实施例3,所述时间窗包含正整数个连续的子帧。
作为实施例7的子实施例4,所述时间窗是一个LTE下行子帧。
实施例8
实施例8示例了第三时频资源所占用的资源块的示意图,如附图8所示。附图8中,反斜线标识第三时频资源所占用的资源块。每个双向箭头{#1,#2,…}分别标识一个时间窗。
实施例8中,第三时频资源所占用的资源块在时域上是不连续的,所述资源块在频域上占用一个窄带,在时域上占用一个时间窗。
作为实施例8的子实施例1,第三时频资源所占用的资源块在时域上是周期性出现的,出现周期是n个时间窗。所述n是大于1的正整数。
作为实施例8的子实施例2,第二时频资源仅占用第三时频资源中的一个资源块。
作为实施例8的子实施例3,本发明中的第一HARQ-ACK在第三时频资源中传输,本发明中的第三信令从第三时频资源所占用的资源块中指示第一HARQ-ACK所占用的资源块。作为一个子实施例,第一HARQ-ACK在资源块内所占用的时频资源是缺省的(即不需要信令配置的)。
作为实施例8的子实施例4,所述窄带的带宽是180kHz。
作为实施例8的子实施例5,第三时频资源在资源块内所占用的RU是固定的(即不需要信令配置的)。
作为实施例8的子实施例6,所述时间窗包含正整数个连续的子帧。
作为实施例8的子实施例7,所述时间窗是一个LTE下行子帧。
实施例9
实施例9示出了根据本发明的一个第三时频资源和第四时频资源所占用的资源块的示意图;如附图9所示。附图9中,粗线框标识第四时频资源所占用的资源块,交叉线标识第三时频资源所占用的资源块。每个双向箭头{#1,#2,…}分别标识一个时间窗。
实施例9中,资源块在时域上占用一个时间窗,在频域上占用一个窄带。第三时频资源在一个窄带上分布。第四时频资源所占用的资源块是第三时频资源所占用的资源块中的一部分。Q1,Q2和P均是正整数,且P与Q1的乘积大于Q2。
作为实施例9的子实施例1,第三时频资源在每个资源块内所占用的RU图案是相同的。
作为实施例9的子实施例2,第三时频资源在每个资源块内仅占用部分RU。
作为实施例9的子实施例3,所述时间窗包含正整数个连续的子帧。
作为实施例9的子实施例4,所述时间窗是一个LTE下行子帧。
作为实施例9的子实施例5,第三时频资源所占用的资源块在时域上 是周期性出现的,出现周期是Q1个时间窗。第四时频资源所占用的资源块在时域上是周期性出现的,出现周期是Q2个时间窗。Q1,Q2均是正整数,且Q2是Q1的正整数倍。
实施例10
实施例10示出了根据本发明的又一个第三时频资源和第四时频资源所占用的资源块的示意图;如附图10所示。附图10中,粗线框标识第四时频资源所占用的资源块,交叉线标识第三时频资源所占用的资源块。每个双向箭头{#1,#2,…}分别标识一个时间窗。
实施例10中,资源块在时域上占用一个时间窗,在频域上占用一个窄带。第三时频资源在多个窄带上分布。第四时频资源所占用的资源块是第三时频资源所占用的资源块中的一部分。Q1,Q2和P均是正整数,且P与Q1的乘积大于Q2。
作为实施例10的子实施例1,第三时频资源在每个资源块内所占用的RU图案是相同的。
作为实施例10的子实施例2,第三时频资源在每个资源块内仅占用部分RU。
作为实施例10的子实施例3,所述时间窗包含正整数个连续的子帧。
作为实施例10的子实施例4,所述时间窗是一个LTE下行子帧。
作为实施例10的子实施例5,第三时频资源所占用的资源块在时域上是周期性出现的,出现周期是Q1个时间窗。第四时频资源所占用的资源块在时域上是周期性出现的,出现周期是Q2个时间窗。Q1,Q2均是正整数,且Q2是Q1的正整数倍。
实施例11
实施例11示例了一个UE中的处理装置的结构框图,如附图11所示。附图11中,UE处理装置200主要由第一模块201,第二模块202和第三模块203组成。其中,第一模块201是可选的。
第一模块201用于发送上行信号。第二模块202用于接收第一信令和接收第二信令。第三模块203用于在目标时频资源上接收无线信号。
实施例11中,第一信令是物理层信令,第二信令是高层信令。第一信令指示第一时频资源,第一时频资源包括第二时频资源。所述目标时频资源包括第一时频资源中且第二时频资源之外的时频资源。所述目标时频资 源和第二时频资源是正交的,或者第一信令指示所述目标时频资源是否包括第二时频资源。第二信令指示第三时频资源,第二时频资源是第三时频资源中的一部分。
作为实施例11的子实施例1,第二模块202还用于确定第二时频资源。
作为实施例11的子实施例2,第三模块203还用于接收第三信令。其中,第二信令是高层信令,第三信令包括所述上行信号的调度信息。第一HARQ-ACK在第二时频资源中传输且第三信令从第二时频资源中指示第一HARQ-ACK所占用的时频资源,或者第一HARQ-ACK在第三时频资源中传输且第三信令从第三时频资源中指示第一HARQ-ACK所占用的时频资源。
作为实施例11的子实施例3,第三模块203还用于接收第一HARQ-ACK。其中,第一HARQ-ACK指示所述上行信号是否被正确译码。第一HARQ-ACK在第二时频资源中传输,或者第一HARQ-ACK在第三时频资源中传输。
实施例12
实施例12示例了一个基站中的处理装置的结构框图,如附图12所示。附图12中,基站处理装置300主要由第一模块301,第二模块302和第三模块303组成。其中,第一模块301是可选的。
第一模块301用于接收上行信号。第二模块302用于发送第一信令和发送第二信令。第三模块303用于在目标时频资源上发送无线信号。
实施例12中,第一信令是物理层信令,第二信令是高层信令。第一信令指示第一时频资源,第一时频资源包括第二时频资源。所述目标时频资源包括第一时频资源中且第二时频资源之外的时频资源。所述目标时频资源和第二时频资源是正交的,或者第一信令指示所述目标时频资源是否包括第二时频资源。第二信令指示第三时频资源,第二时频资源是第三时频资源中的一部分。
作为实施例12的子实施例1,第二模块302还用于选择第二时频资源。
作为实施例12的子实施例2,第三模块303还用于发送第三信令。其中,第二信令是高层信令,第三信令包括所述上行信号的调度信息。 第一HARQ-ACK在第二时频资源中传输且第三信令从第二时频资源中指示第一HARQ-ACK所占用的时频资源,或者第一HARQ-ACK在第三时频资源中传输且第三信令从第三时频资源中指示第一HARQ-ACK所占用的时频资源。
作为实施例12的子实施例3,第三模块303还用于发送第一HARQ-ACK。其中,第一HARQ-ACK指示所述上行信号是否被正确译码。第一HARQ-ACK在第二时频资源中传输,或者第一HARQ-ACK在第三时频资源中传输。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中的UE和终端包括但不限于RFID,物联网终端设备,MTC(Machine Type Communication,机器类型通信)终端,车载通信设备,无线传感器,上网卡,手机,平板电脑,笔记本等无线通信设备。本发明中的基站和基站设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种支持窄带通信的UE中的方法,其中,包括如下步骤:
    -步骤A.接收第一信令;
    -步骤B.在目标时频资源上接收无线信号;
    其中,第一信令指示第一时频资源,第一时频资源包括第二时频资源;所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源;所述目标时频资源和所述第二时频资源是正交的,或者所述第一信令指示所述目标时频资源是否包括所述第二时频资源;第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波;第二时频资源在时域上包括所述T1个子帧中的T2个子帧;所述T1和所述P1分别是正整数,所述T2小于所述T1。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.接收第二信令;
    其中,所述第二信令指示第三时频资源,所述第二时频资源是第三时频资源中的一部分。所述第二信令是高层信令。
  3. 根据权利要求1所述的方法,其特征在于,第一信令是用于下行授予的DCI,所述无线信号对应的传输信道是DL-SCH。
  4. 根据权利要求1所述的方法,其特征在于,所述步骤A还包括如下步骤A2,所述步骤B还包括如下步骤B1:
    -步骤A2.发送上行信号;
    -步骤B1.接收第一HARQ-ACK,第一HARQ-ACK指示所述上行信号是否被正确译码;
    其中,第一HARQ-ACK在第二时频资源中传输,或者第一HARQ-ACK在第三时频资源中传输。
  5. 根据权利要求1所述的方法,其特征在于,第一信令是物理层信令,第一信令包括所述无线信号的调度信息。第一信令指示所述目标时频资源不包括第二时频资源且所述无线信号采用速率匹配的方案避免占用第二时频资源。
  6. 根据权利要求2所述的方法,其特征在于,第三时频资源包括在时域上周期性出现的子资源,第二时频资源是其中一次出现的子资源;或者UE根据给定信息确定第二时频资源在第三时频资源中的时域位置。其中,所述给定信息是 以下至少之一:
    -当前操作模式;
    -双工模式;
    -所述上行信号的传输方式;
    -所述上行信号的子载波间隔;
    其中,当前操作模式是指当前采用的操作模式是{独立操作,保护间隔操作,带内操作}中的哪一种;双工模式是指当前采用的双工模式是{FDD,TDD}中的哪一种;所述上行信号的传输方式是指上行信号的传输是{单频,多频}中的哪一种;所述上行信号的子载波间隔指所述上行信号传输所采用的子载波间隔是{3.75kHz,15kHz}中的哪一种。
  7. 一种支持窄带通信的基站中的方法,其中,包括如下步骤:
    -步骤A.发送第一信令;
    -步骤B.在目标时频资源上发送无线信号;
    其中,第一信令指示第一时频资源,第一时频资源包括第二时频资源;所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源;所述目标时频资源和所述第二时频资源是正交的,或者所述第一信令指示所述目标时频资源是否包括所述第二时频资源;第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波;第二时频资源在时域上包括所述T1个子帧中的T2个子帧;所述T1和所述P1分别是正整数,所述T2小于所述T1。
  8. 根据权利要求7所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.发送第二信令;
    其中,第二信令指示第三时频资源,第二时频资源是第三时频资源中的一部分。所述第二信令是高层信令。
  9. 根据权利要求7所述的方法,其特征在于,第一信令是用于下行授予的DCI,所述无线信号对应的传输信道是DL-SCH。
  10. 根据权利要求7所述的方法,其特征在于,所述步骤A还包括如下步骤A2,所述步骤B还包括如下步骤B1:
    -步骤A2.接收上行信号;
    -步骤B1.发送第一HARQ-ACK,第一HARQ-ACK指示所述上行信号是否被正确译码;
    其中,第一HARQ-ACK在第二时频资源中传输,或者第一HARQ-ACK在第三时频资源中传输。
  11. 根据权利要求7所述的方法,其特征在于,第一信令是物理层信令,第一信令包括所述无线信号的调度信息。第一信令指示所述目标时频资源不包括第二时频资源且所述无线信号采用速率匹配的方案避免占用第二时频资源。
  12. 根据权利要求8所述的方法,其特征在于,第三时频资源包括在时域上周期性出现的子资源,第二时频资源是其中一次出现的子资源;或者所述基站根据给定信息选择第二时频资源在第三时频资源中的时域位置。其中,所述给定信息是以下至少之一:
    -当前操作模式;
    -双工模式;
    -所述上行信号的传输方式;
    -所述上行信号的子载波间隔;
    其中,当前操作模式是指当前采用的操作模式是{独立操作,保护间隔操作,带内操作}中的哪一种;双工模式是指当前采用的双工模式是{FDD,TDD}中的哪一种;所述上行信号的传输方式是指上行信号的传输是{单频,多频}中的哪一种;所述上行信号的子载波间隔指所述上行信号传输所采用的子载波间隔是{3.75kHz,15kHz}中的哪一种。
  13. 一种支持窄带通信的用户设备,其中,包括如下模块:
    -第二模块:用于接收第一信令;
    -第三模块:用于在目标时频资源上接收无线信号;
    其中,第一信令指示第一时频资源,第一时频资源包括第二时频资源;所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源;所述目标时频资源和所述第二时频资源是正交的,或者所述第一信令指示所述目标时频资源是否包括所述第二时频资源;第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波;第二时频资源在时域上包括所述T1个子帧中的T2个子帧;所述T1和所述P1分别是正整数,所述T2小于所述T1。
  14. 根据权利要求13所述的用户设备,其特征在于,第二模块还用于接收第二信令;其中,第二信令指示第三时频资源,第二时频资源是第三时频资源中的一部分。所述第二信令是高层信令。
  15. 一种支持窄带通信的基站设备,其中,包括如下模块:
    -第二模块:用于发送第一信令;
    -第三模块:用于在目标时频资源上发送无线信号;
    其中,第一信令指示第一时频资源,第一时频资源包括第二时频资源;所述目标时频资源包括所述第一时频资源中且所述第二时频资源之外的时频资源;所述目标时频资源和所述第二时频资源是正交的,或者所述第一信令指示所述目标时频资源是否包括所述第二时频资源;第一时频资源在时域上包括T1个子帧,在频域上包括P1个子载波;第二时频资源在时域上包括所述T1个子帧中的T2个子帧;所述T1和所述P1分别是正整数,所述T2小于所述T1。
  16. 根据权利要求15所述的基站设备,其特征在于,第二模块还用于发送第二信令;其中,第二信令指示第三时频资源,第二时频资源是第三时频资源中的一部分。所述第二信令是高层信令。
PCT/CN2017/071299 2016-01-24 2017-01-16 一种ue、基站中的调度方法和装置 WO2017124989A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/856,093 US10506624B2 (en) 2016-01-24 2017-12-28 Scheduling method and device in UE and base station
US16/679,854 US11224061B2 (en) 2016-01-24 2019-11-11 Scheduling method and device in UE and base station for supporting narrow band transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610045838.1 2016-01-24
CN201610045838.1A CN106998591B (zh) 2016-01-24 2016-01-24 一种调度方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/856,093 Continuation US10506624B2 (en) 2016-01-24 2017-12-28 Scheduling method and device in UE and base station

Publications (1)

Publication Number Publication Date
WO2017124989A1 true WO2017124989A1 (zh) 2017-07-27

Family

ID=59361357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071299 WO2017124989A1 (zh) 2016-01-24 2017-01-16 一种ue、基站中的调度方法和装置

Country Status (3)

Country Link
US (2) US10506624B2 (zh)
CN (1) CN106998591B (zh)
WO (1) WO2017124989A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065452A (zh) * 2018-11-03 2022-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106982468B (zh) * 2016-01-17 2018-04-27 上海朗帛通信技术有限公司 一种调度方法和装置
CN106998591B (zh) * 2016-01-24 2018-03-23 上海朗帛通信技术有限公司 一种调度方法和装置
CN107404372B (zh) * 2016-05-20 2019-02-22 北京小米移动软件有限公司 一种通信方法及装置
CN109842950B (zh) * 2017-11-28 2022-12-23 珠海市魅族科技有限公司 用于基站或终端的资源调度方法及装置
CN107947826A (zh) * 2017-12-05 2018-04-20 鞍钢集团(鞍山)铁路运输设备制造有限公司 一种铁路调度呼叫方法
CN108282326B (zh) * 2018-01-03 2019-04-09 深圳职业技术学院 一种物联网中时延可控的数据传输方法
CN110034841B (zh) * 2018-01-11 2021-01-12 华为技术有限公司 一种信息传输方法、装置以及计算机可读存储介质
CN110035444B (zh) * 2018-01-12 2021-11-30 华为技术有限公司 一种资源确定的方法和装置
CN110167165B (zh) * 2018-02-14 2021-08-20 华为技术有限公司 一种资源配置方法及装置
CN111884768B (zh) 2018-06-11 2024-04-09 荣耀终端有限公司 一种用于无线通信的通信节点中的方法和装置
CN111510945B (zh) * 2019-01-31 2022-04-29 华为技术有限公司 一种上报终端能力的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841867A (zh) * 2009-03-18 2010-09-22 大唐移动通信设备有限公司 一种信息传输的方法、系统及装置
WO2010145520A1 (zh) * 2009-11-05 2010-12-23 中兴通讯股份有限公司 基于竞争的上行传输方法及装置
CN104168610A (zh) * 2013-05-17 2014-11-26 华为技术有限公司 一种传输下行信号的方法、装置及终端设备

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE518204C2 (sv) * 1999-12-30 2002-09-10 Ericsson Telefon Ab L M Åtgärder för att motverka Rayleigh-fädning i ett cellulärt radiokommunikationssystem
US20050220042A1 (en) * 2004-02-26 2005-10-06 Samsung Electronics Co., Ltd. Method and apparatus for transmitting scheduling grant information using a transport format combination indicator in Node B controlled scheduling of an uplink packet transmission
CN101043718B (zh) * 2006-03-24 2011-09-14 电信科学技术研究院 一种用下行共享物理信道进行寻呼的方法
US9143288B2 (en) * 2006-07-24 2015-09-22 Qualcomm Incorporated Variable control channel for a wireless communication system
WO2008023299A2 (en) * 2006-08-21 2008-02-28 Koninklijke Philips Electronics N.V. A transmission method and apparatus for cancelling inter-carrier interference
CN101282166B (zh) * 2007-04-04 2012-10-10 中兴通讯股份有限公司 用于动态调度的物理信道训练码分配方法
CN101378306B (zh) * 2007-08-31 2012-07-04 华为技术有限公司 控制信道分配及ack/nack信道分配指示的方法和装置
CN101483914B (zh) * 2008-01-11 2010-12-08 中兴通讯股份有限公司 一种利用非连续的多载波传输用户数据的方法
EP2392173B1 (en) * 2009-01-30 2018-05-02 Samsung Electronics Co., Ltd. Transmitting uplink control information over a data channel or over a control channel
CN101969363B (zh) * 2010-09-30 2016-03-30 中兴通讯股份有限公司 信道状态信息反馈方法及终端
GB2484280B (en) * 2010-10-04 2014-10-08 Airspan Networks Inc Apparatus and method for controlling a wireless feeder network
CN107105494B (zh) * 2010-11-03 2021-07-06 三星电子株式会社 用于确定物理上行链路控制信道传输功率的方法及装置
KR20120119176A (ko) * 2011-04-20 2012-10-30 주식회사 팬택 통신 시스템에서 제어신호 송수신 장치 및 방법
US9462587B2 (en) 2012-04-05 2016-10-04 Lg Electronics Inc. Method and apparatus for aggregating carriers in wireless communication systems
CN108306673B (zh) 2012-04-27 2021-09-24 北京三星通信技术研究有限公司 一种harq-ack信息传输方法
US8958331B2 (en) * 2012-07-02 2015-02-17 Intel Corporation HARQ-ACK handling for unintended downlink sub-frames
CN103874048A (zh) * 2012-12-14 2014-06-18 中兴通讯股份有限公司 设备到设备之间的调度信息的传输方法及装置
BR112018001680B1 (pt) * 2015-07-27 2023-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Método para controlar comunicação via rádio, nó para uma rede de celular, e, dispositivo de comunicação
US10893520B2 (en) * 2015-08-26 2021-01-12 Qualcomm Incorporated Downlink and synchronization techniques for narrowband wireless communications
US10117199B2 (en) * 2015-09-24 2018-10-30 Lg Electronics Inc. Method of transmitting channel state information and apparatus therefor
WO2017052320A1 (ko) * 2015-09-25 2017-03-30 엘지전자 주식회사 무선 통신 시스템에서 상향링크 데이터를 전송하기 위한 방법 및 이를 위한 장치
WO2017057870A1 (en) * 2015-09-29 2017-04-06 Lg Electronics Inc. Method and user equipment for receiving downlink control information, and method and base station for transmitting downlink control information
US10256955B2 (en) * 2015-09-29 2019-04-09 Qualcomm Incorporated Synchronization signals for narrowband operation
JP6463873B2 (ja) * 2015-10-19 2019-02-06 エルジー エレクトロニクス インコーポレイティド 下りリンク信号受信方法及びユーザ機器、並びに下りリンク信号送信方法及び基地局。
CN115701011A (zh) * 2015-11-04 2023-02-07 交互数字专利控股公司 用于窄带lte操作的方法和过程
WO2017119720A2 (en) * 2016-01-04 2017-07-13 Lg Electronics Inc. Method and apparatus for performing uplink transmission for nb-iot in wireless communication system
WO2017123286A1 (en) * 2016-01-11 2017-07-20 Intel IP Corporation Apparatus and method for iot control channel
CN106982468B (zh) * 2016-01-17 2018-04-27 上海朗帛通信技术有限公司 一种调度方法和装置
CN106998591B (zh) * 2016-01-24 2018-03-23 上海朗帛通信技术有限公司 一种调度方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841867A (zh) * 2009-03-18 2010-09-22 大唐移动通信设备有限公司 一种信息传输的方法、系统及装置
WO2010145520A1 (zh) * 2009-11-05 2010-12-23 中兴通讯股份有限公司 基于竞争的上行传输方法及装置
CN104168610A (zh) * 2013-05-17 2014-11-26 华为技术有限公司 一种传输下行信号的方法、装置及终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115065452A (zh) * 2018-11-03 2022-09-16 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115065452B (zh) * 2018-11-03 2024-02-27 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
US11224061B2 (en) 2022-01-11
US10506624B2 (en) 2019-12-10
CN106998591A (zh) 2017-08-01
US20200077430A1 (en) 2020-03-05
US20180124817A1 (en) 2018-05-03
CN106998591B (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
WO2017124989A1 (zh) 一种ue、基站中的调度方法和装置
JP6827528B2 (ja) トラフィックを多重化するためのシステムおよび方法
US11336415B2 (en) System and method for enabling reliable and low latency communication
EP3494747B1 (en) System and method for signaling for resource allocation for one or more numerologies
US20240040550A1 (en) Flexible multiplexing of users with difference requirements in a 5g frame structure
EP3103299B1 (en) Flexible sub-carrier spacing and symbol duration in ofdm based communication systems
WO2017121405A1 (zh) 一种调度方法和装置
CN107027179B (zh) 一种无线通信中的调度方法和装置
WO2017211228A1 (zh) 一种无线通信中的方法和装置
KR20190101988A (ko) 제어 정보의 송신
US20230269051A1 (en) Physically separated channels for narrowband, low complexity receivers
CN107027189B (zh) 一种调度方法和装置
CN107155219B (zh) 一种降低网络延时的无线通信方法和装置
JP2023130483A (ja) 通信システムおよび方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17741020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 02/01/2019 )

122 Ep: pct application non-entry in european phase

Ref document number: 17741020

Country of ref document: EP

Kind code of ref document: A1