WO2017124827A1 - 多天线数据传输的方法、网络设备、终端设备及系统 - Google Patents

多天线数据传输的方法、网络设备、终端设备及系统 Download PDF

Info

Publication number
WO2017124827A1
WO2017124827A1 PCT/CN2016/106775 CN2016106775W WO2017124827A1 WO 2017124827 A1 WO2017124827 A1 WO 2017124827A1 CN 2016106775 W CN2016106775 W CN 2016106775W WO 2017124827 A1 WO2017124827 A1 WO 2017124827A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
channel
information
parameter
statistical
Prior art date
Application number
PCT/CN2016/106775
Other languages
English (en)
French (fr)
Inventor
吴晔
刘瑾
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16886087.2A priority Critical patent/EP3370346B1/en
Publication of WO2017124827A1 publication Critical patent/WO2017124827A1/zh
Priority to US16/039,986 priority patent/US10771130B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, network device, terminal device and system for multi-antenna data transmission.
  • LTE/LTE-A Long Term Evolution/Long Term Evolution-advanced
  • the number of UEs ie the number of UEs to be scheduled, is also increasing rapidly.
  • the increase in the number of antennas can provide a higher degree of spatial freedom, which is to multiplex multiple data streams in the downlink space (Single-user Multiple-input and multiple-output (SU-MIMO) or (Multi-user Multiple-input) And multiple-output, MU-MIMO)) created favorable conditions.
  • SU-MIMO Single-user Multiple-input and multiple-output
  • MU-MIMO Multi-user Multiple-input
  • the associated channel information In order to obtain the high spatial freedom that large-scale antennas can provide, the associated channel information (CSI) must be acquired by the data transmitter (typically a base station) to obtain an accurate precoder.
  • the data transmitter typically a base station
  • the data transmitter typically a base station
  • an accurate precoder In the prior art (such as LTE/LTE-A), there are two methods for obtaining CSI in the general data transmitting end:
  • the data transmitting end transmits the pilot of the downlink measurement CSI, which is measured by the data receiving end (generally UE).
  • the pilot acquires CSI, and the UE performs feedback CSI (generally, quantized CSI and PMI+RI in LTE), and the data transmitting end uses the CSI to pre-code and transmit the data.
  • the data receiving end transmits the pilot of the uplink measurement CSI (such as SRS in LTE/LTE-A), and the data transmitting end performs the uplink channel CSI measurement, and the data transmitting end considers the uplink channel according to the channel dissimilarity.
  • the measurement is the downlink channel (generally requires the necessary reciprocity parameter correction), and then the data is precoded and transmitted according to the CSI.
  • the uplink pilot overhead is proportional to the number of antennas at the data transmitting end
  • the uplink CSI feedback amount is also proportional to the number of antennas at the data transmitting end.
  • pilot The overhead and the amount of uplink CSI feedback can be controlled.
  • the uplink and downlink pilot overhead and the uplink CSI feedback amount will occupy a large amount of time-frequency resources. As the time-frequency resources available for data transmission are compressed, system throughput is greatly affected.
  • the invention provides a multi-antenna data transmission method, a network device, a terminal device and a system, which can increase the throughput of the system.
  • the first aspect provides a method for multi-antenna data transmission, where the method includes: the network device sends downlink control signaling to the terminal device, where the downlink control signaling indicates that the terminal device feeds back statistical channel parameter information, and the statistical channel parameter information
  • the statistical channel information is determined by the terminal device according to the statistical channel information, and the statistical channel information is obtained by the terminal device after measuring the instantaneous channel multiple times; the network device receives the statistical channel parameter information that is determined by the terminal device and is determined according to the downlink control signaling. .
  • the network device sends the downlink control signaling to the terminal device, and the downlink control signaling may instruct the terminal device to feed back the statistical channel parameter information, where the statistical channel parameter information may be
  • the statistical channel information is processed, and the network device can obtain statistical channel information or information about statistical channel information (such as statistical channel parameter information), so that the network device can further perform downlink data according to the parameter information fed back by the terminal device. Process it.
  • the statistical channel parameter information is determined by the terminal device performing a dimensionality reduction and quantization process on the statistical channel information, where the statistical channel information is that the terminal device is configured according to the network device
  • the transmitted primary reference signal RS is calculated after multiple measurements of the instantaneous channel.
  • the network device may receive the statistical channel parameter information and the processed statistical channel information that are fed back by the terminal device according to the downlink control information, where the processed statistical channel information is obtained by the terminal device performing dimensionality reduction and quantization processing on the statistical channel information. .
  • the statistical channel parameter information includes a statistical channel dimension parameter and a statistical channel quantization parameter, where the statistical channel dimension parameter indicates the dimension after the dimension reduction Effective dimension value of channel information, the statistical channel quantization parameter The number indicates the quantization index parameter required by the terminal device to quantize the statistical channel information after the dimensionality reduction.
  • the downlink control signaling is further used to indicate that the terminal device feeds back instantaneous channel parameter information, where the instantaneous channel parameter information is The instantaneous channel information is determined by the terminal device to measure the instantaneous channel, and the method further includes: receiving, by the network device, the instantaneous channel parameter information determined by the terminal device according to the downlink control signaling.
  • the instantaneous channel parameter information is determined by the terminal device performing quantization processing on the instantaneous channel information, where the instantaneous channel is determined by the terminal device according to the terminal device
  • the pre-coded secondary RS sent by the network device is obtained by measuring the instantaneous channel, and the pre-coded secondary RS is determined by the network device precoding the secondary RS according to the statistical channel parameter information.
  • the network device may receive the instantaneous channel parameter information and the processed instantaneous channel information that are fed back by the terminal device according to the downlink control information, and the processed instantaneous channel information is obtained by the terminal device performing quantization processing on the instantaneous channel information.
  • the instantaneous channel parameter information includes an instantaneous channel dimension parameter and an instantaneous channel quantization parameter, where the instantaneous channel dimension parameter indicates that the instantaneous channel information is valid.
  • a dimension value, the instantaneous channel quantization parameter indicating a quantization index parameter required by the terminal device to quantize the instantaneous channel information.
  • the method for transmitting multi-antenna data in the embodiment of the present invention sends downlink control signaling to the terminal device through the network device, instructs the terminal device to feed back the statistical channel parameter information and the instantaneous channel parameter information, and downlinks according to the parameter information fed back by the terminal device.
  • the data is subjected to two-stage precoding, which can effectively obtain the two-stage pre-encoded parameter information, and ensure the smooth progress of the two-level CSI measurement, thereby solving the problem in the prior art when the number of antennas of the data transmitting end is large or the number of UEs to be served is also higher.
  • the uplink and downlink pilot overhead is large, and the uplink CSI feedback amount is large, so that the system has more time-frequency resources for data transmission, which effectively increases the system throughput.
  • the downlink control signaling includes a first signaling and a second signaling, where the first signaling indicates that the terminal device feeds back the statistic Channel parameter information, the second signaling indicates that the terminal device feeds back the instantaneous channel parameter information.
  • the first signaling includes a first sub-signal and a second sub-signal, where the first sub-signal indicates the terminal device Feedback The statistical channel dimension parameter, the second sub-signal indicates that the terminal device feeds back the statistical channel quantization parameter.
  • the second signaling includes a third sub-signal and a fourth sub-signal, where the third sub-signal indicates the terminal device The instantaneous channel dimension parameter is fed back, and the fourth sub-signal indicates that the terminal device feeds back the instantaneous channel quantization parameter.
  • the downlink control signaling indicates that the terminal device periodically feeds back the statistical channel parameter information and the instantaneous channel parameter information.
  • the downlink control signaling occupies a first control domain and a second control domain, where the first control domain is used to indicate feedback of the terminal device.
  • the statistical channel parameter information is used by the terminal device to instruct the terminal device to feed back the instantaneous channel parameter information.
  • first control domain and the second control domain may be one bit or two or more bits, respectively.
  • the first control domain includes a first sub-control domain and a second sub-control domain, where the first sub-control domain is used to indicate the The terminal device feeds back the statistical channel dimension parameter, and the second sub-control field is used to instruct the terminal device to feed back the statistical channel quantization parameter.
  • first sub-control domain and the second sub-control domain may be one bit or two or more bits, respectively.
  • the second control domain includes a third sub-control domain and a fourth sub-control domain, where the third sub-control domain is used to indicate the The terminal device feeds back the instantaneous channel dimension parameter, and the fourth sub-control field is used to instruct the terminal device to feed back the instantaneous channel quantization parameter.
  • the third sub-control domain and the fourth sub-control domain may be one bit or two or more bits, respectively.
  • the network device receives the statistical channel parameter information and the instantaneous channel parameter information that are determined by the terminal device and are determined according to the downlink control signaling.
  • the network device receives the statistical channel parameter information and the processed statistical channel information determined by the terminal device according to the downlink control signaling, and the The instantaneous channel parameter information and the processed instantaneous channel information; the network device processes the downlink data according to the statistical channel parameter information and the instantaneous channel parameter information, including: the network device according to the statistical channel parameter information and the processed
  • the statistical channel information is subjected to first stage precoding, and the second level precoding is performed according to the instantaneous channel parameter information and the processed instantaneous channel information.
  • a second aspect provides a method for transmitting data of a multi-antenna, the method comprising: receiving, by a terminal device, downlink control signaling sent by a network device, where the downlink control signaling indicates that the terminal device feeds back statistical channel parameter information to the network device; The terminal device determines the statistical channel parameter information according to the statistical channel information obtained by measuring the plurality of instantaneous channels, and the terminal device feeds back the statistical channel parameter information to the network device according to the downlink control signaling.
  • the network device sends downlink control signaling to the terminal device, where the downlink control signaling may instruct the terminal device to feed back statistical channel parameter information, and the terminal device obtains statistics on the instantaneous channel obtained by multiple measurements.
  • the channel information is processed to determine the statistical channel parameter information, and the statistical channel parameter information is fed back to the network device, which solves the problem that the prior art cannot feed the statistical channel information or the statistical channel information (such as the statistical channel parameter information) to the network device.
  • the network device is configured to process the downlink data according to the parameter information fed back by the terminal device.
  • the terminal device determines, according to the statistical channel information obtained by performing measurement on the multiple instantaneous channels, the statistical channel parameter information, including: the terminal device according to the network
  • the primary reference signal RS sent by the device performs measurement and calculation on the plurality of instantaneous channels to obtain the statistical channel information; the terminal device performs dimensionality reduction and quantization processing on the statistical channel information, and determines the statistical channel parameter information.
  • the statistical channel parameter information includes a statistical channel dimension parameter and a statistical channel quantization parameter
  • the terminal device performs dimension reduction and quantization on the statistical channel information.
  • Processing, determining the statistical channel parameter information comprising: the terminal device performing dimension reduction processing on the statistical channel information, and determining, by using the reduced dimension, the effective dimension value of the statistical channel information as the statistical channel dimension parameter;
  • the statistical channel information after the dimensionality reduction is quantized, and the quantization index parameter required for the quantization process is determined as the statistical channel quantization parameter.
  • the terminal device may feed back the statistical channel parameter information and the processed statistical channel information to the network device according to the downlink control information, where the processed statistical channel information is obtained by the terminal device performing dimensionality reduction and quantization processing on the statistical channel information. .
  • the downlink control signaling is further used to indicate that the terminal device feeds back the instantaneous channel parameter information to the network device
  • the method further includes: The terminal device determines the instantaneous channel parameter information according to the instantaneous channel information obtained by measuring the instantaneous channel, and the terminal device feeds back the instantaneous channel parameter information to the network device according to the downlink control signaling; the terminal device receives the network device to send Downstream data, the downlink data is data processed by the network device according to the statistical channel parameter information, comprising: the terminal device receiving downlink data sent by the network device, where the downlink data is the network device according to the statistical channel parameter information And processed data with the instantaneous channel parameter information.
  • the terminal device determines the instantaneous channel parameter information according to the instantaneous channel information obtained by measuring the instantaneous channel, including: the terminal device according to the The pre-coded secondary RS sent by the network device obtains the instantaneous channel information by measuring the instantaneous channel, and the pre-coded secondary RS is the network device pre-predicting the secondary RS according to the statistical channel parameter information. Determining after encoding; the terminal device quantizes the instantaneous channel information to determine the instantaneous channel parameter information.
  • the terminal device may feed back the instantaneous channel parameter information and the processed instantaneous channel information to the network device according to the downlink control information, and the processed instantaneous channel information is obtained by the terminal device performing quantization processing on the instantaneous channel information.
  • the instantaneous channel parameter information includes an instantaneous channel dimension parameter and an instantaneous channel quantization parameter
  • the terminal device performs quantization processing on the instantaneous channel information, Determining the instantaneous channel parameter information, comprising: the terminal device determining the effective dimension value of the instantaneous channel information as the instantaneous channel dimension parameter; the terminal device quantizing the instantaneous channel information, and quantifying the quantization process
  • the index parameter is determined as the instantaneous channel quantization parameter representation.
  • the network device sends downlink control signaling to the terminal device, where the downlink control signaling may instruct the terminal device to feed back statistical channel parameter information and instantaneous channel parameter information, so that the network device can be based on the terminal.
  • the parameter information fed back by the device performs two-stage precoding on the downlink data, which can effectively obtain the two-stage pre-encoded parameter information, and ensure the smooth progress of the two-stage CSI measurement, thereby solving the problem that the number of antennas at the data transmitting end is larger in the prior art.
  • the uplink and downlink pilot overhead is large, and the uplink CSI feedback amount is large, so that the system has more time-frequency resources for data transmission, thereby effectively increasing the throughput of the system.
  • the downlink control signaling includes a first signaling and a second signaling, where the first signaling indicates that the terminal device feeds back the statistical channel parameter information, and the second signaling indicates that the terminal device feeds back the instantaneous channel parameter information.
  • the first signaling includes a first sub-signal and a second sub-signal, where the first sub-signal indicates the terminal device The statistical channel dimension parameter is fed back, and the second sub-signal indicates that the terminal device feeds back the statistical channel quantization parameter.
  • the second signaling includes a third sub-signal and a fourth sub-signal, where the third sub-signal indicates the terminal device The instantaneous channel dimension parameter is fed back, and the fourth sub-signal indicates that the terminal device feeds back the instantaneous channel quantization parameter.
  • the downlink control signaling indicates that the terminal device periodically feeds back the statistical channel parameter information and the instantaneous channel parameter information.
  • the downlink control signaling occupies a first control domain and a second control domain, where the first control domain is used to indicate feedback of the terminal device
  • the statistical channel parameter information is used by the terminal device to instruct the terminal device to feed back the instantaneous channel parameter information.
  • first control domain and the second control domain may be one bit or two or more bits, respectively.
  • the first control domain includes a first sub-control domain and a second sub-control domain, where the first sub-control domain is used to indicate the The terminal device feeds back the statistical channel dimension parameter, and the second sub-control field is used to instruct the terminal device to feed back the statistical channel quantization parameter.
  • first sub-control domain and the second sub-control domain may be one bit or two or more bits, respectively.
  • the second control domain includes a third sub-control domain and a fourth sub-control domain, where the third sub-control domain is used to indicate the The terminal device feeds back the instantaneous channel dimension parameter, and the fourth sub-control field is used to instruct the terminal device to feed back the instantaneous channel quantization parameter.
  • the third sub-control domain and the fourth sub-control domain may be one bit or two or more bits, respectively.
  • a network device for multi-antenna data transmission for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the network device comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a terminal device for multi-antenna data transmission for performing the method in any of the above-mentioned second aspect or any possible implementation of the second aspect.
  • the terminal device comprises means for performing the method of any of the above-described second or second aspects of the second aspect.
  • a system for multi-antenna data transmission comprising the network device of the third aspect and the terminal device of the fourth aspect.
  • a sixth aspect provides a network device for multi-antenna data transmission, comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the The execution of the memory causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a seventh aspect provides a terminal device for multi-antenna data transmission, comprising: a storage unit and a processor, the storage unit is configured to store an instruction, the processor is configured to execute an instruction stored by the memory, and when the processor executes the The execution of the memory causes the processor to perform the method of any of the possible implementations of the second aspect or the second aspect.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a ninth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or the second aspect of the second aspect.
  • FIG. 1 is a schematic flow chart of a method of multi-antenna data transmission according to an embodiment of the present invention.
  • FIG. 2 is another schematic flowchart of a method for multi-antenna data transmission according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a network device for multi-antenna data transmission in accordance with an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a terminal device for multi-antenna data transmission according to an embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of a system for multi-antenna data transmission in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a network device for multi-antenna data transmission according to another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a terminal device for multi-antenna data transmission according to another embodiment of the present invention.
  • FIG. 1 shows a schematic flow diagram of a method 100 of multi-antenna data transmission in accordance with an embodiment of the present invention, which may be applicable to TDD and FDD scenarios. As shown in FIG. 1, the method 100 includes:
  • the network device sends downlink control signaling to the terminal device, where the downlink control signaling is used to indicate that the terminal device feeds back the statistical channel parameter information, and the statistical channel parameter information is used by the terminal device to process the statistical channel information, where the statistical channel information may be used by the terminal.
  • the device measures multiple instantaneous channel acquisitions multiple times.
  • a channel is a channel for information transmission, a physical channel for transmitting information, and can refer to a medium for spatial physical propagation.
  • the medium can have instantaneous or statistical characteristics. Therefore, the channel also has transient characteristics and statistical characteristics.
  • the network device may be a device for communicating with a mobile device, and the network device may be a BTS in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access).
  • Base Transceiver Station which may also be an NB (NodeB, Base Station) in WCDMA (Wideband Code Division Multiple Access), or an eNB or eNodeB in LTE (Long Term Evolution) (Evolutional Node B, evolved base station) or access point, or in-vehicle device, wearable device, network side device in future 5G network or network in future evolved PLMN (Public Land Mobile Network) network device.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • Base Transceiver Station which may also be an NB (NodeB, Base Station) in WCDMA (Wideband Code Division Multiple Access), or an eNB or eNodeB in LTE (Long Term Evolution) (Evolutional Node B, evolved base station) or access point, or in-vehicle device
  • the terminal device may also be referred to as a User Equipment (UE) user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, and a terminal.
  • UE User Equipment
  • the access terminal may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • Functional handheld device computing device Or other processing device connected to the wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a terminal device in a future evolved PLMN (Public Land Mobile Network) network.
  • PLMN Public Land Mobile Network
  • the statistical channel parameter information in the downlink control signaling is used by the terminal device to process the statistical channel information, where the statistical channel information is the primary reference signal RS sent by the terminal device according to the network device, and is repeatedly used on the time-frequency resource.
  • the calculation is obtained by measuring the instantaneous channel, and the statistical channel parameter information may include a statistical channel dimension parameter and a statistical channel quantization parameter.
  • the terminal device may perform the dimension reduction and quantization processing on the statistical channel information to obtain the processed statistical channel information, and the dimension parameter of the statistical channel indicates the effective dimension value of the statistical channel information after the dimension reduction.
  • the quantization parameter of the statistical channel represents the quantization index parameter required for the dimensionality reduction and quantization processing of the statistical channel information.
  • the network device sends the downlink control signaling to the terminal device, and the downlink control signaling may instruct the terminal device to feed back the statistical channel parameter information, where the statistical channel parameter information may be used by the terminal device.
  • the network device obtains the statistical channel information, by which the network device can obtain the statistical channel information or the information about the statistical channel information (such as the statistical channel parameter information), so that the network device can further downlink according to the parameter information fed back by the terminal device.
  • the data is processed.
  • the network device sends the downlink control signaling to the terminal device, where the downlink control signaling is further used to indicate that the terminal device feeds back the instantaneous channel parameter information, where the instantaneous channel parameter information is used by the terminal device to process the instant.
  • Channel information, the instantaneous channel information is obtained by the terminal device according to the reduced-order secondary RS sent by the network device, and the second-order RS is obtained by the network device according to the statistical channel fed back by the terminal device.
  • Parameter information is determined after the primary precoding of the secondary RS.
  • the instantaneous channel information may include an instantaneous channel dimension parameter and an instantaneous channel quantization parameter.
  • the terminal device measures the instantaneous channel to obtain the instantaneous channel information, and quantizes the instantaneous channel information to obtain the processed instantaneous channel information, and the dimension parameter of the instantaneous channel represents the effective dimension value of the instantaneous channel information, and the quantization parameter representation of the instantaneous channel It is the quantization index parameter required for the quantization processing of the instantaneous channel information.
  • the network device sends the downlink control signaling to indicate that the terminal device feeds back the statistical channel parameter information and/or the instantaneous channel parameter information, and optionally, the terminal device may periodically report the feedback, for example, the network device controls the radio resource.
  • the (Radio Resource Control, RRC) message indicates that the terminal device periodically feeds back; the terminal device feedback may also be triggered non-periodically, for example,
  • the control domain carries the downlink control signaling in the physical downlink control channel (PDCCH), and triggers the terminal device to feedback the parameter information.
  • the embodiment of the present invention is not limited thereto.
  • the network device sends downlink control signaling, where the downlink control signaling may include the first signaling and/or the second signaling, where the first signaling indicates that the terminal device feeds back the statistical channel parameter information, The second signaling indicates that the terminal device feeds back the instantaneous channel parameter information.
  • the first signaling may be a signaling, indicating that the terminal device feeds back the statistical channel dimension parameter and the statistical channel quantization parameter in the statistical channel parameter information, or the first signaling may also include the first sub-signaling and The second sub-signal indicates that the terminal device feeds back the statistical channel dimension parameter in the statistical channel parameter information, and the second sub-signal indicates that the terminal device feeds back the statistical channel quantization parameter in the statistical channel parameter information.
  • the second signaling may also be a signaling, indicating that the terminal device feeds back the instantaneous channel dimension parameter and the instantaneous channel quantization parameter in the instantaneous channel parameter information, or the second signaling may also include the third sub-signaling and The fourth sub-signal indicates that the terminal device feeds back the instantaneous channel dimension parameter in the instantaneous channel parameter information, and the fourth sub-signal indicates that the terminal device feeds back the instantaneous channel quantization parameter in the instantaneous channel parameter information.
  • the network device may send the downlink control signaling by using the control domain, and trigger the terminal device to feed back the statistical channel parameter information and the instantaneous channel parameter information, and specifically, may pass the first control domain and/or the second control.
  • the domain sends downlink control signaling, the first control domain instructs the terminal device to feed back the statistical channel parameter information, and the second control domain instructs the terminal device to feed back the instantaneous channel parameter information.
  • the first control domain may be one bit or two or more bits, indicating that the terminal device feeds back the statistical channel dimension parameter and the statistical channel quantization parameter in the statistical channel parameter information; the first control domain may further include The first sub-control domain and the second sub-control domain respectively indicate that the terminal device feeds back the parameter in the statistical channel parameter information, and the first sub-control domain instructs the terminal device to feed back the statistical channel dimension parameter in the statistical channel parameter information, by the second sub-
  • the control field indicates that the terminal device feeds back the statistical channel quantization parameter in the statistical channel parameter information, and the first sub-control domain and the second sub-control domain may be one bit or two or more bits, respectively, and the embodiment of the present invention is not limited to this.
  • the second control domain may also be one bit or two or more bits, indicating that the terminal device feeds back the instantaneous channel dimension parameter and the instantaneous channel quantization parameter in the instantaneous channel parameter information; the second control domain may further include The third sub-control domain and the fourth sub-control domain respectively instruct the terminal device to feed back parameters in the instantaneous channel parameter information, and the third sub-control field instructs the terminal device to feed back the instantaneous channel dimension parameter in the instantaneous channel parameter information, and is controlled by the fourth sub-control The field indicates that the terminal device feeds back the instantaneous information in the instantaneous channel parameter information.
  • the channel quantization parameter, the third sub-control domain and the fourth sub-control domain may be one bit or two or more bits, respectively, and the embodiment of the present invention is not limited thereto.
  • the first sub-control domain in the first control domain may be one bit, that is, when the control domain is displayed as “0”, it may be used to indicate that the first sub-control is not fed back.
  • the statistical channel dimension parameter in the statistical channel parameter information indicated by the domain when the control domain is displayed as "1", may indicate that the terminal device needs to feed back the statistical channel dimension parameter in the statistical channel parameter information indicated by the first sub-control domain. .
  • the terminal device determines statistical channel parameter information and/or instantaneous channel parameter information that needs to be fed back according to downlink control signaling of the network device, and feeds back statistical channel parameter information and/or instantaneous channel parameter information to the network device.
  • the terminal device may determine statistical channel parameter information and instantaneous channel parameter information by using the method as shown in FIG. 2, and FIG. 2 illustrates another schematic flowchart of the method 100 for multi-antenna data transmission according to an embodiment of the present invention.
  • S120 and S130 in the method 100 may specifically include:
  • the network device sends a primary RS to the terminal device, where the primary RS may be a primary RS dedicated to the cell, or a primary RS corresponding to the UE group.
  • the terminal device receives the primary RS sent by the network device, performs multiple measurements on the instantaneous channel, calculates and obtains corresponding statistical channel information, and performs dimensionality reduction and quantization on the statistical channel information to obtain processed statistical channel information, and
  • the statistical channel parameter information used in the process is determined, wherein the statistical channel parameter information may include a statistical channel dimension parameter and a statistical channel quantization parameter.
  • the terminal device that receives the primary RS may be a terminal device to be scheduled, and the terminal device to be scheduled and the network device first complete the agreement negotiation, and the terminal device to be scheduled receives the cell-specific level sent by the network device. After the RS, the primary-level RS measurement dedicated to the cell is performed.
  • the terminal device may determine the statistical channel on the broadband or the subband, and the embodiment of the present invention is not limited thereto.
  • the terminal device obtains statistical channel information by measuring the instantaneous channel multiple times, and the statistical channel information may be an autocorrelation of the statistical channel.
  • the matrix as shown in equation (1):
  • the autocorrelation matrix of the statistical channel can be obtained by ⁇ -filtering, that is, by measuring the instantaneous channel, obtaining an autocorrelation matrix of the instantaneous channel, and performing iterative processing according to formula (1) until the i-th measurement, the statistical channel can be obtained.
  • Correlation matrix R i Correlation matrix
  • S is the statistical channel dimension parameter in the statistical channel parameter information that the terminal device needs to feed back.
  • the statistical channel dimension parameter S satisfies: S ⁇ max (M, number of receiving antennas), and under the condition of massive MIMO, M satisfies M> the number of receiving antennas, and S satisfies: S ⁇ M. Since the value of S is less than M, it is equivalent to dimension reduction. Specifically, the dimension of the original channel matrix is M. When the value of S is less than M, the equivalent channel matrix dimension is reduced to S.
  • the codebook may be recorded as C.
  • the codebook may be selected in a plurality of codebooks.
  • the codebook design may use a codebook in the prior art or a new codebook may be separately designed.
  • members in C can be exemplified by a quantized floating-point matrix or vector.
  • a precoding matrix composed of the first S vectors of U [u 1 u 2 ... u M ], used Find the index corresponding to the closest precoding matrix in codebook C.
  • This process can be understood as The quantization process, combined with the above codebook example,
  • the quantization process can be understood as an example to convert an irregular floating-point vector or matrix into a regular floating-point vector or matrix, which can be expressed by an index.
  • This index is written as SI. Therefore SI can be understood as Quantized index.
  • the terminal device performs multiple measurements on the instantaneous channel to obtain statistical channel information, and obtains the processed statistical channel information by performing dimensionality reduction and quantization processing on the statistical channel information, and the terminal device processes the processed statistical channel information according to the processing.
  • the statistical channel parameter information determined by the subsequent statistical channel information is fed back to the network device, wherein the statistical channel parameter information may include a statistical channel dimension parameter S and/or a statistical channel quantization parameter SI.
  • the method further includes S124, the network device sends a secondary RS to the terminal device, where the secondary RS may be a user-specific RS.
  • the network device may schedule the terminal device, determine a set of terminal devices participating in the multiple input multiple output, and send the secondary RS to the terminal device in the terminal device set, where participating in the multiple input multiple output may include participating in the SU-MIMO Or MU-MIMO.
  • the network device sends the user-specific UE-specific secondary RS to the terminal device by using the reduced-dimensional channel, that is, the network device sends the pre-coded secondary RS to the terminal device, where the network can use the prior art to
  • the secondary RS is precoded.
  • the network device may further determine by using the statistical channel parameter information S and SI fed back by the terminal device. a precoding matrix, the precoding matrix is multiplied by the secondary RS to obtain a precoded secondary RS, and the statistical channel parameter information is determined by the terminal device performing dimensionality reduction and quantization processing on the statistical channel information, so
  • the secondary RS is pre-coded and transmitted, and may also be referred to as a network device to transmit the secondary RS by using the reduced-dimensional channel.
  • the network device can transmit only for the terminal devices in the terminal device set, so that the system overhead can be controlled.
  • the network device may pre-code the secondary RS according to the statistical channel parameter information fed back by the single terminal device, and send the pre-coded secondary RS to one or more terminal devices; the network device may also be based on multiple terminals.
  • the statistical channel parameter information fed back by the device is used to perform statistical calculation on the plurality of statistical channel parameter information, and pre-encodes the secondary RS according to the calculation result, and then sends the pre-coded secondary RS to the terminal device.
  • the method further includes: S125, after receiving, by the channel after the dimension reduction, the terminal device receives the user-specific precoded secondary RS sent by the network device, and then measures the instantaneous channel to obtain the instantaneous channel information, and quantizes the instantaneous channel information.
  • the processed instantaneous channel information wherein the UE measures the instantaneous channel to obtain instantaneous channel information, and the effective dimension number of the instantaneous channel information is the instantaneous channel dimension parameter in the instantaneous channel parameter, corresponding to the rank in the antenna matrix in the MIMO scheme.
  • RI Rank Indication
  • PMI Pre-coding Matrix Indication
  • the method further includes: S126, the terminal device feeds back the instantaneous channel parameter information and the processed instantaneous channel information to the network device, where the processed instantaneous channel information refers to the instantaneous channel information after the quantization process.
  • the terminal device determines the statistical channel parameter information and the instantaneous channel parameter information in S120
  • the terminal device sends the statistical channel parameter information and the instantaneous channel parameter information to the network device in S130, and similarly, The terminal device also feeds back to the network device the processed statistical channel information obtained after processing according to the statistical channel parameter information, and the processed instantaneous channel information obtained after processing according to the instantaneous channel parameter information.
  • the network device processes the downlink data and/or the user-specific demodulation reference signal by two-stage precoding.
  • the two-level precoding includes a first level precoding corresponding to the processed statistical channel information received by the network device, and a second level precoding corresponding to the processed instantaneous channel information received by the network device.
  • the network The device determines a primary precoding matrix according to the statistical channel parameter information.
  • the network device determines the secondary precoding matrix according to the instantaneous channel parameter information, and multiplies the data or the user-specific reference signal by the primary precoding matrix. And multiply by the second-level precoding matrix, that is, the data is subjected to two-stage precoding.
  • the network device sends the downlink data processed by the two-stage precoding and/or the user-specific demodulation reference signal to the terminal device.
  • the terminal device demodulates the demodulation reference signal dedicated to the user, estimates the data channel, and performs demodulation of the downlink data. .
  • the method for transmitting multi-antenna data sends downlink control signaling to the terminal device through the network device, instructs the terminal device to feed back statistical channel parameter information and instantaneous channel parameter information, and compares the downlink data according to the parameter information fed back by the terminal device.
  • the two-stage pre-coding can effectively obtain the two-stage pre-encoded parameter information, and ensure the smooth progress of the two-level CSI measurement, thereby solving the problem in the prior art when the number of antennas of the data transmitting end is large or the number of UEs to be served is also large.
  • the technical problem of large uplink and downlink pilot overhead and large amount of uplink CSI feedback enables the system to have more time-frequency resources for data transmission, thereby effectively increasing the throughput of the system.
  • the method for multi-antenna data transmission according to the embodiment of the present invention is described in detail above with reference to FIG. 1 and FIG. 2.
  • the description of the method embodiment may be applied to the device embodiment, and details are not described herein.
  • An apparatus for multi-antenna data transmission according to an embodiment of the present invention will be described below with reference to FIGS. 3 through 7.
  • the network device 200 for multi-antenna data transmission includes:
  • the sending unit 210 is configured to send downlink control signaling to the terminal device, where the downlink control signaling indicates that the terminal device feeds back statistical channel parameter information, where the statistical channel parameter information is determined by the terminal device according to the statistical channel information, and the statistical channel information is Calculated by the terminal device after measuring the instantaneous channel multiple times;
  • the receiving unit 220 is configured to receive the statistical channel parameter information that is determined by the terminal device and is determined according to the downlink control signaling.
  • the network device for multi-antenna data transmission by transmitting downlink control signaling to the terminal device, instructs the terminal device to feed back statistical channel parameter information to the network device, where the statistical channel parameter information can be used by the terminal device to collect statistical channel information.
  • Obtaining processing by which the network device can obtain statistical channel information or information about statistical channel information (such as statistical channel parameter information), further to facilitate the network device to perform the next step according to the parameter information fed back by the terminal device. Row data is processed.
  • the network device 200 further includes a processing unit 230, configured to process the downlink data according to the statistical channel parameter information, and send the processed downlink data to the user equipment by using the sending unit 210.
  • a processing unit 230 configured to process the downlink data according to the statistical channel parameter information, and send the processed downlink data to the user equipment by using the sending unit 210.
  • the statistical channel parameter information is determined by the terminal device performing dimension reduction and quantization processing on the statistical channel information, where the statistical channel information is that the terminal device measures the instantaneous multiple times according to the primary reference signal RS sent by the network device. Calculated after the channel is obtained.
  • the statistical channel parameter information includes a statistical channel dimension parameter and a statistical channel quantization parameter, where the statistical channel dimension parameter represents a valid dimension value of the reduced channel information, and the statistical channel quantization parameter indicates that the terminal device is down.
  • the quantized index parameter required for the quantized processing of the statistical channel information after the dimensioning.
  • the downlink control signaling is further used to indicate that the terminal device feeds back instantaneous channel parameter information, where the instantaneous channel parameter information is determined by the terminal device according to the instantaneous channel information, where the instantaneous channel information is performed by the terminal device on the instantaneous channel.
  • the receiving unit 220 is further configured to: receive the instantaneous channel parameter information that is determined by the terminal device and is determined according to the downlink control signaling.
  • the processing unit 230 is further configured to: process the downlink data according to the statistical channel parameter information and the instantaneous channel parameter information, and send the processed downlink data to the user equipment by using the sending unit 210.
  • the instantaneous channel parameter information is determined by the terminal device performing quantization processing on the instantaneous channel information, where the instantaneous channel is used by the terminal device to measure the instantaneous channel according to the pre-coded secondary RS sent by the network device.
  • the pre-coded secondary RS is determined by the network device precoding the secondary RS according to the statistical channel parameter information.
  • the instantaneous channel parameter information includes an instantaneous channel dimension parameter and an instantaneous channel quantization parameter, where the instantaneous channel dimension parameter indicates a valid dimension value of the instantaneous channel information, and the instantaneous channel quantization parameter indicates that the terminal device performs the instantaneous channel information.
  • the quantization index parameters required for quantization are required for quantization.
  • the downlink control signaling includes a first signaling and a second signaling, where the first signaling indicates that the terminal device feeds back the statistical channel parameter information, and the second signaling indicates that the terminal device feeds back the instantaneous channel parameter information.
  • the first signaling includes a first sub-signal that indicates that the terminal device feeds back the statistical channel dimension parameter, and the second sub-signal indicates the terminal device feedback The Statistical channel quantization parameters.
  • the second signaling includes a third sub-signal that indicates that the terminal device feeds back the instantaneous channel dimension parameter, and a fourth sub-signal that indicates the terminal device feedback The instantaneous channel quantization parameter.
  • the downlink control signaling indicates that the terminal device periodically feeds back the statistical channel parameter information and the instantaneous channel parameter information.
  • the downlink control signaling occupies the first control domain and the second control domain, where the first control domain is used to indicate that the terminal device feeds back the statistical channel parameter information, and the second control domain is used to indicate the terminal device feedback The instantaneous channel parameter information.
  • the first control domain includes a first sub-control domain, where the first sub-control domain is used to indicate that the terminal device feeds back the statistical channel dimension parameter, and the second sub-control domain is used to indicate The terminal device feeds back the statistical channel quantization parameter.
  • the second control domain includes a third sub-control domain, where the third sub-control domain is used to indicate that the terminal device feeds back the instantaneous channel dimension parameter, where the fourth sub-control domain is used to indicate The terminal device feeds back the instantaneous channel quantization parameter.
  • the receiving unit 220 is specifically configured to: receive the statistical channel parameter information, the processed statistical channel information, the instantaneous channel parameter information, and the processed instantaneous channel determined by the terminal device according to the downlink control signaling.
  • the sending unit 210 is specifically configured to: send the downlink data after the two-stage precoding processing to the terminal device, where the two-level precoding includes the first according to the statistical channel parameter information and the processed statistical channel information. Level precoding, and second level precoding based on the instantaneous channel parameter information and the processed instantaneous channel information.
  • network device 200 for multi-antenna data transmission in accordance with embodiments of the present invention may correspond to performing the above-described and other operations and/or operations of various units in method 100 in embodiments of network device 200.
  • the functions of the network devices in the respective methods in FIG. 1 and FIG. 2 are respectively omitted.
  • the network device for multi-antenna data transmission implemented by the present invention sends downlink control signaling to the terminal device, instructs the terminal device to feed back the statistical channel parameter information and the instantaneous channel parameter information, and performs two downlink data according to the parameter information fed back by the terminal device.
  • Level precoding can effectively obtain the two-stage pre-encoded parameter information to ensure the smooth progress of the two-stage CSI measurement, thereby solving the problem in the prior art when the number of antennas at the data transmitting end is large or the number of UEs to be served is also large.
  • the transmission effectively increases the throughput of the system.
  • the terminal device 300 for multi-antenna data transmission includes:
  • the receiving unit 310 is configured to receive downlink control signaling sent by the network device, where the downlink control signaling indicates that the terminal device feeds back statistical channel parameter information to the network device;
  • a determining unit 320 configured to determine the statistical channel parameter information according to the statistical channel information obtained after performing measurement on the plurality of instantaneous channels
  • the sending unit 330 is configured to feed back the statistical channel parameter information to the network device according to the downlink control signaling.
  • the terminal device for multi-antenna data transmission implemented by the present invention receives the downlink control signaling sent by the network device, and feeds back statistical channel parameter information to the network device according to the downlink control signaling, and the terminal device obtains statistics on the instantaneous channel obtained by multiple measurements.
  • the channel information is processed to determine the statistical channel parameter information, and the statistical channel parameter information is fed back to the network device, which solves the problem that the prior art cannot feed the statistical channel information or the statistical channel information (such as the statistical channel parameter information) to the network device.
  • the network device is configured to process the downlink data according to the parameter information fed back by the terminal device.
  • the receiving unit 310 is further configured to: receive downlink data sent by the base station, where the downlink data is data processed by the base station according to the statistical channel parameter information.
  • the determining unit 320 is configured to: perform measurement and calculation on the multiple instantaneous channels according to the primary reference signal RS sent by the network device, obtain the statistical channel information, and perform dimensionality reduction and quantization processing on the statistical channel information, The statistical channel parameter information is determined.
  • the statistical channel parameter information includes a statistical channel dimension parameter and a statistical channel quantization parameter
  • the determining unit 320 is specifically configured to perform a dimension reduction process on the statistical channel information, and validate the reduced statistical channel information.
  • the dimension value is determined as the statistical channel dimension parameter; the statistical channel information after the dimension reduction is quantized, and the quantization index parameter required for the quantization process is determined as the statistical channel quantization parameter.
  • the downlink control signaling is further used to indicate that the terminal device feeds back the instantaneous channel parameter information to the network device
  • the determining unit 320 is further configured to: determine the instantaneous channel according to the instantaneous channel information obtained by measuring the instantaneous channel. Parameter information; the sending unit 330 is further configured to: feed back the instantaneous channel parameter information to the network device according to the downlink control signaling.
  • the receiving unit 310 is further configured to: receive downlink data sent by the base station, where the downlink data is data processed by the base station according to the statistical channel parameter information and the instantaneous channel parameter information.
  • the determining unit 320 is configured to: obtain, according to the pre-coded secondary RS sent by the network device, the instantaneous channel information, where the pre-coded secondary RS is the network device according to the network device.
  • the statistical channel parameter information is determined by precoding the secondary RS; and the instantaneous channel information is quantized to determine the instantaneous channel parameter information.
  • the instantaneous channel parameter information includes an instantaneous channel dimension parameter and an instantaneous channel quantization parameter
  • the determining unit 320 is specifically configured to determine the effective dimension value of the instantaneous channel information as the instantaneous channel dimension parameter; A quantization process is performed, and the quantization index parameter required for the quantization process is determined as the instantaneous channel quantization parameter representation.
  • the downlink control signaling includes a first signaling and a second signaling, where the first signaling indicates that the terminal device feeds back the statistical channel parameter information, and the second signaling indicates that the terminal device feeds back the instantaneous channel parameter information.
  • the first signaling includes a first sub-signal that indicates that the terminal device feeds back the statistical channel dimension parameter, and the second sub-signal indicates the terminal device feedback The statistical channel quantization parameter.
  • the second signaling includes a third sub-signal that indicates that the terminal device feeds back the instantaneous channel dimension parameter, and a fourth sub-signal that indicates the terminal device feedback The instantaneous channel quantization parameter.
  • the downlink control signaling indicates that the terminal device periodically feeds back the statistical channel parameter information and the instantaneous channel parameter information.
  • the downlink control signaling occupies the first control domain and the second control domain, where the first control domain is used to indicate that the terminal device feeds back the statistical channel parameter information, and the second control domain is used to indicate the terminal device feedback The instantaneous channel parameter information.
  • the first control domain includes a first sub-control domain, where the first sub-control domain is used to indicate that the terminal device feeds back the statistical channel dimension parameter, and the second sub-control domain is used to indicate The terminal device feeds back the statistical channel quantization parameter.
  • the second control domain includes a third sub-control domain, where the third sub-control domain is used to indicate that the terminal device feeds back the instantaneous channel dimension parameter, where the fourth sub-control domain is used to indicate The terminal device feeds back the instantaneous channel quantization parameter.
  • the terminal device 300 for multi-antenna data transmission may correspond to performing the above-described and other operations and/or operations of the respective units in the method 100 in the embodiment of the present invention.
  • the functions are respectively implemented in the respective methods in FIGS. 1 to 2
  • the corresponding process of the terminal device is not described here for brevity.
  • the terminal device for multi-antenna data transmission implemented by the present invention receives the downlink control signaling sent by the network device, and feeds back the statistical channel parameter information and the instantaneous channel parameter information to the network device, and the network device compares the downlink data according to the parameter information fed back by the terminal device.
  • the two-stage pre-coding can effectively obtain the two-stage pre-encoded parameter information, and ensure the smooth progress of the two-level CSI measurement, thereby solving the problem in the prior art when the number of antennas of the data transmitting end is large or the number of UEs to be served is also large.
  • the technical problem of large uplink and downlink pilot overhead and large amount of uplink CSI feedback enables the system to have more time-frequency resources for data transmission, thereby effectively increasing the throughput of the system.
  • FIG. 5 shows a schematic block diagram of a system 400 for multi-antenna data transmission in accordance with an embodiment of the present invention.
  • the system 400 includes a network device 410 and a terminal device 420.
  • the network device 410 may be the network device 200 as shown in FIG. 3, and the terminal device may be the terminal device 300 as shown in FIG. , no longer repeat them here.
  • the present invention also provides related equipment for implementing the above solution.
  • the embodiment of the present invention further provides a network device 500 for multi-antenna data transmission, where the network device 500 includes a processor 510, and the transceiver 530 optionally includes a memory 520.
  • Bus system 540 The processor 510, the memory 520 and the transceiver 530 are connected by a bus system 540 for storing instructions for executing instructions stored in the memory 520 to control the transceiver 530 to receive and transmit signals.
  • the transceiver 530 is configured to: send downlink control signaling to the terminal device, where the downlink control signaling indicates that the terminal device feeds back statistical channel parameter information, where the statistical channel parameter information is determined by the terminal device according to the statistical channel information, where The statistical channel information is obtained by the terminal device measuring the instantaneous channel multiple times; the processor 510 is configured to: receive the statistical channel parameter information that is determined by the terminal device and is determined according to the downlink control signaling; the transceiver 530 is configured to: The downlink data is processed according to the statistical channel parameter information, and the processed downlink data is sent to the terminal device by the sending unit 210.
  • the network device for multi-antenna data transmission sends downlink control signaling to the terminal device, and the downlink control signaling may instruct the terminal device to feed back statistical channel parameter information, where the statistical channel parameter information may be collected by the terminal device.
  • the channel information is processed to obtain the downlink data according to the parameter information fed back by the terminal device.
  • the processor 510 may be a central processing unit (Central) Processing Unit (referred to as "CPU"), which may also be other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs), or other programmable logic. Devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 520 can include read only memory and random access memory and provides instructions and data to the processor 510. A portion of the memory 520 may also include a non-volatile random access memory. For example, the memory 520 can also store information of the device type.
  • the bus system 540 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 540 in the figure.
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 510 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 520, and the processor 510 reads the information in the memory 520 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the statistical channel parameter information is determined by the terminal device performing dimension reduction and quantization processing on the statistical channel information, where the statistical channel information is that the terminal device measures the instantaneous multiple times according to the primary reference signal RS sent by the network device. Calculated after the channel is obtained.
  • the statistical channel parameter information includes a statistical channel dimension parameter and a statistical channel quantization parameter, where the statistical channel dimension parameter represents a valid dimension value of the reduced channel information, and the statistical channel quantization parameter indicates that the terminal device is down.
  • the quantized index parameter required for the quantized processing of the statistical channel information after the dimensioning.
  • the downlink control signaling is further used to indicate that the terminal device feeds back instantaneous channel parameter information, where the instantaneous channel parameter information is determined by the terminal device according to the instantaneous channel information, where the instantaneous channel information is performed by the terminal device on the instantaneous channel.
  • the measurement is obtained, and the transceiver 530 is further configured to: receive the instantaneous channel parameter information that is determined by the terminal device and is determined according to the downlink control signaling.
  • the processor 510 is further configured to: process the downlink data according to the statistical channel parameter information and the instantaneous channel parameter information, and send the processed downlink data to the user equipment by using the transceiver 530.
  • the instantaneous channel parameter information is determined by the terminal device performing quantization processing on the instantaneous channel information, where the instantaneous channel is used by the terminal device to measure the instantaneous channel according to the pre-coded secondary RS sent by the network device.
  • the pre-coded secondary RS is determined by the network device precoding the secondary RS according to the statistical channel parameter information.
  • the instantaneous channel parameter information includes an instantaneous channel dimension parameter and an instantaneous channel quantization parameter, where the instantaneous channel dimension parameter indicates a valid dimension value of the instantaneous channel information, and the instantaneous channel quantization parameter indicates that the terminal device performs the instantaneous channel information.
  • the quantization index parameters required for quantization are required for quantization.
  • the downlink control signaling includes a first signaling and a second signaling, where the first signaling indicates that the terminal device feeds back the statistical channel parameter information, and the second signaling indicates that the terminal device feeds back the instantaneous channel parameter information.
  • the first signaling includes a first sub-signal that indicates that the terminal device feeds back the statistical channel dimension parameter, and the second sub-signal indicates the terminal device feedback The statistical channel quantization parameter.
  • the second signaling includes a third sub-signal that indicates that the terminal device feeds back the instantaneous channel dimension parameter, and a fourth sub-signal that indicates the terminal device feedback The instantaneous channel quantization parameter.
  • the downlink control signaling indicates that the terminal device periodically feeds back the statistical channel parameter information and the instantaneous channel parameter information.
  • the downlink control signaling occupies the first control domain and the second control domain, where the first control domain is used to indicate that the terminal device feeds back the statistical channel parameter information, and the second control domain is used to indicate the terminal device feedback The instantaneous channel parameter information.
  • the first control domain includes a first sub-control domain, where the first sub-control domain is used to indicate that the terminal device feeds back the statistical channel dimension parameter, and the second sub-control domain is used to indicate The terminal device feeds back the statistical channel quantization parameter.
  • the second control domain includes a third sub-control domain, where the third sub-control domain is used to indicate that the terminal device feeds back the instantaneous channel dimension parameter, where the fourth sub-control domain is used to indicate The terminal device feeds back the instantaneous channel quantization parameter.
  • the transceiver 530 is specifically configured to: receive the statistical channel parameter information, the processed statistical channel information, the instantaneous channel parameter information, and the processed instantaneous channel determined by the terminal device according to the downlink control signaling.
  • Information after the two-stage precoding process is sent to the terminal device Downlink data, the two-stage precoding includes first stage precoding performed by the processor 510 according to the statistical channel parameter information and the processed statistical channel information, and according to the instantaneous channel parameter information and the processed instantaneous channel The second level of precoding of the information.
  • the network device 500 for multi-antenna data transmission may correspond to the network device 200 in the embodiment of the present invention, and may correspond to a network device in the method 100 according to an embodiment of the present invention, and the network
  • the above and other operations and/or functions of the respective modules in the device 500 are respectively implemented in order to implement the corresponding processes of the network devices in the respective methods in FIG. 1 and FIG. 2, and are not described herein again for brevity.
  • the network device for multi-antenna data transmission implemented by the present invention sends downlink control signaling to the terminal device, instructs the terminal device to feed back the statistical channel parameter information and the instantaneous channel parameter information, and performs two downlink data according to the parameter information fed back by the terminal device.
  • Level precoding can effectively obtain the two-stage pre-encoded parameter information to ensure the smooth progress of the two-stage CSI measurement, thereby solving the problem in the prior art when the number of antennas at the data transmitting end is large or the number of UEs to be served is also large.
  • the technical problem of large pilot overhead and large amount of uplink CSI feedback makes the system have more time-frequency resources for data transmission, which effectively increases the throughput of the system.
  • an embodiment of the present invention further provides a terminal device 600 for multi-antenna data transmission, where the terminal device 600 includes a processor 610, and the receiver 630 optionally includes a memory 620, and may further include a memory 620.
  • the processor 610, the memory 620 and the receiver 630 are connected by a bus system 640 for storing instructions for executing instructions stored in the memory 620 to control the receiver 630 to receive signals.
  • the transceiver 630 is configured to: receive downlink control signaling sent by the network device, where the downlink control signaling indicates that the terminal device feeds back statistical channel parameter information to the network device; the processor 610 is configured to: according to multiple transients After the channel is measured, the obtained statistical channel information is calculated, and the statistical channel parameter information is determined.
  • the terminal device for multi-antenna data transmission implemented by the present invention receives the downlink control signaling sent by the network device, and feeds back statistical channel parameter information to the network device according to the downlink control signaling, and the terminal device obtains statistics on the instantaneous channel obtained by multiple measurements.
  • the channel information is processed to determine the statistical channel parameter information, and the statistical channel parameter information is fed back to the network device, which solves the problem that the prior art cannot feed the statistical channel information or the statistical channel information (such as the statistical channel parameter information) to the network device.
  • the network device is configured to process the downlink data according to the parameter information fed back by the terminal device.
  • the processor 610 may be a CPU, and the processor 610 Other general purpose processors, digital signal processors (DSPs), application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays (FPGAs) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like.
  • DSPs digital signal processors
  • ASICs application specific integrated circuits
  • FPGAs off-the-shelf programmable gate arrays
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 620 can include read only memory and random access memory and provides instructions and data to the processor 610. A portion of the memory 620 can also include a non-volatile random access memory. For example, the memory 620 can also store information of the device type.
  • the bus system 640 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 640 in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 610 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 620, and the processor 610 reads the information in the memory 620 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 610 is specifically configured to: perform measurement and calculation on the multiple instantaneous channels according to the primary reference signal RS sent by the network device, obtain the statistical channel information, and perform dimensionality reduction and quantization processing on the statistical channel information, The statistical channel parameter information is determined.
  • the statistical channel parameter information includes a statistical channel dimension parameter and a statistical channel quantization parameter
  • the processor 610 is specifically configured to perform a dimension reduction process on the statistical channel information, and validate the reduced statistical channel information.
  • the dimension value is determined as the statistical channel dimension parameter; the statistical channel information after the dimension reduction is quantized, and the quantization index parameter required for the quantization process is determined as the statistical channel quantization parameter.
  • the downlink control signaling is further used to indicate that the terminal device feeds back the instantaneous channel parameter information to the network device
  • the processor 610 is further configured to: determine the instantaneous channel according to the instantaneous channel information obtained by measuring the instantaneous channel.
  • Parameter information; the transceiver 630 is further configured to: feed back the instantaneous channel parameter information to the network device according to the downlink control signaling.
  • the processor 610 is configured to: obtain, according to the pre-coded secondary RS sent by the network device, the instantaneous channel information, where the pre-coded secondary RS is The network device performs precoding on the secondary RS according to the statistical channel parameter information, and performs quantization processing on the instantaneous channel information to determine the instantaneous channel parameter information.
  • the instantaneous channel parameter information includes an instantaneous channel dimension parameter and an instantaneous channel quantization parameter
  • the processor 610 is specifically configured to determine the effective dimension value of the instantaneous channel information as the instantaneous channel dimension parameter; A quantization process is performed, and the quantization index parameter required for the quantization process is determined as the instantaneous channel quantization parameter representation.
  • the downlink control signaling includes a first signaling and a second signaling, where the first signaling indicates that the terminal device feeds back the statistical channel parameter information, and the second signaling indicates that the terminal device feeds back the instantaneous channel parameter information.
  • the first signaling includes a first sub-signal that indicates that the terminal device feeds back the statistical channel dimension parameter, and the second sub-signal indicates the terminal device feedback The statistical channel quantization parameter.
  • the second signaling includes a third sub-signal that indicates that the terminal device feeds back the instantaneous channel dimension parameter, and a fourth sub-signal that indicates the terminal device feedback The instantaneous channel quantization parameter.
  • the downlink control signaling indicates that the terminal device periodically feeds back the statistical channel parameter information and the instantaneous channel parameter information.
  • the downlink control signaling occupies the first control domain and the second control domain, where the first control domain is used to indicate that the terminal device feeds back the statistical channel parameter information, and the second control domain is used to indicate the terminal device feedback The instantaneous channel parameter information.
  • the first control domain includes a first sub-control domain, where the first sub-control domain is used to indicate that the terminal device feeds back the statistical channel dimension parameter, and the second sub-control domain is used to indicate The terminal device feeds back the statistical channel quantization parameter.
  • the second control domain includes a third sub-control domain, where the third sub-control domain is used to indicate that the terminal device feeds back the instantaneous channel dimension parameter, where the fourth sub-control domain is used to indicate The terminal device feeds back the instantaneous channel quantization parameter.
  • the terminal device 600 for multi-antenna data transmission may correspond to the terminal device 300 in the embodiment of the present invention, and may correspond to the terminal device in the method 100 according to the embodiment of the present invention, and the terminal
  • the foregoing and other operations and/or functions of the respective modules in the device 600 are respectively implemented in order to implement the corresponding processes of the terminal devices in the respective methods in FIG. 1 and FIG. 2, and are not described herein again for brevity.
  • the terminal device for multi-antenna data transmission implemented by the present invention receives the downlink control signaling sent by the network device, and feeds back the statistical channel parameter information and the instantaneous channel parameter information to the network device, and the network device compares the downlink data according to the parameter information fed back by the terminal device.
  • the two-stage pre-coding can effectively obtain the two-stage pre-encoded parameter information, and ensure the smooth progress of the two-level CSI measurement, thereby solving the problem in the prior art when the number of antennas of the data transmitting end is large or the number of UEs to be served is also large.
  • the technical problem of large uplink and downlink pilot overhead and large amount of uplink CSI feedback enables the system to have more time-frequency resources for data transmission, thereby effectively increasing the throughput of the system.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the present invention
  • the technical solution in essence or the part contributing to the prior art or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making one
  • the computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例涉及多天线数据传输的方法、网络设备、终端设备及系统。该方法包括网络设备向终端设备发送下行控制信令,该下行控制信令指示该终端设备反馈统计信道参数信息,该统计信道参数信息为该终端设备根据统计信道信息确定的,该统计信道信息由该终端设备多次测量瞬时信道后计算获得;该网络设备接收该终端设备发送的根据该下行控制信令确定的该统计信道参数信息;该网络设备根据该统计信道参数信息,对下行数据进行处理,并向该终端设备发送处理后的下行数据。本发明实施例的多天线数据传输的方法、网络设备、终端设备及系统,能够有效的增大系统的吞吐量。

Description

多天线数据传输的方法、网络设备、终端设备及系统
本申请要求于2016年1月20日提交中国专利局、申请号为201610039033.6、发明名称为“多天线数据传输的方法、网络设备、终端设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及多天线数据传输的方法、网络设备、终端设备及系统。
背景技术
在3GPP长期演进/3GPP后续长期演进(Long term evolution/Long term evolution-advanced,LTE/LTE-A)中,随着数据发射端的天线数量在不断地快速增长,需要服务的用户设备(User equipment,UE)数量,即待调度UE的数量也在快增加中。天线数量的增长可以提供更高的空间自由度,这为下行空间复用多个数据流(可以为(Single-user Multiple-input and multiple-output,SU-MIMO)或者(Multi-user Multiple-input and multiple-output,MU-MIMO))创造了有利条件。
为了获取大规模天线所能提供的高空间自由度,相关的信道信息(CSI)必须被数据发射端(一般为基站)获取,以获取精确的预编码(precoder)。在进行MIMO时,现有技术(如LTE/LTE-A)中,一般数据发射端有两种方法获取CSI:
一种是在时分双工(Time division duplexing,TDD)/频分双工(Frequency division duplexing,FDD)情况下,数据发射端发送下行测量CSI的导频,由数据接收端(一般为UE)测量该导频获取CSI,UE再进行反馈CSI(一般为量化的CSI,在LTE中为PMI+RI),数据发射端使用该CSI对数据进行预编码并发送。另一种是在TDD情况下,数据接收端发送上行测量CSI的导频(如LTE/LTE-A中SRS),由数据发射端进行上行信道CSI测量,数据发射端依据信道互异性认为上行信道测量即下行信道(一般需要必要的互异性参数修正),再根据该CSI对数据进行预编码发送。
由于下行的导频开销量与数据发射端的天线数成正比,上行的导频开销 量又与待服务UE数量呈正比,上行的CSI反馈量也与数据发射端的天线数成正比,在数据发射端天线数不是很多时(如LTE/LTE-A的4/8天线),导频开销以及上行的CSI反馈量可以得到控制,然而当天线数量较多时(可供调度的UE数量也会随之增加),上下行的导频开销与上行CSI的反馈量就会占用大量时频资源,造成可供数据传输的时频资源被压缩,系统吞吐量就会受到很大影响。
发明内容
本发明提供了一种多天线数据传输的方法、网络设备、终端设备及系统,能够增大系统的吞吐量。
第一方面,提供了一种多天线数据传输的方法,该方法包括:网络设备向终端设备发送下行控制信令,该下行控制信令指示该终端设备反馈统计信道参数信息,该统计信道参数信息为该终端设备根据统计信道信息确定的,该统计信道信息由该终端设备多次测量瞬时信道后计算获得;该网络设备接收该终端设备发送的根据该下行控制信令确定的该统计信道参数信息。
因此,本发明实施的多天线数据传输的方法,网络设备向终端设备发送下行控制信令,通过该下行控制信令可以指示终端设备反馈统计信道参数信息,该统计信道参数信息可以由终端设备对统计信道信息进行处理获得,通过该方法,网络设备可以获得统计信道信息或关于统计信道信息的信息(比如统计信道参数信息),进一步地以便于网络设备可以根据终端设备反馈的参数信息对下行数据进行处理。
结合第一方面,在第一方面的一种实现方式中,该统计信道参数信息为该终端设备对该统计信道信息进行降维和量化处理确定的,该统计信道信息为该终端设备根据该网络设备发送的一级参考信号RS,多次测量瞬时信道后计算获得。
应理解,网络设备可以接收终端设备根据下行控制信息反馈的统计信道参数信息和处理后的统计信道信息,该处理后的统计信道信息为该终端设备对统计信道信息进行降维和量化处理后获得的。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该统计信道参数信息包括统计信道维度参数和统计信道量化参数,该统计信道维度参数表示降维后的该统计信道信息的有效维度数值,该统计信道量化参 数表示该终端设备对降维后的该统计信道信息进行量化处理时所需的量化索引参数。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该下行控制信令还用于指示该终端设备反馈瞬时信道参数信息,该瞬时信道参数信息为该终端设备根据瞬时信道信息确定的,该瞬时信道信息由该终端设备对瞬时信道进行测量获得,该方法还包括:该网络设备接收该终端设备发送的根据该下行控制信令确定的该瞬时信道参数信息。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该瞬时信道参数信息为该终端设备对该瞬时信道信息进行量化处理确定的,该瞬时信道为该终端设备根据该网络设备发送的预编码后的二级RS,对瞬时信道进行测量获,该预编码后的二级RS为该网络设备根据该统计信道参数信息,对该二级RS进行预编码后确定的。
应理解,网络设备可以接收终端设备根据下行控制信息反馈的瞬时信道参数信息和处理后的瞬时信道信息,该处理后的瞬时信道信息为该终端设备对瞬时信道信息进行量化处理后获得的。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该瞬时信道参数信息包括瞬时信道维度参数和瞬时信道量化参数,该瞬时信道维度参数表示该瞬时信道信息的有效维度数值,该瞬时信道量化参数表示该终端设备对该瞬时信道信息进行量化时所需的量化索引参数。
因此,本发明实施例的多天线数据传输的方法,通过网络设备向终端设备发送下行控制信令,指示终端设备反馈统计信道参数信息和瞬时信道参数信息,并根据终端设备反馈的参数信息对下行数据进行两级预编码,可以有效地获取两级预编码的参数信息,保证两级CSI测量的顺利进行,从而解决了现有技术中当数据发射端天线数较多或者待服务UE数也较多时,上下行导频开销大,上行CSI反馈量大的技术问题,从而使系统有更多的时频资源可以进行数据的传输,有效增大了系统的吞吐量。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该下行控制信令包括第一信令和第二信令,该第一信令指示该终端设备反馈该统计信道参数信息,该第二信令指示该终端设备反馈该瞬时信道参数信息。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一信令包括第一子信令和第二子信令,该第一子信令指示该终端设备反馈 该统计信道维度参数,该第二子信令指示该终端设备反馈该统计信道量化参数。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第二信令包括第三子信令和第四子信令,该第三子信令指示该终端设备反馈该瞬时信道维度参数,该第四子信令指示该终端设备反馈该瞬时信道量化参数。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该下行控制信令指示该终端设备周期性反馈该统计信道参数信息和该瞬时信道参数信息。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该下行控制信令占用第一控制域和第二控制域,该第一控制域用于指示该终端设备反馈该统计信道参数信息,该第二控制域用于指示该终端设备反馈该瞬时信道参数信息。
应理解,该第一控制域和第二控制域可以分别为一比特或两个或两个以上比特。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第一控制域包括第一子控制域和第二子控制域,该第一子控制域用于指示该终端设备反馈该统计信道维度参数,该第二子控制域用于指示该终端设备反馈该统计信道量化参数。
应理解,该第一子控制域和第二子控制域可以分别为一比特或两个或两个以上比特。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该第二控制域包括第三子控制域和第四子控制域,该第三子控制域用于指示该终端设备反馈该瞬时信道维度参数,该第四子控制域用于指示该终端设备反馈该瞬时信道量化参数。
应理解,该第三子控制域和第四子控制域可以分别为一比特或两个或两个以上比特。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该网络设备接收该终端设备发送的根据该下行控制信令确定的该统计信道参数信息和该瞬时信道参数信息,包括:该网络设备接收该终端设备发送的根据该下行控制信令确定的该统计信道参数信息、处理后的统计信道信息、该 瞬时信道参数信息和处理后的瞬时信道信息;该网络设备根据该统计信道参数信息和该瞬时信道参数信息,对下行数据进行处理,包括:该网络设备根据该统计信道参数信息和该处理后的统计信道信息进行第一级预编码,并根据该瞬时信道参数信息和该处理后的瞬时信道信息进行第二级预编码。
第二方面,提供了一种多天线数据传输的方法,该方法包括:终端设备接收网络设备发送的下行控制信令,该下行控制信令指示该终端设备向该网络设备反馈统计信道参数信息;该终端设备根据对多个瞬时信道进行测量后计算获得的统计信道信息,确定该统计信道参数信息;该终端设备根据该下行控制信令,向该网络设备反馈该统计信道参数信息。
因此,本发明实施的多天线数据传输的方法,网络设备向终端设备发送下行控制信令,该下行控制信令可以指示终端设备反馈统计信道参数信息,终端设备对多次测量瞬时信道获得的统计信道信息进行处理确定统计信道参数信息,并将该统计信道参数信息向网络设备反馈,解决了现有技术无法向网络设备反馈统计信道信息或关于统计信道信息的信息(比如统计信道参数信息),以便于网络设备根据终端设备反馈的参数信息对下行数据进行处理。
结合第二方面,在第二方面的一种实现方式中,该终端设备根据对多个瞬时信道进行测量后计算获得的统计信道信息,确定该统计信道参数信息,包括:该终端设备根据该网络设备发送的一级参考信号RS,对多个瞬时信道进行测量和计算获得该统计信道信息;该终端设备对该统计信道信息进行降维和量化处理,确定该统计信道参数信息。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该统计信道参数信息包括统计信道维度参数和统计信道量化参数,该终端设备对该统计信道信息进行降维和量化处理,确定该统计信道参数信息,包括:该终端设备对该统计信道信息进行降维处理,并将降维后的该统计信道信息的有效维度数值确定为该统计信道维度参数;该终端设备对降维后的该统计信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为该统计信道量化参数。
应理解,终端设备可以根据下行控制信息,向网络设备反馈统计信道参数信息和处理后的统计信道信息,该处理后的统计信道信息为该终端设备对统计信道信息进行降维和量化处理后获得的。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该下行控制信令还用于指示该终端设备向该网络设备反馈瞬时信道参数信息,该方法还包括:该终端设备根据对瞬时信道进行测量获得的瞬时信道信息,确定该瞬时信道参数信息,该终端设备根据该下行控制信令,向该网络设备反馈该瞬时信道参数信息;该终端设备接收该网络设备发送的下行数据,该下行数据为该网络设备根据该统计信道参数信息进行处理后的数据,包括:该终端设备接收该网络设备发送的下行数据,该下行数据为该网络设备根据该统计信道参数信息和该瞬时信道参数信息进行处理后的数据。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该终端设备根据对瞬时信道进行测量获得的瞬时信道信息,确定该瞬时信道参数信息,包括:该终端设备根据该网络设备发送的预编码后的二级RS,对瞬时信道进行测量获得该瞬时信道信息,该预编码后的二级RS为该网络设备根据该统计信道参数信息,对该二级RS进行预编码后确定的;该终端设备对该瞬时信道信息进行量化处理,确定该瞬时信道参数信息。
应理解,终端设备可以根据下行控制信息,向网络设备反馈瞬时信道参数信息和处理后的瞬时信道信息,该处理后的瞬时信道信息为该终端设备对瞬时信道信息进行量化处理后获得的。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该瞬时信道参数信息包括瞬时信道维度参数和瞬时信道量化参数,该终端设备对该瞬时信道信息进行量化处理,确定该瞬时信道参数信息,包括:该终端设备将该瞬时信道信息的有效维度数值确定为该瞬时信道维度参数;该终端设备对该瞬时信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为该瞬时信道量化参数表示。
因此,本发明实施的多天线数据传输的方法,网络设备向终端设备发送下行控制信令,该下行控制信令可以指示终端设备反馈统计信道参数信息和瞬时信道参数信息,以便于网络设备根据终端设备反馈的参数信息对下行数据进行两级预编码,可以有效地获取两级预编码的参数信息,保证两级CSI测量的顺利进行,从而解决了现有技术中当数据发射端天线数较多或者待服务UE数也较多时,上下行导频开销大,上行CSI反馈量大的技术问题,从而使系统有更多的时频资源可以进行数据的传输,有效增大了系统的吞吐量
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该 下行控制信令包括第一信令和第二信令,该第一信令指示该终端设备反馈该统计信道参数信息,该第二信令指示该终端设备反馈该瞬时信道参数信息。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第一信令包括第一子信令和第二子信令,该第一子信令指示该终端设备反馈该统计信道维度参数,该第二子信令指示该终端设备反馈该统计信道量化参数。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第二信令包括第三子信令和第四子信令,该第三子信令指示该终端设备反馈该瞬时信道维度参数,该第四子信令指示该终端设备反馈该瞬时信道量化参数。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该下行控制信令指示该终端设备周期性反馈该统计信道参数信息和该瞬时信道参数信息。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该下行控制信令占用第一控制域和第二控制域,该第一控制域用于指示该终端设备反馈该统计信道参数信息,该第二控制域用于指示该终端设备反馈该瞬时信道参数信息。
应理解,该第一控制域和第二控制域可以分别为一比特或两个或两个以上比特。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第一控制域包括第一子控制域和第二子控制域,该第一子控制域用于指示该终端设备反馈该统计信道维度参数,该第二子控制域用于指示该终端设备反馈该统计信道量化参数。
应理解,该第一子控制域和第二子控制域可以分别为一比特或两个或两个以上比特。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该第二控制域包括第三子控制域和第四子控制域,该第三子控制域用于指示该终端设备反馈该瞬时信道维度参数,该第四子控制域用于指示该终端设备反馈该瞬时信道量化参数。
应理解,该第三子控制域和第四子控制域可以分别为一比特或两个或两个以上比特。
第三方面,提供了一种多天线数据传输的网络设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该网络设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种多天线数据传输的终端设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该终端设备包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种多天线数据传输的系统,该系统包括上述第三方面中的网络设备和第四方面的终端设备。
第六方面,提供了一种多天线数据传输的网络设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第七方面,提供了一种多天线数据传输的终端设备,包括:存储单元和处理器,该存储单元用于存储指令,该处理器用于执行该存储器存储的指令,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第九方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
图1是根据本发明实施例的多天线数据传输的方法的示意性流程图。
图2是根据本发明实施例的多天线数据传输的方法的另一示意性流程图。
图3是根据本发明实施例的多天线数据传输的网络设备的示意性框图。
图4是根据本发明实施例的多天线数据传输的终端设备的示意性框图。
图5是根据本发明实施例的多天线数据传输的系统的示意性框图。
图6是根据本发明另一实施例的多天线数据传输的网络设备的示意性 框图。
图7是根据本发明另一实施例的多天线数据传输的终端设备的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
图1示出了根据本发明实施例的多天线数据传输的方法100的示意性流程图,该方法可以适用于TDD和FDD场景。如图1所示,该方法100包括:
S110,网络设备向终端设备发送下行控制信令,该下行控制信令用于指示终端设备反馈统计信道参数信息,统计信道参数信息用于该终端设备处理统计信道信息,该统计信道信息可以由终端设备多次测量多次瞬时信道获得。
应理解,信道是信息传输的通道,是传输信息的物理性通道,可以指空间物理传播的媒质,媒质可以有瞬时或统计特性,因此,信道也具有瞬时特性和统计特性。
应理解,该网络设备可以是用于与移动设备通信的设备,网络设备可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站)或接入点,或者车载设备、可穿戴设备,未来5G网络中的网络侧设备或者未来演进的PLMN(Public Land Mobile Network,公共陆地移动网络)网络中的网络设备。
应理解,该终端设备也可以称为用户设备(UE,User Equipment)用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备 或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的PLMN(Public Land Mobile Network,公共陆地移动网络)网络中的终端设备。
具体地,下行控制信令中的该统计信道参数信息用于终端设备处理统计信道信息,该统计信道信息为该终端设备根据该网络设备发送的一级参考信号RS,在时频资源上多次对瞬时信道进行测量后计算获得,该统计信道参数信息可以包括统计信道维度参数和统计信道量化参数。终端设备在处理统计信道信息过程中,可以对统计信道信息进行降维及量化处理得到处理后的统计信道信息,而统计信道的维度参数表示的就是降维后的统计信道信息的有效维度数值,统计信道的量化参数表示的就是对统计信道信息进行降维和量化处理时所需的量化索引参数。
因此,本发明实施例的多天线数据传输的方法,网络设备向终端设备发送下行控制信令,通过该下行控制信令可以指示终端设备反馈统计信道参数信息,该统计信道参数信息可以由终端设备对统计信道信息进行处理获得,通过该方法,网络设备可以获得统计信道信息或关于统计信道信息的信息(比如统计信道参数信息),进一步地以便于网络设备可以根据终端设备反馈的参数信息对下行数据进行处理。
可选地,作为一个实施例,网络设备向终端设备发送下行控制信令,该下行控制信令还可以用于指示终端设备反馈瞬时信道参数信息,该瞬时信道参数信息用于该终端设备处理瞬时信道信息,该瞬时信道信息为该终端设备根据该网络设备发送的降维后的二级RS,对瞬时信道进行测量获得,该降维后的二级RS为网络设备根据终端设备反馈的统计信道参数信息,对二级RS进行一级预编码后确定的。该瞬时信道信息可以包括瞬时信道维度参数和瞬时信道量化参数。终端设备测量瞬时信道获得瞬时信道信息,对该瞬时信道信息进行量化处理后获得处理后的瞬时信道信息,而瞬时信道的维度参数表示的就是瞬时信道信息的有效维度数值,瞬时信道的量化参数表示的就是瞬时信道信息进行量化处理时所需的量化索引参数。
在本发明实施例中,网络设备发送下行控制信令指示终端设备反馈统计信道参数信息和/或瞬时信道参数信息,可选地,可以指示终端设备周期性反馈,例如,网络设备通过无线资源控制(Radio Resource Control,RRC)消息指示终端设备周期性反馈;也可以非周期性地触发终端设备反馈,例如, 通过物理下行控制信道(Physical Downlink Control Channel,PDCCH)中控制域承载下行控制信令,触发终端设备反馈参数信息,本发明实施例并不限于此。
可选地,作为一个实施例,网络设备发送下行控制信令,该下行控制信令可以包括第一信令和/或第二信令,该第一信令指示终端设备反馈统计信道参数信息,该第二信令指示终端设备反馈瞬时信道参数信息。可选地,第一信令可以为一个信令,指示终端设备反馈统计信道参数信息中的统计信道维度参数和统计信道量化参数,或者,该第一信令也可以包括第一子信令和第二子信令,该第一子信令指示终端设备反馈统计信道参数信息中的统计信道维度参数,该第二子信令指示终端设备反馈统计信道参数信息中的统计信道量化参数。类似地,第二信令也可以为一个信令,指示终端设备反馈瞬时信道参数信息中的瞬时信道维度参数和瞬时信道量化参数,或者,该第二信令也可以包括第三子信令和第四子信令,该第三子信令指示终端设备反馈瞬时信道参数信息中的瞬时信道维度参数,该第四子信令指示终端设备反馈瞬时信道参数信息中的瞬时信道量化参数。
可选地,作为一个实施例,网络设备可以通过控制域承载下行控制信令,触发终端设备反馈统计信道参数信息和瞬时信道参数信息,具体地,可以通过第一控制域和/或第二控制域发送下行控制信令,第一控制域指示终端设备反馈统计信道参数信息,第二控制域指示终端设备反馈瞬时信道参数信息。可选地,该第一控制域可以为一比特或两个或两个以上比特,指示终端设备反馈统计信道参数信息中的统计信道维度参数和统计信道量化参数;该第一控制域还可以包括第一子控制域和第二子控制域,分别指示终端设备反馈统计信道参数信息中的参数,由第一子控制域指示终端设备反馈统计信道参数信息中的统计信道维度参数,由第二子控制域指示终端设备反馈统计信道参数信息中的统计信道量化参数,该第一子控制域和第二子控制域可以分别为一比特或两个或两个以上比特,本发明实施例并不限于此。类似地,第二控制域也可以为一比特或两个或两个以上比特,指示终端设备反馈瞬时信道参数信息中的瞬时信道维度参数和瞬时信道量化参数;该第二控制域还可以包括第三子控制域和第四子控制域,分别指示终端设备反馈瞬时信道参数信息中的参数,由第三子控制域指示终端设备反馈瞬时信道参数信息中的瞬时信道维度参数,由第四子控制域指示终端设备反馈瞬时信道参数信息中的瞬时 信道量化参数,该第三子控制域和第四子控制域可以分别为一比特或两个或两个以上比特,本发明实施例并不限于此。例如,对于第一控制域中的第一子控制域,该第一子控制域可以为一比特,即当该控制域中显示为“0”时,可以用于表示不反馈该第一子控制域指示的统计信道参数信息中的统计信道维度参数,当该控制域中显示为“1”时,可以表示终端设备需要反馈该第一子控制域指示的统计信道参数信息中的统计信道维度参数。
在S120和S130中,终端设备根据网络设备的下行控制信令,确定需要反馈的统计信道参数信息和/或瞬时信道参数信息,并向网络设备反馈统计信道参数信息和/或瞬时信道参数信息。具体地,终端设备可以通过如图2所示的方法确定统计信道参数信息和瞬时信道参数信息,图2示出了根据本发明施例的多天线数据传输的方法100的另一示意性流程图,如图2所示,方法100中的S120和S130具体可以包括:
S121,网络设备向终端设备发送一级RS,该一级RS可以为小区专用的一级RS,或用户组(UE group)对应的一级RS。
S122,终端设备接收网络设备发送的一级RS,对瞬时信道进行多次测量后,计算获得对应的统计信道信息,并对该统计信道信息进行降维和量化后得到处理后的统计信道信息,并确定处理时使用的统计信道参数信息,其中,该统计信道参数信息可以包括统计信道维度参数和统计信道量化参数。
具体地,接收该一级RS的终端设备可以为待调度的终端设备,该待调度的终端设备与网络设备双方先完成约定协商,在待调度的终端设备接收网络设备发送的小区专用的一级RS后,执行该小区专用的一级RS测量。可选地,终端设备可以在宽带或者子带上确定统计信道,本发明实施例并不限于此。
具体地,在本发明实施例中,假设一级RS的天线端口(port)数是M,终端设备通过多次测量瞬时信道,获取统计信道信息,该统计信道信息可以为该统计信道的自相关矩阵,如公式(1)所示:
Ri=E(HHH)=αRi-1+Hi HHi            (1)
该统计信道的自相关矩阵可以通过α滤波获取,即通过对瞬时信道测量,获得瞬时信道的自相关矩阵,按照公式(1)进行迭代处理,直到第i次测量,即可获得统计信道的自相关矩阵Ri
终端设备对Ri进行特征值分解(Eign Value Decomposition简称EVD) 或者奇异值分解(Singular Value Decomposition简称SVD)得到公式(2):Ri=UΛUH=(u1 u2 ... uM)diag(λ1 λ2 ... λM)(u1 u2 ... uM)H  (2)
其中,λ1≥λ2≥...λS>>λS+1≥...≥λM,这里的S即为终端设备需要反馈的统计信道参数信息中的统计信道维度参数。该统计信道维度参数S满足:S≤max(M,接收天线数),而在massive MIMO条件下,M满足M>接收天线数,则S满足:S≤M。由于当S取值是小于M的情况下,那么相当于降维了,具体可以理解为原来的信道矩阵的维度为M,当S的取值小于M的时候,那么等效信道矩阵维度降为S了。
首先可以有个预设的码本,码本可以记为C,这个码本可以在多种码本中选择,码本设计可以采用现有技术中的码本也可以另行设计新的码本,比如C中的成员可以举例为量化后的浮点数矩阵或者向量。
Figure PCTCN2016106775-appb-000001
为U=[u1 u2 ... uM]的前S个向量所组成的预编码矩阵,使用
Figure PCTCN2016106775-appb-000002
在码本C中找到与其最接近的预编码矩阵所对应的索引,这个过程可以理解为
Figure PCTCN2016106775-appb-000003
的量化过程,结合上面的码本举例,
Figure PCTCN2016106775-appb-000004
的量化过程可以举例理解为将无规律的浮点数向量或矩阵转化成有规律的浮点数向量或矩阵,进而可以用索引来表达,当然根据本领域技术人员理解,量化还可以有其他多种的方式。该索引记为SI。因此SI可以理解为
Figure PCTCN2016106775-appb-000005
量化后的索引。
S123,终端设备对瞬时信道进行多次测量获得统计信道信息,对该统计信道信息进行降维和量化处理后得到处理后的统计信道信息,则终端设备将该处理后的统计信道信息以及根据该处理后的统计信道信息确定的统计信道参数信息向该网络设备反馈,其中,该统计信道参数信息可以包括统计信道维度参数S和/或统计信道量化参数SI。
可选地,还包括S124,网络设备向终端设备发送二级RS,该二级RS可以为用户专用的RS。可选地,网络设备可以调度终端设备,确定参与多输入多输出的终端设备集合,向该终端设备集合中的终端设备发送该二级RS,其中,参与多输入多输出可以包括参与SU-MIMO或MU-MIMO。
具体地,网络设备利用降维后的信道向终端设备发送用户专用UE-specific的二级RS,也就是网络设备向终端设备发送预编码后的二级RS,其中,可以利用现有技术对该二级RS进行预编码。具体的,网络设备根据终端设备反馈的统计信道参数信息S和SI,网络设备可以进一步地通过确定 预编码矩阵,将该预编码矩阵与二级RS相乘获得预编码后的二级RS,由于该统计信道参数信息是由终端设备对统计信道信息进行降维和量化处理时确定的,因此将该二级RS进行预编码后发送,也可以称为网络设备利用降维后的信道发送二级RS。网络设备可以只针对终端设备集合中的终端设备来进行发送,这样,系统开销可以得到控制。
应理解,网络设备可以根据单个终端设备反馈的统计信道参数信息,对二级RS进行预编码,并向一个或多个终端设备发送预编码后的二级RS;网络设备也可以根据多个终端设备反馈的统计信道参数信息,对该多个统计信道参数信息进行统计计算,根据计算结果对二级RS进行预编码,再将该预编码后的二级RS发送至终端设备。
可选地,还包括S125,终端设备通过降维后的信道接收网络设备发送的用户专用的预编码的二级RS后,对瞬时信道进行测量获得瞬时信道信息,对瞬时信道信息进行量化后得到处理后的瞬时信道信息,其中,UE对瞬时信道进行测量获得瞬时信道信息,该瞬时信道信息的有效维度数即为瞬时信道参数中的瞬时信道维度参数,对应MIMO方案中天线矩阵中的秩的值RI(Rank Indication);而瞬时信道参数信息中的瞬时信道量化参数对应预编码矩阵指示(Pre-coding matrix Indication,PMI),也就是对预编码后的瞬时信道信息进行量化后得到
Figure PCTCN2016106775-appb-000006
Figure PCTCN2016106775-appb-000007
的RI个最大特征值对应特征向量空间对应的量化预编码为PMI。
可选地,还包括S126,终端设备向该网络设备反馈该瞬时信道参数信息和处理后的瞬时信道信息,该处理后的瞬时信道信息指量化处理后的瞬时信道信息。
如图1所示,终端设备在S120中确定了统计信道参数信息和瞬时信道参数信息后,在S130中,终端设备将该统计信道参数信息和瞬时信道参数信息发送至网络设备处,同样地,终端设备也会向网络设备反馈根据统计信道参数信息进行处理后获得的处理后的统计信道信息,和根据瞬时信道参数信息进行处理后获得的处理后的瞬时信道信息。
可选地,在S140中,网络设备将下行数据和/或用户专用的解调参考信号通过两级预编码进行处理。具体地,该两级预编码包括与网络设备接收的处理后的统计信道信息对应的第一级预编码,和,与该网络设备接收的处理后的瞬时信道信息对应的第二级预编码。具体的,在第一级预编码中,网络 设备根据统计信道参数信息确定一级预编码矩阵,在第二级预编码中,网络设备根据瞬时信道参数信息确定二级预编码矩阵,将数据或用户专用的参考信号乘以一级预编码矩阵,再乘以二级预编码矩阵,即对该数据进行两级预编码。
可选地,在S150中,网络设备将通过两级预编码进行处理后的下行数据和/或用户专用的解调参考信号,发送给终端设备。
可选地,在S160中,终端设备接收该网络设备发送的下行数据和用户专用的解调参考信号之后,解调该用户专用的解调参考信号,估计数据信道,进行该下行数据的解调。
因此,本发明实施的多天线数据传输的方法,通过网络设备向终端设备发送下行控制信令,指示终端设备反馈统计信道参数信息和瞬时信道参数信息,并根据终端设备反馈的参数信息对下行数据进行两级预编码,可以有效地获取两级预编码的参数信息,保证两级CSI测量的顺利进行,从而解决了现有技术中当数据发射端天线数较多或者待服务UE数也较多时,上下行导频开销大,上行CSI反馈量大的技术问题,从而使系统有更多的时频资源可以进行数据的传输,有效增大了系统的吞吐量。
上文中结合图1和图2,详细描述了根据本发明实施例的多天线数据传输的方法,方法实施例的描述可以适用于装置实施例中,不再一一赘述。下面将结合图3至图7,描述根据本发明实施例的多天线数据传输的装置。
如3所示,根据本发明实施例的多天线数据传输的网络设备200包括:
发送单元210,用于向终端设备发送下行控制信令,该下行控制信令指示该终端设备反馈统计信道参数信息,该统计信道参数信息为该终端设备根据统计信道信息确定的,该统计信道信息由该终端设备多次测量瞬时信道后计算获得;
接收单元220,用于接收该终端设备发送的根据该下行控制信令确定的该统计信道参数信息。
因此,本发明实施的多天线数据传输的网络设备,通过向终端设备发送下行控制信令,指示终端设备向该网络设备反馈统计信道参数信息,该统计信道参数信息可以由终端设备对统计信道信息进行处理获得,通过该方法,网络设备可以获得统计信道信息或关于统计信道信息的信息(比如统计信道参数信息),进一步地以便于该网络设备根据终端设备反馈的参数信息对下 行数据进行处理。
可选地,网络设备200还包括处理单元230,用于根据该统计信道参数信息,对下行数据进行处理,并通过该发送单元210向该用户设备发送处理后的下行数据。
可选地,该统计信道参数信息为该终端设备对该统计信道信息进行降维和量化处理确定的,该统计信道信息为该终端设备根据该网络设备发送的一级参考信号RS,多次测量瞬时信道后计算获得。
可选地,该统计信道参数信息包括统计信道维度参数和统计信道量化参数,该统计信道维度参数表示降维后的该统计信道信息的有效维度数值,该统计信道量化参数表示该终端设备对降维后的该统计信道信息进行量化处理时所需的量化索引参数。
可选地,该下行控制信令还用于指示该终端设备反馈瞬时信道参数信息,该瞬时信道参数信息为该终端设备根据瞬时信道信息确定的,该瞬时信道信息由该终端设备对瞬时信道进行测量获得,该接收单元220还用于:接收该终端设备发送的根据该下行控制信令确定的该瞬时信道参数信息。
可选地,该处理单元230还用于:根据该统计信道参数信息和该瞬时信道参数信息,对下行数据进行处理,并通过该发送单元210向该用户设备发送处理后的下行数据。
可选地,该瞬时信道参数信息为该终端设备对该瞬时信道信息进行量化处理确定的,该瞬时信道为该终端设备根据该网络设备发送的预编码后的二级RS,对瞬时信道进行测量获,该预编码后的二级RS为该网络设备根据该统计信道参数信息,对该二级RS进行预编码后确定的。
可选地,该瞬时信道参数信息包括瞬时信道维度参数和瞬时信道量化参数,该瞬时信道维度参数表示该瞬时信道信息的有效维度数值,该瞬时信道量化参数表示该终端设备对该瞬时信道信息进行量化时所需的量化索引参数。
可选地,该下行控制信令包括第一信令和第二信令,该第一信令指示该终端设备反馈该统计信道参数信息,该第二信令指示该终端设备反馈该瞬时信道参数信息。
可选地,该第一信令包括第一子信令和第二子信令,该第一子信令指示该终端设备反馈该统计信道维度参数,该第二子信令指示该终端设备反馈该 统计信道量化参数。
可选地,该第二信令包括第三子信令和第四子信令,该第三子信令指示该终端设备反馈该瞬时信道维度参数,该第四子信令指示该终端设备反馈该瞬时信道量化参数。
可选地,该下行控制信令指示该终端设备周期性反馈该统计信道参数信息和该瞬时信道参数信息。
可选地,该下行控制信令占用第一控制域和第二控制域,该第一控制域用于指示该终端设备反馈该统计信道参数信息,该第二控制域用于指示该终端设备反馈该瞬时信道参数信息。
可选地,该第一控制域包括第一子控制域和第二子控制域,该第一子控制域用于指示该终端设备反馈该统计信道维度参数,该第二子控制域用于指示该终端设备反馈该统计信道量化参数。
可选地,该第二控制域包括第三子控制域和第四子控制域,该第三子控制域用于指示该终端设备反馈该瞬时信道维度参数,该第四子控制域用于指示该终端设备反馈该瞬时信道量化参数。
可选地,该接收单元220具体用于:接收该终端设备发送的根据该下行控制信令确定的该统计信道参数信息、处理后的统计信道信息、该瞬时信道参数信息和处理后的瞬时信道信息;该发送单元210具体用于:向该终端设备发送经过两级预编码处理后的下行数据,该两级预编码包括根据该统计信道参数信息和该处理后的统计信道信息进行的第一级预编码,以及根据该瞬时信道参数信息和该处理后的瞬时信道信息进行的第二级预编码。
应理解,根据本发明实施例的多天线数据传输的网络设备200可对应于执行本发明实施例中的方法100中的网络设备,并且网络设备200中的各个单元的上述和其它操作和/或功能分别为了实现图1和图2中的各个方法中网络设备的相应流程,为了简洁,在此不再赘述。
因此,本发明实施的多天线数据传输的网络设备,向终端设备发送下行控制信令,指示终端设备反馈统计信道参数信息和瞬时信道参数信息,并根据终端设备反馈的参数信息对下行数据进行两级预编码,可以有效地获取两级预编码的参数信息,保证两级CSI测量的顺利进行,从而解决了现有技术中当数据发射端天线数较多或者待服务UE数也较多时,上下行导频开销大,上行CSI反馈量大的技术问题,从而使系统有更多的时频资源可以进行数据 的传输,有效增大了系统的吞吐量。
如图4所示,根据本发明实施例的多天线数据传输的终端设备300包括:
接收单元310,用于接收网络设备发送的下行控制信令,该下行控制信令指示该终端设备向该网络设备反馈统计信道参数信息;
确定单元320,用于根据对多个瞬时信道进行测量后计算获得的统计信道信息,确定该统计信道参数信息;
发送单元330,用于根据该下行控制信令,向该网络设备反馈该统计信道参数信息
因此,本发明实施的多天线数据传输的终端设备,接收网络设备发送的下行控制信令,根据该下行控制信令向网络设备反馈统计信道参数信息,终端设备对多次测量瞬时信道获得的统计信道信息进行处理确定统计信道参数信息,并将该统计信道参数信息向网络设备反馈,解决了现有技术无法向网络设备反馈统计信道信息或关于统计信道信息的信息(比如统计信道参数信息),以便于网络设备根据终端设备反馈的参数信息对下行数据进行处理。
可选地,该接收单元310还用于:接收该基站发送的下行数据,该下行数据为该基站根据该统计信道参数信息进行处理后的数据。
可选地,该确定单元320具体用于:根据该网络设备发送的一级参考信号RS,对多个瞬时信道进行测量和计算获得该统计信道信息;对该统计信道信息进行降维和量化处理,确定该统计信道参数信息。
可选地,该统计信道参数信息包括统计信道维度参数和统计信道量化参数,该确定单元320具体用于:对该统计信道信息进行降维处理,并将降维后的该统计信道信息的有效维度数值确定为该统计信道维度参数;对降维后的该统计信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为该统计信道量化参数。
可选地,该下行控制信令还用于指示该终端设备向该网络设备反馈瞬时信道参数信息,该确定单元320还用于:根据对瞬时信道进行测量获得的瞬时信道信息,确定该瞬时信道参数信息;该发送单元330还用于:根据该下行控制信令,向该网络设备反馈该瞬时信道参数信息。
可选地,该接收单元310还用于:接收该基站发送的下行数据,该下行数据为该基站根据该统计信道参数信息和该瞬时信道参数信息进行处理后的数据。
可选地,该确定单元320具体用于:根据该网络设备发送的预编码后的二级RS,对瞬时信道进行测量获得该瞬时信道信息,该预编码后的二级RS为该网络设备根据该统计信道参数信息,对该二级RS进行预编码后确定的;对该瞬时信道信息进行量化处理,确定该瞬时信道参数信息。
可选地,该瞬时信道参数信息包括瞬时信道维度参数和瞬时信道量化参数,该确定单元320具体用于:将该瞬时信道信息的有效维度数值确定为该瞬时信道维度参数;对该瞬时信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为该瞬时信道量化参数表示。
可选地,该下行控制信令包括第一信令和第二信令,该第一信令指示该终端设备反馈该统计信道参数信息,该第二信令指示该终端设备反馈该瞬时信道参数信息。
可选地,该第一信令包括第一子信令和第二子信令,该第一子信令指示该终端设备反馈该统计信道维度参数,该第二子信令指示该终端设备反馈该统计信道量化参数。
可选地,该第二信令包括第三子信令和第四子信令,该第三子信令指示该终端设备反馈该瞬时信道维度参数,该第四子信令指示该终端设备反馈该瞬时信道量化参数。
可选地,该下行控制信令指示该终端设备周期性反馈该统计信道参数信息和该瞬时信道参数信息。
可选地,该下行控制信令占用第一控制域和第二控制域,该第一控制域用于指示该终端设备反馈该统计信道参数信息,该第二控制域用于指示该终端设备反馈该瞬时信道参数信息。
可选地,该第一控制域包括第一子控制域和第二子控制域,该第一子控制域用于指示该终端设备反馈该统计信道维度参数,该第二子控制域用于指示该终端设备反馈该统计信道量化参数。
可选地,该第二控制域包括第三子控制域和第四子控制域,该第三子控制域用于指示该终端设备反馈该瞬时信道维度参数,该第四子控制域用于指示该终端设备反馈该瞬时信道量化参数。
应理解,根据本发明实施例的多天线数据传输的终端设备300可对应于执行本发明实施例中的方法100中的终端设备,并且终端设备300中的各个单元的上述和其它操作和/或功能分别为了实现图1至图2中的各个方法中 终端设备的相应流程,为了简洁,在此不再赘述。
因此,本发明实施的多天线数据传输的终端设备,接收网络设备发送的下行控制信令,向网络设备反馈统计信道参数信息和瞬时信道参数信息,网络设备根据终端设备反馈的参数信息对下行数据进行两级预编码,可以有效地获取两级预编码的参数信息,保证两级CSI测量的顺利进行,从而解决了现有技术中当数据发射端天线数较多或者待服务UE数也较多时,上下行导频开销大,上行CSI反馈量大的技术问题,从而使系统有更多的时频资源可以进行数据的传输,有效增大了系统的吞吐量。
图5示出了根据本发明实施例的多天线数据传输的系统400的示意性框图。如图5所示,该系统400包括网络设备410和终端设备420,其中,该网络设备410可以为如图3所示的网络设备200,该终端设备可以为如图4所示的终端设备300,这里不再赘述。
为了便于更好地实施本发明实施例的上述方案,本发明还提供了用于配合实施上述方案的相关设备。
如图6所示,本发明实施例还提供了一种多天线数据传输的网络设备500,该网络设备500包括处理器510、收发器530可选地,包括存储器520;可选地,还包括总线系统540。其中,处理器510、存储器520和收发器530通过总线系统540相连,该存储器520用于存储指令,该处理器510用于执行该存储器520存储的指令,以控制收发器530接收和发送信号。其中,该收发器530用于:向终端设备发送下行控制信令,该下行控制信令指示该终端设备反馈统计信道参数信息,该统计信道参数信息为该终端设备根据统计信道信息确定的,该统计信道信息由该终端设备多次测量瞬时信道后计算获得;该处理器510用于:接收该终端设备发送的根据该下行控制信令确定的该统计信道参数信息;该收发器530用于:根据该统计信道参数信息,对下行数据进行处理,并通过该发送单元210向该终端设备发送处理后的下行数据。
因此,本发明实施的多天线数据传输的网络设备,向终端设备发送下行控制信令,通过该下行控制信令可以指示终端设备反馈统计信道参数信息,该统计信道参数信息可以由终端设备对统计信道信息进行处理获得,以便于根据终端设备反馈的参数信息对下行数据进行处理。
应理解,在本发明实施例中,该处理器510可以是中央处理单元(Central  Processing Unit,简称为“CPU”),该处理器510还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器520可以包括只读存储器和随机存取存储器,并向处理器510提供指令和数据。存储器520的一部分还可以包括非易失性随机存取存储器。例如,存储器520还可以存储设备类型的信息。
该总线系统540除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统540。
在实现过程中,上述方法的各步骤可以通过处理器510中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器520,处理器510读取存储器520中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,该统计信道参数信息为该终端设备对该统计信道信息进行降维和量化处理确定的,该统计信道信息为该终端设备根据该网络设备发送的一级参考信号RS,多次测量瞬时信道后计算获得。
可选地,该统计信道参数信息包括统计信道维度参数和统计信道量化参数,该统计信道维度参数表示降维后的该统计信道信息的有效维度数值,该统计信道量化参数表示该终端设备对降维后的该统计信道信息进行量化处理时所需的量化索引参数。
可选地,该下行控制信令还用于指示该终端设备反馈瞬时信道参数信息,该瞬时信道参数信息为该终端设备根据瞬时信道信息确定的,该瞬时信道信息由该终端设备对瞬时信道进行测量获得,该收发器530还用于:接收该终端设备发送的根据该下行控制信令确定的该瞬时信道参数信息。
可选地,该处理器510还用于:根据该统计信道参数信息和该瞬时信道参数信息,对下行数据进行处理,并通过该收发器530向该用户设备发送处理后的下行数据。
可选地,该瞬时信道参数信息为该终端设备对该瞬时信道信息进行量化处理确定的,该瞬时信道为该终端设备根据该网络设备发送的预编码后的二级RS,对瞬时信道进行测量获,该预编码后的二级RS为该网络设备根据该统计信道参数信息,对该二级RS进行预编码后确定的。
可选地,该瞬时信道参数信息包括瞬时信道维度参数和瞬时信道量化参数,该瞬时信道维度参数表示该瞬时信道信息的有效维度数值,该瞬时信道量化参数表示该终端设备对该瞬时信道信息进行量化时所需的量化索引参数。
可选地,该下行控制信令包括第一信令和第二信令,该第一信令指示该终端设备反馈该统计信道参数信息,该第二信令指示该终端设备反馈该瞬时信道参数信息。
可选地,该第一信令包括第一子信令和第二子信令,该第一子信令指示该终端设备反馈该统计信道维度参数,该第二子信令指示该终端设备反馈该统计信道量化参数。
可选地,该第二信令包括第三子信令和第四子信令,该第三子信令指示该终端设备反馈该瞬时信道维度参数,该第四子信令指示该终端设备反馈该瞬时信道量化参数。
可选地,该下行控制信令指示该终端设备周期性反馈该统计信道参数信息和该瞬时信道参数信息。
可选地,该下行控制信令占用第一控制域和第二控制域,该第一控制域用于指示该终端设备反馈该统计信道参数信息,该第二控制域用于指示该终端设备反馈该瞬时信道参数信息。
可选地,该第一控制域包括第一子控制域和第二子控制域,该第一子控制域用于指示该终端设备反馈该统计信道维度参数,该第二子控制域用于指示该终端设备反馈该统计信道量化参数。
可选地,该第二控制域包括第三子控制域和第四子控制域,该第三子控制域用于指示该终端设备反馈该瞬时信道维度参数,该第四子控制域用于指示该终端设备反馈该瞬时信道量化参数。
可选地,该收发器530具体用于:接收该终端设备发送的根据该下行控制信令确定的该统计信道参数信息、处理后的统计信道信息、该瞬时信道参数信息和处理后的瞬时信道信息;向该终端设备发送经过两级预编码处理后 的下行数据,该两级预编码包括该处理器510根据该统计信道参数信息和该处理后的统计信道信息进行的第一级预编码,以及根据该瞬时信道参数信息和该处理后的瞬时信道信息进行的第二级预编码。
应理解,根据本发明实施例的多天线数据传输的网络设备500可对应于本发明实施例中的网络设备200,并可以对应于执行根据本发明实施例的方法100中的网络设备,并且网络设备500中的各个模块的上述和其它操作和/或功能分别为了实现图1和图2中的各个方法中网络设备的相应流程,为了简洁,在此不再赘述。
因此,本发明实施的多天线数据传输的网络设备,向终端设备发送下行控制信令,指示终端设备反馈统计信道参数信息和瞬时信道参数信息,并根据终端设备反馈的参数信息对下行数据进行两级预编码,可以有效地获取两级预编码的参数信息,保证两级CSI测量的顺利进行,从而解决了现有技术中当数据发射端天线数较多或者待服务UE数也较多时,上下行导频开销大,上行CSI反馈量大的技术问题,从而使系统有更多的时频资源可以进行数据的传输,有效增大了系统的吞吐量。
如图7所示,本发明实施例还提供了一种多天线数据传输的终端设备600,该终端设备600包括处理器610、接收器630可选地,包括存储器620,还可以包括存储器620、总线系统640。其中,处理器610、存储器620和接收器630通过总线系统640相连,该存储器620用于存储指令,该处理器610用于执行该存储器620存储的指令,以控制接收器630接收信号。其中,该收发器630用于:接收网络设备发送的下行控制信令,该下行控制信令指示该终端设备向该网络设备反馈统计信道参数信息;该处理器610用于:根据对多个瞬时信道进行测量后计算获得的统计信道信息,确定该统计信道参数信息。
因此,本发明实施的多天线数据传输的终端设备,接收网络设备发送的下行控制信令,根据该下行控制信令向网络设备反馈统计信道参数信息,终端设备对多次测量瞬时信道获得的统计信道信息进行处理确定统计信道参数信息,并将该统计信道参数信息向网络设备反馈,解决了现有技术无法向网络设备反馈统计信道信息或关于统计信道信息的信息(比如统计信道参数信息),以便于网络设备根据终端设备反馈的参数信息对下行数据进行处理。
应理解,在本发明实施例中,该处理器610可以是CPU,该处理器610 还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器620可以包括只读存储器和随机存取存储器,并向处理器610提供指令和数据。存储器620的一部分还可以包括非易失性随机存取存储器。例如,存储器620还可以存储设备类型的信息。
该总线系统640除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统640。
在实现过程中,上述方法的各步骤可以通过处理器610中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器620,处理器610读取存储器620中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,该处理器610具体用于:根据该网络设备发送的一级参考信号RS,对多个瞬时信道进行测量和计算获得该统计信道信息;对该统计信道信息进行降维和量化处理,确定该统计信道参数信息。
可选地,该统计信道参数信息包括统计信道维度参数和统计信道量化参数,该处理器610具体用于:对该统计信道信息进行降维处理,并将降维后的该统计信道信息的有效维度数值确定为该统计信道维度参数;对降维后的该统计信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为该统计信道量化参数。
可选地,该下行控制信令还用于指示该终端设备向该网络设备反馈瞬时信道参数信息,该处理器610还用于:根据对瞬时信道进行测量获得的瞬时信道信息,确定该瞬时信道参数信息;该收发器630还用于:根据该下行控制信令,向该网络设备反馈该瞬时信道参数信息。
可选地,该处理器610具体用于:根据该网络设备发送的预编码后的二级RS,对瞬时信道进行测量获得该瞬时信道信息,该预编码后的二级RS为 该网络设备根据该统计信道参数信息,对该二级RS进行预编码后确定的;对该瞬时信道信息进行量化处理,确定该瞬时信道参数信息。
可选地,该瞬时信道参数信息包括瞬时信道维度参数和瞬时信道量化参数,该处理器610具体用于:将该瞬时信道信息的有效维度数值确定为该瞬时信道维度参数;对该瞬时信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为该瞬时信道量化参数表示。
可选地,该下行控制信令包括第一信令和第二信令,该第一信令指示该终端设备反馈该统计信道参数信息,该第二信令指示该终端设备反馈该瞬时信道参数信息。
可选地,该第一信令包括第一子信令和第二子信令,该第一子信令指示该终端设备反馈该统计信道维度参数,该第二子信令指示该终端设备反馈该统计信道量化参数。
可选地,该第二信令包括第三子信令和第四子信令,该第三子信令指示该终端设备反馈该瞬时信道维度参数,该第四子信令指示该终端设备反馈该瞬时信道量化参数。
可选地,该下行控制信令指示该终端设备周期性反馈该统计信道参数信息和该瞬时信道参数信息。
可选地,该下行控制信令占用第一控制域和第二控制域,该第一控制域用于指示该终端设备反馈该统计信道参数信息,该第二控制域用于指示该终端设备反馈该瞬时信道参数信息。
可选地,该第一控制域包括第一子控制域和第二子控制域,该第一子控制域用于指示该终端设备反馈该统计信道维度参数,该第二子控制域用于指示该终端设备反馈该统计信道量化参数。
可选地,该第二控制域包括第三子控制域和第四子控制域,该第三子控制域用于指示该终端设备反馈该瞬时信道维度参数,该第四子控制域用于指示该终端设备反馈该瞬时信道量化参数。
应理解,根据本发明实施例的多天线数据传输的终端设备600可对应于本发明实施例中的终端设备300,并可以对应于执行根据本发明实施例的方法100中的终端设备,并且终端设备600中的各个模块的上述和其它操作和/或功能分别为了实现图1和图2中的各个方法中的终端设备的相应流程,为了简洁,在此不再赘述。
因此,本发明实施的多天线数据传输的终端设备,接收网络设备发送的下行控制信令,向网络设备反馈统计信道参数信息和瞬时信道参数信息,网络设备根据终端设备反馈的参数信息对下行数据进行两级预编码,可以有效地获取两级预编码的参数信息,保证两级CSI测量的顺利进行,从而解决了现有技术中当数据发射端天线数较多或者待服务UE数也较多时,上下行导频开销大,上行CSI反馈量大的技术问题,从而使系统有更多的时频资源可以进行数据的传输,有效增大了系统的吞吐量。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (55)

  1. 一种多天线数据传输的方法,其特征在于,包括:
    网络设备向终端设备发送下行控制信令,所述下行控制信令指示所述终端设备反馈统计信道参数信息,所述统计信道参数信息为所述终端设备根据统计信道信息确定的,所述统计信道信息由所述终端设备多次测量瞬时信道后计算获得;
    所述网络设备接收所述终端设备发送的根据所述下行控制信令确定的所述统计信道参数信息。
  2. 根据权利要求1所述的方法,其特征在于,所述统计信道参数信息为所述终端设备对所述统计信道信息进行降维和量化处理确定的,所述统计信道信息为所述终端设备根据所述网络设备发送的一级参考信号RS,多次测量瞬时信道后计算获得。
  3. 根据权利要求2所述的方法,其特征在于,
    所述统计信道参数信息包括统计信道维度参数和统计信道量化参数,
    所述统计信道维度参数表示降维后的所述统计信道信息的有效维度数值,
    所述统计信道量化参数表示所述终端设备对降维后的所述统计信道信息进行量化处理时所需的量化索引参数。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述下行控制信令还用于指示所述终端设备反馈瞬时信道参数信息,所述瞬时信道参数信息为所述终端设备根据瞬时信道信息确定的,所述瞬时信道信息由所述终端设备对瞬时信道进行测量获得,
    所述方法还包括:
    所述网络设备接收所述终端设备发送的根据所述下行控制信令确定的所述瞬时信道参数信息。
  5. 根据权利要求4所述的方法,其特征在于,所述瞬时信道参数信息为所述终端设备对所述瞬时信道信息进行量化处理确定的,所述瞬时信道为所述终端设备根据所述网络设备发送的预编码后的二级RS,对瞬时信道进行测量获,所述预编码后的二级RS为所述网络设备根据所述统计信道参数信息,对所述二级RS进行预编码后确定的。
  6. 根据权利要求5所述的方法,其特征在于,所述瞬时信道参数信息 包括瞬时信道维度参数和瞬时信道量化参数,
    所述瞬时信道维度参数表示所述瞬时信道信息的有效维度数值,
    所述瞬时信道量化参数表示所述终端设备对所述瞬时信道信息进行量化时所需的量化索引参数。
  7. 根据权利要求6所述的方法,其特征在于,所述下行控制信令包括第一信令和第二信令,所述第一信令指示所述终端设备反馈所述统计信道参数信息,所述第二信令指示所述终端设备反馈所述瞬时信道参数信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第一信令包括第一子信令和第二子信令,所述第一子信令指示所述终端设备反馈所述统计信道维度参数,所述第二子信令指示所述终端设备反馈所述统计信道量化参数。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第二信令包括第三子信令和第四子信令,所述第三子信令指示所述终端设备反馈所述瞬时信道维度参数,所述第四子信令指示所述终端设备反馈所述瞬时信道量化参数。
  10. 根据权利要求6至9中任一项所述的方法,其特征在于,所述下行控制信令指示所述终端设备周期性反馈所述统计信道参数信息和所述瞬时信道参数信息。
  11. 根据权利要求6所述的方法,其特征在于,所述下行控制信令占用第一控制域和第二控制域,所述第一控制域用于指示所述终端设备反馈所述统计信道参数信息,所述第二控制域用于指示所述终端设备反馈所述瞬时信道参数信息。
  12. 根据权利要求11所述的方法,其特征在于,所述第一控制域包括第一子控制域和第二子控制域,所述第一子控制域用于指示所述终端设备反馈所述统计信道维度参数,所述第二子控制域用于指示所述终端设备反馈所述统计信道量化参数。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第二控制域包括第三子控制域和第四子控制域,所述第三子控制域用于指示所述终端设备反馈所述瞬时信道维度参数,所述第四子控制域用于指示所述终端设备反馈所述瞬时信道量化参数。
  14. 根据权利要求6至13中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收所述终端设备发送的根据所述下行控制信令确定的处理后的统计信道信息和处理后的瞬时信道信息;
    所述网络设备向所述终端设备发送经过两级预编码处理后的下行数据,所述两级预编码包括根据所述统计信道参数信息和所述处理后的统计信道信息进行的第一级预编码,以及根据所述瞬时信道参数信息和所述处理后的瞬时信道信息进行的第二级预编码。
  15. 一种多天线数据传输的方法,其特征在于,包括:
    终端设备接收网络设备发送的下行控制信令,所述下行控制信令指示所述终端设备向所述网络设备反馈统计信道参数信息;
    所述终端设备根据对多个瞬时信道进行测量后计算获得的统计信道信息,确定所述统计信道参数信息;
    所述终端设备根据所述下行控制信令,向所述网络设备反馈所述统计信道参数信息。
  16. 根据权利要求15所述的方法,其特征在于,所述终端设备根据对多个瞬时信道进行测量后计算获得的统计信道信息,确定所述统计信道参数信息,包括:
    所述终端设备根据所述网络设备发送的一级参考信号RS,对多个瞬时信道进行测量和计算获得所述统计信道信息;
    所述终端设备对所述统计信道信息进行降维和量化处理,确定所述统计信道参数信息。
  17. 根据权利要求16所述的方法,其特征在于,所述统计信道参数信息包括统计信道维度参数和统计信道量化参数,
    所述终端设备对所述统计信道信息进行降维和量化处理,确定所述统计信道参数信息,包括:
    所述终端设备对所述统计信道信息进行降维处理,并将降维后的所述统计信道信息的有效维度数值确定为所述统计信道维度参数;
    所述终端设备对降维后的所述统计信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为所述统计信道量化参数。
  18. 根据权利要求15至17中任一项所述的方法,其特征在于,所述下行控制信令还用于指示所述终端设备向所述网络设备反馈瞬时信道参数信息,
    所述方法还包括:
    所述终端设备根据对瞬时信道进行测量获得的瞬时信道信息,确定所述瞬时信道参数信息,
    所述终端设备根据所述下行控制信令,向所述网络设备反馈所述瞬时信道参数信息。
  19. 根据权利要求18所述的方法,其特征在于,所述终端设备根据对瞬时信道进行测量获得的瞬时信道信息,确定所述瞬时信道参数信息,包括:
    所述终端设备根据所述网络设备发送的预编码后的二级RS,对瞬时信道进行测量获得所述瞬时信道信息,所述预编码后的二级RS为所述网络设备根据所述统计信道参数信息,对所述二级RS进行预编码后确定的;
    所述终端设备对所述瞬时信道信息进行量化处理,确定所述瞬时信道参数信息。
  20. 根据权利要19所述的方法,其特征在于,所述瞬时信道参数信息包括瞬时信道维度参数和瞬时信道量化参数,
    所述终端设备对所述瞬时信道信息进行量化处理,确定所述瞬时信道参数信息,包括:
    所述终端设备将所述瞬时信道信息的有效维度数值确定为所述瞬时信道维度参数;
    所述终端设备对所述瞬时信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为所述瞬时信道量化参数表示。
  21. 根据权利要求20所述的方法,其特征在于,所述下行控制信令包括第一信令和第二信令,所述第一信令指示所述终端设备反馈所述统计信道参数信息,所述第二信令指示所述终端设备反馈所述瞬时信道参数信息。
  22. 根据权利要求21所述的方法,其特征在于,所述第一信令包括第一子信令和第二子信令,所述第一子信令指示所述终端设备反馈所述统计信道维度参数,所述第二子信令指示所述终端设备反馈所述统计信道量化参数。
  23. 根据权利要求21或8所述的方法,其特征在于,所述第二信令包括第三子信令和第四子信令,所述第三子信令指示所述终端设备反馈所述瞬时信道维度参数,所述第四子信令指示所述终端设备反馈所述瞬时信道量化参数。
  24. 根据权利要求20至23中任一项所述的方法,其特征在于,所述下 行控制信令指示所述终端设备周期性反馈所述统计信道参数信息和所述瞬时信道参数信息。
  25. 根据权利要求20所述的方法,其特征在于,所述下行控制信令占用第一控制域和第二控制域,所述第一控制域用于指示所述终端设备反馈所述统计信道参数信息,所述第二控制域用于指示所述终端设备反馈所述瞬时信道参数信息。
  26. 根据权利要求25所述的方法,其特征在于,所述第一控制域包括第一子控制域和第二子控制域,所述第一子控制域用于指示所述终端设备反馈所述统计信道维度参数,所述第二子控制域用于指示所述终端设备反馈所述统计信道量化参数。
  27. 根据权利要求25或26所述的方法,其特征在于,所述第二控制域包括第三子控制域和第四子控制域,所述第三子控制域用于指示所述终端设备反馈所述瞬时信道维度参数,所述第四子控制域用于指示所述终端设备反馈所述瞬时信道量化参数。
  28. 一种多天线数据传输的网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送下行控制信令,所述下行控制信令指示所述终端设备反馈统计信道参数信息,所述统计信道参数信息为所述终端设备根据统计信道信息确定的,所述统计信道信息由所述终端设备多次测量瞬时信道后计算获得;
    接收单元,用于接收所述终端设备发送的根据所述下行控制信令确定的所述统计信道参数信息。
  29. 根据权利要求28所述的网络设备,其特征在于,所述统计信道参数信息为所述终端设备对所述统计信道信息进行降维和量化处理确定的,所述统计信道信息为所述终端设备根据所述网络设备发送的一级参考信号RS,多次测量瞬时信道后计算获得。
  30. 根据权利要求29所述的网络设备,其特征在于,
    所述统计信道参数信息包括统计信道维度参数和统计信道量化参数,
    所述统计信道维度参数表示降维后的所述统计信道信息的有效维度数值,
    所述统计信道量化参数表示所述终端设备对降维后的所述统计信道信息进行量化处理时所需的量化索引参数。
  31. 根据权利要求28至30中任一项所述的网络设备,其特征在于,所述下行控制信令还用于指示所述终端设备反馈瞬时信道参数信息,所述瞬时信道参数信息为所述终端设备根据瞬时信道信息确定的,所述瞬时信道信息由所述终端设备对瞬时信道进行测量获得,
    所述接收单元还用于:
    接收所述终端设备发送的根据所述下行控制信令确定的所述瞬时信道参数信息。
  32. 根据权利要求31所述的网络设备,其特征在于,所述瞬时信道参数信息为所述终端设备对所述瞬时信道信息进行量化处理确定的,所述瞬时信道为所述终端设备根据所述网络设备发送的预编码后的二级RS,对瞬时信道进行测量获,所述预编码后的二级RS为所述网络设备根据所述统计信道参数信息,对所述二级RS进行预编码后确定的。
  33. 根据权利要求32所述的网络设备,其特征在于,所述瞬时信道参数信息包括瞬时信道维度参数和瞬时信道量化参数,
    所述瞬时信道维度参数表示所述瞬时信道信息的有效维度数值,
    所述瞬时信道量化参数表示所述终端设备对所述瞬时信道信息进行量化时所需的量化索引参数。
  34. 根据权利要求33所述的网络设备,其特征在于,所述下行控制信令包括第一信令和第二信令,所述第一信令指示所述终端设备反馈所述统计信道参数信息,所述第二信令指示所述终端设备反馈所述瞬时信道参数信息。
  35. 根据权利要求34所述的网络设备,其特征在于,所述第一信令包括第一子信令和第二子信令,所述第一子信令指示所述终端设备反馈所述统计信道维度参数,所述第二子信令指示所述终端设备反馈所述统计信道量化参数。
  36. 根据权利要求34或35所述的网络设备,其特征在于,所述第二信令包括第三子信令和第四子信令,所述第三子信令指示所述终端设备反馈所述瞬时信道维度参数,所述第四子信令指示所述终端设备反馈所述瞬时信道量化参数。
  37. 根据权利要求33至36中任一项所述的网络设备,其特征在于,所述下行控制信令指示所述终端设备周期性反馈所述统计信道参数信息和所述瞬时信道参数信息。
  38. 根据权利要求33所述的网络设备,其特征在于,所述下行控制信令占用第一控制域和第二控制域,所述第一控制域用于指示所述终端设备反馈所述统计信道参数信息,所述第二控制域用于指示所述终端设备反馈所述瞬时信道参数信息。
  39. 根据权利要求38所述的网络设备,其特征在于,所述第一控制域包括第一子控制域和第二子控制域,所述第一子控制域用于指示所述终端设备反馈所述统计信道维度参数,所述第二子控制域用于指示所述终端设备反馈所述统计信道量化参数。
  40. 根据权利要求38或39所述的网络设备,其特征在于,所述第二控制域包括第三子控制域和第四子控制域,所述第三子控制域用于指示所述终端设备反馈所述瞬时信道维度参数,所述第四子控制域用于指示所述终端设备反馈所述瞬时信道量化参数。
  41. 根据权利要求33至40中任一项所述的网络设备,其特征在于,所述接收单元还用于:
    接收所述终端设备发送的根据所述下行控制信令确定的处理后的统计信道信息和处理后的瞬时信道信息;
    所述发送单元具体用于:
    向所述终端设备发送经过两级预编码处理后的下行数据,所述两级预编码包括根根据所述统计信道参数信息和所述处理后的统计信道信息进行的第一级预编码,以及根据所述瞬时信道参数信息和所述处理后的瞬时信道信息进行的第二级预编码。
  42. 一种多天线数据传输的终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的下行控制信令,所述下行控制信令指示所述终端设备向所述网络设备反馈统计信道参数信息;
    确定单元,用于根据对多个瞬时信道进行测量后计算获得的统计信道信息,确定所述统计信道参数信息;
    发送单元,用于根据所述下行控制信令,向所述网络设备反馈所述统计信道参数信息。
  43. 根据权利要求42所述的终端设备,其特征在于,所述确定单元具体用于:
    根据所述网络设备发送的一级参考信号RS,对多个瞬时信道进行测量 和计算获得所述统计信道信息;
    对所述统计信道信息进行降维和量化处理,确定所述统计信道参数信息。
  44. 根据权利要求43所述的终端设备,其特征在于,所述统计信道参数信息包括统计信道维度参数和统计信道量化参数,
    所述确定单元具体用于:
    对所述统计信道信息进行降维处理,并将降维后的所述统计信道信息的有效维度数值确定为所述统计信道维度参数;
    对降维后的所述统计信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为所述统计信道量化参数。
  45. 根据权利要求42至44中任一项所述的终端设备,其特征在于,所述下行控制信令还用于指示所述终端设备向所述网络设备反馈瞬时信道参数信息,
    所述确定单元还用于:根据对瞬时信道进行测量获得的瞬时信道信息,确定所述瞬时信道参数信息;
    所述发送单元还用于:根据所述下行控制信令,向所述网络设备反馈所述瞬时信道参数信息。
  46. 根据权利要求45所述的终端设备,其特征在于,所述确定单元具体用于:
    根据所述网络设备发送的预编码后的二级RS,对瞬时信道进行测量获得所述瞬时信道信息,所述预编码后的二级RS为所述网络设备根据所述统计信道参数信息,对所述二级RS进行预编码后确定的;
    对所述瞬时信道信息进行量化处理,确定所述瞬时信道参数信息。
  47. 根据权利要46所述的终端设备,其特征在于,所述瞬时信道参数信息包括瞬时信道维度参数和瞬时信道量化参数,
    所述确定单元具体用于:
    将所述瞬时信道信息的有效维度数值确定为所述瞬时信道维度参数;
    对所述瞬时信道信息进行量化处理,并将量化处理时所需的量化索引参数确定为所述瞬时信道量化参数表示。
  48. 根据权利要求47所述的终端设备,其特征在于,所述下行控制信令包括第一信令和第二信令,所述第一信令指示所述终端设备反馈所述统计信道参数信息,所述第二信令指示所述终端设备反馈所述瞬时信道参数信息。
  49. 根据权利要求48所述的终端设备,其特征在于,所述第一信令包括第一子信令和第二子信令,所述第一子信令指示所述终端设备反馈所述统计信道维度参数,所述第二子信令指示所述终端设备反馈所述统计信道量化参数。
  50. 根据权利要求48或49所述的终端设备,其特征在于,所述第二信令包括第三子信令和第四子信令,所述第三子信令指示所述终端设备反馈所述瞬时信道维度参数,所述第四子信令指示所述终端设备反馈所述瞬时信道量化参数。
  51. 根据权利要求47至50中任一项所述的终端设备,其特征在于,所述下行控制信令指示所述终端设备周期性反馈所述统计信道参数信息和所述瞬时信道参数信息。
  52. 根据权利要求47所述的终端设备,其特征在于,所述下行控制信令占用第一控制域和第二控制域,所述第一控制域用于指示所述终端设备反馈所述统计信道参数信息,所述第二控制域用于指示所述终端设备反馈所述瞬时信道参数信息。
  53. 根据权利要求52所述的终端设备,其特征在于,所述第一控制域包括第一子控制域和第二子控制域,所述第一子控制域用于指示所述终端设备反馈所述统计信道维度参数,所述第二子控制域用于指示所述终端设备反馈所述统计信道量化参数。
  54. 根据权利要求52或53所述的终端设备,其特征在于,所述第二控制域包括第三子控制域和第四子控制域,所述第三子控制域用于指示所述终端设备反馈所述瞬时信道维度参数,所述第四子控制域用于指示所述终端设备反馈所述瞬时信道量化参数。
  55. 一种多天线数据传输的系统,其特征在于,包括网络设备和终端设备,其中,所述网络设备为如权利要求28至41中任一项所述的网络设备;所述终端设备为如权利要求42至54中任一项所述的终端设备。
PCT/CN2016/106775 2016-01-20 2016-11-22 多天线数据传输的方法、网络设备、终端设备及系统 WO2017124827A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16886087.2A EP3370346B1 (en) 2016-01-20 2016-11-22 Multiple-antenna data transmission method, network device, terminal device, and system
US16/039,986 US10771130B2 (en) 2016-01-20 2018-07-19 Multi-antenna data transmission method, network device, terminal device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610039033.6A CN106992837B (zh) 2016-01-20 2016-01-20 多天线数据传输的方法、网络设备、终端设备及系统
CN201610039033.6 2016-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/039,986 Continuation US10771130B2 (en) 2016-01-20 2018-07-19 Multi-antenna data transmission method, network device, terminal device, and system

Publications (1)

Publication Number Publication Date
WO2017124827A1 true WO2017124827A1 (zh) 2017-07-27

Family

ID=59361404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106775 WO2017124827A1 (zh) 2016-01-20 2016-11-22 多天线数据传输的方法、网络设备、终端设备及系统

Country Status (4)

Country Link
US (1) US10771130B2 (zh)
EP (1) EP3370346B1 (zh)
CN (1) CN106992837B (zh)
WO (1) WO2017124827A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131794A1 (en) 2017-05-05 2023-02-08 Apple Inc. Management of mimo communication systems
CN107453797B (zh) * 2017-08-18 2020-04-07 清华大学 不依赖导频的多天线基站发射方法和设备
CN109428637B (zh) 2017-08-28 2022-02-01 华为技术有限公司 一种csi-rs测量反馈方法及设备
CN108064066A (zh) * 2018-01-12 2018-05-22 东南大学 一种无线自组织网mac层协作最优中继选择方法
CN110138524B (zh) 2018-02-09 2020-09-08 华为技术有限公司 一种传输控制方法、终端设备及网络设备
CN112640102A (zh) * 2018-09-28 2021-04-09 株式会社村田制作所 电子部件模块及电子部件模块的制造方法
WO2023201460A1 (zh) * 2022-04-18 2023-10-26 富士通株式会社 参数发送和接收的方法、装置和通信系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359953A (zh) * 2007-08-01 2009-02-04 中兴通讯股份有限公司 Td-scdma系统室外宏蜂窝中应用多输入多输出技术的方法
US20100246494A1 (en) * 2009-03-26 2010-09-30 Futurewei Technologies, Inc. System and Method for Communications Using Spatial Multiplexing with Incomplete Channel Information
CN104247289A (zh) * 2012-02-23 2014-12-24 韩国电子通信研究院 大规模天线系统中的多输入和多输出通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7515939B2 (en) * 2003-10-01 2009-04-07 Broadcom Corporation System and method for channel-adaptive antenna selection
US8718165B2 (en) * 2007-06-14 2014-05-06 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for controlling multi-antenna transmission in a wireless communication network
CN102006106A (zh) * 2009-09-02 2011-04-06 华为技术有限公司 业务数据处理方法、装置以及通信系统
US20110103493A1 (en) * 2009-11-02 2011-05-05 Futurewei Technologies, Inc. System and Method for Wireless Communications with Adaptive Codebooks
JP5357126B2 (ja) 2010-10-04 2013-12-04 株式会社エヌ・ティ・ティ・ドコモ フィードバック方法、移動端末装置及び無線基地局装置
CN103188799B (zh) * 2011-12-29 2018-03-13 中兴通讯股份有限公司 控制信令的发送方法、检测方法、及其装置
CN103188827A (zh) 2011-12-29 2013-07-03 夏普株式会社 多基站合作中的信道状态信息反馈方法和用户设备
GB2500382B (en) * 2012-03-19 2014-11-26 Broadcom Corp Methods, apparatus and computer programs for configuring user equipment
CN110138469B (zh) * 2012-12-17 2022-04-15 北京三星通信技术研究有限公司 一种移动终端及其信道状态信息测量参考信号的测量方法
EP2744141B1 (en) * 2012-12-17 2017-09-06 Mitsubishi Electric R&D Centre Europe B.V. Method and device for allocating time and frequency resources for at least one data transmission via a fast fading frequency selective channel
BR112016025316A2 (pt) * 2014-04-28 2017-08-15 Huawei Tech Co Ltd método de transmissão de dados de múltipla antena, estação de base, equipamento de usuário e sistema
US9673948B2 (en) * 2014-10-29 2017-06-06 Qualcomm Incorporated Hybrid pilot design for low latency communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359953A (zh) * 2007-08-01 2009-02-04 中兴通讯股份有限公司 Td-scdma系统室外宏蜂窝中应用多输入多输出技术的方法
US20100246494A1 (en) * 2009-03-26 2010-09-30 Futurewei Technologies, Inc. System and Method for Communications Using Spatial Multiplexing with Incomplete Channel Information
CN104247289A (zh) * 2012-02-23 2014-12-24 韩国电子通信研究院 大规模天线系统中的多输入和多输出通信方法

Also Published As

Publication number Publication date
EP3370346A4 (en) 2018-12-05
EP3370346A1 (en) 2018-09-05
CN106992837B (zh) 2020-06-16
EP3370346B1 (en) 2022-04-06
US20180323838A1 (en) 2018-11-08
CN106992837A (zh) 2017-07-28
US10771130B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
JP7336489B2 (ja) 更に最適化されたオーバーヘッドを有するマルチビームコードブック
EP3272022B1 (en) Methods and devices for determining precoder parameters in a wireless communication network
WO2017124827A1 (zh) 多天线数据传输的方法、网络设备、终端设备及系统
US20220224391A1 (en) Methods and Apparatuses for CSI Reporting in a Wirless CFCommunication System
US8649456B2 (en) System and method for channel information feedback in a wireless communications system
US11165480B2 (en) Data transmission method and apparatus
EP3213423B1 (en) Codebook restriction
WO2017194007A1 (zh) 一种二级预编码方法及装置
US20180234138A1 (en) Multiple-antenna data transmission method, base station, user equipment, and system
TWI538428B (zh) 在網路中通信的方法、副站台及主站台
JP2020506609A (ja) チャネル状態情報フィードバック方法、端末デバイス、およびネットワークデバイス
WO2018144737A1 (en) Method of csi reporting
EP2945306B1 (en) Precoding matrix indication feedback method, and receiving end and transmitting end
WO2018094709A1 (zh) 一种确定预编码矩阵的方法、装置及系统
US10447369B2 (en) Method and apparatus for obtaining channel state information
US20230299821A1 (en) Transmission method and apparatus, device, and readable storage medium
US9048970B1 (en) Feedback for cooperative multipoint transmission systems
EP3890207B1 (en) Method and apparatus for optimizing antenna precoder selection with coupled antennas
WO2017088658A1 (zh) 获取信道信息的方法及装置
US20240178893A1 (en) Channel information feedback method and communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886087

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016886087

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE