WO2017124441A1 - 一种电池组件,电池组件的温控方法及其汽车 - Google Patents

一种电池组件,电池组件的温控方法及其汽车 Download PDF

Info

Publication number
WO2017124441A1
WO2017124441A1 PCT/CN2016/071771 CN2016071771W WO2017124441A1 WO 2017124441 A1 WO2017124441 A1 WO 2017124441A1 CN 2016071771 W CN2016071771 W CN 2016071771W WO 2017124441 A1 WO2017124441 A1 WO 2017124441A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
unit
heat
temperature
phase change
Prior art date
Application number
PCT/CN2016/071771
Other languages
English (en)
French (fr)
Inventor
傅洪杰
Original Assignee
深圳市协展电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市协展电子有限公司 filed Critical 深圳市协展电子有限公司
Priority to PCT/CN2016/071771 priority Critical patent/WO2017124441A1/zh
Publication of WO2017124441A1 publication Critical patent/WO2017124441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/659Means for temperature control structurally associated with the cells by heat storage or buffering, e.g. heat capacity or liquid-solid phase changes or transition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device, and more particularly to a battery assembly, a temperature control method for the battery assembly, and an automobile thereof.
  • the main function of the battery pack is to supply electric energy to various electrical devices and the like. Assist the generator and store the power.
  • An object of the present invention is to overcome the above-mentioned deficiencies of the prior art, to provide a battery pack, a temperature control method for a battery pack, and an automobile thereof which can automatically adjust and maintain temperature.
  • a battery assembly including one or more battery units is provided; further comprising: at least one capable of generating and/or storing heat and transferring heat release to one or more a heating unit of the battery unit; the heating unit is in thermal contact with the battery unit.
  • the heating unit comprises at least one heating element in thermal contact with one or more battery cells, the heating element being electrically connected to two poles of the one or more battery cells for non-operating state of the battery
  • the electrical energy of the battery unit is converted into heat energy.
  • the heating element converts electrical energy from the battery into heat, and transfers heat to the battery unit for thermal insulation by thermal contact with the battery unit.
  • each of the one or more battery cells are in thermal contact with one another and one or more of the one or more battery cells are in thermal contact with one or more of the heat generating components.
  • Battery list The elements are in thermal contact with each other such that each cell is not required to be in thermal contact with the heating element, a portion of the battery unit can be selected as desired, or even one of the battery cells can be in contact with one or more of the heating elements, ie The heat of the heating element can be transferred to all of the battery cells to achieve insulation of the battery cells.
  • each of the one or more battery cells is not in thermal contact with each other, each of the one or more battery cells being in thermal contact with one or more of the heat generating components.
  • Such a setting is suitable for an environment at a very low temperature throughout the year, and the battery unit requires more heat, ensuring that each battery unit has a separate heating, and the heat preservation effect is better.
  • the heat generating component surrounds or partially surrounds an outer wall of the battery unit. In this way, the contact area with the battery is large, and the heat conduction effect is good.
  • the heating unit further comprises a temperature control unit for controlling the opening and closing of the connection circuit of the heating element and the battery unit electrode.
  • the temperature control unit can control the conduction and disconnection of the circuit according to changes in the external temperature or changes in the battery temperature to achieve heat generation or no heat generation of the heating element.
  • the heating unit further includes a battery power control unit for controlling a maximum power output of the battery unit to the heat generating component.
  • the battery can meet the requirements of use without all the power.
  • the power that cannot be used can be used as the power supply to the heating element, so that the heating element will Conversion to thermal energy is provided to the battery to maintain temperature.
  • the battery assembly further includes a circuit board electrically connected to the positive and negative poles of the battery unit, and the temperature control unit or the battery power control unit is disposed on the circuit board, and the positive and negative poles of the circuit board are heated.
  • the components are electrically connected.
  • the heating unit comprises at least one phase change unit in thermal contact with the one or more battery cells, the phase change unit comprising a phase change material.
  • the phase change unit is configured to store heat generated when the battery is in normal operation, and release the stored heat to the battery unit when the temperature is low to maintain the battery unit from starting normally.
  • the battery assembly further includes a case for closing one or more battery cells, the phase change unit comprising a phase change material made of a phase change material, the phase change body being filled in the inner case of the case One Or in the gap between the plurality of battery cells, in direct contact with one or more battery cells.
  • the battery unit and the phase change body have a large contact area, and the contact is sufficient, and the heat absorption and release efficiency is higher.
  • the phase change unit further comprises a phase change material of a phase change material and a containment assembly for containing the phase change body, the outer surface of the containment assembly being in direct thermal contact with the outer surface of the one or more battery cells.
  • This arrangement prevents the phase change body from flowing around in the tank when the form is converted into a liquid, which affects the normal use of the battery.
  • the material of the receiving component is plastic, metal or cortical material.
  • the receiving component is an annular body disposed around an outer side of the battery unit.
  • the battery assembly further includes a case for closing one or more battery cells, the inside of the case being disposed in a vacuum state.
  • the vacuum inside the box is beneficial to maintain the temperature inside the box, which can stop or reduce the heat convection exchange inside the box.
  • the battery stops from being exchanged with the outside air for heat convection, so that the battery performance is not affected by the external temperature.
  • the battery assembly further includes a case for closing one or more battery cells, the case being provided with an insulating material. Due to the use of insulation material, it is beneficial to maintain the temperature inside the box, so that the inside of the box can be stopped or reduced by heat radiation exchange. When the outside temperature is too high or too low, the battery stops or reduces the heat radiation exchange with the outside through the air, so that the battery performance is not affected by the external temperature. According to another embodiment of the present invention, there is provided an automobile using the above battery assembly.
  • a temperature control method for a battery assembly including the following steps:
  • the heating unit is switched between the two states of heat generation and non-heat generation, and when the heat supply unit is in a heat state, the heat supply unit transfers heat to the battery unit; When the heating unit is in a non-heating state, the heating unit cannot transfer heat to the battery unit.
  • the temperature threshold described in step (1) includes a temperature threshold 1 and a temperature threshold 2,
  • the temperature threshold 1 is lower than the temperature threshold 2, and the temperature threshold 1 is above the operating temperature range of the battery unit;
  • the step (3) further includes: when the battery unit temperature A reaches the temperature threshold 1, the heating unit generates heat for The heat unit transfers heat to the battery unit; when the battery unit temperature A reaches the temperature threshold 2, the heat supply unit stops heating.
  • the step (1) further comprises setting a battery power threshold B; the step (2) further comprising detecting a power of the battery unit and comparing with a preset temperature threshold; the step (3) further comprising: when When the battery level is lower than the set battery level threshold B, the heating unit stops heating.
  • the temperature threshold described in the step (1) includes a temperature threshold 1 and a temperature threshold 2, and the temperature threshold 1 is lower than the temperature threshold 2; the step (3) further includes: when the battery unit temperature A reaches the temperature At a threshold of 2, the heating unit absorbs heat from the battery cells in contact therewith and stores the absorbed heat; when the battery temperature A reaches the temperature threshold 1, the heating unit exudes the stored heat to the battery unit.
  • said temperature threshold of said step (1) comprises a temperature threshold 1 and a temperature threshold 2, said temperature threshold 1 being lower than a temperature threshold 2; said step (3) further The method includes: when the battery unit temperature A reaches the temperature threshold 2, the heating unit absorbs heat from the battery unit in contact with it, and stores the absorbed heat; when the battery temperature A reaches the temperature threshold 1, the heating unit transmits the stored heat to the heat source unit. Battery unit.
  • the present invention has the following beneficial effects: since the battery assembly of the present invention employs a heating unit capable of generating and/or storing heat and transferring heat release to one or more battery units .
  • the heating unit can convert the electrical energy of the battery into heat for the battery to be insulated, or transfer the heat stored in the battery from the battery to the battery for heat preservation, so that the battery performance is not affected by the outside.
  • the low temperature effect can also be started normally at very low temperatures.
  • FIG. 1 is a block diagram of a battery assembly in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic view of a battery assembly according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic view of a battery assembly in accordance with Embodiment 2 of the present invention.
  • FIG. 4 is a schematic view of a battery assembly according to Embodiment 3 of the present invention.
  • FIG. 5 is a flow chart of a temperature control method of a battery assembly according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a battery assembly in accordance with an embodiment of the present invention.
  • a battery assembly comprising one or more battery cells, at least one heating unit capable of generating and/or storing heat and transferring heat release to one or more battery cells;
  • the heat supply unit is in thermal contact with the battery unit.
  • the battery unit can be a battery of various specifications, such as a lithium battery, and the like.
  • the heating unit includes at least one heating element in thermal contact with one or more battery cells, and the heating element is electrically connected to the positive and negative terminals of the battery unit, and is used when the battery is in an inoperative state. Convert the electrical energy of the battery unit into heat. When the circuit connecting the heating element to the electrode of the battery unit is turned on, the heating element converts electrical energy from the battery into heat, and transfers heat to the battery unit for thermal insulation by thermal contact with the battery unit.
  • Each of the one or more battery cells described in the embodiments of the present invention are in thermal contact with each other, and one or more of the one or more battery cells are in thermal contact with one or more of the heat generating components.
  • the battery cells are in thermal contact with each other such that each battery cell does not need to be in thermal contact with the heat generating component, a portion of the battery cells can be selected as needed, or even one of the battery cells can be in contact with one or more heat generating components. That is, the heat of the heat generating component can be transmitted to all the battery cells to achieve heat preservation of the battery cells.
  • the heating element does not necessarily need to be set up a lot, and the number of heating elements can be set according to actual needs.
  • a plurality of heating elements can be set to generate heat together.
  • the heat demand is relatively small, and a small amount or even a heating element can be provided as long as the heating element and the battery One of the cells is in thermal contact to transfer the heat generated to all of the cells.
  • Each of the one or more battery cells described in the embodiments of the present invention has no thermal contact with each other, each of the one or more battery cells being in thermal contact with one or more of the heat generating components. There is no mutual thermal contact between the battery cells, so that each battery cell needs to be in thermal contact with one or more heat-generating components, and the number of heat-generating components can be set according to actual needs. Such a setting is suitable for an environment at a very low temperature throughout the year, and the battery unit requires more heat, ensuring that each battery unit has a separate heating, and the heat preservation effect is better.
  • Each of the battery cells according to the embodiments of the present invention is electrically connected to one or more heat generating components, and the setting is suitable for an extremely low temperature environment, so that each battery can be redundant in an extremely low temperature environment.
  • the power is contributed to the heating elements, which can collectively transfer heat to the battery, avoiding the inability to start at very low temperatures, the number of heating elements can be determined according to the situation; or one or more of the battery units Electrically connecting one or more heat generating components, wherein each of the heat generating components is in thermal contact with all of the battery cells; such an arrangement does not require the use of all of the battery cells, and only a portion of the battery cells are used to provide heat to the heat.
  • the conversion of the components into heat provides heat to all of the batteries.
  • the heating element is directly or indirectly electrically connected to the two electrodes of the battery unit, for example, the positive and negative electrodes of the battery unit may be connected by wires, or the heating element may be directly disposed with two protruding electrode ends, respectively, with the positive of the battery unit.
  • the negative electrode is electrically connected, and so on.
  • the heat generating component may be provided in the form of a sheet, a strip, a linear rigid or a flexible heat generating member such as a heat generating sheet, a heat generating sheet or the like.
  • the heating element may be any shape such as a circle, a square, a rectangle, an ellipse, a ring, or the like.
  • the heating element may be a whole, or may be arranged in a plurality of sheet-like, strip-shaped, linear heating elements electrically connected to each other; the heating element may preferably be made of a PTC (Positive Temperature Coefficient) material, or other conductive heating material.
  • PTC Physical Temperature Coefficient
  • the heat generating component described in the embodiments of the present invention is preferably made of a PTC material.
  • the heating element surrounds or partially surrounds the outer wall of the battery unit.
  • the element made of PTC material can directly wrap the outer wall of the battery or partially enclose the outer wall of the battery, so that the contact area with the battery is large, and the heat conduction effect is good.
  • the fabricated component is in contact with the outer wall of the battery and can also be heat transferred.
  • the heating element can also be connected to the battery unit through a heat-conducting connecting member, for example, by disposing the heat-generating component on the heat-conducting fixing bracket fixed on the battery unit, and transferring heat to the battery unit through the fixing bracket, and of course, other connection manners can also be adopted. As long as the heat generated by the heat generating unit can be transmitted to the battery unit.
  • the heating unit further includes a temperature control unit for controlling conduction and disconnection of the connection circuit of the heating element and the battery unit electrode.
  • the temperature control unit can control the conduction and disconnection of the circuit according to changes in the external temperature or changes in the battery temperature to achieve heat generation or no heat generation of the heating element.
  • One or more temperature thresholds may be set as needed, for example, two temperature thresholds, a temperature threshold 1 and a temperature threshold 2; when the temperature is lowered to a temperature threshold 1, the temperature control unit is turned on, the heating element starts to generate heat, and the heat is generated.
  • the temperature control unit Passed to the battery unit, so that its temperature is not too low, so that it can not start normally; when the temperature rises to the temperature threshold 2, the temperature control unit is disconnected, the heating element stops heating, because the heat is emitted, the temperature continues to decrease, when the temperature drops to When the temperature threshold is 1, the temperature control unit is turned on again, and the heating element starts to heat up again; Wherein, the temperature threshold 1 is lower than the temperature threshold 2. Above the temperature threshold of 1, it is the operating temperature range of the battery.
  • the one or more temperature thresholds are not a fixed value, and may be set at a desired threshold according to usage requirements, such as setting the temperature threshold 1 to minus 20 degrees, the temperature threshold 2 to be zero to 10 degrees, and the like. .
  • the temperature control unit can be implemented using a temperature control switch.
  • the heating unit according to the embodiment of the invention further includes a battery power control unit for controlling the maximum power output by the battery unit to the heating element.
  • the battery Under normal use, the battery can meet the requirements of use without all the power. In the case of ensuring the minimum use of the power, the power that cannot be used can be used as the power supply to the heating element, so that the heating element will Conversion to thermal energy is provided to the battery to maintain temperature.
  • the battery power control unit can be controlled to have a power threshold of 30%, that is, 30% of the battery unit can be used as a power supply for the heating element, and in a low temperature environment, when the temperature control unit detects the ambient temperature or When the temperature of the battery unit is too low, the connection circuit for controlling the heating element and the battery unit electrode is closed, and the power of the battery unit is consumed as heat generated by the heating element, and the power consumption of the battery unit is not more than 30%.
  • the battery level control unit can be implemented using a battery level control switch. When the battery unit power is higher than the set threshold, the circuit can be normally turned on; When the battery unit's charge is lower than the set threshold, the circuit will not turn on normally.
  • the threshold of the battery power is not a fixed value, and can be adjusted at any time according to actual needs.
  • the battery assembly of the embodiment of the invention further includes a circuit board, and the temperature control unit and the battery power control unit can be disposed on the circuit board, and the temperature control unit and the battery are disposed on the circuit board by connecting the positive and negative electrodes of the battery to the circuit board.
  • the power control unit, the circuit board then leads the positive and negative poles to be electrically connected to the heating element.
  • the circuit board can be fixed to the inner wall of the box or fixed to the outer surface of the battery unit, or fixed to the inside of the box through the fixing bracket, and the circuit board can be fixed by means of gluing, fixing parts and the like.
  • the heat supply unit includes at least one phase change unit in thermal contact with the one or more battery cells, the phase change unit including a phase change material.
  • the phase change unit is configured to store heat generated when the battery is in normal operation, and release the stored heat to the battery unit when the temperature is low to maintain the battery unit from starting normally.
  • the battery assembly of the embodiment of the invention further includes a case for closing one or more battery cells, the phase change unit comprising a phase change material made of a phase change material, the phase change body being filled in the interior of the case and One or more battery cells are in direct contact with one or more of the cells.
  • the battery unit and the phase change body have a large contact area, and the contact is sufficient, and the heat absorption and release efficiency is higher.
  • the case includes an upper cover and a lower cover, and the upper cover and the lower cover are closed to form the case.
  • the phase change body When the battery is in use or at a high temperature and the ambient temperature reaches above the maximum value of the phase transition temperature range, the phase change body absorbs heat from the environment or one or more battery cells in contact with it and stores it; when the battery is not activated In the low temperature state, when the temperature is lower than the minimum value of the phase transition temperature range, the phase change body releases the heat stored in the body and transmits it to the battery unit in thermal contact with it, maintaining the temperature of the battery unit, and preventing the low temperature from starting. .
  • the phase change unit according to the embodiment of the present invention further includes a phase change material made of a phase change material and a receiving component for accommodating the phase change body, and the outer surface of the accommodating component is directly heated to the outer surface of the one or more battery cells. contact.
  • the phase change body is filled inside the receiving assembly, which is preferably made of metal.
  • the containment assembly is in contact with one or more battery cells, and the phase change body can fill a portion or all of the containment assembly. This arrangement prevents the phase change body from flowing around in the tank when the form is converted into a liquid, which affects the normal use of the battery.
  • Each of the battery cells can be in thermal contact with one or more containment components, The greater the number of housing components in which the battery unit is in thermal contact, the better the temperature of the battery unit is maintained, and all of the battery cells may be in thermal contact with each other, one or more of the battery cells being in thermal contact with one or more of the receiving components, such that The heat of one battery unit can be transferred to all battery units.
  • the material of the receiving component may be selected from materials such as plastic, metal or cortex, as long as the heat is not transferred from the battery unit to the phase change body through the receiving component.
  • the shape of the accommodating component may be any shape, such as a cylindrical shape, a rectangular parallelepiped, a rectangular parallelepiped or the like. As long as the accommodating component is in contact with the battery unit, heat can be transferred. Of course, the larger the contact area, the better the heat transfer effect.
  • the accommodating member is preferably provided as an annular body surrounding the outer side of the battery unit, which surrounds the battery unit therein and is in close contact around the periphery of the battery unit.
  • the receiving component may be a receiving box integrally formed by accommodating the phase change body in advance; or may be a separately arranged receiving box and a receiving cover, and the phase change body is placed in the receiving box, and then the receiving cover is received by the fixing member. Sealed to the containment tank to seal the phase change body.
  • an automobile is provided that uses the battery assembly described above.
  • Another embodiment of the present invention provides a temperature control method for a battery assembly, including the following steps:
  • the heating unit is switched between the two states of heat generation and non-heat generation, and when the heat supply unit is in a heat state, the heat supply unit transfers heat to the battery unit; When the heating unit is in a non-heating state, the heating unit cannot transfer heat to the battery unit.
  • the temperature threshold value in the step (1) includes a temperature threshold value 1 and a temperature threshold value 2, wherein the temperature threshold value 1 is lower than the temperature threshold value 2, and above the temperature threshold value 1 is an operable temperature range of the battery unit;
  • the step (3) further includes: when the battery unit temperature A reaches the temperature threshold 1, the heating unit generates heat, and the heating unit transmits heat to the battery unit; when the battery unit temperature A reaches the temperature threshold 2, the heating unit stops heating.
  • the temperature threshold can be set to different values according to actual needs. It can be set as a temperature threshold or multiple temperature thresholds.
  • the step (1) further comprises setting a battery power threshold B; the step (2) further comprising detecting The power of the battery unit is compared with a preset temperature threshold; the step (3) further includes: when the battery power is lower than the set battery power threshold B, the heating unit stops heating.
  • the temperature threshold described in the step (1) includes a temperature threshold 1 and a temperature threshold 2, and the temperature threshold 1 is lower than the temperature threshold 2; the step (3) further includes: when the battery unit temperature A reaches the temperature At a threshold of 2, the heating unit absorbs heat from the battery cells in contact therewith and stores the absorbed heat; when the battery temperature A reaches the temperature threshold 1, the heating unit exudes the stored heat to the battery unit.
  • the temperature threshold can be set according to actual needs. Different phase change temperature thresholds can be set, or a phase change temperature threshold can be set, or multiple phase change temperature thresholds can be set.
  • the phase change material according to the embodiment of the present invention includes an organic phase change material and an inorganic phase change material, and a phase change material refers to a substance that changes a state of a substance according to a temperature change and can provide latent heat.
  • the phase change material has a phase transition temperature range. When the temperature is higher than the maximum temperature value of the phase transition temperature range, the phase change material is converted into a type, and absorbs heat from the environment or the contact object and stores it by itself; when the temperature is lower than The minimum temperature value of the phase transition temperature range, the process of transforming the phase change material into another physical form, and releasing the heat is called the phase change process, in which the phase change material can absorb or release a large amount of latent heat.
  • the corresponding phase change material can be selected according to the desired phase transition temperature.
  • the temperature of the endothermic and exothermic phase change materials can be adjusted by selecting different phase change materials or composite phase change materials to achieve the desired temperature.
  • the battery assembly of the embodiment of the present invention further includes a case for closing one or more battery cells, and the inside of the case is preferably disposed in a vacuum state. Due to the vacuum technology, the vacuum inside the box is beneficial to maintain the temperature inside the box, which can stop or reduce the heat convection exchange inside the box. When the outside temperature is too high or too low, the battery stops from being exchanged with the outside air for heat convection, so that the battery performance is not affected by the external temperature.
  • the battery assembly of the embodiment of the present invention further includes a box for closing one or more battery units, wherein the box body is preferably provided with an insulating material on the inner wall or the outer wall, and the heat insulating material may be integrally formed with the box body, or Attached separately to the inner surface of the case. Due to the use of insulation material, it is beneficial to maintain the temperature inside the box, which can stop or reduce the heat transfer and heat radiation exchange between the inside of the box and the outside. When the outside temperature is too high or too low, the battery stops or reduces the heat radiation exchange with the outside through the air, so that the battery performance is not affected by the external temperature.
  • the battery assembly according to the embodiment of the present invention can be applied to an automobile as a battery assembly for starting a vehicle, but is not limited to being used only for starting a vehicle, and can be applied to other occasions, for example, to an electric vehicle or a ship. Tanks or airplanes and other occasions.
  • the thermal contact described in the embodiments of the present invention such as the battery unit and the heat generating unit; the battery assembly, the receiving component and the battery unit, and the places where thermal contact is required may be directly contacted to achieve thermal contact by bonding, pressing, etc.;
  • the thermal contact can be achieved by contact with a heat-conducting contact member, for example, by metal bolt screws, metal connectors, etc.; as long as the heat can be smoothly transmitted to the corresponding component when the contact is satisfied, the requirement is met.
  • the contact manner of the thermal contact according to the embodiment of the present invention is arbitrary, and may be point contact, line contact, and surface contact; the shape of the thermal contact is arbitrary, and may be a square, a rectangle, a circle, a ring, or the like.
  • the electrical connection described in the embodiments of the present invention such as the battery unit and the heating element; the battery unit, etc., where the electrical connection is required, can be electrically connected by connecting the two poles of the battery unit through the electric wire, or directly through the two poles of the heating element and the battery unit. Electrical connection is achieved by means of contact, etc.; as long as the power is smoothly transmitted to the corresponding component when the connection is completed, the requirement is met.
  • An insulation bracket may be disposed inside the battery assembly, and the contact portion of the heat insulation bracket and the inner wall of the battery assembly case is made of a heat insulating material.
  • the battery may be disposed on the heat insulating bracket; the heat insulating bracket may be integrally formed with the box body, or may be separately disposed inside the box body, and connected or fixed on the box body through a connecting member or the like.
  • the insulated support is preferably made of a heat insulating material.
  • the battery pack includes a case 1, a battery 4, and a heat generating plate 5.
  • the heating plate 5 is in direct contact with the outer surface of the battery 4, and is fixed to the battery 4 by gluing.
  • the heating plate 5 is electrically connected to the two electrodes 3 of the battery 4 through the wire 2, wherein a temperature control switch is further disposed on the connecting circuit ( Not shown in the figure). Set two temperature thresholds, temperature threshold 1 and temperature threshold 2.
  • Battery 4 does not start when the battery pack is placed in a very low temperature environment
  • the temperature control switch detects that the temperature of the battery 4 reaches the temperature threshold 1
  • the temperature control switch is turned on, the power of the battery 4 is transmitted to the heating plate 5 through the wire 3, and the heating plate 5 generates heat; the heating plate 5 transfers heat.
  • the temperature of the battery 4 gradually rises.
  • the temperature control switch is turned off, the battery 4 stops transmitting power to the heating plate 5, and as the heat is dissipated, the temperature of the battery 4 continues to decrease.
  • the temperature threshold 1 is lowered, the temperature control switch is turned on, and the amount of the battery 4 is transferred to the heat generating plate 5 through the wire 3, and the heat generating plate 5 is heated, and the temperature of the battery 4 gradually rises, and so on.
  • the battery pack includes a case 1, a battery 4, a housing case 6 in which a phase change body 7 is built, and a phase change body 7.
  • Two temperature thresholds are provided: a phase change temperature threshold 1 and a phase change temperature threshold 2, the phase change temperature threshold 1 being lower than the phase change temperature threshold 2; wherein the containment box 6 is fixed to the battery 4 by means of thermally conductive bolts.
  • the battery 4 When the battery 4 is activated, the battery 4 generates heat, and the heat is transferred to the phase change body 7 in the containing box 6 through the receiving box 6.
  • the phase change body 7 absorbs the battery. 4 generated heat.
  • phase change body 7 When the battery assembly is placed in a low temperature environment and the battery 4 is in a stopped state, a certain amount of heat is stored in the phase change body 7. When the temperature reaches the phase change temperature threshold 1, the phase change body 7 undergoes a phase change and is released. The heat is transferred, and the heat is transferred to the battery 4, so that the temperature of the battery 4 is kept within a certain range, and the low temperature cannot be started. However, it should be noted that the phase change body 7 does not release heat indefinitely at a low temperature. If the heat absorbed by the phase change body 7 is released, heat is not released again, so the battery pack is at a low temperature depending on the phase change body. There are certain restrictions on the placement time.
  • FIG. 4 it is a schematic view of a battery pack according to Embodiment 3 of the present invention.
  • the battery pack includes a case 1, a battery 4, a heat generating plate 5, a receiving case 6, a phase change body 7, and a circuit board 9.
  • the inside of the box body 1 is kept in a vacuum state, and a layer of heat insulating material 8 is attached to the inner wall of the box body 1.
  • the heat generating board 5 is in direct contact with the outer surface of the battery 4, and is fixed to the battery 4 by gluing, and the receiving box 6 is fixed by glue to On the battery 4.
  • the positive and negative poles of the circuit board September battery 4 are electrically connected through the wire 2, and the temperature control switch and the battery power control switch (not shown) are disposed on the circuit board 9, and the heating plate 5 passes through the positive and negative of the wire and the circuit board 9. Extremely electrical connection.
  • the temperature control switch detects that the temperature of the battery 4 reaches the temperature threshold 1, the temperature control switch is turned on, the power of the battery 4 is transmitted to the heating plate 5 through the circuit board and the wire, and the heating plate 5 generates heat; the heating plate 5 transmits heat to the heat generating plate 5 The battery 4; and because the phase change body 7 stores a certain amount of heat, when the temperature is lower than the phase change temperature, the phase change body 7 generates a phase change, and can also release heat, which is transferred to the battery 4, so that the battery 4 The temperature is kept within a certain range to prevent the low temperature from starting. The temperature of the battery 4 gradually rises.
  • the temperature control switch When the temperature of the battery 4 reaches the temperature threshold 2, the temperature control switch is turned off, the battery 4 stops transmitting power to the heat generating unit 5, and as the heat is dissipated, the temperature of the battery 4 continues to decrease, and when the temperature is lowered to the temperature threshold 1st, the temperature control switch is turned on, the battery 4 is transferred to the heating plate 5 through the wire 3, the heating plate 5 is heated, the temperature of the battery 4 gradually rises, and so on, until the remaining battery power reaches a preset threshold, the battery The power control switch is turned off and the heating plate 5 does not function.
  • the battery power control switch When the battery pack is placed in an extremely low temperature environment, when the battery 4 is stopped, when the remaining battery power is lower than a preset threshold (such as 70% of the normal battery power), the battery power control switch is turned off, and the heating plate is turned off. 5, no effect occurs; at this time, if a certain amount of heat is stored in the phase change body 7, when the temperature reaches the phase change temperature threshold 1, the phase change body 7 undergoes a phase change, and heat is released, and the heat is transferred to the battery 4. Therefore, the temperature of the battery 4 can also be kept within a certain range, and the low temperature cannot be started.
  • a preset threshold such as 70% of the normal battery power
  • the battery 4 When the battery 4 is activated, the battery 4 generates heat, and heat is transferred to the phase change body 7 in the containing case 6 through the receiving box 6, and the phase change body 7 absorbs and stores the heat generated by the battery 4.
  • the phase change body 7 When the battery assembly is placed in an extremely low temperature environment and the temperature reaches the phase transition temperature threshold of 1, the phase change body 7 generates a phase change heat release, but if the standing time is too long, the heat release of the phase change body 7 cannot continue to provide the battery 4 Heat; but at this time, if the remaining battery power is still higher than a preset threshold (such as 70% of the normal battery power), the battery power control switch remains on, and the temperature control switch detects that the temperature of the battery 4 reaches the temperature threshold 1 When the temperature control switch is kept on, the power of the battery 4 is transmitted to the heating plate 5 through the wire 3, The hot plate 5 generates heat, and the heat generating unit 5 transfers heat to the battery 4, so that the temperature of the battery 4 is maintained within a certain range, and the low temperature
  • the temperature of the battery 4 gradually rises.
  • the temperature control switch is turned off, the battery 4 stops transmitting power to the heat generating unit 5, and as the heat of the battery 4 is dissipated, the temperature of the battery 4 continues to decrease, when it is lowered to
  • the temperature threshold is 1
  • the temperature control switch is turned on, and the amount of electricity of the battery 4 is transmitted to the heat generating plate 5 through the wire 3, and the heat generating plate 5 is heated, and the temperature of the battery 4 gradually rises, and so on.
  • both the phase change unit and the heating element are provided at the same time, so that the occurrence of an unexpected situation under extreme conditions can be avoided, and when one of the heating units cannot supply heat, the temperature of the battery is still kept constant. range.
  • the battery according to the embodiment of the invention may be a battery such as a lithium battery or a lead acid battery.
  • the heat conductive material includes a material having good thermal conductivity such as a metal material or a silicone material.
  • Metal materials include copper, aluminum, and the like.
  • connections described in the embodiments of the present invention include fixed connections, and also include non-stationary connections.
  • the phase change unit according to the embodiment of the invention, the heating element, the inside of the box is set to a vacuum state, and the box body is provided with the protection and heat insulating material, which can be used alone or in combination according to the actual ambient temperature condition, and combined at a very low temperature. Use insulation to make it better.
  • the specific temperature threshold and the specific battery power threshold are not limited by the scope of the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池组件,包括至少一个电池单元以及至少一个供热单元,供热单元能够产生和/或存储热量并将热量释放传递给电池单元,供热单元与电池单元热接触。在低温状态下,供热单元能够将电池(4)的电能转化成热量传递给电池(4)供其保温,或者将供热单元内部存储的来自电池(4)的热量传递给电池(4)供其保温,使得电池(4)在低温下也能正常工作。还提供了该电池组件的温控方法以及一种使用该电池组件的汽车。

Description

一种电池组件,电池组件的温控方法及其汽车 【技术领域】
本发明涉及蓄电装置,尤其涉及一种电池组件,电池组件的温控方法及其汽车。
【背景技术】
电池组件的主要功能是用于向各种电气设备等提供电能。协助发电机及储存电能的功用。
但是当前的电池组件普遍不能自动保持和调节温度。在气候变化,温度过低的情况下,电池组件的容量和使用性能都不能达到理想的效果,特别是在环境温度降低到零度以下时,极大的影响了电池组件的正常启动和工作。
【发明内容】
发明的目的是克服上述的现有技术的不足,提供可以在自动调节和保持温度的电池组件、电池组件的温控方法及其汽车。
为解决上述问题,根据本发明的一个实施例,提供了一种电池组件,包括一个或多个电池单元;还包括:至少一个能够产生和/或存储热量以及将热量释放传递给一个或多个电池单元的供热单元;所述供热单元与电池单元热接触。
优选地,所述供热单元包括至少一个与一个或多个电池单元热接触的发热元件,所述发热元件与所述一个或多个电池单元的两极电连接,用于在电池的非工作状态时将电池单元的电能转化成热能。当发热元件与电池单元的电极连接的电路导通时,发热元件从电池获得电能转化成热量,并通过与电池单元的热接触将热量传递给电池单元供其保温。
优选地,所述一个或多个电池单元的每一个都相互热接触,并且所述一个或多个电池单元的其中一个或多个与一个或多个所述发热元件热接触。电池单 元之间相互热接触,这样设置使的不需要每个电池单元都与发热元件热接触,可以根据需要选择一部分电池单元,甚至只需电池单元中的一个与一个或多个发热元件接触,即可以将发热元件的热量传递给所有的电池单元,实现对电池单元的保温。
优选地,所述一个或多个电池单元的每一个相互之间都没有热接触,所述一个或多个电池单元的每一个都与一个或多个所述发热元件热接触。这样的设置适合于在常年极低温度下的环境,电池单元需要的热量比较多,保证每个电池单元都有单独的供热,保温的效果更好。
优选地,所述发热元件环绕或部分环绕接触电池单元的外壁。这样与电池的接触面积大,导热效果好。
优选地,所述供热单元还包括温度控制单元,用于控制发热元件与电池单元电极的连接电路的开导通与断开。所述温度控制单元可以根据外界温度变化或者电池温度变化,控制电路的导通与断开,实现发热元件的发热或不发热。
优选地,所述供热单元还包括电池电量控制单元,用于控制电池单元输出给发热元件的最大电量。正常使用情况下,电池不需全部电量即可满足使用要求,在保证电量的最低使用要求的情况下,就可以将这部分使用不到的电量作为供给发热元件的电能供应,使得发热元件将其转化成热能提供给电池保持温度。
优选地,所述电池组件还包括电路板,电路板与电池单元的正负极电连接,所述温度控制单元或电池电量控制单元设置在所述电路板上,电路板的正负极与发热元件电连接。
优选地,所述供热单元包括至少一个与所述一个或多个电池单元热接触的相变单元,所述相变单元包括相变材料。所述相变单元用于将电池正常运转时产生的热量存储起来,在温度较低时,将存储的热量释放出来传递给电池单元,以维持电池单元正常启动。
优选地,所述电池组件还包括用于封闭一个或多个电池单元的箱体,所述相变单元包括材质为相变材料的相变体,所述相变体填充于箱体内部箱体一个 或多个电池单元之间的空隙中,与一个或多个电池单元直接接触。这样设置使的电池单元与相变体接触面积大,接触充分,热量的吸收和释放效率更高。
优选地,所述相变单元还包括材质为相变材料的相变体和用于容纳相变体的容纳组件,所述容纳组件外表面与一个或多个电池单元的外表面直接热接触。这样设置避免相变体在形态转变为液体时在箱体内四处流动,影响电池的正常使用。
优选地,所述容纳组件的材质为塑料、金属或皮质材料。
优选地,所述容纳组件为环绕于电池单元的外侧设置的环状体。接触面积越大,热量传递效果越好
优选地,所述电池组件还包括用于封闭一个或多个电池单元的箱体,所述箱体内部设置为真空状态。由于采用了真空技术,箱体内真空有利于箱体内温度的保持,能够使得箱体内部与外界停止或减少热量对流交换。外界温度过高或者过低时,电池停止与外界通过空气进行热量对流交换,使得电池性能不受外界温度影响。
优选地,所述电池组件还包括用于封闭一个或多个电池单元的箱体,所述箱体设置有保温材料。由于采用了保温材料,有利于箱体内温度的保持,能够使得箱体内部与外界停止或减少热量辐射交换。外界温度过高或者过低时,电池停止或减少与外界通过空气进行热量辐射交换,使得电池性能不受外界温度影响。根据本发明另一实施例,提供了一种汽车,使用上述的电池组件。
根据本发明另一实施例,提供了一种电池组件的温控方法,包括以下步骤:
(1)设定温度阈值;
(2)检测电池温度A并与预设的温度阈值比较;
(3)根据第(2)步的比较结果,使供热单元在发热和非发热两种状态之间进行切换,当供热单元处于发热状态时,供热单元将热量传递给电池单元;当供热单元处于非发热状态时,供热单元无法将热量传递给电池单元。
(4)重复步骤(2)(3)。
优选地,所述步骤(1)所述的温度阈值包括温度阈值1和温度阈值2,所述 温度阈值1低于温度阈值2,在温度阈值1以上都是电池单元的可工作温度范围;所述步骤(3)进一步包括:当电池单元温度A达到温度阈值1时,供热单元发热,供热单元将热量传递给电池单元;当电池单元温度A达到温度阈值2时,供热单元停止发热。
优选地,所述步骤(1)还包括设定电池电量阈值B;所述步骤(2)还包括检测电池单元的电量并与预设的温度阈值比较;所述步骤(3)还包括,当电池电量低于设定的电池电量阈值B时,供热单元停止发热。
优选地,所述步骤(1)所述的温度阈值包括温度阈值1和温度阈值2,所述温度阈值1低于温度阈值2;所述步骤(3)进一步包括:当电池单元温度A达到温度阈值2时,供热单元从与其接触的电池单元吸热,并存储吸收的热量;当电池温度A达到温度阈值1时,供热单元将存储的热量散发出来传递给电池单元。
如权利要求17所述的方法,其特征在于所述步骤(1)所述的温度阈值包括温度阈值1和温度阈值2,所述温度阈值1低于温度阈值2;所述步骤(3)进一步包括:当电池单元温度A达到温度阈值2时,供热单元从与其接触的电池单元吸热,并存储吸收的热量;当电池温度A达到温度阈值1时,供热单元将存储的热量传递给电池单元。
与现有技术相比,本发明具有如下有益效果:由于本发明的电池组件采用了供热单元,所述供热单元能够产生和/或存储热量以及将热量释放传递给一个或多个电池单元。在低温状态下时,所述供热单元能够将其电池的电能转化成热量传递给电池供其保温,或者将其内部存储的来自电池的热量传递给电池供其保温,使得电池性能不受外界低温影响,在极低温度下,也能正常启动。
【附图说明】
图1为根据本发明实施例的电池组件的框图;
图2为根据本发明实施例1的电池组件的示意图;
图3为根据本发明实施例2的电池组件的示意图;
图4为根据本发明实施例3的电池组件的示意图;
图5为根据本发明实施例的电池组件的温控方法流程图;
其中:1:箱体,2:导线,3:电极,4:电池,5:发热板,6:容纳箱,7:相变体,8:保温材料,9:电路板。
【具体实施方式】
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
图1所示为根据本发明实施例的电池组件的框图。
根据本发明的一种实施例,提供了一种电池组件,包括一个或多个电池单元,至少一个能够产生和/或存储热量以及将热量释放传递给一个或多个电池单元的供热单元;所述供热单元与电池单元热接触。电池单元可以是各种规格的电池,如锂电池,等。
本发明实施例所述的供热单元包括至少一个与一个或多个电池单元热接触的发热元件,所述发热元件与电池单元的正负极电连接,用于在电池的非工作状态时将将电池单元的电能转化成热能。当发热元件与电池单元的电极连接的电路导通时,发热元件从电池获得电能转化成热量,并通过与电池单元的热接触将热量传递给电池单元供其保温。
本发明的实施例所述的一个或多个电池单元的每一个都相互热接触,并且所述一个或多个电池单元的其中一个或多个与一个或多个所述发热元件热接触。电池单元之间相互热接触,这样设置使的不需要每个电池单元都与发热元件热接触,可以根据需要选择一部分电池单元,甚至只需电池单元中的一个与一个或多个发热元件接触,即可以将发热元件的热量传递给所有的电池单元,实现对电池单元的保温。而发热元件也不一定需要设置很多,可以根据实际需要设置发热元件的个数,比如在常年温度很低的环境下,电池单元对热量需求比较大时,可以设置多个发热元件共同产生热量。在低温情况比较少的环境下,对热量需求比较少,可以设置少量甚至一个发热元件,只要该发热元件与电池 单元的其中一个热接触,就可以将产生的热量传递给所有的电池单元。
本发明的实施例所述的一个或多个电池单元的每一个相互之间都没有热接触,所述一个或多个电池单元的每一个都与一个或多个所述发热元件热接触。电池单元之间没有相互热接触,这样设置使的每个电池单元都需要与一个或多个发热元件热接触,可以根据实际需要设置发热元件的个数。这样的设置适合于在常年极低温度下的环境,电池单元需要的热量比较多,保证每个电池单元都有单独的供热,保温的效果更好。
本发明的实施例所述的电池单元的每个都电连接一个或多个发热元件,这样设置适用于极低温度环境下,可以使得在极低温度环境下,每个电池都可以将多余的电量贡献出来,提供给发热元件,这些发热元件可以共同将热量传递给该电池,避免在极低温度下无法启动,发热元件的数量可以根据情况而定;或者电池单元中的其中一个或多个电连接一个或多个发热元件,其中所述发热元件的每个都与全部的电池单元热接触;这样的设置不需要使用全部的电池单元,只需使用其中的一部分电池单元的电能提供给发热元件转化成热量即可以给全部电池提供热量。
发热元件与电池单元的两个电极直接或间接电连接,比如可以通过导线连接电池单元的正负极,或者直接将发热元件设置成带有两个凸出的电极端,分别与电池单元的正负极电连接,等。
所述发热元件可以设置成片状,条状,线状刚性或柔性发热件,如发热片,发热板等。发热元件可以是圆形,方形,矩形,椭圆形,环形等任意形状。发热元件可以是一个整体,也可以设置成多个相互电连接的片状,条状,线状的发热元件;发热元件优选可以是PTC(Positive Temperature Coefficient)材料制成的,或者其他导电发热材料制成的片状,条状,线状的导热元件。
本发明的实施例所述的发热元件优选由PTC材料制成。所述发热元件环绕或部分环绕接触电池单元的外壁,比如可以用PTC材料制成的元件直接包裹整个电池外壁或者部分包裹电池外壁,这样与电池的接触面积大,导热效果好。当热,也可以直接用发热元件一部分直接接触电池外壁,比如直接用PTC材料 制成的元件与电池外壁进行接触,也可以进行传热。发热元件也可以通过导热的连接件与电池单元连接,比如通过将发热元件设置在固定在电池单元上的导热固定支架上,将热量通过固定支架传递给电池单元,当然也可以采用其他连接方式,只要能保证发热单元产生的热量能够传递到电池单元上即可。
本发明实施例所述的供热单元还包括温度控制单元,用于控制发热元件与电池单元电极的连接电路的导通与断开。所述温度控制单元可以根据外界温度变化或者电池温度变化,控制电路的导通与断开,实现发热元件的发热或不发热。可以根据需要设定一个或多个温度阈值,比如,设定两个温度阈值,温度阈值1和温度阈值2;当温度降低到温度阈值1时,温度控制单元导通,发热元件开始发热,热量传递给电池单元,使其温度不会过于低而导致无法正常启动;当温度提高到温度阈值2时,温度控制单元断开,发热元件停止发热,因为热量散发,温度持续降低,当温度降低到温度阈值1时,温度控制单元又导通,发热元件又开始发热;如此往复。其中,温度阈值1低于温度阈值2。在温度阈值1以上,都是电池的可工作温度范围。所述一个或多个温度阈值不是一个固定值,可以随时按照使用要求进行设定所需的阈值,比如将温度阈值1设定为零下20度,温度阈值2设定为零下10度,等等。
所述温度控制单元可以使用温度控制开关实现。
本发明实施例所述的供热单元还包括电池电量控制单元,用于控制电池单元输出给发热元件的最大电量。正常使用情况下,电池不需全部电量即可满足使用要求,在保证电量的最低使用要求的情况下,就可以将这部分使用不到的电量作为供给发热元件的电能供应,使得发热元件将其转化成热能提供给电池保持温度。例如,可以将电池电量控制单元的电量阈值控制在30%,也就是说可以将电池单元的30%电量用来作为发热元件的电能供应,在低温环境下,当温度控制单元检测到环境温度或者电池单元温度过低时,就控制发热元件与电池单元电极的连接电路闭合,电池单元的电量就会消耗用作发热元件的发热,电池单元电量的消耗最高不会超过30%。所述电池电量控制单元可以使用电池电量控制开关实现。当电池单元电量高于设定的阈值时,电路可以正常导通; 当电池单元的电量低于设定的阈值时,电路就无法正常导通。当然这个电池电量的阈值也不是一个固定值,是根据实际需要可以随时调整的。
本发明实施例所述电池组件还包括电路板,温度控制单元和电池电量控制单元都可以设置在电路板上,通过将电池的正负极与电路板连接,电路板上设置温度控制单元和电池电量控制单元,电路板再引出正负极与发热元件电连接。电路板可以固定到箱体内壁上或者固定到电池单元外表面上,或者通过固定支架固定到箱体内部,电路板可以通过胶粘,固定件等方式固定。
本发明实施例所述的供热单元包括至少一个与所述一个或多个电池单元热接触的相变单元,所述相变单元包括相变材料。所述相变单元用于将电池正常运转时产生的热量存储起来,在温度较低时,将存储的热量释放出来传递给电池单元,以维持电池单元正常启动。
本发明实施例所述电池组件还包括用于封闭一个或多个电池单元的箱体,所述相变单元包括材质为相变材料的相变体,所述相变体填充于箱体内部与一个或多个电池单元之间的空隙中,与一个或多个电池单元直接接触。这样设置使的电池单元与相变体接触面积大,接触充分,热量的吸收和释放效率更高。所述箱体包括上盖与下盖,所述上盖与下盖封闭形成所述箱体。当电池使用状态下或者高温,环境温度温度达到相变温度范围的最大值以上时,相变体从环境或者和其接触的一个或多个电池单元吸收热量,并存储起来;当电池未启动时,在低温状态,温度低于相变温度范围的最小值时,相变体将存储其体内的热量释放出来并传递给与其热接触的电池单元,保持电池单元的温度,避免其低温下无法启动。
本发明实施例所述的相变单元还包括材质为相变材料的相变体和用于容纳相变体的容纳组件,所述容纳组件外表面与一个或多个电池单元的外表面直接热接触。所述相变体填充于容纳组件内部,所述容纳组件优选由金属制成。所述容纳组件与一个或多个电池单元接触,所述相变体可以填充容纳组件的一部分或者全部。这样设置避免相变体在形态转变为液体时在箱体内四处流动,影响电池的正常使用。所述电池单元的每个可以与一个或多个容纳组件热接触,与 电池单元热接触的容纳组件数量越多,电池单元的温度保持的越好,也可以所有的电池单元相互热接触,电池单元的其中一个或多个再与一个或多个容纳组件热接触,这样一个电池单元的热量可以传递到所有的电池单元。
所述容纳组件的材质可以选择为塑料、金属或皮质等材料,只要不影响热量从电池单元通过容纳组件传递给相变体即可。
所述容纳组件的形状可以是任意形状,如圆柱形,正方体,长方体等,只要使得容纳组件与电池单元有接触,可以传递热量即可,当然接触面积越大,热量传递效果越好。容纳组件优选设置成环绕于电池单元的外侧的环状体,该环状体将电池单元包围在其中,并环绕电池单元周围紧密接触。
所述容纳组件可以是事先将相变体容纳后一体成型设置的容纳箱;也可以是分体设置的容纳箱加容纳盖,将相变体放入容纳箱后,再通过固定件将容纳盖密封到容纳箱上密封相变体。
本发明的另一实施例,提供了一种汽车,使用上述的电池组件。
本发明的另一实施例,提供了一种电池组件的温控方法,包括以下步骤:
(1)设定温度阈值;
(2)检测电池温度A并与预设的温度阈值比较;
(3)根据第(2)步的比较结果,使供热单元在发热和非发热两种状态之间进行切换,当供热单元处于发热状态时,供热单元将热量传递给电池单元;当供热单元处于非发热状态时,供热单元无法将热量传递给电池单元。
(4)重复步骤(2)(3)。
优选地,所述步骤(1)所述的温度阈值包括温度阈值1和温度阈值2,所述温度阈值1低于温度阈值2,在温度阈值1以上都是电池单元的可工作温度范围;所述步骤(3)进一步包括:当电池单元温度A达到温度阈值1时,供热单元发热,供热单元将热量传递给电池单元;当电池单元温度A达到温度阈值2时,供热单元停止发热。温度阈值可以根据实际需要设定不同的值,可以是设定一个温度阈值,也可以设定多个温度阈值。
优选地,所述步骤(1)还包括设定电池电量阈值B;所述步骤(2)还包括检测 电池单元的电量并与预设的温度阈值比较;所述步骤(3)还包括,当电池电量低于设定的电池电量阈值B时,供热单元停止发热。
优选地,所述步骤(1)所述的温度阈值包括温度阈值1和温度阈值2,所述温度阈值1低于温度阈值2;所述步骤(3)进一步包括:当电池单元温度A达到温度阈值2时,供热单元从与其接触的电池单元吸热,并存储吸收的热量;当电池温度A达到温度阈值1时,供热单元将存储的热量散发出来传递给电池单元。温度阈值可以根据实际需要设定不同的相变温度阈值,可以是设定一个相变温度阈值,也可以设定多个相变温度阈值。
本发明实施例所述相变材料包括有机相变材料和无机相变材料,相变材料(Phase Change Material)是指随温度变化而改变物质状态并能提供潜热的物质。相变材料具有一个相变温度范围,在温度高于相变温度范围的最大温度值时,相变材料转化成一种型态,并从环境或接触物体吸收热量并自身储存起来;当温度低于相变温度范围的最小温度值时,相变材料转化成另一种物理型态,并释放出热量的过程称为相变过程,这个过程中相变材料可以吸收或释放大量的潜热。可以根据需要的相变温度选择相应的相变材料。可以通过选择不同的相变材料或者复合相变材料,调整相变材料吸热和放热的温度,达到预想的温度。
本发明实施例所述电池组件还包括用于封闭一个或多个电池单元的箱体,所述的箱体内部优选设置为真空状态。由于采用了真空技术,箱体内真空有利于箱体内温度的保持,能够使得箱体内部与外界停止或减少热量对流交换。外界温度过高或者过低时,电池停止与外界通过空气进行热量对流交换,使得电池性能不受外界温度影响。
本发明实施例所述电池组件还包括用于封闭一个或多个电池单元的箱体,所述的箱体优选在内壁或者外壁设置有保温材料,保温材料可以与箱体一体成型设置,也可以单独贴附在箱体内表面。由于采用了保温材料,有利于箱体内温度的保持,能够使得箱体内部与外界停止或减少热量传递和热量辐射交换。外界温度过高或者过低时,电池停止或减少与外界通过空气进行热量辐射交换,使得电池性能不受外界温度影响。
本发明实施例所述的电池组件可以应用到汽车中,作为汽车启动用电池组件,但是并不局限于仅仅用于汽车启动,也可以应用于其他的场合,比如可以应用到电动车、轮船、坦克或者飞机等多种场合。
本发明实施例所述的热接触,如电池单元与发热单元;电池组件之间,容纳组件与电池单元,等需要热接触的地方可以通过粘接,压合等方式直接接触实现热接触;也可以通过导热接触件等方式接触实现热接触,比如通过金属螺栓螺钉,金属连接件等方式将其互相固定;只要保证接触时热量能顺利传导到相应的部件即满足要求。
本发明实施例所述的热接触的接触方式任意,可以是点接触,线接触,面接触;热接触的形状任意,可以是正方形,长方形,圆形,环形等。
本发明实施例所述的电连接,如电池单元与发热元件;电池单元之间,等需要电连接的地方可以通过电导线连接电池单元两极实现电连接,也可以通过发热元件与电池单元两极直接接触等方式实现电连接;只要保证连接时电量能顺利传导到相应的部件即满足要求。
所述电池组件内部还可以设置一个隔热支架,隔热支架与电池组件箱体的内壁接触部分是隔热材料制成的。所述电池可以设置在隔热支架上;所述隔热支架可以与箱体一体成型设置,也可以单独设置在箱体的内部,通过连接件等方式连接或固定在箱体上。隔热支架优选由隔热材料制成。而且隔热支架与箱体内壁的接触面积越小越好,因为与箱体内壁的接触面积越小,与箱体内壁的热量交换也就越少,越有利于内部温度的恒定。
以下通过具体的实施例说明本发明技术方案的实现过程。
实施例1:
如图2所示,为根据本发明实施例1的电池组件的示意图。如图所示,电池组件包括箱体1,电池4,发热板5。其中发热板5与电池4外表面直接接触,通过胶粘固定到电池4上,发热板5通过导线2与电池4的两个电极3电连接,其中在连接电路上还设置有温度控制开关(图中未示出)。设定两个温度阈值,温度阈值1和温度阈值2。当电池组件放置到极低温度环境下时,电池4未启动 状态下,当温度控制开关检测到电池4的温度达到温度阈值1时,温度控制开关导通,电池4的电量就通过导线3传递给发热板5,发热板5发热;发热板5将热量传递给电池4,电池4温度逐渐上升,当电池4的温度达到温度阈值2时,温度控制开关断开,电池4停止向发热板5传递电量,随着热量散发,电池4的温度继续降低,当降低到温度阈值1时,温度控制开关导通,电池4的电量就通过导线3传递给发热板5,发热板5发热,电池4温度逐渐上升,如此反复。
实施例2:
如图3所示,为根据本发明实施例2的电池组件的示意图。如图所示,电池组件包括箱体1,电池4,内置有相变体7的容纳箱6,相变体7。设置有两个温度阈值:相变温度阈值1和相变温度阈值2,相变温度阈值1低于相变温度阈值2;其中容纳箱6通过导热的螺栓固定到电池4上。当电池4启动状态下,电池4产生热量,热量通过容纳箱6传递给容纳箱6内的相变体7,当相变体7的温度达到相变温度阈值2时,相变体7吸收电池4产生的热量。当电池组件被放置与低温环境下,电池4处于停止运转的状态时,相变体7内存储有一定的热量,当温度达到相变温度阈值1时,相变体7产生相变,并释放出热量,热量传递给电池4,使得电池4的温度保持在一定范围,避免低温无法启动。但是需要注意的是,相变体7在低温下并不是无限地释放热量,如果相变体7吸收的热量释放完毕,就不会再释放热量,所以根据相变体不同,电池组件在低温下放置时间有一定的限制。
实施例3:
如图4所示,为根据本发明实施例3的电池组件的示意图。如图所示,电池组件包括箱体1,电池4,发热板5,容纳箱6,相变体7,电路板9。其中箱体1内保持真空状态,且箱体1内壁贴附有一层保温材料8,发热板5与电池4外表面直接接触,通过胶粘固定到电池4上,容纳箱6通过胶粘固定到电池4上。电路板9月电池4的正负极通过导线2电连接,温度控制开关和电池电量控制开关(图中未示出)设置在电路板9上,发热板5通过导线与电路板9的正负极电连接。
设定两个温度阈值,温度阈值1和温度阈值2。当电池4启动状态下,电池4产生热量,热量通过容纳箱6传递给容纳箱6内的相变体7,相变体7吸收并存储电池4产生的热量。当电池组件放置到极低温度环境,电池4停止运转的状态下,当电池剩余电量高于预先设定的阈值时(比如剩余电量大于电池正常电量的70%),电池电量控制开关导通,且温度控制开关检测到电池4的温度达到温度阈值1时,温度控制开关导通,电池4的电量就通过电路板和导线传递给发热板5,发热板5发热;发热板5将热量传递给电池4;并且由于相变体7内存储有一定的热量,当温度低于相变温度时,相变体7产生相变,并也能释放出热量,热量传递给电池4,使得电池4的温度保持在一定范围,避免低温无法启动。电池4温度逐渐上升,当电池4的温度达到温度阈值2时,温度控制开关断开,电池4停止向发热单元5传递电量,随着热量散发,电池4的温度继续降低,当降低到温度阈值1时,温度控制开关导通,电池4的电量就通过导线3传递给发热板5,发热板5发热,电池4温度逐渐上升,如此反复,直到电池剩余电量达到预先设定的阈值时,电池电量控制开关断开,发热板5不发生作用。
当电池组件放置到极低温度环境下时,电池4停止运转状态下,当电池剩余电量低于预先设定的阈值时(比如电池正常电量的70%),电池电量控制开关断开,发热板5就不会发生作用;此时,如果相变体7内存储有一定的热量,当温度达到相变温度阈值1时,相变体7产生相变,并释放出热量,热量传递给电池4,使得电池4的温度也能保持在一定范围,避免低温无法启动。
当电池4启动状态下,电池4产生热量,热量通过容纳箱6传递给容纳箱6内的相变体7,相变体7吸收并存储电池4产生的热量。当电池组件放置到极低温度环境下,温度达到相变温度阈值1时,相变体7产生相变释放热量,但是如果放置时间过长,相变体7热量释放完毕不能继续为电池4提供热量;但是此时如果电池剩余电量仍高于预先设定的阈值时(比如电池正常电量的70%),电池电量控制开关保持导通,且温度控制开关检测到电池4的温度达到温度阈值1时,温度控制开关保持导通,电池4的电量通过导线3传递给发热板5,发 热板5发热,发热单元5将热量传递给电池4,使得电池4的温度保持在一定范围,避免低温无法启动。电池4温度逐渐上升,当电池4的温度达到温度阈值2时,温度控制开关断开,电池4停止向发热单元5传递电量,随着电池4热量散发,电池4的温度继续降低,当降低到温度阈值1时,温度控制开关导通,电池4的电量就通过导线3传递给发热板5,发热板5发热,电池4温度逐渐上升,如此反复。
实施例3中同时设置相变单元和发热元件两种供热单元,就可以避免极端情况下出现的意外情况的发生,其中一种供热单元无法供热时,仍然保证电池的温度保持在一定范围。
本发明实施例所述的电池可以是锂电池或者铅酸电池等电池。导热材料包括金属材料,硅胶材料等导热性能好的材料。金属材料包括,铜,铝等。
本发明实施例所述的连接包括固定连接,也包括非固定式连接。
对于使用的基本上任何的复数和/或单数术语,那些本领域的技术人员可以从复数翻译成单数和/或从单数翻译成复数,使其适合于上下文和/或应用。为清楚起见,本文可以明确规定各种单数/复数置换。
本发明实施例所述的相变单元,发热元件,箱体内部设置成真空状态,以及箱体设置保护保温材料可以单独使用,也可以根据实际环境温度情况相互结合使用,在极低温度下结合使用保温效果更好。
本发明实施例所述的具体温度阈值和具体的电池电量阈值仅作为举例说明,不作为对本发明实施例的范围限定。
以上内容是结合优选技术方案对本发明所做的进一步详细说明,不能认定发明的具体实施仅限于这些说明。对本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出简单的推演及替换,都应该视为本发明的保护范围。

Claims (20)

  1. 一种电池组件,包括一个或多个电池单元;
    其特征在于,还包括:
    至少一个能够产生和/或存储热量以及将热量释放传递给一个或多个电池单元的供热单元;
    所述供热单元与电池单元热接触。
  2. 如权利要求1所述的电池组件,其特征在于,所述供热单元包括至少一个与一个或多个电池单元热接触的发热元件,所述发热元件与所述一个或多个电池单元的正负极电连接,用于在电池的非工作状态时将电池单元的电能转化成热能。
  3. 如权利要求2所述的电池组件,其特征在于,所述一个或多个电池单元的每一个都相互热接触,并且所述一个或多个电池单元的其中一个或多个与一个或多个所述发热元件热接触。
  4. 如权利要求2所述的电池组件,其特征在于,所述一个或多个电池单元的每一个相互之间都没有热接触,所述一个或多个电池单元的每一个都与一个或多个所述发热元件热接触。
  5. 如权利要求2所述的电池组件,其特征在于,所述发热元件环绕或部分环绕接触电池单元的外壁。
  6. 如权利要求2所述的电池组件,其特征在于,所述供热单元还包括温度控制单元,用于控制发热元件与电池单元电极的连接电路的开导通与断开。
  7. 如权利要求2所述的电池组件,其特征在于,所述供热单元还包括电池电量控制单元,用于控制电池单元输出给发热元件的最大电量。
  8. 如权利要求6所述的电池组件,其特征在于,还包括电路板,电路板与电池单元的正负极电连接,所述温度控制单元设置在所述电路板上,电路板的正负极与发热元件电连接。
  9. 如权利要求1所述的电池组件,其特征在于,所述供热单元包括至少一 个与所述一个或多个电池单元热接触的相变单元,所述相变单元包括相变材料。
  10. 如权利要求9所述的电池组件,其特征在于,所述电池组件还包括用于封闭一个或多个电池单元的箱体,所述相变单元包括材质为相变材料的相变体,所述相变体填充于箱体内部箱体与一个或多个电池单元之间的空隙中,与一个或多个电池单元直接接触。
  11. 如权利要求9所述的电池组件,其特征在于,所述相变单元还包括材质为相变材料的相变体和用于容纳相变体的容纳组件,所述容纳组件外表面与一个或多个电池单元的外表面直接热接触。
  12. 如权利要求11所述的电池组件,其特征在于,所述容纳组件的材质为塑料、金属或皮质材料。
  13. 如权利要求11所述的电池组件,其特征在于,所述容纳组件为环绕于电池单元的外侧设置的环状体。
  14. 如权利要求1所述的电池组件,其特征在于,
    所述电池组件还包括用于封闭一个或多个电池单元的箱体,所述箱体内部设置为真空状态。
  15. 如权利要求1所述的电池组件,其特征在于,
    所述电池组件还包括用于封闭一个或多个电池单元的箱体,所述箱体设置有保温材料。
  16. 一种汽车,使用如前述权利要求之一所述的电池组件。
  17. 如权利要求1所述的电池组件的温控方法,包括以下步骤:
    (1)设定温度阈值;
    (2)检测电池单元的温度A并与预设的温度阈值比较;
    (3)根据第(2)步的比较结果,使供热单元在发热和非发热两种状态之间进行切换,当供热单元处于发热状态时,供热单元将热量传递给电池单元;当供热单元处于非发热状态时,供热单元无法将热量传递给电池单元。
    (4)重复步骤(2)(3)。
  18. 如权利要求17所述的方法,其特征在于所述步骤(1)所述的温度阈值 包括温度阈值1和温度阈值2,所述温度阈值1低于温度阈值2,高于温度阈值1的范围都是电池单元的可工作温度范围;所述步骤(3)进一步包括:当电池单元温度A达到温度阈值1时,供热单元发热,供热单元将热量传递给电池单元;当电池单元温度A达到温度阈值2时,供热单元停止发热。
  19. 如权利要求18所述的方法,其特征在于,所述步骤(1)还包括设定电池电量阈值B;所述步骤(2)还包括检测电池单元的电量并与预设的温度阈值比较;所述步骤(3)还包括,当电池电量低于设定的电池电量阈值B时,供热单元停止发热。
  20. 如权利要求18所述的方法,其特征在于所述步骤(1)所述的温度阈值包括温度阈值1和温度阈值2,所述温度阈值1低于温度阈值2;所述步骤(3)进一步包括:当电池单元温度A达到温度阈值2时,供热单元从与其接触的电池单元吸热,并存储吸收的热量;当电池温度A达到温度阈值1时,供热单元将存储的热量传递给电池单元。
PCT/CN2016/071771 2016-01-22 2016-01-22 一种电池组件,电池组件的温控方法及其汽车 WO2017124441A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/071771 WO2017124441A1 (zh) 2016-01-22 2016-01-22 一种电池组件,电池组件的温控方法及其汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/071771 WO2017124441A1 (zh) 2016-01-22 2016-01-22 一种电池组件,电池组件的温控方法及其汽车

Publications (1)

Publication Number Publication Date
WO2017124441A1 true WO2017124441A1 (zh) 2017-07-27

Family

ID=59361274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071771 WO2017124441A1 (zh) 2016-01-22 2016-01-22 一种电池组件,电池组件的温控方法及其汽车

Country Status (1)

Country Link
WO (1) WO2017124441A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950662A (zh) * 2019-04-02 2019-06-28 吉林大学 一种基于相变材料的纯电动汽车预热装置及其使用方法
CN112736319A (zh) * 2020-12-28 2021-04-30 滁州学院 一种电动自行车电池温度补偿装置
US11394227B2 (en) * 2020-05-01 2022-07-19 Lenovo (Singapore) Pte. Ltd. Power management during system startup at low temperatures
CN116231168A (zh) * 2023-05-10 2023-06-06 中国第一汽车股份有限公司 动力电池箱体及动力电池保温控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012003209A1 (en) * 2010-06-30 2012-01-05 Nissan North America, Inc. Vehicle battery temperature control system and method
CN103500807A (zh) * 2013-09-27 2014-01-08 同济大学 一种替代汽车用铅酸蓄电池的锂电池模块
CN103872404A (zh) * 2014-04-01 2014-06-18 哈尔滨工业大学 汽车电瓶温度保护器
CN103972598A (zh) * 2013-01-31 2014-08-06 广州汽车集团股份有限公司 车用动力电池系统、其加热管理方法及电动汽车
US8935023B2 (en) * 2009-01-26 2015-01-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery system and vehicle having secondary battery system
CN205543146U (zh) * 2016-01-22 2016-08-31 深圳市协展电子有限公司 启动用电池组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8935023B2 (en) * 2009-01-26 2015-01-13 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery system and vehicle having secondary battery system
WO2012003209A1 (en) * 2010-06-30 2012-01-05 Nissan North America, Inc. Vehicle battery temperature control system and method
CN103972598A (zh) * 2013-01-31 2014-08-06 广州汽车集团股份有限公司 车用动力电池系统、其加热管理方法及电动汽车
CN103500807A (zh) * 2013-09-27 2014-01-08 同济大学 一种替代汽车用铅酸蓄电池的锂电池模块
CN103872404A (zh) * 2014-04-01 2014-06-18 哈尔滨工业大学 汽车电瓶温度保护器
CN205543146U (zh) * 2016-01-22 2016-08-31 深圳市协展电子有限公司 启动用电池组件

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950662A (zh) * 2019-04-02 2019-06-28 吉林大学 一种基于相变材料的纯电动汽车预热装置及其使用方法
CN109950662B (zh) * 2019-04-02 2023-11-21 吉林大学 一种基于相变材料的纯电动汽车预热装置及其使用方法
US11394227B2 (en) * 2020-05-01 2022-07-19 Lenovo (Singapore) Pte. Ltd. Power management during system startup at low temperatures
CN112736319A (zh) * 2020-12-28 2021-04-30 滁州学院 一种电动自行车电池温度补偿装置
CN112736319B (zh) * 2020-12-28 2022-02-15 滁州学院 一种电动自行车电池温度补偿装置
CN116231168A (zh) * 2023-05-10 2023-06-06 中国第一汽车股份有限公司 动力电池箱体及动力电池保温控制方法
CN116231168B (zh) * 2023-05-10 2023-07-25 中国第一汽车股份有限公司 动力电池箱体及动力电池保温控制方法

Similar Documents

Publication Publication Date Title
WO2017124441A1 (zh) 一种电池组件,电池组件的温控方法及其汽车
CN206293500U (zh) 一种集散热加热一体的聚合物电芯动力电池模块
JP2012234749A (ja) 電池の温度調節システム
CN206947469U (zh) 一种电池热管理装置、电池包及汽车
CN105051968B (zh) 电池和机动车
US20150010789A1 (en) Battery Module, Power Supply Apparatus Comprising Battery Module, and Method for Managing Temperature of Battery Module
CN208674278U (zh) 一种具有加热防护功能的锂离子电池
CN210430029U (zh) 板式加热冷却导热装置及采用该装置的可控温锂电池组
CN111092182A (zh) 一种均温加热的动力电池系统及汽车
CN110350270A (zh) 板式加热冷却导热装置及采用该装置的可控温锂电池组
WO2020199265A1 (zh) 混合供电式电热水器及其控制方法
CN220122644U (zh) 一种耐低温型户外电源
CN211530141U (zh) 一种动力电池包保温装置
CN211032147U (zh) 电池换热系统及电动汽车
CN205543146U (zh) 启动用电池组件
CN206976538U (zh) 一种电池模组加热装置
CN213661478U (zh) 一种在轨航天器用无源持续供电装置
CN202405344U (zh) 一种电池温控箱和温控装置
CN210403865U (zh) 一种能够加热的电池模组
CN111765647B (zh) 蓄电式热水器及其控制方法
CN207282566U (zh) 蓄电池及应用其的电子设备、太阳能违法抓拍系统
CN101533925A (zh) 全密封电池组
JPS60177568A (ja) 燃料電池発電装置
CN210984780U (zh) 一种电动汽车用锂离子电池
WO2020199264A1 (zh) 电热水器及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885714

Country of ref document: EP

Kind code of ref document: A1