WO2017124327A1 - Systems and methods for performing multiple subscriber identity module (sim) functions over the same carrier frequency on a wireless communication device - Google Patents

Systems and methods for performing multiple subscriber identity module (sim) functions over the same carrier frequency on a wireless communication device Download PDF

Info

Publication number
WO2017124327A1
WO2017124327A1 PCT/CN2016/071460 CN2016071460W WO2017124327A1 WO 2017124327 A1 WO2017124327 A1 WO 2017124327A1 CN 2016071460 W CN2016071460 W CN 2016071460W WO 2017124327 A1 WO2017124327 A1 WO 2017124327A1
Authority
WO
WIPO (PCT)
Prior art keywords
sim
component carrier
processor
modem
modem stack
Prior art date
Application number
PCT/CN2016/071460
Other languages
French (fr)
Inventor
Xiaohui Liu
Xipeng Zhu
Huichun LIU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2016/071460 priority Critical patent/WO2017124327A1/en
Priority to CN201680079317.6A priority patent/CN108886828B/en
Publication of WO2017124327A1 publication Critical patent/WO2017124327A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service

Definitions

  • performing the carrier frequency alignment may include determining whether the modem stack associated with the second SIM is operating in an idle mode, selecting a high priority SIM among the first SIM and the second SIM in response to determining that the modem stack associated with the second SIM is not operating in the idle mode, identifying a default low priority SIM based on the selected high priority SIM, identifying a serving cell associated with the high priority SIM, and prompting a handover of a connection on the default low priority SIM to an intended target cell.
  • the intended target cell may be the identified serving cell associated with the high priority SIM.
  • Some embodiments may further include selecting a high priority SIM among the first SIM and the second SIM in response to determining that the modem stack associated with the second SIM is connected to a network on the first component carrier, identifying a default low priority SIM based on the selected high priority SIM, and disabling carrier aggregation on the modem stack associated with the default low priority SIM.
  • disabling carrier aggregation on the modem stack associated with the default low priority SIM may include sending uplink capability information to the network indicating a lack of carrier aggregation support.
  • FIG. 1A is a communication system block diagram of a network suitable for use with various embodiments.
  • FIG. 8 is a component diagram of another example wireless device suitable for use with various embodiments.
  • Radio link failures and subsequent link reestablishment procedures on the active communication cause throughput degradation and waste power consumption on the device, whether the radio link failures result from a tune-away to a second SIM or a remote SIM authentication procedure.
  • SIM is also be used herein as a shorthand reference to the communication service associated with and enabled by the information stored in a particular SIM as the SIM and the communication network, as well as the services and subscriptions supported by that network, correlate to one another.
  • SIM may also be used as a shorthand reference to the protocol stack and/or modem stack and communication processes used in establishing and conducting communication services with subscriptions and networks enabled by the information stored in a particular SIM
  • the RF resource 218 may be configured with receiver and transmitter circuitry to support multiple radio access technologies/wireless networks that operate according to different wireless communication protocols.
  • Such circuitry may allow the RF resource 218 to process signals associated with different communication standards, and may include or provide connections to different sets of amplifiers, digital to analog converters, analog to digital converters, filters, voltage controlled
  • the RR sublayers 308a, 308b may oversee the establishment of a link between the wireless communication device 200 and associated access networks.
  • the NAS 302 and RR sublayers 308a, 308b may perform the various functions to search for wireless networks and to establish, maintain and terminate calls.
  • the RR sublayers 308a, 308b may provide functions including broadcasting system information, paging, and establishing and releasing a radio resource control (RRC) signaling connection between a multi-SIM wireless communication device 200 and the associated access network.
  • RRC radio resource control
  • the software architecture 300 may include a network layer (e.g., IP layer) in which a logical connection terminates at a gateway (e.g., PGW 163) .
  • the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) .
  • the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layers 312a, 312b and the communication hardware (e.g., one or more RF resources) .
  • the wireless communication device may decode the primary synchronization signal (PSS) , which is transmitted in the last OFDM symbol of the first subframe and carries the physical layer identity of the cell.
  • PSS primary synchronization signal
  • the PSS may be used to achieve time synchronization, to identify the center of the channel bandwidth in the frequency domain, and to determine which of three physical layer identities the cell belongs. That is, PCIs are organized into groups of three, and the PSS identifies the position of the PCI within the group.
  • the wireless communication device may also decode the secondary synchronization symbol (SSS) , which is transmitted in the symbol before PSS.
  • the SSS may be used to achieve radio frame synchronization, and find which PCI group is used for the cell. Therefore, using the PSS and SSS, the PCI may be determined for the cell.
  • various embodiments address physical resource layer sharing as among two SIMs associated with one RF resource
  • various embodiment processes may be implemented for SIM functions on more than two SIMs (e.g., three SIMs, four SIMs, etc. ) .
  • the use of more than two SIMs in various embodiments may also involve sharing more than one RF resource (e.g., two shared RF resources, three shared RF resources, etc. ) .
  • the physical resource layer sharing in various embodiments is described with respect to an RF resource, various embodiments may also involve sharing of functions of the baseband-modem processor, as described. Therefore, the single RF resource referred to in various embodiments may be a single baseband-RF resource chain.
  • the processor may detect a communication activity on a first SIM ( “SIM-1” ) .
  • SIM-1 the wireless communication device
  • the wireless communication device e.g., 102, 200
  • MMS multi-SIM multi-standby
  • detecting a communication activity may involve detecting an RRC connection established between a modem stack associated with the first SIM and the serving network.
  • the processor may determine whether an RRC connection configuration message is received in response to the uplink capability information.
  • the processor may end the method 600. That is, since at least one SIM is not using its configured secondary component carrier (s) , the need for another SIM to align with such configured secondary component carrier (s) is effectively removed.
  • the processor may again prompt the modem stack associated with the low priority SIM to send downscaled channel state information for the secondary component carrier to the serving eNodeB block 616.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods and devices for enabling physical layer resource sharing to improve performance on a multi-subscriber identification module (SIM) wireless communication device may include detecting a communication activity on a modem stack associated with a first SIM using a first component carrier, determining whether a modem stack associated with a second SIM is connected to a network on the first component carrier, and performing carrier frequency alignment between the modem stacks associated with the first and second SIMs in response to determining that the modem stack associated with the second SIM is not connected to a network on the first component carrier.

Description

Systems and Methods for Performing Multiple Subscriber Identity Module (SIM) Functions Over the Same Carrier Frequency on a Wireless Communication Device BACKGROUND
Wireless communication networks are widely deployed to provide various communication services such as voice, packet data, broadcast, messaging, and so on. Wireless networks may be capable of supporting communication for multiple users by sharing the available network resources. Such sharing of available network resources may be implemented by networks using one or more multiple-access wireless communications protocols, such as Time Division Multiple Access (TDMA) , Code Division Multiple Access (CDMA) , and Frequency Division Multiple Access (FDMA) . These wireless networks may also utilize various radio technologies, including but not limited to Global System for Mobile Communications (GSM) , Universal Mobile Telecommunications System (UMTS) , High Speed Packet Access (HSPA) is CDMA2000, Advanced Mobile Phone Service (AMPS) , General Packet Radio Services (GPRS) , Long Term Evolution (LTE) , High Data Rate (HDR) technology, etc.
An ongoing goal of mobile communications is achieving high rates of data transmission and reception, while minimizing the amount of power consumed. As such, wireless communication devices may operate on networks using Long Term Evolution (LTE) standards, which enhance GSM, UMTS, and/or CDMA2000 by improving support of mobile broadband Internet access. Such improved support may be based, for example, on increased capacity and speed of wireless data networks, integration with other standards and multiple-input multiple-output (MIMO) antenna technology.
Multi-subscriber identity module (SIM) wireless communication devices have become increasing popular because of the versatility that they provide, particularly in countries where there are many service providers. For example, a  multi-SIM multi-standby (MSMS) device enables at least two SIMs to be in idle mode waiting to begin communications, and but only allows one SIM at a time to participate in an active communication due to sharing of a single radio frequency (RF) resource (e.g., transceiver) . As such, during an active communication on one SIM, the wireless device may periodically tune away to a network associated with another SIM to monitor signals or to acquire a connection (e.g., page decode) .
SUMMARY
Various embodiments include methods and wireless communication devices having a radio frequency (RF) resource shared by at least a first SIM and a second SIM that may involve detecting a communication activity on a modem stack associated with the first SIM using a first component carrier, determining whether a modem stack associated with the second SIM is connected to a network on the first component carrier, and performing carrier frequency alignment between the modem stacks associated with the first and second SIMs in response to determining that the modem stack associated with the second SIM is not connected to a network on the first component carrier.
In some embodiments, performing the carrier frequency alignment may include determining whether the modem stack associated with the second SIM is operating in an idle mode. In such embodiments, performing the carrier frequency alignment may include identifying a serving cell for the communication activity on the first SIM and triggering cell reselection to a preset target cell for the second SIM in response to determining that the modem stack associated with the second SIM is operating in the idle mode. In some embodiments, the preset target cell may be the serving cell for the communication activity on the first SIM. In some embodiments, performing the carrier frequency alignment may include determining whether the modem stack associated with the second SIM is operating in an idle mode, selecting a high priority SIM among the first SIM and the second SIM in response to determining that the modem stack associated with the second SIM is not operating in the idle mode,  identifying a default low priority SIM based on the selected high priority SIM, identifying a serving cell associated with the high priority SIM, and prompting a handover of a connection on the default low priority SIM to an intended target cell. In some embodiments, the intended target cell may be the identified serving cell associated with the high priority SIM.
In some embodiments, prompting the handover of the connection on the default low priority SIM to the intended target cell may include accessing uplink measurement report data on a modem stack associated with the default low priority SIM, and adjusting the accessed measurement report data to indicate poor network conditions of a serving cell of the connection on the default low priority SIM and favorable network conditions of the intended target cell. Some embodiments may further include determining whether the handover of the connection on the default low priority SIM to the intended target cell was successful, and prompting a handover of a connection on the high priority SIM to a switched intended target cell. In some embodiments, the switched intended target cell may be the serving cell of the connection on the default low priority SIM.
Some embodiments may further include determining whether the handover of the connection on the high priority SIM to the switched intended target cell was successful, releasing the connection on the default low priority SIM in response to determining that the handover of the connection on the high priority SIM to the switched intended target cell was not successful, and triggering cell reselection to a preset target cell for the default low priority SIM. In some embodiments, the preset target cell may be the identified serving cell associated with the high priority SIM. In some embodiments, the first component carrier may be a primary component carrier associated with the first SIM.
Some embodiments may further include selecting a high priority SIM among the first SIM and the second SIM in response to determining that the modem stack associated with the second SIM is connected to a network on the first component  carrier, identifying a default low priority SIM based on the selected high priority SIM, and disabling carrier aggregation on the modem stack associated with the default low priority SIM. In some embodiments, disabling carrier aggregation on the modem stack associated with the default low priority SIM may include sending uplink capability information to the network indicating a lack of carrier aggregation support.
Some embodiments may further include determining whether the modem stacks associated with the first and second SIMs are each configured with a secondary component carrier in response to determining that the modem stack associated with the second SIM is connected to a network on the first component carrier.
Some embodiments may further include, in response to determining that the modem stacks associated with the first and second SIMs are each configured with a secondary component carrier, determining whether the configured secondary component carriers are activated on the modem stacks associated with the first and second SIM, determining whether the activated secondary component carrier on the modem stack associated with the first SIM matches the activated secondary component carrier on the modem stack associated with the second SIM, and performing secondary component carrier alignment between the modem stacks associated with the first and second SIMs in response to determining that the activated secondary component carrier on the modem stack associated with the first SIM does not match the activated secondary component carrier on the modem stack associated with the second SIM.
In some embodiments, performing the secondary component carrier alignment may include selecting a high priority SIM among the first SIM and the second SIM, identifying a default low priority SIM based on the selected high priority SIM, and prompting transmission of downgraded channel state information for an activated secondary component carrier on a modem stack associated with the default low priority SIM. In some embodiments, the downgraded channel state information may be configured to trigger deactivation of the activated secondary component  carrier on the modem stack associated with the default low priority SIM. In some embodiments, the first SIM and the second SIM may also be associated with a shared baseband-modem processor.
Various embodiments include a wireless communication device configured to use at least a first SIM associated with an RF resource, and including a processor configured with processor-executable instructions to perform operations of the methods described above. Various embodiments also include a non-transitory processor-readable medium on which is stored processor-executable instructions configured to cause a processor of a wireless communication device to perform operations of the methods described above. Various embodiments include a wireless communication device having means for performing functions of the methods described above.
BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate exemplary embodiments of the invention, and together with the general description given and the detailed description, serve to explain the features herein.
FIG. 1A is a communication system block diagram of a network suitable for use with various embodiments.
FIG. lB is system block diagram of an Evolved Packet System (EPS) suitable for use with various embodiments.
FIG. 2 is a block diagram illustrating a wireless communication device according to various embodiments.
FIG. 3 is a system architecture diagram illustrating example protocol layer stacks implemented by the wireless communication device of FIG. 2.
FIGS. 4A-4C are process flow diagrams illustrating a method for enabling physical layer resource sharing for a component carrier on a wireless communication device according to various embodiments.
FIG. 5 is a process flow diagram illustrating a method for enabling physical layer resource sharing for aggregated component carriers on a wireless communication device according to various embodiments.
FIGS. 6A and 6B are process flow diagrams illustrating another method for enabling physical layer resource sharing for aggregated component carriers on a wireless communication device according to various embodiments.
FIG. 7 is a component diagram of an example wireless device suitable for use with various embodiments.
FIG. 8 is a component diagram of another example wireless device suitable for use with various embodiments.
DETAILED DESCRIPTION
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes, and are not intended to limit the scope of the invention or the claims.
Modern wireless communication devices may now include a plurality of SIM cards that enable a user to connect to different mobile networks while using the same mobile communication device. Each SIM card serves to identify and authenticate a subscriber using a particular mobile communication device, and each SIM card is associated with only one subscription. For example, a SIM card may be associated with a subscription to one of a GSM, TD-SCDMA, CDMA2000, and/or Wideband Code Division Multiple Access (WCDMA) system. Further, multi-SIM operations  may be applicable to any of a number of wireless communication system, using various multiple access schemes, such as, but not limited to, Code Division Multiple Access (CDMA) , Frequency Division Multiple Access (FDMA) , Orthogonal Frequency Division Multiple Access (OFDMA) , or Time Division-Multiple Access (TDMA) .
Normal RF resource arbitration may be employed to schedule use of a shared RF resource between SIMs on a MSMS wireless communication device. While such sharing may be limited to transmit and/or receive functions, in some MSMS wireless communication devices the sharing may extend to functions associated with a baseband-modem processor. Examples of baseband-modem processor functions that may be shared depend on the particular access technology, but can include downlink/uplink common channel processing, downlink/uplink common signal processing, receive/transmit signal processing, etc.
In an MSMS device in which the shared RF resource is used for an active LTE communication on a first SIM, a second SIM may be in an idle mode and not actively contending for access to the RF resource. However, the MSMS device may maintain a connection with a serving network associated with the second SIM by performing limited communication activities (i.e., “idle mode activities” ) . Depending on the communication protocol, examples of idle mode activates may include monitoring system information, receiving paging messages, measuring signal strength of neighbor cells, etc. Performing idle mode activities for the second SIM during the active LTE communication on the first SIM may involve implementing discontinuous reception (DRX) on the second SIM. In an “awake” period of the DRX cycle, the shared RF resource may tune away from the communication on the first SIM and tune to the network supporting the subscription enabled by the second SIM to perform idle mode activities, followed by tuning back to the communication on the first SIM. However, if the duration of such tune-aways is too long, the MSMS device may experience a radio link failure for the LTE communication on the first SIM.
Some MSMS wireless communication devices use a virtual SIM ( “VSIM” ) application that is remotely provisioned to provide traditional subscription features similar to a physical SIM. In such devices, authentication of a remote SIM may be required to enable use of normal SIM functions on the VSIM application. The authentication procedure on the remote SIM typically requires connection to an authentication server using the shared RF resource. If the duration of an authentication procedure is too long, the procedure may also cause radio link failure on the first SIM.
Radio link failures and subsequent link reestablishment procedures on the active communication cause throughput degradation and waste power consumption on the device, whether the radio link failures result from a tune-away to a second SIM or a remote SIM authentication procedure.
Various embodiments enable simultaneous active communications through the physical layer resource sharing across multiple SIMs on a MSMS wireless communication device (e.g., a dual-SIM dual standby (DSDS) device) so as to reduce the incidence of radio link failures. In particular, physical layer resource sharing in various embodiments may involve connecting two SIMs to a serving network using the same carrier frequencies/channel (s) while maintaining separate processing above the physical layer (i.e., in the media access control (MAC) layer and higher) . In various embodiments, physical layer resource sharing may include simultaneous active receiving and/or simultaneous active transmissions. In some embodiments, simultaneous active receiving may involve separating symbols from one downlink signal into two received data streams, while simultaneous active transmission may involve combining symbols from two data streams for transmission over the same uplink resource. In this manner, simultaneous communication activities may be enabled on multiple SIMs without requiring additional hardware or power consumption.
The terms “wireless device, ” and “wireless communications device” are used interchangeably herein to refer to any one or all of cellular telephones, smart phones, personal or mobile multi-media players, personal data assistants (PDAs) , laptop computers, tablet computers, smart books, palm-top computers, wireless electronic mail receivers, multimedia Internet enabled cellular telephones, wireless gaming controllers, and similar personal electronic devices that include a programmable processor and memory and circuitry for establishing wireless communication pathways and transmitting/receiving data via wireless communication pathways.
As used herein, the terms “SIM, ” “SIM card, ” and “subscriber identity module” may interchangeably refer to a memory that may be an integrated circuit or embedded into a removable card, and that stores an International Mobile Subscriber Identity (IMSI) , related key, and/or other information used to identify and/or authenticate a wireless device on a network and enable a communication service with the network. Examples of SIMs include the Universal Subscriber Identity Module (USIM) provided for in the LTE 3 GPP standard, and the Removable User Identity Module (R-UIM) provided for in the 3GPP2 standard. Universal Integrated Circuit Card (UICC) is another term for SIM. Moreover, a SIM may also refer to a virtual SIM (VSIM) , which may be implemented as a remote SIM profile loaded in an application on a wireless device, and enabling normal SIM functions on the wireless device.
Because the information stored in a SIM enables the wireless device to establish a communication link for a particular communication service or services with a particular network, the term “SIM” is also be used herein as a shorthand reference to the communication service associated with and enabled by the information stored in a particular SIM as the SIM and the communication network, as well as the services and subscriptions supported by that network, correlate to one another. Similarly, the term SIM may also be used as a shorthand reference to the protocol stack and/or modem stack and communication processes used in establishing  and conducting communication services with subscriptions and networks enabled by the information stored in a particular SIM
As used herein, the term “RF resource” refers to the components in a communication device that send, receive, and decode radio frequency signals. An RF resource typically includes a number of components coupled together that transmit RF signals that are referred to as a “transmit chain, ” and a number of components coupled together that receive and process RF signals that are referred to as a “receive chain. ” In some embodiments, an RF resource may refer to components that also perform functions associated with a baseband-modem processor, such as modulating and demodulating RF signals and packetizing incoming and outgoing data.
As used herein, the terms “multi-SIM multi-standby communication device” and “MSMS wireless device” are used interchangeably to refer to a wireless communication device that is configured with more than one SIM and allows idle-mode operations to be performed on two networks simultaneously using a single RF resource. Dual-SIM dual-standby communication devices are an example of a type of MSMS communication device.
As used herein, the terms “network, ” “system, ” “wireless network, ” “cellular network, ” and “wireless communication network” may interchangeably refer to a portion or all of a wireless network of a carrier associated with a wireless device and/or subscription on a wireless device. The techniques described herein may be used for various wireless communication networks such as CDMA, time division multiple access (TDMA) , FDMA, orthogonal FDMA (OFDMA) , single carrier FDMA (SC-FDMA) and other networks. In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support at least one radio access technology, which may operate on one or more frequency or range of frequencies. For example, a CDMA network may implement Universal Terrestrial Radio Access (UTRA) (including WCDMA standards) , CDMA2000 (including IS-2000, IS-95 and/or IS-856 standards) , etc. In another example, a TDMA  network may implement GSM Enhanced Data rates for GSM Evolution (EDGE) . In another example, an OFDMA network may implement Evolved UTRA (E-UTRA) (including LTE standards) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (WiFi) , IEEE 802.16 (WiMAX) , IEEE 802.20,
Figure PCTCN2016071460-appb-000001
etc. Reference may be made to wireless networks that use LTE standards, and therefore the terms “Evolved Universal Terrestrial Radio Access, ” “E-UTRAN” and “eNodeB” may also be used interchangeably herein to refer to a wireless network. However, such references are provided merely as examples, and are not intended to exclude wireless networks that use other communication standards.
References to “first” and “second” SIMs, subscriptions and networks herein are arbitrary and used merely for convenience in describing various embodiments. As a matter of convenience, a subscription associated with a SIM that is in an active data communication session on a network is referred to as the “first subscription” or the “first SIM” communicating on a “first network, ” while all other subscriptions and SIMs (i.e., subscriptions/SIMs performing tune-aways to another network) are referred to as a “second subscription” and “second SIM” communicating with an associated “second network. ” Thus, references to first and second SIMs are not intended to limit the scope of the claims to only two SIMs as various embodiments also apply to multi-SIM wireless communication device supporting three or more SIMs. Further, references to “first SIM” and “second SIM” are intended to be limited to temporary conditions of a particular active communication session, because at a later point in time a subscription that was previously in an idle mode may commence an active communication session causing a subscription that was previously active to enter the idle mode. The multi-SIM wireless communication device processor may assign any indicator, name or other designation to differentiate the one or more SIM sand associated modem stacks. While various embodiments may be described with respect to LTE, such embodiments but may be extended to other telecommunication standards employing other modulation and multiple access techniques.
Various embodiments may be implemented within a variety of communication systems, such as the example communication system 100 illustrated in FIG. 1A. The communication system 100 may include one or more wireless devices 102, a wireless communication network 104, and network servers 106 coupled to the wireless communication network 104 and to the Internet 108. In some embodiments, the network server 106 may be implemented as a server within the network infrastructure of the wireless communication network 104.
A typical wireless communication network 104 may include a plurality of cell base stations 110 coupled to a network operations center 112, which operates to connect voice and data calls between the wireless devices 102 (e.g., tablets, laptops, cellular phones, etc. ) and other network destinations, such as via telephone land lines (e.g., a POTS (plain old telephone system) network, not shown) and the Internet 108. The wireless communication network 104 may also include one or more servers 116 coupled to or within the network operations center 112 that provide a connection to the Internet 108 and/or to the network servers 106. Communications between the wireless devices 102 and the wireless communication network 104 may be accomplished via two-way wireless communication links 114, such as GSM, UMTS, EDGE, fourth generation (4G) , 3G, CDMA, TDMA, LTE, and/or other communication technologies.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support one or more radio access technologies, which may operate on one or more frequency bands (also referred to as a carrier, channel, frequency channel, etc. ) in the given geographic area in order to avoid interference between wireless networks of different radio access technologies.
Upon power up, the wireless device 102 may search for wireless networks from which the wireless device 102 can receive communication service. In various embodiments, the wireless device 102 may be configured to prefer LTE networks when available by defining a priority list in which LTE frequencies occupy the highest  spots. The wireless device 102 may perform registration processes on one of the identified networks (referred to as the serving network) , and the wireless device 102 may operate in a connected mode to actively communicate with the serving network.
Alternatively, the wireless device 102 may operate in an idle mode and camp on the serving network if an active communications session is not active on the wireless device 102. In the idle mode, the wireless device 102 may identify all radio access technologies (RATs) in which the wireless device 102 is able to find a “suitable” cell in a normal scenario or an “acceptable” cell in an emergency scenario, as specified in the LTE standards, such as 3GPP Technical Specification (TS) 36.304 version 8.2.0 Release 8, entitled “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) ; User Equipment (UE) procedures in idle mode” (May 2008) , the details of which are incorporated by reference herein.
FIG. 1B illustrates a network architecture 150 that includes an Evolved Packet System (EPS) . With reference to FIGS. 1A-1B, in the network architecture 150 the wireless device 102 may be connected to an LTE access network, for example, an Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) 152. In the various embodiments, the E-UTRAN 152 may be a network of LTE base stations (i.e., eNodeBs) (e.g., 110 in FIG. 1A) , which may be connected to one another via an X2 interface (e.g., backhaul) (not shown) .
Each eNodeB in the E-UTRAN 152 may provide an access point to an LTE core network, such as an Evolved Packet Core (EPC) 154. The EPC 154 may include at least one Mobility Management Entity (MME) 162, a Serving Gateway (SGW) 160, and a Packet Data Network (PDN) Gateway (PGW) 163. The E-UTRAN 152 may connect to the EPC 154 by connecting to the SGW 160 and to the MME 162 within the EPC 154. The MME 162, which may also be logically connected to SGW 160, may handle tracking and paging of the wireless device 102 and security for E-UTRAN access on the EPC 154. The MME 162 may be linked to a Home Subscriber Server (HSS) 156, which may support a database containing user subscription, profile, and  authentication information. Further, the MME 162 provides bearer and connection management for user internet protocol (IP) packets, which are transferred through the SGW 160.
The SGW 160 may route incoming and outgoing IP packets for the wireless device 102 via the LTE access network and external IP networks (i.e., packet data networks (PDNs) ) . The SGW 160 may also provide an anchor point for handover between eNodeBs. The SGW 160 may be logically connected to a PDN Gateway (PGW) 163, which may route packets to and from PDNs to form a connection between the EPC and various PDNs. The PGW 163 may be logically connected to a Policy Charging and Rules Function (PCRF) , a software component that may enforce minimum quality of service parameters, and manage and control data sessions. The PGW 163 may also provide connections with other public or private networks (e.g., the Internet, etc. ) .
The network architecture 150 may include circuit-switched (CS) networks and additional packet-switched (PS) networks. A wireless device 102 may be connected to the CS and/or PS packet switched networks by connecting to a legacy second generation (2G) /third generation (3G) access network 164. The 2G/3G access network 164 may be, for example, one or more of UTRAN, GSM Enhanced Data rates for Global Evolution (EDGE) Radio Access Network (GERAN) , CDMA2000 1x radio transmission technology (1 xRTT) , CDMA2000 Evolution Data Optimized (EV-DO) , etc. The 2G/3G access network 164 may include a network of base stations (e.g., base transceiver stations (BTSs) , nodeBs, radio base stations (RBSs) , etc. ) (e.g., 110) , as well as at least one base station controller (BSC) or radio network controller (RNC) . The 2G/3G access network 164 may connect to the circuit switched network via an interface with (or gateway to) a Mobile switching center (MSC) and associated Visitor location register (VLR) , which may be implemented together as MSC/VLR 166. In the CS network, the MSC/VLR 166 may connect to a CS core 168, which may be  connected to external networks (e.g., the public switched telephone network (PSTN)) through a Gateway MSC (GMSC) 170.
The 2G/3G access network 164 may connect to the PS network via an interface with (or gateway to) a Serving GPRS support node (SGSN) 172, which may connect to a PS core 174. In the PS network, the PS core 174 may be connected to external PS networks, such as the Internet and the Operator’s IP services 158 through a Gateway GPRS support node (GGSN) 176.
Modulation and radio access schemes may be employed by a high-speed access network (e.g., an E-UTRAN) , and may vary depending on the particular telecommunications standard being deployed. For example, in LTE applications, orthogonal frequency-division multiplexing (OFDM) may be used on the downlink, while single-carrier frequency-division multiple access (SC-FDMA) may be used on the uplink to support both frequency division duplexing (FDD) and time division duplexing (TDD) .
Access network entities (e.g., eNodeBs) may have multiple antennas supporting MIMO technology, thereby enabling the eNodeBs to exploit the spatial domain to support spatial multiplexing, beamforming, and/or transmit diversity. Spatial multiplexing may be used to transmit different streams of data simultaneously on the same frequency. In some embodiments, the data steams may be transmitted to a single wireless device to increase the data rate, while in other instances the data streams may be transmitted to multiple wireless devices to increase the overall system capacity.
While the various embodiments may be described with reference to LTE, various embodiments but may be extended to other telecommunication standards employing other modulation and multiple access techniques. By way of example, the various embodiments may be extended to EV-DO and/or Ultra Mobile Broadband (UMB) , each of which are air interface standards promulgated by the 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family to provide broadband  Internet access to wireless devices. The various embodiments may also be extended to IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, and/or Flash-OFDM employing OFDMA. The actual wireless communication standard and the access technology employed may depend on the specific application and the overall design constraints imposed on the system.
Various embodiments may be implemented in LTE wireless networks that use carrier aggregation, which is standardized as part of LTE Release 10 (also referred to as LTE-Advanced) . While earlier LTE standards (e.g., LTE Release 8) support radio link bandwidths up to 20 MHz, LTE-Advanced may support bandwidths up to 100 MHz. LTE-Advanced resources available for use by compatible systems and devices are divided into Release 8-compatible portions that are referred to as “component carriers. ” LTE-Advanced devices and systems may group two or more component carriers to achieve higher bandwidth and higher data-rate transmissions than are possible in an LTE Release 8 system. Such grouping (i.e., carrier aggregation) allows data transmission over multiple component carriers that together may cover up to 100 MHz of spectrum. Systems supporting carrier aggregation may remain compatible with LTE Release 8, since such devices each use one of the 20-MHz component carriers.
An LTE-Advanced system may support up to five aggregated component carriers, each of which may be one of six possible bandwidths. Specifically, each component carrier may have a bandwidth of 1, 4, 3, 5, 10, 15, or 20 MHz, corresponding to 6, 15, 25, 50, 75, or 100 LTE resource blocks. An LTE-Advanced system may use intra-band carrier aggregation in which the component carriers all belong to the same 3GPP operating band. Such intra-band component carriers may be contiguous or non-contiguous. An LTE-Advanced system may use inter-band carrier aggregation in which at least one component carrier is in a different 3GPP operating band.
FIG. 2 is a functional block diagram of an example wireless communication device 200 that is suitable for implementing various embodiments. With reference to FIGS. 1A-2, the wireless communication device 200 may be similar to the wireless devices 102 and may be a multi-SIM wireless communication device, such as a MSMS wireless communication device. The wireless device 200 may include at least one SIM interface 202, which may receive a first SIM ( “SIM-1” ) 204a that is associated with a first subscription. The at least one SIM interface 202 may be implemented as multiple SIM interfaces 202, which may receive at least a second SIM ( “SIM-2” ) 204b that is associated with at least a second subscription.
A SIM in various embodiments may be a Universal Integrated Circuit Card (UICC) that is configured with SIM and/or USIM applications, enabling access to GSM and/or UMTS networks. The UICC may also provide storage for a phone book and other applications. Alternatively, in a CDMA network, a SIM may be a UICC removable user identity module (R-UIM) or a CDMA subscriber identity module (CSIM) on a card.
Each  SIM  204a, 204b may have a CPU, ROM, RAM, EEPROM and I/O circuits. One or more of the first SIM 204a and second SIM 204b used in various embodiments may contain user account information, an IMSI a set of SIM application toolkit (SAT) commands and storage space for phone book contacts. One or more of the first SIM 204a and second SIM 204b may further store home identifiers (e.g., a System Identification Number (SID) /Network Identification Number (NID) pair, a Home PLMN (HPLMN) code, etc. ) to indicate the SIM network operator provider. An Integrated Circuit Card Identity (ICCID) SIM serial number may be printed on one or more SIMs 204 for identification. Additional SIMs may be provided for use on the wireless device 200 through a VSIM application (not shown) . For example, the VSIM application may implement remote SIMs on the wireless device 200 by provisioning corresponding SIM profiles.
The wireless communication device 200 may also include at least one VSIM application 230, which may be stored in memory 214 of the wireless communication device 200 and configured to support a subscription in a manner similar to  physical SIMs  204a, 204b. In various embodiments, the VSIM may represent any of a number of SIM profiles obtained through SIM provisioning/registration, as described. Each  SIM  204a, 204b may have a CPU, ROM, RAM, EEPROM and I/O circuits.
The wireless device 200 may include at least one controller, such as a general-purpose processor 206, which may be coupled to a coder/decoder (CODEC) 208. The CODEC 208 may in turn be coupled to a speaker 210 and a microphone 212. The general purpose processor 206 may also be coupled to at least one memory 214. The memory 214 may be a non-transitory tangible computer readable storage medium that stores processor-executable instructions. For example, the instructions may include routing communication data relating to a subscription though the transmit chain and receive chain of a corresponding baseband-RF resource chain. The memory 214 may store operating system (OS) , as well as user application software and executable instructions. The general purpose processor 206 and memory 214 may each be coupled to at least one baseband-modem processor 216. Each  SIM  204a, 204b and VSIM application 230 in the wireless device 200 may be associated with a baseband-RF resource chain that includes at least one baseband-modem processor 216 and at least one RF resource 218.
In various embodiments, the wireless device 200 may be an MSMS device, such as a DSDS device, with both  SIMs  204a, 204b and/or a VSIM 230 sharing a single baseband-RF resource chain that includes the baseband-modem processor 216-which may perform baseband/modem functions for communicating with and/or controlling a radio access technology-and an RF resource 218. In some embodiments, the shared baseband-RF resource chain may include, for each of the first SIM 204a and the second SIM 204b and/or a VSIM application 230, separate baseband-modem processor 216 functionality (e.g., BB 1 and BB2) . The RF resource  218 may be coupled to at least one antenna 220, and may perform transmit/receive functions for the wireless services associated with each  SIM  204a, 204b of the wireless device 200. The RF resource 218 may implement separate transmit and receive functionalities, or may include a transceiver that combines transmitter and receiver functions.
In some embodiments, the general purpose processor 206, memory 214, baseband-modem processor 216, and RF resource 218 may be included in a system-on-chip device 222. The first and  second SIMs  204a, 204b and their corresponding interface (s) 202 may be external to the system-on-chip device 222. Further, various input and output devices may be coupled to components of the system-on-chip device 222, such as interfaces or controllers. Example user input components suitable for use in the wireless device 200 may include, but are not limited to, a keypad 224 and a touchscreen display 226.
In some embodiments, the keypad 224, touchscreen display 226, microphone 212, or a combination thereof, may perform the function of receiving the request to initiate an outgoing call. For example, the touchscreen display 226 may receive a selection of a contact from a contact list or receive a telephone number. In another example, either or both of the touchscreen display 226 and microphone 212 may perform the function of receiving a request to initiate an outgoing call. For example, the touchscreen display 226 may receive selection of a contact from a contact list or to receive a telephone number. As another example, the request to initiate the outgoing call may be in the form of a voice command received via the microphone 212. Interfaces may be provided between the various software modules and functions in the wireless device 200 to enable communication between them, as is known in the art.
The baseband-modem processor of a wireless communication device may be configured to execute software including at least one modem stack associated with at least one SIM. SIMs and associated modem stacks may be configured to support a variety of communication services that fulfill different user requirements. Further, a  particular SIM may be provisioned with information to execute different signaling procedures for accessing a domain of the core network associated with these services and for handling data thereof.
As described above, a wireless communication device in the various embodiments may support a number of radio access technologies (RATs) . For example, the radio technologies may include a wide area network (e.g., using third generation partnership project (3GPP) LTE, wireless local area network (WLAN) , Bluetooth and/or the like) . Multiple antennas and/or receive blocks may be provided to facilitate multimode communication with various combinations of antenna and receiver/transmitter configurations. Each radio technology may transmit or receive signals via one or more antennas.
In various embodiments, the RF resource 218 may be configured with receiver and transmitter circuitry to support multiple radio access technologies/wireless networks that operate according to different wireless communication protocols. Such circuitry may allow the RF resource 218 to process signals associated with different communication standards, and may include or provide connections to different sets of amplifiers, digital to analog converters, analog to digital converters, filters, voltage controlled
FIG. 3 illustrates an example of software architecture with layered radio protocol stacks that may be used in data communications on a MSMS wireless communication device. Referring to FIGS. 1-3, the wireless communication device 200 may have a layered software architecture 300 to communicate over access networks associated with SIMs. The software architecture 300 may be distributed among one or more processors, such as a baseband-modem processor 216. The software architecture 300 may also include a Non Access Stratum (NAS) 302 and an Access Stratum (AS) 304. The NAS 302 may include functions and protocols to support traffic and signaling each SIM of the wireless communication device 200 (e.g., SIM-1 204a, SIM-2 204b, and a VSIM 230) and their respective core networks. The  AS 304 may include functions and protocols that support communication between each SIM (e.g., the SIM-1 204a, SIM-2 204b, and a VSIM 230) and entities of their respective access networks (e.g., a MSC in a GSM network, eNodeB in an LTE network, etc. ) .
In the wireless communication device 200, the AS 354 may include multiple protocol stacks, each of which may be associated with a different SIM. For example, the AS 304 may include  protocol stacks  306a, 306b associated with the  SIMs  204a, 204b (and/or VSIM application 230) . Although described below with reference to GSM-type communication layers,  protocol stacks  306a, 306b may support any of variety of standards and protocols for wireless communications. In particular, the AS 304 may include at least three layers, each of which may contain various sublayers. For example, each  protocol stack  306a, 306b may respectively include a Radio Resource (RR) sublayer 308a, 308b as part of Layer 3 (L3) of the AS 304 in a GSM or LTE signaling protocol. The  RR sublayers  308a, 308b may oversee the establishment of a link between the wireless communication device 200 and associated access networks. In the various embodiments, the NAS 302 and RR sublayers 308a, 308b may perform the various functions to search for wireless networks and to establish, maintain and terminate calls. Further, the  RR sublayers  308a, 308b may provide functions including broadcasting system information, paging, and establishing and releasing a radio resource control (RRC) signaling connection between a multi-SIM wireless communication device 200 and the associated access network.
While not shown, the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3. Additional sub-layers may include, for example, connection management (CM) sub-layers (not shown) that route calls, select a service type, prioritize data, perform QoS functions, etc.
Residing below the Layer 3 sublayers (RR sublayers 308a, 308b) , the  protocol stacks  306a, 306b may also include  data link layers  310a, 310b, which may be part of Layer 2 in a GSM or LTE signaling protocol. The  data link layers  310a,  310b may provide functions to handle incoming and outgoing data across the network, such as dividing output data into data frames and analyzing incoming data to ensure the data has been successfully received In some embodiments, each  data link layer  310a, 310b may contain various sublayers, such as a MAC sublayer, a radio link control (RLC) sublayer, and a packet data convergence protocol (PDCP) sublayer, each of which form logical connections terminating at the access network. In various embodiments, a PDCP sublayer may provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression. In the downlink, the PDCP sublayer may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
In the uplink, the RLC sublayer may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) . In the downlink, the RLC sublayer functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
In the uplink, the MAC sublayer may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations. In the downlink, the MAC layer functions may include channel mapping within a cell, de-multiplexing, DRX, and HARQ operations.
Residing below the  data link layers  310a, 310b, the  protocol stacks  306a, 306b may also include  physical layers  312a, 312b, which may establish connections over the air interface and manage network resources for the wireless communication device 200. In various embodiments, the  physical layers  312a, 312b may oversee functions that enable transmission and/or reception over the air interface. Examples of such physical layer functions may include cyclic redundancy check (CRC)  attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc.
While the  protocol stacks  306a, 306b provide functions to transmit data through physical media, the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless communication device 200. In other embodiments, application-specific functions provided by the at least one host layer 314 may provide an interface between the  protocol stacks  306a, 306b and the general processor 206. In some embodiments, the  protocol stacks  306a, 306b may each include one or more higher logical layers (e.g., transport, session, presentation, application, etc. ) that provide host layer functions. For example, in some embodiments, the software architecture 300 may include a network layer (e.g., IP layer) in which a logical connection terminates at a gateway (e.g., PGW 163) . In some embodiments, the software architecture 300 may include an application layer in which a logical connection terminates at another device (e.g., end user device, server, etc. ) . In some embodiments, the software architecture 300 may further include in the AS 304 a hardware interface 316 between the  physical layers  312a, 312b and the communication hardware (e.g., one or more RF resources) .
In various embodiments, the  protocol stacks  306a, 306b of the layered software architecture may be implemented to allow modem operation using information provisioned on multiple SIMs. Therefore, a protocol stack that may be executed by a baseband-modem processor is interchangeably referred to herein as a modem stack.
The modem stacks in various embodiments may support any of a variety of current and/or future protocols for wireless communications. For examples, the modem stacks in various embodiments may support networks using radio access technologies described in 3GPP standards (e.g., GSM, UMTS, LTE, etc. ) , 3GPP2 standards (e.g., 1 xRTT/CDMA2000, EV-DO, UMB, etc. ) and/or IEEE standards (WiMAX, Wi-Fi, etc. ) .
In communications in an LTE network, a wireless communication device (or modem stack associated with a SIM in a wireless communication device) may receive downlink data by decoding packets on the physical downlink shared channel (PDSCH) . While a connection with an LTE network may be referred to herein with respect to the wireless device, it will be understood that a connection is established on a modem stack associated with an IMSI (i.e., SIM) in the LTE system. That is, reference to the wireless communication device in various procedures and/or communications with a network may be a general reference to the user equipment associated with a subscription in the network. As such, a SIM transferred to different user equipment may be characterized as the same wireless communication device for purposes of network connections.
The wireless communication device may access an LTE network (i.e., E-UTRAN) by connecting to a serving cell using a single uplink carrier and single downlink carrier. Such connecting in LTE involves performing an initial access procedure, which may involve steps including cell search and cell selection, derivation of system information, and random access.
In various embodiments, the cell search may involve performing a hierarchical search for LTE radio cells, which are identified by physical cell identities (PCIs) . Specifically, the wireless communication device may tune to each supported LTE channel and measure the received signal strength indicator (RSSI) on each. Such channels may be determined based on LTE frequency bands supported by the operator, which may be stored in a SIM or in non-volatile memory on the device. The channels having an RSSI greater than a threshold value may be identified, and the device may decode synchronization and reference signals to find the physical cell identity of each identified channel.
In particular, the wireless communication device may decode the primary synchronization signal (PSS) , which is transmitted in the last OFDM symbol of the first subframe and carries the physical layer identity of the cell. The PSS may be used  to achieve time synchronization, to identify the center of the channel bandwidth in the frequency domain, and to determine which of three physical layer identities the cell belongs. That is, PCIs are organized into groups of three, and the PSS identifies the position of the PCI within the group. The wireless communication device may also decode the secondary synchronization symbol (SSS) , which is transmitted in the symbol before PSS. The SSS may be used to achieve radio frame synchronization, and find which PCI group is used for the cell. Therefore, using the PSS and SSS, the PCI may be determined for the cell.
The wireless communication device may decode system information blocks (SIBs) to determine the public land mobile network (PLMN) for the identified cell (i.e., in SIB1) . As result, the wireless device may develop a list with frequency, PCI, and PLMN of each identified cell, from which a cell may be selected for camping. In particular, the device may find a suitable cell by finding a cell that transmits power strong enough to be detected by wireless device (based on values decoded from SIB) , that is not barred, and that has a PLMN matching that of a selected PLMN.
In this manner, the wireless communication device may camp on a serving cell, and transition between two states defined by the RRC protocol: RRC idle state, and RRC connected state. In the RRC idle state, the wireless communication device is not known in the E-UTRAN, but may receive broadcast system information and data, monitor a paging channel to detect incoming calls, perform neighbor cell measurements, and perform cell reselections. In the RRC connected state the wireless communication device may be able to transmit data to and receive data from the network by an RRC connection established with a serving eNodeB, which handles mobility and handovers. Establishing the RRC connection may be initiated, for example, by the wireless communication device initiating a contention-based random access procedure.
In various embodiments, following the initial access procedure, the wireless communication device may be configured with additional component carriers in the  downlink and/or uplink, depending on the capabilities of the device and the network. In various embodiments, the serving cell to which the device connects using initial access may be referred to as the primary cell (PCell) , while additional serving cells that may be configured for the wireless communication device after initial access is may be referred to as secondary cells (SCells) . In various embodiments, the LTE carrier frequencies (i.e., channels) associated with the PCell are referred to as a primary component carrier, while the LTE carrier frequencies associated with an SCell are referred to as a secondary component carrier.
In various embodiments, the wireless communication device may send to the serving eNodeB a capability information element that indicates the supported bands, including band combinations. The content and use of this information element is described in 3GPP TS 36.331 v. 9.10.0, entitled “Evolved Universal Terrestrial Radio Access (E-UTRA) ; Radio Resource Control (RRC) ; Protocol Specification” (March 2012) , the details of which are incorporated by reference herein. As part of the signaling of supported band combinations, a device may also indicate in the capability information element which bandwidth class applies, and whether MIMO is supported. Further, the capability information element may include a device category, which may be specific to a particular LTE release.
In various embodiments, SCells may be configured for a wireless communication device using RRC signaling, after RRC connection establishment. Specifically, an RRC Connection Reconfiguration procedure may be used to add an SCell to the PCell or to a set of serving cells. The RRC Connection Reconfiguration procedure may be performed after the serving eNodeB receives the capability information element, as well as a measurement report from the wireless communication device indicating that the carrier frequency on a potential SCell is above a certain threshold. In particular, the E-UTRAN (i.e., the serving eNodeB) may transmit an RRC Connection Reconfiguration message to the wireless communication device on a PDSCH. The RRC Connection Reconfiguration message may contain a  number of fields with information for configuring a modem stack to establish carrier aggregation. In various embodiments, the RRC Connection Reconfiguration message may also be used by the E-UTRAN to release and subsequently add an already configured SCell if relevant system information of that SCell is changed.
For configuring a new SCell, the RRC Connection Reconfiguration message may provide an “SCell_Index” field to identify/address the SCell that is being configured, and a “Cell_Identification” field that provides a PCI and downlink carrier frequency (e.g., EARFCN) . The message may also contain a “RadioResourceConfig_DedicatedSCell” field with wireless device-specific (dedicated) configurations for the SCell. The message may also include a “RadioResourceConfig_CommonSCell” field that contains all system information relevant for operation in the RRC connected mode (e.g., uplink bandwidth, uplink carrier frequency, uplink power control information, common information of physical channels, sounding reference signal (SRS) common information etc. ) . In some embodiments, the system information parameter values configured via dedicated signaling may differ from the values that are broadcast in the system information of the SCell.
Upon receiving the RRC Connection Reconfiguration message, the wireless communication device may transmit a HARQ ACK to the E-UTRAN to confirm that the message was received. In some embodiments, following the necessary setup, the wireless communication device may transmit to the E-UTRAN a scheduling request message over the physical uplink control channel (PUCCH) to request an uplink grant (i.e., a physical uplink shared channel (PUSCH) ) in order to send a RRC Connection Reconfiguration Complete message. In response, the E-UTRAN may send an uplink grant message to the wireless communication device by transmitting downlink control information (DCI) over the PUSCH. In LTE systems, the E-UTRAN may utilize a particular DCI format (e.g., DCI-0) for the uplink grant, which may provide the information needed by the device to transmit the physical uplink shared channel  (PUSCH) . Following the uplink grant, the wireless communication device may transmit the RRC Connection Reconfiguration-Complete message on the granted PUSCH, indicating that the RRC carrier aggregation configuration (i.e., addition of the SCell) was successful.
In various embodiments, the RRC Connection Reconfiguration procedure may also be used during a handover in LTE to add, remove, or reconfigure SCells for use with the target PCell. Further, SCell addition may take place during handover from another RAT (e.g., GERAN, UTRAN, etc. ) . While the PCell remains activated for the wireless communication device, configured SCells may be activated and deactivated on a need basis. That is, due to the relatively slow speed of RRC signaling, the device may be configured with multiple component carriers even if not all are currently used. While configuration and deconfiguration of SCells may be performed using RRC signaling, SCell activation and deactivation may be performed by MAC layer signaling to the wireless device (e.g., sending a MAC Control Element (MAC CE) ) .
Once an SCell is configured on the wireless communication device, the secondary component carrier may be activated to enable the device to receive data on the SCell (e.g., via PDSCH/PDCCH) , or to provide an uplink grant on the SCell. Such activation may be performed via MAC signaling. Specifically, the E-UTRAN (i.e., through the serving eNodeB) may send a MAC Control Element (MAC CE) to the wireless communication device in order to activate the secondary component carrier. As described, SCells may be activated and deactivated as needed, both of which may be performed using MAC CE.
In various embodiments, the wireless communication device may monitor system information, and decode security and NAS mobility information, only on the PCell. While an uplink secondary component carrier (SCC) does not have a PUCCH, in various embodiments the wireless communication device may transmit hybrid- ARQ (HARQ) , acknowledgements (ACL) , negative-acknowledgements (NACK) , and channel state information (CSI) for SCells on the PUCCH of the PCell.
The PCell for a wireless communication device (or modem stack associated with a SIM in the wireless communication device) may be changed using handover procedures. During handover, all SCells configured for the wireless communication device being handed over may be deactivated. The target eNodeB (which may be the same as the source eNodeB) may determine whether to use the same SCell or set of SCells, configure and activate one or more different SCells, or deconfigure the SCell (s) .
In various embodiments, MSMS wireless communication device performance may be improved by causing multiple SIMs to utilize the same physical layer network resources (i.e., carrier frequency alignment) . In some embodiments, one or more SIMs of the MSMS device, or network supported by one or more SIMs, may be unable to use carrier aggregation, and therefore carrier frequency alignment may be performed as to non-aggregated (i.e., single) component carriers. In other embodiments, the SIMs and their corresponding networks may all support carrier aggregation, and therefore carrier frequency alignment may be performed as to aggregated (i.e., multiple) component carriers.
FIGS. 4A-4C illustrate a method 400 for using single component carrier alignment to enable sharing physical layer resources across two SIMs on a MSMS wireless communication device according to various embodiments. With reference to FIGS. 1-4C, the operations of the method 400 may be implemented by one or more processors of a wireless device, such as the wireless communication device 200. The one or more processors may include, for example, the general purpose processor 206 and/or baseband modem processor (s) 216, or a separate controller (not shown) that may be coupled to the memory 214 and to the baseband modem processor (s) 216.
In various embodiments, single component carrier alignment may refer to alignment of one or both of an uplink component carrier and a downlink component  carrier. In some embodiments, the single component carrier may be a carrier frequency (i.e., range of frequencies in downlink and/or uplink LTE spectrum) employed for network connections in which carrier aggregation is not supported. As described, carrier aggregation may be unsupported, for example, due to limitations in device or subscription capability, limitations in network capability, current system conditions, etc. In some embodiments, the single component carrier may instead refer to a primary component carrier employed for network connections in which carrier aggregation is enabled. While the descriptions of various embodiments address physical resource layer sharing as among two SIMs associated with one RF resource, various embodiment processes may be implemented for SIM functions on more than two SIMs (e.g., three SIMs, four SIMs, etc. ) . The use of more than two SIMs in various embodiments may also involve sharing more than one RF resource (e.g., two shared RF resources, three shared RF resources, etc. ) . Further, while the physical resource layer sharing in various embodiments is described with respect to an RF resource, various embodiments may also involve sharing of functions of the baseband-modem processor, as described. Therefore, the single RF resource referred to in various embodiments may be a single baseband-RF resource chain.
In block 402, the processor may detect a communication activity on a first SIM ( “SIM-1” ) . As described, the wireless communication device (e.g., 102, 200) may be an MSMS wireless device in which at least two SIMs share access to a single RF resource. In various embodiments, detecting the communication activity on the first SIM may involve detecting an active data session on an RRC connection that is established for a modem stack associated with the first SIM in a serving network.
In determination block 404, the processor may determine whether the component carrier used for the connection on the first SIM is aligned with the component carrier associated with a second SIM ( “SIM-2” ) . That is, the processor may determine whether the modem stacks associated with the first and second SIMs are using the same channel (i.e., component carrier) to access the LTE network (i.e.,  connect to the E-UTRAN) . References to the first SIM ( “SIM-1” ) and associated modem stack, and the second SIM ( “SIM-2” ) and associated modem stack, are arbitrary and used merely for the purposes of describing the embodiments. The processor may assign any indicator, name, or other designation to differentiate the SIMs, associated modem stacks, and network resources. Some embodiments may apply the same regardless of the mobility state of each SIM and/or communication activity on the modem stack associated with each SIM.
In response to determining that the component carrier used for the connection on the first SIM is aligned with the component carrier associated with the second SIM (i.e., determination block 404 = “Yes” ) , the processor may end the method 400 since carrier frequency alignment is already accomplished.
In response to determining that the component carrier used for the connection on the first SIM is not aligned with the component carrier associated with the second SIM (i.e., determination block 404 = “No” ) , the processor may determine whether the second SIM is currently operating in the RRC idle mode in determination block 406. As described, operation in the RRC idle mode may involve performing idle mode activities, for example, periodically measuring signal strength of neighbor cells, decoding a paging channel, etc.
In response to determining that the second SIM is current operating in the RRC idle mode (i.e., determination block 406 = “Yes” ) , the processor may begin operations to align the component carrier associated with the second SIM to the component carrier of the connection on the first SIM in block 408. Each carrier frequency in various embodiments may correspond to a cell of an eNodeB, requiring the first and second SIMs to camp on the same cell of a serving eNodeB in order to achieve such alignment. In particular, the processor may identify the serving cell and eNodeB of the connection on the first SIM in block 408. Such identification may be made, for example, using system information received in the downlink on the modem stack associated with the first SIM.
In various systems, mobility may be handled autonomously by a processor or device in the RRC idle mode to determine the cell on which to camp. In block 410, the processor may trigger a cell reselection procedure for the second SIM, with the serving cell identified for the first SIM preset as the target cell. In some embodiments, triggering reselection to this preset target cell may involve passing a direct instruction to the modem stack associated with the second SIM. In other embodiments, triggering reselection to this preset target cell may be performed, for example, by accessing mobility information for the second SIM. In various embodiments, the mobility information may include a neighbor cell list and associated selection and ranking criteria, which may be calculated based on measurements of the serving and neighbor cells. Cell reselection may be triggered, for example, as a result of adding an entry for the preset target cell, or overriding the existing mobility information for the preset target cell. Following the cell reselection procedure, the processor may end the method 400.
In response to determining that the second SIM is not currently operating in the RRC idle mode (i.e., determination block 406 = “No” ) , the processor may select a “high priority” SIM among the first and second SIMs in block 412. In various embodiments, selecting the high priority SIM may be based, for example, on a predefined prioritization policy that accounts for the current communication activities on each modem stack. In various embodiments, the prioritization policy may attribute greater priority to activities that are typically deemed important over those that may be delayed. For example, the prioritization policy may give higher ranking to activities including receiving mobile terminating (MT) calls, placing mobile originating calls (MO) , receiving real-time streaming data, participating in an interactive program, etc. In contrast, the prioritization policy may give lower ranking to activities including background data transfers, asynchronous messaging applications (e.g., e-mail) , etc. Further, since the SIMs may be connected to different networks and/or eNodeBs, in some embodiments the prioritization policy may include differences in quality of service or other metrics relating to the strength of the RRC connections. In some  embodiments, the processor may access a default prioritization policy set by the operator and/or manufacturer. In some embodiments, the prioritization policy may be defined by a user. In various embodiments, a SIM that is not selected as the high priority SIM may be referred to herein as a “low priority SIM. ”
The processor may identify an intended target cell for carrier frequency alignment. In various embodiments, identifying the intended target cell may be performed by identifying the serving cell of the connection on the selected high priority SIM in block 414. That is, if the first SIM is selected, the eNodeB and serving cell of the connection on the first SIM may be identified, while if the second SIM is selected, the eNodeB and serving cell of the connection on the second SIM may be identified.
In order to move to a new component carrier (i.e., change serving cell) while in the RRC connected mode, a serving eNodeB typically may initiate a handover based on information received from a wireless communication device or (modem stack associated with the RRC connection) . In particular, the serving eNodeB configures measurement procedures according to area restriction information, and may receive an uplink measurement report from the wireless communication device. The measurement report may provide various types of mobility-related measurements to the E-UTRAN (e.g., reference symbol received power (RSRP) , received signal strength indicator (RSSI) , etc. Based on the measurement report, the serving eNodeB may decide to perform a handover. In an inter-eNodeB handover, the serving eNodeB may pass necessary information (e.g., E-UTRAN radio access bearer (E-RAB) attributes, RRC context, etc. ) to a target eNodeB. In both inter-eNodeB and intra-eNodeB handovers, the wireless communication device may use a dedicated random access channel (RACH) preamble to achieve contention-free access to the target cell via RACH.
Based on the handover procedures implemented by LTE, moving to a specific target cell may require the existence of handover conditions that are recognized by the  serving eNodeB of the low priority SIM, or the reported existence of such handover conditions. In various embodiments, the processor may access uplink measurement report data on the modem stack associated with the low priority SIM in block 415.
The processor may increment the current value of a target cell counter in block 416. The target cell counter, which may have a starting value of zero, is described in further detail with respect to operations in blocks 418-426.
In block 418, the processor may adjust the accessed measurement report data to prompt a handover of the associated connection to an intended target cell. That is, the processor may intentionally bias the measurement values for uplink reporting to indicate, for example, some expected loss or failure of the current serving cell for the low priority SIM, and/or to indicate parameters favoring the serving cell of the high priority SIM (i.e., the intended target cell) .
In block 420, the processor may increment a retry counter. The processor may determine whether component carrier alignment on the intended target cell has been achieved for the first and second SIMs in determination block 422. That is, the processor may determine whether the desired handover to the intended target cell was successful.
In response to determining that component carrier alignment on the intended target cell has been accomplished (i.e., determination block 422 = “Yes” ) , the processor may end the method 400.
In response to determining that frequency carrier alignment on the intended target cell has not been accomplished (i.e., determination block 422 = “No” ) , the processor may determine whether the current value of the retry counter is greater than a threshold value in determination block 424. In various embodiments, the threshold value for the retry counter may be set by the device manufacturer or a network operator associated with one or both SIMs, and may provide a limited number of  additional chances to align the carrier frequencies on the serving cell for the high priority SIM.
In response to determining that the current value of the retry counter is not greater than the threshold value (i.e., determination block 424 = “No” ) , the processor may further adjust the accessed uplink measurement report data to prompt the handover of the associated connection to the intended target cell in block 418.
In response to determining that the current value of the retry counter is greater than the threshold value (i.e., determination block 424 = “Yes” ) , the processor may reset the retry counter in block 426. The processor may determine whether a current value of the target cell counter is greater than a threshold value in determination block 428 (FIG. 4C) . In various embodiments, the threshold value for the target cell counter may be based on the number of SIMs in the wireless communication device (i.e., a threshold value of “2” for a DSDS device) . In this manner, the wireless device and may engage in a limited number of attempts for component carrier alignment during the RRC connected state on both SIMs.
In response to determining that the current value of the target cell counter is not greater than the threshold value (i.e., determination block 428 = “No” ) , the processor may switch the intended target cell for carrier frequency alignment in block 430. In some embodiments, such switch may involve identifying the serving cell and eNodeB being used for the connection on the low priority SIM. That is, following an unsuccessful attempt to trigger a handover of the connection for the low priority SIM to the serving cell associated with the high priority SIM, the processor may attempt to trigger a handover of the connection for the high priority SIM to the serving cell associated with the low priority SIM.
The processor may access uplink measurement report data on the modem stack associated with the high priority SIM in block 432. The processor may increment the target cell counter in block 416 (FIG. 4A) and repeat the operations in  blocks  418, 420, and 426, and determination blocks 422, 424 and 428 (FIGS. 4B-4C)  while adjusting the accessed uplink measurement report data in order to prompt a handover of the associated connection to the intended target cell in block 418 (FIG. 4B) . That is, the processor may intentionally bias the measurement values for uplink reporting to indicate some expected loss or failure of the current serving cell for the high priority SIM, and/or to indicate parameters favoring the serving cell of the low priority SIM.
In response to determining that the current value of the target cell counter is greater than the threshold value (i.e., determination block 428 = “Yes” ) , the processor may perform a local release of the RRC connection release on the low priority SIM in block 434, thereby causing the modem stack associated with the low priority SIM transition to the RRC idle state.
In block 436, the processor may identify the eNodeB and serving cell of the connection on the high priority SIM. In block 438, the processor may trigger a cell reselection on the modem stack associated with the low priority SIM with the serving cell for the high priority SIM connection preset as target cell. Following the reselection, the processor may end the method 400.
FIG. 5 illustrates a method 500 for using aggregated component carrier alignment to share physical layer resources across two SIMs on a MSMS wireless communication device according to various embodiments. With reference to FIGS. 1-5, the operations of the method 500 may be implemented by one or more processors of a wireless device, such as the wireless communication device 200. The one or more processors may include, for example, such the general purpose processor 206 and/or baseband modem processor (s) 216, or a separate controller (not shown) that may be coupled to the memory 214 and to the baseband modem processor (s) 216.
In various embodiments, aggregated component carrier alignment may refer to groups of carrier frequencies that can be bundled when carrier aggregation is supported by both the serving network and the wireless device (or modem stack associated with a SIM on the wireless device) . In various embodiments, the  aggregated component carriers may include a primary component carrier and at least one secondary component carrier.
In block 502, the processor may detect a communication activity on a first SIM ( “SIM-1” ) . As described, the wireless communication device (e.g., 102, 200) may be a multi-SIM multi-standby (MSMS) device in which at least two SIMs support LTE using access to a single RF resource. In various embodiments, detecting a communication activity may involve detecting an RRC connection established between a modem stack associated with the first SIM and the serving network.
In determination block 504, the processor may determine whether the primary component carrier ( “PCC” ) used for the connection on the first SIM is aligned with the primary component carrier associated with a second SIM ( “SIM-2” ) . That is, the processor may determine whether the same wireless device is camped in the same PCell on the modem stacks associated with the first and second SIMs. As described, references to the first SIM ( “SIM-1” ) and associated modem stack, and the second SIM ( “SIM-2” ) and associated modem stack, are arbitrary and used merely for the purposes of describing the embodiments. The processor may assign any indicator, name, or other designation to differentiate the SIMs, associated modem stacks, and network resources. Some embodiments may apply the same regardless of the mobility state of each SIM and/or communication activity on the modem stack associated with each SIM.
In response to determining that the primary component carrier used for the connection on the first SIM is not aligned with the primary component carrier associated with the second SIM (i.e., determination block 504 = “No” ) , the processor may perform operations to align the primary component carriers between the modem stacks associated with the first and second SIMs in block 506. In various embodiments, such alignment of the primary component carriers may be performed by implementing the method 400 (FIGS. 4A-4C) , where the primary component carrier is considered a single component carrier for the operations of the method 400.
In response to determining that the primary component carrier used for the connection on the first SIM is aligned with the primary component carrier associated with the second SIM (i.e., determination block 504 = “Yes” ) , or following the primary component carrier alignment in block 506, the processor may select a high priority SIM among the first and second SIMs in block 508. In various embodiments, selecting the high priority SIM may be performed based on a prioritization policy in a similar manner to operations in block 412 (FIG. 4A) . In various embodiments, since the wireless device may be in either RRC connected mode or idle mode for the first and second SIMs, the prioritization policy may also account for RRC state differences. Further, the prioritization policy may include rankings for RRC idle mode activities. As described, the at least one SIM that is not selected as the high priority SIM may be referred to as a low priority SIM.
In block 510, the processor may send uplink capability information for a low priority SIM indicating a lack of carrier aggregation support. That is, the processor may transmit information (e.g., a capability information element) to a serving eNodeB signaling that the modem stack associated with the low priority SIM is not able to communicate aggregated component carriers. In this manner, the processor may prompt the serving eNodeB to deconfigure (e.g., via RRC signaling) any SCC associated with the low priority SIM, effectively removing the need for alignment with secondary component carriers used for the high priority SIM. The serving eNodeB in various embodiments may be an eNodeB providing the PCell in which the first and second SIMs are aligned. The processor may end the method 500.
FIGS. 6A and 6B illustrate a method 600 for using aggregated component carrier alignment to share physical layer resources across two SIMs on a MSMS wireless communication device according to various embodiments. With reference to FIGS. 1-6B, the operations of the method 600 may be implemented by one or more processors of a wireless device, such as the wireless communication device 200. The one or more processors may include, for example, such the general purpose processor  206 and/or baseband modem processor (s) 216, or a separate controller (not shown) that may be coupled to the memory 214 and to the baseband modem processor (s) 216.
As described, the aggregated component carriers may include a primary component carrier and at least one secondary component carrier. As described, references to the first SIM ( “SIM-1” ) and associated modem stack, and the second SIM ( “SIM-2” ) and associated modem stack, are arbitrary and used merely for the purposes of describing the embodiments. The processor may assign any indicator, name, or other designation to differentiate the SIMs, associated modem stacks, and network resources. Further, embodiment methods may apply the same regardless of the mobility state of each SIM and/or communication activity on the modem stack associated with each SIM.
The method 600 may begin with the operations in block 502, block 504, and determination block 506 of the method 500 (FIG. 5) as described. In response to determining that the primary component carrier ( “PCC” ) used for the connection on the first SIM ( “SIM-1” ) is aligned with the primary component carrier associated with the second SIM ( “SIM-2” ) (i.e., determination block 504 = “Yes” ) , or following the primary component carrier alignment in block 506, the processor may determine whether the modem stacks associated with the first and second SIMs are each configured with a secondary component carrier ( “SCC” ) in determination block 602. In some embodiments, a modem stack associated with the first or second SIM may be configured with more than one (e.g., up to four) secondary component carriers.
In response to determining that the modem stacks associated with the first and second SIMs are not each configured with a secondary component carrier (i.e., determination block 602 = ” No” ) , the processor may send uplink capability information for each SIM associated with a modem stack without configured secondary component carrier (s) in block 604. In various embodiments, such uplink capability information may indicate support for carrier aggregation, as well as the particular bands and/or component carrier combinations that may be employed. In  various embodiments, such capability information may be formatted as one or more capability information elements transmitted to the serving eNodeB (i.e., eNodeB of the PCell) .
In determination block 606, the processor may determine whether an RRC connection configuration message is received in response to the uplink capability information. In various embodiments, a received RRC connection configuration message may provide instructions and other information to configure use of an SCC on the modem stack associated with the first or second SIM. So long as no such RRC connection configuration message is received (i.e., determination block 606 = “No” ) , the processor may continue operating without a secondary component carrier configured for communication on at least one SIM in block 608.
In response to determining that an RRC connection configuration message is received in response to the uplink capability information (i.e., determination block 606 = “Yes” ) , the processor may again determine whether the modem stacks associated with the first and second SIMs are each configured with a secondary component carrier determination block 602.
In response to determining that the modem stacks associated with the first and second SIMs are each configured with a secondary component carrier (i.e., determination block 602 = “Yes” ) , the processor may determine whether a configured secondary component carrier is activated for each of the modem stacks associated with the first and second SIMs in determination block 610 (FIG. 6B) .
In response to determining that a configured secondary component carrier is not activated for each of the modems stacks associated with the first and second SIMs (i.e., determination block 610 = “No” ) , the processor may end the method 600. That is, since at least one SIM is not using its configured secondary component carrier (s) , the need for another SIM to align with such configured secondary component carrier (s) is effectively removed.
In response to determining that a configured secondary component carrier is activated for each of the modem stacks associated with the first and second SIMs (i.e., determination block 610 = “Yes” ) , the processor may determine whether the configured secondary component carriers are aligned between the first and second SIMs in determination block 612. That is, the processor may determine whether the wireless device is camped on the same SCell (or set of SCells) for both modem stacks associated with the first and second SIMs. In response to determining that the configured secondary component carriers are aligned between the first and second SIMs (i.e., determination block 612 = “Yes” ) , the processor may end the method 600.
In response to determining that the configured secondary component carriers are not aligned between the first and second SIMs (i.e., determination block 612 = “No” ) , the processor may select a high priority SIM among the first and second SIMs in block 614. In various embodiments, selecting the high priority SIM may be performed in the same or a similar manner to the operations in block 508 of the method 500 as described. As described, the at least one SIM that is not selected as the high priority SIM may be referred to as a low priority SIM.
In block 616, the processor may prompt the modem stack associated with the low priority SIM to send downscaled channel state information for the secondary component carrier to the serving eNodeB. For example, the processor may adjust the value of a channel quality indicator for the secondary component carrier to be sent in an uplink report on the modem stack associated with the low priority SIM. In some embodiments, following receiving downlink information on the secondary component carrier, the processor may prompt the modem stack associated with the low priority SIM to send a NACK in response, regardless of whether the data was successfully received. In this manner, the processor may induce the serving eNodeB to deactivate the secondary component carrier (or set of secondary component carriers) configured for the modem stack associated with the low priority SIM.
In determination block 618, the processor may determine whether a secondary component carrier deactivation message is received for the modem stack associated with the low priority SIM. In various embodiments, the secondary component carrier deactivation message may be a command from the serving eNodeB to deactivate the MAC layer for the secondary component carrier on the modem stack associated with the low priority SIM.
In response to determining that the secondary component carrier deactivation message is not received (i.e., determination block 618 = “No” ) , the processor may again prompt the modem stack associated with the low priority SIM to send downscaled channel state information for the secondary component carrier to the serving eNodeB block 616.
In response to determining that the secondary component carrier deactivation message is received (i.e., determination block 618 = “Yes” ) , the processor may end the method 600.
While the access networks are referenced as E-UTRAN and/or eNodeB (s) , these references are illustrative examples and the various embodiments may be implemented for receiving data in any of a variety of high-speed networks (e.g., HSPA+, DC-HSPA, EV-DO, etc. ) .
Various embodiments (including, but not limited to, the embodiments discussed above with reference to FIGS. 4A-6B) may be implemented in any of a variety of wireless devices, an example 700 of which is illustrated in FIG. 7. With reference to FIGS. 1-7 , the wireless device 700 (which may correspond, for example, to the wireless devices 102 and/or 200 in FIGS. 1A-2) may include a processor 702 coupled to a touchscreen controller 704 and an internal memory 706. The processor 702 may be one or more multicore ICs designated for general or specific processing tasks. The internal memory 706 may be volatile or non-volatile memory, and may also be secure and/or encrypted memory, or unsecure and/or unencrypted memory, or any combination thereof.
The touchscreen controller 704 and the processor 702 may also be coupled to a touchscreen panel 712, such as a resistive-sensing touchscreen, capacitive-sensing touchscreen, infrared sensing touchscreen, etc. The wireless device 700 may have one or more radio signal transceivers 708 (e.g.,
Figure PCTCN2016071460-appb-000002
Wi-Fi, RF radio) and antennas 710, for sending and receiving, coupled to each other and/or to the processor 702. The transceivers 708 and antennas 710 may be used with the above-mentioned circuitry to implement the various wireless transmission protocol stacks and interfaces. The wireless device 700 may include a cellular network wireless modem chip 716 that enables communication via a cellular network and is coupled to the processor. The wireless device 700 may include a peripheral device connection interface 718 coupled to the processor 702. The peripheral device connection interface 718 may be singularly configured to accept one type of connection, or multiply configured to accept various types of physical and communication connections, common or proprietary, such as USB, FireWire, Thunderbolt, or PCIe. The peripheral device connection interface 718 may also be coupled to a similarly configured peripheral device connection port (not shown) . The wireless device 700 may also include speakers 714 for providing audio outputs. The wireless device 700 may also include a housing 720, constructed of a plastic, metal, or a combination of materials, for containing all or some of the components discussed herein. The wireless device 700 may include a power source 722 coupled to the processor 702, such as a disposable or rechargeable battery. The rechargeable battery may also be coupled to the peripheral device connection port to receive a charging current from a source external to the wireless device 700.
Various embodiments (including, but not limited to, the embodiments discussed above with reference to FIGS. 4A and 4B) , may also be implemented within a variety of personal computing devices, an example 800 of which is illustrated in FIG. 8. With reference to FIGS. 1-8, the laptop computer 800 (which may correspond, for example, to the  wireless devices  102, 200 in FIGS. 1A-2) may include a touchpad touch surface 817 that serves as the computer’s pointing device, and thus may receive  drag, scroll, and flick gestures similar to those implemented on wireless computing devices equipped with a touchscreen display and described above. A laptop computer 800 will typically include a processor 811 coupled to volatile memory 812 and a large capacity nonvolatile memory, such as a disk drive 813 of Flash memory. The computer 800 may also include a floppy disc drive 814 and a compact disc (CD) drive 815 coupled to the processor 811. The computer 800 may also include a number of connector ports coupled to the processor 811 for establishing data connections or receiving external memory devices, such as a Universal Serial Bus (USB) or Fire
Figure PCTCN2016071460-appb-000003
connector sockets, or other network connection circuits for coupling the processor 811 to a network. In a notebook configuration, the computer housing includes the touchpad 817, the keyboard 818, and the display 819 all coupled to the processor 811. Other configurations of the computing device may include a computer mouse or trackball coupled to the processor (e.g., via a USB input) as are well known, which may also be used in conjunction with various embodiments.
With reference to FIGS. 1-8, the  processors  702 and 811 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of various embodiments described above. In some devices, multiple processors may be provided, such as one processor dedicated to wireless communication functions and one processor dedicated to running other applications. Typically, software applications may be stored in the  internal memory  706, 812 and 813 before they are accessed and loaded into the  processors  702 and 811. The  processors  702 and 811 may include internal memory sufficient to store the application software instructions. In many devices, the internal memory may be a volatile or nonvolatile memory, such as flash memory, or a mixture of both. For the purposes of this description, a general reference to memory refers to memory accessible by the  processors  702, 811, including internal memory or removable memory plugged into the device and memory within the  processor  702 and 811, themselves.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the steps of various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the order of steps in the foregoing embodiments may be performed in any order. Words such as “thereafter, ” “then, ” “next, ” etc. are not intended to limit the order of the steps; these words are simply used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an” or “the” is not to be construed as limiting the element to the singular.
While the terms “first” and “second” are used herein to describe data transmission associated with a SIM and data receiving associated with a different SIM, such identifiers are merely for convenience and are not meant to limit the various embodiments to a particular order, sequence, type of network or carrier.
The various illustrative logical blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.
The hardware used to implement the various illustrative logics, logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field  programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some steps or methods may be performed by circuitry that is specific to a given function.
In one or more exemplary aspects, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable medium or non-transitory processor-readable medium. The steps of a method or algorithm disclosed herein may be embodied in a processor-executable software module which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor- readable medium and/or computer-readable medium, which may be incorporated into a computer program product.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (30)

  1. A method implemented in a multi-subscriber identity module (SIM) wireless communication device having at least a first SIM and a second SIM associated with a shared radio frequency (RF) resource, comprising:
    detecting a communication activity on a modem stack associated with the first SIM using a first component carrier;
    determining whether a modem stack associated with the second SIM is connected to a network on the first component carrier; and
    performing carrier frequency alignment between the modem stacks associated with the first and second SIMs in response to determining that the modem stack associated with the second SIM is not connected to a network on the first component carrier.
  2. The method of claim 1, wherein performing the carrier frequency alignment comprises:
    determining whether the modem stack associated with the second SIM is operating in an idle mode; and
    in response to determining that the modem stack associated with the second SIM is operating in the idle mode:
    identifying a serving cell for the communication activity on the first SIM; and
    triggering cell reselection to a preset target cell for the second SIM, wherein the preset target cell comprises the serving cell for the communication activity on the first SIM.
  3. The method of claim 1, wherein performing the carrier frequency alignment comprises:
    determining whether the modem stack associated with the second SIM is operating in an idle mode;
    selecting a high priority SIM among the first SIM and the second SIM in response to determining that the modem stack associated with the second SIM is not operating in the idle mode;
    identifying a default low priority SIM based on the selected high priority SIM;
    identifying a serving cell associated with the high priority SIM; and
    prompting a handover of a connection on the default low priority SIM to an intended target cell, wherein the intended target cell comprises the identified serving cell associated with the high priority SIM.
  4. The method of claim 3, wherein prompting the handover of the connection on the default low priority SIM to the intended target cell comprises:
    accessing uplink measurement report data on a modem stack associated with the default low priority SIM; and
    adjusting the accessed uplink measurement report data to indicate poor network conditions of a serving cell of the connection on the default low priority SIM and favorable network conditions of the intended target cell.
  5. The method of claim 3, further comprising:
    determining whether the handover of the connection on the default low priority SIM to the intended target cell was successful; and
    prompting a handover of a connection on the high priority SIM to a switched intended target cell, wherein the switched intended target cell comprises the serving cell of the connection on the default low priority SIM.
  6. The method of claim 5, further comprising:
    determining whether the handover of the connection on the high priority SIM to the switched intended target cell was successful;
    releasing the connection on the default low priority SIM in response to determining that the handover of the connection on the high priority SIM to the switched intended target cell was not successful; and
    triggering cell reselection to a preset target cell for the default low priority SIM, wherein the preset target cell comprises the identified serving cell associated with the high priority SIM.
  7. The method of claim 1, wherein the first component carrier is a primary component carrier associated with the first SIM.
  8. The method of claim 7, further comprising:
    selecting a high priority SIM among the first SIM and the second SIM in response to determining that the modem stack associated with the second SIM is connected to a network on the first component carrier;
    identifying a default low priority SIM based on the selected high priority SIM; and
    disabling carrier aggregation on the modem stack associated with the default low priority SIM.
  9. The method of claim 8, wherein disabling carrier aggregation on the modem stack associated with the default low priority SIM comprises sending uplink capability information to the network indicating a lack of carrier aggregation support.
  10. The method of claim 7, further comprising:
    determining whether the modem stacks associated with the first and second SIMs are each configured with a secondary component carrier in response to determining that the modem stack associated with the second SIM is connected to a network on the first component carrier; and
    in response to determining that the modem stacks associated with the first and second SIMs are each configured with a secondary component carrier:
    determining whether the configured secondary component carriers are activated on the modem stacks associated with the first and second SIMs;
    determining whether an activated secondary component carrier on the modem stack associated with the first SIM matches an activated secondary component carrier on the modem stack associated with the second SIM; and
    performing secondary component carrier alignment between the modem stacks associated with the first and second SIMs in response to determining that the activated secondary component carrier on the modem stack associated with the first SIM does not match the activated secondary component carrier on the modem stack associated with the second SIM.
  11. The method of claim 10, wherein performing the secondary component carrier alignment comprises:
    selecting a high priority SIM among the first SIM and the second SIM;
    identifying a default low priority SIM based on the selected high priority SIM; and
    prompting transmission of downgraded channel state information for an activated secondary component carrier on a modem stack associated with the default low priority SIM,
    wherein the downgraded channel state information is configured to trigger deactivation of the activated secondary component carrier on the modem stack associated with the default low priority SIM.
  12. The method of claim 1, wherein the first SIM and the second SIM are also associated with a shared baseband modem processor.
  13. A wireless communication device, comprising:
    a radio frequency (RF) resource configured to connect to at least a first subscriber identity module (SIM) and a second SIM; and
    a processor coupled to the RF resource and configured with processor-executable instructions to:
    detect a communication activity on a modem stack associated with the first SIM using a first component carrier;
    determine whether a modem stack associated with the second SIM is connected to a network on the first component carrier; and
    perform carrier frequency alignment between the modem stacks associated with the first and second SIMs in response to determining that the modem stack associated with the second SIM is not connected to a network on the first component carrier.
  14. The wireless communication device of claim 13, wherein the processor is further configured with processor-executable instructions to perform the carrier frequency alignment by:
    determining whether the modem stack associated with the second SIM is operating in an idle mode; and
    in response to determining that the modem stack associated with the second SIM is operating in the idle mode:
    identifying a serving cell for the communication activity on the first SIM; and
    triggering cell reselection to a preset target cell for the second SIM, wherein the preset target cell comprises the serving cell for the communication activity on the first SIM.
  15. The wireless communication device of claim 13, wherein the processor is further configured with processor-executable instructions to perform the carrier frequency alignment by:
    determining whether the modem stack associated with the second SIM is operating in an idle mode;
    selecting a high priority SIM among the first SIM and the second SIM in response to determining that the modem stack associated with the second SIM is not operating in the idle mode;
    identifying a default low priority SIM based on the selected high priority SIM;
    identifying a serving cell associated with the high priority SIM; and
    prompting a handover of a connection on the default low priority SIM to an intended target cell, wherein the intended target cell comprises the identified serving cell associated with the high priority SIM.
  16. The wireless communication device of claim 15, wherein the processor is further configured with processor-executable instructions to prompt the handover of the connection on the default low priority SIM to the intended target cell by:
    accessing uplink measurement report data on a modem stack associated with the default low priority SIM; and
    adjusting the accessed uplink measurement report data to indicate poor network conditions of a serving cell of the connection on the default low priority SIM and favorable network conditions of the intended target cell.
  17. The wireless communication device of claim 15, wherein the processor is further configured with proces sor-executable instructions to:
    determine whether the handover of the connection on the default low priority SIM to the intended target cell was successful; and
    prompt a handover of a connection on the high priority SIM to a switched intended target cell, wherein the switched intended target cell comprises the serving cell of the connection on the default low priority SIM.
  18. The wireless communication device of claim 17, wherein the processor is further configured with proces sor-executable instructions to:
    determine whether the handover of the connection on the high priority SIM to the switched intended target cell was successful;
    release the connection on the default low priority SIM in response to determining that the handover of the connection on the high priority SIM to the switched intended target cell was not successful; and
    trigger cell reselection to a preset target cell for the default low priority SIM, wherein the preset target cell comprises the identified serving cell associated with the high priority SIM.
  19. The wireless communication device of claim 13, wherein the first component carrier is a primary component carrier associated with the first SIM.
  20. The wireless communication device of claim 19, wherein the processor is further configured with proces sor-executable instructions to:
    select a high priority SIM among the first SIM and the second SIM in response to determining that the modem stack associated with the second SIM is connected to a network on the first component carrier;
    identify a default low priority SIM based on the selected high priority SIM; and
    disable carrier aggregation on the modem stack associated with the default low priority SIM.
  21. The wireless communication device of claim 20, wherein the processor is further configured with processor-executable instructions to:
    disable carrier aggregation on the modem tack associated with the default low priority SIM by sending uplink capability information to the network indicating a lack of carrier aggregation support.
  22. The wireless communication device of claim 19, wherein the processor is further configured with proces sor-executable instructions to:
    determine whether the modem stacks associated with the first and second SIMs are each configured with a secondary component carrier in response to determining that the modem stack associated with the second SIM is connected to a network on the first component carrier; and
    in response to determining that the modem stacks associated with the first and second SIMs are each configured with a secondary component carrier:
    determine whether the configured secondary component carriers are activated on the modem stacks associated with the first and second SIMs;
    determine whether an activated secondary component carrier on the modem stack associated with the first SIM matches an activated secondary component carrier on the modem stack associated with the second SIM; and
    perform secondary component carrier alignment between the modem stacks associated with the first and second SIMs in response to determining that the activated secondary component carrier on the modem stack associated with the first SIM does not match the activated secondary component carrier on the modem stack associated with the second SIM.
  23. The wireless communication device of claim 22, wherein the processor is further configured with processor-executable instructions to perform the secondary component carrier alignment by:
    selecting a high priority SIM among the first SIM and the second SIM;
    identifying a default low priority SIM based on the selected high priority SIM; and
    prompting transmission of downgraded channel state information for an activated secondary component carrier on a modem stack associated with the default low priority SIM,
    wherein the downgraded channel state information is configured to trigger deactivation of the activated secondary component carrier on the modem stack associated with the default low priority SIM.
  24. The wireless communication device of claim 13, wherein the first SIM and the second SIM are also associated with a shared baseband modem processor.
  25. A wireless communication device, comprising:
    a radio frequency (RF) resource associated with at least a first SIM and a second SIM;
    means for detecting a communication activity on a modem stack associated with the first SIM using a first component carrier;
    means for determining whether a modem stack associated with the second SIM is connected to a network on the first component carrier; and
    means for performing carrier frequency alignment between the modem stacks associated with the first and second SIMs in response to determining that the modem stack associated with the second SIM is not connected to a network on the first component carrier.
  26. A non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a wireless communication device having a radio frequency (RF) resource configured to connect to at least a first subscriber identity module (SIM) and a second SIM to perform operations comprising:
    detecting a communication activity on a modem stack associated with the first SIM using a first component carrier;
    determining whether a modem stack associated with the second SIM is connected to a network on the first component carrier; and
    performing carrier frequency alignment between the modem stacks associated with the first and second SIMs in response to determining that the modem stack associated with the second SIM is not connected to a network on the first component carrier.
  27. The non-transitory processor-readable storage medium of claim 26, wherein the stored processor-executable instructions are configured to cause the processor of the wireless communication device to perform operations such that performing the carrier frequency alignment comprises:
    determining whether the modem stack associated with the second SIM is operating in an idle mode; and
    in response to determining that the modem stack associated with the second SIM is operating in the idle mode:
    identifying a serving cell for the communication activity on the first SIM; and
    triggering cell reselection to a preset target cell for the second SIM, wherein the preset target cell comprises the serving cell for the communication activity on the first SIM.
  28. The non-transitory processor-readable storage medium of claim 26, wherein the stored processor-executable instructions are configured to cause the processor of the wireless communication device to perform operations such that performing the carrier frequency alignment comprises:
    determining whether the modem stack associated with the second SIM is operating in an idle mode;
    selecting a high priority SIM among the first SIM and the second SIM in response to determining that the modem stack associated with the second SIM is not operating in the idle mode;
    identifying a default low priority SIM based on the selected high priority SIM;
    identifying a serving cell associated with the high priority SIM; and
    prompting a handover of a connection on the default low priority SIM to an intended target cell, wherein the intended target cell comprises the identified serving cell associated with the high priority SIM.
  29. The non-transitory processor-readable storage medium of claim 28, wherein the stored processor-executable instructions are configured to cause the processor of the wireless communication device to perform operations such that prompting the handover of the connection on the default low priority SIM to the intended target cell comprises:
    accessing uplink measurement report data on a modem stack associated with the default low priority SIM; and
    adjusting the accessed uplink measurement report data to indicate poor network conditions of a serving cell of the connection on the default low priority SIM and favorable network conditions of the intended target cell.
  30. The non-transitory processor-readable storage medium of claim 28, wherein the stored processor-executable instructions are configured to cause the processor of the wireless communication device to perform operations further comprising:
    determining whether the handover of the connection on the default low priority SIM to the intended target cell was successful; and
    prompting a handover of a connection on the high priority SIM to a switched intended target cell, wherein the switched intended target cell comprises the serving cell of the connection on the default low priority SIM.
PCT/CN2016/071460 2016-01-20 2016-01-20 Systems and methods for performing multiple subscriber identity module (sim) functions over the same carrier frequency on a wireless communication device WO2017124327A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/071460 WO2017124327A1 (en) 2016-01-20 2016-01-20 Systems and methods for performing multiple subscriber identity module (sim) functions over the same carrier frequency on a wireless communication device
CN201680079317.6A CN108886828B (en) 2016-01-20 2016-01-20 System and method for performing multiple Subscriber Identity Module (SIM) functions on a wireless communication device over the same carrier frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/071460 WO2017124327A1 (en) 2016-01-20 2016-01-20 Systems and methods for performing multiple subscriber identity module (sim) functions over the same carrier frequency on a wireless communication device

Publications (1)

Publication Number Publication Date
WO2017124327A1 true WO2017124327A1 (en) 2017-07-27

Family

ID=59361268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071460 WO2017124327A1 (en) 2016-01-20 2016-01-20 Systems and methods for performing multiple subscriber identity module (sim) functions over the same carrier frequency on a wireless communication device

Country Status (2)

Country Link
CN (1) CN108886828B (en)
WO (1) WO2017124327A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109691066A (en) * 2017-11-13 2019-04-26 Oppo广东移动通信有限公司 Processing method and relevant device under data duplication
EP3641425A1 (en) * 2018-10-17 2020-04-22 Samsung Electronics Co., Ltd. Device and method for multi-sim wireless communication
US11140735B2 (en) 2017-11-13 2021-10-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data replication controlling method and related device
EP3833069A4 (en) * 2018-08-01 2021-10-20 Vivo Mobile Communication Co., Ltd. Capacity indication method, and terminal and network-side network element
WO2022020830A1 (en) * 2020-07-21 2022-01-27 Qualcomm Incorporated Techniques for uplink performance optimization in dual carrier operation
EP3914039A4 (en) * 2019-01-18 2022-04-27 Vivo Mobile Communication Co., Ltd. Cell selection or reselection method and device, and terminal
CN114467321A (en) * 2019-10-14 2022-05-10 高通股份有限公司 Managing MSIM concurrent activities
EP3975614A4 (en) * 2019-05-23 2022-06-29 Beijing Xiaomi Mobile Software Co., Ltd. Service handover method and apparatus
CN115150814A (en) * 2021-03-30 2022-10-04 维沃移动通信有限公司 Spectrum allocation method and device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111277998B (en) * 2019-01-18 2021-08-10 维沃移动通信有限公司 Wireless communication method and terminal equipment
US11228899B2 (en) * 2019-06-14 2022-01-18 Asustek Computer Inc. Method and apparatus for multiple-USIM device in a wireless communication system
WO2021000268A1 (en) * 2019-07-02 2021-01-07 北京小米移动软件有限公司 Random access method, apparatus, and storage medium
WO2021012076A1 (en) * 2019-07-19 2021-01-28 Oppo广东移动通信有限公司 Method for solving network standard interference, terminal, network device and storage medium
CN114586469B (en) * 2019-10-15 2024-01-05 华为技术有限公司 Method and device for establishing radio resource control connection
WO2022073169A1 (en) * 2020-10-08 2022-04-14 Qualcomm Incorporated Techniques for optimized new radio cell acquisition in a multi-subscriber identity module mode
US11792712B2 (en) 2021-12-23 2023-10-17 T-Mobile Usa, Inc. Cell reselection priority assignment based on performance triggers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421088A (en) * 2011-06-08 2012-04-18 展讯通信(上海)有限公司 Multi-card multi-standby terminal and synchronization method and device thereof
WO2012168090A1 (en) * 2011-06-08 2012-12-13 St-Ericsson Sa Mobility management in a multi-subscriber identity mobile device
WO2015050889A1 (en) * 2013-10-04 2015-04-09 Qualcomm Incorporated Enhanced system information decoding
CN104780590A (en) * 2013-11-18 2015-07-15 马维尔国际有限公司 Method and device used for dispatching SIM cards in multi-SIM-card system to search network
US20150264640A1 (en) * 2014-03-12 2015-09-17 Marvell World Trade Ltd Device and method for mobile communication

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765824B (en) * 2011-07-14 2017-03-22 美国博通公司 Methods and apparatuses for provision of a flexible time sharing scheme on an unlicensed band of a system
US8886208B2 (en) * 2012-03-19 2014-11-11 Qualcomm Incorporated Method and apparatus of simultaneously monitoring GSM channels
US9351190B2 (en) * 2012-10-15 2016-05-24 Headwater Partners LLC Interference characterization based on scheduling a transmission mode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421088A (en) * 2011-06-08 2012-04-18 展讯通信(上海)有限公司 Multi-card multi-standby terminal and synchronization method and device thereof
WO2012168090A1 (en) * 2011-06-08 2012-12-13 St-Ericsson Sa Mobility management in a multi-subscriber identity mobile device
WO2015050889A1 (en) * 2013-10-04 2015-04-09 Qualcomm Incorporated Enhanced system information decoding
CN104780590A (en) * 2013-11-18 2015-07-15 马维尔国际有限公司 Method and device used for dispatching SIM cards in multi-SIM-card system to search network
US20150264640A1 (en) * 2014-03-12 2015-09-17 Marvell World Trade Ltd Device and method for mobile communication

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109691066A (en) * 2017-11-13 2019-04-26 Oppo广东移动通信有限公司 Processing method and relevant device under data duplication
CN109691066B (en) * 2017-11-13 2020-06-16 Oppo广东移动通信有限公司 Processing method under data replication and related equipment
US11140735B2 (en) 2017-11-13 2021-10-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data replication controlling method and related device
US11903092B2 (en) 2018-08-01 2024-02-13 Vivo Mobile Communication Co., Ltd. Capability indication method, terminal, and network-side network element
EP3833069A4 (en) * 2018-08-01 2021-10-20 Vivo Mobile Communication Co., Ltd. Capacity indication method, and terminal and network-side network element
US11553331B2 (en) 2018-08-01 2023-01-10 Vivo Mobile Communication Co., Ltd. Capability indication method, terminal, and network-side network element
US11330423B2 (en) 2018-10-17 2022-05-10 Samsung Electronics Co., Ltd. Device and method for multi-SIM wireless communication
EP3641425A1 (en) * 2018-10-17 2020-04-22 Samsung Electronics Co., Ltd. Device and method for multi-sim wireless communication
EP3914039A4 (en) * 2019-01-18 2022-04-27 Vivo Mobile Communication Co., Ltd. Cell selection or reselection method and device, and terminal
EP3975614A4 (en) * 2019-05-23 2022-06-29 Beijing Xiaomi Mobile Software Co., Ltd. Service handover method and apparatus
CN114467321A (en) * 2019-10-14 2022-05-10 高通股份有限公司 Managing MSIM concurrent activities
CN114467321B (en) * 2019-10-14 2024-03-26 高通股份有限公司 Managing MSIM concurrent activity
WO2022020830A1 (en) * 2020-07-21 2022-01-27 Qualcomm Incorporated Techniques for uplink performance optimization in dual carrier operation
US11736990B2 (en) 2020-07-21 2023-08-22 Qualcomm Incorporated Techniques for uplink performance optimization in dual carrier operation
CN115150814A (en) * 2021-03-30 2022-10-04 维沃移动通信有限公司 Spectrum allocation method and device
CN115150814B (en) * 2021-03-30 2024-04-23 维沃移动通信有限公司 Spectrum allocation method and equipment

Also Published As

Publication number Publication date
CN108886828B (en) 2021-11-12
CN108886828A (en) 2018-11-23

Similar Documents

Publication Publication Date Title
EP3563609B1 (en) Systems and methods for maintaining service on multiple sims in a wireless communication device operating in a multi-sim multi-standby (msms) mode
US10034320B2 (en) System and methods for performing an adaptive access procedure on a multi-SIM wireless communication device
CN108886828B (en) System and method for performing multiple Subscriber Identity Module (SIM) functions on a wireless communication device over the same carrier frequency
US11825397B2 (en) Techniques for providing and/or applying quality of service in wireless communications
US20180220329A1 (en) System and Methods for Improving Performance in a Multi-SIM Wireless Communication Device Using Voice-Over-Wireless Local Area Network Service
US9648634B2 (en) System and methods for providing a transmission skipping policy to improve performance in a multi-subscriber identity module (SIM) wireless communication device
US9185715B2 (en) Inter-system call switching between co-existence wireless systems
EP3371991B1 (en) Improving support of a virtual subscriber identity module (sim) in a multi-sim wireless communication device
US20180132289A1 (en) Systems and Methods for Improving Support for Data-Oriented Services in a Multi-Subscriber Identity Module (SIM) Wireless Communication Device Having a Designated Data Subscription (DDS)
US20160198352A1 (en) System and Methods for Improving Data Performance Via Deliberate Hybrid Automatic Repeat Request (HARQ) Acknowledgment (ACK) and Fast Radio Link Control (RLC) Non-acknowledgment (NACK) in a Multi-Subscriber Identity Module (SIM) Wireless Communication Device
WO2016191916A1 (en) System and methods for managing a radio resource control (rrc) state in a wireless communication device supporting concurrent radio access technologies
US20180176765A1 (en) Obtaining Multiple Subscription Services from an Embedded Universal Integrated Circuit Card
WO2016054017A1 (en) Reducing attach delay for a multi-sim ue
WO2017011976A1 (en) Component carrier selection for tune-aways in mobile communication devices
US20160021698A1 (en) Dynamic data path switching
US20150245348A1 (en) Apparatus and method for handling a mac entity reset and uplink modulation scheme operation
WO2017140082A1 (en) System and methods for improving performance during radio resource control (rrc) connected state on wireless communication device supporting concurrent radio access technologies
US20170048768A1 (en) Handoff procedures in mobile devices
US20180013462A1 (en) Hs-scch order recovery in multi-subscriber identity module (sim) wireless communication devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885600

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885600

Country of ref document: EP

Kind code of ref document: A1