WO2017124308A1 - 一种ip地址分配方法及设备 - Google Patents

一种ip地址分配方法及设备 Download PDF

Info

Publication number
WO2017124308A1
WO2017124308A1 PCT/CN2016/071393 CN2016071393W WO2017124308A1 WO 2017124308 A1 WO2017124308 A1 WO 2017124308A1 CN 2016071393 W CN2016071393 W CN 2016071393W WO 2017124308 A1 WO2017124308 A1 WO 2017124308A1
Authority
WO
WIPO (PCT)
Prior art keywords
address
network device
plane network
user plane
terminal device
Prior art date
Application number
PCT/CN2016/071393
Other languages
English (en)
French (fr)
Inventor
曹龙雨
张艳平
周润泽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680079387.1A priority Critical patent/CN108476549B/zh
Priority to EP16885581.5A priority patent/EP3402305B1/en
Priority to PCT/CN2016/071393 priority patent/WO2017124308A1/zh
Publication of WO2017124308A1 publication Critical patent/WO2017124308A1/zh
Priority to US16/039,225 priority patent/US10873563B2/en
Priority to US17/106,864 priority patent/US11212252B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • H04L61/5014Internet protocol [IP] addresses using dynamic host configuration protocol [DHCP] or bootstrap protocol [BOOTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5007Internet protocol [IP] addresses
    • H04L61/503Internet protocol [IP] addresses using an authentication, authorisation and accounting [AAA] protocol, e.g. remote authentication dial-in user service [RADIUS] or Diameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5046Resolving address allocation conflicts; Testing of addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/50Address allocation
    • H04L61/5061Pools of addresses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data

Definitions

  • the present invention relates to the field of mobile communications technologies, and in particular, to an IP address allocation method and device.
  • IP Internet Protocol
  • the separation of the control plane of the network function from the user plane is the main trend.
  • the IP address allocation function of the P-GW may be inherited by the control plane device or may be inherited by the user plane device, that is, the control plane device and the user plane device are both May have the ability to assign an IP address. Then, if the control plane device and the user plane network device simultaneously assign an IP address to one UE, the IP address conflict may occur, and there is currently no solution for this.
  • the present application provides an IP address allocation method and device, which are used to solve the technical problem that an IP address conflict occurs when a control plane device and a user plane device simultaneously assign an IP address to a UE.
  • a first IP address allocation method including:
  • the control plane network device receives a session establishment request message, where the session establishment request message is used to establish a session connection for the request of the terminal device;
  • the terminal device allocates an IP address
  • the control plane The network device sends an address assignment indication to the first user plane network device.
  • the control plane network device may determine whether the first user plane network device has the capability to allocate an IP address to the terminal device. If the first user plane network device has the capability to allocate an IP address to the terminal device, the control plane network The device can send an address allocation indication to the first user plane network device, so that it can be clear which device allocates the IP address, and the two devices can simultaneously assign an IP address to a terminal device, thereby avoiding the IP address conflict.
  • the determining whether the first user plane network device can allocate an IP address to the terminal device includes:
  • the control plane network device determines, according to the service capability information, whether the first user plane network device has the capability of assigning an IP address to a service requested by the terminal device.
  • a method of determining whether a first user plane network device can assign an IP address to a terminal device is provided.
  • the method further includes:
  • the control plane network device acquires preset service capability information of the first user plane network device.
  • the control plane network device can obtain the service capability information of the first user plane network device in different manners, which is more flexible.
  • the address allocation indication includes address allocation mode information
  • the address allocation mode information is used to indicate a manner in which the first user plane network device allocates an IP address to the terminal device.
  • the address allocation indication may also carry address allocation mode information, such that the first user plane network device It is very clear which method should be used to assign an IP address to the terminal device, which can effectively reduce the probability of allocation errors.
  • control plane network device obtains the session establishment request message by parsing the session establishment request message The address allocation method information carried.
  • control plane network device can obtain the address allocation mode information through the session establishment request message sent by the terminal device, and the obtained address allocation mode information can more accurately represent the will of the terminal device.
  • the address allocation indication further includes service information requested by the terminal device.
  • the address allocation indication may further include service information requested by the terminal device, so that the first user plane network device allocates an IP address to the terminal device.
  • the address allocation indication further includes indication information, the indication information is used to indicate that the first user plane network device allocates an IP address to the terminal device.
  • the address allocation indication can explicitly indicate that the first user plane network device allocates an IP address to the terminal device, so that the first user plane network device can quickly determine the task to be performed, and the indication manner is obvious and easy to understand.
  • a second address allocation method which includes:
  • the user plane network device receives an address allocation indication of the control plane network device
  • the user plane network device allocates an IP address to the terminal device according to a determined manner.
  • the control plane network device may send an address allocation indication to the first user plane network device to indicate the manner in which the first user plane network device allocates an IP address to the terminal device, so that it can be clear which device is used to allocate the IP address, and the two devices are avoided. Simultaneously assign an IP address to an end device, thereby The IP address conflict is avoided, and the manner in which the first user plane network device allocates an IP address to the terminal device is explicitly indicated, so that the first user plane network device can operate.
  • the method further includes:
  • the user plane network device sends the service capability information of the user plane network device to the control plane network device.
  • the user plane network device may send the service capability information of the user plane network device to the control plane network device, so that the control plane network device determines whether the user plane network device can allocate an IP address to the corresponding terminal device.
  • the address allocation indication further includes indication information, where the indication information is used to indicate the The user plane network device assigns an IP address to the terminal device.
  • the control plane network device can indicate that the user plane network device allocates an IP address to the terminal device by means of an explicit indication, so that the user plane network device can understand the network device in time.
  • the method for assigning an IP address to the terminal device And allocating an IP address to the terminal device according to the determined manner, where the user plane network device allocates an IP address according to the determined manner, where the user plane network device allocates an IP address in the default bearer establishment process including:
  • the user plane network device allocates an IP address to the terminal device according to the service information
  • the user plane network device sends a session response message to the control plane network device, where the session response message carries an IP address.
  • the user plane network device may carry the IP address assigned to the terminal device in the session response message. Through the address allocation mode information, the user plane network device can clearly specify when to assign an IP address to the terminal device.
  • the user plane network device allocates an IP address after the default bearer is established, and the user plane The network device allocates an IP address to the terminal device according to the determined manner, including:
  • the user plane network device receives a request message sent by the terminal device through a user plane link; the request message carries service information requested by the terminal device;
  • the user plane network device allocates an IP address to the terminal device according to the service information
  • the user plane network device sends the IP address to the terminal device by using the user plane link.
  • the user plane network device may allocate an IP address to the terminal device after receiving the request message sent by the terminal device. Through the address allocation mode information, the user plane network device can clearly specify when to assign an IP address to the terminal device.
  • the user plane network device is the terminal according to the service information
  • the device assigns an IP address, including:
  • the user plane network device determines, by using the service information, a server that allocates an IP address to the terminal device;
  • the user plane network device sends an address allocation request message to the server; the address allocation request message is used to request to allocate an IP address to the terminal device;
  • the user plane network device receives an IP address that is sent by the server and is allocated to the terminal device.
  • the user plane network device can determine a server that allocates an IP address to the terminal device, thereby requesting the server to allocate an IP address for the terminal device, and the accuracy is high.
  • Determining, by the service information, the user plane network device to allocate an IP address to the terminal device Server including:
  • the user plane network device determines, by using the service information, that the server that allocates an IP address to the terminal device is a DHCP server;
  • the user plane network device sends an address allocation request message to the server, including:
  • the user plane network device sends the address allocation request message to the DHCP server according to the configured address of the DHCP server.
  • the user plane network device determines, by using the service information, a server that allocates an IP address to the terminal device, including:
  • the user plane network device determines, by using the service information, that the server that allocates an IP address to the terminal is an LNS;
  • the user plane network device sends an address allocation request message to the server, including:
  • the user plane network device establishes a Layer 2 tunneling protocol L2TP link with the LNS according to the configured address of the LNS;
  • the user plane network device sends the address allocation request message to the LNS through the L2TP link.
  • the user plane network device determines, by using the service information, a server that allocates an IP address to the terminal device, including:
  • the user plane network device determines, by using the service information, that the server that allocates an IP address to the terminal device is an AAA server;
  • the user plane network device sends an address allocation request message to the server, including:
  • the user plane network device sends the address allocation request message to the AAA server according to the configured address of the AAA server.
  • the above provides several user plane network devices to assign IP addresses to terminal devices through external servers.
  • the user plane network device can request more external servers and has more resources.
  • the user plane network device can initiate a request to different servers according to the service information, so that the allocation result is more in line with the requirements of the terminal device.
  • a control plane network device including:
  • a receiver configured to receive a session establishment request message, where the session establishment request message is used to establish a session connection for the request of the terminal device;
  • a processor configured to determine, according to the service information requested by the terminal device that is carried in the session establishment request message, and the service capability information that the first user plane network device can provide, whether the first user plane network device can be The terminal device allocates an IP address; if the first user plane network device can allocate an IP address to the terminal device, sends an address allocation indication to the first user plane network device.
  • the processor is configured to:
  • the receiver is further configured to: receive service capability information of the first user plane network device sent by the first user plane network device; or
  • the processor is further configured to: obtain preset service capability information of the first user plane network device.
  • the address allocation indication includes address allocation mode information
  • the address allocation mode information is used to indicate a manner in which the first user plane network device allocates an IP address to the terminal device.
  • the processor is further configured to:
  • the address allocation indication further includes service information requested by the terminal device.
  • the address allocation indication further includes indication information, the indication information is used to indicate that the first user plane network device allocates an IP address to the terminal device.
  • a user plane network device including:
  • a first receiver configured to receive an address allocation indication of the control plane network device
  • a processor configured to determine, according to the address allocation manner information included in the address allocation indication, a manner of assigning an IP address to the terminal device; and assigning an IP address to the terminal device according to the determined manner.
  • the user plane network device further includes a first transmitter, where the first transmitter is configured to:
  • the address allocation indication further includes indication information, where the indication information is used to indicate the The first user plane network device allocates an IP address to the terminal device.
  • the user plane network device further includes a second receiving And the second transmitter; if the terminal device is assigned an IP address in a manner that the user plane network device allocates an IP address after the default bearer setup is completed, the processor is configured to:
  • the second receiver Receiving, by the second receiver, a request message sent by the terminal device by using a user plane link; the request message carries service information requested by the terminal device;
  • the user plane network device further includes a third receiver and a third Transmitter; the processor is used to:
  • the address allocation request message is used to request to allocate an IP address to the terminal device;
  • the processor is used to:
  • Determining, by the service information, that the server that allocates an IP address to the terminal device is a DHCP server;
  • the processor is configured to:
  • the processor is used to:
  • Determining, by the service information, that the server that allocates an IP address to the terminal device is an AAA server
  • a network system including the control plane network device of the fourth aspect and the user plane network device of the fifth aspect.
  • control plane network device comprising means for implementing the method of the first aspect.
  • a seventh aspect there is provided another user plane network device comprising means for implementing the method of the second aspect.
  • another network system including the control plane network device of the sixth aspect and the user plane network device of the seventh aspect.
  • the control plane network device may determine whether the first user plane network device has the capability to allocate an IP address to the terminal device. If the first user plane network device has the capability to allocate an IP address to the terminal device, the control plane network The device can send an address allocation indication to the first user plane network device, so that it can be clear which device allocates the IP address, and the two devices can simultaneously assign an IP address to a terminal device, thereby avoiding the IP address conflict.
  • FIG. 1 is a first network architecture diagram of separating a user plane from a control plane in an EPS system according to an embodiment of the present invention
  • FIG. 2 is a second network architecture diagram of separating a user plane from a control plane in an EPS system according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a method for allocating an IP address according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for allocating a second IP address according to an embodiment of the present invention
  • FIG. 5 is a first flowchart of allocating an IP address by a DGW according to an embodiment of the present invention
  • FIG. 6 is a second flowchart of allocating an IP address by a DGW according to an embodiment of the present invention.
  • FIGS. 7A-7B are schematic structural diagrams of a control plane network device according to an embodiment of the present invention.
  • FIGS. 8A-8D are schematic structural diagrams of a user plane network device according to an embodiment of the present invention.
  • FIG. 9 is a structural block diagram of a control plane network device according to an embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a user plane network device according to an embodiment of the present invention.
  • the techniques described herein may be used in various communication systems, such as LTE systems, 4.5G systems, or 5G systems, as well as other such communication systems or evolved systems that will emerge in the future.
  • the technical solution provided in this paper is not only applicable to the 3rd Generation Partnership Project (3GPP) access method, but also applicable to the control plane and user plane in the non-3GPP (Non-3GPP) access mode. Separation situation.
  • a terminal device is a device that provides voice and/or data connectivity to a user, such as a package. Includes a handheld device with wireless connectivity or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a Radio Access Network (RAN) to exchange voice and/or data with the RAN.
  • the terminal device may include a UE, a wireless terminal device, a mobile terminal device, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile Station, a Remote Station, and a Pickup Station.
  • Access Point AP
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, etc.
  • a mobile phone or "cellular" phone
  • a computer with a mobile terminal device a dedicated terminal device in NB-IoT
  • a portable, pocket, handheld, computer built-in or in-vehicle mobile device For example, Personal Communication Service (PCS) phones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistants (PDAs), etc. .
  • PCS Personal Communication Service
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDAs Personal Digital Assistants
  • Network devices may include control plane network devices and user plane network devices.
  • the control plane network device may include, for example, a Control Plane Gateway (CGW), or, in the future.
  • CGW Control Plane Gateway
  • MME Mobility Management Entity
  • CGW CGW
  • MME Mobility Management Entity
  • CGW CGW
  • the control plane network device may include, for example, a control plane network element of the P-GW, for example, the network element is referred to as a Control Plane P-GW (PGW-C).
  • PGW-C Control Plane P-GW
  • PGW-C Control Plane P-GW
  • the user plane network device may include, for example, a User Plane Gateway or a user plane of a down-shifted (or distributed) deployment.
  • a gateway called a Distributed Gateway (DGW)
  • DGW Distributed Gateway
  • the user plane network device may include, for example, a user plane function network element of the P-GW, for example, the network element is referred to as a User Plane P-GW (PGW-U), or Other possible network devices for implementing the functions of the user plane may also be included.
  • PGW User Plane P-GW
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more.
  • the character "/”, unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • the network architecture applied in the embodiment of the present invention is an architecture in which the control plane and the user plane are separated, which will be described below with reference to the accompanying drawings.
  • the embodiment of the present invention when the terminal device accesses the public mobile network or a specific application-specific network (such as an Internet Service Provider (ISP) or an enterprise network, etc.), the embodiment of the present invention mainly solves the problem. It is a problem of assigning an IP address to a terminal device in this scenario.
  • ISP Internet Service Provider
  • the network architecture of the embodiment of the present invention is described below.
  • the Evolved Packet System (EPS) is taken as an example, but the embodiment of the present invention is not limited to this system.
  • the DGW architecture is based on the idea that the control plane function of the network is separated from the user plane function, and an enhanced network architecture proposed in the existing EPS network architecture.
  • the DGW architecture includes a CGW and a User Plane Gateway (UGW).
  • the CGW is a centralized control plane gateway, which can be implemented in two forms: (1) Integrating the existing 3GPP defined EPS network Serving Gateway (S-GW) and Packet Data Network (Packet Data Network)
  • S-GW 3GPP defined EPS network Serving Gateway
  • Packet Data Network Packet Data Network
  • the network element of the control plane function of the Gateway, P-GW is as shown in FIG. 1; (2) the control plane function (Control Plane S-GW) of the existing S-GW and the existing P-GW are respectively implemented.
  • Two independent network elements of the Control Plane P-GW for example, a network element that implements the control plane function of the existing S-GW is called a Control Plane S-GW (Control Plane S-GW), which will be implemented.
  • the network element of the control plane function of the existing P-GW is called a Control Plane P-GW, as shown in FIG. 2 .
  • the CGW can be used to specifically handle control plane signaling in an EPS network, and can implement functions such as mobility management, session management, address management, path management, and billing management.
  • the CGW realizes the control and management of user plane data processing through interaction with UGW.
  • PGW-C is the control plane function entity of P-GW, which inherits the functions of P-GW control plane, such as billing strategy and control.
  • UGW is a distributed user plane gateway.
  • UGW also has two implementation forms: (1) the network element integrating the S-GW and P-GW user plane functions in the existing EPS network. As shown in FIG. 1; (2) respectively implementing two user plane functions (User Plane S-GW) of the existing S-GW and the user plane function (User Plane P-GW) of the existing P-GW.
  • An independent network element for example, a network element that implements the user plane function of the existing S-GW is called a User Plane S-GW (User Plane S-GW), and a network that implements the user plane function of the existing P-GW.
  • the element is called User Plane P-GW, as shown in Figure 2.
  • the UGW is used to specifically process user plane data in the EPS network, and can implement functions such as route forwarding, packet inspection, packet statistics, and service quality execution.
  • the UGW implements processing of user plane data under the control and management of the CGW.
  • UGW can also be called DGW, considering the characteristics of UGW's distributed deployment.
  • the PGW-U is a user function entity of the P-GW, and inherits the P-GW user plane function, such as billing information statistics.
  • FIG. 1 is a network architecture diagram when both CGW and UGW are their first implementation forms.
  • the UE is connected to an Evolved Universal Mobile Telecommunications System Territorial Radio Access Network (E-UTRAN) through a Uu interface
  • E-UTRAN Evolved Universal Mobile Telecommunications System Territorial Radio Access Network
  • the DGW is connected to the DGW, the CGW, and the DGW through an S1-U interface.
  • the interface between the two is an Sx interface
  • the DGW is connected to the Global System for Mobile Communication/Enhanced Data Rate for GSM Evolution Radio Access Network (GERAN) and the UMTS terrestrial network through the S12 interface.
  • GERAN Global System for Mobile Communication/Enhanced Data Rate for GSM Evolution Radio Access Network
  • UMTS Territorial Radio Access Network E-UTRAN connects to the MME through the S1-MME interface, and the MME connects to the CGW through the S11 interface.
  • the MME connects to the Serving General Packet Radio Service Support Node (SGSN) through the S3 interface, and the MME connects to the Home Subscriber Server (HSS) through the S6a interface, and the CGW connects the policy and charging rules through the Gx interface.
  • the Policy and Charging Rules Function (PCRF) the PCRF is connected to the application server or the packet data network through the Rx interface (for example, the application server is used as an example).
  • the application server may include an IP Multimedia Subsystem (IMS). Packet Switching Service (PSS), etc.
  • IMS IP Multimedia Subsystem
  • PSS Packet Switching Service
  • the interface between the CGW and the DGW, the interface between the CGW and other devices, and the interface between the DGW and other devices are only examples in FIG. 1, and other interfaces may also be used.
  • FIG. 2 a network architecture diagram is shown when both CGW and UGW are in their respective second implementation forms.
  • the UE is connected to the E-UTRAN through the Uu interface
  • the E-UTRAN is connected to the SGW-U through the S1-U interface
  • the interface between the SGW-U and the SGW-C is the Sxa interface
  • the SGW-U is connected to the GERAN through the S12 interface.
  • E-UTRAN connects to the MME through the S1-MME interface
  • the MME connects to the SGW-C through the S11 interface
  • the SGW-C connects to the PGW-C through the S5-C interface
  • the PGW-C connects to the PCRF through the Gx interface
  • the PGW-C passes the Sxb interface.
  • Connect to the PGW-U, and the PCRF connects to the application server or the packet data network through the Rx interface (for example, the application server in FIG. 2)
  • the PGW-U connects to the application server or the packet data network through the SGi interface (for example, the application server is shown in FIG. 2), for example.
  • the application server may include an IMS or a PSS or the like.
  • a first IP address allocation method is provided, and the process of the method is described as follows.
  • Step 301 The control plane network device receives a session establishment request message, where the session establishment request message is used to establish a session connection for the request of the terminal device.
  • Step 302 The control plane network device determines, according to the service information requested by the terminal device that is carried in the session establishment request message, and the service capability information that the first user plane network device can provide, whether the first user plane network device can allocate the IP address to the terminal device. address;
  • Step 303 If the first user plane network device can allocate an IP address to the terminal device, the control plane network device sends an address allocation indication to the first user plane network device.
  • control plane network device determines that the first user plane network device cannot allocate an IP address to the terminal device, the control plane network device may not instruct the first user plane network device to allocate an IP address for the terminal device, in which case the control plane network For example, the device can assign an IP address to the terminal device by itself.
  • a second IP address allocation method is provided, and the process of the method is described as follows.
  • Step 401 The user plane network device receives an address allocation indication of the control plane network device.
  • Step 402 The user plane network device determines, according to the address allocation manner information included in the address allocation indication, a manner of assigning an IP address to the terminal device.
  • Step 403 The user plane network device allocates an IP address to the terminal device according to the determined manner.
  • FIG. 3 and Figure 4 show the corresponding methods, which are described below.
  • both FIG. 3 and FIG. 4 can be implemented according to the architecture in FIG. 1.
  • both FIG. 3 and FIG. 4 can be implemented according to the architecture in FIG. 2.
  • the following FIG. 3 and FIG. 4 both rely on the architecture in FIG. Implementation is introduced as an example.
  • FIG. 3 and FIG. 4 are implemented by the architecture in FIG. 2, the CGW and the DGW in FIG. 5 are replaced by PGW-C and PGW-U, respectively, and step 1 in FIG. 5 is replaced by SGW-C.
  • Sent to PGW-C, step 0 in Figure 5 is replaced by SGW-C to PGW-C, the other steps are similar, so no more details.
  • the CGW needs to know the service capability information that the DGW can provide.
  • the service capability information that the DGW can provide may include which services the DGW can allocate IP addresses for, for example, the terminal device requests the service type 1. If the DGW can allocate the IP address for the service type 1, the DGW may allocate the IP address for the service type 1.
  • the CGW can obtain the service capability information of the DGW in different ways. Several possible ways are described below.
  • the first way the DGW sends the service capability information that can allocate the IP address to the CGW.
  • the SGW interface (the Sx interface is the interface used between the CGW and the DGW) is generally initiated to the CGW.
  • the DGW may send an Sx setup request message to the CGW.
  • the DGW may carry the service capability information in the Sx setup request message.
  • a field may be added in the Sx setup request message to indicate the DGW.
  • Service capability information for example, the field may be an IP allocation capability.
  • the CGW may save the DGW identifier carried in the Sx setup request message and the IP allocation capability carried in the Sx setup request message, and may reply the SGW with the Sx setup request response (Sx setup Response) message. In this way, the CGW knows the service capability information of the DGW.
  • the DGW may also send the service capability information to the CGW through an event report message.
  • the DGW may carry the service capability information of the DGW in one or several Event report messages when sending the Event report message to the CGW.
  • a field may be added to the Event report message.
  • the service capability information used to indicate the DGW, for example, the field may be an IP allocation capability.
  • the IP allocation capability may be used to indicate the address pool information of the APN and its associated external server (server) or DGW local, or may also include other indication information indicating that the DGW has the capability of assigning an IP address.
  • the second method is: pre-configuring the service capability information of the DGW in the CGW.
  • the service capability information of the DGW can be configured on the CGW by means of Operation and Management (OAM).
  • OAM Operation and Management
  • the service capability information configured on the CGW includes:
  • the first type configures the service information supported by the DGW on the CGW and whether the DGW supports the IP address allocation information of the service information. Then, the CGW can determine, according to the service information requested by the terminal device and the service capability information of the locally saved DGW, whether the DGW has the service capability of assigning an IP address to the service information requested by the terminal device, that is, the CGW can search for the service capability information of the locally saved DGW. It is determined whether the service information requested by the terminal device has a DGW capable of assigning an IP address to it.
  • the second type is to configure the service information or the service area identifier corresponding to the enterprise network on the CGW (for example, if the enterprise network service is specified, the DGW allocates the IP address). Then, the CGW may determine, according to the service information requested by the terminal device, whether the service initiated by the terminal device is an enterprise network service, or the CGW may be based on location information of the terminal device (such as a cell identifier (Cell ID), or a base station identifier (eNB ID), etc.) Determining whether the terminal device accesses the private network of the enterprise (that is, determining whether the cell where the terminal device resides is a serving cell of the enterprise network, or determining whether the base station to which the terminal device is connected is a base station serving an enterprise network), and Based on the foregoing determination result, it is determined whether the DGW needs to be instructed to allocate an IP address to the terminal device.
  • Cell ID cell identifier
  • eNB ID base station identifier
  • the terminal device accesses the private network of the enterprise, it is determined that the DGW is assigned an IP address for the terminal device, and if the terminal device is determined to be accessed. It is not the private network of the enterprise, it is determined that the CGW allocates an IP address for the terminal device, that is, does not instruct the DGW to allocate an IP address for the terminal device, and the like.
  • the service information requested by the terminal device may include an Access Point Name (APN) requested by the terminal device, where the APN may be used to indicate a service type, and may also include other service-related information requested by the terminal device.
  • APN Access Point Name
  • the service capability information of the DGW may include the capability information that the DGW allocates IP to the APN, for example, may indicate which APNs the DGW can allocate IP addresses, and may also include other service-related capability information of the DGW.
  • the terminal device sends an attach request or a PDN connection setup request message to the access network device (for example, the base station), and the access network device establishes an attach request or a PDN connection.
  • the request message is sent to the MME, and the MME can authenticate the terminal device. If the authentication is passed, the MME can initiate a session establishment process to the core network device. For example, the MME can send a session establishment request message to the CGW (the process in FIG. 5 only An arrow is used to indicate that the CGW receives the session establishment request message, and the access network device and the MME are not shown.
  • the session establishment request message may carry the APN, the protocol configuration option (PCO), and the location of the terminal device. Information, etc.
  • the APN carried in the session establishment request message can be used.
  • the PCO may include an allocation manner of the IP address requested by the terminal device, that is, an address allocation mode information for allocating an IP address to the terminal device.
  • the location information of the terminal device may include at least one of an identifier of a cell where the terminal device resides, a Tracking Area Identifier (TAI), and an identifier of a base station to which the terminal device accesses, for example, a cell where the terminal device resides.
  • the identifier of the base station to which the terminal device accesses may include the eNB ID of the base station to which the terminal device accesses the E-UTRAN Cell Global Identifier (ECGI).
  • the embodiment of the present invention focuses on the problem of IP address allocation. Therefore, for the parameter information included in the PCO, the embodiment of the present invention only focuses on the address allocation mode information, and does not describe other parameter information included in the PCO.
  • the address allocation mode information can be implemented by the Address Allocation Preference included in the PCO.
  • the address Allocation Preference can generally include two values, namely, IP address allocation via Non-Access Stratum signaling and the allocation of the Internet Protocol version 4 address through Dynamic Host Configuration Protocol version 4 (IPv4 address). Allocation via DHCPv4).
  • the value of the address Allocation Preference is IP address allocation via Non-Access Stratum signaling, it indicates that when the terminal device attaches to the network, the network device allocates an IP address to the terminal device in the process of establishing a default bearer for the terminal device, if Address
  • the value of the Allocation Preference is IPv4 address allocation via DHCPv4, which indicates that the network device allocates IP to the terminal device after establishing a default procedure for the terminal device.
  • the CGW determines whether the DGW has the IP allocation capability of the APN requested by the terminal device based on the APN carried in the session establishment request message and the service capability information of the locally saved DGW, that is, whether the terminal device can be assigned an IP address.
  • the CGW needs to select a DGW for the terminal device to provide services for the terminal device after receiving the session establishment request.
  • the CGW needs to determine whether the selected DGW has the terminal device. The IP allocation capability of the requested APN.
  • the CGW may consider various factors when selecting the DGW. For example, the location information of the terminal may be taken as a consideration, and the service type requested by the terminal device, the current load of the DGW, At least one of the information that the DGW has, such as whether the DGW supports the deep packet parsing capability, and the like, and other information may also be considered, which is not limited by the embodiment of the present invention.
  • the CGW determines that the DGW allocates an IP address for the terminal device, and the CGW sends an address allocation indication to the DGW.
  • the address allocation indication may include address allocation mode information, where the address allocation mode information may be used to indicate a manner in which the DGW allocates an IP address to the terminal device.
  • the address allocation mode information is obtained by the CGW from the session establishment request message sent by the terminal device.
  • the address allocation indication may further include indication information, where the indication information may be used to indicate that the DGW allocates an IP address for the terminal device.
  • the embodiment of the present invention does not limit the specific manner of the address allocation indication, as long as the DGW can determine whether the DGW allocates an IP address for the terminal device by using the address allocation indication.
  • the address allocation indication may be implemented by some existing messages, for example, by using an Sx interface message, and the DGW may determine whether the DGW allocates an IP address to the terminal device by using the existing cell in the address allocation indication, or the DGW. It is also possible to determine whether the DGW allocates an IP address to the terminal device by using the newly added cell in the address allocation indication.
  • a letter specifically for indicating whether the DGW allocates an IP address to the terminal device may be added to the address allocation indication. Yuan, and so on.
  • two examples are given below to introduce different implementations of the address allocation indication.
  • the first mode if the CGW determines that the DGW allocates an IP address to the terminal device, the CGW sends a terminal device address allocation indication to the DGW.
  • the address allocation indication may carry the service information requested by the terminal device (including, for example, an APN).
  • the address allocation indication may further carry address allocation mode information (including, for example, a PCO).
  • the address allocation indication may further carry indication information, where the indication information is represented, for example, as an IP allocation indication.
  • the indication information may be used to instruct the DGW to allocate an IP address to the terminal device.
  • the address allocation indication can be implemented by the Sx interface request message, and of course, by other possible messages.
  • the CGW may send the APN to the DGW without transmitting the PCO and the indication information, that is, the address allocation indication does not carry the address allocation mode information and the indication information.
  • the DGW After the DGW receives the address allocation indication sent by the CGW, if the address allocation indication carries the APN, the PCO, and the indication information, the DGW knows that the APN and the address allocation indication carried by the address allocation indication are that the IP address is assigned by the terminal device. The terminal device is assigned an IP address in the manner indicated by the Address Allocation Preference in the PCO. If the PCO and the address allocation indication are not carried in the address allocation indication, the DGW knows that the terminal device is not assigned an IP address by itself, so that the DGW does not assign an IP address to the terminal device, thereby avoiding IP address conflict.
  • the second mode if the CGW determines that the DGW allocates an IP address to the terminal device, the CGW may send an address allocation indication to the DGW.
  • the address allocation indication may carry the service information requested by the terminal device (including, for example, an APN).
  • the address allocation indication may further carry address allocation mode information (including, for example, a PCO), where the address allocation indication may be implemented by, for example, an Sx interface request message, or may be implemented by other possible messages.
  • the CGW may send the APN to the DGW without transmitting.
  • the PCO that is, the address allocation indication does not carry the address allocation mode information.
  • the DGW After the DGW receives the address allocation indication sent by the CGW, if the APN and the PCO are carried in the address allocation indication, the DGW knows that the APN in the address allocation indication knows that the IP address is allocated by the terminal device, and then according to the Address Allocation Preference in the PCO. The way of indicating is to assign an IP address to the terminal device. If the PCO is not carried in the address allocation indication, the DGW knows that the terminal device is not assigned an IP address by itself, so that the DGW does not assign an IP address to the terminal device and avoids IP address conflict.
  • the CGW may carry other possible messages in the address allocation indication to indicate the DGW, which is not limited in the embodiment of the present invention.
  • the Sx interface request message mentioned in the step 3 may be a session establishment request message of the Sx interface, or may be a bearer setup request message of the Sx interface, or may be other possible request messages, such as session management. Request message, etc.
  • the DGW receives the address allocation indication of the CGW. If the DGW allocates an IP address to the terminal device, the DGW allocates an IP address to the terminal device according to the manner indicated by the Address Allocation Preference in the PCO.
  • the DGW may allocate an IP address to the terminal device and send the CGW to the CGW.
  • the IP address to be assigned is carried in the Sx interface request response message (for example, as an example).
  • the value of the Address Allocation Preference is IPv4 address allocation via DHCPv4, it is used to indicate the default bearer establishment of the DGW. After the IP address is assigned to the terminal device, the DGW temporarily does not assign an IP address to the terminal device. After the default bearer is established, the terminal device sends a request message to the DGW, and the DGW can receive the request message after receiving the request message. Then assign an IP address to the terminal device.
  • the DGW can request the HSS to obtain the assigned IP address from the HSS, or the DGW can allocate an IP address to the terminal device based on the local address pool, that is, the local address pool can be obtained.
  • An IP address is selected as the IP address assigned to the terminal device.
  • the DGW can assign an IP address to the terminal device through an external mechanism.
  • the so-called external mechanism may mean that the DGW sends a request to an external server, requesting the external server as the terminal device. After the IP address is assigned to the terminal device, the external server sends the assigned IP address to the DGW, so that the DGW completes the process of assigning the IP address to the terminal device through an external mechanism.
  • the DGW can allocate an IP address to the terminal device through different external mechanisms.
  • the dynamic host configuration protocol (DHCP) mechanism can be used to assign an IP address to the terminal device, or the remote authentication service can be performed through the dial-up user (
  • the Remote Authentication Dial In User Service (RADIUS) mechanism allocates an IP address to the terminal device, or assigns an IP address to the terminal device through the Layer 2 Tunneling Protocol (L2TP) mechanism.
  • L2TP Layer 2 Tunneling Protocol
  • the DGW may send an address allocation request message to the DHCP server (in general, the address of the DHCP server may be configured in the DGW), and the address allocation request message is used to request DHCP.
  • the server allocates an IP address to the terminal device, and the DHCP server can assign an IP address to the terminal device after receiving the address allocation request message, and the DHCP server can send the assigned IP address to the DGW.
  • the DGW may send an address allocation request message to the Authentication, Authorization, and Accounting (AAA) server (in general, the address of the AAA server may be The AAA server can allocate an IP address to the terminal device, and the AAA server can send the assigned IP address to the DGW.
  • AAA Authentication, Authorization, and Accounting
  • the DGW can be based on the L2TP Network Server (LNS).
  • LNS L2TP Network Server
  • An L2TP link is established between the address and the LNS (in general, the address of the LNS can be configured in the DGW).
  • the DGW can obtain the IP address through the established L2TP link.
  • the DGW can perform a routine bearer establishment process, such as installing a bearer context delivered by the CGW, in addition to assigning an IP address to the terminal device.
  • the CGW may allocate an IP address to the terminal device, and the DGW does not allocate an IP address to the terminal device, but only performs a normal bearer establishment process, such as installing a bearer context delivered by the CGW. .
  • the DGW sends an Sx interface request response message to the CGW. If the DGW allocates an IP address to the terminal device, and the value of the Address Allocation Preference is an IP address allocation via NAS signaling, the DGW is carried as a terminal device in the Sx interface request response message. The assigned IP address. If the DGW allocates an IP address to the terminal device, and the value of the Address Allocation Preference is the IPv4 address allocation via DHCPv4, the DGW carries an empty field for carrying the IP address in the Sx interface request response message (for example, it can be carried to indicate the IP address. 0:0:0:0 Field).
  • the CGW is responsible for allocating an IP address, that is, the CGW does not instruct the DGW to allocate an IP address to the terminal device, that is, the CGW does not send an address allocation indication to the DGW, the Sx interface request response message does not carry the IP address of the terminal device.
  • the CGW may send the IP address to the MME, and the MME sends the IP address to the terminal device through the access network device.
  • the DGW allocates an IP address to the terminal device and the value of the Address Allocation Preference is IPv4 address allocation via DHCPv4 is emphasized.
  • the DGW receives the request message sent by the terminal device through the user plane link (the terminal device is also not shown in FIG. 6, and the request message is only illustrated by an arrow).
  • the DGW temporarily does not assign an IP address to the terminal device, and the Sx request message sent by the DGW to the CGW carries an empty field for carrying the IP address.
  • the terminal device needs to send the request message again to request the IP address (the request message may be, for example, a DHCP request message or other possible request message), and the request message may carry the service requested by the terminal device.
  • the information may carry the APN requested by the terminal device, and the terminal device may directly send the request message to the DGW through the user plane link (such as the link indicated by the dotted arrow in FIG. 1) without going through a device such as a CGW.
  • the DGW allocates an IP address to the terminal device according to the service information carried in the request message.
  • the DGW can allocate an IP address to the terminal device through an external mechanism.
  • the DGW allocates an IP address to the terminal device through an external mechanism. Similar to the description in Step 4 in Example 1, the terminal device can also be assigned an IP address through a different external mechanism such as a DHCP mechanism, a RADIUS mechanism, or an L2TP mechanism. After receiving the request message, the DGW can determine the manner in which the IP address is allocated to the terminal device by parsing the service information carried in the request message.
  • the DGW may determine that the server that allocates the IP address to the terminal device is a DHCP server, and the address of the DHCP server.
  • the DGW may be pre-configured in the DGW, and the DGW may send an address allocation request message to the DHCP server according to the address of the DHCP server to request the DHCP server to allocate an IP address for the terminal device.
  • the DHCP server may allocate an IP address to the terminal device and send the assigned IP address to the DGW.
  • the DGW may determine that the server that allocates the IP address to the terminal device is an AAA server, and the address of the AAA server may be pre-configured in the DGW, and the DGW may be configured according to the AAA server.
  • the address sends an address allocation request message to the AAA server to request the AAA server to assign an IP address to the terminal device.
  • the AAA server may allocate an IP address to the terminal device and send the allocated IP address to the DGW.
  • the DGW may determine that the server that allocates the IP address to the terminal device is an LNS, and the address of the LNS may be pre-configured in the DGW, and the DGW may use the LNS address and the LNS.
  • a link is established, and an address allocation request message is sent to the LNS server through the established link to request the LNS to allocate an IP address to the terminal device.
  • the LNS can allocate an IP address to the terminal device, and can send the assigned IP address to the DGW through the established link.
  • the DGW sends the assigned IP address to the terminal device through the user plane link.
  • the DGW can directly send the assigned IP address to the terminal device through the user plane link without going through a device such as a CGW.
  • the executor of the IP address allocation may be clarified for different network scenarios, that is, the CGW and the DGW may determine, by negotiation, the IP address of the terminal device to avoid the IP address conflict, and The CGW can also undertake part of the work of assigning IP addresses, reducing the burden on the DGW.
  • an IP address is allocated through a local address pool
  • a CGW is connected to multiple DGWs, it may be necessary to configure more IP addresses in the local address pool of the CGW, so as to satisfy the CGW allocation requirement.
  • the requirements for the CGW are relatively high. If the DGW is responsible for some IP address allocation work, the pressure on the CGW can be alleviated, and the operation and maintenance cost of the CGW can be saved.
  • a first control plane network device which may include a receiver 701 and a processor 702.
  • the processor 702 may include a central processing unit (CPU) or an application specific integrated circuit (ASIC), and may include one or more integrated circuits for controlling program execution, and may include using a field programmable gate array.
  • a hardware circuit developed by a Field Programmable Gate Array (FPGA) may include a baseband chip.
  • the receiver 701 can be used for network communication with an external device.
  • control plane network device may further include a transmitter 703.
  • the transmitter 703 can be used for network communication with an external device.
  • the transmitter 703 and the receiver 701 may be the same physical module, for example, may be a physical module capable of implementing a transceiving function, such as a transceiver, or the transmitter 703 and the receiver 701 may be separate physical modules.
  • transmitters 703 and receivers 701 can be coupled to the processor 702 via a bus (as exemplified by Figures 7A and 7B), or can be coupled to the processor 702 via dedicated connection lines, respectively.
  • the code corresponding to the method shown above is solidified into the chip, so that the chip can perform the method shown in the foregoing FIG. 3-6 during operation.
  • How to design and program the processor 702 is a technique well known to those skilled in the art, and details are not described herein.
  • the control plane network device may be configured to perform the method described in the foregoing FIG. 3-6, and may be, for example, a control plane network device as described above, such as a CGW or a PGW-C as described above. Therefore, for the functions and the like implemented by the units in the control plane network device, reference may be made to the description of the previous method part, and details are not described herein.
  • an embodiment of the present invention provides a first user plane network device, where the user plane network device may include a first receiver 801 and a processor 802.
  • the processor 802 may include a CPU or an ASIC, may include one or more integrated circuits for controlling program execution, may include hardware circuits developed using an FPGA, and may include a baseband chip.
  • the first receiver 801 can be used for network communication with an external device.
  • the user plane network device may further include a first transmitter 803, where the first transmitter 803 can be used for network communication with an external device.
  • the user plane network device may further include a second receiver 804 and a second transmitter 805, where the second receiver 804 and the second transmitter 805 may be used for network communication with an external device.
  • the user plane network device may further include a third receiver 806 and a third transmitter 807, where the third receiver 806 and the third transmitter 807 may be used for network communication with an external device.
  • transmitters and receivers can be connected to the processor 802 via a bus (both in FIGS. 8A-8D as an example), or can be connected to the processor 802 via dedicated connection lines, respectively.
  • the code corresponding to the method shown above is solidified into the chip, so that the chip can perform the method shown in the foregoing FIG. 3-6 during operation.
  • How to design and program the processor 802 is a technique well known to those skilled in the art, and details are not described herein.
  • the user plane network device may be configured to perform the method described in the foregoing FIG. 3-6, and may be, for example, a user plane network device as described above, such as a DGW or a PGW-U as described above. Therefore, for the functions and the like implemented by the units in the user plane network device, reference may be made to the description of the previous method part, and details are not described herein.
  • an embodiment of the present invention provides a second control plane network device, where the control plane network device may include a receiving module 901 and a processing module 902.
  • the control plane network device may further include a sending module 903.
  • the physical device corresponding to the sending module 903 may be the transmitter 703 in FIG. 7B
  • the physical device corresponding to the processing module 902 may be the processor 702 in FIG. 7A and FIG. 7B
  • the physical device corresponding to the receiving module 901 may be It is the receiver 701 in FIGS. 7A and 7B.
  • the control plane network device may be configured to perform the method described in the foregoing FIG. 3-6, and may be, for example, a control plane network device as described above, such as a CGW or a PGW-C as described above. Therefore, for the functions implemented by the units in the control plane network device, reference may be made to the description of the previous method part. Said, not much to repeat.
  • an embodiment of the present invention provides a second user plane network device, where the user plane network device may include a receiving module 1001 and a processing module 1002.
  • the user plane network device may further include a sending module 1003.
  • the receiving module 1001 can implement communication with multiple external devices.
  • the physical device corresponding to the receiving module 1001 can include the first receiver 801 in FIGS. 8A-8D and the second in FIG. 8C-8D.
  • the physical device corresponding to the processing module 1002 may be the processor 802 in FIG. 8A-8D
  • the physical device corresponding to the sending module 1003 may include a figure. 8B - at least one of the first transmitter 803 in FIG. 8D, the second transmitter 805 in FIGS. 8C-8D, and the third transmitter 807 in FIG. 8D.
  • the user plane network device may be configured to perform the method described in the foregoing FIG. 3-6, and may be, for example, a user plane network device as described above, such as a DGW or a PGW-U as described above. Therefore, for the functions and the like implemented by the units in the user plane network device, reference may be made to the description of the previous method part, and details are not described herein.
  • the control plane network device may determine whether the first user plane network device has the capability to allocate an IP address to the terminal device. If the first user plane network device has the capability to allocate an IP address to the terminal device, the control plane network The device can instruct the first user plane network device to allocate an IP address to the terminal device, so that it can be clear which device is used to allocate the IP address, and the two devices can simultaneously assign an IP address to a terminal device, thereby avoiding the IP address conflict.
  • the disclosed apparatus and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit or unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be electrical Sexual or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to implement the embodiments of the present invention.
  • the functional units in the embodiments of the present invention may be integrated into one processing unit, or each unit may also be an independent physical module.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • all or part of the technical solution of the present invention may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a computer device (which may be a personal computer, A server, or network device, or the like, or a processor, performs all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a Universal Serial Bus flash drive, a removable hard disk, a Read Only Memory (ROM), a Random Access Memory (RAM), a disk, or A variety of media such as optical discs that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种IP地址分配方法及设备,用以解决控制面设备和用户面设备同时为一个UE分配IP地址时造成IP地址冲突的技术问题;控制面网络设备在接收会话建立请求消息时,可以确定第一用户面网络设备是否有能力为终端设备分配IP地址,如果第一用户面网络设备有能力为终端设备分配IP地址,则控制面网络设备可以向第一用户面网络设备发送地址分配指示,这样可以明确究竟由哪个设备来分配IP地址,避免两个设备同时为一个终端设备分配IP地址,从而避免了IP地址冲突的情况。

Description

一种IP地址分配方法及设备 技术领域
本发明涉及移动通信技术领域,尤其涉及一种IP地址分配方法及设备。
背景技术
现有技术中,当用户设备(User Equipment,UE)在附着网络的过程中或在UE请求的分组数据网(Packet Data Network,PDN)连接建立流程中,网络设备为UE建立默认承载,与此同时,网络设备会为UE分配相应的互联网协议(Internet Protocol,IP)地址。目前,一般来说都是由分组数据网网关(PDN GateWay,P-GW)为UE分配IP地址。
随着网络架构向第4.5代移动通信系统(4.5G)/第5代移动通信系统(5G)的演进,网络功能的控制面与用户面分离是主要的趋势。如果P-GW被分离为控制面设备和用户面设备,那么P-GW的IP地址分配功能可以由控制面设备继承,也可以由用户面设备继承,也就是说控制面设备和用户面设备都可能具有分配IP地址的能力。那么,如果控制面设备和用户面网设备同时为一个UE分配IP地址,就会造成IP地址冲突的问题,而目前对此尚无解决方案。
发明内容
本申请提供一种IP地址分配方法及设备,用以解决控制面设备和用户面设备同时为一个UE分配IP地址时造成IP地址冲突的技术问题。
第一方面,提供第一种IP地址分配方法,包括:
控制面网络设备接收会话建立请求消息,所述会话建立请求消息用于为终端设备的请求建立会话连接;
所述控制面网络设备根据所述会话建立请求消息携带的所述终端设备请求的业务信息,以及根据第一用户面网络设备的业务能力信息,确定所述第一用户面网络设备是否能为所述终端设备分配IP地址;
若所述第一用户面网络设备能为所述终端设备分配IP地址,所述控制面 网络设备向所述第一用户面网络设备发送地址分配指示。
控制面网络设备在接收会话建立请求消息时,可以确定第一用户面网络设备是否有能力为终端设备分配IP地址,如果第一用户面网络设备有能力为终端设备分配IP地址,则控制面网络设备可以向第一用户面网络设备发送地址分配指示,这样可以明确究竟由哪个设备来分配IP地址,避免两个设备同时为一个终端设备分配IP地址,从而避免了IP地址冲突的情况。
结合第一方面,在第一方面的第一种可能的实现方式中,所述确定所述第一用户面网络设备是否能为所述终端设备分配IP地址,包括:
所述控制面网络设备根据所述业务信息确定所述终端设备所请求的业务;
所述控制面网络设备根据所述业务能力信息确定所述第一用户面网络设备是否具有为所述终端设备所请求的业务分配IP地址的能力。
提供了一种确定第一用户面网络设备是否能为终端设备分配IP地址的方式。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述方法还包括:
所述控制面网络设备接收所述第一用户面网络设备发送的所述第一用户面网络设备的业务能力信息;或者
所述控制面网络设备获取预置的所述第一用户面网络设备的业务能力信息。
控制面网络设备可以通过不同的方式获取第一用户面网络设备的业务能力信息,较为灵活。
结合第一方面或第一方面的第一种可能的实现方式或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述地址分配指示包括地址分配方式信息,所述地址分配方式信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址的方式。
地址分配指示还可以携带地址分配方式信息,这样第一用户面网络设备 可以很明确应该采用何种方式为终端设备分配IP地址,可以有效减少分配出错的几率。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述控制面网络设备通过解析所述会话建立请求消息获取所述所述会话建立请求消息携带的所述地址分配方式信息。
即,控制面网络设备可以通过终端设备发送的会话建立请求消息获得地址分配方式信息,这样获得的地址分配方式信息更能代表终端设备的意愿。
结合第一方面或第一方面的第一种可能的实现方式至第四种可能的实现方式中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述地址分配指示还包括所述终端设备请求的业务信息。
地址分配指示还可以包括终端设备所请求的业务信息,以便第一用户面网络设备为该终端设备分配IP地址。
结合第一方面或第一方面的第一种可能的实现方式至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述地址分配指示还包括指示信息,所述指示信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址。
地址分配指示可以明确指示由第一用户面网络设备为终端设备分配IP地址,这样第一用户面网络设备可以很快确定自己要执行的任务,指示方式较为明显,易于理解。
第二方面,提供第二种地址分配方法,其特征在于,包括:
用户面网络设备接收控制面网络设备的地址分配指示;
所述用户面网络设备根据所述地址分配指示包括的地址分配方式信息确定为所述终端设备分配IP地址的方式;
所述用户面网络设备根据确定的方式为所述终端设备分配IP地址。
控制面网络设备可以向第一用户面网络设备发送地址分配指示,以指示第一用户面网络设备为终端设备分配IP地址的方式,这样可以明确究竟由哪个设备来分配IP地址,避免两个设备同时为一个终端设备分配IP地址,从而 避免了IP地址冲突的情况,且可以明确指示第一用户面网络设备为终端设备分配IP地址的方式,便于第一用户面网络设备进行操作。
结合第二方面,在第二方面的第一种可能的实现方式中,所述方法还包括:
所述用户面网络设备向所述控制面网络设备发送所述用户面网络设备的业务能力信息。
用户面网络设备可以将该用户面网络设备的业务能力信息发送给控制面网络设备,便于控制面网络设备确定该用户面网络设备是否可以为相应的终端设备分配IP地址。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述地址分配指示还包括指示信息,所述指示信息用于指示所述用户面网络设备为所述终端设备分配IP地址。
控制面网络设备可以通过显式指示的方式来指示由该用户面网络设备为终端设备分配IP地址,便于该用户面网络设备能够及时理解。
结合第二方面或第二方面的第一种可能的实现方式或第二种可能的实现方式,在第二方面的第三种可能的实现方式中,若为所述终端设备分配IP地址的方式为所述用户面网络设备缺省承载建立过程中分配IP地址,所述地址分配指示还包括业务信息,则所述用户面网络设备根据确定的方式为所述终端设备分配IP地址,包括:
所述用户面网络设备根据所述业务信息为所述终端设备分配IP地址;
所述用户面网络设备向所述控制面网络设备发送会话响应消息,所述会话响应消息中携带IP地址。
如果地址分配方式信息用于指示用户面网络设备缺省承载建立过程中分配IP地址,则用户面网络设备可以在会话响应消息中携带为终端设备分配的IP地址。通过地址分配方式信息,用户面网络设备可以很明确何时为终端设备分配IP地址。
结合第二方面或第二方面的第一种可能的实现方式或第二种可能的实现 方式,在第二方面的第四种可能的实现方式中,若为所述终端设备分配IP地址的方式为所述用户面网络设备在缺省承载建立完成之后分配IP地址,则所述用户面网络设备根据确定的方式为所述终端设备分配IP地址,包括:
所述用户面网络设备接收所述终端设备通过用户面链路发送的请求消息;所述请求消息携带所述终端设备请求的业务信息;
所述用户面网络设备根据所述业务信息为所述终端设备分配IP地址;
所述用户面网络设备通过所述用户面链路将所述IP地址发送给所述终端设备。
如果地址分配方式信息用于指示用户面网络设备缺省承载建立过程中分配IP地址,则用户面网络设备可以在接收终端设备发送的请求消息后为终端设备分配IP地址。通过地址分配方式信息,用户面网络设备可以很明确何时为终端设备分配IP地址。
结合第二方面的第三种可能的实现方式或第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述用户面网络设备根据所述业务信息为所述终端设备分配IP地址,包括:
所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器;
所述用户面网络设备向所述服务器发送地址分配请求消息;所述地址分配请求消息用于请求为所述终端设备分配IP地址;
所述用户面网络设备接收所述服务器发送的为所述终端设备分配的IP地址。
通过请求消息中携带的业务信息,用户面网络设备可以确定为终端设备分配IP地址的服务器,从而请求该服务器为终端设备分配IP地址,准确性较高。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,
所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址 的服务器,包括:
所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器为DHCP服务器;
所述用户面网络设备向所述服务器发送地址分配请求消息,包括:
所述用户面网络设备根据配置的所述DHCP服务器的地址,向所述DHCP服务器发送所述地址分配请求消息。
结合第二方面的第五种可能的实现方式,在第二方面的第七种可能的实现方式中,
所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器,包括:
所述用户面网络设备通过所述业务信息确定为所述终端分配IP地址的服务器为LNS;
所述用户面网络设备向所述服务器发送地址分配请求消息,包括:
所述用户面网络设备根据配置的所述LNS的地址与所述LNS建立二层隧道协议L2TP链路;
所述用户面网络设备通过所述L2TP链路向所述LNS发送所述地址分配请求消息。
结合第二方面的第五种可能的实现方式,在第二方面的第八种可能的实现方式中,
所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器,包括:
所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器为AAA服务器;
所述用户面网络设备向所述服务器发送地址分配请求消息,包括:
所述用户面网络设备根据配置的所述AAA服务器的地址,向所述AAA服务器发送所述地址分配请求消息。
以上提供了几种用户面网络设备通过外部服务器为终端设备分配IP地址 的方式,用户面网络设备可以请求的外部服务器较多,资源较为丰富。且用户面网络设备可以根据业务信息来向不同的服务器发起请求,使得分配结果更符合终端设备的需求。
第三方面,提供一种控制面网络设备,包括:
接收器,用于接收会话建立请求消息,所述会话建立请求消息用于为终端设备的请求建立会话连接;
处理器,用于根据所述会话建立请求消息携带的所述终端设备请求的业务信息,以及根据第一用户面网络设备能够提供的业务能力信息,确定所述第一用户面网络设备是否能为所述终端设备分配IP地址;若所述第一用户面网络设备能为所述终端设备分配IP地址,向所述第一用户面网络设备发送地址分配指示。
结合第三方面,在第三方面的第一种可能的实现方式中,所述处理器用于:
根据所述业务信息确定所述终端设备所请求的业务;
根据所述业务能力信息确定所述第一用户面网络设备是否具有为所述终端设备所请求的业务分配IP地址的能力。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,
所述接收器还用于:接收所述第一用户面网络设备发送的所述第一用户面网络设备的业务能力信息;或者
所述处理器还用于:获取预置的所述第一用户面网络设备的业务能力信息。
结合第三方面或第三方面的第一种可能的实现方式或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述地址分配指示包括地址分配方式信息,所述地址分配方式信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址的方式。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实 现方式中,所述处理器还用于:
通过解析所述会话建立请求消息获取所述所述会话建立请求消息携带的所述地址分配方式信息。
结合第三方面或第三方面的第一种可能的实现方式至第四种可能的实现方式中的任一种可能的实现方式,在第三方面的第五种可能的实现方式中,所述地址分配指示还包括所述终端设备请求的业务信息。
结合第三方面或第三方面的第一种可能的实现方式至第五种可能的实现方式中的任一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述地址分配指示还包括指示信息,所述指示信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址。
第四方面,提供一种用户面网络设备,包括:
第一接收器,用于接收控制面网络设备的地址分配指示;
处理器,用于根据所述地址分配指示包括的地址分配方式信息确定为所述终端设备分配IP地址的方式;根据确定的方式为所述终端设备分配IP地址。
结合第四方面,在第四方面的第一种可能的实现方式中,所述用户面网络设备还包括第一发送器;所述第一发送器用于:
向所述控制面网络设备发送所述用户面网络设备的业务能力信息。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,所述地址分配指示还包括指示信息,所述指示信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址。
结合第四方面或第四方面的第一种可能的实现方式或第二种可能的实现方式,在第四方面的第三种可能的实现方式中,若为所述终端设备分配IP地址的方式为所述用户面网络设备缺省承载建立过程中分配IP地址,所述地址分配指示还包括业务信息,则所述处理器用于:
根据所述业务信息为所述终端设备分配IP地址;
通过所述第一发送器向所述控制面网络设备发送会话响应消息,所述消息中携带IP地址。
结合第四方面或第四方面的第一种可能的实现方式或第二种可能的实现方式,在第四方面的第四种可能的实现方式中,所述用户面网络设备还包括第二接收器和第二发送器;若为所述终端设备分配IP地址的方式为所述用户面网络设备在缺省承载建立完成之后分配IP地址,则所述处理器用于:
通过所述第二接收器接收所述终端设备通过用户面链路发送的请求消息;所述请求消息携带所述终端设备请求的业务信息;
根据所述业务信息为所述终端设备分配IP地址;
通过所述第二发送器、经所述用户面链路将所述IP地址发送给所述终端设备。
结合第四方面的第三种可能的实现方式或第四种可能的实现方式,在第四方面的第五种可能的实现方式中,所述用户面网络设备还包括第三接收器和第三发送器;所述处理器用于:
通过所述业务信息确定为所述终端设备分配IP地址的服务器;
通过所述第三发送器向所述服务器发送地址分配请求消息;所述地址分配请求消息用于请求为所述终端设备分配IP地址;
通过所述第三接收器接收所述服务器发送的为所述终端设备分配的IP地址。
结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,所述处理器用于:
通过所述业务信息确定为所述终端设备分配IP地址的服务器为DHCP服务器;
根据配置的所述DHCP服务器的地址,通过所述第三发送器向所述DHCP服务器发送所述地址分配请求消息。
结合第四方面的第五种可能的实现方式,在第四方面的第七种可能的实现方式中,所述处理器用于:
通过所述业务信息确定为所述终端分配IP地址的服务器为LNS;
根据配置的所述LNS的地址与所述LNS建立L2TP链路;
通过所述第三发送器、经所述L2TP链路向所述LNS发送所述地址分配请求消息。
结合第四方面的第五种可能的实现方式,在第四方面的第八种可能的实现方式中,所述处理器用于:
通过所述业务信息确定为所述终端设备分配IP地址的服务器为AAA服务器;
根据配置的所述AAA服务器的地址,通过所述第三发送器向所述AAA服务器发送所述地址分配请求消息。
第五方面,提供一种网络系统,包括第四方面的控制面网络设备及第五方面的用户面网络设备。
第六方面,提供另一种控制面网络设备,包括用于实现第一方面的方法的模块。
第七方面,提供另一种用户面网络设备,包括用于实现第二方面的方法的模块。
第八方面,提供另一种网络系统,包括第六方面的控制面网络设备及第七方面的用户面网络设备。
控制面网络设备在接收会话建立请求消息时,可以确定第一用户面网络设备是否有能力为终端设备分配IP地址,如果第一用户面网络设备有能力为终端设备分配IP地址,则控制面网络设备可以向第一用户面网络设备发送地址分配指示,这样可以明确究竟由哪个设备来分配IP地址,避免两个设备同时为一个终端设备分配IP地址,从而避免了IP地址冲突的情况。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中EPS系统下用户面与控制面分离的第一种网络架构图;
图2为本发明实施例中EPS系统下用户面与控制面分离的第二种网络架构图;
图3为本发明实施例中第一种IP地址分配方法的流程图;
图4为本发明实施例中第二种IP地址分配方法的流程图;
图5为本发明实施例中DGW分配IP地址的第一种流程图;
图6为本发明实施例中DGW分配IP地址的第二种流程图;
图7A-图7B为本发明实施例中控制面网络设备的结构示意图;
图8A-图8D为本发明实施例中用户面网络设备的结构示意图;
图9为本发明实施例中控制面网络设备的结构框图;
图10为本发明实施例中用户面网络设备的结构框图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明实施例保护的范围。
本文中描述的技术可用于各种通信系统,例如LTE系统,4.5G系统,或5G系统,以及其他此类通信系统或今后出现的演进系统。以及,本文提供的技术方案不仅仅适用于第三代合作伙伴项目(3rd Generation Partnership Project,3GPP)接入方式,还可适用于非3GPP(Non-3GPP)接入方式下的控制面与用户面分离的情况。
以下,对本发明实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,是指向用户提供语音和/或数据连通性的设备,例如可以包 括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(Radio Access Network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括UE、无线终端设备、移动终端设备、签约单元(Subscriber Unit)、签约站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point,AP)、远程终端设备(Remote Terminal)、接入终端设备(Access Terminal)、用户终端设备(User Terminal)、用户代理(User Agent)、或用户装备(User Device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,NB-IoT中的专用终端设备,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备。
2)网络设备,例如可以包括控制面网络设备及用户面网络设备。
在控制面与用户面(或称为转发面)分离的网络架构中,比如,在一种网络架构中,控制面网络设备例如可以包括控制面网关(Control Plane Gateway,CGW),或者,在未来的通信系统(例如5G系统)中,可能会将现在的移动性管理实体(Mobility Management Entity,MME)和CGW(或者还包括其他的设备)合并以形成新的控制面网络设备,或者还可以包括其他可能的用于实现控制面的功能的网络设备。或者比如,在另一种网络架构中,控制面网络设备例如可以包括P-GW的控制面网元,例如将该网元称为控制面P-GW(Control Plane P-GW,PGW-C),或者还可以包括其他可能的用于实现控制面的功能的网络设备。
在控制面与用户面分离的网络架构中,比如,在一种网络架构中,用户面网络设备例如可以包括用户面网关(User Plane Gateway),或者是下移(或分布式)部署的用户面网关,称为分布式网关(Distributed Gateway,DGW),或者还可以包括其他可能的用于实现用户面的功能的网络设备。或者比如, 在另一种网络架构中,用户面网络设备例如可以包括P-GW的用户面功能网元,例如将该网元称为用户面P-GW(User Plane P-GW,PGW-U),或者还可以包括其他可能的用于实现用户面的功能的网络设备。
3)本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
本发明实施例应用的网络架构为控制面和用户面分离的架构,在下面将结合附图进行介绍。
本发明实施例中,终端设备接入的可以是公共移动网络或特定应用的专有网络(如互联网服务提供商(Internet Service Provider,ISP)或企业网等)时,本发明实施例主要解决的是在这种场景下为终端设备分配IP地址的问题。
下面介绍本发明实施例的网络架构。其中,在介绍网络架构时,以演进分组系统(Evolved Packet System,EPS)为例,但本发明实施例不限于此系统。
DGW架构是基于网络的控制面功能与用户面功能分离的思路,在已有EPS网络架构上提出的一种增强的网络架构。DGW架构中包括CGW与用户面网关(User Plane Gateway,UGW)。
CGW是一种集中式控制面网关,可以有两种实现形式:(1)集成了现有的3GPP定义的EPS网络中的服务网关(Serving Gateway,S-GW)与分组数据网关(Packet Data Network Gateway,P-GW)的控制面功能的网元,如图1所示;(2)分别实现现有的S-GW的控制面功能(Control Plane S-GW)与现有的P-GW的控制面功能(Control Plane P-GW)的两个独立网元,例如将实现现有的S-GW的控制面功能的网元称为控制面S-GW(Control Plane S-GW),将实现现有的P-GW的控制面功能的网元称为控制面P-GW(Control Plane P-GW),如图2所示。
CGW可以用于专门处理EPS网络中的控制面信令,可以实现移动性管理、会话管理、地址管理、路径管理、及计费管理等功能。CGW通过与UGW之间的交互实现对用户面数据处理的控制与管理。
PGW-C是P-GW的控制面功能实体,继承了P-GW控制面功能,如计费策略和控制等。
UGW是一种分布式用户面网关,对应于CGW的两种实现形式,UGW也有两种实现形式:(1)集成了现有的EPS网络中S-GW与P-GW用户面功能的网元,如图1所示;(2)分别实现现有的S-GW的用户面功能(User Plane S-GW)与现有的P-GW的用户面功能(User Plane P-GW)的两个独立的网元,例如将实现现有的S-GW的用户面功能的网元称为用户面S-GW(User Plane S-GW),将实现现有的P-GW的用户面功能的网元称为用户面P-GW(User Plane P-GW),如图2所示。
UGW用于专门处理EPS网络中的用户面数据,可以实现路由转发、数据包检查、数据包统计以及服务质量执行等功能。UGW是在CGW的控制管理下实现对用户面数据的处理。另外,考虑到UGW可以分布式部署的特性,UGW也可以称为DGW。
PGW-U是P-GW的用户功能实体,继承了P-GW用户面功能,如计费信息统计等。
请参见图1,为CGW和UGW均为各自的第一种实现形式时的网络架构图。图1中,UE通过Uu接口连接演进的通用移动通信系统陆地无线接入网(Evolved Universal Mobile Telecommunications System Territorial Radio Access Network,E-UTRAN),E-UTRAN通过S1-U接口连接DGW,CGW和DGW之间的接口为Sx接口,DGW通过S12接口连接全球移动通信系统/增强型数据速率GSM演进无线接入网(Global System for Mobile Communication/Enhanced Data Rate for GSM Evolution Radio Access Network,GERAN)和UMTS陆地无线接入网(UMTS Territorial Radio Access Network,UTRAN),E-UTRAN通过S1-MME接口连接MME,MME通过S11接口连接CGW, MME通过S3接口连接服务通用分组无线服务技术支持节点(Serving GeneralPacket Radio ServiceSupport Node,SGSN),MME通过S6a接口连接归属签约用户服务器(Home Subscriber Server,HSS),CGW通过Gx接口连接策略与计费规则功能单元(Policy and Charging Rules Function,PCRF),PCRF通过Rx接口连接应用服务器或分组数据网络(图1以应用服务器为例),例如应用服务器可以包括IP多媒体子系统(IP Multimedia Subsystem,IMS)、分组交换服务(Packet Switching Service,PSS)等。
其中,CGW与DGW之间的接口、CGW与其他设备之间的接口以及DGW与其他设备之间的接口,图1中只是示例,也可以采用其他接口。
在图1的架构下,控制面的信令流如实线箭头所示,用户面的信令流如虚线箭头所示。
请参见图2,为CGW和UGW均为各自的第二种实现形式时的网络架构图。图2中,UE通过Uu接口连接E-UTRAN,E-UTRAN通过S1-U接口连接SGW-U,SGW-U和SGW-C之间的接口为Sxa接口,SGW-U通过S12接口连接GERAN和UTRAN,E-UTRAN通过S1-MME接口连接MME,MME通过S11接口连接SGW-C,SGW-C通过S5-C接口连接PGW-C,PGW-C通过Gx接口连接PCRF,PGW-C通过Sxb接口连接PGW-U,PCRF通过Rx接口连接应用服务器或分组数据网络(图2以应用服务器为例),PGW-U通过SGi接口连接应用服务器或分组数据网络(图2以应用服务器为例),例如应用服务器可以包括IMS或PSS等。
其中,SGW-C、SGW-U、PGW-C以及PGW-C这几种设备之间的接口,以及这几种设备与其他设备之间的接口,图2中只是示例,也可以采用其他接口。
在图2的架构下,控制面的信令流如实线箭头所示,用户面的信令流如虚线箭头所示。
下面结合附图介绍本发明实施例提供的方案。
请参见图3,提供第一种IP地址分配方法,该方法的流程描述如下。
步骤301:控制面网络设备接收会话建立请求消息,会话建立请求消息用于为终端设备的请求建立会话连接;
步骤302:控制面网络设备根据会话建立请求消息携带的终端设备请求的业务信息,以及根据第一用户面网络设备能够提供的业务能力信息,确定第一用户面网络设备是否能为终端设备分配IP地址;
步骤303:若第一用户面网络设备能为终端设备分配IP地址,控制面网络设备向第一用户面网络设备发送地址分配指示。
如果控制面网络设备确定第一用户面网络设备不能为终端设备分配IP地址,则控制面网络设备可以不指示第一用户面网络设备为终端设备分配IP地址,在这种情况下,控制面网络设备例如可以自行为终端设备分配IP地址。
请参见图4,提供第二种IP地址分配方法,该方法的流程描述如下。
步骤401:用户面网络设备接收控制面网络设备的地址分配指示;
步骤402:用户面网络设备根据地址分配指示包括的地址分配方式信息确定为终端设备分配IP地址的方式;
步骤403:用户面网络设备根据确定的方式为终端设备分配IP地址。
图3与图4为相应的方法,下面一起进行介绍。例如图3与图4均可以依托于图1中的架构实现,或者例如图3与图4均可以依托于图2中的架构实现,下面以图3与图4均依托于图1中的架构实现为例进行介绍。类似地,若图3和图4依托于图2中的架构实现,则用PGW-C和PGW-U分别代替图5中的CGW和DGW,且图5中的步骤1替换为由SGW-C发送给PGW-C,图5中的步骤0替换为由SGW-C发送给PGW-C即可,其他步骤均类似,因此不多赘述。
可选的,CGW需要知晓DGW能够提供的业务能力信息。DGW能够提供的业务能力信息,可以包括DGW能够为哪些业务分配IP地址,比如终端设备请求业务类型1,如果DGW能够为业务类型1分配IP地址,则DGW可以为业务类型1分配IP地址。CGW可以通过不同的方式获取DGW的业务能力信息,下面介绍几种可能的方式。
第一种方式:DGW将自己能够分配IP地址的业务能力信息发送给CGW。
可选的,DGW在上电开工时,一般会向CGW发起Sx接口(Sx接口即为CGW与DGW之间使用的接口)开工流程。例如:DGW会向CGW发送Sx建立请求(Sx setup request)消息,那么,DGW可以将业务能力信息携带在Sx setup request消息中,比如可以在Sx setup request消息中新增一个字段用于指示DGW的业务能力信息,例如该字段可以是IP分配能力(IP allocation capability)。
CGW收到携带IP allocation capability的Sx setup request消息后,可以保存Sx setup request消息中携带的DGW的标识及Sx setup request消息中携带的IP allocation capability,并可以向DGW回复Sx建立请求响应(Sx setup response)消息。这样,CGW就知道了DGW的业务能力信息。
或者,可选的,DGW也可以通过事件报告(Event report)消息将业务能力信息发送给CGW。例如,在Sx接口开工后,DGW在向CGW发送Event report消息时,可以在其中的一条或几条Event report消息中携带DGW的业务能力信息,比如,也可以在Event report消息中新增一个字段用于指示DGW的业务能力信息,例如该字段可以是IP allocation capability。
可选的,IP allocation capability可以用于指示APN及其关联的外部服务器(server)或DGW本地的地址池信息,或者也可以包括其他可以表明DGW具有IP地址分配能力的指示信息。
第二种方式:将DGW的业务能力信息预先配置在CGW中。
比如,可以将DGW的业务能力信息通过操作维护(Operation and Management,OAM)的方式配置在CGW上。
可选的,在CGW上配置的业务能力信息例如包括:
第一种:在CGW上配置DGW支持的业务信息及DGW是否支持该业务信息的IP地址分配信息。那么CGW可以基于终端设备请求的业务信息和本地保存的DGW的业务能力信息判断DGW是否具有为终端设备请求的业务信息分配IP地址的业务能力,即CGW可以查找本地保存的DGW的业务能力信息,以确定终端设备请求的业务信息是否有DGW能够为其分配IP地址。
第二种:在CGW上配置企业网对应的业务信息或服务区标识(比如规定只要是企业网业务,都由DGW分配IP地址)。那么CGW可以基于终端设备请求的业务信息确定终端设备发起的业务是否是企业网业务,或者,CGW可以基于终端设备的位置信息(如小区标识(Cell ID),或基站标识(eNB ID)等)确定终端设备接入的是否是企业的专有网络(即确定终端设备驻留的小区是否是企业网的服务小区,或确定终端设备所连接的基站是否是服务于某企业网络的基站),并基于上述确定结果,决定是否需要指示DGW为终端设备分配IP地址,例如,如果确定终端设备接入的是企业的专有网络,则确定指示DGW为终端设备分配IP地址,如果确定终端设备接入的不是企业的专有网络,则确定由CGW为终端设备分配IP地址,即不指示DGW为终端设备分配IP地址,等等。
可选的,终端设备请求的业务信息,可以包括终端设备请求的接入点名称(Access Point Name,APN),APN可以用于指示业务类型,还可以包括终端设备请求的其他与业务相关的信息。DGW的业务能力信息,可以包括DGW为APN分配IP的能力信息,比如可以指示DGW能够为哪些APN分配IP地址,还可以包括DGW的其他与业务相关的能力信息。
接下来通过几个例子介绍DGW分配IP地址的过程。
例1:
请参见图5。
1、在终端设备的附着流程或终端设备请求的PDN连接流程中,终端设备向接入网设备(例如基站)发送附着请求或PDN连接建立请求消息,接入网设备将附着请求或PDN连接建立请求消息发送给MME,MME可以对终端设备进行鉴权,若鉴权通过,则MME可以向核心网设备发起会话建立流程,例如MME可以向CGW发送会话建立请求消息(图5中对该过程只用了一个箭头表示CGW接收会话建立请求消息,未画出接入网设备及MME等设备),在会话建立请求消息中可以携带APN、协议配置项(Protocol Configuration Option,PCO)以及终端设备的位置信息等。会话建立请求消息中携带的APN可以用 于指示终端设备所请求的业务类型,PCO中可以包含终端设备请求的IP地址的分配方式,即可以包含为该终端设备分配IP地址的地址分配方式信息。终端设备的位置信息可以包括终端设备驻留的小区的标识、跟踪区标识(Tracking Area Identifier,TAI)、及终端设备接入的基站的标识中的至少一种,例如,终端设备驻留的小区的标识可以包括E-UTRAN小区全局标识(E-UTRAN Cell Global Identifier,ECGI),终端设备接入的基站的标识可以包括终端设备接入的基站的eNB ID。
因本发明实施例重点关注的是IP地址分配的问题,因此,对于PCO中包括的众多参数信息,本发明实施例只重点关注地址分配方式信息,对于PCO包括的其他参数信息不作赘述。例如,地址分配方式信息可以通过PCO包括的Address Allocation Preference实现。Address Allocation Preference一般可以包括两种取值,分别为通过非接入层信令分配IP地址(IP address allocation via Non-Access Stratum signaling)和通过动态主机配置协议版本4分配网际协议版本4地址(IPv4address allocation via DHCPv4)。其中,若Address Allocation Preference的取值为IP address allocation via Non-Access Stratum signaling,则表明在终端设备附着网络时,网络设备为终端设备建立缺省承载的过程中为终端设备分配IP地址,若Address Allocation Preference的取值为IPv4address allocation via DHCPv4,则表明在网络设备为终端设备建立缺省过程之后为终端设备分配IP。
2、CGW基于会话建立请求消息中携带的APN和本地保存的DGW的业务能力信息,判断DGW是否具有终端设备请求的APN的IP分配能力,即是否能为该终端设备分配IP地址。
其中,一个CGW下可能连接了多个DGW,那么CGW在接到会话建立请求后,需要为终端设备选择一个DGW为终端设备提供服务,在选择DGW时,CGW需要判断选择的DGW是否具有终端设备请求的APN的IP分配能力。其中,CGW在选择DGW时,可以考虑多种因素,例如,可以将终端的位置信息作为一个考虑因素,还可以将终端设备请求的业务类型、DGW当前的负载、 DGW具备的能力(比如包括DGW是否支持深度报文解析能力等)等信息中的至少一种,以及还可能考虑其他信息,本发明实施例对此不作限制。
3、如果确定DGW具有终端设备请求的APN的IP分配能力,则CGW决定由该DGW为该终端设备分配IP地址,则CGW向该DGW发送地址分配指示。
可选的,该地址分配指示可以包括地址分配方式信息,地址分配方式信息可以用于指示该DGW为该终端设备分配IP地址的方式。地址分配方式信息是CGW从终端设备发送的会话建立请求消息中获得的。
可选的,该地址分配指示还可以包括指示信息,指示信息可以用于指示由该DGW为该终端设备分配IP地址。
其中,本发明实施例对于地址分配指示的具体方式不作限制,只要DGW通过地址分配指示可以确定是否由DGW为终端设备分配IP地址即可。例如,地址分配指示可以通过现有的某些消息实现,例如可以通过Sx接口消息实现,则DGW可以通过地址分配指示中的现有的信元确定是否由DGW为终端设备分配IP地址,或者DGW也可以通过地址分配指示中新增的信元确定是否由DGW为终端设备分配IP地址,例如本发明实施例可以在地址分配指示中新增专门用于指示DGW是否为终端设备分配IP地址的信元,等等。为了更好地理解本发明实施例的方案,下面举两个例子介绍地址分配指示的不同的实现方式。
第一种方式:若CGW决定由DGW为终端设备分配IP地址,则CGW向DGW发送终端设备地址分配指示,可选的,该地址分配指示可以携带终端设备所请求的业务信息(例如包括APN),可选的,该地址分配指示还可以携带地址分配方式信息(例如包括PCO),可选的,该地址分配指示还可以携带指示信息,该指示信息例如表示为IP地址分配指示(IP allocation indication),该指示信息可以用于指示DGW为终端设备分配IP地址。例如,地址分配指示可以通过Sx接口请求消息实现,当然也可以通过其他可能的消息实现。
如果采用第一种方式,那么,如果CGW确定不能由DGW为终端设备分配IP地址,例如可能DGW不具备为终端设备请求的APN分配IP的能力等,则 CGW可以向DGW发送APN,而不发送PCO和指示信息,即地址分配指示不携带地址分配方式信息和指示信息。
DGW接收CGW发送的地址分配指示后,如果地址分配指示中携带APN、PCO以及指示信息,则DGW通过识别地址分配指示携带的APN和地址分配指示就知道该由自己为终端设备分配IP地址,再按照PCO中的Address Allocation Preference指示的方式为终端设备分配IP地址。而如果地址分配指示中未携带PCO和地址分配指示,则DGW知道不由自己为终端设备分配IP地址,从而DGW不会为终端设备分配IP地址,避免IP地址冲突。
这是一种显式指示的方式,通过这种指示方式,DGW可以较快地明确是否由DGW为终端设备分配IP地址,指示方式效果较好。
第二种方式:若CGW决定由DGW为终端设备分配IP地址,CGW可以向DGW发送地址分配指示,可选的,该地址分配指示可以携带终端设备所请求的业务信息(例如包括APN),可选的,该地址分配指示还可以携带地址分配方式信息(例如包括PCO),其中,地址分配指示例如可以通过Sx接口请求消息实现,或者也可以通过其他可能的消息实现。
如果采用第二种方式,那么,如果CGW确定不能由DGW为终端设备分配IP地址,例如可能DGW不具备为终端设备请求的APN分配IP的能力等,则CGW可以向DGW发送APN,而不发送PCO,即地址分配指示中不携带地址分配方式信息。
DGW接收CGW发送的地址分配指示后,如果地址分配指示中携带APN及PCO,则DGW通过识别地址分配指示中的APN就知道该由自己为终端设备分配IP地址,再按照PCO中的Address Allocation Preference指示的方式为终端设备分配IP地址。而如果地址分配指示中未携带PCO,则DGW知道不由自己为终端设备分配IP地址,从而DGW不会为终端设备分配IP地址,避免IP地址冲突。
当然,除了这两种方式外,CGW还可以在地址分配指示中携带其他可能的消息来对DGW进行指示,本发明实施例不作限制。
其中,步骤3中提到的Sx接口请求消息,可以是指Sx接口的会话建立请求消息,或者也可以是指Sx接口的承载建立请求消息,或者也可以是其他可能的请求消息,如会话管理请求消息等。
4、DGW收到CGW的地址分配指示,若由DGW为终端设备分配IP地址,则DGW按照PCO中的Address Allocation Preference指示的方式为终端设备分配IP地址。
如果Address Allocation Preference的取值为IP address allocation via NAS signaling,即用于指示DGW缺省承载建立过程中为该终端设备分配IP地址,则DGW可以为终端设备分配IP地址,并需在给CGW发送Sx接口请求响应消息时将分配的IP地址携带在Sx接口请求响应消息中(例1以此为例),如果Address Allocation Preference的取值为IPv4address allocation via DHCPv4,即用于指示DGW缺省承载建立完成之后为该终端设备分配IP地址,则DGW暂时不为该终端设备分配IP地址,在缺省承载建立完成之后,该终端设备会向DGW发送请求消息,DGW可以在后续接到该请求消息后再为终端设备分配IP地址。
其中,DGW在为终端设备分配IP地址时,可以向HSS请求,从HSS中获取分配的IP地址,或者,DGW可以基于本地的地址池为终端设备分配IP地址,即可以从本地的地址池中选择一个IP地址作为为终端设备分配的IP地址,或者,DGW可以通过外部机制为终端设备分配IP地址,所谓的外部机制,可以是指DGW向外部的服务器发送请求,请求外部的服务器为终端设备分配IP地址,外部的服务器为终端设备分配IP地址之后,将分配的IP地址发送给DGW,这样DGW就完成了通过外部机制为终端设备分配IP地址的过程。
可选的,DGW可以通过不同的外部机制为终端设备分配IP地址,例如可以通过动态主机配置协议(Dynamic Host Configuration Protocol,DHCP)机制为终端设备分配IP地址,或者可以通过拨号用户远程认证服务(Remote Authentication Dial In User Service,RADIUS)机制为终端设备分配IP地址,或者可以通过二层隧道协议(Layer 2Tunneling Protocol,L2TP)机制为终端设备分配IP地址,等等。
可选的,DGW若通过DHCP机制为终端设备分配IP地址,则DGW可以向DHCP服务器发送地址分配请求消息(一般来说DHCP服务器的地址可以配置在DGW中),地址分配请求消息用于请求DHCP服务器为终端设备分配IP地址,DHCP服务器接收地址分配请求消息后可以为终端设备分配IP地址,DHCP服务器可以将分配的IP地址发送给DGW。
可选的,DGW若通过RAIDUS机制为终端设备分配IP地址,则DGW可以向认证、授权和计费(Authentication,Authorization and Accounting,AAA)服务器发送地址分配请求消息(一般来说AAA服务器的地址可以配置在DGW中),地址分配请求消息用于请求AAA服务器为终端设备分配IP地址,AAA服务器接收地址分配请求消息后可以为终端设备分配IP地址,AAA服务器可以将分配的IP地址发送给DGW。
可选的,DGW若通过L2TP机制为终端设备分配IP地址,且终端设备是以点对点协议(Point to Point Protocol,PPP)方式接入网络,则DGW可以根据L2TP网络服务器(L2TP Network Server,LNS)的地址与LNS建立L2TP链路(一般来说LNS的地址可以配置在DGW中),LNS为终端设备分配IP地址后,DGW可以通过建立的L2TP链路获得该IP地址。
另外,DGW除了为终端设备分配IP地址之外,还可以执行常规的承载建立的流程,如安装CGW下发的承载上下文等。
如果CGW未指示由DGW分配IP地址,那么可能由CGW为终端设备分配IP地址,则DGW不为终端设备分配IP地址,而只是执行常规的承载建立的流程,如安装CGW下发的承载上下文等。
5、DGW向CGW发送Sx接口请求响应消息,如果由DGW为终端设备分配IP地址,且Address Allocation Preference的取值为IP address allocation via NAS signaling,则DGW在Sx接口请求响应消息中携带为终端设备分配的IP地址。如果由DGW为终端设备分配IP地址,且Address Allocation Preference的取值为IPv4address allocation via DHCPv4,则DGW在Sx接口请求响应消息中携带用于承载IP地址的空字段(比如可以携带用于指示IP地址为0:0:0:0 的字段)。如果是CGW负责分配IP地址,即CGW未指示DGW为终端设备分配IP地址,即CGW未向DGW发送地址分配指示,则在Sx接口请求响应消息中不携带终端设备的IP地址。
CGW接收DGW发送的为终端设备分配的IP地址后,可以将该IP地址发送给MME,MME通过接入网设备将该IP地址发送给终端设备。
例2:
请参见图6,重点介绍由DGW为终端设备分配IP地址,且Address Allocation Preference的取值为IPv4address allocation via DHCPv4的情况。
其中,例2的步骤1-5可参考例1,下面介绍与例1不同的步骤。
6、在缺省承载建立完成之后,DGW接收终端设备通过用户面链路发送的请求消息(图6也未画出终端设备,只用箭头示例该请求消息)。
如果Address Allocation Preference的取值为IPv4address allocation via DHCPv4,则DGW暂时没有为终端设备分配IP地址,DGW发送给CGW的Sx请求消息中携带的是用于承载IP地址的空字段。在这种情况下,终端设备需要再次发送请求消息以请求IP地址(该请求消息例如可以是DHCP请求消息,或者也可以是其他可能的请求消息),请求消息中可以携带终端设备所请求的业务信息,例如可以携带终端设备请求的APN,终端设备可以通过用户面链路(如图1的虚线箭头所示的链路)直接将请求消息发送给DGW,而无需经过CGW等设备。
7、DGW根据请求消息携带的业务信息,为终端设备分配IP地址。
可选的,DGW可以通过外部机制为终端设备分配IP地址。
DGW通过外部机制为终端设备分配IP地址,与例1中的步骤4中的介绍类似的,也可以通过DHCP机制、RADIUS机制、或L2TP机制等不同的外部机制为终端设备分配IP地址。DGW接收请求消息后,通过解析该请求消息携带的业务信息可以确定究竟采用何种方式为终端设备分配IP地址。
可选的,若确定采用DHCP机制为终端设备分配IP地址,则DGW可以确定为终端设备分配IP地址的服务器为DHCP服务器,DHCP服务器的地址 可以预先配置在DGW中,则DGW可以根据DHCP服务器的地址向DHCP服务器发送地址分配请求消息,以请求DHCP服务器为终端设备分配IP地址。DHCP服务器接收地址分配请求消息后,可以为终端设备分配IP地址,并将分配的IP地址发送给DGW。
可选的,若确定采用RADIUS机制为终端设备分配IP地址,则DGW可以确定为终端设备分配IP地址的服务器为AAA服务器,AAA服务器的地址可以预先配置在DGW中,则DGW可以根据AAA服务器的地址向AAA服务器发送地址分配请求消息,以请求AAA服务器为终端设备分配IP地址。AAA服务器接收地址分配请求消息后,可以为终端设备分配IP地址,并将分配的IP地址发送给DGW。
可选的,若确定采用L2TP机制为终端设备分配IP地址,则DGW可以确定为终端设备分配IP地址的服务器为LNS,LNS的地址可以预先配置在DGW中,则DGW可以根据LNS的地址与LNS建立链路,并通过建立的链路向LNS服务器发送地址分配请求消息,以请求LNS为终端设备分配IP地址。LNS接收地址分配请求消息后,可以为终端设备分配IP地址,可以通过建立的链路将分配的IP地址发送给DGW。
8、DGW通过用户面链路将分配的IP地址发送给终端设备。
即,在这种分配方式下,DGW可以直接通过用户面链路将分配的IP地址发送给终端设备,而无需再经过CGW等设备。
本发明实施例中,可以针对不同的网络场景明确IP地址分配的执行主体,即CGW和DGW之间可以通过协商的方式确定由谁为终端设备分配IP地址,避免出现IP地址冲突的情况,且CGW也可以承担一部分分配IP地址的工作,减轻DGW的负担。另外,如果通过本地的地址池来分配IP地址,那么,如果一个CGW连接了多个DGW,则可能需要在CGW本地的地址池中配置较多的IP地址,这样才能满足CGW分配的需求,这对CGW的要求较高,如果由DGW承担一些IP地址分配工作,也可以减轻CGW的压力,节省CGW的运维成本。
下面结合附图介绍本发明实施例提供的设备。
请参见图7A,基于同一发明构思,提供第一种控制面网络设备,该控制面网络设备可以包括接收器701和处理器702。
其中,处理器702可以包括中央处理器(CPU)或特定应用集成电路(Application Specific Integrated Circuit,ASIC),可以包括一个或多个用于控制程序执行的集成电路,可以包括使用现场可编程门阵列(Field Programmable Gate Array,FPGA)开发的硬件电路,可以包括基带芯片。
接收器701可以用于与外部设备进行网络通信。
可选的,请参见图7B,该控制面网络设备还可以包括发送器703。
发送器703可以用于与外部设备进行网络通信。
发送器703和接收器701可以是同一实体模块,例如可以是能够实现收发功能的实体模块,比如可以称为收发器,或者发送器703和接收器701也可以分别是单独的实体模块。
这些发送器703和接收器701可以通过总线与处理器702相连接(图7A和图7B均以此为例),或者也可以通过专门的连接线分别与处理器702连接。
通过对处理器702进行设计编程,将前述所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述图3-图6所示的方法。如何对处理器702进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
该控制面网络设备可以用于执行上述图3-图6所述的方法,例如可以是如前所述的控制面网络设备,比如可以是如前所述的CGW或PGW-C。因此,对于该控制面网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图8A,基于同一发明构思,本发明实施例提供第一种用户面网络设备,该用户面网络设备可以包括第一接收器801和处理器802。
其中,处理器802可以包括CPU或ASIC,可以包括一个或多个用于控制程序执行的集成电路,可以包括使用FPGA开发的硬件电路,可以包括基带芯片。
第一接收器801可以用于与外部设备进行网络通信。
可选的,请参见图8B,该用户面网络设备还可以包括第一发送器803,第一发送器803可以用于与外部设备进行网络通信。
可选的,请参见图8C,该用户面网络设备还可以包括第二接收器804和第二发送器805,第二接收器804和第二发送器805可以用于与外部设备进行网络通信。
可选的,请参见图8D,该用户面网络设备还可以包括第三接收器806和第三发送器807,第三接收器806和第三发送器807可以用于与外部设备进行网络通信。
这些发送器和接收器可以通过总线与处理器802相连接(图8A-图8D均以此为例),或者也可以通过专门的连接线分别与处理器802连接。
通过对处理器802进行设计编程,将前述所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行前述图3-图6所示的方法。如何对处理器802进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
该用户面网络设备可以用于执行上述图3-图6所述的方法,例如可以是如前所述的用户面网络设备,比如可以是如前所述的DGW或PGW-U。因此,对于该用户面网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
请参见图9,基于同一发明构思,本发明实施例提供第二种控制面网络设备,该控制面网络设备可以包括接收模块901和处理模块902。可选的,该控制面网络设备还可以包括发送模块903。
在实际应用中,发送模块903对应的实体设备可以是图7B中的发送器703,处理模块902对应的实体设备可以是图7A和图7B中的处理器702,接收模块901对应的实体设备可以是图7A和图7B中的接收器701。
该控制面网络设备可以用于执行上述图3-图6所述的方法,例如可以是如前所述的控制面网络设备,比如可以是如前所述的CGW或PGW-C。因此,对于该控制面网络设备中的各单元所实现的功能等,可参考如前方法部分的描 述,不多赘述。
请参见图10,基于同一发明构思,本发明实施例提供第二种用户面网络设备,该用户面网络设备可以包括接收模块1001和处理模块1002。可选的,该用户面网络设备还可以包括发送模块1003。
在实际应用中,接收模块1001可以实现与多个外部设备的通信,例如接收模块1001对应的实体设备可以包括图8A-图8D中的第一接收器801、图8C-图8D中的第二接收器804、及图8D中的第三接收器806中的至少一种,处理模块1002对应的实体设备可以是图8A-图8D中的处理器802,发送模块1003对应的实体设备可以包括图8B-图8D中的第一发送器803、图8C-图8D中的第二发送器805、及图8D中的第三发送器807中的至少一种。
该用户面网络设备可以用于执行上述图3-图6所述的方法,例如可以是如前所述的用户面网络设备,比如可以是如前所述的DGW或PGW-U。因此,对于该用户面网络设备中的各单元所实现的功能等,可参考如前方法部分的描述,不多赘述。
需注意的是,在图7A-图8D中,各个功能模块的位置只是示例,不代表实际的设备中各个功能模块的实际位置。
控制面网络设备在接收会话建立请求消息时,可以确定第一用户面网络设备是否有能力为终端设备分配IP地址,如果第一用户面网络设备有能力为终端设备分配IP地址,则控制面网络设备可以指示第一用户面网络设备为终端设备分配IP地址,这样可以明确究竟由哪个设备来分配IP地址,避免两个设备同时为一个终端设备分配IP地址,从而避免了IP地址冲突的情况。
在本发明中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电 性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例。
在本发明实施例中的各功能单元可以集成在一个处理单元中,或者各个单元也可以均是独立的物理模块。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:通用串行总线闪存盘(Universal Serial Bus flash drive)、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以对本发明的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明实施例的方法,不应理解为对本发明实施例的限制。本技术领域的技术人员可轻易想到的变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (32)

  1. 一种互联网协议IP地址分配方法,其特征在于,包括:
    控制面网络设备接收会话建立请求消息,所述会话建立请求消息用于为终端设备的请求建立会话连接;
    所述控制面网络设备根据所述会话建立请求消息携带的所述终端设备请求的业务信息,以及根据第一用户面网络设备的业务能力信息,确定所述第一用户面网络设备是否能为所述终端设备分配IP地址;
    若所述第一用户面网络设备能为所述终端设备分配IP地址,所述控制面网络设备向所述第一用户面网络设备发送地址分配指示。
  2. 如权利要求1所述的方法,其特征在于,所述确定所述第一用户面网络设备是否能为所述终端设备分配IP地址,包括:
    所述控制面网络设备根据所述业务信息确定所述终端设备所请求的业务;
    所述控制面网络设备根据所述业务能力信息确定所述第一用户面网络设备是否具有为所述终端设备所请求的业务分配IP地址的能力。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述控制面网络设备接收所述第一用户面网络设备发送的所述第一用户面网络设备的业务能力信息;或者
    所述控制面网络设备获取预置的所述第一用户面网络设备的业务能力信息。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述地址分配指示包括地址分配方式信息,所述地址分配方式信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址的方式。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    所述控制面网络设备通过解析所述会话建立请求消息获取所述所述会话建立请求消息携带的所述地址分配方式信息。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述地址分配指示还包括所述终端设备请求的业务信息。
  7. 如权利要求1-6任一所述的方法,其特征在于,所述地址分配指示还包括指示信息,所述指示信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址。
  8. 一种互联网协议IP地址分配方法,其特征在于,包括:
    用户面网络设备接收控制面网络设备的地址分配指示;
    所述用户面网络设备根据所述地址分配指示包括的地址分配方式信息确定为所述终端设备分配IP地址的方式;
    所述用户面网络设备根据确定的方式为所述终端设备分配IP地址。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    所述用户面网络设备向所述控制面网络设备发送所述用户面网络设备的业务能力信息。
  10. 如权利要求8或9所述的方法,其特征在于,所述地址分配指示还包括指示信息,所述指示信息用于指示所述用户面网络设备为所述终端设备分配IP地址。
  11. 如权利要求8-10任一所述的方法,其特征在于,若为所述终端设备分配IP地址的方式为所述用户面网络设备缺省承载建立过程中分配IP地址,所述地址分配指示还包括业务信息,则所述用户面网络设备根据确定的方式为所述终端设备分配IP地址,包括:
    所述用户面网络设备根据所述业务信息为所述终端设备分配IP地址;
    所述用户面网络设备向所述控制面网络设备发送会话响应消息,所述会话响应消息中携带IP地址
  12. 如权利要求8-10任一所述的方法,其特征在于,若为所述终端设备分配IP地址的方式为所述用户面网络设备在缺省承载建立完成之后分配IP地址,则所述用户面网络设备根据确定的方式为所述终端设备分配IP地址,包括:
    所述用户面网络设备接收所述终端设备通过用户面链路发送的请求消息;所述请求消息携带所述终端设备请求的业务信息;
    所述用户面网络设备根据所述业务信息为所述终端设备分配IP地址;
    所述用户面网络设备通过所述用户面链路将所述IP地址发送给所述终端设备。
  13. 如权利要求11或12所述的方法,其特征在于,所述用户面网络设备根据所述业务信息为所述终端设备分配IP地址,包括:
    所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器;
    所述用户面网络设备向所述服务器发送地址分配请求消息;所述地址分配请求消息用于请求为所述终端设备分配IP地址;
    所述用户面网络设备接收所述服务器发送的为所述终端设备分配的IP地址。
  14. 如权利要求13所述的方法,其特征在于,
    所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器,包括:
    所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器为动态主机配置协议DHCP服务器;
    所述用户面网络设备向所述服务器发送地址分配请求消息,包括:
    所述用户面网络设备根据配置的所述DHCP服务器的地址,向所述DHCP服务器发送所述地址分配请求消息。
  15. 如权利要求13所述的方法,其特征在于,
    所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器,包括:
    所述用户面网络设备通过所述业务信息确定为所述终端分配IP地址的服务器为二层隧道协议网络服务器LNS;
    所述用户面网络设备向所述服务器发送地址分配请求消息,包括:
    所述用户面网络设备根据配置的所述LNS的地址与所述LNS建立二层隧道协议L2TP链路;
    所述用户面网络设备通过所述L2TP链路向所述LNS发送所述地址分配请求消息。
  16. 如权利要求13所述的方法,其特征在于,
    所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器,包括:
    所述用户面网络设备通过所述业务信息确定为所述终端设备分配IP地址的服务器为认证授权和计费AAA服务器;
    所述用户面网络设备向所述服务器发送地址分配请求消息,包括:
    所述用户面网络设备根据配置的所述AAA服务器的地址,向所述AAA服务器发送所述地址分配请求消息。
  17. 一种控制面网络设备,其特征在于,包括:
    接收器,用于接收会话建立请求消息,所述会话建立请求消息用于为终端设备的请求建立会话连接;
    处理器,用于根据所述会话建立请求消息携带的所述终端设备请求的业务信息,以及根据第一用户面网络设备能够提供的业务能力信息,确定所述第一用户面网络设备是否能为所述终端设备分配IP地址;若所述第一用户面网络设备能为所述终端设备分配IP地址,向所述第一用户面网络设备发送地址分配指示。
  18. 如权利要求17所述的控制面网络设备,其特征在于,所述处理器用于:
    根据所述业务信息确定所述终端设备所请求的业务;
    根据所述业务能力信息确定所述第一用户面网络设备是否具有为所述终端设备所请求的业务分配IP地址的能力。
  19. 如权利要求17或18所述的控制面网络设备,其特征在于,
    所述接收器还用于:接收所述第一用户面网络设备发送的所述第一用户 面网络设备的业务能力信息;或者
    所述处理器还用于:获取预置的所述第一用户面网络设备的业务能力信息。
  20. 如权利要求17-19任一所述的控制面网络设备,其特征在于,所述地址分配指示包括地址分配方式信息,所述地址分配方式信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址的方式。
  21. 如权利要求20所述的控制面网络设备,其特征在于,所述处理器还用于:
    通过解析所述会话建立请求消息获取所述所述会话建立请求消息携带的所述地址分配方式信息。
  22. 如权利要求17-21任一所述的控制面网络设备,其特征在于,所述地址分配指示还包括所述终端设备请求的业务信息。
  23. 如权利要求17-22任一所述的控制面网络设备,其特征在于,所述地址分配指示还包括指示信息,所述指示信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址。
  24. 一种用户面网络设备,其特征在于,包括:
    第一接收器,用于接收控制面网络设备的地址分配指示;
    处理器,用于根据所述地址分配指示包括的地址分配方式信息确定为所述终端设备分配IP地址的方式;根据确定的方式为所述终端设备分配IP地址。
  25. 如权利要求24所述的用户面网络设备,其特征在于,所述用户面网络设备还包括第一发送器;所述第一发送器用于:
    向所述控制面网络设备发送所述用户面网络设备的业务能力信息。
  26. 如权利要求24或25所述的用户面网络设备,其特征在于,所述地址分配指示还包括指示信息,所述指示信息用于指示所述第一用户面网络设备为所述终端设备分配IP地址。
  27. 如权利要求24-26任一所述的用户面网络设备,其特征在于,若为所述终端设备分配IP地址的方式为所述用户面网络设备缺省承载建立过程中分 配IP地址,所述地址分配指示还包括业务信息,则所述处理器用于:
    根据所述业务信息为所述终端设备分配IP地址;
    通过所述第一发送器向所述控制面网络设备发送会话响应消息,所述会话响应消息中携带IP地址。
  28. 如权利要求24-26任一所述的用户面网络设备,其特征在于,所述用户面网络设备还包括第二接收器和第二发送器;若为所述终端设备分配IP地址的方式为所述用户面网络设备在缺省承载建立完成之后分配IP地址,则所述处理器用于:
    通过所述第二接收器接收所述终端设备通过用户面链路发送的请求消息;所述请求消息携带所述终端设备请求的业务信息;
    根据所述业务信息为所述终端设备分配IP地址;
    通过所述第二发送器、经所述用户面链路将所述IP地址发送给所述终端设备。
  29. 如权利要求27或28所述的用户面网络设备,其特征在于,所述用户面网络设备还包括第三接收器和第三发送器;所述处理器用于:
    通过所述业务信息确定为所述终端设备分配IP地址的服务器;
    通过所述第三发送器向所述服务器发送地址分配请求消息;所述地址分配请求消息用于请求为所述终端设备分配IP地址;
    通过所述第三接收器接收所述服务器发送的为所述终端设备分配的IP地址。
  30. 如权利要求29所述的用户面网络设备,其特征在于,所述处理器用于:
    通过所述业务信息确定为所述终端设备分配IP地址的服务器为动态主机配置协议DHCP服务器;
    根据配置的所述DHCP服务器的地址,通过所述第三发送器向所述DHCP服务器发送所述地址分配请求消息。
  31. 如权利要求29所述的用户面网络设备,其特征在于,所述处理器用 于:
    通过所述业务信息确定为所述终端分配IP地址的服务器为二层隧道协议网络服务器LNS;
    根据配置的所述LNS的地址与所述LNS建立二层隧道协议L2TP链路;
    通过所述第三发送器、经所述L2TP链路向所述LNS发送所述地址分配请求消息。
  32. 如权利要求29所述的用户面网络设备,其特征在于,所述处理器用于:
    通过所述业务信息确定为所述终端设备分配IP地址的服务器为认证授权和计费AAA服务器;
    根据配置的所述AAA服务器的地址,通过所述第三发送器向所述AAA服务器发送所述地址分配请求消息。
PCT/CN2016/071393 2016-01-19 2016-01-19 一种ip地址分配方法及设备 WO2017124308A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680079387.1A CN108476549B (zh) 2016-01-19 2016-01-19 一种ip地址分配方法及设备
EP16885581.5A EP3402305B1 (en) 2016-01-19 2016-01-19 Method and device for allocating ip address
PCT/CN2016/071393 WO2017124308A1 (zh) 2016-01-19 2016-01-19 一种ip地址分配方法及设备
US16/039,225 US10873563B2 (en) 2016-01-19 2018-07-18 IP address allocation method, and device
US17/106,864 US11212252B2 (en) 2016-01-19 2020-11-30 IP address allocation method, and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/071393 WO2017124308A1 (zh) 2016-01-19 2016-01-19 一种ip地址分配方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/039,225 Continuation US10873563B2 (en) 2016-01-19 2018-07-18 IP address allocation method, and device

Publications (1)

Publication Number Publication Date
WO2017124308A1 true WO2017124308A1 (zh) 2017-07-27

Family

ID=59361249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071393 WO2017124308A1 (zh) 2016-01-19 2016-01-19 一种ip地址分配方法及设备

Country Status (4)

Country Link
US (2) US10873563B2 (zh)
EP (1) EP3402305B1 (zh)
CN (1) CN108476549B (zh)
WO (1) WO2017124308A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873563B2 (en) * 2016-01-19 2020-12-22 Huawei Technologies Co., Ltd. IP address allocation method, and device
CN113055835A (zh) * 2019-12-10 2021-06-29 中国电信股份有限公司 车载应用流量处理方法、装置和系统
CN113543336A (zh) * 2020-04-09 2021-10-22 华硕电脑股份有限公司 处理侧链路混合自动请求的时间间隙的方法和设备
CN113840017A (zh) * 2021-08-31 2021-12-24 中国人民解放军63620部队 Ip地址自动分配方法、装置、电子设备和计算机可读介质
WO2022037621A1 (zh) * 2020-08-19 2022-02-24 华为技术有限公司 地址分配方法、设备及系统
CN114338607A (zh) * 2021-12-29 2022-04-12 天翼物联科技有限公司 5g用户终端ip地址确认方法、装置及系统

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450657B (zh) * 2019-01-15 2019-12-27 深圳联想懂的通信有限公司 一种智能物联网通信服务系统和方法
CN111511041B (zh) * 2019-01-31 2022-03-29 大唐移动通信设备有限公司 一种远程连接方法及装置
CN111918412B (zh) * 2019-05-10 2022-11-04 大唐移动通信设备有限公司 一种通信系统、业务处理方法及装置
CN112584326B (zh) * 2019-09-29 2023-08-22 华为技术有限公司 一种通信方法、装置以及系统
US11228459B2 (en) * 2019-10-25 2022-01-18 Dell Products L.P. Anycast address configuration for extended local area networks
CN111356261B (zh) * 2020-02-18 2022-11-08 杭州士兰微电子股份有限公司 分布式照明控制系统及其控制方法、客户端
CN113411802A (zh) * 2020-03-16 2021-09-17 华为技术有限公司 拨号报文处理方法、网元、系统及网络设备
EP4154500A1 (en) * 2020-05-22 2023-03-29 Telefonaktiebolaget LM Ericsson (publ.) Ip address allocation in a wireless communication network
CN114124737B (zh) * 2020-08-25 2023-07-11 华为技术有限公司 一种控制用户设备接入网络的方法及装置
CN114363296B (zh) * 2020-09-30 2023-07-25 大唐移动通信设备有限公司 地址冲突检测方法、用户面网元以及控制面网元
CN114844862B (zh) * 2021-01-15 2023-09-05 大唐移动通信设备有限公司 资源处理方法、装置及通信设备
US20230064266A1 (en) * 2021-08-26 2023-03-02 Qualcomm Incorporated Network measurements for enhanced machine learning model training and inference
CN114900499B (zh) * 2022-04-20 2023-10-03 中国电信股份有限公司 Ip地址分配方法、装置、设备及存储介质
WO2024021094A1 (zh) * 2022-07-29 2024-02-01 华为技术有限公司 通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964564A (zh) * 2005-10-10 2007-05-16 华为技术有限公司 无线通信系统中用户面承载资源分配方法及无线通信系统
US20110270978A1 (en) * 2008-12-30 2011-11-03 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus to Migrate Transport Protocols
CN103384279A (zh) * 2012-05-02 2013-11-06 中兴通讯股份有限公司 地址分配方法和装置
CN103636283A (zh) * 2012-06-29 2014-03-12 华为技术有限公司 网关系统、设备和通信方法
CN104969653A (zh) * 2013-04-07 2015-10-07 华为技术有限公司 无线回程链路的建立方法和设备

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106579A (zh) * 2006-07-11 2008-01-16 大唐移动通信设备有限公司 一种通信系统及其为用户设备分配地址的方法
CN102299973A (zh) * 2010-06-23 2011-12-28 中兴通讯股份有限公司 在分流网络中实现地址分配的方法和装置
EP2597896A1 (en) * 2011-11-28 2013-05-29 Alcatel Lucent Support of user plane transactions over a mobile network
CN104106239A (zh) * 2012-01-10 2014-10-15 三菱电机株式会社 Ip地址分配系统及ip地址分配方法
WO2013143611A1 (en) * 2012-03-30 2013-10-03 Nokia Siemens Networks Oy Centralized ip address management for distributed gateways
CN103581354A (zh) * 2012-08-03 2014-02-12 中国电信股份有限公司 网络地址分配方法和系统
JP2016502820A (ja) * 2012-11-30 2016-01-28 インターデイジタル パテント ホールディングス インコーポレイテッド ネットワーク環境における分散モビリティ管理テクノロジー
US20150112996A1 (en) 2013-10-23 2015-04-23 Microsoft Corporation Pervasive search architecture
CN104684044B (zh) 2013-11-29 2019-04-16 中兴通讯股份有限公司 一种路径建立的方法、控制器及移动性管理实体
CN105359591B (zh) * 2014-02-21 2019-08-13 华为技术有限公司 一种网络故障的处理方法和设备
CN105814922B (zh) * 2014-03-17 2019-08-20 华为技术有限公司 地址标识分配方法和相关设备及系统
EP3104563B1 (en) * 2015-06-10 2019-10-16 Nokia Solutions and Networks GmbH & Co. KG Sdn security
EP3334236B1 (en) * 2015-09-22 2019-09-04 Huawei Technologies Co., Ltd. Control method and local control-plane device
US10701743B2 (en) * 2015-11-06 2020-06-30 Intel IP Corporation User plane resource allocation
CN108353334B (zh) * 2015-12-25 2020-09-04 华为技术有限公司 业务传输方法、装置及设备
US11265935B2 (en) * 2016-01-18 2022-03-01 Samsung Electronics Co., Ltd. Resource assignment for general packet radio service tunneling protocol (GTP) entities in 5G
WO2017124231A1 (zh) * 2016-01-18 2017-07-27 华为技术有限公司 分配互联网协议地址的方法、控制面网关和用户面网关
EP3402305B1 (en) * 2016-01-19 2020-04-29 Huawei Technologies Co., Ltd. Method and device for allocating ip address
US10972552B2 (en) * 2016-09-30 2021-04-06 Huawei Technologies Co., Ltd. Method and system for user plane path selection
EP3496374A4 (en) * 2016-09-30 2019-07-17 Huawei Technologies Co., Ltd. IP ADDRESS ALLOCATION SYSTEM AND DEVICE
WO2018082035A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种功能调度方法、设备和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1964564A (zh) * 2005-10-10 2007-05-16 华为技术有限公司 无线通信系统中用户面承载资源分配方法及无线通信系统
US20110270978A1 (en) * 2008-12-30 2011-11-03 Telefonaktiebolaget L M Ericsson (Publ) Method and Apparatus to Migrate Transport Protocols
CN103384279A (zh) * 2012-05-02 2013-11-06 中兴通讯股份有限公司 地址分配方法和装置
CN103636283A (zh) * 2012-06-29 2014-03-12 华为技术有限公司 网关系统、设备和通信方法
CN104969653A (zh) * 2013-04-07 2015-10-07 华为技术有限公司 无线回程链路的建立方法和设备

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10873563B2 (en) * 2016-01-19 2020-12-22 Huawei Technologies Co., Ltd. IP address allocation method, and device
US11212252B2 (en) 2016-01-19 2021-12-28 Huawei Technologies Co., Ltd. IP address allocation method, and device
CN113055835A (zh) * 2019-12-10 2021-06-29 中国电信股份有限公司 车载应用流量处理方法、装置和系统
CN113543336A (zh) * 2020-04-09 2021-10-22 华硕电脑股份有限公司 处理侧链路混合自动请求的时间间隙的方法和设备
WO2022037621A1 (zh) * 2020-08-19 2022-02-24 华为技术有限公司 地址分配方法、设备及系统
CN113840017A (zh) * 2021-08-31 2021-12-24 中国人民解放军63620部队 Ip地址自动分配方法、装置、电子设备和计算机可读介质
CN113840017B (zh) * 2021-08-31 2024-04-19 中国人民解放军63620部队 Ip地址自动分配方法、装置、电子设备和计算机可读介质
CN114338607A (zh) * 2021-12-29 2022-04-12 天翼物联科技有限公司 5g用户终端ip地址确认方法、装置及系统

Also Published As

Publication number Publication date
US10873563B2 (en) 2020-12-22
CN108476549B (zh) 2021-03-30
EP3402305A1 (en) 2018-11-14
CN108476549A (zh) 2018-08-31
EP3402305B1 (en) 2020-04-29
US20210084007A1 (en) 2021-03-18
US20180324140A1 (en) 2018-11-08
EP3402305A4 (en) 2018-11-14
US11212252B2 (en) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2017124308A1 (zh) 一种ip地址分配方法及设备
KR101814969B1 (ko) 네트워크에 액세스하는 시스템 및 방법
US9717019B2 (en) Data flow control method, and related device and communications system
US7940697B2 (en) Transition between IP protocol versions
US11102689B2 (en) Packet data connections in a wireless communication system using a wireless local area network
US8493932B2 (en) Method and apparatus for bearer processing
CN103988544B (zh) 用于在irat切换期间使ip上下文的丢失最小化的系统和方法
US9749306B2 (en) Method, device and communications system for network convergence
WO2014000286A1 (zh) 网关系统、设备和通信方法
WO2011134329A1 (zh) 一种小数据包传输的方法和系统
US10342054B2 (en) IP address assignment for a UE in 3GPP
WO2016191963A1 (zh) 一种建立承载的方法、用户设备及基站
WO2022110214A1 (zh) 通信方法及装置
CA3016750A1 (en) Method and nodes for handling bearers
EP4052453A1 (en) Method and apparatus for session management
JPWO2016163420A1 (ja) 端末装置、mme及びpgw
WO2018058620A1 (zh) 一种ip地址分配方法及装置
US20160205064A1 (en) Method, Device and System for Processing Network Address, WLAN and UE
WO2012068946A1 (zh) 查询网关的方法及系统
WO2015103780A1 (zh) 一种承载电路语音业务的方法及装置
EP3282722A1 (en) Terminal device, pgw, and mme
WO2015085493A1 (zh) 上行业务数据流的传输装置、方法及系统
EP3319392A1 (en) Data transmission method, and related device and system
WO2011120235A1 (zh) Sae架构下实现业务数据流旁路的方法、装置及系统
WO2013097614A1 (zh) 为ue分配ip地址的方法、系统及tnan、ue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016885581

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016885581

Country of ref document: EP

Effective date: 20180809