WO2017123049A1 - 초음파 cng 연료레벨 계측기 - Google Patents
초음파 cng 연료레벨 계측기 Download PDFInfo
- Publication number
- WO2017123049A1 WO2017123049A1 PCT/KR2017/000475 KR2017000475W WO2017123049A1 WO 2017123049 A1 WO2017123049 A1 WO 2017123049A1 KR 2017000475 W KR2017000475 W KR 2017000475W WO 2017123049 A1 WO2017123049 A1 WO 2017123049A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ultrasonic
- cng
- diameter
- tank
- temperature
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K15/00—Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
- B60K15/03—Fuel tanks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D19/00—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D19/02—Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/14—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
- G01F23/16—Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
Definitions
- the present invention relates to an ultrasonic fuel level meter, and more particularly, to measure the residual amount of CNG by using the attenuation of ultrasonic waves appearing through a compressed natural gas (CNG), and to change at least one of a distance change and a frequency delay phenomenon of ultrasonic waves.
- CNG compressed natural gas
- the distance to the fuel surface is detected as an average value, through which the remaining fuel, running distance and average fuel economy, etc.
- Fuel measuring devices for measuring the energy consumption have been widely used.
- a conventional fuel measuring apparatus includes a plurality of fuel tanks on the ceiling of a fuel tank in order to precisely detect a fuel tank in which fuel is stored and having a predetermined space therein and the remaining amount of fuel remaining in the fuel tank.
- Installed in the sensor unit to measure the distance to the fuel surface, and receives the signal detected by the sensor unit to calculate the average value, and compares the average value again with the volume of the internal fuel tank to calculate the remaining fuel in the fuel tank
- the controller calculates the amount of fuel, and calculates the amount of fuel, and the controller is programmed to estimate the driving distance and fuel economy, and the display displays the remaining fuel, driving distance and average fuel efficiency by receiving the output signal from the controller. It was done including.
- the conventional fuel measuring device measures the amount of fuel remaining in the fuel tank by using the distance value from the top of the fuel tank to the surface of the liquefied fuel, gasoline which is liquefied fuel and LPG (liquefied petroleum) in the case Although it is effective for measuring the residual amount of gas, it is difficult to measure the residual amount of CNG (compressed natural gas) provided in a gaseous state.
- CNG compressed natural gas
- the pressure remaining in the fuel tank (1) by measuring the pressure of the compressed natural gas discharged by attaching a pressure measuring device (2) to the outlet of the fuel tank (1) as shown in FIG.
- a pressure measuring device (2) to the outlet of the fuel tank (1) as shown in FIG.
- the present invention has been made in order to solve the above problems, an object of the present invention, by using the principle that ultrasonic waves are attenuated and attenuated particles of compressed natural gas present in the gas state of the compressed natural gas remaining in the gas tank It is to measure the remaining amount.
- the CNG remaining amount measurement error is minimized.
- the noise value included in the measured signal is prevented from affecting the CNG residual amount measurement.
- the ultrasonic wave passes through the CNG and the frequency is changed to measure the real-time temperature of the CNG, and using the measured CNG temperature, the temperature of the CNG fuel is changed to correct the CNG fuel amount data error appearing in real time.
- the CNG fuel temperature is corrected by matching the temperature data of the CNG fuel and the temperature data measured externally.
- the user can check the state of the CNG in real time.
- the ultrasonic transmission sensor 110 is attached to one side of the CNG tank and emits ultrasonic waves, and the other side of the CNG tank disposed opposite the ultrasonic transmission sensor 110 Ultrasonic transmitting and receiving unit 100 including an ultrasonic receiving sensor 120 for receiving the ultrasonic signal emitted from the ultrasonic transmitting sensor 110; And a residual amount detection unit 200 for measuring the residual amount of CNG located in the CNG tank by using the attenuation of the ultrasonic waves measured by the ultrasonic transceiver unit 100; Characterized in that it comprises a.
- a diameter detecting unit 300 for detecting the diameter of the CNG tank by using the ultrasonic signal measured by the ultrasonic transceiver 100.
- the diameter detector 300 may use any one or more of a distance change of the ultrasonic wave measured by the ultrasonic transceiver 100 and a frequency delay phenomenon.
- the diameter detection unit 300 is characterized in that it further comprises a normal existence determination unit 310 to determine the presence or absence of the steady state of the CNG tank based on the diameter change of the detected CNG tank.
- the integrated control unit 10 for correcting the residual amount measurement error according to the diameter change of the CNG tank by interlocking the diameter data of the CNG tank detected by the diameter detector 300 and the remaining amount of CNG data measured by the detector 200. It further comprises a).
- the apparatus may further include a temperature detector 400 detecting a temperature of the CNG located in the CNG tank by using the ultrasonic signal measured by the ultrasonic transceiver 100.
- the temperature detector 400 is characterized in that for using the frequency change of the ultrasonic wave measured by the ultrasonic transceiver 100.
- the CNG temperature detected by the temperature detector 400 is input to the residual amount detector 200, characterized in that to correct the CNG residual amount measurement error that appears in response to the CNG temperature change.
- the remaining amount detection unit 200 is characterized in that it further comprises an error correction unit 210 for defining the ultrasonic signal area used for the CNG remaining amount measurement.
- the error correction unit 210 sets the threshold value of the ultrasonic signal appearing outside the remaining amount measuring area (A), and characterized in that the ultrasonic signal is interlocked with the signal display unit to display when the threshold value exceeds.
- the ultrasonic fuel level meter of the present invention having the above configuration has the advantage of accurately measuring the amount of CNG remaining using an ultrasonic signal.
- the diameter of the CNG tank can be measured using an ultrasonic signal, there is an advantage that can determine the steady state of the CNG tank based on the diameter change of the measured CNG tank.
- the CNG tank diameter can be substituted into the CNG remaining measurement process, thereby improving the reliability of the CNG remaining measurement.
- the temperature of the CNG can be measured using an ultrasonic signal, there is an advantage in that the CNG fuel amount error generated in response to the CNG temperature change can be corrected in real time using the measured temperature.
- the temperature of the CNG can be corrected to a temperature corresponding to the outside by matching the temperature of the CNG with the external temperature.
- FIG. 1 is a conceptual view showing a conventional fuel amount measuring device (at the time of measuring the amount of liquid fuel).
- FIG 2 is a conceptual view showing a conventional fuel amount measuring device (at the time of measuring the amount of gas fuel).
- FIG 3 is an external conceptual view showing an ultrasonic fuel level meter of the present invention.
- FIG. 4 is a conceptual view of the interior of the CNG tank showing the present inventors ultrasonic fuel level meter.
- FIG. 5 is a conceptual diagram showing a residual amount detection method using the attenuation of the present invention ultrasonic fuel level meter.
- FIG. 6 is a conceptual diagram showing a remaining amount display method using the ultrasonic attenuation signal of the present invention ultrasonic fuel level meter.
- FIG. 7 is a conceptual diagram showing that the ultrasonic fuel level meter of the present invention is provided with a diameter detection unit.
- FIG. 8 is a conceptual diagram showing a change in the diameter of the CNG tank of the present invention ultrasonic fuel level meter.
- FIG. 9 is a conceptual diagram showing the distance change and the frequency delay phenomenon of the ultrasonic signal appearing in response to the CNG tank diameter change of the ultrasonic fuel level meter of the present invention.
- FIG. 10 is a conceptual view showing that the ultrasonic fuel level meter of the present invention is provided with a temperature detector.
- FIG. 11 is a conceptual diagram showing the frequency change of the ultrasonic wave appearing corresponding to the CNG fuel temperature change of the ultrasonic fuel level meter of the present invention.
- FIG. 12 is a conceptual diagram showing the conversion of the frequency measured by the temperature detector of the ultrasonic fuel level meter of the present invention into temperature.
- Figure 13 is a conceptual diagram showing that the error correction unit is provided in the ultrasonic fuel level meter of the present invention.
- FIG. 14 is a conceptual diagram showing an error correction method of the present invention ultrasonic fuel level meter.
- 15 is a conceptual view showing the ultrasonic fuel level meter of the present invention. (When an integrated control unit integrating a residual amount detector, an error corrector, a diameter detector, and a temperature detector is formed)
- Natural gas is a fossil fuel mainly composed of methane phosphorus (methane), which is compressed natural gas (CNG), liquefied natural gas (Liquefied Natural Gas), and adsorptive natural gas. It is divided into ANG (Adsorbed Natural Gas), where CNG, a compressed natural gas, is a natural gas compressed at a high pressure of 200-250 kg / cm2, LNG is a natural gas cooled to -161.5 degrees or less, and ANG Is compressed to natural gas 30 ⁇ 60kg / cm2 in the adsorbent such as activated carbon.
- CNG compressed natural gas
- LNG is a natural gas cooled to -161.5 degrees or less
- CNG is about three times the volume of LNG and high-pressure fuel tanks must be used, so there is a risk of explosion when storage containers (fuel tanks) rupture, but CNG itself is safe from fire hazards due to its high ignition temperature.
- Natural gas such as CNG and LNG has almost no emissions of sulfur oxides and nitrogen oxides, which are the main causes of air pollution, and carbon dioxide emissions are less than gasoline, gasoline, and LPG (liquefied petroleum gas). .
- Natural gas fueled natural gas vehicles were first manufactured in the 1930s, and have been used as energy-saving measures since the 1970s, and as a means of preventing air pollution since the 1990s.
- Natural gas buses which have been available in Korea since 2000, are called CNG buses because they use CNG as fuel, and many of the world's largest cities are also expanding CNG buses.
- the ultrasonic measuring device is attached to one side of the CNG tank 3, the ultrasonic transmitting sensor 110 for emitting ultrasonic waves, and the other side of the CNG tank 3 is disposed opposite the ultrasonic transmitting sensor 110 and the An ultrasonic transceiver unit 100 including an ultrasonic receiver sensor 120 that receives the ultrasonic signal emitted from the ultrasonic transmitter 110, and the inside of the CNG tank using the attenuation of the ultrasonic wave measured by the ultrasonic transmitter / receiver 100. It comprises a residual amount detection unit 200 for measuring the residual amount of CNG located in.
- ultrasonic waves refer to sound waves having a high frequency that cannot be heard by the human ear, and sound waves of 20,000 HZ or more are commonly called ultrasonic waves.
- Ultrasonic waves with high frequency are hardly delivered in air, but are well transmitted in liquids or solids.
- Such ultrasonic waves have properties such as straightness, transmission, refraction, reflection, scattering, attenuation, resolution, focusing, propagation, etc.
- the ultrasonic wave is weakened by attenuation (absorption, scattering, diffusion, etc., which are caused by propagation of ultrasonic waves). It is to measure the remaining amount of CNG using.
- the ultrasonic waves emitted from the ultrasonic transmitting sensor 110 are present in the gaseous state inside the CNG tank 3 while moving to the ultrasonic receiving sensor 120. 4) absorption, scattering, diffusion, etc. occur, the signal is attenuated, and the amount of change in which the ultrasonic signal is attenuated is proportional to the number and amount of CNG particles 4. That is, when there are many CNG particles 4 located inside the CNG tank 3, the attenuation becomes large, and when the CNG particles 4 become smaller, the attenuation becomes smaller.
- the ultrasonic signal is changed corresponding to the number of CNG particles 4, the temperature of the CNG is changed by the peripheral system (external, CNG tank), so that the pressure of the CNG located inside the CNG tank 3 is increased. Even if it is changed, it is possible to accurately measure the residual amount of CNG.
- the remaining amount detection unit 200 may represent the amount of CNG located in the CNG tank 3 by level (the total amount is displayed by dividing the predetermined amount) by using the measured ultrasonic signal.
- the amount of CNG is changed to correspond to the attenuation value of the ultrasonic signal measured by the ultrasonic transceiver unit 100.
- the driver driving the vehicle can check the remaining amount of CNG.
- the CNG fuel level meter using the ultrasonic attenuation signal of the present invention can measure the area (area) of the voltage appearing in the remaining amount measuring unit 200, and can measure the remaining amount of CNG.
- the ultrasound measuring apparatus of the present invention may further include a diameter detecting unit 300 for detecting the diameter of the CNG tank 3 by using the ultrasonic wave measured by the ultrasonic transmitting and receiving unit 100 as shown in FIG.
- the diameter detection unit 300 is any one of the change in the moving distance of the ultrasonic wave measured in the process of the ultrasonic wave is emitted from the ultrasonic transmitting sensor 110 and the ultrasonic receiving sensor 120, and the frequency delay phenomenon according to the change in the distance By using the above, the rate of change of the diameter of the CNG tank 3 is detected.
- the CNG tank 3 may be changed from the existing D1 diameter to the D2 diameter by the pressure expansion of the CNG input from the outside as shown in FIG. 8, and the CNG tank 3 is expanded to have a diameter.
- the measured ultrasonic signal is changed from the ideal CNG amount level signal a to the level signal b due to the diameter change as shown in FIG.
- the diameter detector 300 measures the change of the ultrasonic wave by the distance and the received voltage, if the diameter of the received ultrasonic signal is changed when the diameter of the CNG tank 3 is changed, , CNG tank by setting the distance at which the ultrasonic signal is located when the CNG tank 3 is in a normal state as a reference point, and measuring the change in position ( ⁇ d) of the ultrasonic signal received by varying the diameter of the CNG tank 3. The presence or absence of steady state in (3) can be determined.
- the diameter detector 300 stores the distance value of the steady state ultrasonic signal of the CNG tank 3, as shown in FIG. 7, and thus the CNG tank 3 according to the position change ⁇ d of the ultrasonic signal.
- the position change of the ultrasonic reception signal reaches more than a certain level may include a normal determination unit 310 to inform the user that the abnormality in the CNG (3) tank.
- the ultrasonic measuring instrument interlocks the residual amount detecting unit 200 and the diameter detecting unit 300 with each other, so that the residual amount detecting unit 200 corresponds to the diameter change of the CNG tank 3.
- the CNG remaining measurement error can be corrected.
- the CNG residual amount detection error generated in response to the diameter change of the CNG tank To calibrate.
- the CNG residual measurement error with respect to the volume change of the CNG fuel that changes in response to the temperature is minimized.
- the diameter of the CNG tank variable by the diameter detecting unit 300 may be changed. Input to the residual amount detection unit 200 to minimize the CNG residual error detected by the residual amount detection unit 200 in response to the diameter change of the CNG tank.
- the ultrasonic fuel level meter of the present invention may further include a temperature detector 400 for detecting the temperature of the CNG located inside the CNG tank by using the ultrasonic signal measured by the ultrasonic transceiver 100.
- the temperature detection unit 400 uses a CNG tank by using a frequency change of ultrasonic waves measured in a process in which ultrasonic waves are emitted from the ultrasonic transmitting sensor 110 and transferred to the ultrasonic receiving sensor 120. (3) It detects the temperature of CNG located inside.
- the ultrasonic wave emitted from the ultrasonic transmitter 110 passes through the CNG tank after amplification and is received by the ultrasonic receiver 120 at a predetermined distance d.
- the frequency of the received signal located becomes the temperature of the CNG.
- the received frequency is represented by the intensity of the frequency as shown in Figure 12, and compared with the temperature value for each frequency stored in the comparison reading unit provided on the temperature detector 400 to measure the real-time temperature of the CNG Can be.
- the comparison reading unit of the temperature detector 400 stores the frequency intensity measured according to the CNG temperature when the CNG passes.
- the CNG temperature data according to the stored frequency and the intensity of the ultrasonic wave received by the ultrasonic receiving sensor 120 are compared and analyzed.
- the ultrasonic measuring apparatus of the present invention may correct the CNG residual error that appears in response to the CNG temperature change by the residual amount detecting unit 200 and the temperature detecting unit 400 interlock with each other.
- the output value measured by the ultrasonic receiving sensor 120 is 2.5V, and the actual measurement temperature (40 degrees). If the output value is 2.0V, the volume change rate of the CNG located inside the CNG tank 3 is calculated to correct the fuel amount data in real time.
- the ultrasonic transceiver 100 may further include a temperature sensor for measuring the external temperature, the temperature sensor is converted to a signal after the external temperature is measured to transmit to the temperature detector 400, The temperature difference between the outside and the inside of the CNG tank can be checked by comparing the external temperature signal and the ultrasonic signal passing through the CNG tank 3, and the temperature inside the CNG tank is linked to the temperature detector 400 in the CNG tank.
- a temperature control unit that can correct similarly to the external temperature may be further formed.
- the temperature control unit may be various devices because it is sufficient to control the temperature inside the CNG tank, and in one embodiment, a flow path forming unit surrounding the CNG tank 3 and a position between the housing and the outer surface of the CNG tank 3. It may be a temperature control module including a fluid to be, or a heat sink attached to the outer peripheral surface of the CNG tank (3).
- the ultrasonic measuring apparatus of the present invention sets the threshold of the ultrasonic signal appearing outside the remaining amount measuring area (A), as shown in FIG. 13, and when the ultrasonic signal exceeds the threshold (C), the abnormal state through the signal display unit 11 It may further include an error correction unit 210 for displaying.
- the ultrasonic signal is sensitive to the change in the peripheral system (pressure, temperature, etc.) and the external force transmitted to the CNG tank, and the ultrasonic signal becomes stronger as the external force transmitted from the outside becomes stronger. Since the noise is displayed on the noise area B as a strong noise value, the noise threshold is designated as a noise value that may cause a problem, and when the noise exceeds the threshold value, the signal display unit 11 indicates that the user is abnormal. will be.
- the signal display unit 11 may be a device for implementing a visual signal transmitted to the field of view, a device for implementing an audio signal transmitted as a sound, in addition to the temperature change or surface roughness change of the driver's handle
- the present invention is not limited since it may be a device implementing the tactile signal represented by.
- the ultrasonic fuel level meter is a residual amount detector 200 for detecting the remaining amount of CNG using the ultrasonic transceiver 100, and a diameter detector for detecting the diameter of the CNG tank 3 ( 300, and a temperature detector 400 and an error correction unit 210 for measuring the CNG temperature, and may be integratedly controlled by the integrated controller 10.
- the residual amount of CNG measured by the residual amount detector 200 is corrected by using the diameter of the CNG tank 3 measured by the diameter detector 300 and the CNG temperature measured by the temperature detector 400. After measuring the correct CNG remaining amount, correcting the noise appearing from the corrected CNG residual signal using the signal input from the error correction unit 210, and displays the corrected fuel level to the user on the display 500 will be.
- the present inventors CNG remaining amount detection method is an ultrasonic transmission and reception step (S100) and the ultrasonic wave transmitting and receiving the ultrasonic wave from one side of the CNG tank in which the CNG fuel is located therein, the other side measured and measured in the ultrasonic transmission and reception step (S100)
- a residual amount detecting step (S400) of detecting the remaining amount of CNG fuel may be performed by using the frequency change of the ultrasonic waves measured at S300.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
본 발명은 초음파 연료례벨 계측기에 관한 것으로서, 더욱 상세하게는 초음파를 이용하여 CNG 잔여량 측정이 가능할 뿐만 아니라, CNG 탱크 직경변화율 검출, CNG 탱크 및 CNG 연료의 이상상태 파악, CNG 탱크 직경변화에 따른 CNG 잔여량 측정 오차 보정, CNG 온도 측정, CNG 온도변화에 대응하여 발생하는 CNG 잔여량 측정오차 보정 및 CNG 잔여량 측정 노이즈 최소화 또한 가능한, 초음파 계측기에 관한 것이다.
Description
본 발명은 초음파 연료레벌 계측기에 관한 것으로서, 더욱 상세하게는 CNG(Compressed natural gas)를 통과하며 나타나는 초음파의 감쇠를 이용하여 CNG의 잔량을 측정하고, 초음파의 거리 변화, 주파수 지연현상 중 어느 하나 이상을 이용하여 가변되는 CNG 탱크의 직경을 측정하여, CNG 잔량 측정 신뢰성을 향상시킴과 동시에 장치의 안전성 또한 향상시킬 수 있을 뿐만 아니라, CNG의 온도변화를 측정하여 온도 변화에 대응하여 나타나는 CNG 잔량 측정 오차 또한 보상 가능한, 초음파 계측기에 관한 것이다.
종래에는, 자동차의 연료 측정을 위하여 연료탱크의 상단부에 다수개의 레이저센서 또는 초음파센서를 장착한 후, 연료 표면까지의 거리를 평균값으로 검출한 후 이를 통해 연료의 잔량과 주행가능거리 및 평균연비 등을 측정하는 연료측정 장치가 널리 사용되었다.
종래의 연료측정 장치는 도 1에 도시된 바와 같이, 연료가 저장되며 내부에 소정의 공간을 갖는 연료탱크와, 연료탱크에 남아있는 연료의 잔량을 정밀하게 검출하기 위하여 연료탱크의 천장에 다수개 설치되어 연료 표면까지의 거리를 측정하는 센서부와, 센서부에서 검출된 신호를 입력받아 평균값을 계산하고, 그 평균값을 다시 내부에 내장된 연료탱크의 부피와 비교 연산하여 연료탱크에 남아있는 연료의 양을 기본적으로 산출하며, 이렇게 산출된 연료량으로 주행가능거리 및 연비 등을 추정하도록 프로그램된 제어부와, 제어부의 출력신호를 전달받아 연료의 잔량, 주행가능거리 및 평균연비 등을 표시하는 디스플레이 등을 포함하여 이루어졌던 것이다.
그러나, 종래의 연료측정 장치는 연료탱크의 상부에서 액화된 연료의 표면까지의 거리값을 이용하여 연료탱크에 잔여된 연료의 양을 측정하기 때문에, 액화 연료인 휘발유와, 경우, LPG(액화석유가스)의 잔여량 측정에는 효율적이지만, 기체 상태로 구비되는 CNG(압축천연가스)의 잔여량 측정이 어려운 단점이 발생하였다.
이러한 단점을 해소하고자, 도 2에 도시된 바와 같인 연료탱크(1)의 배출구에 압력 측정장치(2)를 부착하여 배출되는 압축천연가스의 압력을 측정함으로서 연료탱크(1) 내부에 남아있는 압축천연가스의 양을 측정하는 방법을 사용하였으나, 압축 천연가스는 순수 가스로 온도에 따라 그 부피가 크게 변하기 때문에 실질적으로 연료탱크(1)에 잔존하는 압축천연가스의 양을 정확히 측정하기 어려운 실정이다.
따라서, 연료탱크 내부에 구비된 압축천연가스의 양을 정확하게 측정할 수 있는 연료측정 장치의 필요성이 대두되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서 본 발명의 목적은, 초음파가 가스 상태로 존재하는 압축천연가스의 입자와 부딪히며 감쇠되는 원리를 이용하여 가스탱크에 남아있는 압축천연가스의 정확한 잔량을 측정하는 것이다.
또한, CNG의 팽창현상으로 변화되는 CNG 탱크의 직경을 파악하여, CNG 탱크의 정상상태 유무를 판단하는 것이다.
또한, CNG 탱크의 팽창현상에 대응하여 가변되는 CNG 탱크의 직경 변화를 실시간으로 CNG 잔량을 구하는 과정에 대입하여, CNG 잔량 측정 오차를 최소화 하는 것이다.
그리고, 측정되는 초음파의 감쇠신호 중 초음파의 양을 나타내는 잔량측정영역을 한정하여 측정되는 신호에 포함된 노이즈 값이 CNG 잔량 측정에 영향을 미치는 것을 방지하는 것이다.
아울러, 잔량측정영역 밖에서 발생하는 노이즈 임계점을 설정하여 노이즈가 임계점 이상으로 증폭될 경우 이상 유무를 표시하여 사용자가 이상 변화에 대응할 수 있게 하는 것이다.
또한, 초음파가 CNG를 통과하며 주파수가 변화되는 성질을 이용하여 CNG의 실시간 온도를 측정하고, 측정된 CNG 온도를 이용하여 CNG 연료의 온도가 변화되며 나타나는 CNG 연료량 데이터 오차를 실시간으로 보정하는 것이다.
그리고, 정상 상태에서 나타나는 CNG 연료의 온도 데이터와 외부에서 측정되는 온도 데이터를 서로 매칭시켜 CNG 연료의 온도를 보정하는 것이다.
아울러, 측정된 CNG 연료의 양과, 온도와, 가스흐름을 실시간으로 측정하여, CNG의 상태를 사용자가 실시간으로 확인할 수 있게 하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명인 초음파 연료레벨 계측기는, CNG 탱크 일측에 부착되어 초음파를 방출하는 초음파 송신센서(110)와, CNG 탱크 타측에 초음파 송신센서(110)와 대향 배치되며 상기 초음파 송신센서(110)에서 방출한 초음파 신호를 수신하는 초음파 수신센서(120)를 포함하는 초음파 송수신부(100); 및 상기 초음파 송수신부(100)에서 측정된 초음파의 감쇠를 이용하여 CNG 탱크 내부에 위치되는 CNG 잔량을 측정하는 잔량 검출부(200); 를 포함하는것을 특징으로 한다.
또한, 상기 초음파 송수신부(100)에서 측정된 초음파 신호를 이용하여 CNG 탱크의 직경을 검출하는 직경 검출부(300)를 포함하는 것을 특징으로 한다.
또한, 상기 직경 검출부(300)는 상기 초음파 송수신부(100)에서 측정되는 초음파의 거리 변화와, 주파수 지연 현상 중 어느 하나 이상을 이용하는 것을 특징으로 한다.
또한, 상기 직경 검출부(300)는 검출된 CNG 탱크의 직경 변화를 기반으로 CNG 탱크의 정상상태 유무를 파악하는 정상유무 판단부(310)를 더 포함하는 것을 특징으로 한다.
또한, 상기 직경 검출부(300)에서 검출된 CNG 탱크의 직경 데이터와 상기 잔량 상기 검출부(200)에서 측정된 CNG 잔량 데이터를 연동시켜 CNG 탱크의 직경 변화에 따른 잔량 측정 오차를 보정하는 통합 제어부(10)를 더 포함하는 것을 특징으로 한다.
또한, 상기 초음파 송수신부(100)에서 측정된 초음파 신호를 이용하여 CNG 탱크 내부에 위치되는 CNG의 온도를 검출하는 온도 검출부(400)를 더 포함하는 것을 특징으로 한다.
또한, 상기 온도 검출부(400)는 상기 초음파 송수신부(100)에서 측정되는 초음파의 주파수 변화를 이용하는 것을 특징으로 한다.
또한, 상기 온도 검출부(400)에서 검출된 CNG의 온도를 상기 잔량 검출부(200)로 입력하여 CNG 온도 변화에 대응하여 나타나는 CNG 잔량 측정 오차를 보정하는 것을 특징으로 한다.
또한, 상기 잔량 검출부(200)는 CNG 잔량 측정에 사용되는 초음파 신호 영역을 한정하는 오차 보정부(210)를 더 포함하는 것을 특징으로 한다.
또한, 상기 오차보정부(210)는 잔량측정영역(A) 밖에서 나타나는 초음파 신호의 임계값을 설정하고, 초음파 신호가 임계값 초과 시 디스플레이화 하는 신호 표시부와 연동되는 것을 특징으로 한다.
상기한 바와 같은 목적을 달성하기 위한 본 발명인 CNG 잔량 검출 방법은, 내부에 CNG 연료가 위치되는 CNG 탱크의 일측에서 초음파를 송신하고, 타측에서 초음파를 수신하는 초음파 송수신단계(S100); 상기 초음파 송수신단계(S100)에서 측정된 초음파의 거리변화와, 주파수 지연 현상 중 어느 하나 이상을 이용하여 CNG 탱크의 직경을 측정하는 직경 측정단계(S200); 상기 초음파 송수신단계(S100)에서 측정된 초음파의 주파수 변화를 이용하여 CNG의 온도를 측정하는 온도 측정단계(S300); 및 상기 직경 측정단계(S200)에서 측정된 CNG 탱크의 직경과, 상기 초음파 송수신단계(S100)에서 측정된 초음파 감쇠와, 상기 온도 측정단계(S300)에서 측정된 초음파의 주파수 변화를 이용하여 CNG 연료 잔량을 검출하는 잔량 검출단계(S400); 를 포함하는 것을 특징으로 한다.
상기와 같은 구성에 의한 본 발명인 초음파 연료 레벨 계측기는 초음파 신호를 이용하여 CNG 잔량을 정확히 측정 가능한 장점이 있다.
또한, 초음파 신호를 이용하여 CNG 탱크의 직경을 측정할 수 있으므로, 측정되는 CNG 탱크의 직경 변화를 기반으로 CNG 탱크의 정상상태 유무를 판단 가능한 장점이 있다.
뿐만 아니라, 가변되는 CNG 탱크의 직경 변화를 실시간으로 계측함과 동시에 CNG 잔량 또한 측정 가능하므로, 측정되는 CNG 탱크 직경을 CNG 잔량 측정 과정에 대입시켜 CNG 잔량 측정 신뢰성을 향상시키는 장점이 있다.
그리고, CNG 잔량을 측정하는 초음파 신호 영역을 한정하여 주변계 또는 외부에서 가해지는 힘에 의해 발생되는 노이즈를 제거 가능하므로, CNG 잔량 측정 신뢰성을 한층 더 향상시키는 장점이 있다.
아울러, 주변계 현상 또는 외력에 의해 발생되는 노이즈의 임계점을 지정하여 노이즈가 임계점을 초과하게 되면 이를 사용자에게 인지시켜 안전사고를 방지하는 장점이 있다.
또한, 초음파 신호를 이용하여 CNG의 온도를 측정 가능하므로, 측정된 온도를 이용하여 CNG 온도 변화에 대응하여 발생하는 CNG 연료량 오차를 실시간 보정할 수 있는 장점이 있다.
그리고, CNG의 온도와 외부 온도를 매칭시켜 CNG의 온도를 외부에 대응되는 온도로 보정할 수 있는 장점이 있다.
도 1은 종래의 연료량 측정장치를 나타낸 개념도.(액체 연료의 양 측정 시)
도 2는 종래의 연료량 측정장치를 나타낸 개념도.(기체 연료의 양 측정 시)
도 3은 본 발명인 초음파 연료레벨 계측기를 나타낸 외부 개념도.
도 4는 본 발명인 초음파 연료레벨 계측기를 나타낸 CNG 탱크 내부 개념도.
도 5는 본 발명인 초음파 연료레벨 계측기의 감쇠를 이용한 잔량 검출 방법을 나타낸 개념도.
도 6은 본 발명인 초음파 연료레벨 계측기의 초음파 감쇠신호를 이용한 잔량 표시방법을 나타낸 개념도.
도 7은 본 발명인 초음파 연료레벨 계측기에 직경 검출부가 구비된 것을 나타낸 개념도.
도 8은 본 발명인 초음파 연료레벨 계측기의 CNG 탱크 직경변화를 나타낸 개념도.
도 9는 본 발명인 초음파 연료레벨 계측기의 CNG 탱크 직경변화에 대응하여 나타나는 초음파 신호의 거리변화와 주파수 지연 현상을 나타낸 개념도.
도 10은 본 발명인 초음파 연료레벨 계측기에 온도 검출부가 구비된 것을 나타낸 개념도.
도 11은 본 발명인 초음파 연료레벨 계측기의 CNG 연료 온도변화에 대응하여 나타나는 초음파의 주파수 변화를 나타낸 개념도.
도 12는 본 발명인 초음파 연료레벨 계측기의 온도 검출부에서 측정된 주파수를 온도로 변환한 것을 나타낸 개념도.
도 13은 본 발명인 초음파 연료레벨 계측기에 오차 보정부가 구비된 것을 나타낸 개념도.
도 14는 본 발명인 초음파 연료레벨 계측기의 오차 보정 방법을 나타낸 개념도.
도 15는 본 발명인 초음파 연료레벨 계측기를 나타낸 개념도.(잔량 검출부, 오차 보정부, 직경 검출부, 온도 검출부를 통합하는 통합 제어부 형성 시)
천연가스(NG)는 메탄인(메탄)을 주성분으로 하는 화석연료로, 저장 방법에 따라 압축 천연 가스인 CNG(Compressed Natural GAS)와, 액화천연가스인 LNG(Liquefied Natural Gas), 흡착천연가스인 ANG(Adsorbed Natural Gas)로 나뉘며, 이때 압축 천연가스인 CNG는 천연가스를 200~250kg/cm2의 고압으로 압축한 것이고, LNG는 천연가스를 -161.5도 이하로 냉각시켜 액체 상태로 만든 것이고, ANG는 활성탄 등의 흡착제에 천연가스를 30~60kg/cm2 로 압축한 것이다.
LNG의 경우 고가의 냉각과정이나 초저온 탱크(단열 장치)가 필요하지만 CNG의 경우 그런 장치가 필요 없어 비용을 절감할 수 있다. 반면 CNG는 부피가 LNG의 3배 정도 높고, 고압 연료탱크를 사용해야 하기 때문에 저장용기(연료탱크)가 파열하면 폭발할 위험이 있으나, CNG 자체는 자연발화온도가 높아 화재 위험에 대해선 안전하다. CNG, LNG 등의 천연가스는 대기오염의 주범인 황산화물, 질소산화물 등의 배출이 거의 없고, 이산화탄소의 배출량도 휘발유(가솔린)나 경유, LPG(액화석유가스)보다 적어 친환경적 연료라 할 수 있다.
천연가스를 연료로 하는 천연가스자동차는 1930년대에 처음 제작되었으며, 1970년대 이후 에너지 절약수단으로 보급되었고, 1990년대에 들어서면서부터 대기오염을 예방하는 수단으로 보급되고 있다. 한국에서 2000년부터 보급되기 시작한 천연가스버스는 CNG를 연료로 쓰기 때문에 CNG버스라고도 불리며, 세계 상당수의 대도시도 CNG버스를 확대 보급하고 있다.
최근 이러한 CNG를 연료로 쓰는 자동차가 널리 사용되며, CNG의 양을 정확하게 측정할 수 있는 장치의 필요성이 대두되고 있으며, 이하에서는 도면을 참조하여 본 발명인 초음파 계측기에 대하여 설명하도록 한다.
도 3을 참조하면, 본 발명인 초음파 계측기는 CNG 탱크(3) 일측에 부착되어 초음파를 방출하는 초음파 송신센서(110)와, CNG 탱크(3) 타측에 초음파 송신센서(110)와 대향 배치되며 상기 초음파 송신센서(110)에서 방출한 초음파 신호를 수신하는 초음파 수신센서(120)를 포함하는 초음파 송수신부(100), 및 상기 초음파 송수신부(100)에서 측정된 초음파의 감쇠를 이용하여 CNG 탱크 내부에 위치되는 CNG 잔량을 측정하는 잔량 검출부(200)를 포함하여 이루어진다.
상세히 설명하면, 초음파는 인간의 귀로 들을 수 없는 높은 주파수를 갖는 음파를 말하며, 보통 20,000HZ 이상의 음파를 초음파라 한다. 이렇게 주파수가 높은 초음파는 공기 중에서는 거의 전달이 되지 않고 액체나 고체 등에서는 전달이 잘 된다. 이러한 초음파는 직진, 투과, 굴절, 반사, 산란, 감쇠, 분해능, 집속, 전파 등의 성질을 가지는데, 이때, 본 발명에서는 감쇠(초음파가 전파되며 나타나는 흡수, 산란, 확산) 등에 의해 약해지는 특징을 이용하여 CNG 잔량을 측정하는 것이다.
도 4 및 도 5를 참조하여 설명하면, 상기 초음파 송신센서(110)에서 방출된 초음파는 상기 초음파 수신센서(120)로 이동하는 도중 상기 CNG 탱크(3) 내부에 기체상태로 존재하는 CNG 입자(4)와 접촉하며 흡수, 산란, 확산 등이 발생하여 그 신호가 감쇠되며, 초음파 신호가 감쇠되는 변화량은 CNG 입자(4)의 수 및 양에 비례하게 된다. 즉, 상기 CNG 탱크(3) 내부에 위치되는 CNG 입자(4)가 많으면 감쇠가 커지고, CNG 입자(4)가 적어지면 감쇠가 작아지는 것이다.
따라서, 본 발명은 CNG 입자(4)의 개수에 대응하여 초음파 신호가 변화되므로 주변계(외부, CNG 탱크)에 의해 CNG의 온도가 변화되어, CNG탱크(3) 내부에 위치하는 CNG의 압력이 변화 되더라도 정확한 CNG의 잔여량 측정이 가능하다.
아울러, 상기 잔량 검출부(200)는 측정된 초음파 신호를 이용하여 CNG탱크(3) 내부에 위치하는 CNG의 양을 레벨별(총량을 일정하게 나누어 표시한 것)로 나타낼 수 있다.
도 6을 참조하여 설명하면, 초음파는 감쇠되는 정도에 따라 Voltage값으로 그 차이가 나타나게 되므로, 상기 초음파 송수신부(100)에서 측정된 초음파 신호의 감쇠 수치에 대응하여 변화되는 Voltage 값을 CNG의 양을 나타는 레벨로 표시하여, 차량을 운행하는 운전자가 잔여 CNG 양을 확인할 수 있게 한 것이다.
도 6에 도시된 실험 데이터에서는 상기 CNG 탱크(3) 내부에 위치된 CNG의 양이 많을수록 잔량 검출부(200)에서 측정되는 Voltage값이 커지고, CNG탱크(3) 내부에 위치된 CNG의 양이 적을수록 잔량 측정부(200)에서 측정되는 Voltage값이 작아지는 것을 도시하였지만, 이는 일 실시예일 뿐이며 알고리즘이나 표시 방법에 따라 다양하게 변화될 수 있으며, CNG의 양에 대응하여 Voltage 값이 변화되면 충분하므로 이는 한정하지 않는다. 그리고, 본 발명인 초음파 감쇠신호를 이용한 CNG 연료 레벨 계측기는 잔량 측정부(200)에서 나타나는 Voltage의 넓이(면적)를 측정하여, CNG의 잔량을 측정 가능하다.
또한, 본 발명인 초음파 계측기는 도 7에 도시된 바와 같이 상기 초음파 송수신부(100)에서 측정된 초음파를 이용하여 CNG 탱크(3)의 직경을 검출하는 직경 검출부(300)를 더 포함할 수 있다.
상기 직경 검출부(300)는 초음파가 상기 초음파 송신센서(110)에서 방출되어 상기 초음파 수신센서(120)로 전달되는 과정에서 측정되는 초음파의 이동거리 변화와, 거리변화에 따른 주파수 지연 현상 중 어느 하나 이상을 이용하여 CNG 탱크(3)의 직경변화율을 검출하는 것이다.
상세히 설명하면, CNG 탱크(3)는 도 8에 도시된 바와 같이 외부에서 입력되는 CNG의 압력팽창에 의해 기존의 D1 직경에서 D2 직경으로 변화될 수 있으며, CNG 탱크(3)가 팽창되어 직경이 D1에서 D2로 변화될 경우, 측정되는 초음파 신호는 도 9에 도시된 바와 같이 이상적인 CNG양 레벨 신호(a)에서 직경변화에 의한 레벨 신호(b)로 변화된다.
즉, 상기 직경 검출부(300)는 거리(Distance)와 수신되는 전압(Voltage)으로 초음파의 변화를 측정하므로, CNG 탱크(3)의 직경이 변화될 경우 수신되는 초음파 신호가 위치되는 거리가 가변되면, CNG 탱크(3)가 정상상태일 때의 초음파 신호가 위치되는 거리를 기준점으로 설정하고, CNG 탱크(3)의 직경이 가변되며 나타나는 초음파 수신신호의 위치변화(△d)를 측정하여 CNG 탱크(3)의 정상상태 유무를 판별 가능한 것이다.
이때, 상기 직경 검출부(300)는 도 7에 도시된 바와 같이 CNG 탱크(3)의 정상상태 초음파 신호의 거리값이 저장되어 있어, 초음파 수신신호의 위치변화(△d)에 따른 CNG 탱크(3)의 직경 변화를 판단하여, 초음파 수신신호의 위치변화가 일정 이상에 이르면 사용자에게 CNG(3) 탱크에 이상이 생겼음을 알리는 정상유무 판단부(310)를 포함할 수 있음은 물론이다.
그리고, 본 발명인 초음파 계측기는 도 7에 도시된 바와 같이 상기 잔량 검출부(200)와 상기 직경 검출부(300)가 서로 연동하여, CNG 탱크(3)의 직경 변화에 대응하여 상기 잔량 검출부(200)에서 측정되는 CNG 잔량 측정 오차를 보정할 수 있다.
상세히 설명하면, 상기 직경 검출부(300)에서 측정되는 CNG 탱크의 실시간 직경을 상기 잔량 검출부(200)에서 측정되는 초음파 신호 데이터에 적용하여, CNG 탱크의 직경 변화에 대응하여 발생하는 CNG 잔량 검출 오차를 보정하는 것이다.
다시한번 설명하면, CNG 탱크(3) 내부에 위치되는 CNG 연료의 잔량 신호는 초음파의 감쇠에 대응하여 나타나므로, 온도에 대응하여 가변되는 CNG 연료의 부피 변화에 대한 CNG 잔량 측정 오차가 최소화 된다. 그러나, 내압에 의해 CNG 탱크의 내경 및 외경이 커질 경우 초음파가 통과하는 구간에 위치된 CNG 연료 입자(4)가 적어져 오차가 발생할 수 있으므로, 직경 검출부(300)에서 가변되는 CNG 탱크의 직경을 잔량 검출부(200)로 입력하여, CNG 탱크의 직경 변화에 대응하여 잔량 검출부(200)에서 검출되는 CNG 잔량 오차를 최소화한 것이다.
또한, 본 발명인 초음파 연료레벨 계측기는 상기 초음파 송수신부(100)에서 측정된 초음파 신호를 이용하여 CNG 탱크 내부에 위치되는 CNG의 온도를 검출하는 온도 검출부(400)를 더 포함할 수 있다.
도 10을 참조하여 설명하면, 상기 온도 검출부(400)는 초음파가 상기 초음파 송신센서(110)에서 방출되어 상기 초음파 수신센서(120)로 전달되는 과정에서 측정되는 초음파의 주파수 변화를 이용하여 CNG 탱크(3) 내부에 위치된 CNG의 온도를 검출하는 것이다.
도 11을 참조하여 상세히 설명하면, 상기 초음파 송신센서(110)에서 방출되는 초음파는 증폭 후 CNG 탱크를 통과여 상기 초음파 수신센서(120)에서 수신되며, 이때 수신되는 전압 중 일정한 거리(d)에 위치되는 수신신호의 주파수가 CNG의 온도가 된다. 이때, 수신되는 주파수는 도 12에 도시된 바와 같이 주파수의 세기로 나타나며, 상기 온도 검출부(400) 상에 구비되는 비교판독부에 저장되어 있는 주파수별 온도값과 비교되어 CNG의 실시간 온도를 측정할 수 있다.
즉, 초음파를 CNG를 통과시킬 경우 초음파는 CNG를 통과하며 CNG 온도에 대응하여 일정한 주파수를 갖게 되므로, CNG 통과 시 CNG 온도에 따라 측정되는 주파수 세기가 저장되어 있는 온도 검출부(400)의 비교판독부에서, 저장되어 있는 주파수에 따른 CNG 온도 데이터와, 초음파 수신센서(120)에서 수신되는 초음파의 세기를 서로 비교 분석하는 것이다.
또한, 본 발명인 초음파 계측기는 상기 잔량 검출부(200)와 상기 온도 검출부(400)가 서로 연동하여 CNG 온도 변화에 대응하여 나타나는 CNG 잔량 오차를 보정할 수 있다.
일 실시예를 들면, CNG 탱크(3) 내부에 위치된 CNG의 기본 온도(25도)를 가정하고 이때 초음파 수신센서(120)에서 측정되는 Output 값이 2.5V이고, 실측정 온도(40도)에서 Output 값이 2.0V로 나타날 경우, CNG 탱크(3) 내부에 위치되는 CNG의 부피변화율을 계산하여 연료량 데이터를 실시간 보정하는 것이다.
그리고, 본 발명에서 상기 초음파 송수신부(100)는 외부 온도를 측정하는 온도센서를 더 포함할 수 있으며, 상기 온도센서는 측정되는 외부 온도를 신호로 변환 후 상기 온도 검출부(400)로 송신하여, 외부 온도신호와 CNG 탱크(3)를 통과한 초음파 신호를 서로 비교하여 외부와 CNG 탱크 내부의 온도차를 확인할 수 있음은 물론이며, CNG 탱크에 상기 온도 검출부(400)와 연동하여 CNG 탱크 내부 온도를 외부 온도와 유사하게 보정할 수 있는 온도제어부가 더 형성될 수도 있다.
그리고, 상기 온도제어부는 CNG 탱크 내부 온도를 제어하면 충분하므로 다양한 장치일 수 있으며, 일 실시예로 CNG 탱크(3)를 감싸는 유로 형성부와, 상기 하우징과 CNG 탱크(3)의 외면 사이에 위치되는 유체를 포함하는 온도제어 모듈이거나, CNG 탱크(3)의 외주면에 부착된 방열판일 수 있음은 물론이다.
아울러, 본 발명인 초음파 계측기는 도 13에 도시된 바와 같이 잔량측정영역(A) 밖에서 나타나는 초음파 신호의 임계점을 설정하고, 초음파 신호가 임계값(C)을 초과 시 신호 표시부(11)를 통하여 이상상태를 표시하는 오차보정부(210)를 더 포함할 수 있다.
도 13 및 도 14를 참조하여 상세히 설명하면, 초음파 신호는 주변계(압력, 온도 등)의 변화 및 CNG 탱크로 전달되는 외력에 민감하게 반응하며, 이러한 초음파 신호는 외부에서 전달되는 외력이 강해질수록 강한 노이즈 값으로 노이즈영역(B) 상에서 표시되므로, 문제가 발생할 수 있는 일정 이상의 노이즈 값을 노이즈 임계값으로 지정하고, 노이즈가 임계값 초과 시 신호 표시부(11)에서 표시하여 사용자에게 이상 유무를 알리는 것이다.
이때, 상기 신호 표시부(11)는 시야로 전달되는 시각적 신호를 구현하는 장치일 수 있고, 소리로 전달되는 청각적 신호를 구현하는 장치일 수 있으며, 이 외에도 운전자의 핸들의 온도변화 또는 표면 거칠기 변화로 나타나는 촉각적 신호를 구현하는 장치일 수 있으므로 한정하지 않는다.
또한, 본 발명인 초음파 연료레벨 계측기는 도 15에 도시된 바와 같이 초음파 송수신부(100)를 이용하여 CNG 잔량을 검출하는 잔량 검출부(200)와, CNG 탱크(3)의 직경을 검출하는 직경 검출부(300)와, CNG 온도를 측정하는 온도 검출부(400) 및 오차 보정부(210)를 포함하여 이루어지고, 통합 제어부(10)에 의해 통합제어될 수 있다.
상세히 설명하면, 상기 잔량 검출부(200)에서 측정되는 CNG 잔량을 상기 직경 검출부(300)에서 측정되는 CNG 탱크(3)의 직경과, 상기 온도 검출부(400)에서 측정되는 CNG 온도를 이용하여 보정함으로서 정확한 CNG 잔량을 측정하고, 보정된 CNG 잔량 신호에서 나타나는 노이즈를 상기 오차 보정부(210)에서 입력되는 신호를 이용하여 보정한 후, 보정된 연료레벨을 디스플레이부(500)에서 사용자에게 표시하여 주는 것이다.
아울러, 본 발명인 CNG 잔량 검출 방법은 내부에 CNG 연료가 위치되는 CNG 탱크의 일측에서 초음파를 송신하고, 타측에서 초음파를 수신하는 초음파 송수신단계(S100)와, 상기 초음파 송수신단계(S100)에서 측정된 초음파의 거리변화와, 주파수 지연 현상 중 어느 하나 이상을 이용하여 CNG 탱크의 직경을 측정하는 직경 측정단계(S200)와, 상기 초음파 송수신단계(S100)에서 측정된 초음파의 주파수 변화를 이용하여 CNG의 온도를 측정하는 온도 측정단계(S300), 및 상기 직경 측정단계(S200)에서 측정된 초음파의 거리변화 또는 주파수 지연 현상과, 상기 초음파 송수신단계(S100)에서 측정된 초음파 감쇠와, 상기 온도 측정단계(S300)에서 측정된 초음파의 주파수 변화를 이용하여 CNG 연료 잔량을 검출하는 잔량 검출단계(S400)를 포함하여 이루어질 수 있다.
본 발명의 상기한 실시 예에 한정하여 기술적 사상을 해석해서는 안된다. 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당업자의 수준에서 다양한 변형 실시가 가능하다. 따라서 이러한 개량 및 변경은 당업자에게 자명한 것인 한 본 발명의 보호범위에 속하게 된다.
Claims (11)
- CNG 탱크 일측에 부착되어 초음파를 방출하는 초음파 송신센서(110)와, CNG 탱크 타측에 초음파 송신센서(110)와 대향 배치되며 상기 초음파 송신센서(110)에서 방출한 초음파 신호를 수신하는 초음파 수신센서(120)를 포함하는 초음파 송수신부(100); 및상기 초음파 송수신부(100)에서 측정된 초음파의 감쇠를 이용하여 CNG 탱크 내부에 위치되는 CNG 잔량을 측정하는 잔량 검출부(200); 를 포함하는, 초음파 연료레벨 계측기.
- 제 1항에 있어서,상기 초음파 송수신부(100)에서 측정된 초음파 신호를 이용하여 CNG 탱크의 직경을 검출하는 직경 검출부(300)를 포함하는 것을 특징으로 하는, 초음파 연료레벨 계측기.
- 제 2항에 있어서,상기 직경 검출부(300)는 상기 초음파 송수신부(100)에서 측정되는 초음파의 거리 변화와, 주파수 지연 현상 중 어느 하나 이상을 이용하는 것을 특징으로 하는, 초음파 연료레벨 계측기.
- 제 3항에 있어서,상기 직경 검출부(300)는 검출된 CNG 탱크의 직경 변화를 기반으로 CNG 탱크의 정상상태 유무를 파악하는 정상유무 판단부(310)를 더 포함하는 것을 특징으로 하는, 초음파 연료레벨 계측기.
- 제 4항에 있어서,상기 직경 검출부(300)에서 검출된 CNG 탱크의 직경 데이터와 상기 잔량 상기 검출부(200)에서 측정된 CNG 잔량 데이터를 연동시켜 CNG 탱크의 직경 변화에 따른 잔량 측정 오차를 보정하는 통합 제어부(10)를 더 포함하는 것을 특징으로 하는, 초음파 연료레벨 계측기.
- 제 1항 또는 제 2항에 있어서,상기 초음파 송수신부(100)에서 측정된 초음파 신호를 이용하여 CNG 탱크 내부에 위치되는 CNG의 온도를 검출하는 온도 검출부(400)를 더 포함하는 것을 특징으로 하는, 초음파 연료레벨 계측기.
- 제 6항에 있어서,상기 온도 검출부(400)는 상기 초음파 송수신부(100)에서 측정되는 초음파의 주파수 변화를 이용하는 것을 특징으로 하는, 초음파 연료레벨 계측기.
- 제 7항에 있어서,상기 온도 검출부(400)에서 검출된 CNG의 온도를 상기 잔량 검출부(200)로 입력하여 CNG 온도 변화에 대응하여 나타나는 CNG 잔량 측정 오차를 보정하는 것을 특징으로 하는, 초음파 연료레벨 계측기.
- 제 6항에 있어서,상기 잔량 검출부(200)는 CNG 잔량 측정에 사용되는 초음파 신호 영역을 한정하는 오차 보정부(210)를 더 포함하는 것을 특징으로 하는, 초음파 연료레벨 계측기.
- 제 9항에 있어서,상기 오차보정부(210)는 잔량측정영역(A) 밖에서 나타나는 초음파 신호의 임계값을 설정하고, 초음파 신호가 임계값 초과 시 디스플레이화 하는 신호 표시부와 연동되는 것을 특징으로 하는, 초음파 연료레벨 계측기.
- 내부에 CNG 연료가 위치되는 CNG 탱크의 일측에서 초음파를 송신하고, 타측에서 초음파를 수신하는 초음파 송수신단계(S100);상기 초음파 송수신단계(S100)에서 측정된 초음파의 거리변화와, 주파수 지연 현상 중 어느 하나 이상을 이용하여 CNG 탱크의 직경을 측정하는 직경 측정단계(S200);상기 초음파 송수신단계(S100)에서 측정된 초음파의 주파수 변화를 이용하여 CNG의 온도를 측정하는 온도 측정단계(S300); 및상기 직경 측정단계(S200)에서 측정된 CNG 탱크의 직경과, 상기 초음파 송수신단계(S100)에서 측정된 초음파 감쇠와, 상기 온도 측정단계(S300)에서 측정된 초음파의 주파수 변화를 이용하여 CNG 연료 잔량을 검출하는 잔량 검출단계(S400); 를 포함하는 것을 특징으로 하는, CNG 잔량 검출 방법.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160004506A KR101776907B1 (ko) | 2016-01-14 | 2016-01-14 | 능동안전형 cng 연료 제어 시스템 및 방법 |
KR10-2016-0004506 | 2016-01-14 | ||
KR1020160004505A KR101796921B1 (ko) | 2016-01-14 | 2016-01-14 | 초음파 감쇠신호를 이용한 cng 연료 레벨 계측기 |
KR10-2016-0004505 | 2016-01-14 | ||
KR1020160184235A KR101890300B1 (ko) | 2016-12-30 | 2016-12-30 | 직경변화 검출이 가능한 초음파 연료레벨 계측기 |
KR10-2016-0184225 | 2016-12-30 | ||
KR10-2016-0184235 | 2016-12-30 | ||
KR1020160184225A KR101944244B1 (ko) | 2016-12-30 | 2016-12-30 | 온도 측정이 가능한 초음파 연료레벨 계측기 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017123049A1 true WO2017123049A1 (ko) | 2017-07-20 |
Family
ID=59312006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/000475 WO2017123049A1 (ko) | 2016-01-14 | 2017-01-13 | 초음파 cng 연료레벨 계측기 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017123049A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220024298A1 (en) * | 2018-12-28 | 2022-01-27 | Tf Technologies, Llc | Fuel measurement device with fuel passage and fuel level sensor |
CN115507918A (zh) * | 2022-09-27 | 2022-12-23 | 戴天智能科技(上海)有限公司 | 基于超声波原理的变压器油位检测方法及其系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100797128B1 (ko) * | 2000-12-27 | 2008-01-22 | 사파스고교 가부시키가이샤 | 유량 측정 방법, 초음파 유량계, 유속 측정 방법, 온도또는 압력의 측정 방법 및 초음파 온도·압력계 |
KR100872718B1 (ko) * | 2007-03-15 | 2008-12-05 | 김형윤 | 자동차의 스마트 연료저장탱크 |
KR20110010368A (ko) * | 2009-07-24 | 2011-02-01 | 한국원자력연구원 | 소듐이 포함된 액체금속 수위측정장치 |
KR20110051937A (ko) * | 2009-11-11 | 2011-05-18 | 현대자동차주식회사 | 차량용 lng 저장탱크 |
JP2012233722A (ja) * | 2011-04-28 | 2012-11-29 | Jtekt Corp | 超音波計測方法および超音波工作物径測定装置 |
-
2017
- 2017-01-13 WO PCT/KR2017/000475 patent/WO2017123049A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100797128B1 (ko) * | 2000-12-27 | 2008-01-22 | 사파스고교 가부시키가이샤 | 유량 측정 방법, 초음파 유량계, 유속 측정 방법, 온도또는 압력의 측정 방법 및 초음파 온도·압력계 |
KR100872718B1 (ko) * | 2007-03-15 | 2008-12-05 | 김형윤 | 자동차의 스마트 연료저장탱크 |
KR20110010368A (ko) * | 2009-07-24 | 2011-02-01 | 한국원자력연구원 | 소듐이 포함된 액체금속 수위측정장치 |
KR20110051937A (ko) * | 2009-11-11 | 2011-05-18 | 현대자동차주식회사 | 차량용 lng 저장탱크 |
JP2012233722A (ja) * | 2011-04-28 | 2012-11-29 | Jtekt Corp | 超音波計測方法および超音波工作物径測定装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220024298A1 (en) * | 2018-12-28 | 2022-01-27 | Tf Technologies, Llc | Fuel measurement device with fuel passage and fuel level sensor |
CN115507918A (zh) * | 2022-09-27 | 2022-12-23 | 戴天智能科技(上海)有限公司 | 基于超声波原理的变压器油位检测方法及其系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017123049A1 (ko) | 초음파 cng 연료레벨 계측기 | |
US20050223781A1 (en) | Safety module and measuring arrangement with safety module | |
US10181244B1 (en) | Flame detector field of view verification via reverse infrared signaling | |
CN107870180A (zh) | 气体爆炸特性结构效应的测试系统 | |
CN111487053A (zh) | 一种阻火器测试系统 | |
CN203006175U (zh) | 外浮顶油罐二次密封空腔可燃气体在线监测装置 | |
CN113357549B (zh) | 一种机舱内双壁管泄漏检测方法 | |
US7204126B2 (en) | Blown installation of optical fibres and method and apparatus for determining the length of a passage along which an optical fibre is to be blown | |
KR101944244B1 (ko) | 온도 측정이 가능한 초음파 연료레벨 계측기 | |
KR101890300B1 (ko) | 직경변화 검출이 가능한 초음파 연료레벨 계측기 | |
CN212110610U (zh) | 一种阻火器测试系统 | |
KR20190133518A (ko) | 누출 감지장치 | |
KR102276567B1 (ko) | Lng 등 가스수송용 이중배관의 이상상태 감지장치 및 방법 | |
CN102267612B (zh) | 一种低温液态烃储罐的泄漏监测系统和方法 | |
EP1480008B1 (en) | Method and apparatus for determining the length of a passage along which an optical fibre is to be blown | |
JP2576918B2 (ja) | ガス漏洩検知装置 | |
CN207764211U (zh) | 防泄漏系统 | |
EP2838621B1 (en) | Systems and methods for reducing an overpressure caused by a vapor cloud explosion | |
CN210979366U (zh) | 一种天然气管道泄漏检测装置 | |
CN103644461B (zh) | 一种非介入式电容型气体管道泄漏次声波检测装置 | |
CN205678435U (zh) | 一种音波管道泄漏定位装置 | |
CN207248432U (zh) | 一种渗漏检测三合一系统 | |
CN220104418U (zh) | 一种锅炉承压管道泄漏在线监测系统 | |
JPS58187829A (ja) | パイプライン監視方式 | |
KR101776907B1 (ko) | 능동안전형 cng 연료 제어 시스템 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17738678 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17738678 Country of ref document: EP Kind code of ref document: A1 |