WO2017122887A1 - Method for simultaneous differentiation of stem cell-derived endothelial cells and hemangioblasts without purification - Google Patents

Method for simultaneous differentiation of stem cell-derived endothelial cells and hemangioblasts without purification Download PDF

Info

Publication number
WO2017122887A1
WO2017122887A1 PCT/KR2016/006814 KR2016006814W WO2017122887A1 WO 2017122887 A1 WO2017122887 A1 WO 2017122887A1 KR 2016006814 W KR2016006814 W KR 2016006814W WO 2017122887 A1 WO2017122887 A1 WO 2017122887A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
differentiation
stem cells
stem
Prior art date
Application number
PCT/KR2016/006814
Other languages
French (fr)
Korean (ko)
Inventor
문성환
정형민
길창현
Original Assignee
건국대학교 글로컬산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 글로컬산학협력단 filed Critical 건국대학교 글로컬산학협력단
Publication of WO2017122887A1 publication Critical patent/WO2017122887A1/en

Links

Images

Definitions

  • the present invention relates to a method for simultaneously differentiating stem cell-derived vascular cells and hematopoietic stem cells, and more specifically, by using DPBS, a population of embryonic stem cells can be dissociated into single cells, followed by suspension culture to separate vascular cells and hematopoietic cells, respectively.
  • Stem Cells are cells that have the ability to differentiate into various types of cells, and are used to grow into alternative tissues, which have the ability to grow on their own as one of the many cell types present in the body. It is used and studied in the treatment of various diseases.
  • human embryonic stem cells are cells derived from the inner cell mass of human blastocysts and have autologous proliferation and differentiation potential. Induction of differentiation into specific cells using human embryonic stem cells has been used to induce differentiation into specific cells or to process specific cytokines through the Embryoid body stage, which is characterized by triodenal characteristics. .
  • endothelial cells The development of endothelial cells is differentiated from hemangioblasts and angioblasts, which are mesodermal cells of trioderm, and form blood vessels through vasculogenesis and angiogenesis.
  • Vascular cells play an important role in angiogenesis and are involved in the maintenance and maintenance of all tissues in vivo, angiogenesis, inflammation and thrombosis.
  • human embryonic stem cells in undifferentiated state are induced into embryos, and then an antibody that expresses vascular cell-specific antibodies is immunized and separated by laser (FACS) and magnet (MACS) methods.
  • FACS laser
  • MCS magnet
  • the present inventors devised a cell differentiation method by mimicking the process of cell differentiation in human body, and completed the present invention by simultaneously obtaining hematopoietic and vascular cells according to the cell differentiation method using DPBS.
  • An object of the present invention by differentiating hematopoietic cells and vascular cells simultaneously using a method designed to mimic the process of differentiation of human cells in order to more easily perform differentiation of hematopoietic cells and vascular cells, saving time and money To provide a way to do it.
  • the present invention comprises the steps of treating a single cell to DPBS stem cells; And it provides a stem cell-derived vascular cell non-purified differentiation comprising the step of floating culture the single cells to form aggregates.
  • the present invention provides a method for stem cell-derived vascular cell undifferentiated differentiation, further comprising the step of dissociating the aggregates to adhere to the culture.
  • the adhesion culture may be carried out in collagen medium.
  • the stem cells may be selected from the group comprising embryonic stem cells, induced pluripotent stem cells, somatic clonal stem cells and pluripotent stem cells.
  • the present invention (1) the step of treating single cells by treating DPBS to stem cells; (2) floating the single cells to form aggregates; (3) classifying the aggregate of step (2) into a vascular cell differentiation group and a hematopoietic differentiation group; And (4) provides a method for simultaneously differentiating stem cell-derived vascular cells and hematopoietic stem cells comprising the step of differentiating the aggregates of the two groups classified by step (3).
  • the step of differentiating the aggregates of the vascular cell differentiation group in the step (4) may be a step of dissociating the aggregates to adhere culture.
  • the adhesion culture may be carried out in collagen medium.
  • the step of differentiating the aggregates of the hematopoietic differentiation group in the step (4) may be a step of floating culture the aggregates.
  • the stem cells may be selected from the group comprising embryonic stem cells, induced pluripotent stem cells, somatic clonal stem cells and pluripotent stem cells.
  • the aggregates are single-celled to differentiate vascular cells or resuspended culture blood Since differentiation of blast cells, there is an effect that can simultaneously differentiate blood vessels and hematopoietic cells.
  • the present invention unlike the conventional cell differentiation process, which requires a purification process to select the desired cells, it does not require a separate purification process, thereby reducing the cost and time.
  • FIG. 1 is (A) dated progression, (B) embryonic body formation process from stem cells, (C) vascular cell formation process using embryonic bodies for the differentiation process of vascular cells and hematopoietic cells according to an embodiment of the present invention And (D) Schematic diagram showing the process of blood stem cell formation using the embryoid body.
  • Figure 2 is a photograph showing the characteristics of vascular cells differentiated according to an embodiment of the present invention through the RT-PCR as the expression level of the gene.
  • Figure 3 is a photograph showing the expression of differentiated vascular cell specific proteins vWF and PECAM according to an embodiment of the present invention through immunocytochemistry.
  • Figure 4 is a photograph showing the expression levels of vascular cell specific proteins differentiated according to an embodiment of the present invention (A) SSEA-4, (B) Tie-2, and (C) PECAM through fluorescence activated flow cytometry.
  • Figure 5 is a photograph confirming the ability to form the tube structure by confirming the expression of vascular cell specific proteins (A) PECAM, (B) vWF and (C) VE-cadherin differentiated according to an embodiment of the present invention.
  • Figure 6 is a photograph showing a comparison of the expression level of vascular cell-specific Ac-LDL differentiated according to an embodiment of the present invention in hESC-EC and hCB-EPC.
  • Figure 7 is a photograph and table comparing the symptoms of the ischemic mouse model infused with differentiated vascular cells according to an embodiment of the present invention.
  • Figure 8 is a (A) picture and (B) graph showing the therapeutic effect of the lower limb ischemic mouse model injected with differentiated vascular cells in accordance with an embodiment of the present invention using the Doppler laser equipment.
  • FIG. 9 is a micro-CT image showing the therapeutic effect of the ischemic mouse model infused with differentiated vascular cells according to an embodiment of the present invention.
  • FIG. 10 is a (A) picture and (B) graph of the therapeutic effect of the model of the ischemia of the lower limb ischemia injected with differentiated vascular cells according to an embodiment of the present invention.
  • Figure 11 is a photograph showing the therapeutic effect of the lower limb ischemic mouse model injected with differentiated vascular cells in accordance with an embodiment of the present invention through a fluorescent in situ test.
  • the present invention comprises the steps of treating single stem cells by treating Dulbecco's phosphate buffered saline (DPBS) on stem cells; It provides a stem cell-derived vascular cell (Endothelial Cell) non-purified differentiation method comprising the step of suspension culture (suspension culture) to form an aggregate.
  • DPBS Dulbecco's phosphate buffered saline
  • Suspension culture is a culture method performed in a state in which cells are suspended in a culture medium during the culture of animal cells.
  • Cells that proliferate in a floating state in vivo such as blood cells or a plurality of cancer cells, can be suspended in culture without shaking or rotating, but in most cases, they are rotated (eg, incubated) or shaken in each culture bottle. Or it may be necessary to rotate the incubator.
  • the present invention provides a method for stem cell-derived vascular cell differentiation, further comprising the step of dissociating the aggregates and adhering culture.
  • Adhesion culture is a method applied to general animal cells and is a culture method that induces growth in a monolayer while cells are attached on a solid (agar) medium. This is also known as monolayer culture.
  • the adhesion culture may be performed in collagen (Collagen) medium.
  • the stem cells are embryonic stem cells (ESC), induced pluripotent stem cells (iPSC), somatic cell nuclear transfer (SCNT) and It may be any one selected from the group comprising pluripotent stem cells (PSC).
  • ESC embryonic stem cells
  • iPSC induced pluripotent stem cells
  • SCNT somatic cell nuclear transfer
  • the present invention (1) the step of treating single cells by treating DPBS to stem cells; (2) floating the single cells to form aggregates; (3) classifying the aggregate of step (2) into a vascular cell differentiation group and a hemangioblast differentiation group; And (4) provides a method for simultaneously differentiating stem cell-derived vascular cells and hematopoietic stem cells comprising the step of differentiating the aggregates of the two groups classified by step (3).
  • the DPBS according to the present invention can be used that does not contain calcium and magnesium.
  • the step of differentiating the aggregates of the vascular cell differentiation group in the step (4) may be a step of dissociating the aggregates to adhere culture.
  • the adhesion culture may be carried out in collagen medium.
  • the step of differentiating the aggregates of the hematopoietic differentiation group in the step (4) may be a step of floating culture the aggregates.
  • the stem cells may be any one selected from the group comprising embryonic stem cells, induced pluripotent stem cells, somatic clonal stem cells and pluripotent stem cells.
  • the culture medium for culturing human embryonic stem cells consisted of DMEM / F12, 1% MEM-NEAA, 0.1% beta-mercaptoethanol, 1% penicillin-streptomycin, and 4 ng / ml bFGF.
  • H9-hESCs Wicell Research Institute, Madison, Wisconsin
  • Human embryonic stem cells were subcultured every 5 to 7 days by co-culture of mouse embryonic fibroblasts (MEF) inactivated cell division as feeder cells (Co-culture).
  • the cell differentiation process of the present invention suggests a method of dissociating into single cells after embryonic formation and then forming an aggregate to simultaneously differentiate into two cells (FIG. 1A).
  • Human embryonic stem cells were cultured for 5-7 days to remove fibroblasts after embryonic bodies were formed. After the culture was removed, DPBS without calcium chloride and magnesium was added to dissociate into single cells.
  • the cell culture solution was incubated (suction), the cells were washed once with DPBS, 5 ml of DPBS was added and incubated for 5 to 10 minutes in a CO 2 atmosphere. The phenomenon of dissociation of stem cell colonies under a microscope was confirmed, and pipetting was performed lightly so as not to damage cells.
  • human embryonic stem cell colonies were dissociated into single cells, they were placed in a 40 um strainer and separated into pure single cells. This was centrifuged at a speed of 1000 ⁇ 1500 rpm to remove the supernatant.
  • VEGF Vascular endothelial growth factor, vascular epidermal growth factor; Peprotech 50 ng / ml, BPP4 50 ng / ml were added to the isolated single cells. Aggregates were formed by suspension culture for 2 days at.
  • Example 2 The aggregates prepared in Example 2 were dissociated into single cells using 0.05% Trypsin-EDTA. Collagen (Collagen type IV) was coated on a 60 mm plate, and the dissociated single cell 5 x 10 5 cells were added. According to this method, when the cell density in the collagen-coated plate became 80 to 90% or more, it took 2 to 3 days to generate human embryonic stem cell-derived vascular cells by subculture (FIG. 1C).
  • Methylcellulose H4436 (methylcellulose) comprising additives such as BMP4, SCF, VEGF, TPO, Flt-3, bFGF and EX-CYTE (Millipore, Billerica, Mass.)
  • BMP4, SCF, VEGF, TPO, Flt-3, bFGF and EX-CYTE (Millipore, Billerica, Mass.)
  • reverse transcription was performed using Maxim RT pre mix kit (iNtRon biotechnology, Sungnam, Korea) to obtain cDNA.
  • RT-PCR reverse transcription polymerase chain reaction
  • PCR premix (Bioneer, Daejeon, South Korea) was used, and the cycle was set to repeat 35 cycles of 30 seconds at 95 °C, 30 seconds at 55 ⁇ 60 °C, 30 seconds at 72 °C.
  • the PCR cycle began with a 5 minute initial denaturation step at 95 ° C. and ended with a 10 minute final expansion step at 72 ° C.
  • RT-PCR primer sequences are listed in Table 1. RT-PCR results were confirmed by 1.5% agarose gel (Promega, Madison, Wis.) By staining with EtBr (ethidium bromide) (Fig. 2).
  • RT-PCR was performed to determine whether differentiation was induced through decreased expression of genes (oct-4 and nanog) exhibiting pluripotency and thus increased expression of endothelial markers.
  • Pluripotent genes expressed in hESCs were strongly expressed until day 2 hEBs, but were not detected in hESC-derived ECs with further differentiation.
  • induced ECs resulted in the endothelial progenitor cell (EPC) markers flt-1, tie-2, VE-cad, vwf and kdr (kinase insert domain receptor) on day 7 ) Is expressed.
  • EPC endothelial progenitor cell
  • the cells were fixed with 4% paraformaldehyde and treated with PBS (phosphate buffered saline; Sigma-Aldrich) containing 0.03% Triton X-100 for 5 minutes to increase permeability. After 30 minutes of 5% normal goat serum, the cells were treated with primary antibodies such as anti-human platelet endothelial cell adhesion molecule (PECAM) and anti-human van Willebrand factor (vWF) at 4 ° C. BD Bioscience). in order to visualize the vWF and PECAM staining the cells were washed twice with Alexa Fluor ® 488 and 594 secondary antibody (Molecular Probes Inc., Sunnyvale, CA ).
  • PBS phosphate buffered saline
  • vWF van Willebrand factor
  • Differentiation-induced ECs were treated with 0.05% trypsin-EDTA for 2-3 minutes for active flow cytometry and isolated into single cells.
  • the single cells were washed at 4 ° C. for 20 minutes with PBS containing 2% (v / v) fetal bovine serum (FBS; Gibco).
  • FBS fetal bovine serum
  • the cells were then treated with antibodies of phycoerythrin (PE) -conjugated mouse anti-human stage-specific embryonic antigen-4 (SSEA-4), TEK tyrosine kinase-endothelial (Tie-2), and platelet endothelial cell adhesion molecule (BD Biosciences). Incubated together. Isotype-matched matched IgG was used as a control and FACS Calibur (BD Biosciences) and CellQuest software (BD Biosciences) were used for data analysis.
  • PE phycoerythrin
  • SSEA-4 TEK tyrosine
  • Hindlimb ischemic mouse models were constructed according to conventional methods. Briefly, 6 week old mice (Orientbio, Seoul, Korea) weighing 15-18 g were anesthetized and separated from the femoral vein after incision of the skin to expose the femoral artery. Sutures made double knots in each of the femoral ligation sites far and near the center of the body. Then, a segment between the nodules was cut and the incision site was closed to induce leg ischemia in the mouse model. The ischemic mice after arterial surgery were randomly assigned to either of two experimental groups. Intramuscular transplantation was performed using a 29-caliber tuberculin syringe at four sites corresponding to the gracilis muscle located in the medial thigh for each group.
  • the relative blood flow rate was 0.272 ⁇ 0.017 in the hESC-EC transplant group and 0.133 ⁇ 0.003 in the saline infusion group. After 2 weeks, it was 0.471 ⁇ 0.045 in the hESC-EC transplant group and 0.136 ⁇ 0.009 in the saline infusion group. After 3 weeks, it was 0.551 ⁇ 0.067 in the hESC-EC transplant group and 0.14 ⁇ 0.019 in the saline infusion group. After 4 weeks, it was 0.588 ⁇ 0.014 in the hESC-EC transplant group and 0.145 ⁇ 0.003 in the saline infusion group.
  • mice were fixed with Microfil ® (MV-120, Flow Tech, Inc., Carver, MA) to use a blood perfusion system (Thermo Fisher Scientific, Waltham, Mass.).
  • the implantation site was fixed with 4% formalin for 28 days and radiographic analysis was performed with a computed tomography device (micro-CT scanner, Skyscan1172, Bruker-microct, Kontich, Belgium).
  • CT images of the scanned samples were taken in three-dimensionally (3D) built from computer software (NRecon; Skyscan, Aartselaar, Belgium) at a resolution of 50 mm (100 kV and 100 mA).
  • the reconstructed microvascular and muscle volume and the extent of injury were calculated from 3D images using CTAn software (Skyscan).
  • Computed tomography was performed to visualize vascular structure and angiogenesis patterns during vascular reconstruction, to identify the regeneration process approaching normal conditions from lower limb ischemia in the transplant group.
  • Red arrows mark arterioles and capillaries and yellow arrows mark blood vessels (FIG. 9).
  • ischemic limb tissue was excised from mice after 4 weeks. Samples were fixed with buffer containing 10% (v / v) formaldehyde, dehydrated with progressively high concentrations of ethanol (graded ethanol series) and added to paraffin. The dehydration process was performed sequentially for 1 hour using 70, 80, 90, 100 and 100% ethanol. Samples were sliced into 4 ⁇ m thick sections and stained with hematoxylin and eosin (H & E). Collagen staining using Masson's trichrome (MT) was also performed to confirm fibrosis in ischemic tissues (FIG. 10A).
  • MT Masson's trichrome
  • tissue sections were stained by immunohistochemistry using anti-human smooth muscle actin (SMA; BD Bioscience) and anti-human PECAM antibodies (BD Bioscience) (FIG. 10B). Staining results were visualized using avidin-biotin complex immunoperoxidase (Vectastain ® ABC kit), 3,3'-diaminobenzidine (DAPI), and substrate solution kits (Vector Laboratories, Burlingame, CA).
  • SMA smooth muscle actin
  • PECAM antibodies BD Bioscience
  • H & E staining was used to visualize tissue and measure the extent of muscle regeneration.
  • the hESC-ECs transplant group showed significant muscle reconstruction effects, indicating that the regenerative effect was improved compared to the control.
  • MT staining revealed that collagen accumulation was most active in the hESC-ECs transplant group, enabling tissue regeneration.
  • saline-injected control samples showed severe fibrosis and no muscle regeneration potential.
  • FISH Fluorescence in situ hybridization
  • sample sections were treated with xylene at room temperature, deparaffinized, dehydrated using 100% ethanol, and dried.
  • the paraffin pretreatment solution was preheated to 95 ° C. in a heating mantle and soaked for 30 minutes, and then twice each for 5 minutes in 2X standard saline citrate (SSC).
  • Protease solution was prepared by adding 500 ⁇ l of protease to 50 ml of protease buffer preheated to 37 ° C. and soaking the sample sections for 20 minutes. Then, the sections were again immersed in 2X SSC, soaked in 70% ethanol for 1 minute, and dehydrated in 100% ethanol again for 1 minute.
  • hybridizing area was marked using a diamond pen, and CEP 17 DNA probe (2 ⁇ l, Vysis, Downers Grove, IL) was applied before sealing the cover glass with rubber adhesive.
  • CEP 17 DNA probe (2 ⁇ l, Vysis, Downers Grove, IL) was applied before sealing the cover glass with rubber adhesive.
  • hybridization was performed in a humid space at 37 ° C. under overnight conditions using a probe protected from light and denatured at 75 ° C. for 5 minutes.
  • the rubber adhesive was removed and the section samples were washed at 50 ° C. with 50% (v / v) formaldehyde / 2X SSC for 10 minutes at 42 ° C. to 4X SSC containing 0.1% nonyl phenoxypolyethoxylethanol (NP-40). Soak for 5 minutes. Sections were dried in the air without light and contrast-stained using DAPI (FIG. 11).
  • FISH analysis confirmed that the transplanted EC cells carry the human genome (white arrow).

Abstract

The present invention relates to a method for the simultaneous differentiation of stem cell-derived endothelial cells and hemangioblasts without purification, the method comprising the steps of: treating stem cells with DPBS to form single cells; suspension culturing the single cells to form aggregates; classifying the aggregates into an endothelial cell differentiation group and a hemangioblast differentiation group; and differentiating the aggregates in the two classified groups. In addition, unlike a conventional method which requires a purification process for selecting desired cells in a cell differentiation process, the present invention does not require a separate purification process, thereby reducing cost and time.

Description

줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법Simultaneous Differentiation of Stem Cell-Derived Vascular and Hematopoietic Cells
본 발명은 줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법에 관한 것으로서, 더욱 상세하게는 DPBS를 이용함으로써 배아줄기세포의 군집을 단일세포로 해리시킨 후 부유배양하여 혈관세포와 혈액모세포를 각각 정제 과정 없이 분화시키는 방법에 관한 것이다.The present invention relates to a method for simultaneously differentiating stem cell-derived vascular cells and hematopoietic stem cells, and more specifically, by using DPBS, a population of embryonic stem cells can be dissociated into single cells, followed by suspension culture to separate vascular cells and hematopoietic cells, respectively. A method for differentiation without purification.
줄기세포(Stem Cell)란, 다양한 유형의 세포로 분화할 수 있는 능력이 있는 세포로, 대체 조직으로 성장시키기 위해 사용되는데, 신체에 존재하는 여러 세포 유형 중의 하나로 자체적으로 성장할 수 있는 능력을 가지고 있어 다양한 질환 치료에 사용 및 연구되고 있다.Stem Cells are cells that have the ability to differentiate into various types of cells, and are used to grow into alternative tissues, which have the ability to grow on their own as one of the many cell types present in the body. It is used and studied in the treatment of various diseases.
그 중에서도 인간배아줄기세포는 인간 배반포의 내세포괴에서 유래한 세포로서 자가증식, 분화전능성을 가지고 있다. 인간배아줄기세포를 이용한 특정세포로의 분화유도 방법에는 삼배엽성의 특징을 보이는 배아체(Embryoid body) 단계를 거쳐 특정세포로 분화 유도하거나, 특정 사이토카인(cytokines)을 처리하는 방법이 이용되어왔다.Among them, human embryonic stem cells are cells derived from the inner cell mass of human blastocysts and have autologous proliferation and differentiation potential. Induction of differentiation into specific cells using human embryonic stem cells has been used to induce differentiation into specific cells or to process specific cytokines through the Embryoid body stage, which is characterized by triodenal characteristics. .
혈관세포(Endothelial Cell)의 발생은 삼배엽성 중 중배엽성 세포인 혈액모세포(hemangioblast)와 혈관모세포(Angioblast)에서 분화되며, 혈관형성(Vasculogenesis)과 혈관신생(Angiogenesis)을 통해 혈관을 형성한다.The development of endothelial cells is differentiated from hemangioblasts and angioblasts, which are mesodermal cells of trioderm, and form blood vessels through vasculogenesis and angiogenesis.
인체 내의 혈관이 만들어지는 과정은 크게 기존 혈관으로부터 혈관내피세포가 주위 조직 내로 이동, 성장한 세포에 의해 형성되는 혈관신생 기전과 혈액 내에 순환하는 세포가 조직 내로 회귀하여 혈관을 만드는 맥관형성 기전이라는 두 가지 경로로 구분된다. 1997년 터프츠대학의 엘리자베스 메디컬센터의 아사하라 등에 의해 혈관내피전구세포에 의하여 혈관이 생겨난다는 사실이 밝혀졌다.The process of making blood vessels in the human body is largely divided into two types: angiogenesis mechanisms formed by cells in which vascular endothelial cells move and grow from surrounding blood vessels, and angiogenesis mechanisms in which blood cells circulate in tissues to form blood vessels. Are separated by paths. In 1997, Asahara et al. At the Elizabeth Medical Center at Tufts University discovered that blood vessels were formed by vascular endothelial progenitor cells.
혈관세포는 혈관형성에 중요한 역할을 하며, 생체 내의 모든 조직의 유지 및 신생혈관형성, 염증 및 혈전증 등을 조절하는데 관여한다. 이러한 혈관세포를 제조하기 위해 미분화 상태의 인간배아줄기세포를 배아체로 유도한 뒤 혈관세포 특이적으로 발현되는 항체를 면역 반응시켜 레이저(FACS) 및 자석(MACS)을 이용한 방법으로 분리하는 방법 등이 쓰여왔으나, 방법이 까다롭고 시간 및 비용의 소모가 크다는 점에서 한계가 있었다.Vascular cells play an important role in angiogenesis and are involved in the maintenance and maintenance of all tissues in vivo, angiogenesis, inflammation and thrombosis. In order to prepare such vascular cells, human embryonic stem cells in undifferentiated state are induced into embryos, and then an antibody that expresses vascular cell-specific antibodies is immunized and separated by laser (FACS) and magnet (MACS) methods. Although it has been written, it has been limited in that the method is difficult and time-consuming and expensive.
관련 공지기술로는 한국등록특허 제10-0948170호(2010.03.10.), 한국공개특허 제10-2013-0105124호(2013.09.25.) 등이 있다.Related well-known technologies include Korean Patent Registration No. 10-0948170 (2010.03.10.) And Korean Patent Application Publication No. 10-2013-0105124 (2013.09.25.).
본 발명자는 인간의 체내 세포 분화 과정을 모방하여 세포 분화 방법을 고안하였으며, DPBS를 이용한 세포 분화 방법에 따라 혈액모세포와 혈관세포를 동시에 얻음으로써 본 발명을 완성하였다.The present inventors devised a cell differentiation method by mimicking the process of cell differentiation in human body, and completed the present invention by simultaneously obtaining hematopoietic and vascular cells according to the cell differentiation method using DPBS.
본 발명의 목적은, 혈액모세포 및 혈관세포의 분화를 보다 용이하게 수행하기 위하여, 인간의 세포분화 과정을 모방하여 고안한 방법을 이용하여 혈액모세포와 혈관세포를 동시에 분화시킴으로써, 시간과 비용을 절약할 수 있는 방법을 제공함에 있다.An object of the present invention, by differentiating hematopoietic cells and vascular cells simultaneously using a method designed to mimic the process of differentiation of human cells in order to more easily perform differentiation of hematopoietic cells and vascular cells, saving time and money To provide a way to do it.
상기 목적을 달성하기 위하여, 본 발명은 줄기세포에 DPBS를 처리하여 단일세포화하는 단계; 및 상기 단일세포를 부유배양하여 응집체를 형성하는 단계를 포함하는 줄기세포 유래 혈관세포 비정제 분화 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of treating a single cell to DPBS stem cells; And it provides a stem cell-derived vascular cell non-purified differentiation comprising the step of floating culture the single cells to form aggregates.
또한 본 발명은 상기 방법 또는 일 실시예에 있어서, 상기 응집체를 해리하여 부착배양하는 단계를 더 포함하는 줄기세포 유래 혈관세포 비정제 분화 방법을 제공한다.In another aspect, the present invention provides a method for stem cell-derived vascular cell undifferentiated differentiation, further comprising the step of dissociating the aggregates to adhere to the culture.
본 발명의 일 실시예에 있어서, 상기 부착배양은 콜라겐 배지에서 수행될 수 있다.In one embodiment of the present invention, the adhesion culture may be carried out in collagen medium.
본 발명의 일 실시예에 있어서, 상기 줄기세포는 배아줄기세포, 유도만능줄기세포, 체세포복제줄기세포 및 전분화능줄기세포를 포함하는 군에서 선택될 수 있다.In one embodiment of the present invention, the stem cells may be selected from the group comprising embryonic stem cells, induced pluripotent stem cells, somatic clonal stem cells and pluripotent stem cells.
또한 본 발명은 (1) 줄기세포에 DPBS를 처리하여 단일세포화하는 단계; (2) 상기 단일세포를 부유배양하여 응집체를 형성하는 단계; (3) 상기 (2)단계의 응집체를 혈관세포 분화 그룹과 혈액모세포 분화 그룹으로 분류하는 단계; 및 (4) 상기 (3)단계에 의해 분류된 두 그룹의 응집체를 분화시키는 단계를 포함하는 줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법을 제공한다.In addition, the present invention (1) the step of treating single cells by treating DPBS to stem cells; (2) floating the single cells to form aggregates; (3) classifying the aggregate of step (2) into a vascular cell differentiation group and a hematopoietic differentiation group; And (4) provides a method for simultaneously differentiating stem cell-derived vascular cells and hematopoietic stem cells comprising the step of differentiating the aggregates of the two groups classified by step (3).
본 발명의 일 실시예에 있어서, 상기 (4)단계에서 혈관세포 분화 그룹의 응집체를 분화시키는 단계는 상기 응집체를 해리하여 부착배양하는 단계일 수 있다.In one embodiment of the present invention, the step of differentiating the aggregates of the vascular cell differentiation group in the step (4) may be a step of dissociating the aggregates to adhere culture.
본 발명의 일 실시예에 있어서, 상기 부착배양은 콜라겐 배지에서 수행될 수 있다.In one embodiment of the present invention, the adhesion culture may be carried out in collagen medium.
본 발명의 일 실시예에 있어서, 상기 (4)단계에서 혈액모세포 분화 그룹의 응집체를 분화시키는 단계는 상기 응집체를 부유배양하는 단계일 수 있다.In one embodiment of the present invention, the step of differentiating the aggregates of the hematopoietic differentiation group in the step (4) may be a step of floating culture the aggregates.
본 발명의 일 실시예에 있어서, 상기 줄기세포는 배아줄기세포, 유도만능줄기세포, 체세포복제줄기세포 및 전분화능줄기세포를 포함하는 군에서 선택될 수 있다.In one embodiment of the present invention, the stem cells may be selected from the group comprising embryonic stem cells, induced pluripotent stem cells, somatic clonal stem cells and pluripotent stem cells.
상기와 같은 본 발명에 따르면, 줄기세포에 DPBS를 이용하여 배아체를 단일세포화한 다음 부유배양하여 응집체를 형성함으로써, 상기 응집체를 단일세포화하여 혈관세포를 분화시키거나 또는 다시 부유배양하여 혈액모세포를 분화시킬 수 있으므로, 동시에 혈관세포와 혈액모세포를 동시 분화시킬 수 있는 효과가 있다.According to the present invention as described above, by using single-celled embryos to form agglomerates and then aggregated embryos using DPBS on the stem cells, the aggregates are single-celled to differentiate vascular cells or resuspended culture blood Since differentiation of blast cells, there is an effect that can simultaneously differentiate blood vessels and hematopoietic cells.
또한 본 발명에 따르면, 기존의 세포분화 과정에서 원하는 세포를 선별하기 위해 정제하는 과정을 필요로 했던 것과는 달리 별도의 정제 과정을 필요로 하지 않으므로 비용과 시간을 절감할 수 있는 효과가 있다.In addition, according to the present invention, unlike the conventional cell differentiation process, which requires a purification process to select the desired cells, it does not require a separate purification process, thereby reducing the cost and time.
도 1 은 본 발명의 실시예에 따른 혈관세포와 혈액모세포의 분화 과정에 대한 (A) 일자별 진행 과정, (B) 줄기세포로부터의 배아체 형성 과정, (C) 배아체를 이용한 혈관 세포 형성 과정 및 (D) 배아체를 이용한 혈액모세포 형성 과정을 나타낸 모식도.1 is (A) dated progression, (B) embryonic body formation process from stem cells, (C) vascular cell formation process using embryonic bodies for the differentiation process of vascular cells and hematopoietic cells according to an embodiment of the present invention And (D) Schematic diagram showing the process of blood stem cell formation using the embryoid body.
도 2는 본 발명의 실시예에 따라 분화된 혈관세포의 특성을 유전자의 발현량으로서 RT-PCR을 통해 나타낸 사진.Figure 2 is a photograph showing the characteristics of vascular cells differentiated according to an embodiment of the present invention through the RT-PCR as the expression level of the gene.
도 3은 본 발명의 실시예에 따라 분화된 혈관세포 특이적 단백질 vWF 및 PECAM의 발현을 면역세포화학법을 통해 나타낸 사진.Figure 3 is a photograph showing the expression of differentiated vascular cell specific proteins vWF and PECAM according to an embodiment of the present invention through immunocytochemistry.
도 4는 본 발명의 실시예에 따라 분화된 혈관세포 특이적 단백질 (A) SSEA-4, (B) Tie-2, 및 (C) PECAM의 발현량을 형광활성유세포분석법을 통해 나타낸 사진.Figure 4 is a photograph showing the expression levels of vascular cell specific proteins differentiated according to an embodiment of the present invention (A) SSEA-4, (B) Tie-2, and (C) PECAM through fluorescence activated flow cytometry.
도 5는 본 발명의 실시예에 따라 분화된 혈관세포 특이적 단백질 (A) PECAM, (B) vWF 및 (C) VE-cadherin의 발현을 확인함으로서 튜브 구조 형성 능력을 확인한 사진.Figure 5 is a photograph confirming the ability to form the tube structure by confirming the expression of vascular cell specific proteins (A) PECAM, (B) vWF and (C) VE-cadherin differentiated according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따라 분화된 혈관세포 특이적 Ac-LDL의 발현량을 hESC-EC와 hCB-EPC에서 비교하여 나타낸 사진.Figure 6 is a photograph showing a comparison of the expression level of vascular cell-specific Ac-LDL differentiated according to an embodiment of the present invention in hESC-EC and hCB-EPC.
도 7은 본 발명의 실시예에 따라 분화된 혈관세포를 주입한 하지허혈 생쥐 모델의 증상을 대조군과 비교한 사진 및 표.Figure 7 is a photograph and table comparing the symptoms of the ischemic mouse model infused with differentiated vascular cells according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따라 분화된 혈관세포를 주입한 하지허혈 생쥐 모델의 치료효과를 도플러 레이저 장비를 이용하여 나타낸 (A) 사진 및 (B) 그래프.Figure 8 is a (A) picture and (B) graph showing the therapeutic effect of the lower limb ischemic mouse model injected with differentiated vascular cells in accordance with an embodiment of the present invention using the Doppler laser equipment.
도 9는 본 발명의 실시예에 따라 분화된 혈관세포를 주입한 하지허혈 생쥐 모델의 치료효과를 마이크로 CT 이미지로 나타낸 사진.9 is a micro-CT image showing the therapeutic effect of the ischemic mouse model infused with differentiated vascular cells according to an embodiment of the present invention.
도 10은 본 발명의 실시예에 따라 분화된 혈관세포를 주입한 하지허혈 생쥐 모델의 치료효과를 조직면역화학분석법으로 분석한 (A) 사진 및 (B) 그래프.10 is a (A) picture and (B) graph of the therapeutic effect of the model of the ischemia of the lower limb ischemia injected with differentiated vascular cells according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따라 분화된 혈관세포를 주입한 하지허혈 생쥐 모델의 치료효과를 형광제자리부합검사를 통해 나타낸 사진.Figure 11 is a photograph showing the therapeutic effect of the lower limb ischemic mouse model injected with differentiated vascular cells in accordance with an embodiment of the present invention through a fluorescent in situ test.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 줄기세포에 DPBS(Dulbecco's phosphate buffered saline)를 처리하여 단일세포화하는 단계; 상기 단일세포를 부유배양(suspension culture)하여 응집체를 형성하는 단계를 포함하는 줄기세포 유래 혈관세포(Endothelial Cell) 비정제 분화 방법을 제공한다.The present invention comprises the steps of treating single stem cells by treating Dulbecco's phosphate buffered saline (DPBS) on stem cells; It provides a stem cell-derived vascular cell (Endothelial Cell) non-purified differentiation method comprising the step of suspension culture (suspension culture) to form an aggregate.
부유배양이란, 동물세포의 배양시 배양액에 세포가 부유시킨 상태에서 수행하는 배양 방법이다. 혈액세포나 복수의 암세포와 같이 생체 내에서도 부유 상태로 증식하는 세포는 진탕이나 회전을 시키지 않더라도 부유배양할 수 있지만 대부분의 경우는 각반자를 회전시키거나(각반배양), 배양병마다 진탕하거나(진탕배양), 또는 배양기를 회전시켜야(선회배양) 할 필요가 있는 경우도 있다.Suspension culture is a culture method performed in a state in which cells are suspended in a culture medium during the culture of animal cells. Cells that proliferate in a floating state in vivo, such as blood cells or a plurality of cancer cells, can be suspended in culture without shaking or rotating, but in most cases, they are rotated (eg, incubated) or shaken in each culture bottle. Or it may be necessary to rotate the incubator.
또한 본 발명은 상기 방법 또는 일 실시예에 있어서, 상기 응집체를 해리하여 부착배양(adhesion culture)하는 단계를 더 포함하는 줄기세포 유래 혈관세포 비정제 분화 방법을 제공한다.In another aspect, the present invention provides a method for stem cell-derived vascular cell differentiation, further comprising the step of dissociating the aggregates and adhering culture.
부착배양이란, 일반적인 동물 세포에 적용되는 방법으로 고체(한천) 배지 위에 세포가 부착된 상태에서 단층으로 성장하도록 유도하는 배양 방법이다. 이는 단층배양이라고도 한다.Adhesion culture is a method applied to general animal cells and is a culture method that induces growth in a monolayer while cells are attached on a solid (agar) medium. This is also known as monolayer culture.
본 발명의 일 실시예에 있어서, 상기 부착배양은 콜라겐(Collagen) 배지에서 수행될 수 있다.In one embodiment of the present invention, the adhesion culture may be performed in collagen (Collagen) medium.
본 발명의 일 실시예에 있어서, 상기 줄기세포는 배아줄기세포(embryonic stem cell, ESC), 유도만능줄기세포(induced Pluripotent Stem cell, iPSC), 체세포복제줄기세포(somatic cell nuclear transfer, SCNT) 및 전분화능줄기세포(pluripotent stem cells, PSC)를 포함하는 군에서 선택되는 어느 하나일 수 있다.In one embodiment, the stem cells are embryonic stem cells (ESC), induced pluripotent stem cells (iPSC), somatic cell nuclear transfer (SCNT) and It may be any one selected from the group comprising pluripotent stem cells (PSC).
또한 본 발명은 (1) 줄기세포에 DPBS를 처리하여 단일세포화하는 단계; (2) 상기 단일세포를 부유배양하여 응집체를 형성하는 단계; (3) 상기 (2)단계의 응집체를 혈관세포 분화 그룹과 혈액모세포(hemangioblast) 분화 그룹으로 분류하는 단계; 및 (4) 상기 (3)단계에 의해 분류된 두 그룹의 응집체를 분화시키는 단계를 포함하는 줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법을 제공한다.In addition, the present invention (1) the step of treating single cells by treating DPBS to stem cells; (2) floating the single cells to form aggregates; (3) classifying the aggregate of step (2) into a vascular cell differentiation group and a hemangioblast differentiation group; And (4) provides a method for simultaneously differentiating stem cell-derived vascular cells and hematopoietic stem cells comprising the step of differentiating the aggregates of the two groups classified by step (3).
세포의 단일 해리를 위해 효소 처리를 이용하는 경우, 많은 세포에서 세포 사멸 또는 손상이 일어나는 문제점이 있었다. DPBS를 처리하는 경우, 세포사멸이 유도되지 않아 세포생존율을 향상시킬 수 있으므로 궁극적으로 세포의 분화가 효율적으로 진행될 수 있음이 확인된 바 있고 따라서 이를 적용하였다.When enzymatic treatment is used for single dissociation of cells, many cells suffer from cell death or damage. In the case of treatment with DPBS, it was confirmed that the cell death rate can be improved since cell death is not induced and ultimately, the differentiation of cells can be efficiently proceeded and thus applied.
바람직하게 본 발명에 따른 상기 DPBS는 칼슘과 마그네슘을 포함하지 않는 것을 사용할 수 있다. 세포의 해리를 위해 칼슘과 마그네슘이 포함되어 있는 DPBS를 사용하게 되면 세포의 해리능이 감소되기 때문이다.Preferably the DPBS according to the present invention can be used that does not contain calcium and magnesium. The use of DPBS, which contains calcium and magnesium for cell dissociation, reduces cell dissociation.
본 발명의 일 실시예에 있어서, 상기 (4)단계에서 혈관세포 분화 그룹의 응집체를 분화시키는 단계는 상기 응집체를 해리하여 부착배양하는 단계일 수 있다.In one embodiment of the present invention, the step of differentiating the aggregates of the vascular cell differentiation group in the step (4) may be a step of dissociating the aggregates to adhere culture.
본 발명의 일 실시예에 있어서, 상기 부착배양은 콜라겐 배지에서 수행될 수 있다.In one embodiment of the present invention, the adhesion culture may be carried out in collagen medium.
본 발명의 일 실시예에 있어서, 상기 (4)단계에서 혈액모세포 분화 그룹의 응집체를 분화시키는 단계는 상기 응집체를 부유배양하는 단계일 수 있다.In one embodiment of the present invention, the step of differentiating the aggregates of the hematopoietic differentiation group in the step (4) may be a step of floating culture the aggregates.
본 발명의 일 실시예에 있어서, 상기 줄기세포는 배아줄기세포, 유도만능줄기세포, 체세포복제줄기세포 및 전분화능줄기세포를 포함하는 군에서 선택되는 어느 하나일 수 있다.In one embodiment of the present invention, the stem cells may be any one selected from the group comprising embryonic stem cells, induced pluripotent stem cells, somatic clonal stem cells and pluripotent stem cells.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1. 인간배아줄기세포의 배양Example 1 Culture of Human Embryonic Stem Cells
인간배아줄기세포를 배양하기 위한 배양액은 DMEM/F12, 1 % MEM-NEAA, 0.1 % beta-mercaptoethanol, 1 % penicillin-streptomycin, 4 ng/ml bFGF로 구성하였다. 인간배아줄기세포 세포주로는 H9-hESCs(Wicell Research Institute, Madison, Wisconsin)를 이용하였다. 인간배아줄기세포는 세포분열이 불활성화된 생쥐 태아 섬유아세포(mouse embryonic fibroblast, MEF)를 영양세포로서 공배양(Co-culture)하여 5 ~ 7일 마다 계대배양을 수행하였다.The culture medium for culturing human embryonic stem cells consisted of DMEM / F12, 1% MEM-NEAA, 0.1% beta-mercaptoethanol, 1% penicillin-streptomycin, and 4 ng / ml bFGF. H9-hESCs (Wicell Research Institute, Madison, Wisconsin) were used as human embryonic stem cell lines. Human embryonic stem cells were subcultured every 5 to 7 days by co-culture of mouse embryonic fibroblasts (MEF) inactivated cell division as feeder cells (Co-culture).
실시예 2. 줄기세포를 이용한 응집체 형성Example 2. Aggregate Formation Using Stem Cells
본 발명의 세포 분화 과정은 배아체 형성 후 단일세포로 해리하고, 이후 응집체를 형성하여 두 가지 세포로 동시 분화하는 방법을 제시한다(도 1A).The cell differentiation process of the present invention suggests a method of dissociating into single cells after embryonic formation and then forming an aggregate to simultaneously differentiate into two cells (FIG. 1A).
인간배아줄기세포를 5 ~ 7일 배양하여 배아체(embroid bodies)가 형성된 후 섬유아세포를 제거하였다. 배양액을 제거한 후, 염화칼슘 및 마그네슘을 포함하지 않는 DPBS를 첨가하여 단일세포로 해리시켰다.Human embryonic stem cells were cultured for 5-7 days to remove fibroblasts after embryonic bodies were formed. After the culture was removed, DPBS without calcium chloride and magnesium was added to dissociate into single cells.
상기 방법을 보다 구체적으로 살펴보면, 배양 중이던 세포배양액을 흡입(suction)하고, DPBS로 1회 세포를 세척한 뒤, DPBS를 5 ml 첨가하여 CO2 분위기하에서 5 ~ 10분 인큐베이션하였다. 현미경으로 줄기세포 군집이 해리되는 현상을 확인하고 세포의 손상이 없도록 약하게 파이펫팅을 수행하였다.Looking at the method in more detail, the cell culture solution was incubated (suction), the cells were washed once with DPBS, 5 ml of DPBS was added and incubated for 5 to 10 minutes in a CO 2 atmosphere. The phenomenon of dissociation of stem cell colonies under a microscope was confirmed, and pipetting was performed lightly so as not to damage cells.
이후 인간배아줄기세포 군집이 단일세포로 해리되면 40 um 거름망에 넣은 뒤 순수 단일세포로 분리하였다. 이를 1000 ~ 1500 rpm의 속도로 원심분리하여 상층액을 제거하였다.Then, when human embryonic stem cell colonies were dissociated into single cells, they were placed in a 40 um strainer and separated into pure single cells. This was centrifuged at a speed of 1000 ~ 1500 rpm to remove the supernatant.
상기 분리된 단일세포에 Stemline II 배양액(Sigma-Aldrich)과 VEGF(Vascular endothelial growth factor, 혈관표피성장인자; Peprotech) 50 ng/ml, BPP4 50 ng/ml를 첨가하여 Ultra-low attach dish(Stemcell)에서 2일간 부유배양함으로써 응집체를 형성하였다.Stemline II culture solution (Sigma-Aldrich) and VEGF (Vascular endothelial growth factor, vascular epidermal growth factor; Peprotech) 50 ng / ml, BPP4 50 ng / ml were added to the isolated single cells. Aggregates were formed by suspension culture for 2 days at.
2일 후, 배양액의 50 %를 제거한 후, 제거된 50 % 만큼 Stemline II 배양액과 VEGF 50 ng/ml, BMP4 50 ng/ml, TPO 50 ng/ml, Flt-3 50 ng/ml, SCF 50 ng/ml, bFGF 50 ng를 첨가하는 방법으로 배양액을 교체하였다. 그대로 2일 더 배양한 후, 응집체를 수확하였다(도 1B).After 2 days, 50% of the culture solution was removed, and then 50% of the Stemline II culture medium and VEGF 50 ng / ml, BMP4 50 ng / ml, TPO 50 ng / ml, Flt-3 50 ng / ml, SCF 50 ng The culture was replaced by adding / ml, 50 ng of bFGF. After incubation for 2 more days, aggregates were harvested (FIG. 1B).
실시예 3. 응집체를 이용한 혈관세포의 분화Example 3 Differentiation of Vascular Cells Using Aggregates
실시예 2를 통해 준비된 상기 응집체를 0.05 % Trypsin-EDTA를 이용하여 단일세포로 해리하였다. 콜라겐(Collagen type IV)을 60 mm 플레이트에 코팅한 뒤, 상기 해리된 단일세포 5 x 105 cells를 투입하였다. 이와 같은 방법에 따라 상기 콜라겐 코팅 플레이트 내의 세포 밀도가 80 ~ 90 % 이상이 되었을 때 계대배양하여 인간배아줄기세포 유래 혈관세포를 생성하는 데 2 ~ 3일이 소요되었다(도 1C).The aggregates prepared in Example 2 were dissociated into single cells using 0.05% Trypsin-EDTA. Collagen (Collagen type IV) was coated on a 60 mm plate, and the dissociated single cell 5 x 10 5 cells were added. According to this method, when the cell density in the collagen-coated plate became 80 to 90% or more, it took 2 to 3 days to generate human embryonic stem cell-derived vascular cells by subculture (FIG. 1C).
실시예 4. 응집체를 이용한 혈액모세포의 분화Example 4 Differentiation of Hematopoietic Cells Using Aggregates
실시예 2를 통해 준비된 상기 응집체를 혈액모세포로 특화하기 위해 BMP4, SCF, VEGF, TPO, Flt-3, bFGF 및 EX-CYTE(Millipore, Billerica, MA)와 같은 첨가물을 포함하는 메틸셀룰로오스 H4436 (methylcellulose; Stemcell Technologies, Vancouver, British columbia, Canada)에 6 well dish 의 각 1 well에 5 x 105 cells 의 농도로 투입하였다. 2 ~ 3일 후 혈액모세포의 특징인 포도송이 모양이 나타나며, 6 ~ 7일 경과 후 분화가 완료되었다(도 1D).Methylcellulose H4436 (methylcellulose) comprising additives such as BMP4, SCF, VEGF, TPO, Flt-3, bFGF and EX-CYTE (Millipore, Billerica, Mass.) To characterize the aggregate prepared in Example 2 Stemcell Technologies, Vancouver, British columbia, Canada) was added to each well of a 6 well dish at a concentration of 5 x 10 5 cells. After 2-3 days, the grape cluster shape, which is characteristic of hematopoietic cells, appeared, and after 6-7 days, differentiation was completed (FIG. 1D).
측정예 1. RT-PCR을 통한 혈관세포 특이적 표지 유전자의 발현량 분석Measurement Example 1. Analysis of Expression of Vascular Cell Specific Marker Genes by RT-PCR
RNA의 발현량을 분석하기 위해 Trizol®(Invitrogen, Carlsbad, CA)를 이용하여 NanoDrop® ND-1000 spectro photometer(NanoDrop Technologies, Wilmington, DE)를 통해 전체 RNA를 추출하였다. 먼저 cDNA를 얻기 위해 Maxim RT pre mix kit(iNtRon biotechnology, Sungnam, Korea)를 이용하여 역전사를 수행하였다. RT-PCR(Reverse transcription polymerase chain reaction)을 통한 분석은 분화되지 않은 H9-hESCs, hESC-ECs 및 CB-EPCs에 대하여 수행되었다. AccuPower PCR premix(Bioneer, Daejeon, South Korea)를 이용하였고 주기는 95 ℃에서 30초, 55 ~ 60 ℃에서 30초, 72 ℃에서 30초로 하여 35 사이클을 반복하는 것으로 설정하였다. PCR 사이클은 95 ℃로 진행되는 5분간의 초기 변성 단계로 시작하여 72 ℃로 진행되는 10분간의 최종 확장 단계로 마무리하였다. RT-PCR 프라이머 서열은 표 1에 기재되었다. RT-PCR 결과는 EtBr(ethidium bromide)로 염색하여 1.5 % agarose gel(Promega, Madison, WI)을 통해 확인하였다(도 2).To analyze the expression level of RNA, total RNA was extracted using a NanoDrop ® ND-1000 spectro photometer (NanoDrop Technologies, Wilmington, DE) using Trizol ® (Invitrogen, Carlsbad, Calif.). First, reverse transcription was performed using Maxim RT pre mix kit (iNtRon biotechnology, Sungnam, Korea) to obtain cDNA. Analysis via reverse transcription polymerase chain reaction (RT-PCR) was performed on undifferentiated H9-hESCs, hESC-ECs and CB-EPCs. AccuPower PCR premix (Bioneer, Daejeon, South Korea) was used, and the cycle was set to repeat 35 cycles of 30 seconds at 95 ℃, 30 seconds at 55 ~ 60 ℃, 30 seconds at 72 ℃. The PCR cycle began with a 5 minute initial denaturation step at 95 ° C. and ended with a 10 minute final expansion step at 72 ° C. RT-PCR primer sequences are listed in Table 1. RT-PCR results were confirmed by 1.5% agarose gel (Promega, Madison, Wis.) By staining with EtBr (ethidium bromide) (Fig. 2).
[표1]Table 1
Figure PCTKR2016006814-appb-I000001
Figure PCTKR2016006814-appb-I000001
RT-PCR은 분화가 전분화능(pluripotency)을 나타내는 유전자(oct-4 및 nanog)의 발현 감소와 이에 따른 내피(endothelial) 마커들의 발현 증가를 통해 유도되었는지를 확인하기 위해 수행되었다. hESCs에서 발현되는 전분화능 유전자들은 2일차 hEBs까지는 강하게 발현되었으나 분화 과정이 더 진행된 hESC 유래 ECs에서는 검출되지 않았다. 대조군인 CB-EPC와 유사하게, 유도된 EC는 7일차에 결과적으로 내피전구세포(endothelial progenitor cell, EPC) 마커인 flt-1, tie-2, VE-cad, vwf 및 kdr(kinase insert domain receptor)이 발현됨을 나타냈다.RT-PCR was performed to determine whether differentiation was induced through decreased expression of genes (oct-4 and nanog) exhibiting pluripotency and thus increased expression of endothelial markers. Pluripotent genes expressed in hESCs were strongly expressed until day 2 hEBs, but were not detected in hESC-derived ECs with further differentiation. Similar to the control CB-EPC, induced ECs resulted in the endothelial progenitor cell (EPC) markers flt-1, tie-2, VE-cad, vwf and kdr (kinase insert domain receptor) on day 7 ) Is expressed.
측정예 2. 면역세포화학분석을 통한 혈관세포 특이적 단백질의 발현 확인Measurement Example 2 Confirmation of Expression of Vascular Cell Specific Proteins through Immunocytochemical Analysis
세포를 4 % 파라포름알데히드(paraformaldehyde)로 고정하고 5분간 0.03 % Triton X-100을 포함하는 PBS(phosphate buffered saline; Sigma-Aldrich)를 처리하여 투과성을 높였다. 5 % normal goat serum을 30분 동안 처리한 후에, 세포를 오버나이트 조건으로 4 ℃에서 1차 항체인 PECAM(anti-human platelet endothelial cell adhesion molecule; BD Bioscience) 및 vWF(anti-human van Willebrand factor; BD Bioscience)와 함께 인큐베이션하였다. vWF 및 PECAM 염색 결과를 시각화하기 위해 상기 세포를 Alexa Fluor® 488 및 594 2차 항체(Molecular Probes Inc., Sunnyvale, CA)로 2회 세척하였다. 모든 이미지는 형광현미경(Nikon, Eclipse Ti, Chiyoda-ku, Japan)을 이용하여 수득하였다. 마지막으로, 세포핵을 1차 항체인 DAPI(DAKO, Carpentaria, CA)로 염색하여 시각화하였다(도 3).The cells were fixed with 4% paraformaldehyde and treated with PBS (phosphate buffered saline; Sigma-Aldrich) containing 0.03% Triton X-100 for 5 minutes to increase permeability. After 30 minutes of 5% normal goat serum, the cells were treated with primary antibodies such as anti-human platelet endothelial cell adhesion molecule (PECAM) and anti-human van Willebrand factor (vWF) at 4 ° C. BD Bioscience). in order to visualize the vWF and PECAM staining the cells were washed twice with Alexa Fluor ® 488 and 594 secondary antibody (Molecular Probes Inc., Sunnyvale, CA ). All images were obtained using a fluorescence microscope (Nikon, Eclipse Ti, Chiyoda-ku, Japan). Finally, the cell nuclei were visualized by staining with a primary antibody, DAPI (DAKO, Carpentaria, CA) (FIG. 3).
내피 세포 특이적 단백질인 vWF 및 PECAM의 강한 발현을 면역세포화학적으로 확인하였다.Strong expression of endothelial cell specific proteins, vWF and PECAM, was confirmed immunohistochemically.
측정예 3. 형광활성유세포분석을 통한 혈관세포 특이적 단백질의 발현량 확 Measurement Example 3 Confirmation of Expression of Vascular Cell- Specific Proteins by Fluorescent Active Flow Cytometry
활성유세포분석을 위해 분화유도된 ECs를 0.05 % trypsin-EDTA로 2 ~ 3분 동안 처리하여 단일세포로 분리하였다. 상기 단일세포는 2 %(v/v)의 소태아혈청(fetal bovine serum, FBS; Gibco)을 포함하는 PBS로 20분간 4 ℃에서 세척하였다. 그리고 상기 세포를 phycoerythrin (PE)-conjugated mouse anti-human stage-specific embryonic antigen-4(SSEA-4), TEK tyrosine kinase-endothelial(Tie-2) 및 platelet endothelial cell adhesion molecule (BD Biosciences)의 항체와 함께 인큐베이션하였다. 이소타입(isotype-matched)이 일치하는 IgG를 대조군으로 이용하였고 FACS Calibur(BD Biosciences) 및 CellQuest software(BD Biosciences)를 데이터 분석에 이용하였다.Differentiation-induced ECs were treated with 0.05% trypsin-EDTA for 2-3 minutes for active flow cytometry and isolated into single cells. The single cells were washed at 4 ° C. for 20 minutes with PBS containing 2% (v / v) fetal bovine serum (FBS; Gibco). The cells were then treated with antibodies of phycoerythrin (PE) -conjugated mouse anti-human stage-specific embryonic antigen-4 (SSEA-4), TEK tyrosine kinase-endothelial (Tie-2), and platelet endothelial cell adhesion molecule (BD Biosciences). Incubated together. Isotype-matched matched IgG was used as a control and FACS Calibur (BD Biosciences) and CellQuest software (BD Biosciences) were used for data analysis.
뿐만 아니라, hESC-ECs의 단백질 발현은 전분화능 마커인 SSEA-4의 부재 및 EPC 마커인 Tie-2(11.29 %), PECAM(37.07 %)의 존재를 나타내는 활성유세포분석을 통해 관찰하였다(도 4).In addition, protein expression of hESC-ECs was observed by active flow cytometry indicating the absence of the pluripotency marker SSEA-4 and the presence of the EPC markers Tie-2 (11.29%) and PECAM (37.07%) (FIG. 4). ).
측정예 4. 매트리젤 분석을 통한 혈관세포의 혈관형성능 확인Measurement Example 4 Confirmation of Angiogenesis of Vascular Cells by Matrigel Analysis
200 μl의 매트리젤(Matrigel; Corning, NY)를 조직 배양 플레이트 안에서 37 ℃로 30분간 응고시켰다. 혈관 형성을 유도하기 위해 200 μl 기준 1 X 105개의 세포를 포함하는 현탁액을 응고된 매트리젤 위에 위치시켜 37 ℃에서 오버나이트 조건으로 인큐베이션하였다. 인간 PECAM, vWF 및 VE-cadherin을 이용한 면역세포화학법을 수행한 결과 튜브 구조의 형성이 위상차현미경(phase contrast microscopy)을 통해 관찰되었다(도 5).200 μl of Matrigel (Corning, NY) was coagulated for 30 minutes at 37 ° C. in tissue culture plates. A suspension containing 200 μl 1 × 10 5 cells to induce angiogenesis was placed on the coagulated Matrigel and incubated at 37 ° C. in overnight conditions. Immunocytochemistry using human PECAM, vWF and VE-cadherin revealed tube structure formation through phase contrast microscopy (FIG. 5).
분화된 내피 세포에서 확인된 혈관 형성 분석을 통해 입증된 생체 외에서의 기능은 PECAM, vWF 및 VE-cadherin을 발현하고 Ac-LDL(Acetylated low density lipoprotein; Biomedical Technologies, Stoughton, MA)을 흡수하는 모세혈관 유사 구조 형성의 가능성을 나타낸다.In vitro functions demonstrated through angiogenesis assays identified in differentiated endothelial cells are capillaries that express PECAM, vWF and VE-cadherin and absorb Ac-LDL (Acetylated low density lipoprotein; Biomedical Technologies, Stoughton, Mass.) Indicates the likelihood of similar structure formation.
측정예 5. 혈관세포 특이적인 Ac-LDL의 발현 확인Measurement Example 5 Confirmation of Expression of Vascular Cell-Specific Ac-LDL
AC-LDL의 흡수는 분화된 hESC-ECs를 10 μg/ml의 DiI-labeled Ac-LDL로 4시간 동안 37 ℃에서 인큐베이션하여 확인하였다. 인큐베이션 후, 세포를 PBS로 세척하고 4 % 파라포름알데히드로 30분간 고정하였다. 이미지는 형광현미경(Nikon)을 통해 분석하였다(도 6). 대조군으로는 hCB-EPC(Human Cord Blood derived Endothelial Progenitor Cell, 제대혈 유래 혈관전구세포)를 이용하였다.Absorption of AC-LDL was confirmed by incubating differentiated hESC-ECs with 10 μg / ml of DiI-labeled Ac-LDL at 37 ° C. for 4 hours. After incubation, cells were washed with PBS and fixed for 4% paraformaldehyde for 30 minutes. Images were analyzed by fluorescence microscope (Nikon) (FIG. 6). As a control, hCB-EPC (Human Cord Blood derived Endothelial Progenitor Cell, umbilical cord blood-derived vascular progenitor cells) was used.
이에 따라 체외 기능성 여부를 Ac-LDL의 흡수를 통해 확인하였다.Accordingly, the in vitro functional status was confirmed through the absorption of Ac-LDL.
측정예 6. 분화유도한 혈관세포의 생체 내 기능성 확인Measurement Example 6. In Vivo Functionality of Differentiated Induced Vascular Cells
측정예 6-1. 증상에 대한 육안 분석 결과Measurement Example 6-1. Visual analysis of symptoms
하지허혈(Hindlimb ischemic) 생쥐 모델을 통상적인 방법에 따라 제작하였다. 간략하게, 체중 15 ~ 18 g의 6주령 생쥐(Orientbio, Seoul, Korea)를 마취시키고 대퇴동맥(femoral artery)을 노출시키기 위해 피부를 절개한 후 대퇴정맥(femoral vein)으로부터 분리해냈다. 봉합을 통해 몸의 중심에서 먼 쪽과 가까운 쪽의 대퇴부 결찰 부위(femoral ligation sites) 각각에 이중결절(Double knots)을 만들었다. 그리고, 결절 사이의 단편(segment)을 잘라낸 뒤 절개 부위를 봉합하여 생쥐 모델에 하지허혈을 유발하였다. 동맥 수술 후의 하지허혈 생쥐는 무작위로 두 개의 실험군 중 어느 한 쪽으로 배정하였다. 근육 내 이식은 각 그룹에 대해 중앙 대퇴부(medial thigh)에 위치한 박근(gracilis muscle)에 해당하는 4개 부위에 29구경의 투베르쿨린(tuberculin) 주사기를 이용하여 수행되었다. 식염수 그룹(n=10)에는 배양액을 주사하였고 실험군에 대해서는 앞서 수득한 hESC-ECs(3 X 105 cells per mouse)를 포함하는 200 μl의 EGM-2 MVTM(hESC-ECs group, n=10)을 주사하였다.Hindlimb ischemic mouse models were constructed according to conventional methods. Briefly, 6 week old mice (Orientbio, Seoul, Korea) weighing 15-18 g were anesthetized and separated from the femoral vein after incision of the skin to expose the femoral artery. Sutures made double knots in each of the femoral ligation sites far and near the center of the body. Then, a segment between the nodules was cut and the incision site was closed to induce leg ischemia in the mouse model. The ischemic mice after arterial surgery were randomly assigned to either of two experimental groups. Intramuscular transplantation was performed using a 29-caliber tuberculin syringe at four sites corresponding to the gracilis muscle located in the medial thigh for each group. The saline group (n = 10) was injected with culture and the experimental group received 200 μl of EGM-2 MV TM (hESC-ECs group, n = 10) containing the previously obtained hESC-ECs (3 × 10 5 cells per mouse). ) Was injected.
하지허혈 생쥐 모델에 대한 hESC-ECs의 삽입 후 사지 재생(limb repair) 효과를 식염수를 주입한 대조군과 비교함으로써 생체 내에서의 기능을 확인하였다. 두 그룹(n=10) 모두에 대해 4주간 관찰하였다. hESC-ECs를 근육 내에 이식한 그룹에서는 식염수 그룹과 비교하여 사지의 손실(limb loss) 정도에서 유의미한 감소 효과가 나타났다. 식염수를 주입한 그룹의 생쥐에서는 사지 손실(80 %, 10 중 8개체) 또는 심각한 사지 괴사(severe limb necrosis)(20 %, 10 중 2개체)가 나타났으며 사지 회복(limb salvage)가 나타나는 경우는 존재하지 않았다. 그러나, hESC-EC을 이식한 그룹의 절반에서는 사지 회복(20 %, 10 중 2개체) 또는 경미한 사지 괴사(mild limb necrosis)(30 %, 10 중 3개체)가 관찰되었다(도 7).In vivo function was confirmed by comparing the effect of limb repair after insertion of hESC-ECs on the ischemic mouse model with the control group injected with saline. Observations were made for 4 weeks for both groups (n = 10). The intramuscular transplantation of hESC-ECs showed a significant reduction in limb loss compared to the saline group. Mice in the saline-infused group showed limb loss (80%, 8 out of 10) or severe limb necrosis (20%, 2 out of 10) and limb salvage Did not exist. However, in half of the groups implanted with hESC-EC, limb recovery (20%, 2 out of 10) or mild limb necrosis (30%, 3 out of 10) was observed (FIG. 7).
측정예 6-2. 도플러 레이저 측정 장비를 이용한 치료 효과의 확인Measurement Example 6-2. Confirmation of therapeutic effect using Doppler laser measurement equipment
혈관신생에 대한 순차적이고 비침습적인 생리학적 입증을 위해 레이저 도플러 혈관 관류 영상장치(Moor Instruments, Devon, UK)를 이용하였다. 조건 처리 후의 생쥐를 각각 0, 7, 14 및 28일 경과시마다 순차적으로 뒷다리 표면의 혈류를 스캔하여 관찰하였다. 디지털 방식의 색상으로 표시되는 이미지를 이용하여 무릎 관절에서 발까지의 부위에서 혈류량에 대한 정량분석을 수행하였고 관류 평균값을 계산하였다(도 8). 측정을 위해 도플러 장치의 분석 소프트웨어를 이용하였으며, 정상 그룹을 기준으로 하여 그룹별 측정값을 0 ~ 1 사이의 비율로 표시하였다.Laser Doppler Vascular Perfusion Imaging (Moor Instruments, Devon, UK) was used for sequential and noninvasive physiological demonstration of angiogenesis. Mice after the condition treatment were observed by sequentially scanning the blood flow on the hind limb surface every 0, 7, 14 and 28 days. Quantitative analysis of blood flow at the site of the knee joint to the foot was performed using the digitally displayed image and the perfusion average value was calculated (FIG. 8). The analysis software of the Doppler device was used for the measurement, and the measurement value of each group was expressed as a ratio between 0 and 1 based on the normal group.
28일 동안, 대조군에서는 사지 손실 또는 심각한 괴사가 일어나는 반면 이식 그룹의 절반에서는 하지허혈 증상으로부터 혈류량이 회복되는 효과가 나타났다.For 28 days, there was an effect of limb loss or severe necrosis in the control group, whereas half of the transplant group recovered blood flow from the symptoms of lower limb ischemia.
조건을 처리하고 일주일 경과 후, 상대적인 혈류의 비율은 hESC-EC 이식 그룹에서 0.272 ± 0.017, 식염수 주입 그룹에서 0.133 ± 0.003으로 나타났다. 2주 경과 후에는 hESC-EC 이식 그룹에서 0.471 ± 0.045, 식염수 주입 그룹에서 0.136 ± 0.009으로 나타났다. 3주 경과 후에는 hESC-EC 이식 그룹에서 0.551 ± 0.067, 식염수 주입 그룹에서 0.14 ± 0.019으로 나타났다. 4주 경과 후에는 hESC-EC 이식 그룹에서 0.588 ± 0.014, 식염수 주입 그룹에서 0.145 ± 0.003으로 나타났다.After one week of treatment, the relative blood flow rate was 0.272 ± 0.017 in the hESC-EC transplant group and 0.133 ± 0.003 in the saline infusion group. After 2 weeks, it was 0.471 ± 0.045 in the hESC-EC transplant group and 0.136 ± 0.009 in the saline infusion group. After 3 weeks, it was 0.551 ± 0.067 in the hESC-EC transplant group and 0.14 ± 0.019 in the saline infusion group. After 4 weeks, it was 0.588 ± 0.014 in the hESC-EC transplant group and 0.145 ± 0.003 in the saline infusion group.
측정예 6-3. 마이크로 컴퓨터단층촬영장치를 이용한 치료 효과의 확인Measurement Example 6-3. Confirmation of treatment effect using micro computed tomography
혈액 관류 시스템(Thermo Fisher Scientific, Waltham, MA)을 이용하기 위해 생쥐의 혈관을 Microfil®(MV-120, Flow Tech, Inc., Carver, MA)로 고정하였다. 이식 부위를 28일 동안 4 % 포르말린(formalin)으로 고정하여 컴퓨터 단층촬영장치(micro-CT scanner, Skyscan1172, Bruker-microct, Kontich, Belgium)로 방사선 이미지 분석(radiographic analysis)을 수행하였다. 스캔한 샘플의 CT 이미지는 50 mm(100 kV 및 100 mA)의 해상도에서 컴퓨터 소프트웨어(NRecon; Skyscan, Aartselaar, Belgium)로부터 구축된 3D(three-dimensionally)로 촬영되었다. 재생된 미세 혈관과 근육 부피 및 손상 부위의 손상 범위는 CTAn software(Skyscan)를 이용하여 3D로 구축된 이미지로부터 계산하였다.The blood vessels of mice were fixed with Microfil ® (MV-120, Flow Tech, Inc., Carver, MA) to use a blood perfusion system (Thermo Fisher Scientific, Waltham, Mass.). The implantation site was fixed with 4% formalin for 28 days and radiographic analysis was performed with a computed tomography device (micro-CT scanner, Skyscan1172, Bruker-microct, Kontich, Belgium). CT images of the scanned samples were taken in three-dimensionally (3D) built from computer software (NRecon; Skyscan, Aartselaar, Belgium) at a resolution of 50 mm (100 kV and 100 mA). The reconstructed microvascular and muscle volume and the extent of injury were calculated from 3D images using CTAn software (Skyscan).
컴퓨터 단층촬영은 혈관 재건 중에 드러나는 혈관 구조 및 혈관 형성 양상을 시각화하여, 이식 그룹에서 하지허혈로부터 정상 조건으로 근접해 가는 재생 과정을 확인하기 위해 수행되었다. 붉은 화살표로는 소동맥(arterioles) 및 모세 혈관(capillaries)을 표시했고 노란 화살표로는 혈관을 표시했다(도 9).Computed tomography was performed to visualize vascular structure and angiogenesis patterns during vascular reconstruction, to identify the regeneration process approaching normal conditions from lower limb ischemia in the transplant group. Red arrows mark arterioles and capillaries and yellow arrows mark blood vessels (FIG. 9).
측정예 6-4. 조직면역화학분석을 이용한 치료 효과의 확인Measurement Example 6-4. Confirmation of treatment effect using tissue immunochemical analysis
근육 재건 및 섬유증에 대한 조직학적 분석을 수행하기 위해서, 4주 경과 후 생쥐로부터 허혈 사지 조직을 절제하였다. 샘플을 10 %(v/v) 포름알데히드를 포함한 완충용액으로 고정하고, 점진적 고농도의 에탄올(graded ethanol series)로 탈수시키고 파라핀에 투입하였다. 상기 탈수 과정은 70, 80, 90, 100 및 100 %의 에탄올을 이용하여 순차적으로 1시간씩 수행하였다. 샘플은 4 μm 두께의 절편으로 슬라이스하여 hematoxylin and eosin(H&E)으로 염색하였다. 허혈 조직 내에서의 섬유증 여부 또한 확인하기 위해 Masson's trichrome(MT)를 이용한 콜라겐 염색을 수행하였다(도 10A). 인간 세포의 존재 여부를 확인하기 위해, 조직 절편은 anti-human smooth muscle actin(SMA; BD Bioscience) 및 anti-human PECAM antibodies(BD Bioscience)를 이용하여 면역조직화학법(immunohistochemistry)으로 염색하였다(도 10B). 염색 결과는 avidin-biotin complex immunoperoxidase(Vectastain® ABC kit), 3,3'-diaminobenzidine(DAPI), substrate solution kits(Vector Laboratories, Burlingame, CA)를 이용하여 시각화되었다.To perform histological analysis for muscle reconstruction and fibrosis, ischemic limb tissue was excised from mice after 4 weeks. Samples were fixed with buffer containing 10% (v / v) formaldehyde, dehydrated with progressively high concentrations of ethanol (graded ethanol series) and added to paraffin. The dehydration process was performed sequentially for 1 hour using 70, 80, 90, 100 and 100% ethanol. Samples were sliced into 4 μm thick sections and stained with hematoxylin and eosin (H & E). Collagen staining using Masson's trichrome (MT) was also performed to confirm fibrosis in ischemic tissues (FIG. 10A). To confirm the presence of human cells, tissue sections were stained by immunohistochemistry using anti-human smooth muscle actin (SMA; BD Bioscience) and anti-human PECAM antibodies (BD Bioscience) (FIG. 10B). Staining results were visualized using avidin-biotin complex immunoperoxidase (Vectastain ® ABC kit), 3,3'-diaminobenzidine (DAPI), and substrate solution kits (Vector Laboratories, Burlingame, CA).
H&E 염색은 조직을 시각화하고 근육 재생의 범위를 측정하기 위해서 이용되었다. hESC-ECs 이식 그룹은 현저한 근육 재건 효과를 나타냄으로써 대조군에 비해 재생 효과가 개선되었음을 나타냈다.H & E staining was used to visualize tissue and measure the extent of muscle regeneration. The hESC-ECs transplant group showed significant muscle reconstruction effects, indicating that the regenerative effect was improved compared to the control.
MT 염색은 hESC-ECs 이식 그룹에서 콜라겐 축적이 가장 활발하게 이루어짐에 따라 조직 재생을 가능하게 한다는 것을 드러냈다. 반대로, 식염수를 주입한 대조군 샘플에서는 섬유증이 심각하게 나타났고 근육 재생 가능성은 보이지 않았다.MT staining revealed that collagen accumulation was most active in the hESC-ECs transplant group, enabling tissue regeneration. In contrast, saline-injected control samples showed severe fibrosis and no muscle regeneration potential.
소동맥 및 모세혈관의 부피(mm2)를 정량 측정하기 위해, SMA 및 PECAM 염색을 수행한 결과 hESC-EC 이식 그룹에서 혈관의 부피가 유의미하게 높은 값을 나타냈다. 정량분석을 통해 대조군에 비하여 신혈관형성(neovascularization)이 유의미하게 강화되었음을 확인하였다. 소동맥 및 모세혈관의 부피는 식염수 그룹에서 17 ± 4 mm2 및 293.3±45.1 mm2, 이식 그룹에서 37±3 mm2 및 696.6±49.3 mm2로 각각 나타났다.In order to quantitatively measure the volume of the arterioles and capillaries (mm 2 ), SMA and PECAM staining showed significantly higher blood vessel volume in the hESC-EC transplant group. Quantitative analysis confirmed that neovascularization was significantly enhanced compared to the control group. The arterial and capillary volumes were 17 ± 4 mm 2 and 293.3 ± 45.1 mm 2 in the saline group and 37 ± 3 mm 2 and 696.6 ± 49.3 mm 2 in the transplant group, respectively.
측정예 6-5. 동물에 이식된 사람 혈관세포의 추적Measurement Example 6-5. Tracking human blood vessels transplanted into animals
형광제자리부합검사(Fluorescence in situ hybridization, FISH)를 수행하기 위해 샘플 절편을 실온에서 자일렌(xylene)으로 처리하여 탈파라핀화(deparaffinized)시키고 100 % 에탄올을 이용하여 탈수한 후 건조시켰다. 파라핀 전처리 용액은 가열용 맨틀(heating mantle)에서 미리 95 ℃로 예열하여 절편을 30분간 담그고 이후 2X standard saline citrate(SSC)에 각각 5분씩 두 번 담갔다. 500 μl의 프로테아제(protease)를 37 ℃로 예열된 50 ml의 프로테아제 완충용액에 첨가한 프로테아제 용액을 준비하여 상기 샘플 절편을 20분간 담갔다. 그리고 절편을 다시 2X SSC에 담근 후 70 % 에탄올에 담가 1분, 100 % 에탄올에 다시 1분간 탈수시켰다. 공기 중에서 건조시킨 후, 다이아몬드 펜을 이용하여 hybridizing area를 표시하고 커버 글라스를 고무 접착제로 봉하기에 앞서 CEP 17 DNA probe(2 μl, Vysis, Downers Grove, IL)를 적용하였다. 결과적으로, 빛으로부터 보호되며 75 ℃에서 5분간 변성된 프로브(probe)를 이용하여 오버나이트 조건으로 37 ℃의 습기 있는 공간에서 혼성 과정(hybridization)을 수행하였다. 혼성화 과정 이후, 고무 접착제를 제거하고 절편 샘플을 10분간 50 %(v/v) 포름알데히드/2X SSC로 42 ℃에서 세척하여 0.1 %의 NP(nonyl phenoxypolyethoxylethanol, NP-40)를 포함하는 4X SSC에 5분간 담갔다. 절편은 공기 중에서 빛의 투입 없이 건조시키고 DAPI를 이용하여 대비 염색하였다(도 11).In order to perform Fluorescence in situ hybridization (FISH), sample sections were treated with xylene at room temperature, deparaffinized, dehydrated using 100% ethanol, and dried. The paraffin pretreatment solution was preheated to 95 ° C. in a heating mantle and soaked for 30 minutes, and then twice each for 5 minutes in 2X standard saline citrate (SSC). Protease solution was prepared by adding 500 μl of protease to 50 ml of protease buffer preheated to 37 ° C. and soaking the sample sections for 20 minutes. Then, the sections were again immersed in 2X SSC, soaked in 70% ethanol for 1 minute, and dehydrated in 100% ethanol again for 1 minute. After drying in air, the hybridizing area was marked using a diamond pen, and CEP 17 DNA probe (2 μl, Vysis, Downers Grove, IL) was applied before sealing the cover glass with rubber adhesive. As a result, hybridization was performed in a humid space at 37 ° C. under overnight conditions using a probe protected from light and denatured at 75 ° C. for 5 minutes. After the hybridization process, the rubber adhesive was removed and the section samples were washed at 50 ° C. with 50% (v / v) formaldehyde / 2X SSC for 10 minutes at 42 ° C. to 4X SSC containing 0.1% nonyl phenoxypolyethoxylethanol (NP-40). Soak for 5 minutes. Sections were dried in the air without light and contrast-stained using DAPI (FIG. 11).
FISH 분석을 통해 이식된 EC 세포가 인간 유전체(흰색 화살표)를 운반하는 것을 확인하였다.FISH analysis confirmed that the transplanted EC cells carry the human genome (white arrow).
이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. As mentioned above, specific portions of the present disclosure have been described in detail, and it is apparent to those skilled in the art that such specific techniques are merely preferred embodiments, and thus the scope of the present disclosure is not limited thereto. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (9)

  1. 줄기세포에 DPBS(Dulbecco's phosphate buffered saline)를 처리하여 단일세포화하는 단계; 및 상기 단일세포를 부유배양(suspension culture)하여 응집체를 형성하는 단계를 포함하는 줄기세포 유래 혈관세포(Endothelial Cell) 비정제 분화 방법.Treating single stem cells by treating Dulbecco's phosphate buffered saline (DPBS) on stem cells; And stem cell-derived vascular cells (Endothelial Cell) differentiation method comprising the step of suspending culture to form agglomerates.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 응집체를 해리하여 부착배양(adhesion culture)하는 단계를 더 포함하는 줄기세포 유래 혈관세포 비정제 분화 방법.Stem cell-derived vascular cell non-differentiated differentiation method further comprising the step of dissociating the aggregate to an adhesion culture.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 부착배양이 콜라겐(Collagen) 배지에서 수행되는 것을 특징으로 하는 줄기세포 유래 혈관세포 비정제 분화 방법.Stem cell-derived vascular cell undifferentiated differentiation method, characterized in that the adhesion culture is performed in collagen (Collagen) medium.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 줄기세포가 배아줄기세포(embryonic stem cell, ESC), 유도만능줄기세포(induced Pluripotent Stem cell, iPSC), 체세포복제줄기세포(somatic cell nuclear transfer, SCNT) 및 전분화능줄기세포(pluripotent stem cells, PSC)를 포함하는 군에서 선택되는 어느 하나인 것을 특징으로 하는 줄기세포 유래 혈관세포 비정제 분화 방법.The stem cells are embryonic stem cells (ESC), induced pluripotent stem cells (iPSC), somatic cell nuclear transfer (SCNT) and pluripotent stem cells, Stem cell-derived vascular cell non-purified differentiation method, characterized in that any one selected from the group containing.
  5. (1) 줄기세포에 DPBS를 처리하여 단일세포화하는 단계;(1) treating the stem cells with DPBS to single cell;
    (2) 상기 단일세포를 부유배양하여 응집체를 형성하는 단계;(2) floating the single cells to form aggregates;
    (3) 상기 (2)단계의 응집체를 혈관세포 분화 그룹과 혈액모세포(hemangioblast) 분화 그룹으로 분류하는 단계; 및(3) classifying the aggregate of step (2) into a vascular cell differentiation group and a hemangioblast differentiation group; And
    (4) 상기 (3)단계에 의해 분류된 두 그룹의 응집체를 분화시키는 단계를 포함하는 줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법.(4) A method for simultaneously differentiating stem cell-derived vascular cells and hematopoietic stem cells, comprising differentiating aggregates of two groups classified by step (3).
  6. 제 5 항에 있어서,The method of claim 5,
    상기 (4)단계에서 혈관세포 분화 그룹의 응집체를 분화시키는 단계가 상기 응집체를 해리하여 부착배양하는 단계인 것을 특징으로 하는 줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법.In step (4), the step of differentiating aggregates of the vascular cell differentiation group is a step of dissociating the aggregates and attaching and culturing stem cell-derived vascular cells and hematopoietic cells.
  7. 제 6 항에 있어서,The method of claim 6,
    상기 부착배양이 콜라겐 배지에서 수행되는 것을 특징으로 하는 줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법.Simultaneous differentiation of stem cell-derived vascular cells and hematopoietic stem cells, characterized in that the adhesion culture is performed in collagen medium.
  8. 제 5 항에 있어서,The method of claim 5,
    상기 (4)단계에서 혈액모세포 분화 그룹의 응집체를 분화시키는 단계가 상기 응집체를 부유배양하는 단계인 것을 특징으로 하는 줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법.In step (4), the step of differentiating the aggregates of the hematopoietic differentiation group is a step of floating culture of the aggregates, characterized in that the stem cell-derived vascular cells and hematopoietic cells undifferentiated simultaneous differentiation method.
  9. 제 5 항에 있어서,The method of claim 5,
    상기 줄기세포가 배아줄기세포, 유도만능줄기세포, 체세포복제줄기세포 및 전분화능줄기세포를 포함하는 군에서 선택되는 어느 하나인 것을 특징으로 하는 줄기세포 유래 혈관세포 및 혈액모세포 비정제 동시 분화 방법.Simultaneous differentiation method of the stem cell-derived vascular cells and hematopoietic stem cells, characterized in that the stem cells are any one selected from the group consisting of embryonic stem cells, induced pluripotent stem cells, somatic clonal stem cells and pluripotent stem cells.
PCT/KR2016/006814 2016-01-12 2016-06-27 Method for simultaneous differentiation of stem cell-derived endothelial cells and hemangioblasts without purification WO2017122887A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160003591A KR20170084495A (en) 2016-01-12 2016-01-12 Method of simultaneously differentiation of stem cells derived endothelial cell and hemangioblast without sorting
KR10-2016-0003591 2016-01-12

Publications (1)

Publication Number Publication Date
WO2017122887A1 true WO2017122887A1 (en) 2017-07-20

Family

ID=59311222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006814 WO2017122887A1 (en) 2016-01-12 2016-06-27 Method for simultaneous differentiation of stem cell-derived endothelial cells and hemangioblasts without purification

Country Status (2)

Country Link
KR (1) KR20170084495A (en)
WO (1) WO2017122887A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964402B2 (en) * 2006-05-25 2011-06-21 Sanford-Burnham Medical Research Institute Methods for culture and production of single cell populations of human embryonic stem cells
US20110151554A1 (en) * 2006-11-09 2011-06-23 Akira Yuo Method for culturing and subculturing primate embryonic stem cell, as well as method for inducing differentiation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7964402B2 (en) * 2006-05-25 2011-06-21 Sanford-Burnham Medical Research Institute Methods for culture and production of single cell populations of human embryonic stem cells
US20110151554A1 (en) * 2006-11-09 2011-06-23 Akira Yuo Method for culturing and subculturing primate embryonic stem cell, as well as method for inducing differentiation thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DANG, STEPHEN M. ET AL.: "Efficiency of Embryoid Body Formation and Hematopoietic Development from Embryonic Stem Cells in Different Culture Systems", BIOTECHNOLOGY AND BIOENGINEERING, vol. 78, no. 4, 20 May 2002 (2002-05-20), pages 442 - 453, XP002219286, Retrieved from the Internet <URL:https://doi.org/10.1002/bit.10220> *
GIL, CHANG-HYUN ET AL.: "Directing Human Embryonic Stem Cells towards Functional Endothelial Cells Easily and without Purification", TISSUE ENGINEERING AND REGENERATIVE MEDICINE, vol. 13, no. 3, 9 June 2016 (2016-06-09), pages 274 - 283, XP055536818, Retrieved from the Internet <URL:http://dx.doi.org/10.1007/s13770-016-9076-3> *
GIL, CHANG-HYUN ET AL.: "Well-defined Differentiation of Hesc-derived Hemangioblasts by Embryoid Body Formation without Enzymatic Treatment", BIOTECHNOLOGY LETTERS, vol. 37, no. 6, 21 February 2015 (2015-02-21), pages 1315 - 1322, XP055536813, Retrieved from the Internet <URL:doi:10.1007/s10529-015-1786-4> *
LU , SHI-JIANG ET AL.: "Generation of Functional Hemangioblasts from Human Embryonic Stem Cells", NATURE METHODS, vol. 4, no. 6, June 2007 (2007-06-01), pages 501 - 509, XP008133153 *

Also Published As

Publication number Publication date
KR20170084495A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
CN102165058B (en) Compositions for mesoderm derived ISLl1+ multipotent cells (IMPs), epicardial progenitor cells (EPCs) and multipotent CXCR4+CD56+ cells (C56Cs) and methods of use
US7247477B2 (en) Methods for the in-vitro identification, isolation and differentiation of vasculogenic progenitor cells
AU2002302089B2 (en) Somatic Pluripotent Cells
AU2004209645B2 (en) Use of islet 1 as a marker for isolating or generating stem cells
JP4085062B2 (en) Endothelial cells derived from primate embryonic stem cells
Kokkinopoulos et al. Cardiomyocyte differentiation from mouse embryonic stem cells using a simple and defined protocol
US11607429B2 (en) Derivation and self-renewal of ISI1+ cells and uses thereof
JP6097076B2 (en) Progeny of differentiated pluripotent stem cells that exclude excluded phenotypes
El-Kehdy et al. Hepatocytic differentiation potential of human fetal liver mesenchymal stem cells: in vitro and in vivo evaluation
Invernici et al. Human microvascular endothelial cells from different fetal organs demonstrate organ-specific CAM expression
US20190112578A1 (en) Derivation and Self-Renewal of Multipotent Cells and Uses Thereof
Maciaczyk et al. Restricted spontaneous in vitro differentiation and region-specific migration of long-term expanded fetal human neural precursor cells after transplantation into the adult rat brain
Otto et al. Culturing and differentiating human mesenchymal stem cells for biocompatible scaffolds in regenerative medicine
Ariyath et al. Differentiation potential of cultured extracellular DEAD-box helicase 4+ oogonial stem cells from adult human ovaries into somatic lineages
WO2017122887A1 (en) Method for simultaneous differentiation of stem cell-derived endothelial cells and hemangioblasts without purification
Yang et al. Stepwise induction of inner ear hair cells from mouse embryonic fibroblasts via mesenchymal-to-epithelial transition and formation of otic epithelial cells
JP6478464B2 (en) Method for producing cerebrovascular endothelial cells from pluripotent stem cells
JP2008206510A (en) Method for obtaining intestinal stem/precursor cell
Rawat et al. Recapitulating porcine cardiac development in vitro: from expanded potential stem cell to embryo culture models
EP1179046B1 (en) Lineage-restricted precursor cells isolated from mouse neural tube and mouse embryonic stem cells
Gil et al. Directing human embryonic stem cells towards functional endothelial cells easily and without purification
KR102218303B1 (en) Method for preparing organoid comprising vascular tissue and use thereof
CN117467599B (en) Chemical inducer for reprogramming gonadal somatic cells of chickens into pluripotent stem cells of chickens and reprogramming method
RU2396345C1 (en) Method of obtaining population of neural differentiation induced stromal cells of fat tissue
JP2008125448A (en) Method for producing serotonin nerve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885199

Country of ref document: EP

Kind code of ref document: A1