WO2017122682A1 - Control device for vehicle dual clutch transmission - Google Patents

Control device for vehicle dual clutch transmission Download PDF

Info

Publication number
WO2017122682A1
WO2017122682A1 PCT/JP2017/000636 JP2017000636W WO2017122682A1 WO 2017122682 A1 WO2017122682 A1 WO 2017122682A1 JP 2017000636 W JP2017000636 W JP 2017000636W WO 2017122682 A1 WO2017122682 A1 WO 2017122682A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutch
torque
speed
input shaft
control unit
Prior art date
Application number
PCT/JP2017/000636
Other languages
French (fr)
Japanese (ja)
Inventor
俊郎 平賀
将之 田中
秀人 万田
Original Assignee
アイシン・エーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社 filed Critical アイシン・エーアイ株式会社
Priority to JP2017535854A priority Critical patent/JPWO2017122682A1/en
Priority to DE112017000355.5T priority patent/DE112017000355T5/en
Priority to CN201780000723.3A priority patent/CN107208788A/en
Publication of WO2017122682A1 publication Critical patent/WO2017122682A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H2059/366Engine or motor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0015Transmission control for optimising fuel consumptions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0496Smoothing ratio shift for low engine torque, e.g. during coasting, sailing or engine braking

Definitions

  • the present invention relates to a control device for a dual clutch type transmission for a vehicle provided with two clutches capable of switching between an engagement state and a disengagement state independently.
  • One type of transmission mounted on a vehicle includes two clutches, two input shafts connected to and disconnected from the engine by each clutch, and a transmission mechanism provided between each input shaft and output shaft.
  • the dual clutch type transmission has an advantage that the speed change operation can be performed promptly without interruption of the torque by performing the torque changeover operation with two clutches.
  • a friction clutch can be used in which a plate having a friction material is driven by a clutch actuator.
  • the transmission mechanism is generally configured with about 4 to 7 shift stages, and any shift stage can be selected by a known synchronization device.
  • Patent Document 1 discloses one technical example of this type of dual clutch transmission.
  • the shift control device for a dual clutch type transmission for a vehicle includes means for determining whether the transmission is in a pre-shift state and one of transmitting torque when it is determined that it is in a pre-shift state.
  • the clutch torque may be too small relative to the friction torque of the engine.
  • the engine speed is reduced to the fuel cut return speed or less, fuel supply is resumed, and fuel consumption may be reduced.
  • the clutch torque becomes excessive with respect to the friction torque of the engine, the engine rotational speed steeply synchronizes with the transmission input rotational speed during the downshift.
  • the driver feels a pull-in feeling which is a sudden deceleration feeling of the vehicle, and the comfortable feeling of the driving operation is lost.
  • the present invention has been made in view of the above-mentioned problems of the background art, and it is possible to provide a control device of a dual clutch type transmission for a vehicle, which can achieve good fuel consumption and can maintain the comfort of driving operation. It is an issue to be solved.
  • a control device for a dual clutch type transmission for a vehicle comprises a first input shaft, a second input shaft, an output shaft, and a torque that can be transmitted between an engine crankshaft and the first input shaft.
  • a first clutch that adjusts a first clutch torque that is a maximum value
  • a second clutch that adjusts a second clutch torque that is a maximum value of torque that can be transmitted between the crankshaft and the second input shaft
  • a plurality of gear positions between the second input shaft and the output shaft Control device for a dual clutch type transmission for a vehicle having a second transmission mechanism for selecting one gear position from among the above, wherein the first transmission mechanism selects the current gear position, and the second transmission gear.
  • control device when performing the downshift to the next gear while the engine is performing fuel cut, the control device preferably executes the parallel joint control unit and the clutch shift control unit. .
  • the second clutch is shifted to the half engagement state while maintaining the first clutch in the engagement state at the early stage of the downshift.
  • the second clutch shifts to the half joint state in the later stage of the rotation synchronization control of the downshift
  • the first clutch shifts from the joint state to the disconnection state. According to this, the torque for driving the engine from the drive wheel side does not become excessive. Therefore, there is no possibility that the number of revolutions of the engine is drawn in and the engine brake acts excessively, and the comfort of the driving operation can be maintained.
  • FIG. 10 is a diagram of a time chart when the engine speed has sharply decreased in the downshift according to the prior art.
  • FIG. 8 is a diagram of a time chart when the engine rotation speed is drawn in and the driving operation is not comfortable in the downshift according to the prior art.
  • FIG. 1 is a skeleton diagram showing a configuration example of a dual clutch type transmission 1 for a vehicle controlled by the control device 7 of the embodiment.
  • the dual clutch type transmission 1 for vehicle selects one of the fifth forward gear and the first reverse gear and transmits the output torque of the engine 91 to the differential gear 93.
  • the dual clutch type transmission 1 for a vehicle includes a first input shaft 31, a second input shaft 32, an output shaft 4, a first clutch 21, a second clutch 22, a first transmission mechanism 5, a second transmission mechanism 6, and the like. It is configured.
  • the first clutch 21 and the second clutch 22 are portions that rotatably connect the first input shaft 31 and the second input shaft 32 to the crankshaft of the engine 91 so as to be able to connect and disconnect.
  • the first clutch 21 and the second clutch 22 can be, for example, friction clutches driven by the first clutch actuator 23 and the second clutch actuator 24, respectively.
  • a servomotor, a hydraulic drive mechanism, etc. can be illustrated as clutch actuators 23 and 24, for example.
  • the first and second clutch actuators 23 and 24 operate according to a command from the control device 7 to adjust the friction joint force.
  • the first clutch torque T1 and the second clutch torque T2 which are the maximum values of the torque that can be transmitted by the first clutch 21 and the second clutch 22, are adjusted independently.
  • the first clutch 21 and the second clutch 22 are in a disconnected state in which torque is not transmitted between input and output, in a semi-connected state in which torque is transmitted while sliding between input and output, and in an engaged state Transition the state.
  • the first input shaft 31 is rotatably connected to the crankshaft of the engine 91 by the first clutch 21 so as to be able to be connected and disconnected.
  • the first input shaft 31 is rod-shaped.
  • the second input shaft 32 is rotatably connected to the crankshaft of the engine 91 by the second clutch 22 so as to be able to connect and disconnect.
  • the second input shaft 32 has a tubular shape and is disposed coaxially outside of the first input shaft 31.
  • the right end of the first input shaft 31 in the drawing is connected to the output side member of the first clutch 21.
  • the left end of the first input shaft 31 in the figure protrudes through the second input shaft 32 and is supported by a ball bearing 36.
  • the right end of the second input shaft 32 in the drawing is connected to the output side member of the second clutch 22.
  • a central portion in the longitudinal direction of the second input shaft 32 is supported by a ball bearing 37.
  • the output shaft 4 is disposed parallel to the lower side of the first input shaft 31 and the second input shaft 32 in the drawing. Both ends of the output shaft 4 are supported by tapered roller bearings 46 and 47. An output gear 48 is fixed near one of the tapered roller bearings 46 of the output shaft 4. The output gear 48 meshes with the differential gear 93. Therefore, the output shaft 4 transmits and outputs torque to the drive wheel via the differential device 93.
  • the first transmission mechanism 5 is provided between the first input shaft 31 and the output shaft 4.
  • the first transmission mechanism 5 has three gear sets 51, 53, 55 that constitute odd-numbered shift speeds of first, third and fifth speeds. More specifically, the first speed drive gear 51A is fixedly provided in order from the left side of the first input shaft 31 in the drawing, the third speed drive gear 53A is provided so as to allow free rotation, and the fifth speed drive gear 55A is free. It is provided in a rollable manner.
  • a first speed driven gear 51P is provided rotatably at a location opposite to the output shaft 4, a third speed driven gear 53P is fixed, and a fifth speed driven gear 55P is fixed.
  • the first speed drive gear 51A and the first speed driven gear 51P are always meshed with each other to form a first speed gear set 51 that constitutes a first speed.
  • the first-speed driven gear 51P is rotationally connected to the output shaft 4 by the sleeve S1 of the first-speed synchromesh mechanism 81 (synchronization device)
  • the first-speed gear set 51 is meshed and coupled to transmit torque It becomes possible.
  • the third speed drive gear 53A and the third speed driven gear 53P are always meshed to form a third speed gear set 53 that constitutes a third speed stage.
  • the third speed drive gear 53A is rotationally connected to the first input shaft 31 by the sleeve S35 of the third to fifth synchromesh mechanism 82, the third speed gear set 53 is meshed and coupled to transmit torque. It becomes possible.
  • the fifth speed drive gear 55A and the fifth speed driven gear 55P are constantly meshed to form a fifth speed gear set 55 that constitutes the fifth speed.
  • the fifth speed gear set 55 is meshed and coupled to enable transmission of torque. Only one of the first speed gear set 51, the third speed gear set 53, and the fifth speed gear set 55 is selectively meshed and coupled by an interlock mechanism (not shown).
  • the second transmission mechanism 6 is provided between the second input shaft 32 and the output shaft 4.
  • the second transmission mechanism 6 has two gear sets 62 and 64 that constitute the second and fourth even gear stages. More specifically, the fourth speed drive gear 64A and the second speed drive gear 62A are fixed in order from the left side of the second input shaft 32 in the drawing. On the other hand, the fourth speed driven gear 64P and the second speed driven gear 62P are provided at the opposing positions of the output shaft 4 so as to allow free rotation.
  • the fourth speed drive gear 64A and the fourth speed driven gear 64P are constantly meshed to form a fourth speed gear set 64 which constitutes a fourth speed.
  • the fourth-speed driven gear 64P is rotationally connected to the output shaft 4 by the sleeve S24 of the second-fourth synchromesh mechanism 83, the fourth-speed gear set 64 is meshed and capable of transmitting torque Become.
  • the second speed drive gear 62A and the second speed driven gear 62P are always meshed to form a second speed gear set 62 that constitutes a second speed stage.
  • the second-speed driven gear 62P is rotationally connected to the output shaft 4 by the sleeve S24, the second-speed gear set 62 is meshed and can transmit torque. Only one of the fourth speed gear set 64 and the second speed gear set 62 is selectively meshed and coupled.
  • first and second attached to the first clutch 21, the second clutch 22, the first input shaft 31, the second input shaft 32, the first transmission mechanism 5, and the second transmission mechanism 6 It is a convenient article that distinguishes two torque transmission paths. Therefore, “first” and “second” may be interchanged. That is, the first transmission mechanism 5 may constitute an even gear stage, and the second transmission mechanism 6 may constitute an odd gear stage. Further, although not shown in FIG. 1, the configuration of a conventional gear set can be appropriately used for the reverse gear.
  • the control device 7 is a part that controls the first clutch 21, the second clutch 22, the first transmission mechanism 5, and the second transmission mechanism 6. That is, the control device 7 acquires various information such as the operating state of the engine 91 and the vehicle speed, and determines the presence or absence of requests for upshift, downshift, and preshift shift using known shift diagrams.
  • the controller 7 controls the first clutch actuator 23 and the second clutch actuator 24 in association with the three synchromesh mechanisms (81, 82, 83) when an operation based on the determination result is required.
  • the control device 7 can be configured using an electronic control unit (ECU) which has a CPU and operates with software.
  • the control device 7 can also be configured such that a plurality of electronic control units (ECUs) cooperate with each other to perform cooperative control.
  • the control device 7 of the embodiment performs the downshifting from the current gear position to the next gear position on the low speed side while the engine 91 is performing fuel cut. At this time, the control device 7 executes the parallel joint control unit 71 and the clutch shift control unit 72. Further, the clutch shift control unit 72 includes a rotational speed deviation torque difference storage unit 76 and a constant torque control unit 77.
  • the parallel joint control unit 71, the clutch shift control unit 72, the rotational speed deviation torque difference storage unit 76, and the constant torque control unit 77 are realized by software.
  • FIG. 2 is a time chart diagram schematically illustrating the control operation of the control device 7 of the dual clutch transmission 1 for a vehicle according to the embodiment.
  • the waveforms shown in FIG. 2 are, from top to bottom, the acceleration a of the vehicle, the first clutch torque T1 (shown by a solid line) of the first clutch 21 and the second clutch torque T2 (shown by a broken line) of the second clutch, Crankshaft torque TE 91 (corresponding to friction torque of engine and represented by a negative value), first rotation number N1 of first input shaft 31 (shown by solid line) and second rotation number N2 of second input shaft (broken line) And the engine rotational speed NE of the engine 91 (indicated by an alternate long and short dash line).
  • the engine speed NE matches the first speed N1 and is larger than the fuel cut return speed Nf.
  • the fuel cut return rotational speed Nf is a threshold value for determining to restart the fuel supply when the engine speed NE is lowered. Therefore, the engine 91 is controlled to the fuel cut state.
  • the vehicle is coasting at the current gear. At this time, the current transmission gear position is selected in the first transmission mechanism 5, and the first clutch 21 is in the connected state.
  • the next gear position lower than the current gear position is selected by the pre-rail shift operation, and the second clutch 22 is in the disconnected state.
  • the acceleration a is a negative value, and the vehicle is decelerated gradually.
  • the first rotation speed N1 and the second rotation speed N2 also gradually decrease in proportion to the vehicle speed. Since a downshift request has occurred at time t1, the controller 7 performs downshift from the current gear position to the next gear position.
  • the parallel connection control unit 71 of the control device 7 slides the second clutch 22 from the disconnected state while maintaining the first clutch 21 in the connected state, while the predetermined clutch torque T2 d is It shifts to the half joint state to transmit. Specifically, the parallel engagement control unit 71 slightly reduces the first clutch torque T11 to a first clutch torque T12 while maintaining the first clutch 21 in the engaged state at time t2, and performs the torque changing operation. Prepare. Parallel joint control unit 71 maintains first clutch torque T12 until time t4 thereafter.
  • the parallel engagement control unit 71 causes the second clutch 22 to be disengaged from the disengaging state at time t3 to gradually increase the second clutch torque T23, and a partial engagement state of the predetermined clutch torque T2d by time t4. Migrate to
  • the predetermined clutch torque T2d shown in FIG. 2 is preset within a range in which the engine speed NE does not deviate from the first speed N1. Specifically, the predetermined clutch torque T2d is set to less than the first clutch torque T12 at which the first clutch 21 maintains the engaged state. The predetermined clutch torque T2d is set to exceed the absolute value of the crankshaft torque TE in the fuel cut state. The predetermined clutch torque T2d is preferably set based on the value of a torque characteristic map preset for each model of the engine 91, taking into consideration individual differences in friction torque and the like.
  • the engine rotational speed NE is set to the first rotational speed Maintaining N1 can prevent a significant drop.
  • the clutch shift control unit 72 operates to perform rotation synchronization control.
  • the clutch shift control unit 72 disconnects the first clutch 21 to shift to the disconnected state while maintaining the predetermined clutch torque T2 d in the half engagement state of the second clutch 22, and finally, the engine rotational speed NE is Synchronize with 2 revolutions N2.
  • the rotational speed deviation torque difference storage unit 76 of the clutch transfer control unit 72 performs the disconnection operation of the first clutch 21 while maintaining the predetermined clutch torque T2d of the second clutch 22 after time t4. Then, the rotational speed deviation torque difference storage unit 76 detects the rotational speed deviation timing at which the engine rotational speed NE starts to separate from the first rotational speed N1.
  • the rotational speed deviation torque difference storage unit 76 compares the engine rotational speed NE with the first rotational speed N1 to calculate the difference for each predetermined control cycle after time t4. When the difference becomes equal to or greater than the predetermined value, the rotational speed deviation torque difference storage unit 76 determines that the rotational speed deviation timing at which the engine rotational speed NE starts to separate from the first rotational speed N1. In the example of FIG. 2, time t5 is the rotational speed deviation timing, and a small first clutch torque T15 remains.
  • the rotation speed deviation torque difference storage unit 76 stores the clutch torque difference at the time when the rotation speed deviation timing is detected as the rotation speed deviation torque difference Teff.
  • the clutch torque difference means a value obtained by subtracting the first clutch torque from the second clutch torque. Therefore, the rotational speed deviation torque difference Teff is a value obtained by subtracting the first clutch torque T15 from the predetermined clutch torque T2d at time t5.
  • the constant torque control unit 77 operates from time t5.
  • the constant torque control unit 77 sets a target clutch torque difference based on the rotational speed deviation torque difference Teff.
  • the constant torque control unit 77 sets the rotational speed deviation torque difference Teff as the target clutch torque difference.
  • the constant torque control unit 77 adjusts the second clutch torque T25 while disconnecting the first clutch 21 so that the clutch torque difference becomes equal to the target clutch torque difference after time t5.
  • the first clutch torque T15 is decreasing, the clutch torque difference is maintained at the rotational speed deviation torque difference Teff.
  • the second clutch torque T25 and the first clutch torque T15 gradually decrease with the same inclination.
  • the constant torque control unit 77 keeps the second clutch torque T26 constant.
  • the second clutch torque T2 is a torque that attempts to increase the engine speed NE and synchronize with the second speed N2.
  • the first clutch torque T1 is a torque for maintaining the engine speed NE at the first speed N1. That is, in the second clutch torque T2 and the first clutch torque T1, the rotational directions acting on the crankshaft are reversed. For this reason, by maintaining the clutch torque difference at the constant rotational speed deviation torque difference Teff, the balance between the clutch torque difference and the crankshaft torque TE is maintained. Therefore, engine speed NE is kept constant after time t5.
  • the engine speed NE leaves the first speed N1 and approaches the second speed N2. This makes it possible to reliably prevent a sharp increase or decrease in the engine speed NE.
  • the engine speed NE synchronizes with the second speed N2. Then, the constant torque control unit 77 increases the second clutch torque T26 to the maximum second clutch torque T28, and ends the downshift.
  • the constant torque control unit 77 may use another method of adding the rotational speed deviation torque difference Teff and a positive value or negative value offset torque determined according to the next gear to be a target clutch torque difference. You can also.
  • the aim is to reduce the driver's discomfort due to the rapid increase in engine braking at the low speed, in consideration of the fact that the engine braking is more effective at the low speed. On the contrary, there is also an aim of setting the target clutch torque difference to be large and completing the downshifting at an early stage when the engine braking effect is low and the driver's discomfort is small at high speed.
  • the constant torque control unit 77 can use offset torque with a negative value when the next shift speed is a low speed (such as the first speed) that is lower than a predetermined speed.
  • a negative offset torque is used, from time t5 in FIG. 2, the engine speed NE is synchronized with the second speed N2 while decreasing at a constant negative slope.
  • the constant torque control unit 77 can use the offset torque of a positive value.
  • the engine speed NE is synchronized with the second speed N2 while increasing with a positive constant gradient.
  • the driver's sense of incongruity is determined by evaluating the shift feeling in the entire vehicle while considering the gear ratio of each shift speed. Therefore, setting of offset torque other than that described above is also conceivable.
  • the offset torque may be zero or a negative value, and may not be a positive value.
  • FIG. 3 is a diagram of a time chart when the engine speed NE sharply decreases in the downshifting according to the prior art.
  • FIG. 4 is a diagram of a time chart when the engine speed NE is drawn in and the comfort of the driving operation is impaired in the downshift in the prior art.
  • the first clutch torque T1 and the second clutch torque T2 are multiplied from time t31 while keeping the total sum constant.
  • the engine speed NE may sharply decrease from the first speed N1 after time t31, and may decrease to the fuel cut return speed Nf or less at time t32. Then, the fuel supply is resumed, the engine 91 is started, and the fuel consumption is reduced.
  • the second clutch torque T2 may be excessively controlled.
  • the engine rotational speed NE sharply increases from the first rotational speed N1 after time t35 and approaches the second rotational speed N2. Then, the engine brake acts excessively to impair the driving comfort.
  • the second clutch 22 while maintaining the first clutch torque T12 in the connection state of the first clutch 21, the second clutch 22 is in the half connection state to generate the predetermined clutch torque T2d. . Therefore, the total torque does not run short, and the reduction of the engine speed NE can be reliably prevented. Further, in the present embodiment, the engine rotational speed NE is synchronized with the second rotational speed N2 in a state in which the clutch torque difference is maintained at the constant rotational speed deviation torque difference Teff. Therefore, a sharp increase in engine speed NE can be reliably prevented.
  • the control device 7 of the dual clutch type transmission 1 for a vehicle includes the first input shaft 31, the second input shaft 32, the output shaft 4, and between the crankshaft of the engine 91 and the first input shaft 31.
  • the first clutch 21 that adjusts the first clutch torque T1, which is the maximum value of torque that can be transmitted by the second clutch, and the second clutch torque T2, which is the maximum value of torque that can be transmitted between the crankshaft and the second input shaft 32 ,
  • the second clutch 22 is shifted to the half joint state while the first clutch 21 is maintained in the joint state.
  • the first clutch 21 shifts from the joint state to the disconnection state. According to this, the torque for driving the engine 91 from the drive wheel side does not become excessive. Therefore, there is no possibility that the engine speed NE will be pulled in and the engine brake will act excessively, and the comfort of the driving operation can be maintained.
  • control device 7 executes the parallel joint control unit 71 and the clutch shift control unit 72.
  • the predetermined clutch torque T2d is preset in a range in which the rotational speed of the crankshaft (engine rotational speed NE) does not deviate from the rotational speed of the first input shaft 31 (first rotational speed N1). According to this, while maintaining the first clutch torque T12 in the connection state of the first clutch 21, the second clutch 22 generates the predetermined clutch torque T2d, and the engine rotational speed NE is set to the first input shaft 31 One rotation speed N1 can be maintained. Therefore, the reduction of the engine speed NE can be reliably prevented, and the effect of maintaining the fuel efficiency favorably becomes remarkable.
  • the predetermined clutch torque T2d is set to be less than the first clutch torque T12 at which the first clutch 21 maintains the engaged state and to exceed the absolute value of the crankshaft torque TE. According to this, in the first half of the downshift, it is ensured that the engine speed NE does not deviate from the first speed N1.
  • a clutch torque difference which is a difference between the first clutch torque T1 and the second clutch torque T2 by detecting a rotational speed deviation timing (time t5) starting to separate from the rotational speed of the clutch
  • the target clutch torque difference is set based on the rotational speed deviation torque difference storage unit 76 that stores the torque difference as the rotational speed deviation torque difference Teff, and the clutch torque difference matches the target clutch torque difference.
  • a constant torque control unit 77 that adjusts the second clutch torque T2 while the first clutch 21 is disconnected.
  • the clutch torque difference is controlled to coincide with the target clutch torque difference after the rotation speed deviation timing, the change of the engine rotation speed NE can be suppressed. Therefore, there is no possibility that the engine brake acts excessively, and the comfort of the driving operation can be maintained.
  • the constant torque control unit 77 sets the rotational speed deviation torque difference Teff as the target clutch torque difference. According to this, it is possible to keep the engine rotational speed NE constant by keeping the clutch torque difference acting on the crankshaft constant and balancing it with the crankshaft torque TE. Therefore, engine braking does not occur, and the comfort of the driving operation can be reliably maintained.
  • the constant torque control unit 77 may add the rotational speed deviation torque difference Teff and the positive or negative offset torque determined according to the next gear to obtain the target clutch torque difference. According to this, it is possible to perform control suitable for each of the plurality of shift speeds that are different in the degree of effectiveness of the engine brake.
  • the present invention can also be applied when the fuel cut control of the engine 91 is not performed.
  • the present invention is capable of various other applications and modifications.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

This control device (7) for a vehicle dual clutch transmission (1) has a first input shaft (31), a second input shaft (32), an output shaft (4), a first clutch (21), a second clutch (22), a first speed change mechanism (5), and a second speed change mechanism (6), the control device (7) having: a parallel engagement control unit (71) that maintains the first clutch in an engaged state and switches the second clutch from a disengaged state to a half-engaged state for transmitting a predetermined clutch torque while slipping, when a shift-down speed change is performed to the next shift stage for switching from a first clutch engaged state to a second clutch engaged state while the first speed change mechanism has selected the current shift stage and the second speed change mechanism has selected the next shift stage at which the speed is lower than that at the current shift stage; and a clutch switch control unit (72) that switches the first clutch from the engaged state to the disengaged state after the second clutch has been switched to the half-engaged state. Accordingly, fuel consumption can be enhanced and the comfort of making driving inputs can be maintained.

Description

車両用デュアルクラッチ式変速機の制御装置Control device for dual clutch type transmission for vehicle
 本発明は、継合状態と切断状態とを独立して切り替え可能な2つのクラッチを備えた車両用デュアルクラッチ式変速機の制御装置に関する。 The present invention relates to a control device for a dual clutch type transmission for a vehicle provided with two clutches capable of switching between an engagement state and a disengagement state independently.
 車両に搭載される変速機の一種に、2つのクラッチと、各クラッチによりエンジンに継断される2つの入力軸と、各入力軸と出力軸との間にそれぞれ設けられる変速機構と、を備えたデュアルクラッチ式変速機がある。デュアルクラッチ式変速機には、2つのクラッチでトルクの架け替え動作を行うことにより、トルクが途切れないようにして速やかな変速動作を行えるという利点がある。各クラッチには、例えば、摩擦材を有するプレートをクラッチアクチュエータで駆動する摩擦クラッチを用いることができる。変速機構は、通常4~7段程度の変速段で構成され、周知の同期装置によりいずれかの変速段を選択することができる。この種のデュアルクラッチ式変速機の一技術例が特許文献1に開示されている。 One type of transmission mounted on a vehicle includes two clutches, two input shafts connected to and disconnected from the engine by each clutch, and a transmission mechanism provided between each input shaft and output shaft. There is a dual clutch transmission. The dual clutch type transmission has an advantage that the speed change operation can be performed promptly without interruption of the torque by performing the torque changeover operation with two clutches. For each clutch, for example, a friction clutch can be used in which a plate having a friction material is driven by a clutch actuator. The transmission mechanism is generally configured with about 4 to 7 shift stages, and any shift stage can be selected by a known synchronization device. Patent Document 1 discloses one technical example of this type of dual clutch transmission.
 特許文献1の車両用デュアルクラッチ式変速機のシフト制御装置は、変速機が変速前の状態にあるかを判定する手段と、変速前の状態にあると判定されたら、トルクを伝達中の一方の摩擦クラッチを微小スリップ状態とし、他方の摩擦クラッチを微小トルク伝達可能とする手段とを備えている。これによれば、変速を実施する際に、他方の摩擦クラッチをクラッチ掛け替え時に必要なスリップ状態に速やかに移行できる、とされている。 The shift control device for a dual clutch type transmission for a vehicle according to Patent Document 1 includes means for determining whether the transmission is in a pre-shift state and one of transmitting torque when it is determined that it is in a pre-shift state. Means for making the friction clutch in the state of micro-slip and making the other friction clutch capable of transmitting a small amount of torque. According to this, when carrying out a shift, it is said that the other friction clutch can be promptly shifted to the slip state required at the time of clutch switching.
特開2007-239909号公報JP 2007-239909 A
 ところで、燃費向上のためにエンジンのフュエルカット制御が行われている場合、エンジンは、駆動輪から変速機構およびクラッチを経由して逆駆動される。このようなコースト走行(慣性走行)状態でシフトダウン変速要求が発生した場合、従来技術のエンジン駆動時のクラッチ掛け替え制御を行うと、問題点の発生するおそれがある。 By the way, when fuel cut control of the engine is performed to improve fuel consumption, the engine is reversely driven from the drive wheels via the transmission mechanism and the clutch. When a shift down shift request is generated in such a coasting (inertial running) state, problems may occur if the clutch switching control during engine driving of the related art is performed.
 例えば、クラッチ掛け替えの際の制御誤差で、エンジンのフリクショントルクに対してクラッチトルクが過小になる場合がある。この場合、エンジン回転数がフュエルカット復帰回転数以下まで低下してフュエルの供給が再開され、燃費が低下するというおそれが生じる。逆に、エンジンのフリクショントルクに対してクラッチトルクが過大になる場合、シフトダウン変速中にエンジン回転数が急峻に変速機インプット回転数に同期する。その結果、エンジンブレーキが急に作用するため、運転者は、車両の急な減速感である引き込み感を感じ、運転操作の快適感が損なわれる。 For example, due to a control error at the time of clutch replacement, the clutch torque may be too small relative to the friction torque of the engine. In this case, the engine speed is reduced to the fuel cut return speed or less, fuel supply is resumed, and fuel consumption may be reduced. On the contrary, when the clutch torque becomes excessive with respect to the friction torque of the engine, the engine rotational speed steeply synchronizes with the transmission input rotational speed during the downshift. As a result, since the engine brake acts suddenly, the driver feels a pull-in feeling which is a sudden deceleration feeling of the vehicle, and the comfortable feeling of the driving operation is lost.
 本発明は上記背景技術の問題点に鑑みてなされたものであり、燃費を良好にできるとともに、運転操作の快適性を保つことができる車両用デュアルクラッチ式変速機の制御装置を提供することを解決すべき課題とする。 The present invention has been made in view of the above-mentioned problems of the background art, and it is possible to provide a control device of a dual clutch type transmission for a vehicle, which can achieve good fuel consumption and can maintain the comfort of driving operation. It is an issue to be solved.
 本発明の車両用デュアルクラッチ式変速機の制御装置は、第1入力軸と、第2入力軸と、出力軸と、エンジンのクランク軸と前記第1入力軸との間で伝達し得るトルクの最大値である第1クラッチトルクを調整する第1クラッチと、前記クランク軸と前記第2入力軸との間で伝達し得るトルクの最大値である第2クラッチトルクを調整する第2クラッチと、前記第1入力軸と前記出力軸との間で複数の変速段の中から1つの変速段を選択する第1変速機構と、前記第2入力軸と前記出力軸との間で複数の変速段の中から1つの変速段を選択する第2変速機構と、を有する車両用デュアルクラッチ式変速機の制御装置であって、前記第1変速機構が現変速段を選択し、かつ前記第2変速機構が前記現変速段よりも低速段である次変速段を選択した状態であって、前記第1クラッチが滑りなくトルク伝達している継合状態から、前記第2クラッチが前記継合状態に移行する次変速段へのシフトダウン変速を実施する場合に、前記第1クラッチを前記継合状態に維持したまま、前記第2クラッチを切断状態から滑りつつ所定クラッチトルクを伝達する半継合状態に移行する並列継合制御部と、前記第2クラッチが前記半継合状態に移行した後に、前記第1クラッチを前記継合状態から前記切断状態に移行するクラッチ移行制御部と、を有する。 A control device for a dual clutch type transmission for a vehicle according to the present invention comprises a first input shaft, a second input shaft, an output shaft, and a torque that can be transmitted between an engine crankshaft and the first input shaft. A first clutch that adjusts a first clutch torque that is a maximum value, and a second clutch that adjusts a second clutch torque that is a maximum value of torque that can be transmitted between the crankshaft and the second input shaft; A first transmission mechanism for selecting one gear position among a plurality of gear positions between the first input shaft and the output shaft; and a plurality of gear positions between the second input shaft and the output shaft Control device for a dual clutch type transmission for a vehicle having a second transmission mechanism for selecting one gear position from among the above, wherein the first transmission mechanism selects the current gear position, and the second transmission gear. Select the next gear in which the mechanism is at a lower speed than the current gear When performing a downshift from the joint state in which the first clutch is transmitting torque without slippage to the next gear stage in which the second clutch shifts to the joint state A parallel joint control unit for shifting to a half joint state in which a predetermined clutch torque is transmitted while sliding the second clutch from the disconnected state while maintaining the first clutch in the coupled state; And a clutch shift control unit configured to shift the first clutch from the connection state to the disconnection state after shifting to the connection state.
 さらに、前記エンジンがフュエルカットを行っている状態で前記次変速段へのシフトダウン変速を実施する場合に、制御装置は、前記並列継合制御部および前記クラッチ移行制御部を実行することが好ましい。 Furthermore, when performing the downshift to the next gear while the engine is performing fuel cut, the control device preferably executes the parallel joint control unit and the clutch shift control unit. .
 本発明の車両用デュアルクラッチ式変速機の制御装置によれば、シフトダウン変速の前期の段階で、第1クラッチを継合状態に維持したまま、第2クラッチを半継合状態に移行する。これにより、エンジンのフリクショントルクに対して2個のクラッチで伝達できるトルクが大きい状態を維持できるため、エンジンの回転数は殆ど低下せず、燃料を消費して回転数を維持する必要が殆どない。したがって、燃費を良好にできる。また、シフトダウン変速の後期の回転同期制御の段階で、第2クラッチが半継合状態に移行した後に、第1クラッチを継合状態から切断状態に移行する。これによれば、駆動輪側からエンジンを駆動するトルクが過大にならない。したがって、エンジンの回転数が引き込まれてエンジンブレーキが過大に作用するおそれは無く、運転操作の快適性を保つことができる。 According to the control device of the dual clutch type transmission for a vehicle of the present invention, the second clutch is shifted to the half engagement state while maintaining the first clutch in the engagement state at the early stage of the downshift. As a result, it is possible to maintain a state in which the torque that can be transmitted by the two clutches is large with respect to the friction torque of the engine, so the engine rotational speed hardly decreases, and it is hardly necessary to consume fuel and maintain the rotational speed. . Therefore, the fuel consumption can be improved. Further, after the second clutch shifts to the half joint state in the later stage of the rotation synchronization control of the downshift, the first clutch shifts from the joint state to the disconnection state. According to this, the torque for driving the engine from the drive wheel side does not become excessive. Therefore, there is no possibility that the number of revolutions of the engine is drawn in and the engine brake acts excessively, and the comfort of the driving operation can be maintained.
 さらに、エンジンのフュエルカット状態で並列継合制御部およびクラッチ移行制御部を実行する態様では、シフトダウン変速の途中で、エンジンの回転数が殆ど低下しないので、フュエルカット状態を維持できる。したがって、燃費を良好とする効果が顕著になる。 Furthermore, in the mode in which the parallel joint control unit and the clutch shift control unit are executed in the fuel cut state of the engine, the engine speed is hardly reduced during the downshift, so the fuel cut state can be maintained. Therefore, the effect of improving the fuel consumption becomes remarkable.
実施形態の制御装置が制御する車両用デュアルクラッチ式変速機の構成例を示すスケルトン図である。It is a skeleton diagram showing an example of composition of a dual clutch type transmission for vehicles which a control device of an embodiment controls. 実施形態のデュアルクラッチ式変速機の制御装置の制御動作を模式的に説明するタイムチャートの図である。It is a figure of the time chart which illustrates control operation of a control device of a dual clutch type transmission of an embodiment typically. 従来技術のシフトダウン変速において、エンジン回転数が急峻に減少してしまったときのタイムチャートの図である。FIG. 10 is a diagram of a time chart when the engine speed has sharply decreased in the downshift according to the prior art. 従来技術のシフトダウン変速において、エンジン回転数が引き込まれて運転操作の快適性が損なわれたときのタイムチャートの図である。FIG. 8 is a diagram of a time chart when the engine rotation speed is drawn in and the driving operation is not comfortable in the downshift according to the prior art.
 本発明の実施形態の車両用デュアルクラッチ式変速機1の制御装置7について、図1および図2を参考にして説明する。図1は、実施形態の制御装置7が制御する車両用デュアルクラッチ式変速機1の構成例を示すスケルトン図である。車両用デュアルクラッチ式変速機1は、前進5速後進1速の変速段のうちのひとつを選択し、エンジン91の出力トルクをデファレンシャル装置93に伝達する。車両用デュアルクラッチ式変速機1は、第1入力軸31、第2入力軸32、出力軸4、第1クラッチ21、第2クラッチ22、第1変速機構5、および第2変速機構6などで構成されている。 A control device 7 of a dual clutch type transmission 1 for a vehicle according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a skeleton diagram showing a configuration example of a dual clutch type transmission 1 for a vehicle controlled by the control device 7 of the embodiment. The dual clutch type transmission 1 for vehicle selects one of the fifth forward gear and the first reverse gear and transmits the output torque of the engine 91 to the differential gear 93. The dual clutch type transmission 1 for a vehicle includes a first input shaft 31, a second input shaft 32, an output shaft 4, a first clutch 21, a second clutch 22, a first transmission mechanism 5, a second transmission mechanism 6, and the like. It is configured.
 第1クラッチ21および第2クラッチ22は、第1入力軸31および第2入力軸32をエンジン91のクランク軸に継断可能に回転連結する部位である。第1クラッチ21および第2クラッチ22は、例えば、第1クラッチアクチュエータ23および第2クラッチアクチュエータ24によってそれぞれ駆動される摩擦クラッチとすることができる。また、クラッチアクチュエータ23、24としてサーボモータや油圧駆動機構などを例示できる。 The first clutch 21 and the second clutch 22 are portions that rotatably connect the first input shaft 31 and the second input shaft 32 to the crankshaft of the engine 91 so as to be able to connect and disconnect. The first clutch 21 and the second clutch 22 can be, for example, friction clutches driven by the first clutch actuator 23 and the second clutch actuator 24, respectively. Moreover, a servomotor, a hydraulic drive mechanism, etc. can be illustrated as clutch actuators 23 and 24, for example.
 第1クラッチ21および第2クラッチ22は、制御装置7からの指令で第1および第2クラッチアクチュエータ23、24がそれぞれ動作して摩擦継合力が調整される。これにより、第1クラッチ21および第2クラッチ22が伝達し得るトルクの最大値である第1クラッチトルクT1および第2クラッチトルクT2は、独立して調整される。第1クラッチ21および第2クラッチ22は、入出力間でトルクを伝達しない切断状態、入出力間で滑りつつトルクを伝達する半継合状態、および入出力間で滑りなくトルクを伝達する継合状態を遷移する。 In the first clutch 21 and the second clutch 22, the first and second clutch actuators 23 and 24 operate according to a command from the control device 7 to adjust the friction joint force. Thus, the first clutch torque T1 and the second clutch torque T2, which are the maximum values of the torque that can be transmitted by the first clutch 21 and the second clutch 22, are adjusted independently. The first clutch 21 and the second clutch 22 are in a disconnected state in which torque is not transmitted between input and output, in a semi-connected state in which torque is transmitted while sliding between input and output, and in an engaged state Transition the state.
 第1入力軸31は、第1クラッチ21によってエンジン91のクランク軸に継断可能に回転連結される。第1入力軸31は、棒状とされている。第2入力軸32は、第2クラッチ22によってエンジン91のクランク軸に継断可能に回転連結される。第2入力軸32は、筒状であって、第1入力軸31の同軸外側に配置されている。第1入力軸31の図中右端は、第1クラッチ21の出力側部材に連結されている。第1入力軸31の図中左端は、第2入力軸32を通り抜けて突き出し、ボールベアリング36に軸承されている。第2入力軸32の図中右端は、第2クラッチ22の出力側部材に連結されている。第2入力軸32の長さ方向の中央部は、ボールベアリング37に軸承されている。 The first input shaft 31 is rotatably connected to the crankshaft of the engine 91 by the first clutch 21 so as to be able to be connected and disconnected. The first input shaft 31 is rod-shaped. The second input shaft 32 is rotatably connected to the crankshaft of the engine 91 by the second clutch 22 so as to be able to connect and disconnect. The second input shaft 32 has a tubular shape and is disposed coaxially outside of the first input shaft 31. The right end of the first input shaft 31 in the drawing is connected to the output side member of the first clutch 21. The left end of the first input shaft 31 in the figure protrudes through the second input shaft 32 and is supported by a ball bearing 36. The right end of the second input shaft 32 in the drawing is connected to the output side member of the second clutch 22. A central portion in the longitudinal direction of the second input shaft 32 is supported by a ball bearing 37.
 出力軸4は、第1入力軸31および第2入力軸32の図中下側に平行に配置されている。出力軸4の両端は、テーパードローラーベアリング46、47によって軸承されている。出力軸4の一方のテーパードローラーベアリング46に近接して、出力ギヤ48が固設されている。出力ギヤ48は、デファレンシャル装置93に噛合している。したがって、出力軸4は、デファレンシャル装置93を経由して、駆動輪にトルクを伝達出力する。 The output shaft 4 is disposed parallel to the lower side of the first input shaft 31 and the second input shaft 32 in the drawing. Both ends of the output shaft 4 are supported by tapered roller bearings 46 and 47. An output gear 48 is fixed near one of the tapered roller bearings 46 of the output shaft 4. The output gear 48 meshes with the differential gear 93. Therefore, the output shaft 4 transmits and outputs torque to the drive wheel via the differential device 93.
 第1変速機構5は、第1入力軸31と出力軸4との間に設けられている。第1変速機構5は、第1速、第3速、および第5速の奇数速変速段を構成する3組の歯車組51、53、55を有する。詳述すると、第1入力軸31の図中左側から順番に、第1速駆動ギヤ51Aが固設され、第3速駆動ギヤ53Aが遊転可能に設けられ、第5速駆動ギヤ55Aが遊転可能に設けられている。一方、出力軸4の対向する箇所にそれぞれ、第1速従動ギヤ51Pが遊転可能に設けられ、第3速従動ギヤ53Pが固設され、第5速従動ギヤ55Pが固設されている。 The first transmission mechanism 5 is provided between the first input shaft 31 and the output shaft 4. The first transmission mechanism 5 has three gear sets 51, 53, 55 that constitute odd-numbered shift speeds of first, third and fifth speeds. More specifically, the first speed drive gear 51A is fixedly provided in order from the left side of the first input shaft 31 in the drawing, the third speed drive gear 53A is provided so as to allow free rotation, and the fifth speed drive gear 55A is free. It is provided in a rollable manner. On the other hand, a first speed driven gear 51P is provided rotatably at a location opposite to the output shaft 4, a third speed driven gear 53P is fixed, and a fifth speed driven gear 55P is fixed.
 第1速駆動ギヤ51Aおよび第1速従動ギヤ51Pは、常時噛合して第1速変速段を構成する第1速歯車組51となっている。第1速用シンクロメッシュ機構81(同期装置)のスリーブS1により第1速従動ギヤ51Pが出力軸4に対して回転連結されると、第1速歯車組51は噛合結合してトルクの伝達が可能となる。同様に、第3速駆動ギヤ53Aおよび第3速従動ギヤ53Pは、常時噛合して第3速変速段を構成する第3速歯車組53となっている。第3-5速用シンクロメッシュ機構82のスリーブS35により第3速駆動ギヤ53Aが第1入力軸31に対して回転連結されると、第3速歯車組53は噛合結合してトルクの伝達が可能となる。 The first speed drive gear 51A and the first speed driven gear 51P are always meshed with each other to form a first speed gear set 51 that constitutes a first speed. When the first-speed driven gear 51P is rotationally connected to the output shaft 4 by the sleeve S1 of the first-speed synchromesh mechanism 81 (synchronization device), the first-speed gear set 51 is meshed and coupled to transmit torque It becomes possible. Similarly, the third speed drive gear 53A and the third speed driven gear 53P are always meshed to form a third speed gear set 53 that constitutes a third speed stage. When the third speed drive gear 53A is rotationally connected to the first input shaft 31 by the sleeve S35 of the third to fifth synchromesh mechanism 82, the third speed gear set 53 is meshed and coupled to transmit torque. It becomes possible.
 さらに、第5速駆動ギヤ55Aおよび第5速従動ギヤ55Pは、常時噛合して第5速変速段を構成する第5速歯車組55となっている。スリーブS35により第5速駆動ギヤ55Aが第1入力軸31に対して回転連結されると、第5速歯車組55は噛合結合してトルクの伝達が可能となる。第1速歯車組51、第3速歯車組53、および第5速歯車組55は、図略のインターロック機構によりいずれか1組のみが選択的に噛合結合されるようになっている。 Further, the fifth speed drive gear 55A and the fifth speed driven gear 55P are constantly meshed to form a fifth speed gear set 55 that constitutes the fifth speed. When the fifth speed drive gear 55A is rotationally connected to the first input shaft 31 by the sleeve S35, the fifth speed gear set 55 is meshed and coupled to enable transmission of torque. Only one of the first speed gear set 51, the third speed gear set 53, and the fifth speed gear set 55 is selectively meshed and coupled by an interlock mechanism (not shown).
 第2変速機構6は、第2入力軸32と出力軸4との間に設けられている。第2変速機構6は、第2速および第4速の偶数速変速段を構成する2組の歯車組62、64を有する。詳述すると、第2入力軸32の図中左側から順番に、第4速駆動ギヤ64Aおよび第2速駆動ギヤ62Aが固設されている。一方、出力軸4の対向する箇所にそれぞれ、第4速従動ギヤ64Pおよび第2速従動ギヤ62Pが遊転可能に設けられている。 The second transmission mechanism 6 is provided between the second input shaft 32 and the output shaft 4. The second transmission mechanism 6 has two gear sets 62 and 64 that constitute the second and fourth even gear stages. More specifically, the fourth speed drive gear 64A and the second speed drive gear 62A are fixed in order from the left side of the second input shaft 32 in the drawing. On the other hand, the fourth speed driven gear 64P and the second speed driven gear 62P are provided at the opposing positions of the output shaft 4 so as to allow free rotation.
 第4速駆動ギヤ64Aおよび第4速従動ギヤ64Pは、常時噛合して第4速変速段を構成する第4速歯車組64となっている。第2-4速用シンクロメッシュ機構83のスリーブS24により第4速従動ギヤ64Pが出力軸4に対して回転連結されると、第4速歯車組64は噛合結合してトルクの伝達が可能となる。同様に、第2速駆動ギヤ62Aおよび第2速従動ギヤ62Pは、常時噛合して第2速変速段を構成する第2速歯車組62となっている。スリーブS24により第2速従動ギヤ62Pが出力軸4に対して回転連結されると、第2速歯車組62は噛合結合してトルクの伝達が可能となる。第4速歯車組64および第2速歯車組62は、どちらか1組のみが選択的に噛合結合されるようになっている。 The fourth speed drive gear 64A and the fourth speed driven gear 64P are constantly meshed to form a fourth speed gear set 64 which constitutes a fourth speed. When the fourth-speed driven gear 64P is rotationally connected to the output shaft 4 by the sleeve S24 of the second-fourth synchromesh mechanism 83, the fourth-speed gear set 64 is meshed and capable of transmitting torque Become. Similarly, the second speed drive gear 62A and the second speed driven gear 62P are always meshed to form a second speed gear set 62 that constitutes a second speed stage. When the second-speed driven gear 62P is rotationally connected to the output shaft 4 by the sleeve S24, the second-speed gear set 62 is meshed and can transmit torque. Only one of the fourth speed gear set 64 and the second speed gear set 62 is selectively meshed and coupled.
 なお、第1クラッチ21、第2クラッチ22、第1入力軸31、第2入力軸32、第1変速機構5、および第2変速機構6に付された「第1」「第2」は、2系統のトルク伝達経路を区別する便宜的な冠詞である。したがって、「第1」と「第2」とが入れ替わってもよい。つまり、第1変速機構5が偶数速変速段を構成し、第2変速機構6が奇数速変速段を構成していてもよい。また、図1には省略されているが、後進変速段には従来の歯車組の構成を適宜用いることができる。 The "first" and "second" attached to the first clutch 21, the second clutch 22, the first input shaft 31, the second input shaft 32, the first transmission mechanism 5, and the second transmission mechanism 6 It is a convenient article that distinguishes two torque transmission paths. Therefore, "first" and "second" may be interchanged. That is, the first transmission mechanism 5 may constitute an even gear stage, and the second transmission mechanism 6 may constitute an odd gear stage. Further, although not shown in FIG. 1, the configuration of a conventional gear set can be appropriately used for the reverse gear.
 制御装置7は、第1クラッチ21、第2クラッチ22、第1変速機構5、および第2変速機構6を制御する部位である。すなわち、制御装置7は、エンジン91の動作状態や車速などの各種情報を取得し、公知の変速線図を用いてシフトアップ変速、シフトダウン変速、およびプレシフト変速の要求の有無を判定する。制御装置7は、判定結果に基づく操作が必要な場合に、第1クラッチアクチュエータ23および第2クラッチアクチュエータ24と、3つのシンクロメッシュ機構(81、82、83)とを関連付けて制御する。制御装置7は、CPUを内蔵してソフトウェアで動作する電子制御装置(ECU)を用いて構成できる。また、制御装置7は、複数の電子制御装置(ECU)が連携して協調制御を行うようにして構成することもできる。 The control device 7 is a part that controls the first clutch 21, the second clutch 22, the first transmission mechanism 5, and the second transmission mechanism 6. That is, the control device 7 acquires various information such as the operating state of the engine 91 and the vehicle speed, and determines the presence or absence of requests for upshift, downshift, and preshift shift using known shift diagrams. The controller 7 controls the first clutch actuator 23 and the second clutch actuator 24 in association with the three synchromesh mechanisms (81, 82, 83) when an operation based on the determination result is required. The control device 7 can be configured using an electronic control unit (ECU) which has a CPU and operates with software. The control device 7 can also be configured such that a plurality of electronic control units (ECUs) cooperate with each other to perform cooperative control.
 実施形態の制御装置7は、エンジン91がフュエルカットを行っている状態で、現変速段から低速側の次変速段へのシフトダウン変速を実施する。このとき、制御装置7は、並列継合制御部71およびクラッチ移行制御部72を実行する。さらに、クラッチ移行制御部72は、回転数乖離トルク差記憶部76および定トルク制御部77を含む。並列継合制御部71、クラッチ移行制御部72、回転数乖離トルク差記憶部76、および定トルク制御部77は、ソフトウェアによって実現されている。これらの詳細な機能および動作については後述する。 The control device 7 of the embodiment performs the downshifting from the current gear position to the next gear position on the low speed side while the engine 91 is performing fuel cut. At this time, the control device 7 executes the parallel joint control unit 71 and the clutch shift control unit 72. Further, the clutch shift control unit 72 includes a rotational speed deviation torque difference storage unit 76 and a constant torque control unit 77. The parallel joint control unit 71, the clutch shift control unit 72, the rotational speed deviation torque difference storage unit 76, and the constant torque control unit 77 are realized by software. These detailed functions and operations will be described later.
 次に、制御装置7の制御動作について説明する。図2は、実施形態の車両用デュアルクラッチ式変速機1の制御装置7の制御動作を模式的に説明するタイムチャートの図である。図2に示された波形は、上から順番に車両の加速度a、第1クラッチ21の第1クラッチトルクT1(実線で示す)および第2クラッチの第2クラッチトルクT2(破線で示す)、エンジン91のクランク軸トルクTE(エンジンのフリクショントルクに相当し、負値で表す)、第1入力軸31の第1回転数N1(実線で示す)および第2入力軸の第2回転数N2(破線で示す)およびエンジン91のエンジン回転数NE(一点鎖線で示す)である。 Next, the control operation of the control device 7 will be described. FIG. 2 is a time chart diagram schematically illustrating the control operation of the control device 7 of the dual clutch transmission 1 for a vehicle according to the embodiment. The waveforms shown in FIG. 2 are, from top to bottom, the acceleration a of the vehicle, the first clutch torque T1 (shown by a solid line) of the first clutch 21 and the second clutch torque T2 (shown by a broken line) of the second clutch, Crankshaft torque TE 91 (corresponding to friction torque of engine and represented by a negative value), first rotation number N1 of first input shaft 31 (shown by solid line) and second rotation number N2 of second input shaft (broken line) And the engine rotational speed NE of the engine 91 (indicated by an alternate long and short dash line).
 図2の時刻t1以前において、エンジン回転数NEは、第1回転数N1に一致しており、フュエルカット復帰回転数Nfよりも大きい。フュエルカット復帰回転数Nfは、エンジン回転数NEが低下したときに、フュエルの供給を再開することを判定する閾値である。したがって、エンジン91はフュエルカット状態に制御されている。車両は、現変速段でコースト走行中である。このとき、第1変速機構5では現変速段が選択され、第1クラッチ21は継合状態とされている。一方、第2変速機構6ではプレレシフト操作により現変速段よりも低速側の次変速段が選択され、第2クラッチ22は切断状態とされている。加速度aは負値であり、車両は、徐々に減速されている。車速に比例して、第1回転数N1および第2回転数N2も徐々に減少している。時刻t1にシフトダウン変速要求が発生したので、制御装置7は、現変速段から次変速段へのシフトダウン変速を行う。 Before time t1 in FIG. 2, the engine speed NE matches the first speed N1 and is larger than the fuel cut return speed Nf. The fuel cut return rotational speed Nf is a threshold value for determining to restart the fuel supply when the engine speed NE is lowered. Therefore, the engine 91 is controlled to the fuel cut state. The vehicle is coasting at the current gear. At this time, the current transmission gear position is selected in the first transmission mechanism 5, and the first clutch 21 is in the connected state. On the other hand, in the second transmission mechanism 6, the next gear position lower than the current gear position is selected by the pre-rail shift operation, and the second clutch 22 is in the disconnected state. The acceleration a is a negative value, and the vehicle is decelerated gradually. The first rotation speed N1 and the second rotation speed N2 also gradually decrease in proportion to the vehicle speed. Since a downshift request has occurred at time t1, the controller 7 performs downshift from the current gear position to the next gear position.
 制御装置7の並列継合制御部71は、シフトダウン変速要求が発生した場合に、第1クラッチ21を継合状態に維持したまま、第2クラッチ22を切断状態から滑りつつ所定クラッチトルクT2dを伝達する半継合状態に移行する。具体的に、並列継合制御部71は、時刻t2に第1クラッチ21を継合状態に維持したまま、第1クラッチトルクT11をわずかに減少させて第1クラッチトルクT12とし、トルクの掛け替え動作を準備する。並列継合制御部71は、その後の時刻t4まで、第1クラッチトルクT12を維持する。また、並列継合制御部71は、時刻t3に第2クラッチ22を切断状態から継合操作して第2クラッチトルクT23を徐々に増加させ、時刻t4までに所定クラッチトルクT2dの半継合状態に移行する。 When a downshift request is generated, the parallel connection control unit 71 of the control device 7 slides the second clutch 22 from the disconnected state while maintaining the first clutch 21 in the connected state, while the predetermined clutch torque T2 d is It shifts to the half joint state to transmit. Specifically, the parallel engagement control unit 71 slightly reduces the first clutch torque T11 to a first clutch torque T12 while maintaining the first clutch 21 in the engaged state at time t2, and performs the torque changing operation. Prepare. Parallel joint control unit 71 maintains first clutch torque T12 until time t4 thereafter. Further, the parallel engagement control unit 71 causes the second clutch 22 to be disengaged from the disengaging state at time t3 to gradually increase the second clutch torque T23, and a partial engagement state of the predetermined clutch torque T2d by time t4. Migrate to
 ここで、図2に示される所定クラッチトルクT2dは、エンジン回転数NEが第1回転数N1から離れない範囲内で予め設定される。具体的に、所定クラッチトルクT2dは、第1クラッチ21が継合状態を維持する第1クラッチトルクT12未満に設定される。かつ、所定クラッチトルクT2dは、フュエルカット状態におけるクランク軸トルクTEの絶対値を越えるように設定される。所定クラッチトルクT2dは、エンジン91の機種ごとに予め設定されているトルク特性マップの値に基づき、フリクショントルクの個体差等が加味されて設定されるのが好ましい。第1クラッチの継合状態で第1クラッチトルクT12を維持したまま、第2クラッチ22の第2クラッチトルクT23を所定クラッチトルクT2dまで徐々に増加させることで、エンジン回転数NEを第1回転数N1に維持して、大幅な低下を防止できる。 Here, the predetermined clutch torque T2d shown in FIG. 2 is preset within a range in which the engine speed NE does not deviate from the first speed N1. Specifically, the predetermined clutch torque T2d is set to less than the first clutch torque T12 at which the first clutch 21 maintains the engaged state. The predetermined clutch torque T2d is set to exceed the absolute value of the crankshaft torque TE in the fuel cut state. The predetermined clutch torque T2d is preferably set based on the value of a torque characteristic map preset for each model of the engine 91, taking into consideration individual differences in friction torque and the like. By gradually increasing the second clutch torque T23 of the second clutch 22 to a predetermined clutch torque T2d while maintaining the first clutch torque T12 in the connection state of the first clutch, the engine rotational speed NE is set to the first rotational speed Maintaining N1 can prevent a significant drop.
 時刻t4から、クラッチ移行制御部72が動作して、回転同期制御を行う。クラッチ移行制御部72は、第2クラッチ22の半継合状態の所定クラッチトルクT2dを維持しつつ、第1クラッチ21を切断操作して切断状態に移行させ、最終的にエンジン回転数NEを第2回転数N2に同期させる。詳述すると、クラッチ移行制御部72の回転数乖離トルク差記憶部76は、時刻t4以降に、第2クラッチ22の所定クラッチトルクT2dを維持したままで、第1クラッチ21を切断操作する。そして、回転数乖離トルク差記憶部76は、エンジン回転数NEが第1回転数N1から離れ始める回転数乖離タイミングを検出する。 From time t4, the clutch shift control unit 72 operates to perform rotation synchronization control. The clutch shift control unit 72 disconnects the first clutch 21 to shift to the disconnected state while maintaining the predetermined clutch torque T2 d in the half engagement state of the second clutch 22, and finally, the engine rotational speed NE is Synchronize with 2 revolutions N2. More specifically, the rotational speed deviation torque difference storage unit 76 of the clutch transfer control unit 72 performs the disconnection operation of the first clutch 21 while maintaining the predetermined clutch torque T2d of the second clutch 22 after time t4. Then, the rotational speed deviation torque difference storage unit 76 detects the rotational speed deviation timing at which the engine rotational speed NE starts to separate from the first rotational speed N1.
 検出方法を具体的に示すと、回転数乖離トルク差記憶部76は、時刻t4以降の所定の制御サイクルごとにエンジン回転数NEと第1回転数N1とを比較して差分を演算する。そして、差分が所定値以上になると、回転数乖離トルク差記憶部76は、エンジン回転数NEが第1回転数N1から離れ始める回転数乖離タイミングと判定する。図2の例で、時刻t5が回転数乖離タイミングであり、小さな第1クラッチトルクT15が残存している。 Specifically, the rotational speed deviation torque difference storage unit 76 compares the engine rotational speed NE with the first rotational speed N1 to calculate the difference for each predetermined control cycle after time t4. When the difference becomes equal to or greater than the predetermined value, the rotational speed deviation torque difference storage unit 76 determines that the rotational speed deviation timing at which the engine rotational speed NE starts to separate from the first rotational speed N1. In the example of FIG. 2, time t5 is the rotational speed deviation timing, and a small first clutch torque T15 remains.
 回転数乖離トルク差記憶部76は、回転数乖離タイミングを検出した時点のクラッチトルク差を回転数乖離トルク差Teffとして記憶する。クラッチトルク差は、第2クラッチトルクから第1クラッチトルクを減算した値を意味する。したがって、回転数乖離トルク差Teffは、時刻t5における所定クラッチトルクT2dから第1クラッチトルクT15を減算した値になる。 The rotation speed deviation torque difference storage unit 76 stores the clutch torque difference at the time when the rotation speed deviation timing is detected as the rotation speed deviation torque difference Teff. The clutch torque difference means a value obtained by subtracting the first clutch torque from the second clutch torque. Therefore, the rotational speed deviation torque difference Teff is a value obtained by subtracting the first clutch torque T15 from the predetermined clutch torque T2d at time t5.
 時刻t5から、定トルク制御部77が動作する。定トルク制御部77は、回転数乖離トルク差Teffに基づいて目標クラッチトルク差を設定する。本実施形態において、定トルク制御部77は、回転数乖離トルク差Teffを目標クラッチトルク差とする。定トルク制御部77は、時刻t5以降に、クラッチトルク差が目標クラッチトルク差と一致するように第1クラッチ21を切断操作しつつ第2クラッチトルクT25を調整する。これにより、第1クラッチトルクT15が減少しつつあるときに、クラッチトルク差は、回転数乖離トルク差Teffに保たれる。図2の例で、時刻t5以降、第2クラッチトルクT25および第1クラッチトルクT15は、同じ傾きで徐々に減少してゆく。時刻t6に第1クラッチトルクT15が無くなると、定トルク制御部77は、第2クラッチトルクT26を一定に保つ。 The constant torque control unit 77 operates from time t5. The constant torque control unit 77 sets a target clutch torque difference based on the rotational speed deviation torque difference Teff. In the present embodiment, the constant torque control unit 77 sets the rotational speed deviation torque difference Teff as the target clutch torque difference. The constant torque control unit 77 adjusts the second clutch torque T25 while disconnecting the first clutch 21 so that the clutch torque difference becomes equal to the target clutch torque difference after time t5. Thus, when the first clutch torque T15 is decreasing, the clutch torque difference is maintained at the rotational speed deviation torque difference Teff. In the example of FIG. 2, after time t5, the second clutch torque T25 and the first clutch torque T15 gradually decrease with the same inclination. When the first clutch torque T15 disappears at time t6, the constant torque control unit 77 keeps the second clutch torque T26 constant.
 ここで、第2クラッチトルクT2は、エンジン回転数NEを増速して第2回転数N2に同期させようとするトルクである。一方、第1クラッチトルクT1は、エンジン回転数NEを第1回転数N1に維持しようとするトルクである。つまり、第2クラッチトルクT2と第1クラッチトルクT1とでは、クランク軸に作用する回転方向が逆になっている。このため、クラッチトルク差を一定の回転数乖離トルク差Teffに保つことで、クラッチトルク差とクランク軸トルクTEとの釣り合いが保たれる。したがって、エンジン回転数NEは、時刻t5以降一定に保たれる。 Here, the second clutch torque T2 is a torque that attempts to increase the engine speed NE and synchronize with the second speed N2. On the other hand, the first clutch torque T1 is a torque for maintaining the engine speed NE at the first speed N1. That is, in the second clutch torque T2 and the first clutch torque T1, the rotational directions acting on the crankshaft are reversed. For this reason, by maintaining the clutch torque difference at the constant rotational speed deviation torque difference Teff, the balance between the clutch torque difference and the crankshaft torque TE is maintained. Therefore, engine speed NE is kept constant after time t5.
 時刻t5以降、エンジン回転数NEは、第1回転数N1を離れて第2回転数N2に近づいてゆく。これにより、エンジン回転数NEの急峻な増減を確実に防止できる。時刻t8に、エンジン回転数NEは第2回転数N2に同期する。すると、定トルク制御部77は、第2クラッチトルクT26を最大の第2クラッチトルクT28まで増加させて、シフトダウン変速を終了する。 After time t5, the engine speed NE leaves the first speed N1 and approaches the second speed N2. This makes it possible to reliably prevent a sharp increase or decrease in the engine speed NE. At time t8, the engine speed NE synchronizes with the second speed N2. Then, the constant torque control unit 77 increases the second clutch torque T26 to the maximum second clutch torque T28, and ends the downshift.
 なお、定トルク制御部77は、回転数乖離トルク差Teffと、次変速段に応じて決定される正値または負値のオフセットトルクとを加算して目標クラッチトルク差とする別法を用いることもできる。この狙いは、低速段ほどエンジンブレーキが強く効いてしまうことを考慮して、低速段での急激なエンジンブレーキの増大に伴う運転者の違和感を低減することにある。逆に、エンジンブレーキの効きが弱い高速段で運転者の違和感が少ない場合に、目標クラッチトルク差を大きめに設定して、シフトダウン変速を早期に完了させる狙いもある。 The constant torque control unit 77 may use another method of adding the rotational speed deviation torque difference Teff and a positive value or negative value offset torque determined according to the next gear to be a target clutch torque difference. You can also. The aim is to reduce the driver's discomfort due to the rapid increase in engine braking at the low speed, in consideration of the fact that the engine braking is more effective at the low speed. On the contrary, there is also an aim of setting the target clutch torque difference to be large and completing the downshifting at an early stage when the engine braking effect is low and the driver's discomfort is small at high speed.
 上記の狙いを実現するために、例えば、定トルク制御部77は、次変速段が所定以下の低速段(第1速等)である場合に、負値のオフセットトルクを用いることができる。負値のオフセットトルクを用いた場合、図2の時刻t5以降、エンジン回転数NEは、負の一定勾配で減少しながら第2回転数N2に同期する。また例えば、定トルク制御部77は、次変速段が所定を超える高速段(最高速段の1つ低速側等)である場合に、正値のオフセットトルクを用いることができる。正値のオフセットトルクを用いた場合、図2の時刻t5以降、エンジン回転数NEは、正の一定勾配で増加しながら第2回転数N2に同期する。 In order to realize the above aim, for example, the constant torque control unit 77 can use offset torque with a negative value when the next shift speed is a low speed (such as the first speed) that is lower than a predetermined speed. When a negative offset torque is used, from time t5 in FIG. 2, the engine speed NE is synchronized with the second speed N2 while decreasing at a constant negative slope. Also, for example, when the next shift speed is a high speed gear exceeding a predetermined speed (such as one low speed side of the highest speed speed), the constant torque control unit 77 can use the offset torque of a positive value. When a positive offset torque is used, from time t5 in FIG. 2, the engine speed NE is synchronized with the second speed N2 while increasing with a positive constant gradient.
 ただし、運転者の違和感は、各変速段の変速比を考慮しつつ、車両全体で変速フィーリングを評価して決めるものである。したがって、上記した以外のオフセットトルクの設定も考えられる。例えば、車種および変速段の組合せによって、オフセットトルクはゼロまたは負値となり、正値とならない場合が有り得る。 However, the driver's sense of incongruity is determined by evaluating the shift feeling in the entire vehicle while considering the gear ratio of each shift speed. Therefore, setting of offset torque other than that described above is also conceivable. For example, depending on the combination of vehicle type and gear position, the offset torque may be zero or a negative value, and may not be a positive value.
 次に、従来技術のシフトダウン変速の制御装置について説明する。図3は、従来技術のシフトダウン変速において、エンジン回転数NEが急峻に減少してしまったときのタイムチャートの図である。また、図4は、従来技術のシフトダウン変速において、エンジン回転数NEが引き込まれて運転操作の快適性が損なわれたときのタイムチャートの図である。 Next, a control device for down-shifting according to the prior art will be described. FIG. 3 is a diagram of a time chart when the engine speed NE sharply decreases in the downshifting according to the prior art. Further, FIG. 4 is a diagram of a time chart when the engine speed NE is drawn in and the comfort of the driving operation is impaired in the downshift in the prior art.
 従来技術において、図3に細い破線で示されるように、第1クラッチトルクT1および第2クラッチトルクT2は、時刻t31以降、総和を一定にしつつ掛け替えられてゆく。ところが、第1クラッチトルクT1および第2クラッチトルクT2に制御誤差があって、太い実線および太い破線に示されるように実際の総和が小さくなる場合が生じ得る。この場合、エンジン回転数NEは、時刻t31以降に第1回転数N1から急峻に低下し、時刻t32においてフュエルカット復帰回転数Nf以下まで低下するおそれがある。すると、フュエルの供給が再開され、エンジン91が始動して燃費が低下する。 In the prior art, as shown by the thin broken line in FIG. 3, the first clutch torque T1 and the second clutch torque T2 are multiplied from time t31 while keeping the total sum constant. However, there may be cases where there is a control error between the first clutch torque T1 and the second clutch torque T2, and the actual sum becomes smaller as shown by the thick solid line and the thick broken line. In this case, the engine speed NE may sharply decrease from the first speed N1 after time t31, and may decrease to the fuel cut return speed Nf or less at time t32. Then, the fuel supply is resumed, the engine 91 is started, and the fuel consumption is reduced.
 また、トルクの掛け替え後の時刻t35以降、図4に太い破線で示されるように、第2クラッチトルクT2が過大に制御される場合が生じ得る。この場合、エンジン回転数NEは、時刻t35以降に第1回転数N1から急峻に増加して、第2回転数N2に近づく。すると、エンジンブレーキが過大に作用して運転操作の快適性が損なわれる。 In addition, after time t35 after torque replacement, as indicated by a thick broken line in FIG. 4, the second clutch torque T2 may be excessively controlled. In this case, the engine rotational speed NE sharply increases from the first rotational speed N1 after time t35 and approaches the second rotational speed N2. Then, the engine brake acts excessively to impair the driving comfort.
 上記した従来技術と比較して、本実施形態では、第1クラッチ21の継合状態の第1クラッチトルクT12を維持したまま、第2クラッチ22を半継合状態として所定クラッチトルクT2dを発生する。したがって、トルクの総和が不足することは無く、エンジン回転数NEの低下を確実に防止できる。また、本実施形態では、クラッチトルク差を一定の回転数乖離トルク差Teffに保った状態として、エンジン回転数NEを第2回転数N2に同期させてゆく。したがって、エンジン回転数NEの急峻な増加を確実に防止できる。 As compared with the above-described prior art, in the present embodiment, while maintaining the first clutch torque T12 in the connection state of the first clutch 21, the second clutch 22 is in the half connection state to generate the predetermined clutch torque T2d. . Therefore, the total torque does not run short, and the reduction of the engine speed NE can be reliably prevented. Further, in the present embodiment, the engine rotational speed NE is synchronized with the second rotational speed N2 in a state in which the clutch torque difference is maintained at the constant rotational speed deviation torque difference Teff. Therefore, a sharp increase in engine speed NE can be reliably prevented.
 実施形態の車両用デュアルクラッチ式変速機1の制御装置7は、第1入力軸31と、第2入力軸32と、出力軸4と、エンジン91のクランク軸と第1入力軸31との間で伝達し得るトルクの最大値である第1クラッチトルクT1を調整する第1クラッチ21と、クランク軸と第2入力軸32との間で伝達し得るトルクの最大値である第2クラッチトルクT2を調整する第2クラッチ22と、第1入力軸31と出力軸4との間で複数の変速段の中から1つの変速段を選択する第1変速機構5と、第2入力軸32と出力軸4との間で複数の変速段の中から1つの変速段を選択する第2変速機構6と、を有する車両用デュアルクラッチ式変速機1の制御装置7であって、第1変速機構5が現変速段を選択し、かつ第2変速機構6が現変速段よりも低速段である次変速段を選択した状態であって、第1クラッチ21が滑りなくトルク伝達している継合状態から、第2クラッチ22が継合状態に移行する次変速段へのシフトダウン変速を実施する場合に、第1クラッチ21を継合状態に維持したまま、第2クラッチ22を切断状態から滑りつつ所定クラッチトルクT2dを伝達する半継合状態に移行する並列継合制御部71と、第2クラッチ22が半継合状態に移行した後に、第1クラッチ21を継合状態から切断状態に移行するクラッチ移行制御部72と、を有する。 The control device 7 of the dual clutch type transmission 1 for a vehicle according to the embodiment includes the first input shaft 31, the second input shaft 32, the output shaft 4, and between the crankshaft of the engine 91 and the first input shaft 31. The first clutch 21 that adjusts the first clutch torque T1, which is the maximum value of torque that can be transmitted by the second clutch, and the second clutch torque T2, which is the maximum value of torque that can be transmitted between the crankshaft and the second input shaft 32 , The first transmission mechanism 5 for selecting one shift speed among the plurality of shift speeds between the first input shaft 31 and the output shaft 4, the second input shaft 32 and the output A control device 7 of a dual clutch type transmission 1 for a vehicle having a second transmission mechanism 6 for selecting one shift speed from among a plurality of shift speeds with a shaft 4, the first transmission mechanism 5 Selects the current gear position, and the second transmission mechanism 6 Shifting down to the next gear position where the second clutch 22 shifts to the joint state from the joint state where the first clutch 21 that is the low speed step is selected and torque transmission is performed without slippage of the first clutch 21 When shifting is performed, the parallel joint control unit 71 shifts to a half joint state in which the predetermined clutch torque T2d is transmitted while sliding the second clutch 22 from the disconnected state while maintaining the first clutch 21 in the connected state. And a clutch shift control unit 72 configured to shift the first clutch 21 from the joint state to the disengaged state after the second clutch 22 shifts to the half joint state.
 これによれば、シフトダウン変速の前期の段階で、第1クラッチ21を継合状態に維持したまま、第2クラッチ22を半継合状態に移行する。これにより、エンジンのフリクショントルクに対して2個のクラッチで伝達できるトルクが大きい状態を維持できるため、エンジン91の回転数は殆ど低下せず、燃料を消費して回転数を維持する必要が殆どない。したがって、燃費を良好にできる。また、シフトダウン変速の後期の回転同期制御の段階で、第2クラッチ22が半継合状態に移行した後に、第1クラッチ21を継合状態から切断状態に移行する。これによれば、駆動輪側からエンジン91を駆動するトルクが過大にならない。したがって、エンジン回転数NEが引き込まれてエンジンブレーキが過大に作用するおそれは無く、運転操作の快適性を保つことができる。 According to this, in the first half of the downshift, the second clutch 22 is shifted to the half joint state while the first clutch 21 is maintained in the joint state. As a result, it is possible to maintain a state in which the torque that can be transmitted by the two clutches is large relative to the friction torque of the engine, so the rotational speed of the engine 91 hardly decreases, and it is almost necessary to consume fuel and maintain the rotational speed. Absent. Therefore, the fuel consumption can be improved. Further, after the second clutch 22 shifts to the half joint state in the latter stage of the rotation synchronization control of the downshift, the first clutch 21 shifts from the joint state to the disconnection state. According to this, the torque for driving the engine 91 from the drive wheel side does not become excessive. Therefore, there is no possibility that the engine speed NE will be pulled in and the engine brake will act excessively, and the comfort of the driving operation can be maintained.
 さらに、エンジン91がフュエルカットを行っている状態で次変速段へのシフトダウン変速を実施する場合に、制御装置7は、並列継合制御部71およびクラッチ移行制御部72を実行する。 Furthermore, when the downshifting to the next gear position is performed while the engine 91 is performing fuel cut, the control device 7 executes the parallel joint control unit 71 and the clutch shift control unit 72.
 これによれば、シフトダウン変速の途中で、エンジン回転数NEが殆ど低下しないので、フュエルカット状態を維持できる。したがって、燃費を良好とする効果が顕著になる。 According to this, since the engine speed NE hardly decreases in the middle of the downshift, the fuel cut state can be maintained. Therefore, the effect of improving the fuel consumption becomes remarkable.
 さらに、所定クラッチトルクT2dは、クランク軸の回転数(エンジン回転数NE)が第1入力軸31の回転数(第1回転数N1)から離れない範囲内で予め設定される。これによれば、第1クラッチ21の継合状態の第1クラッチトルクT12を維持したまま、第2クラッチ22に所定クラッチトルクT2dを発生させて、エンジン回転数NEを第1入力軸31の第1回転数N1に維持できる。したがって、エンジン回転数NEの低下を確実に防止でき、燃費を良好に維持する効果が顕著になる。 Further, the predetermined clutch torque T2d is preset in a range in which the rotational speed of the crankshaft (engine rotational speed NE) does not deviate from the rotational speed of the first input shaft 31 (first rotational speed N1). According to this, while maintaining the first clutch torque T12 in the connection state of the first clutch 21, the second clutch 22 generates the predetermined clutch torque T2d, and the engine rotational speed NE is set to the first input shaft 31 One rotation speed N1 can be maintained. Therefore, the reduction of the engine speed NE can be reliably prevented, and the effect of maintaining the fuel efficiency favorably becomes remarkable.
 さらに、所定クラッチトルクT2dは、第1クラッチ21が継合状態を維持する第1クラッチトルクT12未満で、かつ、クランク軸トルクTEの絶対値を越えるように設定される。これによれば、シフトダウン変速の前期の段階で、エンジン回転数NEが第1回転数N1から離れないことが確実になる。 Further, the predetermined clutch torque T2d is set to be less than the first clutch torque T12 at which the first clutch 21 maintains the engaged state and to exceed the absolute value of the crankshaft torque TE. According to this, in the first half of the downshift, it is ensured that the engine speed NE does not deviate from the first speed N1.
 さらに、クラッチ移行制御部72は、第2クラッチ22を半継合状態に維持したままで第1クラッチ21を切断操作しながら、クランク軸の回転数(エンジン回転数NE)が第1入力軸31の回転数から離れ始める回転数乖離タイミング(時刻t5)を検出し、第1クラッチトルクT1と第2クラッチトルクT2との差であるクラッチトルク差であって回転数乖離タイミングを検出した時点のクラッチトルク差を回転数乖離トルク差Teffとして記憶する回転数乖離トルク差記憶部76と、回転数乖離トルク差Teffに基づいて目標クラッチトルク差を設定し、クラッチトルク差が目標クラッチトルク差と一致するように第1クラッチ21を切断操作しつつ第2クラッチトルクT2を調整する定トルク制御部77と、を含む。 Furthermore, while the clutch transfer control unit 72 maintains the second clutch 22 in the partially engaged state while disconnecting the first clutch 21, the rotational speed of the crankshaft (the engine speed NE) is the first input shaft 31. A clutch torque difference which is a difference between the first clutch torque T1 and the second clutch torque T2 by detecting a rotational speed deviation timing (time t5) starting to separate from the rotational speed of the clutch The target clutch torque difference is set based on the rotational speed deviation torque difference storage unit 76 that stores the torque difference as the rotational speed deviation torque difference Teff, and the clutch torque difference matches the target clutch torque difference. And a constant torque control unit 77 that adjusts the second clutch torque T2 while the first clutch 21 is disconnected.
 これによれば、回転数乖離タイミング以降に、クラッチトルク差が目標クラッチトルク差と一致するように制御するので、エンジン回転数NEの変化を抑制できる。したがって、エンジンブレーキが過大に作用するおそれはなく、運転操作の快適性を保つことができる。 According to this, since the clutch torque difference is controlled to coincide with the target clutch torque difference after the rotation speed deviation timing, the change of the engine rotation speed NE can be suppressed. Therefore, there is no possibility that the engine brake acts excessively, and the comfort of the driving operation can be maintained.
 さらに、定トルク制御部77は、回転数乖離トルク差Teffを目標クラッチトルク差とする。これによれば、クランク軸に作用するクラッチトルク差を一定に保って、クランク軸トルクTEと釣り合わせることで、エンジン回転数NEを一定に保つことができる。したがって、エンジンブレーキが発生せず、運転操作の快適性を確実に保つことができる。 Further, the constant torque control unit 77 sets the rotational speed deviation torque difference Teff as the target clutch torque difference. According to this, it is possible to keep the engine rotational speed NE constant by keeping the clutch torque difference acting on the crankshaft constant and balancing it with the crankshaft torque TE. Therefore, engine braking does not occur, and the comfort of the driving operation can be reliably maintained.
 また、定トルク制御部77は、回転数乖離トルク差Teffと、次変速段に応じて決定される正値または負値のオフセットトルクとを加算して目標クラッチトルク差としてもよい。これによれば、エンジンブレーキの効き具合が異なる複数の変速段のそれぞれに適した制御を行うことができる。 Further, the constant torque control unit 77 may add the rotational speed deviation torque difference Teff and the positive or negative offset torque determined according to the next gear to obtain the target clutch torque difference. According to this, it is possible to perform control suitable for each of the plurality of shift speeds that are different in the degree of effectiveness of the engine brake.
 なお、本発明は、エンジン91のフュエルカット制御が行われていない場合にも、応用できる。本発明は、その他にも様々な応用や変形が可能である。 The present invention can also be applied when the fuel cut control of the engine 91 is not performed. The present invention is capable of various other applications and modifications.
  1:車両用デュアルクラッチ式変速機
  21:第1クラッチ  22:第2クラッチ
  31:第1入力軸  32:第2入力軸  4:出力軸
  5:第1変速機構  6:第2変速機構  7:制御装置
  71:並列継合制御部  :72:クラッチ移行制御部
  76:回転数乖離トルク差記憶部  77:定トルク制御部
  91:エンジン 
1: Dual clutch type transmission for vehicle 21: First clutch 22: Second clutch 31: First input shaft 32: Second input shaft 4: Output shaft 5: First transmission mechanism 6: Second transmission mechanism 7: Control Device 71: parallel joint control unit: 72: clutch shift control unit 76: rotational speed deviation torque difference storage unit 77: constant torque control unit 91: engine

Claims (7)

  1.  第1入力軸と、第2入力軸と、出力軸と、エンジンのクランク軸と前記第1入力軸との間で伝達し得るトルクの最大値である第1クラッチトルクを調整する第1クラッチと、前記クランク軸と前記第2入力軸との間で伝達し得るトルクの最大値である第2クラッチトルクを調整する第2クラッチと、前記第1入力軸と前記出力軸との間で複数の変速段の中から1つの変速段を選択する第1変速機構と、前記第2入力軸と前記出力軸との間で複数の変速段の中から1つの変速段を選択する第2変速機構と、を有する車両用デュアルクラッチ式変速機の制御装置であって、
     前記第1変速機構が現変速段を選択し、かつ前記第2変速機構が前記現変速段よりも低速段である次変速段を選択した状態であって、前記第1クラッチが滑りなくトルク伝達している継合状態から、前記第2クラッチが前記継合状態に移行する次変速段へのシフトダウン変速を実施する場合に、
     前記第1クラッチを前記継合状態に維持したまま、前記第2クラッチを切断状態から滑りつつ所定クラッチトルクを伝達する半継合状態に移行する並列継合制御部と、
     前記第2クラッチが前記半継合状態に移行した後に、前記第1クラッチを前記継合状態から前記切断状態に移行するクラッチ移行制御部と、
     を有する車両用デュアルクラッチ式変速機の制御装置。
    A first clutch that adjusts a first clutch torque which is a maximum value of torque that can be transmitted between a first input shaft, a second input shaft, an output shaft, and a crankshaft of the engine and the first input shaft; A second clutch that adjusts a second clutch torque that is a maximum value of torque that can be transmitted between the crankshaft and the second input shaft; and a plurality of the clutches between the first input shaft and the output shaft A first transmission mechanism for selecting one gear position among gear positions, and a second transmission mechanism for selecting one gear position among a plurality of gear positions between the second input shaft and the output shaft; A control device for a dual clutch type transmission for a vehicle,
    The first transmission mechanism selects the current gear position, and the second transmission mechanism selects the next gear position that is a lower speed than the current gear position, and the torque transmission is performed without the first clutch slipping When performing the downshifting to the next gear stage in which the second clutch shifts to the engaged state from the engaged state,
    A parallel joint control unit configured to shift to a half joint state in which a predetermined clutch torque is transmitted while sliding the second clutch from a disconnected state while maintaining the first clutch in the connected state;
    A clutch shift control unit that shifts the first clutch from the joint state to the disengaged state after the second clutch shifts to the partially engaged state;
    Control device for a dual clutch type transmission for a vehicle having:
  2.  前記エンジンがフュエルカットを行っている状態で前記次変速段へのシフトダウン変速を実施する場合に、前記並列継合制御部および前記クラッチ移行制御部を実行する請求項1に記載の車両用デュアルクラッチ式変速機の制御装置。 2. The vehicle dual system according to claim 1, wherein the parallel joint control unit and the clutch shift control unit are executed when the downshifting to the next gear is performed with the engine performing fuel cut. Control device for clutch type transmission.
  3.  前記所定クラッチトルクは、前記クランク軸の回転数が前記第1入力軸の回転数から離れない範囲内で予め設定される請求項1または2に記載の車両用デュアルクラッチ式変速機の制御装置。 The control device of a dual clutch type transmission for a vehicle according to claim 1 or 2, wherein the predetermined clutch torque is preset within a range in which the rotational speed of the crankshaft does not deviate from the rotational speed of the first input shaft.
  4.  前記所定クラッチトルクは、前記第1クラッチが前記継合状態を維持する第1クラッチトルク未満で、かつ、前記クランク軸のトルクの絶対値を越えるように設定される請求項1~3のいずれか一項に記載の車両用デュアルクラッチ式変速機の制御装置。 The predetermined clutch torque is set to be less than a first clutch torque at which the first clutch maintains the engagement state and to exceed an absolute value of torque of the crankshaft. The control device for a dual clutch type transmission for a vehicle according to one aspect.
  5.  前記クラッチ移行制御部は、
     前記第2クラッチを前記半継合状態に維持したままで前記第1クラッチを切断操作しながら、前記クランク軸の回転数が前記第1入力軸の回転数から離れ始める回転数乖離タイミングを検出し、前記第2クラッチトルクから前記第1クラッチトルクを減算した値であるクラッチトルク差であって前記回転数乖離タイミングを検出した時点のクラッチトルク差を回転数乖離トルク差として記憶する回転数乖離トルク差記憶部と、
     前記回転数乖離トルク差に基づいて目標クラッチトルク差を設定し、前記クラッチトルク差が目標クラッチトルク差と一致するように前記第1クラッチを切断操作しつつ前記第2クラッチトルクを調整する定トルク制御部と、
     を含む請求項1~4のいずれか一項に記載の車両用デュアルクラッチ式変速機の制御装置。
    The clutch shift control unit
    While the second clutch is maintained in the semi-connected state, disconnection of the first clutch is detected, and a rotational speed deviation timing at which the rotational speed of the crankshaft starts to separate from the rotational speed of the first input shaft is detected. A clutch torque difference which is a value obtained by subtracting the first clutch torque from the second clutch torque, and stores the clutch torque difference at the time of detecting the rotation number deviation timing as the rotation number deviation torque difference. A difference storage unit,
    A constant torque that sets a target clutch torque difference based on the rotational speed difference torque difference, and adjusts the second clutch torque while disconnecting the first clutch such that the clutch torque difference matches the target clutch torque difference. A control unit,
    The control device for a dual clutch type transmission for a vehicle according to any one of claims 1 to 4, including
  6.  前記定トルク制御部は、前記回転数乖離トルク差を前記目標クラッチトルク差とする請求項5に記載の車両用デュアルクラッチ式変速機の制御装置。 The control device for a dual clutch type transmission for a vehicle according to claim 5, wherein the constant torque control unit sets the rotational speed deviation torque difference as the target clutch torque difference.
  7.  前記定トルク制御部は、前記回転数乖離トルク差と、前記次変速段に応じて決定される正値または負値のオフセットトルクとを加算して前記目標クラッチトルク差とする請求項5に記載の車両用デュアルクラッチ式変速機の制御装置。 6. The target clutch torque difference according to claim 5, wherein the constant torque control unit adds the rotational speed deviation torque difference and an offset torque of a positive value or a negative value determined according to the next gear to obtain the target clutch torque difference. Control device of dual clutch type transmission for vehicles.
PCT/JP2017/000636 2016-01-13 2017-01-11 Control device for vehicle dual clutch transmission WO2017122682A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017535854A JPWO2017122682A1 (en) 2016-01-13 2017-01-11 Control device for dual clutch transmission for vehicle
DE112017000355.5T DE112017000355T5 (en) 2016-01-13 2017-01-11 CONTROL UNIT FOR VEHICLE DUAL CLUTCH GEAR
CN201780000723.3A CN107208788A (en) 2016-01-13 2017-01-11 The control device of automobile-used pair of disengaging type speed changer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004340 2016-01-13
JP2016-004340 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122682A1 true WO2017122682A1 (en) 2017-07-20

Family

ID=59310998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000636 WO2017122682A1 (en) 2016-01-13 2017-01-11 Control device for vehicle dual clutch transmission

Country Status (4)

Country Link
JP (1) JPWO2017122682A1 (en)
CN (1) CN107208788A (en)
DE (1) DE112017000355T5 (en)
WO (1) WO2017122682A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109424737A (en) * 2017-09-01 2019-03-05 上海汽车集团股份有限公司 A kind of method and device of double clutch automatic transmission shift controls
CN110671493A (en) * 2019-09-01 2020-01-10 重庆大学 Intelligent dual-clutch transmission clutch torque prediction method based on support vector machine algorithm
CN114704638A (en) * 2022-04-14 2022-07-05 一汽解放汽车有限公司 Vehicle control method, device, equipment and medium
CN114992258A (en) * 2022-05-31 2022-09-02 中国第一汽车股份有限公司 Method, device and equipment for calibrating position of half-joint point of clutch and storage medium

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111448115B (en) * 2017-12-04 2023-06-09 三菱自动车工业株式会社 Vehicle control unit
CN111059281A (en) * 2020-01-10 2020-04-24 吉利汽车研究院(宁波)有限公司 Control method and system for gear engagement in double-clutch downshift process and vehicle
CN114576350B (en) * 2020-11-30 2023-11-14 比亚迪股份有限公司 Dual-clutch gear shifting control method and device and automobile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913158B2 (en) * 1980-12-22 1984-03-28 マスプロ電工株式会社 coaxial cable connector
JPS60139955A (en) * 1983-12-27 1985-07-24 Mazda Motor Corp Controller for automatic speed change gear
JP2004347010A (en) * 2003-05-21 2004-12-09 Fuji Heavy Ind Ltd Speed-change control device of automatic transmission
JP2005180628A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Automatic gear shifting controller for manual transmission
JP2009250322A (en) * 2008-04-04 2009-10-29 Aisin Ai Co Ltd Synchronous meshing type automatic transmission
JP2016002950A (en) * 2014-06-19 2016-01-12 アイシン・エーアイ株式会社 Power transmission control device for vehicle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913158A (en) * 1982-07-14 1984-01-23 Mazda Motor Corp Speed change controller of combined clutch multiple stage speed change gear
JP3900134B2 (en) * 2003-10-20 2007-04-04 日産自動車株式会社 Mode change control device for hybrid transmission
JP2007333129A (en) * 2006-06-16 2007-12-27 Hitachi Ltd Controller for automatic transmission
DE102008032757B4 (en) * 2008-07-11 2016-03-03 Audi Ag Method for suppressing gear noise
JP5233659B2 (en) * 2008-12-24 2013-07-10 日産自動車株式会社 Engine start control device for hybrid vehicle
DE102010042267A1 (en) * 2010-10-11 2012-04-12 Zf Friedrichshafen Ag Method for controlling circuits of a partial dual clutch transmission
JP5733022B2 (en) * 2011-05-24 2015-06-10 スズキ株式会社 Twin clutch automatic transmission control system
JP5580268B2 (en) * 2011-09-08 2014-08-27 ダイムラー・アクチェンゲゼルシャフト Control device for dual clutch automatic transmission
US9020722B1 (en) * 2013-11-22 2015-04-28 GM Global Technology Operations LLC Control of power-on downshift in a vehicle with an oncoming binary clutch
KR101510015B1 (en) * 2013-12-18 2015-04-07 현대자동차주식회사 Shifing control method for vehicle with dct
CN103758995B (en) * 2014-01-26 2016-04-06 安徽江淮汽车股份有限公司 Dual-clutch transmission brake downshift controlling method
KR101583919B1 (en) * 2014-04-29 2016-01-11 현대자동차주식회사 Clutch torque control method for vehicel with dct
JP6083612B2 (en) * 2014-05-30 2017-02-22 本田技研工業株式会社 Shift control device for automatic transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913158B2 (en) * 1980-12-22 1984-03-28 マスプロ電工株式会社 coaxial cable connector
JPS60139955A (en) * 1983-12-27 1985-07-24 Mazda Motor Corp Controller for automatic speed change gear
JP2004347010A (en) * 2003-05-21 2004-12-09 Fuji Heavy Ind Ltd Speed-change control device of automatic transmission
JP2005180628A (en) * 2003-12-22 2005-07-07 Nissan Motor Co Ltd Automatic gear shifting controller for manual transmission
JP2009250322A (en) * 2008-04-04 2009-10-29 Aisin Ai Co Ltd Synchronous meshing type automatic transmission
JP2016002950A (en) * 2014-06-19 2016-01-12 アイシン・エーアイ株式会社 Power transmission control device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109424737A (en) * 2017-09-01 2019-03-05 上海汽车集团股份有限公司 A kind of method and device of double clutch automatic transmission shift controls
CN110671493A (en) * 2019-09-01 2020-01-10 重庆大学 Intelligent dual-clutch transmission clutch torque prediction method based on support vector machine algorithm
CN114704638A (en) * 2022-04-14 2022-07-05 一汽解放汽车有限公司 Vehicle control method, device, equipment and medium
CN114704638B (en) * 2022-04-14 2023-08-22 一汽解放汽车有限公司 Vehicle control method, device, equipment and medium
CN114992258A (en) * 2022-05-31 2022-09-02 中国第一汽车股份有限公司 Method, device and equipment for calibrating position of half-joint point of clutch and storage medium
CN114992258B (en) * 2022-05-31 2024-03-26 中国第一汽车股份有限公司 Method, device, equipment and storage medium for calibrating position of clutch half-combining point

Also Published As

Publication number Publication date
JPWO2017122682A1 (en) 2018-11-01
DE112017000355T5 (en) 2018-09-27
CN107208788A (en) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2017122682A1 (en) Control device for vehicle dual clutch transmission
US7962267B2 (en) Control apparatus and method for automatic transmission
US10041568B2 (en) Transmission for electric vehicle
US8205516B2 (en) Speed control method of automatic transmission
JP6205106B2 (en) Dual clutch transmission control method, dual clutch transmission and vehicle equipped with the same
WO2014115881A1 (en) Hybrid vehicle
JP5424953B2 (en) Vehicle power transmission control device
WO2012070216A1 (en) Dual clutch transmission mechanism and start control method
US20070144288A1 (en) Automatic transmission controller, automatic transmission control method and automatic transmission
US9926988B2 (en) Starting clutch control device for automatic transmission
WO2014102855A1 (en) Transmission control system
JP2008032184A (en) Device and method for controlling twin-clutch transmission
JP2009257408A (en) Method for controlling automatic transmission
JP5902423B2 (en) Vehicle power transmission control device
JP5439244B2 (en) Vehicle power transmission control device
JP4720407B2 (en) Control device for multiple clutch transmission
US10072752B2 (en) Method of controlling transmission of electric vehicle
JP5818565B2 (en) Dual clutch automatic transmission
JP2016002950A (en) Power transmission control device for vehicle
CN111645686A (en) Driving force recovery control method and device and 48V driving system
US9664277B1 (en) Control method of dual clutch transmission for vehicle and control system for the same
JP2012166574A (en) Hybrid vehicle
JP2005090604A (en) Speed change control device for automatic transmission
JP2013036474A (en) Power transmission control device
EP2149728B1 (en) Method of controlling a double clutch transmission

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017535854

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000355

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 17738436

Country of ref document: EP

Kind code of ref document: A1