WO2017122611A1 - Laser device - Google Patents

Laser device Download PDF

Info

Publication number
WO2017122611A1
WO2017122611A1 PCT/JP2017/000414 JP2017000414W WO2017122611A1 WO 2017122611 A1 WO2017122611 A1 WO 2017122611A1 JP 2017000414 W JP2017000414 W JP 2017000414W WO 2017122611 A1 WO2017122611 A1 WO 2017122611A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
wavelength
laser beam
surface emitting
light
Prior art date
Application number
PCT/JP2017/000414
Other languages
French (fr)
Japanese (ja)
Inventor
▲高▼弘 内田
淳 梁瀬
昌利 齋藤
佑斗 室木
Original Assignee
株式会社アマダミヤチ
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダミヤチ, 株式会社アマダホールディングス filed Critical 株式会社アマダミヤチ
Priority to JP2017561608A priority Critical patent/JP6522166B2/en
Publication of WO2017122611A1 publication Critical patent/WO2017122611A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Definitions

  • the present invention relates to a laser device using a surface emitting laser as a laser light source, and more particularly to a laser device suitable for use in laser processing.
  • a surface emitting laser is a type of semiconductor laser that emits a laser beam perpendicularly to the substrate surface from a semiconductor substrate. Compared with a general (single emitter type) semiconductor laser that emits a laser beam horizontally to the substrate surface. It is attracting attention as a next-generation laser light source that is advantageous for integration, low power consumption, and mass production.
  • a surface emitting laser that is currently popular typically has a light emitting surface of 4.7 mm ⁇ 4.7 mm, and the diameter of each beam exit port formed as a two-dimensional array on the light emitting surface is 18 ⁇ m,
  • the laser output of a single laser beam emitted from the laser beam is several tens of mW, the laser output of the entire two-dimensional array is about 100 W at the highest, and the beam quality is not good.
  • the present invention has been made in view of the problems of the prior art, and provides a laser apparatus that realizes a high-power and high-quality laser beam using a surface emitting laser.
  • the laser apparatus of the present invention includes a first surface emitting laser that emits a bundle of first laser beams having a wavelength that matches or approximates the first standard wavelength, and a wavelength that matches or approximates the second standard wavelength.
  • a second surface emitting laser that emits a bundle of second laser beams, and the first laser beam from the first surface emitting laser and the second surface emitting laser from the second surface emitting laser.
  • a coupling unit that spatially multiplex-synthesizes the laser beam and emits the combined laser beam, and each of the first and second surface emitting lasers is formed on the semiconductor substrate and the semiconductor substrate And a plurality of light emitting openings provided two-dimensionally and discretely on the active area, each perpendicular to or oblique to the substrate surface of the semiconductor substrate from the light emitting openings.
  • a surface emitting laser element that stimulates and emits light having an approximate wavelength
  • a light emitting opening of the surface emitting laser element for extracting a single laser beam by resonantly amplifying the light that is stimulated and emitted from each of the light emitting openings
  • an output mirror disposed at a position facing away from the output mirror.
  • the divergence angle of the single laser beam obtained from each light emitting aperture is reduced by the configuration in which the output mirror of the laser resonator is disposed at a position facing the light emitting aperture of the surface emitting laser element. Therefore, even if the diameter of the light emitting aperture is increased and the number is increased, the overlapping or mutual interference of single laser beams within the bundle of laser beams obtained by the entire surface emitting laser element is reduced as much as possible. Both output and beam quality can be achieved. Furthermore, by multiplying and synthesizing each bundle of laser beams obtained from a plurality of surface emitting lasers, multiplication of the laser output, that is, higher output can be realized more efficiently.
  • the first surface-emitting laser has a first band narrowing element that narrows the wavelength of a single laser beam near the first standard wavelength, and the second surface.
  • the light emitting laser has a second band narrowing element that narrows the wavelength of a single laser beam near the second standard wavelength.
  • the coupling unit may include a wavelength coupling element that multiplex-synthesizes the first laser beam and the second laser beam by wavelength coupling.
  • the laser output can be easily multiplied or increased in output.
  • the first and second laser beams can be multiplexed and synthesized by polarization coupling using a polarization coupling element.
  • the narrowband element also serves as an output mirror.
  • the band narrowing element not only narrows the wavelength band but also functions as a main external resonator, and emits a single laser beam having a small divergence angle and a stable wavelength locked to the outside.
  • any of the thin films provided on the active region in each of the light emitting openings has a property of being transmissive or non-reflective with respect to stimulated emission light.
  • the stimulated emission light on the active region is reflected by the external output mirror separated by a considerable distance, so that the stimulated emission light obliquely deviated from the vertical direction (that is, having a large spread angle). Can be effectively removed from the single laser beam.
  • the coupling unit includes a wavelength coupling element that multiplex-synthesizes the first and second laser beams having the first and second standard wavelengths offset from each other by wavelength coupling. .
  • the coupling unit includes a polarization coupling element that multiplex-synthesizes the first and second laser beams having the same first and second standard wavelengths by polarization coupling.
  • a configuration in which a wavelength coupling element and a polarization coupling element are used in combination is also possible. With this configuration, it is possible to arbitrarily increase the number of surface emitting lasers used for increasing the output of the synthetic laser beam, and to realize a significant improvement in the laser output of the surface emitting laser.
  • a high-power and high-quality laser beam can be realized using a surface emitting laser by the above-described configuration and operation.
  • This laser processing apparatus is a laser apparatus applicable to various types of laser processing such as laser welding, laser marking, laser cutting, and laser drilling, and a plurality (two in this example) of surface emitting lasers (VCSEL) 10A, 10B,
  • VCSEL surface emitting lasers
  • the coupling unit 14, the fiber transmission system 15, the laser emission unit 16, the stage 18, the control unit 20, and the like are included.
  • Control unit 20 controls each unit and the entire operation of the laser processing apparatus.
  • the control unit 20 can arbitrarily control the laser oscillation operation (continuous oscillation, pulse oscillation, etc.) through the individual laser power sources 22A and 22B.
  • a scanning mechanism such as a galvano scanner is mounted on the laser emission unit 16 or when a feed mechanism such as an XY table is mounted on the stage 18, the control unit 20 is synchronized with the laser oscillation operation, Alternatively, the operations of the motion mechanisms (scanning operation, workpiece feeding operation) are controlled for the alignment of the processing points.
  • the control unit 20 is also connected with an input / output device (not shown) for man-machine interface.
  • FIG. 2 schematically shows the appearance of the main part of the surface emitting laser 10A (10B) and the state of the laser emission state.
  • the surface emitting laser 10A (10B) includes, for example, a plate-like surface emitting laser element (hereinafter referred to as “VCSEL element”) 26 having a rectangular light emitting surface 24, and a light emitting surface 24 above the VCSEL element 26.
  • VCSEL element plate-like surface emitting laser element
  • a plate-like or block-like output mirror 28 arranged in parallel at an appropriate distance, and a plate-like or block-like narrow-band narrowing element 29 arranged in parallel above the output mirror 28 (FIG. 1, FIG. 4).
  • the light emitting surface 24 of the VCSEL element 26 is provided with a number of light emitting ports 30 arranged in a two-dimensional direction discretely or in an array.
  • the diameter ⁇ of each light emitting port 30 is much larger than a normal one, and is selected from 100 to 1000 ⁇ m, for example.
  • the number of the light emitting openings 30 is shown as 16 (4 ⁇ 4) for simplification, but is actually several hundred or more or 1000 or more.
  • each light emitting port 30 of the light emitting surface 24 is reflected between the reflecting mirror 34 (FIG. 4) built in the VCSEL element 26 and the external output mirror 28 or the band narrowing element 29. Is amplified by resonance amplification and is taken out of the output mirror 28 as a single laser beam LB. Then, all the single laser beams LB taken out simultaneously from the output mirror 28 are combined to form a bundle of laser beams SLB A (SLB B ).
  • each single laser beam LB obtained outside the output mirror 28 has a very small divergence angle
  • the diameter ⁇ of the light emitting aperture 30 is selected to be a considerably large size (100 to 1000 ⁇ m)
  • the density Is increased the overlap or mutual interference of the single laser beams LB in the bundle of laser beams SLB A (SLB B ) is reduced as much as possible to improve the beam quality.
  • FIG. 4 shows an internal configuration (cross-sectional configuration) of the surface emitting laser 10A (10B).
  • the VCSEL element 26 includes, for example, a GaAs-based semiconductor substrate 32 as a base material, and a multilayer reflector such as a DBR (Distributed Bragg Reflector) 34, a single layer or a multilayer lower semiconductor layer 36 is formed on the semiconductor substrate 32 by a normal semiconductor process.
  • the active layer 38, the single-layer or multilayer upper semiconductor layer 40 and the upper electrode 42 are sequentially stacked, and the lower electrode 44 is formed on the back surface of the semiconductor substrate 32.
  • the lower electrode 44 is coupled to a cooling heat sink (not shown) through an insulator (not shown).
  • the lower semiconductor layer 36 and the upper semiconductor layer 40 include a carrier injection layer. Further, the upper semiconductor layer 40 also includes an antireflection film. In this embodiment, the thin films constituting the lower semiconductor layer 36 and the upper semiconductor layer 40 are both non-reflective or transmissive with respect to light having an oscillation wavelength.
  • the upper electrode 42 is formed with an opening 42 a that forms the light emitting port 30. A portion of the active layer 38 located immediately below the light emitting opening 30 forms an active region 38a.
  • a driving voltage E is applied between the upper electrode 42 and the lower electrode 44 from the laser power source 22A (22B).
  • carriers are injected into the active layer 38 via the lower semiconductor layer 36 and the upper semiconductor layer 40, and light SB that matches or approximates a predetermined standard wavelength ⁇ S is stimulated and emitted from the active region 38 a to the outside of the light emitting opening 30. Is done.
  • the multilayer reflecting mirror 34 inside the VCSEL element 26 has a reflectance of approximately 100%, and an external output mirror For example, 28 has a reflectance of 1 to 90%, preferably 2 to 30%.
  • the light SB that has been repeatedly reflected and amplified between the multilayer reflecting mirror 34 and the output mirror 28 or the band narrowing element 29 is resonantly amplified as a single laser beam LB. Is taken out.
  • the light emitted from the light emitting port 30 of the VCSEL element 26 at an angle perpendicular to or close to the substrate surface of the VCSEL element 26 is the opposite surface of the output mirror 28 (shown by the solid line SB).
  • the light is reflected substantially vertically at the lower surface and returns to the light emitting opening 30.
  • the light emitted from the light emitting opening 30 by more than a certain angle is reflected obliquely by the facing surface (lower surface) of the output mirror 28 and does not return into the light emitting opening 30 as indicated by a one-dot chain line SB ′. .
  • the light SB propagating perpendicularly or at an angle close to the substrate surface of the VCSEL element 26 is repeatedly reflected and amplified between the multilayer reflecting mirror 34 and the output mirror 28 or the narrowband element 29.
  • the single laser beam LB having a small divergence angle is taken out of the output mirror 28.
  • the light SB stimulated and emitted on the active region 38a of the VCSEL element 26 is reflected by the external output mirror 28 with a considerable distance, so that it is obliquely shifted from the vertical direction. It is possible to effectively remove the stimulated emission light SB ′ (that is, having a large divergence angle) from the single laser beam, thereby effectively reducing the divergence angle of the single laser beam LB obtained outside the output mirror 28. can do.
  • a collimator is suitably provided as means for further reducing the divergence angle of the single laser beam LB.
  • a spherical convex portion 28a is formed on the upper surface of the portion of the output mirror 28 facing the light emitting port 30, so that the output mirror 28 functions as a collimator lens.
  • an independent collimator lens is disposed outside the output mirror 28, for example, between the output mirror 28 and the band narrowing element 29 or outside the band narrowing element 29 is also possible.
  • the band-narrowing element 29 is made of, for example, VBG (Volume Bragg Grating) or VHG (Volume Holographic Grating), functions as an external resonator, and is a single laser beam LB or one laser beam emitted from the surface emitting laser 10A (10B).
  • the wavelength width of the bundle laser beam SLB A (SLB B ) is narrowed to a sufficiently narrow band ⁇ SA ⁇ ⁇ A ( ⁇ SB ⁇ ⁇ B ), and the variation of the center wavelength is suppressed, and the standard wavelength ⁇ SA ( ⁇ SB ) Lock nearby.
  • the standard wavelength ⁇ SA of the laser oscillation in one surface emitting laser 10 and the standard wavelength ⁇ SB of the laser oscillation in the other surface emitting laser 10B are constant so as not to overlap each other.
  • Offset ⁇ K is provided (FIG. 5).
  • ⁇ SA 950 nm
  • ⁇ SB 960 nm
  • ⁇ A , ⁇ B 0.1 to 3 nm
  • ⁇ K 10 nm.
  • the light emitting aperture 30 of the VCSEL element 26 has a large aperture (100 to 1000 ⁇ m), and the wavelength of the laser oscillation is stably locked in a narrow band. It is possible to realize the beam LB. Therefore, by providing 1000 or more light emitting ports 30 with such a large aperture, for example, at 100 mW per chip on one chip of the VCSEL element 26, a laser output of 100 W or more and a bundle of high beam quality can be obtained. A laser beam SLB A (SLB B ) can be obtained.
  • the pair of surface emitting lasers 10A and 10B including the VCSEL element 26, the output mirror 28, and the band narrowing element 29 have a large beam diameter and a narrow divergence angle.
  • a bundle of laser beams SLB A and SLB B which are composed of a number of high-power single laser beams LB and whose wavelengths do not overlap each other are output.
  • a bundle of laser beams SLB A output from one surface emitting laser 10A and a bundle of laser beams SLB B output from the other surface emitting laser 10B are orthogonal to each other on the same plane. Then, the light enters the coupling unit 14.
  • the coupling unit 14 is composed of a dichroic mirror 50 having reflectivity characteristics as shown by a curve M in FIG. 5 and transmits one laser beam SLB A while folding the other laser beam SLB B at a right angle. Reflected in the traveling direction of the beam SLB A.
  • the wavelengths of the laser beams SLB A and SLB B do not overlap, they are spatially multiplexed and synthesized by wavelength coupling.
  • the narrowband element 29 narrows the wavelength of both laser beams SLB A and SLB B by locking them in the vicinity of the standard wavelengths ⁇ SA and ⁇ SB.
  • the mirror 50 can perform stable and highly accurate wavelength coupling.
  • a combined laser beam SLB AB obtained by wavelength coupling of both laser beams SLB A and SLB B by the dichroic mirror 50 is emitted through a fiber transmission system 15 having an incident unit (condensing lens) 52 and an optical fiber 54.
  • the workpiece W on the stage 18 is focused and irradiated by a condenser lens (not shown) in the laser emitting unit 16.
  • This laser processing apparatus collects and irradiates a workpiece W with a high-power and high-beam quality synthetic laser beam SLB AB, thereby performing various laser processing such as laser welding, laser marking, laser cutting, and laser drilling. Can be done well by specification.
  • FIG. 6 shows a configuration example in which a polarization coupling element 56 is used instead of the wavelength coupling element 50 as the coupling unit 14.
  • a bundle of laser beams SLB A having a standard wavelength ⁇ SA is output as P-polarized light from one surface emitting laser 10A
  • a bundle of laser beams SLB B having a standard wavelength ⁇ B is output from the other surface emitting laser 10B. Is output as S-polarized light.
  • the standard wavelength ⁇ SA and the standard wavelength ⁇ SB are selected to be the same value.
  • a half-wave plate may be used to create P-polarized light or S-polarized light.
  • the polarization coupling element 56 is composed of, for example, a polarization beam splitter, spatially multiplex-combines laser beams SLB A and SLB B incident perpendicularly to each other by polarization coupling, and travel of the laser beam SLB A traveling straight ahead.
  • a synthetic laser beam SLB AB having a standard wavelength ⁇ SA ( ⁇ SB ) in the direction is emitted.
  • the embodiment shown in FIG. 7 uses a combination of the wavelength coupling element 50 and the polarization coupling element 56 in the coupling unit 14 and greatly increases the number of surface emitting lasers (VCSEL) 10 used for increasing the output of the combined laser beam ( In the illustrated example, the number is increased to 6).
  • VCSEL surface emitting lasers
  • the six surface emitting lasers (VCSEL) 10A to 10F are divided into three pairs (10A / 10B), (10C / 10D), and (10E / 10F).
  • a bundle of laser beams SLB A having a standard wavelength ⁇ SA is output from one surface emitting laser 10A as P-polarized light
  • a standard wavelength ⁇ SB is output from the other surface emitting laser 10B.
  • the two laser beams SLB A and SLB B are incident on the first polarization coupling element 56 (1) orthogonally to each other, where they are polarization-coupled, and the combined laser beam SLB having the standard wavelength ⁇ SB ( ⁇ SB ). AB is obtained.
  • both laser beams SLB C and SLB D are orthogonally incident on the second polarization coupling element 56 (2), where they are polarization-coupled, and the combined laser beam SLB having the standard wavelength ⁇ SC ( ⁇ SD ). CD is obtained.
  • both laser beams SLB E and SLB F are orthogonally incident on the third polarization coupling element 56 (3), where they are polarization-coupled, and the combined laser beam SLB having the standard wavelength ⁇ SE ( ⁇ SF ). EF is obtained.
  • the synthesized laser beam SLB CD having SC ( ⁇ SD ) is incident on the first wavelength coupling element 50 (1) orthogonally to each other, where it is wavelength-coupled and two kinds of standard wavelengths ⁇ SA ( ⁇ SB ), ⁇ SC ( ⁇ SD ), a combined laser beam SLB ABCD is obtained.
  • This synthetic laser beam SLB ABCD is incident on the second wavelength coupling element 50 (2) and has a standard wavelength ⁇ SE ( ⁇ SF ) from a third pair (10E / 10F) orthogonal thereto. Wavelength coupled with the beam SLB EF .
  • the three standard wavelengths ⁇ SA ( ⁇ SB ) and ⁇ SC ( ⁇ SD ) are obtained by adding all the laser outputs of the six surface emitting lasers 10A to 10F from the second wavelength coupling element 50 (2).
  • ⁇ SE ( ⁇ SF ) and a high-power synthetic laser beam SLB ABCDEF are emitted toward a subsequent laser optical system (not shown).
  • each output mirror 28 is individually arranged at a position corresponding to each light emitting port 30 of the VCSEL element 26. Also in this case, in order to make the divergence angle of the single laser beam LB as small as possible, each output mirror 28 may have a function of a collimator lens, or an independent collimator in the subsequent stage of each output mirror 28. A lens (not shown) may be arranged.
  • the embodiment shown in FIG. 9 is characterized in that, in the surface emitting laser (VCSEL) 10, the narrowing element 29 is also used as the output mirror 28. That is, the band narrowing element 29 functions not only as a wavelength band narrowing but also as an external resonator, and can be used as an output mirror. In this case as well, a collimating lens (not shown) can be disposed downstream of the band-narrowing element 29 in order to reduce the divergence angle of the single laser beam LB as much as possible.
  • VCSEL surface emitting laser
  • the above-described embodiment preferably employs a configuration in which an antireflection film is provided on the upper semiconductor layer 40 and each layer of the upper semiconductor layer 40 is made non-reflective or transmissive.
  • a reflective film can be provided in the upper semiconductor layer 40 as a modification or a configuration example.
  • the laser apparatus of the present invention has a particularly great advantage when applied to the laser processing apparatus as in the above embodiment, but can also be applied to other applications such as a laser medical apparatus.
  • VCSEL Surface emitting laser
  • Coupling unit 15 Fiber traditional system 16
  • Laser emitting unit 20
  • Control unit 26
  • Surface emitting laser element (VCSEL element) 28
  • Output Mirror 29
  • Narrow Bandwidth Element (VBG / VHG) DESCRIPTION OF SYMBOLS 30
  • Light emission port 32

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

This surface light-emitting laser 10 has: a VCSEL element 26 having a semiconductor substrate 32 as a substrate material; and an output mirror 28 and a band narrowing element 29 that are disposed above the VCSEL element 26 so as to be spaced apart from a light-emitting surface 24 of the VCSEL element 26. During a laser oscillation operation, a part of light SB inductively emitted from an active region 38a of the VCSEL element 26 is taken out as a single laser beam LB to the outside after being subjected to resonance-amplification through repeated reflections between a multilayer reflection mirror 34 inside the VCSEL element 26 and the band narrowing element 29 or the output mirror 28 outside the VCSEL element 26.

Description

レーザ装置Laser equipment
 本発明は、面発光レーザをレーザ光源に用いるレーザ装置に係り、特にレーザ加工に用いて好適なレーザ装置に関する。 The present invention relates to a laser device using a surface emitting laser as a laser light source, and more particularly to a laser device suitable for use in laser processing.
 近年、主に光通信、プリンタ、ディスプレイ等のレーザ応用分野で面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)が普及しつつある。面発光レーザは、半導体基板から基板面と垂直にレーザビームを出射するタイプの半導体レーザであり、基板面と水平にレーザビームを出射する一般(シングルエミッタ方式)の半導体レーザと比較して、高集積化、低消費電力化、量産化に有利な次世代のレーザ光源として注目されている。 In recent years, surface emitting lasers (VCSELs) are becoming popular mainly in laser application fields such as optical communication, printers, and displays. A surface emitting laser is a type of semiconductor laser that emits a laser beam perpendicularly to the substrate surface from a semiconductor substrate. Compared with a general (single emitter type) semiconductor laser that emits a laser beam horizontally to the substrate surface. It is attracting attention as a next-generation laser light source that is advantageous for integration, low power consumption, and mass production.
特開2006-114915号公報JP 2006-149915 A
 現在普及している面発光レーザは、典型的には、4.7mm×4.7mmの発光面を有し、その発光面に二次元アレイとして形成される個々のビーム出射口の口径が18μm、そこから出射される単体レーザビームのレーザ出力は数10mWであり、二次元アレイ全体のレーザ出力は最も高くても100W程度で、しかもビーム品質が良くない。 A surface emitting laser that is currently popular typically has a light emitting surface of 4.7 mm × 4.7 mm, and the diameter of each beam exit port formed as a two-dimensional array on the light emitting surface is 18 μm, The laser output of a single laser beam emitted from the laser beam is several tens of mW, the laser output of the entire two-dimensional array is about 100 W at the highest, and the beam quality is not good.
 面発光レーザの高出力化を実現するには、ビーム出射口の口径を大きくし数を増やすことが簡明な解決法であるが、それにも限界があり、しかもビーム出射口の口径を大きくして数を増やすほど二次元アレイ全体で得られる一束のレーザビームのビーム品質が低下することが課題となっている。このため、従来の面発光レーザは、高出力および高品質のレーザビームを必要とするレーザ加工には使えないのが現状である。 Increasing the number of apertures and increasing the number of beam exit apertures is a simple solution to increase the output power of surface-emitting lasers. However, there is a limit to this, and the diameter of the beam exit apertures can be increased. The problem is that the beam quality of a bundle of laser beams obtained in the entire two-dimensional array decreases as the number increases. For this reason, the conventional surface emitting laser cannot be used for laser processing that requires a high-power and high-quality laser beam.
 本発明は、かかる従来技術の問題点に鑑みてなされたもので、面発光レーザを用いて高出力および高品質のレーザビームを実現するレーザ装置を提供する。 The present invention has been made in view of the problems of the prior art, and provides a laser apparatus that realizes a high-power and high-quality laser beam using a surface emitting laser.
 本発明のレーザ装置は、第1の標準波長に一致または近似する波長を有する一束の第1のレーザビームを出射する第1の面発光レーザと、第2の標準波長に一致または近似する波長を有する一束の第2のレーザビームを出射する第2の面発光レーザと、前記第1の面発光レーザからの前記第1のレーザビームと前記第2の面発光レーザからの前記第2のレーザビームとを空間的に多重合成して、合成レーザビームを出射するカップリングユニットとを有し、前記第1および第2の面発光レーザの各々は、半導体基板と、この半導体基板上に形成された活性領域と、その活性領域の上に二次元的に離散して設けられた多数の発光口とを有し、各々の前記発光口より前記半導体基板の基板面に対して垂直または斜めの方向に所定の標準波長に一致または近似する波長を有する光を誘導放出する面発光レーザ素子と、各々の前記発光口より誘導放出される光を共振増幅して単体のレーザビームを取り出すために、前記面発光レーザ素子の発光口から離間してそれと対向する位置に配置される出力ミラーとを有する。 The laser apparatus of the present invention includes a first surface emitting laser that emits a bundle of first laser beams having a wavelength that matches or approximates the first standard wavelength, and a wavelength that matches or approximates the second standard wavelength. A second surface emitting laser that emits a bundle of second laser beams, and the first laser beam from the first surface emitting laser and the second surface emitting laser from the second surface emitting laser. A coupling unit that spatially multiplex-synthesizes the laser beam and emits the combined laser beam, and each of the first and second surface emitting lasers is formed on the semiconductor substrate and the semiconductor substrate And a plurality of light emitting openings provided two-dimensionally and discretely on the active area, each perpendicular to or oblique to the substrate surface of the semiconductor substrate from the light emitting openings. Aligned with a given standard wavelength in the direction Alternatively, a surface emitting laser element that stimulates and emits light having an approximate wavelength, and a light emitting opening of the surface emitting laser element for extracting a single laser beam by resonantly amplifying the light that is stimulated and emitted from each of the light emitting openings And an output mirror disposed at a position facing away from the output mirror.
 上記の構成においては、レーザ共振器の出力ミラーを面発光レーザ素子の発光口から離間してそれと対向する位置に配置する構成により、各発光口より得られる単体レーザビームの拡がり角を小さくすることが可能であり、それによって発光口の口径を大きくし数を増やしても、面発光レーザ素子全体で得られる一束のレーザビーム内で単体レーザビーム同士の重なり合いまたは相互干渉を極力少なくし、高出力とビーム品質とを両立させることができる。さらに、複数の面発光レーザより得られる各一束のレーザビームを空間的に多重合成することにより、レーザ出力の逓倍化つまり高出力化を一層効率的に実現することができる。 In the above configuration, the divergence angle of the single laser beam obtained from each light emitting aperture is reduced by the configuration in which the output mirror of the laser resonator is disposed at a position facing the light emitting aperture of the surface emitting laser element. Therefore, even if the diameter of the light emitting aperture is increased and the number is increased, the overlapping or mutual interference of single laser beams within the bundle of laser beams obtained by the entire surface emitting laser element is reduced as much as possible. Both output and beam quality can be achieved. Furthermore, by multiplying and synthesizing each bundle of laser beams obtained from a plurality of surface emitting lasers, multiplication of the laser output, that is, higher output can be realized more efficiently.
 本発明の好適な一態様においては、第1の面発光レーザが単体のレーザビームの波長を第1の標準波長付近に狭帯域化する第1の狭帯域化素子を有し、第2の面発光レーザが単体のレーザビームの波長を第2の標準波長付近に狭帯域化する第2の狭帯域化素子を有する。このように、各々の面発光レーザにおいて単体レーザビームの波長を標準波長付近にロックして狭帯域化することにより、空間カップリングを安定かつ高精度に行うことができる。より具体的には、カップリングユニットは、第1のレーザビームと第2のレーザビームとを波長カップリングにより多重合成する波長カップリング素子を有してよい。このような波長カップリング法によれば、面発光レーザ毎にレーザ発振波長(標準波長)をオフセットさせることにより、レーザ出力の逓倍化または高出力化を容易に実現することができる。また、別の態様として、偏光カップリング素子を用いて偏光カップリングにより第1および第2のレーザビームを多重合成することも可能である。 In a preferred aspect of the present invention, the first surface-emitting laser has a first band narrowing element that narrows the wavelength of a single laser beam near the first standard wavelength, and the second surface. The light emitting laser has a second band narrowing element that narrows the wavelength of a single laser beam near the second standard wavelength. Thus, in each surface emitting laser, the spatial coupling can be performed stably and with high accuracy by locking the wavelength of the single laser beam near the standard wavelength and narrowing the band. More specifically, the coupling unit may include a wavelength coupling element that multiplex-synthesizes the first laser beam and the second laser beam by wavelength coupling. According to such a wavelength coupling method, by multiplying the laser oscillation wavelength (standard wavelength) for each surface emitting laser, the laser output can be easily multiplied or increased in output. As another aspect, the first and second laser beams can be multiplexed and synthesized by polarization coupling using a polarization coupling element.
 別の好適な一態様においては、狭帯域化素子が出力ミラーを兼用する。この場合、狭帯域化素子は、波長の狭帯域化だけでなく、主たる外部共振器としても機能し、拡がり角が小さくて波長が安定にロックされた単体レーザビームを外部へ出射する。 In another preferred embodiment, the narrowband element also serves as an output mirror. In this case, the band narrowing element not only narrows the wavelength band but also functions as a main external resonator, and emits a single laser beam having a small divergence angle and a stable wavelength locked to the outside.
 別の好適な一態様においては、各々の発光口の中で、活性領域の上に重なって設けられる薄膜がいずれも誘導放出光に対して透過性または無反射性の特性を有する。この構成によれば、活性領域の上に誘導放出される光が相当の距離を隔てた外部の出力ミラーによって反射されるので、垂直方向から斜めにずれた(つまり拡がり角の大きい)誘導放出光を効果的に単体レーザビームから除くことができる。 In another preferred embodiment, any of the thin films provided on the active region in each of the light emitting openings has a property of being transmissive or non-reflective with respect to stimulated emission light. According to this configuration, the stimulated emission light on the active region is reflected by the external output mirror separated by a considerable distance, so that the stimulated emission light obliquely deviated from the vertical direction (that is, having a large spread angle). Can be effectively removed from the single laser beam.
 別の好適な一態様においては、カップリングユニットが、第1および第2の標準波長が互いにオフセットしている第1および第2のレーザビームを波長カップリングにより多重合成する波長カップリング素子を有する。あるいは、カップリングユニットが、第1および第2の標準波長が同一である第1および第2のレーザビームを偏光カップリングにより多重合成する偏光カップリング素子を有する。波長カップリング素子と偏光カップリング素子とを併用する構成も可能である。かかる構成により、合成レーザビームの高出力化に用いる面発光レーザの数を任意に増やし、面発光レーザのレーザ出力の大幅な向上を実現することができる。 In another preferred embodiment, the coupling unit includes a wavelength coupling element that multiplex-synthesizes the first and second laser beams having the first and second standard wavelengths offset from each other by wavelength coupling. . Alternatively, the coupling unit includes a polarization coupling element that multiplex-synthesizes the first and second laser beams having the same first and second standard wavelengths by polarization coupling. A configuration in which a wavelength coupling element and a polarization coupling element are used in combination is also possible. With this configuration, it is possible to arbitrarily increase the number of surface emitting lasers used for increasing the output of the synthetic laser beam, and to realize a significant improvement in the laser output of the surface emitting laser.
 本発明のレーザ装置によれば、上記のような構成および作用により、面発光レーザを用いて高出力および高品質のレーザビームを実現することができる。 According to the laser apparatus of the present invention, a high-power and high-quality laser beam can be realized using a surface emitting laser by the above-described configuration and operation.
本発明の一実施形態におけるレーザ加工装置の全体構成を示す図である。It is a figure which shows the whole structure of the laser processing apparatus in one Embodiment of this invention. 上記レーザ加工装置が備える面発光レーザの要部の外観構成を示す斜視図である。It is a perspective view which shows the external appearance structure of the principal part of the surface emitting laser with which the said laser processing apparatus is provided. 上記面発光レーザにおける発光面の二次元アレイを模式的に示す平面図である。It is a top view which shows typically the two-dimensional array of the light emission surface in the said surface emitting laser. 上記面発光レーザの構成を示す断面図である。It is sectional drawing which shows the structure of the said surface emitting laser. 上記レーザ加工装置において波長カップリング素子として用いられるダイクロイックミラーの波長-反射率特性を示す図である。It is a figure which shows the wavelength-reflectance characteristic of the dichroic mirror used as a wavelength coupling element in the said laser processing apparatus. 別の実施形態におけるレーザ加工装置の全体構成を示す図である。It is a figure which shows the whole structure of the laser processing apparatus in another embodiment. 別の実施形態におけるレーザ加工装置の要部の構成を示す図である。It is a figure which shows the structure of the principal part of the laser processing apparatus in another embodiment. 上記面発光レーザの構成の一変形例を示す断面図である。It is sectional drawing which shows the modification of a structure of the said surface emitting laser. 別の実施形態における面発光レーザの構成を示す断面図である。It is sectional drawing which shows the structure of the surface emitting laser in another embodiment.
 以下、添付図を参照して本発明の好適な実施形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[装置全体の構成]
 図1に、本発明の一実施形態におけるレーザ加工装置の構成を示す。このレーザ加工装置は、レーザ溶接、レーザマーキング、レーザ切断、レーザ穴あけ等の各種レーザ加工に適用可能なレーザ装置であり、複数(この例では2つ)の面発光レーザ(VCSEL)10A,10B、カップリングユニット14、ファイバ伝送系15、レーザ出射部16、ステージ18、制御部20等で構成されている。
[Configuration of the entire device]
In FIG. 1, the structure of the laser processing apparatus in one Embodiment of this invention is shown. This laser processing apparatus is a laser apparatus applicable to various types of laser processing such as laser welding, laser marking, laser cutting, and laser drilling, and a plurality (two in this example) of surface emitting lasers (VCSEL) 10A, 10B, The coupling unit 14, the fiber transmission system 15, the laser emission unit 16, the stage 18, the control unit 20, and the like are included.
 制御部20は、このレーザ加工装置の各部および全体の動作を制御する。特に、各々の面発光レーザ10A,10Bについては、制御部20が、個別のレーザ電源22A,22Bを通じてそれらのレーザ発振動作(連続発振、パルス発振等)を任意に制御できるようになっている。また、レーザ出射部16にガルバノスキャナ等のスキャニング機構が搭載される場合や、ステージ18にXYテーブル等の送り機構が搭載される場合には、制御部20が、レーザ発振動作に同期して、あるいは加工ポイントの位置合わせのために、それら運動機構の動作(スキャニング動作、ワーク送り動作)を制御するようになっている。制御部20には、マン・マシン・インタフェース用の入出力装置等(図示せず)も接続されている。 Control unit 20 controls each unit and the entire operation of the laser processing apparatus. In particular, for each of the surface emitting lasers 10A and 10B, the control unit 20 can arbitrarily control the laser oscillation operation (continuous oscillation, pulse oscillation, etc.) through the individual laser power sources 22A and 22B. Further, when a scanning mechanism such as a galvano scanner is mounted on the laser emission unit 16 or when a feed mechanism such as an XY table is mounted on the stage 18, the control unit 20 is synchronized with the laser oscillation operation, Alternatively, the operations of the motion mechanisms (scanning operation, workpiece feeding operation) are controlled for the alignment of the processing points. The control unit 20 is also connected with an input / output device (not shown) for man-machine interface.
[面発光レーザの概略的な構成および作用]
 図2に、面発光レーザ10A(10B)の要部の外観およびレーザ出射状態の様子を模式的に示す。面発光レーザ10A(10B)は、たとえば矩形の発光面24を有する板状の面発光レーザ素子(以下、「VCSEL素子」と称する。)26と、このVCSEL素子26の上方にその発光面24から適度な距離を置いて平行に配置される板状またはブロック状の出力ミラー28と、この出力ミラー28の上方に平行に配置される板状またはブロック状の狭帯域化素子29(図1、図4)とを有している。
[Schematic structure and operation of surface emitting laser]
FIG. 2 schematically shows the appearance of the main part of the surface emitting laser 10A (10B) and the state of the laser emission state. The surface emitting laser 10A (10B) includes, for example, a plate-like surface emitting laser element (hereinafter referred to as “VCSEL element”) 26 having a rectangular light emitting surface 24, and a light emitting surface 24 above the VCSEL element 26. A plate-like or block-like output mirror 28 arranged in parallel at an appropriate distance, and a plate-like or block-like narrow-band narrowing element 29 arranged in parallel above the output mirror 28 (FIG. 1, FIG. 4).
 VCSEL素子26の発光面24には、図3に示すように、二次元方向に離散的またはアレイ状に配置された多数の発光口30が設けられている。各発光口30の口径φは、通常のものより格段に大きく、たとえば100~1000μmに選ばれる。発光口30の数は、図3では簡略化のため16(4×4)個で図示しているが、実際には数100個以上あるいは1000個以上である。 As shown in FIG. 3, the light emitting surface 24 of the VCSEL element 26 is provided with a number of light emitting ports 30 arranged in a two-dimensional direction discretely or in an array. The diameter φ of each light emitting port 30 is much larger than a normal one, and is selected from 100 to 1000 μm, for example. In FIG. 3, the number of the light emitting openings 30 is shown as 16 (4 × 4) for simplification, but is actually several hundred or more or 1000 or more.
 発光面24の各発光口30より誘導放出される光SBのうち、VCSEL素子26に内蔵されている反射鏡34(図4)と外部の出力ミラー28ないし狭帯域化素子29との間で反射を繰り返して共振増幅されたものが、1本の単体レーザビームLBとして出力ミラー28の外へ取り出される。そして、出力ミラー28の外へ同時に取り出される単体レーザビームLBが全部合わさって、一束のレーザビームSLB(SLB)が構成される。 Of the light SB stimulated and emitted from each light emitting port 30 of the light emitting surface 24, it is reflected between the reflecting mirror 34 (FIG. 4) built in the VCSEL element 26 and the external output mirror 28 or the band narrowing element 29. Is amplified by resonance amplification and is taken out of the output mirror 28 as a single laser beam LB. Then, all the single laser beams LB taken out simultaneously from the output mirror 28 are combined to form a bundle of laser beams SLB A (SLB B ).
 この実施形態では、出力ミラー28の外に得られる各単体レーザビームLBが非常に小さな拡がり角を有しており、発光口30の口径φを相当大きなサイズ(100~1000μm)に選び、かつ密度を高くしても、一束のレーザビームSLB(SLB)内における単体レーザビームLB同士の重なり合いまたは相互干渉を極力少なくして、ビーム品質を向上させている。 In this embodiment, each single laser beam LB obtained outside the output mirror 28 has a very small divergence angle, the diameter φ of the light emitting aperture 30 is selected to be a considerably large size (100 to 1000 μm), and the density Is increased, the overlap or mutual interference of the single laser beams LB in the bundle of laser beams SLB A (SLB B ) is reduced as much as possible to improve the beam quality.
[面発光レーザの詳細な構成および作用]
 図4に、面発光レーザ10A(10B)の内部の構成(断面構成)を示す。VCSEL素子26は、たとえばGaAs系の半導体基板32を基材とし、この半導体基板32の上に通常の半導体プロセスにより多層反射鏡たとえばDBR(Distributed Bragg Reflector)34、単層または多層の下部半導体層36、活性層38、単層または多層の上部半導体層40および上部電極42を順に重ねて形成し、半導体基板32の裏面に下部電極44を形成している。通常、下部電極44は、絶縁体(図示せず)を介して冷却用のヒートシンク(図示せず)に結合される。
[Detailed configuration and operation of surface emitting laser]
FIG. 4 shows an internal configuration (cross-sectional configuration) of the surface emitting laser 10A (10B). The VCSEL element 26 includes, for example, a GaAs-based semiconductor substrate 32 as a base material, and a multilayer reflector such as a DBR (Distributed Bragg Reflector) 34, a single layer or a multilayer lower semiconductor layer 36 is formed on the semiconductor substrate 32 by a normal semiconductor process. The active layer 38, the single-layer or multilayer upper semiconductor layer 40 and the upper electrode 42 are sequentially stacked, and the lower electrode 44 is formed on the back surface of the semiconductor substrate 32. Usually, the lower electrode 44 is coupled to a cooling heat sink (not shown) through an insulator (not shown).
 下部半導体層36および上部半導体層40にはキャリア注入層が含まれている。さらに、上部半導体層40には反射防止膜も含まれている。この実施形態では、下部半導体層36および上部半導体層40を構成している薄膜は、いずれも発振波長の光に対して無反射性または透過性の特性を有している。上部電極42には、発光口30を形成する開口部42aが形成されている。活性層38の発光口30の直下に位置する部分が活性領域38aを形成する。 The lower semiconductor layer 36 and the upper semiconductor layer 40 include a carrier injection layer. Further, the upper semiconductor layer 40 also includes an antireflection film. In this embodiment, the thin films constituting the lower semiconductor layer 36 and the upper semiconductor layer 40 are both non-reflective or transmissive with respect to light having an oscillation wavelength. The upper electrode 42 is formed with an opening 42 a that forms the light emitting port 30. A portion of the active layer 38 located immediately below the light emitting opening 30 forms an active region 38a.
 この面発光レーザ10A(10B)にレーザ発振を行わせるときは、レーザ電源22A(22B)より上部電極42と下部電極44との間に駆動電圧Eが印加される。これにより、下部半導体層36および上部半導体層40を介して活性層38にキャリアが注入され、活性領域38aより所定の標準波長λと一致または近似する光SBが発光口30の外へ誘導放出される。 When the surface emitting laser 10A (10B) performs laser oscillation, a driving voltage E is applied between the upper electrode 42 and the lower electrode 44 from the laser power source 22A (22B). As a result, carriers are injected into the active layer 38 via the lower semiconductor layer 36 and the upper semiconductor layer 40, and light SB that matches or approximates a predetermined standard wavelength λ S is stimulated and emitted from the active region 38 a to the outside of the light emitting opening 30. Is done.
 ここで、該標準波長λおよびその近辺の波長に対して、光共振器を構成するために、VCSEL素子26内部の多層反射鏡34は略100%の反射率を有し、外部の出力ミラー28はたとえば1~90%、好ましくは2~30%の反射率を有している。活性領域38aより誘導放出される光SBのうち、多層反射鏡34と出力ミラー28ないし狭帯域化素子29との間で反射を繰り返して共振増幅されたものが、単体レーザビームLBとして出力ミラー28の外へ取り出される。 Here, in order to construct an optical resonator for the standard wavelength λ S and its neighboring wavelengths, the multilayer reflecting mirror 34 inside the VCSEL element 26 has a reflectance of approximately 100%, and an external output mirror For example, 28 has a reflectance of 1 to 90%, preferably 2 to 30%. Of the light SB stimulated and emitted from the active region 38a, the light SB that has been repeatedly reflected and amplified between the multilayer reflecting mirror 34 and the output mirror 28 or the band narrowing element 29 is resonantly amplified as a single laser beam LB. Is taken out.
 この場合、図4に示すように、VCSEL素子26の発光口30からVCSEL素子26の基板面と垂直またはそれに近い角度で出たものは、実線SBで示すように、出力ミラー28の対向面(下面)で略垂直に反射して発光口30の中に戻ってくる。しかし、発光口30から一定角度以上拡がって出たものは、一点鎖線SB’で示すように、出力ミラー28の対向面(下面)で斜めに反射して、発光口30の中に戻ってこない。これにより、VCSEL素子26の基板面に対して垂直またはそれに近い角度で伝搬する光SBが多層反射鏡34と出力ミラー28ないし狭帯域化素子29との間で反射を繰り返して共振増幅されるので、拡がり角の小さな単体レーザビームLBが出力ミラー28の外に取り出される。 In this case, as shown in FIG. 4, the light emitted from the light emitting port 30 of the VCSEL element 26 at an angle perpendicular to or close to the substrate surface of the VCSEL element 26 is the opposite surface of the output mirror 28 (shown by the solid line SB). The light is reflected substantially vertically at the lower surface and returns to the light emitting opening 30. However, the light emitted from the light emitting opening 30 by more than a certain angle is reflected obliquely by the facing surface (lower surface) of the output mirror 28 and does not return into the light emitting opening 30 as indicated by a one-dot chain line SB ′. . As a result, the light SB propagating perpendicularly or at an angle close to the substrate surface of the VCSEL element 26 is repeatedly reflected and amplified between the multilayer reflecting mirror 34 and the output mirror 28 or the narrowband element 29. The single laser beam LB having a small divergence angle is taken out of the output mirror 28.
 このように、この実施形態においては、VCSEL素子26の活性領域38aの上に誘導放出される光SBが相当の距離を隔てた外部の出力ミラー28によって反射されるので、垂直方向から斜めにずれた(つまり拡がり角の大きい)誘導放出光SB’を効果的に単体レーザビームから除くことが可能であり、これによって出力ミラー28の外に得られる単体レーザビームLBの拡がり角を効果的に小さくすることができる。 As described above, in this embodiment, the light SB stimulated and emitted on the active region 38a of the VCSEL element 26 is reflected by the external output mirror 28 with a considerable distance, so that it is obliquely shifted from the vertical direction. It is possible to effectively remove the stimulated emission light SB ′ (that is, having a large divergence angle) from the single laser beam, thereby effectively reducing the divergence angle of the single laser beam LB obtained outside the output mirror 28. can do.
 さらに、この実施形態では、単体レーザビームLBの拡がり角を一層小さくするための手段として、コリメータを好適に備える。このために、たとえば、図4に示すように、出力ミラー28の発光口30と対向する部位の上面に球面状の凸部28aを形成して、出力ミラー28にコリメートレンズの機能を持たせてよい。あるいは、図示省略するが、出力ミラー28の外に、たとえば出力ミラー28と狭帯域化素子29との間、あるいは狭帯域化素子29の外に独立のコリメートレンズを配置する構成も可能である。 Furthermore, in this embodiment, a collimator is suitably provided as means for further reducing the divergence angle of the single laser beam LB. For this purpose, for example, as shown in FIG. 4, a spherical convex portion 28a is formed on the upper surface of the portion of the output mirror 28 facing the light emitting port 30, so that the output mirror 28 functions as a collimator lens. Good. Alternatively, although not shown, a configuration in which an independent collimator lens is disposed outside the output mirror 28, for example, between the output mirror 28 and the band narrowing element 29 or outside the band narrowing element 29 is also possible.
 狭帯域化素子29は、たとえばVBG(Volume Bragg Grating)またはVHG(Volume Holographic Grating)からなり、外部共振器としても機能し、面発光レーザ10A(10B)より出射される単体のレーザビームLBないし一束のレーザビームSLB(SLB)の波長幅を十分狭い帯域λSA±Δλ(λSB±Δλ)に狭帯域化し、かつ中心波長のバラツキを抑えて標準波長λSA(λSB)付近にロックする。ここで、一方の面発光レーザ10におけるレーザ発振の標準波長λSAと、他方の面発光レーザ10Bにおけるレーザ発振の標準波長λSBとの間には、それぞれの波長幅が重ならないように、一定のオフセットλが設けられている(図5)。一例として、λSA=950nm、λSB=960nm、Δλ,Δλ=0.1~3nm、λ=10nmである。 The band-narrowing element 29 is made of, for example, VBG (Volume Bragg Grating) or VHG (Volume Holographic Grating), functions as an external resonator, and is a single laser beam LB or one laser beam emitted from the surface emitting laser 10A (10B). The wavelength width of the bundle laser beam SLB A (SLB B ) is narrowed to a sufficiently narrow band λ SA ± Δλ ASB ± Δλ B ), and the variation of the center wavelength is suppressed, and the standard wavelength λ SASB ) Lock nearby. Here, the standard wavelength λ SA of the laser oscillation in one surface emitting laser 10 and the standard wavelength λ SB of the laser oscillation in the other surface emitting laser 10B are constant so as not to overlap each other. Offset λ K is provided (FIG. 5). As an example, λ SA = 950 nm, λ SB = 960 nm, Δλ A , Δλ B = 0.1 to 3 nm, and λ K = 10 nm.
 この実施形態によれば、VCSEL素子26の発光口30が大きな口径(100~1000μm)を有し、しかもレーザ発振の波長が狭帯域で安定にロックされるので、100mW以上の高出力の単体レーザビームLBを実現することが可能である。したがって、VCSEL素子26の1チップ上にそのような大きな口径の発光口30をたとえば1個当たり100mWで1000個以上設けることにより、100W以上のレーザ出力を有し、かつ高ビーム品質の一束のレーザビームSLB(SLB)を得ることができる。 According to this embodiment, the light emitting aperture 30 of the VCSEL element 26 has a large aperture (100 to 1000 μm), and the wavelength of the laser oscillation is stably locked in a narrow band. It is possible to realize the beam LB. Therefore, by providing 1000 or more light emitting ports 30 with such a large aperture, for example, at 100 mW per chip on one chip of the VCSEL element 26, a laser output of 100 W or more and a bundle of high beam quality can be obtained. A laser beam SLB A (SLB B ) can be obtained.
[装置全体の作用]
 この実施形態においては、上記のように、VCSEL素子26、出力ミラー28および狭帯域化素子29で構成される一対の面発光レーザ10A,10Bにより、大きなビーム径を有しつつ拡がり角の小さい狭帯域化された多数の高出力単体レーザビームLBからなり、それぞれの波長が相互に重なり合わない一束のレーザビームSLB,SLBが出力される。
[Operation of the entire device]
In this embodiment, as described above, the pair of surface emitting lasers 10A and 10B including the VCSEL element 26, the output mirror 28, and the band narrowing element 29 have a large beam diameter and a narrow divergence angle. A bundle of laser beams SLB A and SLB B which are composed of a number of high-power single laser beams LB and whose wavelengths do not overlap each other are output.
 図1において、一方の面発光レーザ10Aより出力される一束のレーザビームSLBと,他方の面発光レーザ10Bより出力される一束のレーザビームSLBとは、同一平面上で互いに直交してカップリングユニット14に入射する。このカップリングユニット14は、図5の曲線Mで示すような反射率特性を有するダイクロイックミラー50からなり、一方のレーザビームSLBを透過させるとともに、他方のレーザビームSLBを直角に折り返してレーザビームSLBの進行する方向に反射する。ここで、両レーザビームSLB,SLBはそれぞれの波長が重なり合わないので、波長カップリングによって空間的に多重合成される。特に、双方の面発光レーザ10A,10Bにおいて狭帯域化素子29により両レーザビームSLB,SLBの波長をそれぞれの標準波長λSA,λSB付近にロックして狭帯域化しているので、ダイクロイックミラー50において安定かつ高精度の波長カップリングを行うことかできる。 In FIG. 1, a bundle of laser beams SLB A output from one surface emitting laser 10A and a bundle of laser beams SLB B output from the other surface emitting laser 10B are orthogonal to each other on the same plane. Then, the light enters the coupling unit 14. The coupling unit 14 is composed of a dichroic mirror 50 having reflectivity characteristics as shown by a curve M in FIG. 5 and transmits one laser beam SLB A while folding the other laser beam SLB B at a right angle. Reflected in the traveling direction of the beam SLB A. Here, since the wavelengths of the laser beams SLB A and SLB B do not overlap, they are spatially multiplexed and synthesized by wavelength coupling. In particular, in both surface emitting lasers 10A and 10B, the narrowband element 29 narrows the wavelength of both laser beams SLB A and SLB B by locking them in the vicinity of the standard wavelengths λ SA and λ SB. The mirror 50 can perform stable and highly accurate wavelength coupling.
 ダイクロイックミラー50で両レーザビームSLB,SLBの波長カップリングによって得られた合成レーザビームSLBABは、入射ユニット(集光レンズ)52および光ファイバ54を有するファイバ伝送系15を介してレーザ出射部16に伝送され、レーザ出射部16内の集光レンズ(図示せず)によりステージ18上の被加工物Wに集光照射される。 A combined laser beam SLB AB obtained by wavelength coupling of both laser beams SLB A and SLB B by the dichroic mirror 50 is emitted through a fiber transmission system 15 having an incident unit (condensing lens) 52 and an optical fiber 54. The workpiece W on the stage 18 is focused and irradiated by a condenser lens (not shown) in the laser emitting unit 16.
 このレーザ加工装置は、高出力および高ビーム品質の合成レーザビームSLBABを被加工物Wに集光照射することにより、レーザ溶接、レーザマーキング、レーザ切断、レーザ穴あけ等の各種レーザ加工を所望の仕様で良好に行うことができる。 This laser processing apparatus collects and irradiates a workpiece W with a high-power and high-beam quality synthetic laser beam SLB AB, thereby performing various laser processing such as laser welding, laser marking, laser cutting, and laser drilling. Can be done well by specification.
[他の実施形態又は変形例]
 本発明の技術思想によれば、上述した実施形態の延長あるいは変形として、種種の他の実施形態が可能である。
[Other Embodiments or Modifications]
According to the technical idea of the present invention, various other embodiments are possible as extensions or modifications of the above-described embodiments.
 図6に示す実施形態は、カップリングユニット14として、波長カップリング素子50の代わりに偏光カップリング素子56を用いる構成例を示す。 The embodiment shown in FIG. 6 shows a configuration example in which a polarization coupling element 56 is used instead of the wavelength coupling element 50 as the coupling unit 14.
 この場合、一方の面発光レーザ10Aより標準波長λSAを有する一束のレーザビームSLBがP偏光で出力され、他方の面発光レーザ10Bより標準波長λを有する一束のレーザビームSLBがS偏光で出力される。ここで、標準波長λSAと標準波長λSBは同じ値に選定される。図示省略するが、P偏光またはS偏光の作成に1/2波長板を用いてよい。偏光カップリング素子56は、たとえば偏光ビームスプリッタからなり、互いに直交して入射するレーザビームSLB,SLBを偏光カップリングによって空間的に多重合成して、直進する側のレーザビームSLBの進行方向に標準波長λSA(λSB)を有する合成レーザビームSLBABを出射する。 In this case, a bundle of laser beams SLB A having a standard wavelength λ SA is output as P-polarized light from one surface emitting laser 10A, and a bundle of laser beams SLB B having a standard wavelength λ B is output from the other surface emitting laser 10B. Is output as S-polarized light. Here, the standard wavelength λ SA and the standard wavelength λ SB are selected to be the same value. Although not shown, a half-wave plate may be used to create P-polarized light or S-polarized light. The polarization coupling element 56 is composed of, for example, a polarization beam splitter, spatially multiplex-combines laser beams SLB A and SLB B incident perpendicularly to each other by polarization coupling, and travel of the laser beam SLB A traveling straight ahead. A synthetic laser beam SLB AB having a standard wavelength λ SASB ) in the direction is emitted.
 図7に示す実施形態は、カップリングユニット14において波長カップリング素子50と偏光カップリング素子56とを併用し、合成レーザビームの高出力化に用いる面発光レーザ(VCSEL)10の数を大幅(図示の例は6個)に増やしている。 The embodiment shown in FIG. 7 uses a combination of the wavelength coupling element 50 and the polarization coupling element 56 in the coupling unit 14 and greatly increases the number of surface emitting lasers (VCSEL) 10 used for increasing the output of the combined laser beam ( In the illustrated example, the number is increased to 6).
 この場合、6個の面発光レーザ(VCSEL)10A~10Fは、3組のペア(10A/10B)、(10C/10D)、(10E/10F)に分割される。第1組のペア(10A/10B)では、一方の面発光レーザ10Aより標準波長λSAを有する一束のレーザビームSLBがP偏光で出力され、他方の面発光レーザ10Bより標準波長λSB(ただし、λSB=λSA)を有する一束のレーザビームSLBがS偏光で出力される。そして、両レーザビームSLB,SLBが互いに直交して第1の偏光カップリング素子56(1)に入射し、そこで偏光カップリングされ、標準波長λSB(λSB)を有する合成レーザビームSLBABが得られる。 In this case, the six surface emitting lasers (VCSEL) 10A to 10F are divided into three pairs (10A / 10B), (10C / 10D), and (10E / 10F). In the first pair (10A / 10B), a bundle of laser beams SLB A having a standard wavelength λ SA is output from one surface emitting laser 10A as P-polarized light, and a standard wavelength λ SB is output from the other surface emitting laser 10B. A bundle of laser beams SLB B having (λ SB = λ SA ) is output as S-polarized light. The two laser beams SLB A and SLB B are incident on the first polarization coupling element 56 (1) orthogonally to each other, where they are polarization-coupled, and the combined laser beam SLB having the standard wavelength λ SBSB ). AB is obtained.
 同様に、第2組のペア(10C/10D)では、一方の面発光レーザ10Cより標準波長λSC(ただし、λSC=λSA+λK1)を有する一束のレーザビームSLBがP偏光で出力され、他方の面発光レーザ10Dより標準波長λSD(ただし、λSD=λSC)を有する一束のレーザビームSLBがS偏光で出力される。そして、両レーザビームSLB,SLBが互いに直交して第2の偏光カップリング素子56(2)に入射し、そこで偏光カップリングされ、標準波長λSC(λSD)を有する合成レーザビームSLBCDが得られる。また、第3組のペア(10E/10F)では、一方の面発光レーザ10Eより標準波長λSE(ただし、λSE=λSC+λK2)を有する一束のレーザビームSLBがP偏光で出力され、他方の面発光レーザ10Fより標準波長λSF(ただし、λSF=λSE)を有する一束のレーザビームSLBがS偏光で出力される。そして、両レーザビームSLB,SLBが互いに直交して第3の偏光カップリング素子56(3)に入射し、そこで偏光カップリングされ、標準波長λSE(λSF)を有する合成レーザビームSLBEFが得られる。 Similarly, in the second pair (10C / 10D), a bundle of laser beams SLB C having a standard wavelength λ SC (where λ SC = λ SA + λ K1 ) is P-polarized light than the surface emitting laser 10C. A bundle of laser beams SLB D having a standard wavelength λ SD (where λ SD = λ SC ) is output as S-polarized light from the other surface emitting laser 10D. Then, both laser beams SLB C and SLB D are orthogonally incident on the second polarization coupling element 56 (2), where they are polarization-coupled, and the combined laser beam SLB having the standard wavelength λ SCSD ). CD is obtained. In the third pair (10E / 10F), a bundle of laser beams SLB E having a standard wavelength λ SE (where λ SE = λ SC + λ K2 ) is output as P-polarized light from one surface emitting laser 10E. Then, a bundle of laser beams SLB F having a standard wavelength λ SF (where λ SF = λ SE ) is output as S-polarized light from the other surface emitting laser 10F. Then, both laser beams SLB E and SLB F are orthogonally incident on the third polarization coupling element 56 (3), where they are polarization-coupled, and the combined laser beam SLB having the standard wavelength λ SESF ). EF is obtained.
 第1の偏光カップリング素子56(1)より出射された標準波長λSA(λSB)を有する合成レーザビームSLBABと、第2の偏光カップリング素子56(2)より出射された標準波長λSC(λSD)を有する合成レーザビームSLBCDは、互いに直交して第1の波長カップリング素子50(1)に入射して、そこで波長カップリングされ、2種類の標準波長λSA(λSB),λSC(λSD)を有する合成レーザビームSLBABCDが得られる。 The combined laser beam SLB AB having the standard wavelength λ SASB ) emitted from the first polarization coupling element 56 (1) and the standard wavelength λ emitted from the second polarization coupling element 56 (2). The synthesized laser beam SLB CD having SCSD ) is incident on the first wavelength coupling element 50 (1) orthogonally to each other, where it is wavelength-coupled and two kinds of standard wavelengths λ SASB ), Λ SCSD ), a combined laser beam SLB ABCD is obtained.
 この合成レーザビームSLBABCDは、第2の波長カップリング素子50(2)に入射し、それと直交する第3組のペア(10E/10F)からの標準波長λSE(λSF)を有する合成レーザビームSLBEFと波長カップリングされる。こうして、第2の波長カップリング素子50(2)より、6個の面発光レーザ10A~10Fのレーザ出力が全部足し合わさった3種類の標準波長λSA(λSB),λSC(λSD),λSE(λSF)を有する高出力の合成レーザビームSLBABCDEFが後段のレーザ光学系(図示せず)に向けて出射される。 This synthetic laser beam SLB ABCD is incident on the second wavelength coupling element 50 (2) and has a standard wavelength λ SESF ) from a third pair (10E / 10F) orthogonal thereto. Wavelength coupled with the beam SLB EF . In this way, the three standard wavelengths λ SASB ) and λ SCSD ) are obtained by adding all the laser outputs of the six surface emitting lasers 10A to 10F from the second wavelength coupling element 50 (2). , Λ SESF ) and a high-power synthetic laser beam SLB ABCDEF are emitted toward a subsequent laser optical system (not shown).
 図8に示す実施形態は、面発光レーザ(VCSEL)10において、出力ミラー28を、VCSEL素子26の各々の発光口30と対応する位置に個別に配置する構成を特徴としている。この場合も、単体レーザビームLBの拡がり角を可及的に小さくするために、個々の出力ミラー28にコリメートレンズの機能を持たせてもよく、あるいは個々の出力ミラー28の後段に独立したコリメートレンズ(図示せず)を配置してよい。 The embodiment shown in FIG. 8 is characterized in that, in the surface emitting laser (VCSEL) 10, the output mirror 28 is individually arranged at a position corresponding to each light emitting port 30 of the VCSEL element 26. Also in this case, in order to make the divergence angle of the single laser beam LB as small as possible, each output mirror 28 may have a function of a collimator lens, or an independent collimator in the subsequent stage of each output mirror 28. A lens (not shown) may be arranged.
 図9に示す実施形態は、面発光レーザ(VCSEL)10において、狭帯域化素子29に出力ミラー28を兼用させる構成を特徴としている。すなわち、狭帯域化素子29は、波長の狭帯域化だけでなく、外部共振器としても機能するので、これを出力ミラーに利用することができる。この場合も、単体レーザビームLBの拡がり角を可及的に小さくするために、狭帯域化素子29の後段にコリメートレンズ(図示せず)を配置することができる。 The embodiment shown in FIG. 9 is characterized in that, in the surface emitting laser (VCSEL) 10, the narrowing element 29 is also used as the output mirror 28. That is, the band narrowing element 29 functions not only as a wavelength band narrowing but also as an external resonator, and can be used as an output mirror. In this case as well, a collimating lens (not shown) can be disposed downstream of the band-narrowing element 29 in order to reduce the divergence angle of the single laser beam LB as much as possible.
 なお、上記実施形態は、上述したように、上部半導体層40に反射防止膜を設け、さらには上部半導体層40の各層を無反射性または透過性とするする構成を好適に採る。しかし、一変形例または一構成例として、上部半導体層40の中に反射性の膜を設けることも可能である。 Note that, as described above, the above-described embodiment preferably employs a configuration in which an antireflection film is provided on the upper semiconductor layer 40 and each layer of the upper semiconductor layer 40 is made non-reflective or transmissive. However, a reflective film can be provided in the upper semiconductor layer 40 as a modification or a configuration example.
 また、本発明のレーザ装置は、上記実施形態のようなレーザ加工装置に適用して特に大なる利点を有するが、たとえばレーザ医療装置等の他のアプリケーションにも適用可能である。 Further, the laser apparatus of the present invention has a particularly great advantage when applied to the laser processing apparatus as in the above embodiment, but can also be applied to other applications such as a laser medical apparatus.
 10,10A~10F  面発光レーザ(VCSEL)
 14  カップリングユニット
 15  ファイバ伝統系
 16  レーザ出射部
 20  制御部
 26  面発光レーザ素子(VCSEL素子)
 28  出力ミラー
 29  狭帯域化素子(VBG/VHG)
 30  発光口
 32  半導体基板
 38a 活性領域
 42a 開口部
 50,50(1),50(2)  波長カップリング素子
 56,56(1),56(2),56(3)  偏光カップリング素子
10, 10A-10F Surface emitting laser (VCSEL)
14 Coupling unit 15 Fiber traditional system 16 Laser emitting unit 20 Control unit 26 Surface emitting laser element (VCSEL element)
28 Output Mirror 29 Narrow Bandwidth Element (VBG / VHG)
DESCRIPTION OF SYMBOLS 30 Light emission port 32 Semiconductor substrate 38a Active region 42a Opening part 50, 50 (1), 50 (2) Wavelength coupling element 56, 56 (1), 56 (2), 56 (3) Polarization coupling element

Claims (10)

  1.  第1の標準波長に一致または近似する波長を有する一束の第1のレーザビームを出射する第1の面発光レーザと、
     第2の標準波長に一致または近似する波長を有する一束の第2のレーザビームを出射する第2の面発光レーザと、
     前記第1の面発光レーザからの前記第1のレーザビームと前記第2の面発光レーザからの前記第2のレーザビームとを空間的に多重合成して、合成レーザビームを出射するカップリングユニットと
     を有し、
     前記第1および第2の面発光レーザの各々は、
     半導体基板と、この半導体基板上に形成された活性領域と、その活性領域の上に二次元的に離散して設けられた多数の発光口とを有し、各々の前記発光口より前記半導体基板の基板面に対して垂直または斜めの方向に所定の標準波長に一致または近似する波長を有する光を誘導放出する面発光レーザ素子と、
     各々の前記発光口より誘導放出される光を共振増幅して単体のレーザビームを取り出すために、前記面発光レーザ素子の発光口から離間してそれと対向する位置に配置される出力ミラーと
     を有する、レーザ装置。
    A first surface emitting laser that emits a bundle of first laser beams having a wavelength that matches or approximates a first standard wavelength;
    A second surface emitting laser that emits a bundle of second laser beams having a wavelength that matches or approximates a second standard wavelength;
    A coupling unit that emits a combined laser beam by spatially multiplexing and combining the first laser beam from the first surface emitting laser and the second laser beam from the second surface emitting laser. And
    Each of the first and second surface emitting lasers includes:
    A semiconductor substrate; an active region formed on the semiconductor substrate; and a plurality of light emitting apertures provided two-dimensionally and discretely on the active region. A surface emitting laser element that stimulates and emits light having a wavelength that matches or approximates a predetermined standard wavelength in a direction perpendicular or oblique to the substrate surface of
    An output mirror disposed at a position spaced apart from the light emitting port of the surface emitting laser element and opposed thereto to resonately amplify light emitted from each of the light emitting ports and extract a single laser beam. , Laser equipment.
  2.  前記第1の面発光レーザは、前記単体のレーザビームの波長を前記第1の標準波長付近に狭帯域化する第1の狭帯域化素子を有し、
     前記第2の面発光レーザは、前記単体のレーザビームの波長を前記第2の標準波長付近に狭帯域化する第2の狭帯域化素子を有する、
     請求項1に記載のレーザ装置。
    The first surface-emitting laser has a first narrowband element that narrows the wavelength of the single laser beam in the vicinity of the first standard wavelength;
    The second surface-emitting laser has a second band-narrowing element that narrows the wavelength of the single laser beam near the second standard wavelength.
    The laser device according to claim 1.
  3.  前記第1および第2の狭帯域化素子は、前記出力ミラーとは独立に設けられる、請求項2に記載のレーザ装置。 3. The laser apparatus according to claim 2, wherein the first and second band narrowing elements are provided independently of the output mirror.
  4.  前記第1および第2の狭帯域化素子は、前記出力ミラーを兼用する、請求項2に記載のレーザ装置。 3. The laser device according to claim 2, wherein the first and second narrowband elements also serve as the output mirror.
  5.  各々の前記発光口の中において、前記活性領域の上に重なって設けられる薄膜はいずれも前記誘導放出される光に対して透過性または無反射性の特性を有する、請求項1に記載のレーザ装置。 2. The laser according to claim 1, wherein in each of the light emitting apertures, any thin film provided on the active region has a property of being transmissive or non-reflective with respect to the stimulated emission light. apparatus.
  6.  前記出力ミラーは、前記単体のレーザビームをコリメートするためのレンズ機能を有する、請求項1に記載のレーザ装置。 The laser device according to claim 1, wherein the output mirror has a lens function for collimating the single laser beam.
  7.  前記出力ミラーから独立して、前記単体のレーザビームをコリメートするための光学レンズが設けられる、請求項1に記載のレーザ装置。 The laser device according to claim 1, further comprising an optical lens for collimating the single laser beam independently of the output mirror.
  8.  前記カップリングユニットは、前記第1のレーザビームと前記第2のレーザビームとを波長カップリングにより多重合成する波長カップリング素子を有する、請求項1に記載のレーザ装置。 The laser device according to claim 1, wherein the coupling unit includes a wavelength coupling element that multiplex-synthesizes the first laser beam and the second laser beam by wavelength coupling.
  9.  前記カップリングユニットは、前記第1のレーザビームと前記第2のレーザビームとを偏光カップリングにより多重合成する偏光カップリング素子を有する、請求項1に記載のレーザ装置。 The laser device according to claim 1, wherein the coupling unit includes a polarization coupling element that multiplex-synthesizes the first laser beam and the second laser beam by polarization coupling.
  10.  前記カップリングユニットより出射される前記合成レーザビームを光ファイバに通して伝送するためのファイバ伝送系と、
     前記光ファイバの他端より取り出される前記合成レーザビームを被処理体に向けて集光照射するレーザ出射部と
     を有する請求項1に記載のレーザ装置。
    A fiber transmission system for transmitting the synthetic laser beam emitted from the coupling unit through an optical fiber;
    The laser apparatus according to claim 1, further comprising: a laser emitting unit that collects and irradiates the synthetic laser beam extracted from the other end of the optical fiber toward the object to be processed.
PCT/JP2017/000414 2016-01-14 2017-01-10 Laser device WO2017122611A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017561608A JP6522166B2 (en) 2016-01-14 2017-01-10 Laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016005027 2016-01-14
JP2016-005027 2016-01-14

Publications (1)

Publication Number Publication Date
WO2017122611A1 true WO2017122611A1 (en) 2017-07-20

Family

ID=59311017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000414 WO2017122611A1 (en) 2016-01-14 2017-01-10 Laser device

Country Status (3)

Country Link
JP (1) JP6522166B2 (en)
TW (1) TW201736887A (en)
WO (1) WO2017122611A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021118271A (en) * 2020-01-27 2021-08-10 パナソニックIpマネジメント株式会社 Laser oscillator and laser processing method
WO2021172350A1 (en) * 2020-02-26 2021-09-02 ヌヴォトンテクノロジージャパン株式会社 Light source module, processing machine, and processing method
CN113555772A (en) * 2020-04-23 2021-10-26 普罗科技有限公司 Flip chip bonding apparatus using vertical cavity surface emitting laser element
JP7098090B1 (en) * 2022-01-28 2022-07-08 三菱電機株式会社 Laser equipment and laser processing machine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119101A (en) * 1999-10-20 2001-04-27 Mitsubishi Electric Corp Laser device and laser beam machining device using the same
JP2002026452A (en) * 2000-07-12 2002-01-25 Toyota Central Res & Dev Lab Inc Surface-emitting light source, method of manufacturing thereof, and light source for laser processing apparatus
US7006549B2 (en) * 2003-06-11 2006-02-28 Coherent, Inc. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
JP2006343712A (en) * 2005-05-12 2006-12-21 Seiko Epson Corp Light source device, scanning display device and projector
JP2007158347A (en) * 2005-12-05 2007-06-21 Osram Opto Semiconductors Gmbh Semiconductor element and laser device
JP2009094186A (en) * 2007-10-05 2009-04-30 Seiko Epson Corp Light source device, illumination device, monitor device, and image display device
JP2009152524A (en) * 2007-11-27 2009-07-09 Seiko Epson Corp Light source device, lighting device, monitoring device, and image display apparatus
JP2011520292A (en) * 2008-05-08 2011-07-14 オクラロ フォトニクス インコーポレイテッド Method and device for high brightness diode output
JP2015115377A (en) * 2013-12-10 2015-06-22 株式会社リコー Compound semiconductor device, light source device, laser device and compound semiconductor device manufacturing method
JP2015191977A (en) * 2014-03-27 2015-11-02 ウシオ電機株式会社 Semiconductor laser device and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001119101A (en) * 1999-10-20 2001-04-27 Mitsubishi Electric Corp Laser device and laser beam machining device using the same
JP2002026452A (en) * 2000-07-12 2002-01-25 Toyota Central Res & Dev Lab Inc Surface-emitting light source, method of manufacturing thereof, and light source for laser processing apparatus
US7006549B2 (en) * 2003-06-11 2006-02-28 Coherent, Inc. Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
JP2006343712A (en) * 2005-05-12 2006-12-21 Seiko Epson Corp Light source device, scanning display device and projector
JP2007158347A (en) * 2005-12-05 2007-06-21 Osram Opto Semiconductors Gmbh Semiconductor element and laser device
JP2009094186A (en) * 2007-10-05 2009-04-30 Seiko Epson Corp Light source device, illumination device, monitor device, and image display device
JP2009152524A (en) * 2007-11-27 2009-07-09 Seiko Epson Corp Light source device, lighting device, monitoring device, and image display apparatus
JP2011520292A (en) * 2008-05-08 2011-07-14 オクラロ フォトニクス インコーポレイテッド Method and device for high brightness diode output
JP2015115377A (en) * 2013-12-10 2015-06-22 株式会社リコー Compound semiconductor device, light source device, laser device and compound semiconductor device manufacturing method
JP2015191977A (en) * 2014-03-27 2015-11-02 ウシオ電機株式会社 Semiconductor laser device and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021118271A (en) * 2020-01-27 2021-08-10 パナソニックIpマネジメント株式会社 Laser oscillator and laser processing method
WO2021172350A1 (en) * 2020-02-26 2021-09-02 ヌヴォトンテクノロジージャパン株式会社 Light source module, processing machine, and processing method
CN113555772A (en) * 2020-04-23 2021-10-26 普罗科技有限公司 Flip chip bonding apparatus using vertical cavity surface emitting laser element
JP7098090B1 (en) * 2022-01-28 2022-07-08 三菱電機株式会社 Laser equipment and laser processing machine
WO2023144995A1 (en) * 2022-01-28 2023-08-03 三菱電機株式会社 Laser apparatus and laser processing machine

Also Published As

Publication number Publication date
JPWO2017122611A1 (en) 2018-08-09
TW201736887A (en) 2017-10-16
JP6522166B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
US11949206B2 (en) Two-dimensional multi-beam stabilizer and combining systems and methods
US10170892B2 (en) Laser unit and laser device
Stephens et al. Narrow bandwidth laser array system
WO2017122611A1 (en) Laser device
US9209605B1 (en) Laser diode subassembly and method of generating light
JP6734844B2 (en) Diode laser
US20180329216A1 (en) High brightness, monolithic, multispectral semiconductor laser
JP6412478B2 (en) Wavelength synthesis laser system
JP6157194B2 (en) Laser apparatus and light beam wavelength coupling method
US10732426B2 (en) Two-dimensional coherent beam combination using circular or spiral diffraction grating
JP2018518048A (en) Dense wavelength beam combining with variable feedback control
US20030103534A1 (en) Master laser injection of board area lasers
US20110279903A1 (en) Optical beam bundle combiner for multiple laser arrays
JP2006344973A (en) Optically-pumped surface emitting laser
JP7280498B2 (en) Light source device
US20170201067A1 (en) Method for improvement of the beam quality of the laser light generated by systems of coherently coupled semiconductor diode light sources
JP7097236B2 (en) Laser device
CN113258433A (en) Laser oscillator and laser processing method
Byrd et al. Wavelength selection and polarization multiplexing of blue laser diodes
EP4198614B1 (en) Wavelength beam combining device, direct diode laser device, and laser processing machine
WO2013122891A1 (en) Laser architectures
JPH04105382A (en) Semiconductor laser
JP2001284706A (en) Semiconductor laser light emitting device
Samsøe et al. Improvement of brightness and output power of high-power laser diodes in the visible spectral region
JP2017511613A (en) Laser light generating apparatus and method for adjusting wavelength of laser light

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738365

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561608

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738365

Country of ref document: EP

Kind code of ref document: A1