WO2017122430A1 - 情報処理装置、情報処理方法および記憶媒体 - Google Patents

情報処理装置、情報処理方法および記憶媒体 Download PDF

Info

Publication number
WO2017122430A1
WO2017122430A1 PCT/JP2016/084608 JP2016084608W WO2017122430A1 WO 2017122430 A1 WO2017122430 A1 WO 2017122430A1 JP 2016084608 W JP2016084608 W JP 2016084608W WO 2017122430 A1 WO2017122430 A1 WO 2017122430A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
value
information processing
processing apparatus
abnormality
Prior art date
Application number
PCT/JP2016/084608
Other languages
English (en)
French (fr)
Inventor
象 村越
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017561529A priority Critical patent/JP6881319B2/ja
Priority to US15/778,976 priority patent/US10989734B2/en
Priority to EP16885033.7A priority patent/EP3404423A4/en
Publication of WO2017122430A1 publication Critical patent/WO2017122430A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • A61B5/1117Fall detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B69/00Training appliances or apparatus for special sports
    • A63B69/36Training appliances or apparatus for special sports for golf
    • A63B69/3623Training appliances or apparatus for special sports for golf for driving
    • A63B69/3632Clubs or attachments on clubs, e.g. for measuring, aligning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2102/00Application of clubs, bats, rackets or the like to the sporting activity ; particular sports involving the use of balls and clubs, bats, rackets, or the like
    • A63B2102/32Golf
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/40Acceleration
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/80Special sensors, transducers or devices therefor
    • A63B2220/83Special sensors, transducers or devices therefor characterised by the position of the sensor
    • A63B2220/833Sensors arranged on the exercise apparatus or sports implement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/02Testing, calibrating or measuring of equipment
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and a storage medium.
  • measurement information information obtained in sensor measurement
  • a technique for causing a player to wear a sensor for example, a motion sensor in the sports field, and determining the movement of the player based on measurement information obtained from the motion sensor.
  • the measurable range of the sensor is generally limited according to the sensor specifications. Specifically, the measurable range of the sensor has an upper limit and a lower limit. When the degree of the phenomenon to be measured exceeds the upper limit or lower limit of the measurable range, it is difficult to obtain accurate measurement information. Therefore, the wider the measurable range, the more movement that can be measured. Conversely, the narrower the measurable range, the less measurable movement. There is a dynamic range as one of indexes indicating the width of the measurable range.
  • the width of the measurable range there is often a trade-off between the width of the measurable range and the measurable accuracy.
  • the higher the dynamic range the lower the resolution of measurement information and the greater the variation in measurement information.
  • the lower the dynamic range the higher the resolution of the measurement information and the less the variation in the measurement information.
  • Patent Document 1 time-series measurement information is acquired from a shock sensor and a motion sensor having a higher resolution than the shock sensor, and analysis of the time-series measurement information of the motion sensor is performed based on the measurement information of the shock sensor.
  • An information processing apparatus for setting a target section is disclosed. The document describes that the analysis target section is appropriately set by the disclosure and the accuracy of motion pattern determination is improved.
  • Patent Document 1 no consideration is given until there is an abnormality in one of the two sensors.
  • An information processing apparatus comprising: a detection unit that detects an abnormality in the first value or the second value based on a change related to a correlation between the first value and the second value. Provided.
  • the processor is configured such that the first value obtained in the measurement of the first measurement unit and the dynamic range related to the measurement are different from the first dynamic range of the first measurement unit.
  • a mechanism capable of improving the accuracy of detection of a sensor abnormality without changing the configuration of the sensor.
  • the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
  • FIG. 6 is a graph illustrating an example of a measurement result of an acceleration sensor in the information processing system according to the first embodiment of the present disclosure.
  • 2 is a graph showing an example of a sticking phenomenon of measured values of a second acceleration sensor due to an impact generated near time t1 in FIG. It is a graph which shows an example of a mode that sticking of a measured value of the 2nd acceleration sensor is canceled.
  • 2 is a block diagram illustrating a schematic physical configuration example of the information processing apparatus according to the embodiment.
  • FIG. 2 is a block diagram illustrating a schematic functional configuration example of an information processing apparatus according to the embodiment.
  • FIG. It is a graph which shows the example of the correlation between the 1st measurement value when there is no abnormality in an acceleration sensor, and the 2nd measurement value.
  • FIG. 10 is an enlarged view of a section in which the sticking phenomenon in FIG. 9 is eliminated.
  • 6 is a block diagram illustrating a schematic physical configuration example of an information processing apparatus according to a second embodiment of the present disclosure.
  • FIG. 2 is a block diagram illustrating a schematic functional configuration example of an information processing apparatus according to the embodiment.
  • FIG. It is a graph which shows the example of the correlation between 1st measured value 'and 2nd measured value' when abnormality arises in the 1st angular velocity sensor.
  • 3 is a flowchart conceptually showing processing of the information processing apparatus according to the embodiment.
  • a plurality of constituent elements having substantially the same functional configuration may be distinguished by adding different numbers after the same reference numerals.
  • a plurality of configurations having substantially the same function are distinguished as necessary, such as the first acceleration sensor 200A and the second acceleration sensor 200B.
  • only the same reference numerals are given.
  • the acceleration sensor 200 when it is not necessary to distinguish the first acceleration sensor 200A and the second acceleration sensor 200B, they are simply referred to as the acceleration sensor 200.
  • First embodiment an example of an acceleration sensor
  • Outline 1-2 Configuration of apparatus 1-3. Processing of apparatus 1-4.
  • Second embodiment (example of angular velocity sensor) 2-1.
  • Outline 2-2. Configuration of apparatus 2-3. Processing of apparatus 2-4.
  • First Embodiment (Example of Acceleration Sensor)> First, the first embodiment of the present disclosure will be described. In the first embodiment, an example of an abnormality that occurs in a sensor and a mechanism for notifying the user of the abnormality will be described using an acceleration sensor as an example.
  • the information processing system includes two sensors and an information processing device.
  • the sensor measures whether or not there is a predetermined phenomenon and generates measurement information corresponding to the measurement result.
  • the measurement information is a time-series measurement value.
  • the information processing apparatus has a measurement information acquisition function and a measurement information processing function.
  • the measurement information acquisition function acquires measurement information from the sensor.
  • the measurement information processing function performs processing such as generation of new measurement information, change of measurement information, or analysis of patterns (pattern matching) based on the measurement information.
  • FIG. 1 is a graph illustrating an example of a measurement result of the acceleration sensor 200 in the information processing system according to the present embodiment.
  • the information processing system includes two first acceleration sensors 200A serving as first measurement units having different dynamic ranges, a second acceleration sensor 200B serving as a second measurement unit, and an information processing apparatus 100-1.
  • the acceleration sensor 200 measures acceleration and generates measurement information including a measurement value indicating the measured acceleration.
  • the information processing apparatus 100-1 acquires measurement information from each of the acceleration sensors 200, and generates new measurement information by synthesizing the measurement information. For example, within the measurable range of the second acceleration sensor 200B whose dynamic range is lower than that of the first acceleration sensor 200A (hereinafter also referred to as the second measurable range), the measured value of the second acceleration sensor 200B Outside the second measurable range, new measurement information that is a measurement value of the first acceleration sensor 200A is generated. Referring to FIG.
  • the measured value (solid line) of the second acceleration sensor 200B is used, and the generated acceleration is equal to or higher than the low_acc_max.
  • the measured value (dotted line) of the first acceleration sensor 200A is used. This is to cover measurement information outside the second measurable range while using measurement information of the second acceleration sensor 200B having a relatively high resolution.
  • the second acceleration sensor 200B which has a relatively low dynamic range as compared with the first acceleration sensor 200A, has a high resolution, but has a narrow measurable range and a high possibility that the generated acceleration exceeds the measurable range. Therefore, for acceleration outside the second measurable range, measurement information of the first acceleration sensor 200A having a relatively high dynamic range is used.
  • An information processing system having such a sensor is used for detecting a user's movement. For example, as described above, a sensor is attached to a sports player, and the movement of the player is analyzed based on measurement information obtained from the sensor.
  • the movement of the user may be accompanied by an impact.
  • an impact is generated when the ball hits the golf club.
  • the impact appears as a sharp change in acceleration compared to the midway of the swing.
  • the measurement value of the acceleration sensor 200 changes sharply in a short time around time t1 in FIG. 1, so it is considered that an impact occurred near the time t1.
  • the measurement information of the second acceleration sensor 200B having a relatively low dynamic range is fixed near the upper limit or lower limit of the second measurable range after the occurrence of an impact (hereinafter, fixed near a certain value). Is also referred to as sticking.), The sticking of the measurement information may continue even after the end of the impact.
  • the vicinity means a range of fluctuation of a value based on a specific value.
  • FIG. 2 is a graph showing an example of the sticking phenomenon of the measured value of the second acceleration sensor 200B due to the impact generated near time t1 in FIG.
  • the measurement value of the second acceleration sensor 200B increases sharply according to the occurrence of an impact, and sticks at low_acc_max while the impact continues, that is, when the acceleration is equal to or higher than low_acc_max after reaching low_acc_max.
  • the measurement value of the second acceleration sensor 200B starts to fluctuate again according to the acceleration. Since this is a phenomenon caused by the low dynamic range of the second acceleration sensor 200B, it is generally not regarded as a sensor abnormality.
  • an abnormality when an abnormality occurs in the sensor, an abnormality also occurs in the measurement information.
  • the measured value of the second acceleration sensor 200B reaches low_acc_max and sticks near low_acc_max while the impact continues, it is the same as described above.
  • the sticking phenomenon of the measured value may continue as shown in FIG.
  • the measurement value of the second acceleration sensor 200B cannot be used, the measurement value of the first acceleration sensor 200A is often used instead.
  • the resolution of the first acceleration sensor 200A is lower than that of the second acceleration sensor 200B, the accuracy of the measurement value is lowered, and it may be difficult to obtain a desired result in the processing based on the measurement value. Therefore, it is desirable that the abnormality of the second acceleration sensor 200B is eliminated or suppressed.
  • FIG. 3 is a graph showing an example of how the sticking of the measurement value of the second acceleration sensor 200B is eliminated.
  • the sticking of the measurement value continues after the sticking of the measurement value of the second acceleration sensor 200B occurs as shown in FIG. Thereafter, when an impact is again applied to the second acceleration sensor 200B at time t2, the sticking of the measurement value is eliminated, and the measurement value starts to fluctuate according to the generated acceleration.
  • the information processing apparatus 100-1 or the like prompts the user to generate an impact again.
  • the burden on the user increases. Therefore, it is required to reduce the burden on the user as much as possible.
  • the present embodiment proposes an information processing system that can improve the accuracy of detection of sensor abnormality without any modification to the sensor configuration.
  • the information processing apparatus 100 according to the first and second embodiments is given a number corresponding to the embodiment at the end like the information processing apparatus 100-1 and the information processing apparatus 100-2. To distinguish.
  • FIG. 4 is a block diagram illustrating a schematic physical configuration example of the information processing apparatus 100-1 according to the present embodiment.
  • the information processing apparatus 100-1 includes a processor 102, a memory 104, a bridge 106, a bus 108, an input interface 110, an output interface 112, a connection port 114, and a communication interface 116.
  • the processor 102 functions as an arithmetic processing unit, and is a control module that realizes functions of a detection unit 122 and a display control unit 126 described later in the information processing apparatus 100-1 in cooperation with various programs.
  • the processor 102 implements various logical functions of the information processing apparatus 100-1 to be described later by executing a program stored in the memory 104 or another storage medium using the control circuit.
  • the processor 102 may be a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a DSP (Digital Signal Processor), or a SoC (System-on-a-Chip).
  • the memory 104 stores programs or calculation parameters used by the processor 102 and realizes the function of the storage unit 124 described later.
  • the memory 104 includes a RAM (Random Access Memory), and temporarily stores a program used in the execution of the processor 102 or a parameter that changes as appropriate in the execution.
  • the memory 104 includes a ROM (Read Only Memory).
  • An external storage device may be used as a part of the memory 104 via a connection port or a communication device.
  • processor 102 and the memory 104 are connected to each other by an internal bus including a CPU bus or the like.
  • the bridge 106 connects the buses. Specifically, the bridge 106 connects an internal bus to which the processor 102 and the memory 104 are connected to a bus 108 that connects the input interface 110, the output interface 112, the connection port 114, and the communication interface 116.
  • the input interface 110 is used for a user to operate the information processing apparatus 100-1 or input information to the information processing apparatus 100-1.
  • the input interface 110 generates an input signal based on input by the user such as a button for activating the information processing apparatus 100-1 and input by the user, and outputs the input signal to the processor 102.
  • It consists of an input control circuit.
  • the input means may be a mouse, a keyboard, a touch panel, a switch or a lever.
  • the user of the information processing apparatus 100-1 can input various data and instruct execution of processing to the information processing apparatus 100-1 by operating the input interface 110.
  • the output interface 112 is used to notify the user of information.
  • the output interface 112 realizes the function of the display unit 128 to be described later by outputting to a device such as a liquid crystal display (LCD) device, an organic light emitting diode (OLED) device, or a projector.
  • a device such as a liquid crystal display (LCD) device, an organic light emitting diode (OLED) device, or a projector.
  • the output interface 112 may perform output to a device such as a speaker or headphones.
  • connection port 114 is a port for directly connecting a device to the information processing apparatus 100-1.
  • the connection port 114 may be a USB (Universal Serial Bus) port, an IEEE 1394 port, a SCSI (Small Computer System Interface) port, or the like.
  • the connection port 114 may be an RS-232C port, an optical audio terminal, an HDMI (registered trademark) (High-Definition Multimedia Interface) port, or the like. Data may be exchanged between the information processing apparatus 100-1 and the device by connecting an external device to the connection port 114.
  • the communication interface 116 mediates communication between the information processing apparatus 100-1 and the external apparatus, and realizes the function of the communication unit 120 described later.
  • the communication interface 116 may be a Bluetooth (registered trademark), NFC (Near Field Communication), wireless USB, or short-range wireless communication method such as TransferJet (registered trademark), WCDMA (registered trademark) (Wideband Code Division Multiple Access), WiMAX. (Registered Trademark), LTE (Long Term Evolution) or LTE-A and other cellular communication systems, or Wi-Fi (Registered Trademark) and other wireless LAN (Local Area Network) systems such as wireless communication according to any wireless communication system May be executed.
  • the communication interface 116 may execute wire communication for performing wired communication.
  • the information processing apparatus 100-1 may not have a part of the configuration described with reference to FIG. 4, or may have an additional configuration.
  • a one-chip information processing module in which all or part of the configuration described with reference to FIG. 4 is integrated may be provided.
  • FIG. 5 is a block diagram illustrating a schematic functional configuration example of the information processing apparatus 100-1 according to the present embodiment.
  • the information processing apparatus 100-1 includes a communication unit 120, a detection unit 122, a storage unit 124, a display control unit 126, and a display unit 128.
  • the communication unit 120 communicates with the acceleration sensor 200. Specifically, the communication unit 120 receives measurement information from the first acceleration sensor 200A and the second acceleration sensor 200B, respectively. For example, the communication unit 120 communicates with the acceleration sensor 200 using a wireless communication method. Note that the communication unit 120 may communicate with the acceleration sensor 200 using a wired communication method.
  • the received measurement information may be time-series measurement information or single measurement information.
  • the detection unit 122 detects an abnormality in measurement information received from the acceleration sensor 200 (that is, an abnormality in the acceleration sensor 200). Specifically, the detection unit 122 uses measurement information (hereinafter also referred to as first measurement information or first measurement value) obtained in the measurement of the first acceleration sensor 200A as the first value and the second value. The abnormality of the measurement information is detected based on the change related to the correlation with the measurement information (hereinafter also referred to as second measurement information or second measurement value) obtained in the measurement of the second acceleration sensor 200B. The detection unit 122 performs detection processing in response to the occurrence of an impact.
  • the dynamic range related to the measurement of the first acceleration sensor 200A (hereinafter also referred to as the first dynamic range) is the dynamic range related to the measurement of the second acceleration sensor 200B (hereinafter also referred to as the second dynamic range). Different from that). Specifically, the first dynamic range is higher than the second dynamic range.
  • the first measurement value and the second measurement value are not distinguished, they are also simply referred to as measurement values.
  • FIG. 6 and FIG. 7 the process of the detection part 122 is demonstrated in detail.
  • FIG. 6 is a graph showing an example of the correlation between the first measurement value and the second measurement value when there is no abnormality in the acceleration sensor 200.
  • FIG. 7 is a graph when the acceleration sensor 200 is abnormal. It is a graph which shows the example of the correlation between a 1st measured value and a 2nd measured value.
  • the detection unit 122 determines whether or not an impact has occurred based on the measurement information. For example, the detection unit 122 determines that an impact has occurred when the slope of the change in the measured value near the time t1 as shown in FIG. Further, the detection unit 122 may determine whether or not an impact has occurred based on the correlation between the first and second measurement values. For example, the first measurement value of the first acceleration sensor with the second measurement value of the second acceleration sensor having a low dynamic range as shown in FIG. 6 stuck to low_acc_max, which is the upper limit of the second measurable range. Is in a range of values higher than low_acc_max, the detection unit 122 may determine that an impact has occurred. Note that it may be estimated that an impact is occurring while the first measurement value is in a range of values higher than low_acc_max while the second measurement value is stuck to low_acc_max.
  • the detection unit 122 identifies the correlation based on the acquired measurement information. Specifically, the detection unit 122 specifies the correlation based on the measurement information before and after the impact. For example, the detection unit 122 may calculate an index such as a correlation coefficient (correlation function) for a predetermined period before the occurrence of the impact and after the end of the impact.
  • the index is not limited to the correlation coefficient, and may be adopted as long as it is information that can grasp the correlation of data.
  • the detection unit 122 determines whether or not there is a change related to the correlation between the occurrence of the impact and the end of the impact. Specifically, the detection unit 122 changes the presence or absence or degree of correlation between before the first measurement value exceeds the second measurable range and after the first measurement value returns to the second measurable range. The presence or absence of is determined. For example, the detection unit 122 determines whether the correlation coefficient before the occurrence of the impact and the correlation coefficient after the end of the impact match or are within a predetermined range.
  • the first measurement value is low_acc_max.
  • the correlation in the predetermined period before exceeding has a relationship close to linear (broken line). Therefore, a positive correlation coefficient is calculated during this period.
  • the generated acceleration exceeds the measurable range of the second acceleration sensor 200B, so the second measured value is stuck at low_acc_max. ing. Therefore, there is no correlation during this period, and the calculated correlation coefficient is 0 or a value close to 0.
  • the detection unit 122 determines that the correlation coefficients match in the case of FIG. 6, and determines that the correlation coefficients do not match in the case of FIG.
  • the detection unit 122 detects an abnormality of the sensor. For example, the detection unit 122 does not detect a sensor abnormality when the calculated correlation coefficients match. On the other hand, the detection unit 122 detects an abnormality of the sensor when the calculated correlation coefficients do not match. Note that the detection unit 122 may not detect the abnormality of the sensor from the occurrence of the impact to the end, that is, during the occurrence of the impact described above.
  • the storage unit 124 stores information used for processing performed in the information processing apparatus 100-1. Specifically, the storage unit 124 stores measurement information received by the communication unit 120 in time series. Further, the storage unit 124 stores image information relating to an image to be displayed on the display unit 128. Note that the image information may be stored in advance or may be additionally acquired via the communication unit 120.
  • the display control unit 126 controls processing of the display unit 128. Specifically, the display control unit 126 controls output processing for notification about the detected abnormality.
  • the notification about the abnormality includes a display for the user, and the display control unit 126 determines image information related to the display. For example, the display control unit 126 selects, from the storage unit 124, image information related to an image that indicates a method for eliminating the abnormality detected by the detection unit 122, and provides the selected image information to the display unit 128. To do.
  • the display control unit 126 may generate new image information based on the image information stored in the storage unit 124.
  • the display unit 128 displays an image based on the image information as an output unit. Specifically, the display unit 128 displays an image related to the image information provided from the display control unit 126 to the user.
  • FIG. 8 is a flowchart conceptually showing processing of the information processing apparatus 100-1 according to the present embodiment.
  • the information processing apparatus 100-1 acquires the first measurement value and the second measurement value (step S302). Specifically, the communication unit 120 receives the first measurement value and the second measurement value from the first acceleration sensor 200A and the second acceleration sensor 200B, respectively. The received measurement value is stored in the storage unit 124.
  • the information processing apparatus 100-1 determines whether or not an impact has occurred (step S304). Specifically, the detection unit 122 determines whether or not an impact has occurred in the acceleration sensor 200 based on time-series measurement values stored in the storage unit 124. The occurrence of the impact may be notified from an external device.
  • the information processing apparatus 100-1 identifies the correlation before the first measured value exceeds the second measurable range (step S306). Specifically, when the detection unit 122 determines that an impact has occurred, the first measurement value and the second measurement value in a predetermined period before the occurrence of the impact, that is, until the first measurement value reaches low_acc_max. The correlation coefficient between is calculated.
  • the information processing apparatus 100-1 specifies the correlation after the first measurement value returns to less than the second measurable range (step S308). Specifically, the detection unit 122 determines the interval between the first measurement value and the second measurement value in a predetermined period after the impact ends, that is, after the first measurement value exceeds low_acc_max and then returns to less than low_acc_max. A correlation coefficient is calculated.
  • the information processing apparatus 100-1 determines whether the correlation has changed (step S310). Specifically, the detection unit 122 determines whether the correlation coefficients before the occurrence of the impact and after the end of the impact match, or whether the difference between these correlation coefficients is within a predetermined range.
  • the information processing apparatus 100-1 determines whether or not there is a sticking near the boundary value of the second measurable range of the second measurement value (step S312). Specifically, when the detection unit 122 determines that the correlation coefficients do not match or the difference between the correlation coefficients is not within a predetermined range, the second measurement value is the upper limit or lower limit of the second measurable range. Judge whether it is sticking in the vicinity.
  • the information processing apparatus 100-1 displays an image for notification regarding abnormality (step S312). Specifically, when it is determined that the second measurement value is stuck near the upper limit or the lower limit of the second measurable range, the display control unit 126 displays image information related to the image for notifying the user of the abnormality. Select. Then, the display control unit 126 causes the display unit 128 to display the selected image.
  • the information processing apparatus 100-1 uses the first value (first measurement value) obtained in the measurement by the first measurement unit (first acceleration sensor 200A). ), And a second value (second acceleration sensor 200B) obtained in measurement of the second measurement unit (second acceleration sensor 200B) having a second dynamic range different from the first dynamic range of the first measurement unit. Second measurement value). Then, the information processing apparatus 100-1 detects an abnormality in the first measurement value or the second measurement value based on a change related to the correlation between the first measurement value and the second measurement value. .
  • the change related to the correlation means the presence or absence of the change or the difference in the degree between the first measurement value and the second measurement value.
  • the existing acceleration sensor 200 can be used as it is. Therefore, it is possible to improve the accuracy of detecting an abnormality of the acceleration sensor 200 without any modification to the configuration of the acceleration sensor 200.
  • the change related to the correlation includes the change related to the correlation between before the occurrence of the impact given to the first acceleration sensor 200A and the second acceleration sensor 200B and after the end of the impact. For this reason, even when an acceleration exceeding the measurable range of the acceleration sensor 200 having the lower dynamic range is generated due to the impact, and the change related to the correlation between the first and second measured values occurs, the acceleration It is possible to prevent the abnormality from being detected during the occurrence of. Therefore, by narrowing down the detected abnormality, it is possible to reduce the time or labor required for dealing with the abnormality.
  • the first dynamic range is higher than the second dynamic range
  • the change related to the correlation indicates that the first measurement value is within the measurable range (second measurable range) of the second acceleration sensor 200B. It includes a change related to the correlation between before the first measurement value and after the first measurement value returns to the second measurable range. For this reason, by determining the monitoring interval of the change related to the correlation based on the first measurement value that is less likely to reach the limit of the measurable range (saturation) than the second measurement value, the accuracy of the monitoring interval is determined. Improves. Accordingly, it is possible to more accurately detect the occurrence of the abnormality of the second measurement value.
  • the information processing apparatus 100-1 determines that the second value is fixed in the vicinity of a predetermined value after the first value returns to the measurable range of the second measurement unit. Detect anomalies. For this reason, the abnormality detection pattern can be narrowed down to sticking around a predetermined value. Therefore, it is possible to reduce the detection processing time and processing load.
  • the predetermined value includes a boundary value of the measurable range of the second measuring unit.
  • a phenomenon occurs in which the second measured value sticks in the vicinity of the boundary value of the second measurable range. Therefore, the detection processing time and the processing load can be further reduced by narrowing down the detection pattern to the value.
  • the information processing apparatus 100-1 performs the abnormality detection process in response to the occurrence of the impact. For this reason, the frequency of a detection process can be reduced compared with the case where a detection process is performed whenever a measured value is acquired. Therefore, the efficiency of the detection process makes it possible to reduce the processing load and power consumption for the detection process.
  • the change related to the correlation includes a change in the presence or degree of the correlation.
  • the correlation between the measurement values almost disappears when the measurement values stick. Therefore, there is no problem even if the abnormality is detected based on the presence or absence of the correlation, and thereby the abnormality detection process can be simplified.
  • the measurement value may not stick, but the degree of variation of the measurement value may be different between the measurement values. In this case, it is difficult to detect the abnormality based on the presence or absence of the correlation, but the abnormality can be detected based on the change in the degree of correlation.
  • the information processing apparatus 100-1 further includes an output unit that performs output for notification regarding the abnormality. Therefore, by notifying the outside that the abnormality has been detected, it is possible to prompt the external device or the user to deal with the abnormality.
  • the display unit 128 operates as an output unit.
  • the communication unit 120 may transmit information related to the abnormality detected as the output unit to an external device. Information relating to the abnormality may be provided to another device or module provided in the device in which 1 is incorporated.
  • the notification includes a notification of a method for solving the abnormality. For this reason, when the method for eliminating the detected abnormality is specified, the possibility of the abnormality being solved can be increased by notifying the method.
  • the output includes a display for the user for the notification. For this reason, when the visual information is presented to the user, the notification can be easily understood by the user.
  • the output for the user may be another output, for example, an audio output.
  • a measurement value that is, an abnormality detection process of the acceleration sensor 200 is performed in the information processing apparatus 100-1 including the display control unit 126 and the display unit 128
  • the sensor module provided with 122 may be sufficient.
  • the abnormality detection process described above is performed in the acceleration sensor 200, and the detection result is transmitted to the information processing apparatus 100-1 via communication.
  • the display control part 126 controls the display of the display part 128 based on the said detection result.
  • Second Embodiment (An example of an angular velocity sensor)>
  • the first embodiment of the present disclosure has been described.
  • a second embodiment of the present disclosure will be described.
  • a mechanism for detecting an abnormality occurring in the sensor and notifying the user of the abnormality will be described using an angular velocity sensor as an example.
  • the information processing system according to the second embodiment has two differences from the first embodiment in that the type of sensor is different and the sensor is provided in the information processing apparatus 100-2.
  • the sensor in the information processing system according to the present embodiment is an angular velocity sensor 118, and the angular velocity sensor 118 is provided in the information processing apparatus 100-2.
  • the sensor in the information processing system according to the present embodiment is an angular velocity sensor 118, and the angular velocity sensor 118 is provided in the information processing apparatus 100-2.
  • two angular velocity sensors, a first angular velocity sensor 118A and a second angular velocity sensor 118B are provided, and the dynamic range of the first angular velocity sensor 118A is higher than that of the second angular velocity sensor 118B. .
  • the angular velocity sensor 118 measures the angular velocity and generates measurement information including a measurement value indicating the measured angular velocity. Then, the generated measurement information is provided to the detection unit 122 and the like. As in the first embodiment, the information processing apparatus 100-2 having the angular velocity sensor 118 is used in sports or the like.
  • FIG. 9 is a graph showing an example of the sticking phenomenon of the measurement value of the first angular velocity sensor 118A due to an impact
  • FIG. 10 is an enlarged view of a section where the sticking phenomenon in FIG. 9 is eliminated.
  • the measurement value of the first angular velocity sensor 118A (hereinafter also referred to as “first measurement information” or “first measurement value”) (thick line) corresponds to the occurrence of an impact near time t3 as shown in FIG. It fluctuates up and down sharply.
  • the measurement value of the second angular velocity sensor 118B (hereinafter also referred to as second measurement information 'or second measurement value') (broken line) fluctuates with the first measurement value 'until the occurrence of the impact, and the impact is reduced.
  • the angular velocity exceeds the measurable range of the second angular velocity sensor 118B (hereinafter also referred to as the second measurable range '), and thus deviates from the first measured value'.
  • the second measured value 'again starts to fluctuate together with the first measured value'. Since this is a phenomenon caused by the low dynamic range of the second angular velocity sensor 118B, it is generally not regarded as a sensor abnormality.
  • the first measurement value ′ may change in small increments with an arbitrary value y1 as a reference, as shown in FIGS. 9 and 10.
  • the measurement value sticking phenomenon according to the present embodiment may be resolved over time, unlike the phenomenon according to the first embodiment.
  • the time t5 as shown in FIG. 10 arrives after the occurrence of the sticking of the measurement value ', the first measurement value' starts to fluctuate and then fluctuates so as to coincide with the second measurement value ', that is, the actual angular velocity. To do.
  • the first measurement value ′ having a relatively high dynamic range sticks to an arbitrary value, so that an abnormality can be detected even if the configuration of the information processing apparatus 100-1 is used as it is. It is difficult.
  • the first measurement value 'or the second measurement is used regardless of the relationship between the first measurement value' and the second measurable range 'used in the first embodiment for abnormality detection determination.
  • components of the information processing system will be described in detail.
  • FIG. 11 is a block diagram illustrating a schematic physical configuration example of the information processing apparatus 100-2 according to the present embodiment.
  • the information processing apparatus 100-2 includes the first angular velocity in addition to the processor 102, the memory 104, the bridge 106, the bus 108, the input interface 110, the output interface 112, the connection port 114, and the communication interface 116.
  • a sensor 118A and a second angular velocity sensor 118B are provided.
  • the angular velocity sensor 118 (that is, the first angular velocity sensor 118A and the second angular velocity sensor 118B) measures the angular velocity, and functions of a first angular velocity measuring unit 130A and a second angular velocity measuring unit 130B, which will be described later, provided in the information processing apparatus 100-2. Is realized.
  • the angular velocity sensor 118 may be a sensor module including a processor that processes the measured angular velocity.
  • FIG. 12 is a block diagram illustrating a schematic functional configuration example of the information processing apparatus 100-2 according to the present embodiment.
  • the information processing apparatus 100-2 includes a first angular velocity measuring unit 130A and a second angular velocity measuring unit 130B in addition to the detecting unit 122, the storage unit 124, the display control unit 126, and the display unit 128.
  • the communication part 120 may be provided similarly to 1st Embodiment.
  • the angular velocity measuring unit 130 measures the angular velocity applied to the information processing apparatus 100-2. Specifically, the angular velocity measuring unit 130 measures the angular velocity and generates measurement information “including a measurement value“ indicating the measured angular velocity. The generated measurement information ′ is provided to the detection unit 122. Note that the first angular velocity measuring unit 130A as the first measuring unit has a higher dynamic range than the second angular velocity measuring unit 130B as the second measuring unit.
  • the detection unit 122 detects an abnormality in the measurement information ′ provided from the angular velocity measurement unit 130 (that is, an abnormality in the angular velocity sensor 118). Specifically, the detection unit 122 is obtained in the measurement of the first angular velocity measurement unit 130B as the first value and the first measurement information ′ obtained in the measurement of the first angular velocity measurement unit 130A as the first value. An abnormality in the first or second measurement information ′ is detected based on a change related to the correlation with the second measurement information ′. Furthermore, with reference to FIG. 13, the process of the detection part 122 in this embodiment is demonstrated in detail.
  • FIG. 13 is a graph showing an example of the correlation between the first measurement value ′ and the second measurement value ′ when abnormality occurs in the first angular velocity sensor 118A.
  • the detection unit 122 determines whether or not an impact has occurred based on the measurement information '. For example, the detection unit 122 determines that an impact has occurred when the slope of the change in the measured value 'around time t3 as shown in FIG.
  • the detection unit 122 identifies a correlation before the occurrence of the impact and after a predetermined time has elapsed since the occurrence of the impact. For example, the detection unit 122 calculates correlation coefficients for a predetermined period before the occurrence of the impact and after a predetermined time has elapsed since the occurrence of the impact.
  • the correlation after the end of the impact is the same or after another predetermined time is used instead of the correlation after the end of the impact. May be.
  • the detection unit 122 determines whether or not there is a change related to the correlation after a predetermined time has elapsed since the occurrence of the impact. Specifically, the detection unit 122 determines whether the correlation coefficient before the occurrence of the impact matches the correlation coefficient after the lapse of a predetermined time from the occurrence of the impact or is within a predetermined range.
  • the correlation in a predetermined period before the occurrence of an impact that is, before the correlation reaches a relationship substantially parallel to the axis of the first measurement value ′, is close to a linear relationship. Have. Therefore, a positive correlation coefficient is calculated during this period.
  • the correlation between the measurement values' is lost as shown in FIG. It has a relationship parallel to the axis of the first measurement value '. Therefore, the calculated correlation coefficient is 0 or a value close to 0 during this period.
  • the second measured value ' After a predetermined time has elapsed from the occurrence of the impact, for example, at time t4 as shown in FIG. 9, the second measured value 'converges to 0 while fluctuating up and down along the generated angular velocity.
  • the first measurement value ′ is stuck in the vicinity of an arbitrary value y1.
  • the correlation is lost as in the case of occurrence of an impact.
  • the first measurement value ' since the first measurement value 'is stuck, the correlation is parallel to the second measurement value'. In this period, the correlation coefficient is calculated as 0 or close to 0.
  • the first measurement value' may be a fixed value instead of an arbitrary value.
  • the detection unit 122 determines that the correlation coefficient before the occurrence of the impact does not match the correlation coefficient after the predetermined time has elapsed since the occurrence of the impact.
  • the detection unit 122 detects an abnormality of the sensor.
  • FIG. 14 is a flowchart conceptually showing processing of the information processing apparatus 100-2 according to the present embodiment. Note that description of processing that is substantially the same as processing according to the first embodiment will be omitted.
  • the information processing apparatus 100-2 acquires the first measurement value 'and the second measurement value' (step S402), and determines whether or not an impact has occurred based on the acquired measurement value '(step S404).
  • the information processing apparatus 100-2 identifies the correlation before the impact occurs (step S406), and identifies the correlation after a predetermined time has elapsed since the impact occurred (step S408). ).
  • the information processing apparatus 100-1 determines whether the correlation has changed (step S410). Specifically, the detection unit 122 determines whether the correlation coefficients before the occurrence of the impact and after the lapse of a predetermined time from the occurrence of the impact match or whether the difference between these correlation coefficients is within a predetermined range.
  • the information processing apparatus 100-2 determines whether or not the first measured value 'is in the vicinity of the predetermined value (step S412). Specifically, when it is determined that the calculated correlation coefficients do not match, the detection unit 122 determines whether the first measurement value ′ is stuck in the vicinity of an arbitrary value.
  • the information processing apparatus 100-2 displays an image for notification regarding the abnormality (step S414).
  • the information processing apparatus 100-2 changes the correlation between the occurrence of the impact and the lapse of a predetermined time from the occurrence of the impact. Based on the above, the above abnormality is detected. Therefore, the end of the impact can be determined regardless of the relationship between the measured value 'and the measurable range' as in the first embodiment. Therefore, it becomes possible to set more abnormalities as detection targets.
  • the information processing apparatus 100-2 detects the abnormality when the first value is fixed in the vicinity of the predetermined value after a predetermined time has elapsed since the occurrence of the impact. For this reason, the abnormality detection pattern can be narrowed down to sticking around a predetermined value. Therefore, it is possible to reduce the detection processing time and processing load.
  • the information processing apparatus 100-2 further includes the first measurement unit and the second measurement unit.
  • information processing apparatuses such as portable terminals equipped with various sensors are increasing, and a similar phenomenon may occur for sensors provided in such information processing apparatuses.
  • this configuration it is possible to enjoy the effect related to abnormality detection even in an information processing apparatus including the sensor.
  • the first embodiment of the present disclosure it is possible to improve the accuracy of detection of abnormality of the acceleration sensor 200 without any modification to the configuration of the acceleration sensor 200. Further, according to the second embodiment of the present disclosure, the end of the impact can be determined regardless of the relationship between the measured value 'and the measurable range' as in the first embodiment. Therefore, it becomes possible to set more abnormalities as detection targets.
  • the measurement information is a measurement value indicating the degree of a phenomenon to be measured such as acceleration or angular velocity
  • the present technology is not limited to such an example.
  • the measurement information may be other information that varies depending on the measurement result such as the frequency or frequency obtained in the measurement.
  • the example in which the information processing system is applied to sports has been described.
  • the information processing system may be applied to other fields.
  • the information processing system may be applied to construction work or agricultural work.
  • the following configurations also belong to the technical scope of the present disclosure.
  • An information processing apparatus comprising: (2)
  • the change related to the correlation includes the change related to the correlation between before the occurrence of the impact given to the first measurement unit and the second measurement unit and after the end of the impact (1 ).
  • the first dynamic range is higher than the second dynamic range;
  • the change related to the correlation is before the first value exceeds the measurable range of the second measuring unit and after the first value returns to the measurable range of the second measuring unit.
  • the information processing apparatus according to (2) including a change related to the correlation between the two.
  • the detection unit detects the abnormality when the second value is fixed in the vicinity of a predetermined value after the first value has returned to the measurable range of the second measurement unit; The information processing apparatus according to (3).
  • the information processing apparatus according to (4) wherein the predetermined value includes a boundary value of a measurable range of the second measurement unit.
  • the information processing apparatus according to any one of (2) to (9), further including the first measurement unit and the second measurement unit.
  • the information processing apparatus according to any one of (2) to (10), further including an output unit configured to perform output for notification related to the abnormality.
  • the information processing apparatus according to (11), wherein the notification includes a notification of a method for eliminating the abnormality.
  • the information output apparatus according to (11) or (12), wherein the output includes a display for the user for the notification.
  • the second measurement in which the processor obtains the first value obtained in the measurement by the first measurement unit and the second dynamic range in which the dynamic range related to the measurement is different from the first dynamic range of the first measurement unit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • User Interface Of Digital Computer (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

【課題】センサの構成に手が加えられることなく、センサの異常の検出について正確性を向上させることが可能な仕組みを提供する。 【解決手段】第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得る取得部と、前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出する検出部と、を備える情報処理装置。

Description

情報処理装置、情報処理方法および記憶媒体
 本開示は、情報処理装置、情報処理方法および記憶媒体に関する。
 センサ技術の発展に伴い、センサの測定において得られる情報(以下、測定情報とも称する。)の活用が進んでいる。例えば、スポーツ分野においてプレイヤにセンサ、例えばモーションセンサを身に着けさせ、当該モーションセンサから得られる測定情報に基づいてプレイヤの動きを判定する技術が存在する。
 ここで、センサの測定可能範囲には概してセンサの仕様などに応じた限界がある。具体的には、センサの測定可能範囲には上限および下限があり、測定対象となる現象の程度が測定可能範囲の上限または下限を超える場合には正確な測定情報を得ることが困難となる。従って、測定可能範囲が広いほど、測定できる動きが多くなる。反対に、測定可能範囲が狭いほど、測定できる動きは少なくなる。当該測定可能範囲の広さを示す指標の1つとしてダイナミックレンジがある。
 他方で、測定可能範囲の広さと測定可能な精度とはトレードオフの関係にあることが多い。例えば、ダイナミックレンジが高いほど測定情報の分解能は低くなり、測定情報のばらつきが大きくなりやすい。反対に、ダイナミックレンジが低いほど測定情報の分解能は高くなり、測定情報のばらつきが小さくなりやすい。
 そこで、測定可能範囲の広さすなわち測定情報の分解能が異なる2つのセンサを併用する技術が提案されている。例えば、特許文献1では、ショックセンサおよび当該ショックセンサよりも分解能が高いモーションセンサから時系列の測定情報を取得し、ショックセンサの測定情報に基づいてモーションセンサの当該時系列の測定情報についての解析対象区間を設定する情報処理装置が開示されている。当該文献では、当該開示により当該解析対象区間が適切に設定され、モーションパターンの判定精度が向上すると記載されている。
特開2014-183931号公報
 しかし、上記特許文献1の開示では、2つのセンサのうちのいずれかのセンサに異常があった場合までは考慮されてない。また、センサの異常についての対処の効率性のために、当該センサの異常が正確に検出されることが望まれる。さらに、センサの構成に手を加えることが困難な場合もある。そのため、センサの構成に手が加えられることなく、センサの異常の検出について正確性を向上させることが可能な仕組みが求められていた。
 本開示によれば、第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得る取得部と、
 前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出する検出部と、を備える情報処理装置が提供される。
 また、本開示によれば、プロセッサにより、第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得ることと、前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出することと、を含む、情報処理方法が提供される。
 また、本開示によれば、第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得る取得機能と、前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出する検出機能と、をコンピュータに実現させるためのプログラムを記憶する記憶媒体が提供される。
 以上説明したように本開示によれば、センサの構成に手が加えられることなく、センサの異常の検出について正確性を向上させることが可能な仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の第1の実施形態に係る情報処理システムにおける加速度センサの測定結果の一例を示すグラフである。 図1の時間t1付近において発生した衝撃による第2加速度センサの測定値の張り付き現象の一例を示すグラフである。 第2加速度センサの測定値の張り付きが解消される様子の一例を示すグラフである。 同実施形態に係る情報処理装置の概略的な物理構成例を示すブロック図である。 同実施形態に係る情報処理装置の概略的な機能構成例を示すブロック図である。 加速度センサに異常がない場合の第1測定値と第2測定値との間の相関関係の例を示すグラフである。 加速度センサに異常が生じた場合の第1測定値と第2測定値との間の相関関係の例を示すグラフである。 同実施形態に係る情報処理装置の処理を概念的に示すフローチャートである。 衝撃による第1角速度センサの測定値の張り付き現象の一例を示すグラフである。 図9における張り付き現象が解消される区間の拡大図である。 本開示の第2の実施形態に係る情報処理装置の概略的な物理構成例を示すブロック図である。 同実施形態に係る情報処理装置の概略的な機能構成例を示すブロック図である。 第1角速度センサに異常が生じた場合の第1測定値’と第2測定値’との間の相関関係の例を示すグラフである。 同実施形態に係る情報処理装置の処理を概念的に示すフローチャートである。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 また、本明細書及び図面において、実質的に同一の機能構成を有する複数の構成要素を、同一の符号の後に異なる番号を付して区別する場合もある。例えば、実質的に同一の機能を有する複数の構成を、必要に応じて第1加速度センサ200Aおよび第2加速度センサ200Bなどのように区別する。ただし、実質的に同一の機能構成を区別する必要が無い場合、同一符号のみを付する。例えば、第1加速度センサ200Aおよび第2加速度センサ200Bを特に区別する必要がない場合には、単に加速度センサ200と称する。
 なお、説明は以下の順序で行うものとする。
 1.第1の実施形態(加速度センサの例)
  1-1.概要
  1-2.装置の構成
  1-3.装置の処理
  1-4.第1の実施形態のまとめ
 2.第2の実施形態(角速度センサの例)
  2-1.概要
  2-2.装置の構成
  2-3.装置の処理
  2-4.第2の実施形態のまとめ
 3.むすび
 <1.第1の実施形態(加速度センサの例)>
 まず、本開示の第1の実施形態について説明する。第1の実施形態では、加速度センサを例としてセンサにおいて生じる異常の検出および当該異常をユーザへ通知する仕組みについて説明する。
  <1-1.概要>
 始めに、本実施形態に係る仕組みとしての情報処理システムの概要について説明する。当該情報処理システムは、2つのセンサと情報処理装置とを備える。センサは、所定の現象の有無または程度について測定し、測定結果に応じた測定情報を生成する。例えば、測定情報は時系列の測定値である。また、情報処理装置は、測定情報取得機能および測定情報処理機能を有する。測定情報取得機能は、センサから測定情報を取得する。測定情報処理機能は、測定情報に基づいて新たな測定情報の生成または測定情報の変化もしくはパターンの分析(パターンマッチング)などの処理を行う。さらに、図1を参照して、当該情報処理システムの概要について詳細に説明する。図1は、本実施形態に係る情報処理システムにおける加速度センサ200の測定結果の一例を示すグラフである。
 例えば、上記情報処理システムは、ダイナミックレンジの異なる2つの第1の測定部としての第1加速度センサ200Aおよび第2の測定部としての第2加速度センサ200Bと情報処理装置100-1とを備える。加速度センサ200は、加速度を測定し、測定された加速度を示す測定値を含む測定情報を生成する。情報処理装置100-1は、当該加速度センサ200の各々から測定情報をそれぞれ取得し、測定情報を合成することにより新たな測定情報を生成する。例えば、ダイナミックレンジが第1加速度センサ200Aよりも低い第2加速度センサ200Bの測定可能範囲(以下、第2測定可能範囲とも称する。)内においては当該第2加速度センサ200Bの測定値であり、当該第2測定可能範囲外においては第1加速度センサ200Aの測定値である新たな測定情報を生成する。図1を参照して説明すると、発生する加速度が第2測定可能範囲の上限であるlow_acc_max未満である場合は第2加速度センサ200Bの測定値(実線)が用いられ、発生する加速度が当該low_acc_max以上である場合は第1加速度センサ200Aの測定値(点線)が用いられる。これは、分解能が相対的に高い第2加速度センサ200Bの測定情報を利用しながら、当該第2測定可能範囲外における測定情報もカバーするためである。第1加速度センサ200Aと比べて、ダイナミックレンジが相対的に低い第2加速度センサ200Bは分解能が高い反面、測定可能範囲が狭くなり、発生する加速度が測定可能範囲を超える可能性が高くなる。そこで、第2測定可能範囲外の加速度については、ダイナミックレンジが相対的に高い第1加速度センサ200Aの測定情報が用いられる。
 このようなセンサを有する情報処理システムは、ユーザの動きの検出などに用いられる。例えば、上述したようにスポーツのプレイヤにセンサが装着させられ、当該センサから得られる測定情報に基づいて当該プレイヤの動きが分析される。
 ここで、当該ユーザの動きには衝撃が伴う場合がある。例えば、加速度センサ200がゴルフクラブのヘッド部に取付けられ、当該ゴルフクラブでボールを打つ動作が行われる場合、ボールが当該ゴルフクラブに当たった際に衝撃が発生する。当該衝撃は、スイング途中と比べて急峻な加速度の変化として現れる。図1を参照して説明すると、図1の時間t1付近では、加速度センサ200の測定値が短時間で急峻に変化しているため、当該時間t1付近で衝撃が発生したと考えられる。
 このような場合、当該衝撃によりセンサの異常が発生することがある。具体的には、ダイナミックレンジが相対的に低い第2加速度センサ200Bの測定情報が、衝撃の発生後に第2測定可能範囲の上限または下限近傍で固定され(以下、ある値付近で固定されることを張り付きとも称する。)、当該測定情報の張り付きが衝撃の終息後においても継続することがある。なお、近傍とは、ここでは特定の値を基準とした値の振れの範囲を意味する。さらに、図2を参照して、当該衝撃による加速度センサ200についての張り付き現象について詳細に説明する。図2は、図1の時間t1付近において発生した衝撃による第2加速度センサ200Bの測定値の張り付き現象の一例を示すグラフである。
 まず、センサに異常が発生しない場合を説明する。例えば、第2加速度センサ200Bの測定値は、衝撃の発生に応じて急峻に高まり、low_acc_maxまで到達した後、衝撃が継続している間すなわち加速度がlow_acc_max以上である間は、low_acc_maxで張り付く。そして、衝撃が終息し、加速度がlow_acc_max未満に下がると、第2加速度センサ200Bの測定値は当該加速度に応じて再び変動し始める。これは、第2加速度センサ200Bのダイナミックレンジが低いことにより生じる現象であるため、概してセンサの異常とみなされない。
 これに対し、センサに異常が発生する場合には、測定情報についても異常が発生する。例えば、第2加速度センサ200Bの測定値がlow_acc_maxまで到達し、衝撃が継続している間low_acc_max付近で張り付くことは上記と同様であるが、センサに異常が発生している場合には、当該衝撃が終息したのにも関わらず、図2に示したように測定値の張り付き現象が継続することがある。
 この場合、第2加速度センサ200Bの測定値を用いることができないため、第1加速度センサ200Aの測定値が代わりに用いられることが多い。しかし、第1加速度センサ200Aの分解能は第2加速度センサ200Bに比べて低いため、測定値の精度が低下し、測定値に基づく処理において所望の結果を得ることが困難になる可能性がある。そのため、当該第2加速度センサ200Bの異常が解消されまたは抑制されることが望ましい。
 他方で、このようなセンサの異常を装置またはセンサ側で解消することが困難である場合がある。その理由の1つに、再度の衝撃により解消されるセンサの異常の存在がある。例えば、上述した第2加速度センサ200Bの異常すなわち測定値の第2測定可能範囲の上限付近での張り付きは、第2加速度センサ200Bに再度の衝撃が加えられると解消されることが分かっている。図3を参照して、再度の衝撃による加速度センサ200についての張り付き現象の解消について詳細に説明する。図3は、第2加速度センサ200Bの測定値の張り付きが解消される様子の一例を示すグラフである。
 図3では、図2に示したように第2加速度センサ200Bの測定値の張り付きが発生した後、当該測定値の張り付きが継続している。その後、時間t2において再び第2加速度センサ200Bに衝撃が与えられると、測定値の張り付きは解消され、測定値は発生する加速度に応じて変動し始める。
 しかし、当該衝撃を装置またはセンサに発生させることは概して困難である。そのため、情報処理装置100-1などからユーザに再度衝撃を発生させることが促されることになる。他方で、ユーザに衝撃を発生させる動作をさせるため、ユーザの負担が増加する。従って、できるだけユーザの負担を軽減することが求められる。
 また、センサ本体の異常を抑制することが困難な場合もある。これは、異常の原因の特定が困難であることが一因として挙げられる。例えば、センサが既製品である場合、概してセンサの仕組みまたは構造が十分に把握できないため、異常の原因を特定することが難しい。そのため、センサの異常を予め抑制する構成を追加することも困難である。
 そこで、本実施形態では、センサの構成に手が加えられることなく、センサの異常の検出について正確性を向上させることが可能な情報処理システムを提案する。以下、当該情報処理システムの構成要素について詳細に説明する。なお、説明の便宜上、第1および第2の実施形態に係る情報処理装置100を、情報処理装置100-1および情報処理装置100-2のように、末尾に実施形態に対応する番号を付することにより区別する。
  <1-2.装置の構成>
 次に、本実施形態に係る情報処理システムの主要な構成要素である情報処理装置100-1の構成について説明する。
   (情報処理装置の物理構成)
 まず、図4を参照して、情報処理装置100-1の物理的な構成について説明する。図4は、本実施形態に係る情報処理装置100-1の概略的な物理構成例を示すブロック図である。
 図4に示したように、情報処理装置100-1は、プロセッサ102、メモリ104、ブリッジ106、バス108、入力インタフェース110、出力インタフェース112、接続ポート114および通信インタフェース116を備える。
    (プロセッサ)
 プロセッサ102は、演算処理装置として機能し、各種プログラムと協働して情報処理装置100-1内の後述する検出部122および表示制御部126の機能を実現する制御モジュールである。プロセッサ102は、制御回路を用いてメモリ104または他の記憶媒体に記憶されるプログラムを実行することにより、後述する情報処理装置100-1の様々な論理的機能を実現させる。例えば、プロセッサ102はCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)またはSoC(System-on-a-Chip)であり得る。
    (メモリ)
 メモリ104は、プロセッサ102が使用するプログラムまたは演算パラメタなどを記憶し、後述する記憶部124の機能を実現する。例えば、メモリ104は、RAM(Random Access Memory)を含み、プロセッサ102の実行において使用するプログラムまたは実行において適宜変化するパラメタなどを一時記憶する。また、メモリ104は、ROM(Read Only Memory)を含む。なお、接続ポートまたは通信装置などを介して外部のストレージ装置がメモリ104の一部として利用されてもよい。
 なお、プロセッサ102およびメモリ104は、CPUバスなどから構成される内部バスにより相互に接続されている。
    (ブリッジおよびバス)
 ブリッジ106は、バス間を接続する。具体的には、ブリッジ106は、プロセッサ102およびメモリ104が接続される内部バスと、入力インタフェース110、出力インタフェース112、接続ポート114および通信インタフェース116間を接続するバス108と、を接続する。
    (入力インタフェース)
 入力インタフェース110は、ユーザが情報処理装置100-1を操作しまたは情報処理装置100-1へ情報を入力するために使用される。例えば、入力インタフェース110は、情報処理装置100-1を起動するためのボタンなどのユーザが情報を入力するための入力手段、およびユーザによる入力に基づいて入力信号を生成し、プロセッサ102に出力する入力制御回路などから構成されている。なお、当該入力手段は、マウス、キーボード、タッチパネル、スイッチまたはレバーなどであってもよい。情報処理装置100-1のユーザは、入力インタフェース110を操作することにより、情報処理装置100-1に対して各種のデータを入力したり処理の実行を指示したりすることができる。
    (出力インタフェース)
 出力インタフェース112は、ユーザに情報を通知するために使用される。例えば、出力インタフェース112は、液晶ディスプレイ(LCD:Liquid Crystal Display)装置、OLED(Organic Light Emitting Diode)装置またはプロジェクタなどの装置に出力を行うことにより、後述する表示部128の機能を実現する。なお、出力インタフェース112は、スピーカまたはヘッドフォンなどの装置への出力を行ってもよい。
    (接続ポート)
 接続ポート114は、機器を情報処理装置100-1に直接接続するためのポートである。例えば、接続ポート114は、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)ポートなどであり得る。また、接続ポート114は、RS-232Cポート、光オーディオ端子、HDMI(登録商標)(High-Definition Multimedia Interface)ポートなどであってもよい。接続ポート114に外部機器を接続することで、情報処理装置100-1と当該機器との間でデータが交換されてもよい。
    (通信インタフェース)
 通信インタフェース116は、情報処理装置100-1と外部装置との間の通信を仲介し、後述する通信部120の機能を実現する。例えば、通信インタフェース116は、Bluetooth(登録商標)、NFC(Near Field Communication)、ワイヤレスUSBもしくはTransferJet(登録商標)などの近距離無線通信方式、WCDMA(登録商標)(Wideband Code Division Multiple Access)、WiMAX(登録商標)、LTE(Long Term Evolution)もしくはLTE-Aなどのセルラ通信方式、またはWi-Fi(登録商標)などの無線LAN(Local Area Network)方式といった、任意の無線通信方式に従って無線通信を実行してよい。また、通信インタフェース116は、有線による通信を行うワイヤ通信を実行してもよい。
 なお、情報処理装置100-1は、図4を用いて説明した構成の一部を有しなくてもよく、または追加的な構成を有していてもよい。また、図4を用いて説明した構成の全体または一部を集積したワンチップの情報処理モジュールが提供されてもよい。
   (情報処理装置の論理構成)
 続いて、図5を参照して、本実施形態に係る情報処理装置100-1の論理構成について説明する。図5は、本実施形態に係る情報処理装置100-1の概略的な機能構成例を示すブロック図である。
 図5に示したように、情報処理装置100-1は、通信部120、検出部122、記憶部124、表示制御部126および表示部128を備える。
    (通信部)
 通信部120は、加速度センサ200と通信する。具体的には、通信部120は、第1加速度センサ200Aおよび第2加速度センサ200Bからそれぞれ測定情報を受信する。例えば、通信部120は、無線通信方式を用いて加速度センサ200と通信する。なお、通信部120は、加速度センサ200と有線通信方式を用いて通信してもよい。また、受信される測定情報は、時系列の測定情報であってもよく、単体の測定情報であってもよい。
    (検出部)
 検出部122は、加速度センサ200から受信される測定情報の異常(すなわち加速度センサ200の異常)を検出する。具体的には、検出部122は、第1の値としての第1加速度センサ200Aの測定において得られる測定情報(以下、第1測定情報または第1測定値とも称する。)と第2の値としての第2加速度センサ200Bの測定において得られる測定情報(以下、第2測定情報または第2測定値とも称する。)との間の相関関係に係る変化に基づいて測定情報の異常を検出する。また、検出部122は、衝撃の発生に応じて検出処理を行う。なお、上述したように、第1加速度センサ200Aの測定に係るダイナミックレンジ(以下、第1ダイナミックレンジとも称する。)は、第2加速度センサ200Bの測定に係るダイナミックレンジ(以下、第2ダイナミックレンジとも称する。)と異なる。具体的には、第1ダイナミックレンジは、第2ダイナミックレンジよりも高い。また以下では第1測定値および第2測定値を区別しない場合には単に測定値とも称する。さらに、図6および図7を参照して、検出部122の処理について詳細に説明する。図6は、加速度センサ200に異常がない場合の第1測定値と第2測定値との間の相関関係の例を示すグラフであり、図7は、加速度センサ200に異常が生じた場合の第1測定値と第2測定値との間の相関関係の例を示すグラフである。
 まず、検出部122は、測定情報に基づいて衝撃の発生有無を判定する。例えば、検出部122は、図1に示したような時間t1付近の測定値の変化の傾きが閾値以上である場合に、衝撃が発生したと判定する。また、検出部122は、第1および第2測定値間の相関関係に基づいて衝撃の発生有無を判定してもよい。例えば、図6に示したような、ダイナミックレンジの低い第2加速度センサの第2測定値が第2測定可能範囲の上限であるlow_acc_maxに張り付いた状態で、第1加速度センサの第1測定値がlow_acc_maxより高い値の範囲にある場合、検出部122は、衝撃が発生したと判定してもよい。なお、第2測定値がlow_acc_maxに張り付いた状態で第1測定値がlow_acc_maxよりも高い値の範囲にある間が衝撃の発生中であると推定されてもよい。
 衝撃が発生したと判定される場合、検出部122は、取得される測定情報に基づいて相関関係を特定する。具体的には、検出部122は、衝撃の前後について測定情報に基づいて相関関係を特定する。例えば、検出部122は、相関係数(相関関数)などの指標を、衝撃の発生前および衝撃の終息後の所定の期間についてそれぞれ算出してもよい。なお、当該指標は、相関係数に限られず、データの相関関係を把握することが可能な情報であれば採用され得る。
 次に、検出部122は、当該衝撃の発生前と当該衝撃の終息後との間における相関関係に係る変化の有無を判定する。具体的には、検出部122は、第1測定値が第2測定可能範囲を超える前と第1測定値が第2測定可能範囲に戻った後との間における相関関係の有無または程度の変化の有無を判定する。例えば、検出部122は、衝撃発生前の相関係数と衝撃終息後の相関係数とが一致するかまたは所定の範囲内にあるかを判定する。
 詳細には、まず図6および図7に示したように、センサに異常が発生しない場合およびセンサに異常が発生する場合のいずれであっても、衝撃の発生前すなわち第1測定値がlow_acc_maxを超える前までの所定の期間における相関関係はリニア(破線)に近い関係を有している。そのため、この期間では正の相関係数が算出される。
 また、衝撃の発生中すなわち第1測定値がlow_acc_maxを超えている間は、発生している加速度が第2加速度センサ200Bの測定可能範囲を超えているため、第2測定値はlow_acc_maxで張り付いている。そのため、この期間では相関関係は無くなっており、算出される相関係数は0または0に近い値となる。
 また、第1測定値がlow_acc_max未満に戻った後は、センサに異常が発生しない場合は、相関関係は図6に示したように第1測定値がlow_acc_maxを超える前と同じリニアに近い関係を有している。そのため、この期間では正の相関係数が算出される。他方で、図7では、第1測定値がlow_acc_max未満に戻っているのにも関わらず、第2測定値がlow_acc_max近傍で張り付いている。そのため、この期間では衝撃発生中と同様に相関関係が無くなっており、0または0に近い相関係数が算出される。
 従って、検出部122は、図6の場合には相関係数が一致すると判定し、図7の場合には相関係数が一致しないと判定する。
 そして、衝撃発生前と衝撃終息後との間において相関関係に係る変化が生じたと判定される場合、検出部122は、センサの異常を検出する。例えば、検出部122は、算出される相関係数が一致する場合には、センサの異常を検出しない。他方で、検出部122は、算出される相関係数が一致しない場合には、センサの異常を検出する。なお、検出部122は、衝撃発生から終息までの間すなわち上述した衝撃の発生中はセンサの異常を検出しないとしてもよい。
 なお、上記では、加速度が第2測定可能範囲の上限を超える場合の例を説明したが、第2測定可能範囲の下限を超える場合であっても本質的に同様に処理が行われる。
    (記憶部)
 記憶部124は、情報処理装置100-1において行われる処理に用いられる情報を記憶する。具体的には、記憶部124は、通信部120により受信される測定情報を時系列で記憶する。また、記憶部124は、表示部128に表示させる画像に係る画像情報を記憶する。なお、当該画像情報は、予め記憶されていてもよく、通信部120を介して追加的に取得されてもよい。
    (表示制御部)
 表示制御部126は、表示部128の処理を制御する。具体的には、表示制御部126は、検出された異常に関する通知のための出力処理を制御する。当該異常に関する通知はユーザ向けの表示を含み、表示制御部126は、当該表示に係る画像情報を決定する。例えば、表示制御部126は、検出部122により検出される異常を解消するための方法をユーザに示す画像に係る画像情報を記憶部124から選択し、選択される画像情報を表示部128に提供する。なお、表示制御部126は、記憶部124に記憶される画像情報に基づいて新たな画像情報を生成してもよい。
    (表示部)
 表示部128は、出力部として、画像情報に基づいて画像を表示する。具体的には、表示部128は、表示制御部126から提供される画像情報に係る画像をユーザに対して表示する。
  <1-3.装置の処理>
 次に、図8を参照して、本実施形態に係る情報処理装置100-1の処理について説明する。図8は、本実施形態に係る情報処理装置100-1の処理を概念的に示すフローチャートである。
 情報処理装置100-1は、第1測定値および第2測定値を取得する(ステップS302)。具体的には、通信部120は、第1加速度センサ200Aおよび第2加速度センサ200Bからそれぞれ第1測定値および第2測定値を受信する。そして、受信される測定値は記憶部124に記憶される。
 次に、情報処理装置100-1は、衝撃の発生有無を判定する(ステップS304)。具体的には、検出部122は、記憶部124に記憶される時系列の測定値に基づいて加速度センサ200における衝撃の発生有無を判定する。なお、衝撃の発生は、外部装置から通知されてもよい。
 衝撃が発生したと判定されると、情報処理装置100-1は、第1測定値が第2測定可能範囲を超える前までの相関関係を特定する(ステップS306)。具体的には、検出部122は、衝撃が発生したと判定されると、衝撃発生前すなわち第1測定値がlow_acc_maxに到達する時点までの所定の期間における第1測定値と第2測定値との間の相関係数を算出する。
 次に、情報処理装置100-1は、第1測定値が第2測定可能範囲未満に戻った後の相関関係を特定する(ステップS308)。具体的には、検出部122は、衝撃の終息後すなわち第1の測定値がlow_acc_maxを超え、その後low_acc_max未満に戻った後から所定の期間における第1測定値と第2測定値との間の相関係数を算出する。
 次に、情報処理装置100-1は、相関関係が変化しているかを判定する(ステップS310)。具体的には、検出部122は、衝撃発生前および衝撃終息後の相関係数が一致するかまたはこれら相関係数の差が所定の範囲内であるかを判定する。
 相関関係が変化したと判定されると、情報処理装置100-1は、第2測定値の第2測定可能範囲の境界値近傍での張り付き有無を判定する(ステップS312)。具体的には、検出部122は、当該相関係数が一致しないまたは当該相関係数の差が所定の範囲内でないと判定されると、第2測定値が第2測定可能範囲の上限または下限近傍で張り付いているかを判定する。
 第2測定値が第2測定可能範囲の境界値近傍で張り付いていると判定されると、情報処理装置100-1は、異常に関する通知のための画像を表示する(ステップS312)。具体的には、表示制御部126は、第2測定値が第2測定可能範囲の上限または下限近傍で張り付いていると判定されると、ユーザに異常を通知するための画像に係る画像情報を選択する。そして、表示制御部126は、選択される画像を表示部128に表示させる。
  <1-4.第1の実施形態のまとめ>
 このように、本開示の第1の実施形態によれば、情報処理装置100-1は、第1の測定部(第1加速度センサ200A)の測定において得られる第1の値(第1測定値)と、測定に係るダイナミックレンジが当該第1の測定部の第1ダイナミックレンジと異なる第2ダイナミックレンジである第2の測定部(第2加速度センサ200B)の測定において得られる第2の値(第2測定値)と、を得る。そして、情報処理装置100-1は、当該第1測定値と当該第2測定値との間の相関関係に係る変化に基づいて当該第1測定値または当該第2測定値についての異常を検出する。ここで、相関関係に係る変化は、第1測定値と第2測定値との間の変化の有無または程度の相違を意味する。そのため、相関関係に係る変化が生じた場合は、第1測定値または第2測定値に異常が発生した可能性が高くなる。また、加速度センサ200から得られる第1および第2測定値が異常の検出処理に用いられることにより、既存の加速度センサ200をそのまま利用することができる。従って、加速度センサ200の構成に手が加えられることなく、加速度センサ200の異常の検出の正確性を向上させることが可能となる。
 また、相関関係に係る変化は、上記第1加速度センサ200Aおよび上記第2加速度センサ200Bに与えられる衝撃の発生前と当該衝撃の終息後との間における上記相関関係に係る変化を含む。このため、衝撃により、ダイナミックレンジの低い方の加速度センサ200の測定可能範囲を超える加速度が発生し、第1および第2測定値間の相関関係に係る変化が生じる場合であっても、当該加速度の発生中においては異常が検出されないようにすることができる。従って、検出される異常が絞り込まれることにより、異常への対処にかかる時間または手間などを削減することが可能となる。
 また、上記第1ダイナミックレンジは、上記第2ダイナミックレンジよりも高く、上記相関関係に係る変化は、上記第1測定値が上記第2加速度センサ200Bの測定可能範囲(第2測定可能範囲)を超える前と上記第1測定値が第2測定可能範囲内に戻った後との間における上記相関関係に係る変化を含む。このため、第2測定値に比べて測定可能範囲の限界に達し(飽和し)にくい第1測定値に基づいて、相関関係に係る変化の監視区間が決定されることにより、当該監視区間の正確性が向上する。従って、第2測定値の異常の発生をより正確に検出することが可能となる。
 また、情報処理装置100-1は、上記第2の値が上記第1の値が上記第2の測定部の測定可能範囲内に戻った後において所定の値近傍で固定されているときに上記異常を検出する。このため、異常の検出パターンを所定の値近傍の張り付きに絞り込むことができる。従って、検出処理時間および処理負荷などを低減することが可能となる。
 また、上記所定の値は、上記第2の測定部の測定可能範囲の境界値を含む。ここで、第2測定可能範囲を超える加速度が生じた場合、第2測定値は当該第2測定可能範囲の境界値付近で張り付くという現象が発生することが分かっている。そのため、検出パターンが値についてまで絞り込まれることにより、検出処理時間および処理負荷などをさらに低減することができる。
 また、情報処理装置100-1は、上記衝撃の発生に応じて上記異常の検出処理を行う。このため、測定値が取得される度に検出処理が行われる場合と比べて、検出処理の頻度を低減することができる。従って、検出処理が効率化されることにより、検出処理にかかる処理負荷および消費電力を低減することが可能となる。
 また、上記相関関係に係る変化は、上記相関関係の有無または程度の変化を含む。ここで、上述したように測定値が張り付くと測定値間の相関関係はほぼ無くなると考えられる。そのため、当該相関関係の有無に基づいて上記異常が検出されても問題がなく、またそれにより上記異常の検出処理を簡素化することができる。また別の例では、測定値が張り付くのではなく測定値の変動の程度が測定値間で異なる場合も考えられる。その場合、相関関係の有無に基づいては上記異常の検出が困難であるが、相関関係の程度の変化に基づくことによれば、上記異常を検出することができる。
 また、情報処理装置100-1は、上記異常に関する通知のための出力を行う出力部をさらに備える。このため、上記異常が検出されたことが外部に通知されることにより、異常への対処を外部装置またはユーザに促すことができる。なお、本実施形態では、表示部128が出力部として動作するとしたが、例えば通信部120が出力部として検出された上記異常に係る情報を外部装置に送信してもよく、情報処理装置100-1が組み込まれた装置に備えられる他の装置またはモジュールへ当該異常に係る情報が提供されてもよい。
 また、上記通知は、上記異常を解消するための方法の通知を含む。このため、検出された異常を解消するための方法が特定される場合には、当該方法が通知されることにより、当該異常が解消される可能性を高めることができる。
 また、上記出力は、上記通知のためのユーザ向けの表示を含む。このため、視覚的な情報がユーザに提示されることにより、当該通知をユーザに理解させやすくすることができる。なお、本実施形態では、ユーザ向けの出力として表示が用いられる例を説明したが、当該ユーザ向けの出力は他の出力、例えば音声出力であってもよい。
 なお、本実施形態では、表示制御部126および表示部128を備える情報処理装置100-1において測定値すなわち加速度センサ200の異常の検出処理が行われる例を説明したが、加速度センサ200が検出部122を備えるセンサモジュールであってもよい。その場合、加速度センサ200において上記の異常検出処理が行われ、検出結果が通信を介して情報処理装置100-1に送信される。そして、表示制御部126は当該検出結果に基づいて表示部128の表示を制御する。
 <2.第2の実施形態(角速度センサの例)>
 以上、本開示の第1の実施形態について説明した。次に、本開示の第2の実施形態について説明する。第2の実施形態では、角速度センサを例としてセンサにおいて生じる異常の検出および当該異常をユーザへ通知する仕組みについて説明する。
  <2-1.概要>
 第2の実施形態に係る情報処理システムの第1の実施形態との差異は、センサの種類が異なる点および当該センサが情報処理装置100-2に設けられる点の2つである。具体的には、本実施形態に係る情報処理システムにおけるセンサは角速度センサ118であり、当該角速度センサ118は情報処理装置100-2に備えられる。第1の実施形態の加速度センサ200と同様に、2つの角速度センサ、第1角速度センサ118Aおよび第2角速度センサ118Bが備えられ、第1角速度センサ118Aのダイナミックレンジは第2角速度センサ118Bよりも高い。当該角速度センサ118は、角速度を測定し、測定された角速度を示す測定値を含む測定情報を生成する。そして、生成される測定情報が検出部122等に提供される。第1の実施形態と同様に、当該角速度センサ118を有する情報処理装置100-2はスポーツなどにおいて利用される。
 ここで、角速度センサが用いられる場合にも、衝撃により角速度センサに異常が発生することがある。具体的には、ダイナミックレンジが相対的に高い第2角速度センサ118Bの測定情報が、衝撃の発生後に任意の値近傍で張り付き、当該測定情報の張り付きが衝撃の終息後においても継続することがある。さらに、図9および図10を参照して、当該衝撃による角速度センサ118についての張り付き現象について詳細に説明する。図9は、衝撃による第1角速度センサ118Aの測定値の張り付き現象の一例を示すグラフであり、図10は、図9における張り付き現象が解消される区間の拡大図である。
 まず、センサに異常が発生しない場合を説明する。例えば、第1角速度センサ118Aの測定値(以下、第1測定情報’または第1測定値’とも称する。)(太線)は、図9に示したような時間t3付近における衝撃の発生に応じて急峻に上下変動する。このとき、第2角速度センサ118Bの測定値(以下、第2測定情報’または第2測定値’とも称する。)(破線)は、衝撃の発生までは第1測定値’とともに変動し、衝撃が発生すると角速度が第2角速度センサ118Bの測定可能範囲(以下、第2測定可能範囲’とも称する。)を超えるため第1測定値’と乖離する。そして、衝撃が終息すると第2測定値’は再び第1測定値’とともに変動し始める。これは、第2角速度センサ118Bのダイナミックレンジが低いことにより生じる現象であるため、概してセンサの異常とみなされない。
 これに対し、センサに異常が発生する場合には、測定情報’についても異常が発生する。例えば、第2測定値’が衝撃の終息後に発生する角速度に応じて変動するのに対し、第1測定値’は図9に示したような任意の値y1近傍に張り付くことがある。なお、第1測定値’は図9および図10に示したように任意の値y1を基準として小刻みに変動し得る。
 なお、本実施形態に係る測定値張り付き現象は、第1の実施形態に係る現象と異なり、時間経過によって解消されることがある。例えば、測定値’の張り付き発生後、図10に示したような時間t5が到来すると、第1測定値’は変動を開始し、その後第2測定値’すなわち実際の角速度と一致するように変動する。
 しかし、時間経過によって解消されるかどうかは不確定であり、また解消に求められる待機時間の長さも不確定である。また、第1の実施形態とは異なり、ダイナミックレンジが相対的に高い第1測定値’が任意の値に張り付くため、情報処理装置100-1の構成をそのまま利用しても異常を検出することは困難である。
 そこで、本実施形態では、第1の実施形態において異常の検出判定に用いられるような第1測定値’と第2測定可能範囲’との関係によらず、第1測定値’または第2測定値’の異常の検出が可能な情報処理システムを提案する。以下、当該情報処理システムの構成要素について詳細に説明する。
  <2-2.装置の構成>
 次に、本実施形態に係る情報処理装置100-2の構成について説明する。なお、第1の実施形態と実質的に同一である構成については説明を省略する。
   (情報処理装置の物理構成)
 まず、図11を参照して、情報処理装置100-2の物理的な構成について説明する。図11は、本実施形態に係る情報処理装置100-2の概略的な物理構成例を示すブロック図である。
 図11に示したように、情報処理装置100-2は、プロセッサ102、メモリ104、ブリッジ106、バス108、入力インタフェース110、出力インタフェース112、接続ポート114および通信インタフェース116に加えて、第1角速度センサ118Aおよび第2角速度センサ118Bを備える。
    (角速度センサ)
 角速度センサ118(すなわち第1角速度センサ118Aおよび第2角速度センサ118B)は、角速度を測定し、情報処理装置100-2に備えられる後述する第1角速度測定部130Aおよび第2角速度測定部130Bの機能を実現する。なお、角速度センサ118は、測定された角速度を処理するプロセッサを含むセンサモジュールであってもよい。
   (情報処理装置の論理構成)
 続いて、図12を参照して、本実施形態に係る情報処理装置100-2の論理構成について説明する。図12は、本実施形態に係る情報処理装置100-2の概略的な機能構成例を示すブロック図である。
 図12に示したように、情報処理装置100-2は、検出部122、記憶部124、表示制御部126および表示部128に加えて、第1角速度測定部130A及び第2角速度測定部130Bを備える。なお、第1の実施形態と同様に通信部120が備えられていてもよい。
    (角速度測定部)
 角速度測定部130は、情報処理装置100-2にかかる角速度を測定する。具体的には、角速度測定部130は、角速度を測定し、測定された角速度を示す測定値’を含む測定情報’を生成する。生成された測定情報’は、検出部122に提供される。なお、第1の測定部としての第1角速度測定部130Aは、第2の測定部としての第2角速度測定部130Bよりも高いダイナミックレンジを有する。
    (検出部)
 検出部122は、角速度測定部130から提供される測定情報’の異常(すなわち角速度センサ118の異常)を検出する。具体的には、検出部122は、第1の値としての第1角速度測定部130Aの測定において得られる第1測定情報’と第2の値としての第2角速度測定部130Bの測定において得られる第2測定情報’との間の相関関係に係る変化に基づいて第1または第2測定情報’の異常を検出する。さらに、図13を参照して、本実施形態における検出部122の処理について詳細に説明する。図13は、第1角速度センサ118Aに異常が生じた場合の第1測定値’と第2測定値’との間の相関関係の例を示すグラフである。
 まず、検出部122は、測定情報’に基づいて衝撃の発生有無を判定する。例えば、検出部122は、図9に示したような時間t3付近の測定値’の変化の傾きが閾値以上である場合に、衝撃が発生したと判定する。
 衝撃が発生したと判定される場合、検出部122は、衝撃の発生前および衝撃の発生から所定の時間経過後における相関関係を特定する。例えば、検出部122は、衝撃の発生前および衝撃の発生から所定の時間経過した後の所定の期間についてそれぞれ相関係数を算出する。なお、衝撃の終息が判定される場合には、上記衝撃の発生から所定の時間経過後における相関関係の代わりに、当該衝撃の終息から同一または別の所定の時間経過後における相関関係が利用されてもよい。
 次に、検出部122は、当該衝撃の発生から所定の時間経過後における相関関係に係る変化の有無を判定する。具体的には、検出部122は、衝撃発生前の相関係数と衝撃発生から所定の時間経過後の相関係数とが一致するかまたは所定の範囲内にあるかを判定する。
 詳細には、まず図13に示したように、衝撃の発生前すなわち相関関係が第1測定値’の軸にほぼ平行な関係に至る前までの所定の期間における相関関係はリニアに近い関係を有している。そのため、この期間では正の相関係数が算出される。
 また、衝撃の発生中は、第1測定値’の変動に第2測定値’が追従していないため、図13に示したように測定値’間の相関関係は無くなっており、相関関係は第1測定値’の軸に平行な関係を有する。そのため、この期間では、算出される相関係数は0または0に近い値となる。
 また、衝撃の発生から所定の時間経過後、例えば図9に示したような時間t4においては、第2測定値’は発生する角速度に沿って上下に変動しながら0に収束していっている一方で、第1測定値’は任意の値y1近傍で張り付いている。そのため、衝撃発生中と同様に相関関係が無くなっている。なお、この場合では第1測定値’が張り付くため、相関関係は第2測定値’と平行な関係となる。この期間では0または0に近い相関係数が算出される。また、上記では、第1測定値’が任意の値近傍で張り付く例を説明したが、第1測定値’は任意の値ではなく固定値であってもよい。
 従って、この場合、検出部122は、衝撃発生前の相関係数と衝撃発生から所定の時間経過後における相関係数とは一致しないと判定する。
 そして、衝撃発生前と衝撃発生から所定の時間経過後との間において上記相関関係に係る変化が生じたと判定される場合、検出部122は、センサの異常を検出する。
  <2-3.装置の処理>
 次に、図14を参照して、本実施形態に係る情報処理装置100-2の処理について説明する。図14は、本実施形態に係る情報処理装置100-2の処理を概念的に示すフローチャートである。なお、第1の実施形態に係る処理と実質的に同一である処理については説明を省略する。
 情報処理装置100-2は、第1測定値’および第2測定値’を取得し(ステップS402)、取得される測定値’に基づいて衝撃の発生有無を判定する(ステップS404)。
 衝撃が発生したと判定されると、情報処理装置100-2は、衝撃発生前までの相関関係を特定し(ステップS406)、衝撃発生から所定の時間経過後の相関関係を特定する(ステップS408)。
 次に、情報処理装置100-1は、相関関係が変化しているかを判定する(ステップS410)。具体的には、検出部122は、衝撃発生前および衝撃発生から所定の時間経過後の相関係数が一致するかまたはこれら相関係数の差が所定の範囲内であるかを判定する。
 相関関係が変化したと判定されると、情報処理装置100-2は、第1測定値’の所定の値近傍での張り付き有無を判定する(ステップS412)。具体的には、検出部122は、算出された相関係数が一致しないと判定されると、第1測定値’が任意の値近傍で張り付いているかを判定する。
 第1測定値’が所定の値近傍で張り付いていると判定されると、情報処理装置100-2は、異常に関する通知のための画像を表示する(ステップS414)。
  <2-4.第2の実施形態のまとめ>
 このように、本開示の第2の実施形態によれば、情報処理装置100-2は、上記衝撃の発生前と上記衝撃の発生から所定の時間の経過との間の上記相関関係に係る変化に基づいて上記異常を検出する。このため、上記衝撃の終息を第1の実施形態のような測定値’と測定可能範囲’との関係に関わらず判定することができる。従って、より多くの異常を検出対象とすることが可能となる。
 また、情報処理装置100-2は、上記第1の値が上記衝撃の発生から所定の時間経過後において所定の値近傍で固定されているときに上記異常を検出する。このため、異常の検出パターンを所定の値近傍の張り付きに絞り込むことができる。従って、検出処理時間および処理負荷などを低減することが可能となる。
 また、情報処理装置100-2は、上記第1の測定部および上記第2の測定部をさらに備える。昨今では、様々なセンサを備える携帯型端末などの情報処理装置が増加しており、そのような情報処理装置に備えられるセンサについて同様の現象が生じる可能性がある。これに対し、本構成によれば、当該センサを備える情報処理装置においても異常検出に係る効果を享受することが可能となる。
 <3.むすび>
 以上、本開示の第1の実施形態によれば、加速度センサ200の構成に手が加えられることなく、加速度センサ200の異常の検出の正確性を向上させることが可能となる。
また、本開示の第2の実施形態によれば、上記衝撃の終息を第1の実施形態のような測定値’と測定可能範囲’との関係に関わらず判定することができる。従って、より多くの異常を検出対象とすることが可能となる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、上記実施形態では、測定情報は加速度または角速度などの測定対象となる現象の程度を示す測定値である例を説明したが、本技術はかかる例に限定されない。例えば、測定情報は、測定において得られる振動数または周波数などの測定結果に応じて変動する他の情報であってもよい。
 また、上記実施形態では、情報処理システムがスポーツに適用される例を説明したが、他の分野について適用されてもよい。例えば、情報処理システムは工事作業または農作業などに適用されてもよい。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 また、上記の実施形態のフローチャートに示されたステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的にまたは個別的に実行される処理をも含む。また時系列的に処理されるステップでも、場合によっては適宜順序を変更することが可能であることは言うまでもない。
 また、情報処理装置100に内蔵されるハードウェアに上述した情報処理装置100の各論理構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、当該コンピュータプログラムが記憶された記憶媒体も提供される。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得る取得部と、
 前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出する検出部と、
 を備える情報処理装置。
(2)
 前記相関関係に係る変化は、前記第1の測定部および前記第2の測定部に与えられる衝撃の発生前と前記衝撃の終息後との間における前記相関関係に係る変化を含む、前記(1)に記載の情報処理装置。
(3)
 前記第1のダイナミックレンジは、前記第2のダイナミックレンジよりも高く、
 前記相関関係に係る変化は、前記第1の値が前記第2の測定部の測定可能範囲を超える前と前記第1の値が前記第2の測定部の測定可能範囲内に戻った後との間における前記相関関係に係る変化を含む、前記(2)に記載の情報処理装置。
(4)
 前記検出部は、前記第2の値が前記第1の値が前記第2の測定部の測定可能範囲内に戻った後において所定の値近傍で固定されているときに前記異常を検出する、前記(3)に記載の情報処理装置。
(5)
 前記所定の値は、前記第2の測定部の測定可能範囲の境界値を含む、前記(4)に記載の情報処理装置。
(6)
 前記衝撃の終息は、前記衝撃の発生から所定の時間の経過を含む、前記(2)~(5)のいずれか1項に記載の情報処理装置。
(7)
 前記第1のダイナミックレンジは、前記第2のダイナミックレンジよりも高く、
 前記検出部は、前記第1の値が前記衝撃の発生から所定の時間経過後において所定の値近傍で固定されているときに前記異常を検出する、前記(6)に記載の情報処理装置。
(8)
 前記検出部は、前記衝撃の発生に応じて前記異常の検出処理を行う、前記(2)~(7)のいずれか1項に記載の情報処理装置。
(9)
 前記相関関係に係る変化は、前記相関関係の有無または程度の変化を含む、前記(2)~(8)のいずれか1項に記載の情報処理装置。
(10)
 前記第1の測定部および前記第2の測定部をさらに備える、前記(2)~(9)のいずれか1項に記載の情報処理装置。
(11)
 前記異常に関する通知のための出力を行う出力部をさらに備える、前記(2)~(10)のいずれか1項に記載の情報処理装置。
(12)
 前記通知は、前記異常を解消するための方法の通知を含む、前記(11)に記載の情報処理装置。
(13)
 前記出力は、前記通知のためのユーザ向けの表示を含む、前記(11)または(12)に記載の情報処理装置。
(14)
 プロセッサにより、第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得ることと、
 前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出することと、
 を含む、情報処理方法。
(15)
 第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得る取得機能と、
 前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出する検出機能と、
 をコンピュータに実現させるためのプログラムを記憶する記憶媒体。
 100  情報処理装置
 118  角速度センサ
 120  通信部
 122  検出部
 124  記憶部
 126  表示制御部
 128  表示部
 130  角速度測定部
 200  加速度センサ
 

Claims (15)

  1.  第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得る取得部と、
     前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出する検出部と、
     を備える情報処理装置。
  2.  前記相関関係に係る変化は、前記第1の測定部および前記第2の測定部に与えられる衝撃の発生前と前記衝撃の終息後との間における前記相関関係に係る変化を含む、請求項1に記載の情報処理装置。
  3.  前記第1のダイナミックレンジは、前記第2のダイナミックレンジよりも高く、
     前記相関関係に係る変化は、前記第1の値が前記第2の測定部の測定可能範囲を超える前と前記第1の値が前記第2の測定部の測定可能範囲内に戻った後との間における前記相関関係に係る変化を含む、請求項2に記載の情報処理装置。
  4.  前記検出部は、前記第2の値が前記第1の値が前記第2の測定部の測定可能範囲内に戻った後において所定の値近傍で固定されているときに前記異常を検出する、請求項3に記載の情報処理装置。
  5.  前記所定の値は、前記第2の測定部の測定可能範囲の境界値を含む、請求項4に記載の情報処理装置。
  6.  前記衝撃の終息は、前記衝撃の発生から所定の時間の経過を含む、請求項2に記載の情報処理装置。
  7.  前記第1のダイナミックレンジは、前記第2のダイナミックレンジよりも高く、
     前記検出部は、前記第1の値が前記衝撃の発生から所定の時間経過後において所定の値近傍で固定されているときに前記異常を検出する、請求項6に記載の情報処理装置。
  8.  前記検出部は、前記衝撃の発生に応じて前記異常の検出処理を行う、請求項2に記載の情報処理装置。
  9.  前記相関関係に係る変化は、前記相関関係の有無または程度の変化を含む、請求項2に記載の情報処理装置。
  10.  前記第1の測定部および前記第2の測定部をさらに備える、請求項2に記載の情報処理装置。
  11.  前記異常に関する通知のための出力を行う出力部をさらに備える、請求項2に記載の情報処理装置。
  12.  前記通知は、前記異常を解消するための方法の通知を含む、請求項11に記載の情報処理装置。
  13.  前記出力は、前記通知のためのユーザ向けの表示を含む、請求項11に記載の情報処理装置。
  14.  プロセッサにより、第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得ることと、
     前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出することと、
     を含む、情報処理方法。
  15.  第1の測定部の測定において得られる第1の値と、測定に係るダイナミックレンジが前記第1の測定部の第1のダイナミックレンジと異なる第2のダイナミックレンジである第2の測定部の測定において得られる第2の値と、を得る取得機能と、
     前記第1の値と前記第2の値との間の相関関係に係る変化に基づいて前記第1の値または前記第2の値についての異常を検出する検出機能と、
     をコンピュータに実現させるためのプログラムを記憶する記憶媒体。
PCT/JP2016/084608 2016-01-13 2016-11-22 情報処理装置、情報処理方法および記憶媒体 WO2017122430A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017561529A JP6881319B2 (ja) 2016-01-13 2016-11-22 情報処理装置、情報処理方法および記憶媒体
US15/778,976 US10989734B2 (en) 2016-01-13 2016-11-22 Information processing apparatus, information processing method, and storage medium
EP16885033.7A EP3404423A4 (en) 2016-01-13 2016-11-22 Information processing device, information processing method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016004552 2016-01-13
JP2016-004552 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122430A1 true WO2017122430A1 (ja) 2017-07-20

Family

ID=59311234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084608 WO2017122430A1 (ja) 2016-01-13 2016-11-22 情報処理装置、情報処理方法および記憶媒体

Country Status (4)

Country Link
US (1) US10989734B2 (ja)
EP (1) EP3404423A4 (ja)
JP (1) JP6881319B2 (ja)
WO (1) WO2017122430A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220252399A1 (en) * 2019-01-28 2022-08-11 Panasonic Intellectual Property Management Co., Ltd. Composite sensor and angular velocity correction method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667114A (en) * 1986-04-16 1987-05-19 General Electric Company Prime mover speed sensing system and method
JPH08292112A (ja) * 1995-04-20 1996-11-05 Sumitomo Electric Ind Ltd センサ異常検出システム
US20020024254A1 (en) * 2000-08-23 2002-02-28 Siemens Automotive Corporation Sensor error detection in a dual sensor system
JP2008247145A (ja) * 2007-03-29 2008-10-16 Honda Motor Co Ltd 車両用乗員拘束・運動制御装置システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3230146B2 (ja) * 1996-09-30 2001-11-19 豊田合成株式会社 乗員拘束装置
JP4625809B2 (ja) * 2004-07-20 2011-02-02 俊徳 加藤 生体機能診断装置、生体機能診断方法、生体用プローブ、生体用プローブ装着具、生体用プローブ支持具及び生体用プローブ装着支援具
JP4667114B2 (ja) 2005-04-28 2011-04-06 住友林業株式会社 梁と柱との接合方法
US7996158B2 (en) * 2007-05-14 2011-08-09 Abbott Diabetes Care Inc. Method and apparatus for providing data processing and control in a medical communication system
US9492092B2 (en) * 2009-05-20 2016-11-15 Sotera Wireless, Inc. Method for continuously monitoring a patient using a body-worn device and associated system for alarms/alerts
EP2729067A4 (en) * 2011-07-14 2014-10-29 Mc10 Inc DETECTION OF A FORCE EXERCISED ON A FOOT OR A FOOTWEAR ARTICLE
US20150282768A1 (en) * 2012-09-29 2015-10-08 Aliphcom Physiological signal determination of bioimpedance signals
WO2014110190A2 (en) * 2013-01-09 2014-07-17 Sloan Kettering Institute For Cancer Research Ocular prosthesis with display device
JP5803962B2 (ja) 2013-03-22 2015-11-04 ソニー株式会社 情報処理装置、センサ装置、情報処理システムおよび記録媒体
WO2015002933A1 (en) * 2013-07-01 2015-01-08 Mayo Foundation For Medical Education And Research Algorithms for personalization of monitoring signals in remote patient monitoring systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4667114A (en) * 1986-04-16 1987-05-19 General Electric Company Prime mover speed sensing system and method
JPH08292112A (ja) * 1995-04-20 1996-11-05 Sumitomo Electric Ind Ltd センサ異常検出システム
US20020024254A1 (en) * 2000-08-23 2002-02-28 Siemens Automotive Corporation Sensor error detection in a dual sensor system
JP2008247145A (ja) * 2007-03-29 2008-10-16 Honda Motor Co Ltd 車両用乗員拘束・運動制御装置システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404423A4 *

Also Published As

Publication number Publication date
JP6881319B2 (ja) 2021-06-02
EP3404423A1 (en) 2018-11-21
JPWO2017122430A1 (ja) 2018-11-01
US20180348252A1 (en) 2018-12-06
US10989734B2 (en) 2021-04-27
EP3404423A4 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
US11007427B2 (en) Method and apparatus for monitoring and calibrating performances of gamers
US20160045140A1 (en) Gait posture meter and program
US9964661B2 (en) Determination device, electrical device, and method of determining moving state
JP2015145878A5 (ja)
EP3087364B1 (en) Analysis apparatus, recording medium, and analysis method
JP2009505062A5 (ja)
WO2015083429A1 (ja) 解析装置、解析方法および記録媒体
US20200096363A1 (en) Providing compensation parameters for sensor integrated circuits
WO2017122430A1 (ja) 情報処理装置、情報処理方法および記憶媒体
JP2020507434A5 (ja)
US20180313676A1 (en) Information processing apparatus, information processing method, and program
US20140244011A1 (en) Bat selection device and bat selection method
US10088496B2 (en) Calibration method and sports equipment
CN116421178A (zh) 辅助监护的方法、装置、终端设备及可读存储介质
JP2017116739A5 (ja)
KR102116672B1 (ko) 스마트 체중 측정 및 예측 장치
JP2018140082A (ja) 計測システムおよび計測方法
KR101638680B1 (ko) 관성측정 원리를 이용한 가려움증 측정 장치 및 방법
KR20180114396A (ko) 움직임 감지를 이용한 집중력 측정 장치
JP2018171244A (ja) ゴルフクラブシャフトフィッティングシステム、情報処理装置及び方法
JP5319633B2 (ja) 重心動揺計
JP6394223B2 (ja) タイヤ状態評価システムおよびタイヤ状態評価方法
JP2019008471A (ja) 管理装置、シミュレーションシステムおよびシミュレーション方法
JP2020523162A5 (ja)
US9295609B2 (en) Cardiopulmonary resuscitation monitoring apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885033

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561529

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016885033

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016885033

Country of ref document: EP

Effective date: 20180813