WO2017122408A1 - Weather forecasting device, weather forecasting method, and weather forecasting program - Google Patents

Weather forecasting device, weather forecasting method, and weather forecasting program Download PDF

Info

Publication number
WO2017122408A1
WO2017122408A1 PCT/JP2016/081174 JP2016081174W WO2017122408A1 WO 2017122408 A1 WO2017122408 A1 WO 2017122408A1 JP 2016081174 W JP2016081174 W JP 2016081174W WO 2017122408 A1 WO2017122408 A1 WO 2017122408A1
Authority
WO
WIPO (PCT)
Prior art keywords
precipitation
unit
risk
core region
ground
Prior art date
Application number
PCT/JP2016/081174
Other languages
French (fr)
Japanese (ja)
Inventor
小林 哲也
彩 並木
文彦 水谷
隆宏 渡辺
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2017122408A1 publication Critical patent/WO2017122408A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • Embodiments described herein relate generally to a weather prediction device, a weather prediction method, and a weather prediction program. This application claims priority on January 12, 2016 based on Japanese Patent Application No. 2016-003545 for which it applied to Japan, and uses the content here.
  • the problem to be solved by the present invention is to provide a weather prediction device, a weather prediction method, and a weather prediction program capable of accurately predicting the degree of influence on the ground based on the weather conditions in the sky. .
  • the weather prediction apparatus of the embodiment has a precipitation risk deriving unit and an output unit.
  • the precipitation risk deriving unit derives the risk of precipitation on the ground based on the weather condition in the sky obtained by the radar device.
  • the output unit outputs information based on precipitation risk derived by the precipitation risk deriving unit.
  • the flowchart which shows an example of the process by the weather prediction apparatus 100 in 2nd Embodiment.
  • FIG. 1 is a diagram illustrating an example of a configuration of a weather prediction apparatus 100 according to the first embodiment.
  • the weather prediction device 100 according to the first embodiment estimates the amount of rain and snow falling on the ground based on the received power of the radio waves received by the weather radar device 200 or the signal strength of the radio waves, and calculates the estimated amount. Judge as a risk to users on the ground.
  • the weather radar apparatus 200 is an apparatus including a phased array antenna, for example, and electronically varies the directivity angle by controlling the phase of a signal input to an arrayed antenna element constituting the phased array antenna.
  • the weather radar apparatus 200 transmits and receives radio waves while changing the directivity angle of the antenna.
  • the weather radar apparatus 200 changes the directivity angle in the elevation direction (vertical direction) within a certain angle range (for example, 90 degrees) by electrical phase control.
  • the weather radar apparatus 200 mechanically varies the directivity angle in the azimuth direction (horizontal direction) by a drive mechanism (not shown). Further, the weather radar apparatus 200 may change the directivity angle by electrical phase control in both the azimuth direction and the elevation direction.
  • the weather radar apparatus 200 may be an apparatus including a parabolic antenna, a patch antenna, a pole antenna, a shunt feed antenna, a slot antenna, and the like in addition to the above-described phased array antenna.
  • the antenna is a parabolic antenna
  • the weather radar apparatus 200 transmits and receives radio waves while mechanically changing the antenna directivity angle by a driving mechanism (not shown).
  • the weather radar apparatus 200 converts received radio waves into electrical signals, and performs signal processing such as demodulation, signal strength amplification, and frequency conversion. Then, the weather radar apparatus 200 transmits a signal subjected to signal processing (hereinafter referred to as a processed signal) to the weather prediction apparatus 100 as observation data.
  • the weather radar device 200 transmits a plurality of processed signals generated during a predetermined search cycle to the weather prediction device 100 as one observation data.
  • Observation data for example, a three-dimensional space, the distance direction, divided by a predetermined width for each of the horizontal direction and the vertical direction, the divided regions each (hereinafter, referred to as a mesh area M i), the physical quantity based on radio waves
  • the volume data is associated with the volume data.
  • the weather prediction device 100 includes a communication interface 10, a mesh parameter calculation unit 12, a precipitation core region derivation unit 14, a wind direction and wind speed estimation unit 16, an advection prediction unit 18, a precipitation risk derivation unit 20, and an image generation unit 22.
  • the output unit 24 and the storage unit 30 may be included, but are not limited thereto.
  • Some or all of the constituent elements of the weather prediction apparatus 100 described above may be realized by a processor such as a CPU (Central Processing Unit) executing a program stored in the storage unit 30. Further, some or all of the components of the weather prediction apparatus 100 may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array).
  • the storage unit 30 includes, for example, a nonvolatile storage medium such as a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), an SD card, an MRAM (Magnetoresistive Random Access Memory), a RAM (Random Access Memory), It may be realized by a volatile storage medium such as a register.
  • the storage unit 30 stores programs executed by the processor of the weather prediction apparatus 100, and stores observation data 32, analysis data 34 for each core, and the like, which will be described later.
  • the communication interface 10 communicates with the weather radar apparatus 200 and the like, and receives observation data 32 from the weather radar apparatus 200. Observation data 32 received by the communication interface 10 is stored in the storage unit 30.
  • FIG. 2 is a diagram illustrating an example of observation data 32 stored in the storage unit 30.
  • a radar reflection factor Z i and a Doppler velocity D i are associated with each mesh region M i obtained by dividing a three-dimensional space including clouds in the sky.
  • the radar reflection factor Z i is a parameter that varies according to the particle size of particles that reflect radio waves.
  • the particles that reflect radio waves are, for example, particles that form clouds, and will be described below as cloud particles.
  • Cloud droplets include, for example, water droplets and ice crystals.
  • the Doppler velocity D i is a parameter representing the moving direction and moving velocity of the cloud particles in the mesh region M i , and the transmission frequency when the weather radar device 200 transmits the radio wave and the reception when the radio wave is received. It is calculated based on the difference from the frequency.
  • the Doppler speed D i is an index used when calculating the wind direction and wind speed of each mesh region M i . These indices may be calculated as a result of signal processing in the weather radar apparatus 200, or may be calculated in the weather prediction apparatus 100.
  • the size of the mesh region M i may be changed according to the time resolution and spatial resolution of the weather radar apparatus 200.
  • each mesh area M i the position coordinates of the orthogonal coordinate system is associated with the origin position of the meteorological radar apparatus 200. For example, if the weather radar system 200 is installed in a high hill or summit like elevations, the position coordinates of a mesh area M i may take a negative value in the altitude direction.
  • the observation data 32 is an example of information representing weather conditions in the sky.
  • the coordinate system is not limited to an orthogonal coordinate system, and may be a polar coordinate system.
  • the mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 stored in the storage unit 30.
  • precipitation intensity R i is calculated by substituting the radar reflectivity factor Z i for each mesh area M i in Equation (1).
  • Units of precipitation intensity R i is, for example, mm / h.
  • the precipitation intensity R i may be calculated by other methods.
  • B and ⁇ in the above formula (1) are constants determined from the observation values by the rain gauge.
  • B is set to about 200
  • is set to about 1.6
  • the cloud particle is ice.
  • B is set to about 500 to 2000
  • is set to about 2.0.
  • the constants B and ⁇ may be set to the same value in all mesh areas M i or may be set to different values for each mesh area M i .
  • the precipitation core region deriving unit 14 classifies the degree of precipitation according to the precipitation intensity R i inside the cloud, so that the mesh regions M i having the same precipitation intensity R i calculated by the mesh parameter calculation unit 12 are combined.
  • the precipitation core region CR k is derived in a three-dimensional space including the clouds above.
  • FIG. 3 is a diagram in which a calculation result by the mesh parameter calculation unit 12 is associated with a cross section in a plane including a vertical direction in the above three-dimensional space.
  • the Z axis indicates the vertical direction
  • the X axis and the Y axis indicate orthogonal components included in the horizontal direction.
  • only a cross section of a certain XZ plane in the above three-dimensional space is shown.
  • Each mesh region M i is associated with a vector (arrow V i ) indicating the wind direction and wind speed based on the Doppler speed D i described later, and the precipitation intensity R i calculated by the mesh parameter calculation unit 12.
  • the precipitation intensity R i is expressed by R xz in order to indicate the precipitation intensity R corresponding to the X axis and the Z axis.
  • Direction of the vector indicated by the arrow V i indicates the wind direction
  • the magnitude of the vector indicates the wind speed.
  • the information in which the precipitation intensity R i and the vector arrow V i indicating the wind direction and wind speed are associated with each mesh region M i that virtually represents the three-dimensional space in the sky as the analysis data 34 for each core. It is stored in the storage unit 30.
  • Precipitation core region deriving unit 14 refers to the precipitation intensity R i for each mesh area M i, precipitation intensity R i is comparable mesh area M i (hereinafter, referred to as matching mesh regions) bound to the 1 Two precipitation core regions CR k are derived.
  • the precipitation core region deriving unit 14 sets, for example, a mesh region M i in which the precipitation intensity R i falls between two threshold values Th k selected in stages as a matching mesh region.
  • the precipitation core region deriving unit 14 lined with boundaries of the region gathered a plurality of matching mesh regions, derives precipitation core region CR k that the boundary line between contours.
  • the mesh area M i around the mesh area M i and precipitation intensity R i is not at the same level is present alone, it may be assimilated with the surrounding ignoring it.
  • the precipitation core region deriving unit 14 derives three precipitation core regions CR 1 , CR 2 , and CR 3 using the two threshold values Th 1 and Th 2 .
  • the core region CR 1 has a precipitation intensity R i that is greater than or equal to the threshold Th 2
  • the core region CR 2 has a precipitation intensity R i that is greater than or equal to the threshold Th 1 and less than the threshold Th 2
  • the core region CR 3 Is a precipitation intensity R i less than the threshold Th 1 .
  • the core region CR 1 is, for example, precipitation intensity R i centered at 80 mm / h
  • the core region CR 2 is, for example, precipitation intensity R i centered at 50 mm / h
  • the core region CR 3 is For example, precipitation intensity R i centered at 30 mm / h.
  • Wind estimating unit 16 for example, on the basis of radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i.
  • the wind direction and wind speed estimation unit 16 uses a plurality of observation data to estimate the cloud droplet fall speed, the azimuth and elevation angles when the radio wave is received by the weather radar device 200, the radar reflection factor Z i and the Doppler. Based on the speed D i , the wind direction and the wind speed are estimated. Further, the wind direction and wind speed estimation unit 16 may estimate the wind direction and the wind speed using a three-dimensional wind analysis method such as a VVP (Volume Velocity Processing) method or a Gal-Chen method.
  • VVP Volume Velocity Processing
  • Wind estimating unit 16 for example, precipitation core region CR of the wind direction and wind velocity were estimated for each mesh area M i in the k, and the average for each downcomer core region CR k, the average wind direction and precipitation core wind speed the wind direction and wind speed region CR k.
  • the advection prediction unit 18 performs advection prediction for each precipitation core region CR k derived by the precipitation core region deriving unit 14.
  • the advection prediction, the precipitation core region CR k internal cloud observation target is to predict whether flowing by how wind before reaching to or, or ground to what extent the diffusion in the air before reaching the ground It is.
  • advection prediction unit 18 to determine whether to predict to future extent destination, precipitation core region CR k is time to reach the ground (hereinafter, referred to as the predicted arrival time) is calculated.
  • Advection prediction unit 18, based on the combined vector of the vector U k indicating the wind direction and wind speed of precipitation core region CR k, and the vector obtained by multiplying the mass and gravitational acceleration of precipitation core region CR k, precipitation core region CR k Calculates the estimated arrival time from the current position (altitude) to the ground.
  • the mass of the precipitation core region CR k is determined according to the precipitation intensity R i . For example, the mass of the precipitation core region CR k tends to increase as the precipitation intensity R i increases.
  • the advection prediction unit 18 calculates a position (hereinafter referred to as a predicted arrival position) when the precipitation core region CR k reaches the ground according to an advection model such as CUL (Cubic Lagrange) by simulation.
  • Formula (2) is an example of a formula indicating an advection model.
  • z is a value for each mesh region M i at time t at the time of observation by the weather radar device 200 in an orthogonal coordinate system whose origin is the position of the weather radar device 200 set on the horizontal plane (x, y).
  • This is a parameter representing precipitation intensity R i (ie, z is a function of (x, y, t)).
  • U is a vector indicating the wind direction and wind speed of precipitation core region CR k in the x-axis direction
  • V is a vector indicating the wind direction and wind speed of precipitation core region CR k the y-axis direction
  • W is precipitation core region It is a constant (developmental debilitating term) representing the amount of change in shape accompanying the movement of CR k .
  • the amount of change in shape accompanying movement is an index indicating the degree to which the shape changes due to rotation, shear distortion, expansion, contraction, or the like.
  • the amount of change in the precipitation core region CR k in the vertical direction (z-axis direction) is considered as a constant term of W.
  • the advection prediction unit 18 determines these U, V, and W parameters by solving simultaneous linear equations shown in Equation (3) as a least square estimation problem or a sequential estimation problem.
  • the parameters c 1 to c 9 are determined using observation data observed in the past, and may be stored in the storage unit 30 in advance. These parameters c 1 to c 9 are treated as being constant for a predetermined period (for example, about 1 hour).
  • the advection prediction unit 18 substitutes the parameters c 1 to c 9 into the characteristic differential equation shown in Equation (4), and calculates the predicted arrival position of the mesh region M i corresponding to the precipitation intensity R i represented by W. To do.
  • the parameter W representing the precipitation intensity R i changes according to dz / dt.
  • the advection prediction unit 18 determines the current position coordinates ( The position coordinates (x ⁇ , y ⁇ ) at the future time ⁇ advanced by the predicted arrival time are calculated from x t0 , y t0 ).
  • advection prediction unit 18 further mass and gravity precipitation core region CR k Based on the acceleration, the position coordinates at a future time ⁇ are corrected in the vertical direction (z-axis direction). As a result, the advection prediction unit 18 predicts the position coordinates (x ⁇ , y ⁇ , z ⁇ ) of the mesh region M i at a future time ⁇ advanced by the predicted arrival time.
  • the advection prediction unit 18 further predicts the position coordinates (x ⁇ , y ⁇ , z ⁇ ) of the mesh region M i in consideration of the air resistance received before the precipitation core region CR k reaches the ground. May be.
  • the position coordinates of a mesh area M i in the predicted future time tau by (x ⁇ , y ⁇ , z ⁇ ) since in consideration of the expected arrival time, on the ground of the ground surface or the ground surface near, Located in.
  • the position coordinates of a mesh area M i at a future time ⁇ (x ⁇ , y ⁇ , z ⁇ ) is described as being on the surface of the earth.
  • Advection prediction unit 18 a simulation of advection prediction described above is performed for all of the mesh area M i or typified by several mesh area M i, that make up the downcomer core region CR k, the mesh area M i The position coordinates at each future time ⁇ are calculated.
  • Figure 4 is a diagram showing an example of the formation results in the expected rainfall regions S k.
  • vectors U k indicating the same wind direction and wind speed are set in the three precipitation core regions CR 1 , CR 2 , and CR 3 .
  • symbol G shown in a figure shows the ground surface on the ground.
  • the precipitation core region CR k having a higher precipitation intensity R i tends to have more rainfall (or snowfall).
  • the precipitation core region CR k having such a large precipitation intensity R i often has a high density of cloud particles per unit volume or a large size of the cloud particles themselves. Therefore, the precipitation core region CR k having a higher precipitation intensity R i has a larger mass and tends to have a shorter time until it reaches the ground from the sky during rainfall (or snowfall).
  • most precipitation intensity R larger downcomer core region CR 1 of i is less affected by wind for large mass, precipitation core near just below the cloud of the three precipitation core region CR 1, CR 2, CR 3
  • a predicted precipitation region S 1 corresponding to the region CR 1 is likely to be formed.
  • three precipitation core region CR 1, CR 2, CR most precipitation intensity R i lower downcomer core region CR 3 of among the three are susceptible to wind for small mass. Therefore, expected rainfall area S 3 corresponding to the precipitation core region CR 3, rather than the position of the expected rainfall regions S k corresponding to the precipitation core region CR 1 and CR 2, likely to be formed farther.
  • expected rainfall area S 3 corresponding to the precipitation core region CR 3 is due to the influence of the wind, the area is likely to spread before reaching the ground. Therefore, it expected rainfall area S 3, an area likely to be formed as a larger area than the when precipitation core region CR 3 were simply projected onto the ground surface G.
  • the precipitation risk deriving unit 20 calculates the precipitation on the ground based on the precipitation intensity R i for each precipitation core region CR k derived by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18.
  • a risk P k is derived.
  • the risk Pk of precipitation is an index according to the amount of precipitation and the time until precipitation. For example, the risk P k of precipitation is derived for each arrival position of precipitation core region CR k, the precipitation intensity R i Precipitation core region CR k to reach the ground, divided by the expected arrival time of precipitation core region CR k Defined as a value. Therefore, the precipitation risk deriving unit 20 derives the precipitation risk P k at a higher value for the precipitation core region CR k having the larger precipitation intensity R i .
  • Precipitation risk deriving unit 20 the prediction result of advection predictor 18 for each of the predicted rainfall regions S k of the ground surface G, to derive the risk P k of precipitation.
  • the precipitation risk deriving unit 20 classifies the precipitation risk P k by comparing the derived precipitation risk P k with the reference value D.
  • the precipitation risk deriving unit 20 classifies the precipitation risk P k into three categories using the two reference values Dx and Dy.
  • precipitation risk deriving unit 20 the risk P k of rainfall than Dx case where (R i ⁇ Dx), classifies the risk P k of precipitation category indicating that high risk (high risk), the precipitation If the risk P k is less than Dx and greater than or equal to Dy (Dx> R i ⁇ Dy), the precipitation risk P k is classified into a category indicating that the risk is medium (medium risk), and the precipitation risk P k Is less than Dy (Dy> R i ), the risk Pk of precipitation is classified into a category indicating low risk (low risk).
  • the reference value D may be one, or may be three or more. In this case, the precipitation risk deriving unit 20 classifies the precipitation risk P k into two, or four or more categories.
  • precipitation risk deriving unit 20 to the predicted rainfall areas S 1, risk P 1 of precipitation based on precipitation intensity R 1 and predicted arrival time of the prediction source precipitation core region CR 1 To derive.
  • the precipitation risk P 1 for the predicted precipitation region S 1 is classified as “high risk”.
  • the precipitation risk deriving unit 20 applies the predicted precipitation region S k of the precipitation core region CR 2 to the predicted precipitation region S 2 of the precipitation core region CR 2 and the predicted precipitation region S 3 of the precipitation core region CR 3 .
  • a precipitation risk P k is derived based on the precipitation intensity R i and the predicted arrival time.
  • the risk P 2 precipitation for predicted rainfall area S 2 which corresponds to the precipitation core region CR 2 is classified as a "medium risk” of precipitation for the expected rainfall area S 3 corresponding to the precipitation core region CR 3 Risk P 3 is classified as "low risk”.
  • Image generating unit 22 the classification results of risk P k of precipitation of each predicted rainfall regions S k derived by the precipitation risk deriving unit 20, information of a combination of a Map of the ground surface G (hereinafter, the precipitation point information An image is generated based on the For example, the image generation unit 22 generates an image obtained by converting a representative value (for example, an average value) of precipitation risk P k for each category into a luminance value.
  • the luminance value is information regarding three components that represent colors in the color space.
  • the image generation unit 22 converts the representative value of the risk Pk of precipitation into a luminance value according to a predetermined color format such as YUV or YCbCr.
  • the image generation unit 22 also includes information indicating the precipitation intensity R i for each precipitation core region CR k derived by the precipitation core region deriving unit 14 (hereinafter referred to as rain cloud scale information) and the precipitation core region from the ground surface G.
  • An image may be generated based on information indicating a distance (altitude) to CR k .
  • the image generation unit 22 generates an image obtained by converting the precipitation intensity R i for each precipitation core region CR k into a luminance value.
  • the output unit 24 uses information indicating the image generated by the image generation unit 22 as a portable device that also serves as a display device such as a smartphone or a tablet terminal operated by a user via a network such as a WAN (Wide Area Network), for example. Output to a terminal device or a stationary terminal device. In this case, a screen as shown in FIGS. 5 and 6 is displayed on the terminal device.
  • a portable device that also serves as a display device such as a smartphone or a tablet terminal operated by a user via a network such as a WAN (Wide Area Network), for example.
  • WAN Wide Area Network
  • FIG. 5 is a diagram illustrating an example of a screen based on precipitation point information.
  • region Sk is displayed on the map information which shows the ground surface G, and this prediction precipitation area
  • the expected precipitation area S 1 belonging to the “high risk” category is red
  • the expected precipitation area S 2 belonging to the “medium risk” category is yellow
  • the expected precipitation area S 3 belonging to the “low risk” category is blue
  • FIG. 6 is a diagram illustrating an example of a screen based on rain cloud scale information. As in the illustrated example, the screen of the terminal device, precipitation core region CR k are displayed in different colors at a position in the sky.
  • the output unit 24 may output information indicating the image generated by the image generation unit 22 to the web server.
  • This web server provides, for example, a web page that can be accessed by a terminal device via a web browser.
  • the web server incorporates an image received from the weather prediction device 100 on the web page, and the web page is stored in the terminal device. provide.
  • a screen based on precipitation point information or rain cloud scale information as shown in FIGS. 5 and 6 is displayed on the terminal device.
  • the output unit 24 may output both image information based on precipitation point information and image information based on rain cloud scale information to a terminal device, a web server, or the like.
  • FIG. 7 is a flowchart showing an example of processing performed by the weather prediction apparatus 100 according to the first embodiment. The processing of this flowchart is repeatedly performed at a predetermined cycle, for example.
  • the mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 (step S102).
  • the precipitation core region deriving unit 14 calculates the precipitation core region CR k obtained by combining the mesh regions M i having the same precipitation intensity R i calculated by the mesh parameter calculation unit 12 and includes the three-dimensional cloud including the sky above. Derivation is performed in space (step S104).
  • Wind estimation unit 16 based on the radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i (step S106).
  • the advection prediction unit 18 performs advection prediction for each precipitation core region CR k derived by the precipitation core region deriving unit 14, and calculates a predicted arrival time and a predicted arrival position for each precipitation core region CR k. (Step S108).
  • the precipitation risk deriving unit 20 is based on the precipitation intensity R i for each precipitation core region CR k derived by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18.
  • the risk Pk of precipitation in is derived (step S110).
  • the image generator 22 based on the precipitation point information in combination with the classification results of risk P k of precipitation of each predicted rainfall regions S k derived by the precipitation risk deriving unit 20, and the map information of the ground surface G
  • an image is generated (step S112).
  • the output unit 24 outputs information indicating the image generated by the image generation unit 22 to a terminal device, a web server, or the like (step S114). Thereby, the process of this flowchart is complete
  • the risk Pk of precipitation on the ground is derived based on the weather condition in the sky obtained by the weather radar apparatus 200, so It is possible to accurately predict the degree of influence.
  • information indicating the risk Pk of precipitation on the ground is transmitted as image information to a terminal device or the like operated by the user.
  • the degree of influence can be known in advance.
  • Precipitation risk deriving unit 20 in the first embodiment described above when a plurality of predicted rainfall regions S k formed on the ground surface G overlap each other with respect to overlapping area S x, new risk of precipitation P k May be derived.
  • Figure 8 is a diagram showing an example of a case where a plurality of predicted precipitation region S k overlap each other.
  • the expected precipitation region S 1 corresponding to the precipitation core region CR 1
  • the expected precipitation area S 3 corresponding to the precipitation core region CR 3.
  • the precipitation risk deriving unit 20 derives a region S x where the predicted precipitation region S 1 and the predicted precipitation region S 3 overlap (hereinafter, referred to as a superimposed region S x ). Then, the precipitation risk deriving unit 20 newly derives the precipitation risk P k of the overlapping region S x .
  • precipitation risk deriving unit 20 in the overlapping area S x, calculates the average of the precipitation intensity R 3 predicted precipitation region S 3 and precipitation intensity R 1 predicted precipitation area S 1, the precipitation core region CR 1 calculating the average of the predicted arrival time of the expected arrival time and precipitation core region CR 3.
  • the precipitation risk deriving unit 20 derives the precipitation risk P k in the overlapping region S x based on the average precipitation intensity and the predicted arrival time. As a result, in the illustrated example, the overlapping region Sx is classified into the “medium risk” category.
  • precipitation risk deriving unit 20 overlaps among a plurality of predicted rainfall regions S k, more large expected rainfall regions S k risk P k of precipitation that is derived for the precipitation intensity R i, the overlapping area S x It may be the risk Pk of precipitation.
  • the precipitation risk deriving unit 20 treats the overlapping region S x as a partial region of the predicted precipitation region S 3 .
  • precipitation risk deriving unit 20 overlaps among a plurality of predicted precipitation area S k, the risk P k of derived precipitation for a greater rainfall intensities R i little expected rainfall regions S k, superimposed area S It is good also as the risk Pk of precipitation of x .
  • precipitation risk deriving unit 20 in accordance with the predicted arrival position of each downcomer core region CR 1, with respect to expected arrival time calculated by the advection predictor 18 May be weighted.
  • FIG. 9 is a diagram illustrating an example when the ground surface G is not flat.
  • a part of a certain ground surface G rises in the vertical direction by a height (altitude) H along the direction indicated by the vector U k indicating the wind direction and the wind speed.
  • these predicted precipitation regions S 2 are derived. 2, to weight the predicted arrival time in accordance with a predicted arrival position of S 2.
  • the expected precipitation area S 3 are classified into the category of "low risk", in the example of FIG.
  • precipitation risk deriving unit 20 may divide the category even with the same expected rainfall area S k.
  • the precipitation risk deriving unit 20 divides the predicted precipitation region corresponding to the precipitation core region CR 2 into S 2 and S 2 #, and classifies these two predicted precipitation regions into different categories. .
  • the image generating unit 22 the same predicted rainfall area S k, it is possible to generate an image color-coded depending on the altitude of the ground surface G.
  • the weather prediction apparatus 100A in the second embodiment is different from the first embodiment in that the precipitation core region CR k is derived on the ground. Therefore, it demonstrates centering on such a difference and abbreviate
  • FIG. 10 is a diagram schematically showing how the precipitation core region CR k is derived on the ground.
  • Advection predictor 18 in the second embodiment is based on the precipitation intensity R i for each mesh area M i, it calculates the predicted arrival time for each mesh area M i. Then, the advection prediction unit 18 performs advection prediction simulation based on the wind direction and wind speed for each mesh region M i and the precipitation intensity R i , and determines the position coordinates of all the mesh regions M i at the future time ⁇ . calculated on the surface G, which virtually arranged the mesh area M i to the position coordinates.
  • Precipitation core region deriving unit 14 the mesh area M i virtually arranged on the surface of the earth G, precipitation core region CR k where precipitation intensity R i is the sum of comparable mesh area M i between, ground Derived at the ground surface G.
  • the precipitation core region deriving unit 14 derives the precipitation core region CR 1 and the precipitation core region CR 2 on the ground surface G.
  • the precipitation risk deriving unit 20 derives a precipitation risk P k for the precipitation core region CR k derived on the ground surface G by the precipitation core region deriving unit 14.
  • FIG. 11 is a flowchart illustrating an example of processing by the weather prediction apparatus 100 according to the second embodiment. The processing of this flowchart is repeatedly performed at a predetermined cycle, for example.
  • the mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 (step S202). Then, Wind estimation unit 16, based on the radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i (step S204).
  • advection prediction unit 18 performs the advection prediction for each mesh area M i, calculates the predicted arrival time and the predicted arrival position of each mesh area M i (step S206). Then, the precipitation core region deriving unit 14, based on the predicted arrival position of each mesh area M i, precipitation core region CR k where precipitation intensity R i is the sum of comparable mesh area M i between ground land of Derivation is performed on the surface G (step S208).
  • the precipitation risk deriving unit 20 calculates the precipitation intensity R i for each precipitation core region CR k derived on the ground surface G by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18. Based on this, the risk Pk of precipitation on the ground is derived (step S210).
  • the image generation unit 22 is based on the precipitation point information obtained by combining the classification result of the precipitation risk P k for each precipitation core region CR k derived by the precipitation risk deriving unit 20 and the map information of the ground surface G. Thus, an image is generated (step S212).
  • the output unit 24 outputs information indicating the image generated by the image generation unit 22 to a terminal device, a web server, or the like (step S214). Thereby, the process of this flowchart is complete
  • the risk Pk of precipitation on the ground is calculated based on the weather condition in the sky obtained by the weather radar apparatus 200, as in the first embodiment. By deriving, it is possible to accurately predict the degree of influence of precipitation on the ground.
  • the weather prediction apparatus 100B in 3rd Embodiment is demonstrated.
  • the wind direction and wind speed measured by the wind direction and speed measurement device 300 differs from the first and second embodiments in that handled as wind direction and wind speed of precipitation core region CR k . Therefore, it demonstrates centering on such a difference and the description about a common part is abbreviate
  • FIG. 12 is a diagram illustrating an example of the configuration of the weather prediction device 100B according to the third embodiment.
  • the wind direction and wind speed estimation unit 16 may be omitted.
  • the wind direction and wind speed measuring device 300 includes, for example, a propeller and a vertical tail, and when the wind blows, the fuselage is rotated by the vertical tail and the propeller faces the windward.
  • the wind direction and wind speed measuring device 300 measures the wind direction from the direction of the fuselage and the wind speed from the rotation speed of the propeller.
  • the wind direction and wind speed measuring apparatus 300 transmits information indicating the measured wind direction and wind speed (wind direction and wind speed information) and information indicating the position where the wind is installed (position information) to the weather prediction apparatus 100B.
  • the wind direction and wind speed measuring device 300 is installed to be scattered in various places.
  • the communication interface 10 in the third embodiment communicates with a plurality of wind direction wind speed measurement devices 300 and receives wind direction wind speed information and position information from the plurality of wind direction wind speed measurement devices 300, respectively.
  • advection prediction unit 18 compares the installation position of the wind speed and direction measuring device 300, and a position in the horizontal direction of precipitation core region CR k, the closest Anemometer Measurements in position in the horizontal direction of precipitation core region CR k identify device 300, the measured wind direction and wind speed wind measuring apparatus 300 in this particular, each of the wind direction and wind velocity of the plurality of mesh areas M i constituting the precipitation core region CR k or precipitation core region CR k, And The advection prediction unit 18 uses the measured wind direction and wind speed Wind measuring device 300, performs advection prediction for each mesh area M i.
  • the weather prediction apparatus 100B replaces with the information obtained from the wind direction wind speed measurement apparatus 300 mentioned above, from the weather observation apparatus (radiosonde) provided in flying objects, such as a balloon, atmospheric pressure, temperature, humidity, wind direction, wind speed, by acquiring the information of the altitude and the like, may be performed advection prediction for each mesh area M i.
  • the weather prediction device 100B in the third embodiment described above the risk of precipitation on the ground based on the weather conditions in the sky obtained by the weather radar device 200, as in the first and second embodiments.
  • P k By deriving P k , it is possible to accurately predict the degree of influence of precipitation on the ground.
  • the weather prediction apparatus 100C according to the fourth embodiment will be described.
  • the first to third points are used in that the type of cloud particle is discriminated based on at least the temperature and the humidity measured by the temperature / humidity measuring device 400. It is different from the embodiment. Therefore, it demonstrates centering on such a difference and the description about a common part is abbreviate
  • FIG. 13 is a diagram illustrating an example of the configuration of the weather prediction apparatus 100C according to the fourth embodiment.
  • the weather prediction apparatus 100C according to the fourth embodiment has a communication interface 10, a mesh parameter calculation unit 12, a precipitation core region derivation unit 14, a wind direction and wind speed estimation unit 16, and an advection prediction unit, as in the above-described embodiment. 18, a precipitation risk deriving unit 20, an image generation unit 22, an output unit 24, and a storage unit 30, and further includes a particle discrimination unit 26. Further, in addition to the observation data 32 and the analysis data 34 for each core, the particle fall speed information 36 is further stored in the storage unit 30.
  • the temperature / humidity measuring device 400 is a device that is provided on a flying object such as a balloon and measures the temperature and humidity of the atmosphere around the flying object. Moreover, the temperature / humidity measuring apparatus 400 may be an apparatus that is installed on the ground and measures the temperature and humidity on the ground. In this case, the temperature / humidity measuring apparatus 400 may estimate the temperature and humidity of the altitude above the sky to be observed by the weather radar apparatus 200 based on the temperature and humidity measured on the ground. For example, the temperature / humidity measuring apparatus 400 corrects the temperature and humidity measured on the ground based on the difference between the installed altitude and the altitude of the sky that the weather radar apparatus 200 observes. Estimate temperature and humidity.
  • the temperature / humidity measuring apparatus 400 may estimate the current temperature and humidity with reference to the temperature and humidity measured or estimated in the past. For example, when the observation season is April, the temperature / humidity measuring apparatus 400 derives the average temperature and average humidity for a predetermined period (for example, about 10 years) in the past April as the temperature and humidity of the present April. You can do it.
  • a predetermined period for example, about 10 years
  • the temperature / humidity measuring apparatus 400 transmits the measured or estimated temperature and humidity information (hereinafter referred to as temperature / humidity information) to the weather prediction apparatus 100C.
  • the communication interface 10 communicates with the weather radar device 200 and the temperature / humidity measurement device 400, receives the observation data 32 from the weather radar device 200, and receives the temperature / humidity information from the temperature / humidity measurement device 400. To do.
  • Particle determination unit 26 based on the communication interface 10 to the temperature and humidity information received from the temperature and humidity measuring unit 400 determines the type of particle cloud particles per mesh area M i. For example, the particle discriminating unit 26 discriminates whether the cloud particles observed by the weather radar apparatus 200 are in a liquid phase or a solid phase according to the temperature and humidity in the sky indicated by the temperature / humidity information. That is, the particle discriminating unit 26 discriminates the phase of particles.
  • FIG. 14 is a diagram for explaining a method of determining the type of particles based on temperature and humidity.
  • the particle determination unit 26 determines that the particles are in the liquid phase.
  • the reference temperature Tx is, for example, about 0 [° C.]
  • the reference humidity Hx is about 30 [%].
  • determination part 26 determines with particle
  • the advection prediction unit 18 in the fourth embodiment uses the particle fall velocity information 36 stored in the storage unit 30 based on the type of particles determined by the particle determination unit 26 in the process of performing advection prediction. Referring to, it derives the falling speed of each mesh area M i.
  • FIG. 15 is a diagram illustrating an example of the particle fall speed information 36 according to the fourth embodiment.
  • the drop speed information 36 for each particle associates the drop speed of the particle with the radar reflection factor Z i in both the case where the particle is in the liquid phase and the case where the particle is in the solid phase.
  • Information In the figure, (a) represents the falling speed when the particles are in a liquid phase (raindrops), and (b) represents the falling speed when the particles are in a solid phase (for example, snow).
  • the advection prediction unit 18 refers to the corresponding information based on the type of particle determined by the particle determination unit 26, and acquires the falling velocity corresponding to the radar reflection factor Z i included in the observation data 32, thereby obtaining a mesh. It derives the falling speed of each region M i.
  • the drop speed indicated by the drop speed information 36 for each particle may be taken into consideration for air resistance according to the shape of the particle.
  • the advection prediction unit 18 calculates a predicted arrival time using the derived fall speed for each mesh region M i , and based on the calculated predicted arrival time, the precipitation core region CR k is calculated on the ground.
  • the predicted arrival position when arriving at is calculated.
  • the precipitation core region CR k in which most of the cloud particles are composed of raindrops, has a faster fall speed than the precipitation core region CR k , which is composed of solid phase particles such as snow and hail, Estimated arrival time tends to be short.
  • the fall velocity for each mesh area M i constituting the precipitation core region CR k it is possible to more accurately calculate the expected arrival time for each downcomer core region CR k.
  • the position of a mesh area M i at time of future advanced expected arrival time period ⁇ can also be predicted with higher accuracy.
  • FIG. 16 is a flowchart illustrating an example of processing performed by the weather prediction apparatus 100C according to the fourth embodiment. The processing of this flowchart is repeatedly performed at a predetermined cycle, for example.
  • the mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 (step S302).
  • the precipitation core region deriving unit 14 calculates the precipitation core region CR k obtained by combining the mesh regions M i having the same precipitation intensity R i calculated by the mesh parameter calculation unit 12 and includes the three-dimensional cloud including the sky above. Derivation is performed in space (step S304).
  • Particle determination unit 26 based on the communication interface 10 to the temperature and humidity information received from the temperature and humidity measuring unit 400 determines the type of particle cloud particles per mesh area M i (step S306).
  • Wind estimation unit 16 based on the radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i (step S308).
  • the advection prediction unit 18 performs advection prediction based on the falling speed of each mesh region M i of the precipitation core region CR k derived by the precipitation core region deriving unit 14, and performs the advection prediction for each precipitation core region CR k .
  • a predicted arrival time and a predicted arrival position are calculated (step S310).
  • the precipitation risk deriving unit 20 is based on the precipitation intensity R i for each precipitation core region CR k derived by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18.
  • the risk Pk of precipitation in is derived (step S312).
  • the image generator 22 based on the precipitation point information in combination with the classification results of risk P k of precipitation of each predicted rainfall regions S k derived by the precipitation risk deriving unit 20, and the map information of the ground surface G Then, an image is generated (step S314).
  • the output unit 24 outputs information indicating the image generated by the image generation unit 22 to a terminal device, a web server, or the like (step S316). Thereby, the process of this flowchart is complete
  • weather forecasting apparatus 100C in the fourth embodiment if the place to derive precipitation core region CR k in the sky, to derive a precipitation core region CR k at ground, i.e., the second embodiment described above
  • the following flowchart is followed.
  • FIG. 17 is a flowchart illustrating another example of the process performed by the weather prediction device 100C according to the modification of the fourth embodiment. The processing of this flowchart is repeatedly performed at a predetermined cycle, for example.
  • the mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 (step S402).
  • Wind estimation unit 16 based on the radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i (step S406).
  • the advection prediction unit 18 performs advection prediction for each mesh region M i in which the particle type is determined by the particle determination unit 26, and calculates a predicted arrival time and a predicted arrival position for each mesh region M i ( Step S408).
  • advection prediction unit 18 by calculating the falling speed of each mesh area M i for each type of particles of cloud particles, it is possible to accurately calculate the predicted arrival time and the predicted arrival position.
  • the precipitation core region deriving unit 14 based on the predicted arrival position of each mesh area M i, precipitation core region CR k where precipitation intensity R i is the sum of comparable mesh area M i between ground land of Derivation is performed on the surface G (step S410).
  • the precipitation risk deriving unit 20 calculates the precipitation intensity R i for each precipitation core region CR k derived on the ground surface G by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18. Based on this, the risk Pk of precipitation on the ground is derived (step S412).
  • the image generation unit 22 is based on the precipitation point information obtained by combining the classification result of the precipitation risk P k for each precipitation core region CR k derived by the precipitation risk deriving unit 20 and the map information of the ground surface G. Thus, an image is generated (step S414).
  • the output unit 24 outputs information indicating the image generated by the image generation unit 22 to a terminal device, a web server, or the like (step S416). Thereby, the process of this flowchart is complete
  • the weather forecast apparatus 100C in the fourth embodiment described above when deriving the downcomer core region CR k in the sky, dropping each mesh area M i constituting the precipitation core region CR k based on the type of particle to determine the rate, it is possible to more accurately calculate the expected arrival time for each downcomer core region CR k, the position coordinates (x tau of a mesh area M i in the prediction arrival time min advanced future time tau, y tau , Z ⁇ ) can be predicted with higher accuracy. As a result, the degree of the influence of precipitation on the ground can be predicted with higher accuracy.
  • the weather forecast apparatus 100C in the fourth embodiment described above when deriving the downcomer core region CR k in the ground, in the sky, the predicted arrival time and predicted for each mesh area M i based on the type of particle In order to calculate the arrival position, the precipitation core region CR k can be accurately derived on the ground. As a result, the degree of the influence of precipitation on the ground can be predicted with higher accuracy.
  • the weather prediction apparatus 100D in 5th Embodiment is demonstrated.
  • the weather prediction device 100D in the fifth embodiment is different from the first to fourth embodiments in that the observation data observed by the dual polarization radar device 200A is acquired. Therefore, it demonstrates centering on such a difference and the description about a common part is abbreviate
  • the dual-polarization radar device 200A transmits and receives two radio waves of horizontal polarization and vertical polarization.
  • the dual-polarization radar apparatus 200A includes a radar reflection factor Z h for horizontal polarization, a radar reflection factor Z V for vertical polarization, a radar reflection factor difference Z DR , an inter-polarization phase difference ⁇ DP , and a propagation phase difference change rate.
  • Observation data including parameters such as K DP and correlation coefficient ⁇ hv between polarizations is acquired.
  • Radar reflectivity factor difference Z DR is, for example, a logarithm of a value obtained by dividing the radar reflectivity factor Z h about horizontal polarization radar reflectivity factor Z V about a vertical polarization, a parameter that depends on the ratio of the vertical and horizontal size of the particles is there.
  • the dual-polarization radar apparatus 200A transmits observation data including various parameters related to the acquired dual-polarization (hereinafter referred to as dual-polarization observation data) to the weather prediction apparatus 100D.
  • FIG. 18 is a diagram illustrating an example of the configuration of the weather prediction device 100D according to the fifth embodiment.
  • the communication interface 10 of the weather prediction apparatus 100D in the fifth embodiment receives the dual polarization observation data from the dual polarization radar apparatus 200A.
  • the particle discriminating unit 26 determines the degree of particle flatness, the particle size, and the like based on various parameters (particularly, the radar reflection factor difference ZDR and the propagation phase difference change rate KDP ) included in the dual polarization observation data.
  • the particle determination unit 26 determines the particle as raindrop, and when the particle size is larger than a reference diameter (for example, 5 [mm]) and is not flat, the particle Is identified as hail.
  • determination part 26 discriminate
  • determination part 26 may discriminate
  • the particle determination unit 26 may determine the sleet as a state where the solid phase and the liquid phase are mixed.
  • the advection prediction unit 18 in the fifth embodiment uses the particle fall velocity information 36 stored in the storage unit 30 based on the type of particle determined by the particle determination unit 26 in the process of performing advection prediction. Referring to, it derives the falling speed of each mesh area M i.
  • FIG. 19 is a diagram illustrating an example of the particle fall speed information 36 according to the fifth embodiment.
  • the particle fall velocity information 36 is information in which the particle fall velocity is associated with the radar reflection factor Z i for each particle type.
  • (a) shows the falling speed when the particles are rain
  • (b) shows the falling speed when the particles are snow (or sleet)
  • (c) shows that the particles are hit.
  • (D) represents the drop speed when the particles are hail.
  • the advection prediction unit 18 refers to the corresponding information based on the type of particle determined by the particle determination unit 26, and acquires the falling velocity corresponding to the radar reflection factor Z i included in the observation data 32, thereby obtaining a mesh. It derives the falling speed of each region M i. Note that the drop speed indicated by the drop speed information 36 for each particle may be considered in advance for air resistance corresponding to the shape of the particle.
  • the weather prediction apparatus 100D in the fifth embodiment described above when the precipitation core region CR k is derived above the precipitation core region CR k based on the type of particles as in the fourth embodiment described above. Since the drop speed is obtained for each mesh region M i constituting k , the predicted arrival time for each precipitation core region CR k can be calculated more accurately, and the mesh region at a future time ⁇ advanced by the predicted arrival time M i position coordinates (x ⁇ , y ⁇ , z ⁇ ) can be further predicted accurately also. As a result, the degree of the influence of precipitation on the ground can be predicted with higher accuracy.
  • the weather forecast apparatus 100D of the fifth embodiment described above when deriving the downcomer core region CR k at ground, as in the fourth embodiment described above, in the sky, on the basis of the type of particle Since the predicted arrival time and predicted arrival position for each mesh region M i are calculated, the precipitation core region CR k can be accurately derived on the ground. As a result, the degree of the influence of precipitation on the ground can be predicted with higher accuracy.
  • the weather prediction apparatus 100E in 6th Embodiment is demonstrated.
  • the weather prediction apparatus 100E according to the sixth embodiment is based on double polarization observation data observed by the dual polarization radar apparatus 200A and temperature / humidity information measured by the temperature / humidity measurement apparatus 400. This is different from the first to fifth embodiments in that the type of the particles is discriminated. Therefore, it demonstrates centering on such a difference and the description about a common part is abbreviate
  • FIG. 20 is a diagram illustrating an example of a configuration of a weather prediction device 100E according to the sixth embodiment.
  • the communication interface 10 of the weather prediction apparatus 100E in the sixth embodiment receives the dual polarization observation data from the dual polarization radar apparatus 200A.
  • the communication interface 10 of the weather prediction device 100E receives temperature / humidity information from the temperature / humidity measurement device 400.
  • the risk of precipitation on the ground is derived by deriving the risk Pk of precipitation on the ground based on the weather conditions in the sky obtained by the weather radar apparatus 200. Predict with high accuracy.
  • SYMBOLS 10 Communication interface, 12 ... Mesh parameter calculation part, 14 ... Precipitation core area

Abstract

A weather forecasting device according to an embodiment has a precipitation risk derivation unit and an output unit. The precipitation risk derivation unit derives a precipitation risk on land on the basis of weather conditions in the sky obtained from a radar device. The output unit outputs information based on the precipitation risk derived by the precipitation risk derivation unit.

Description

気象予測装置、気象予測方法、および気象予測プログラムWeather forecasting device, weather forecasting method, and weather forecasting program
 本発明の実施形態は、気象予測装置、気象予測方法、および気象予測プログラムに関する。
 本願は、2016年1月12日に、日本に出願された特願2016‐003545号に基づき優先権を主張し、その内容をここに援用する。
Embodiments described herein relate generally to a weather prediction device, a weather prediction method, and a weather prediction program.
This application claims priority on January 12, 2016 based on Japanese Patent Application No. 2016-003545 for which it applied to Japan, and uses the content here.
 近年、ゲリラ豪雨のような瞬間的に多くの雨が降る気象現象が観測されており、浸水や洪水等の被害が発生している。これに関連し、上空の積乱雲等の雨雲を観測して上空の気象状態を推測する技術が知られている。また、地上における雨量計の測定データに基づいて洪水等のリスクを推定する技術が知られている。しかしながら、従来の技術では、上空の気象状態に基づいて、地上への影響の度合いを精度良く予測することができない場合があった。 In recent years, meteorological phenomena such as guerrilla heavy rains have been observed, in which a lot of rain falls instantaneously, causing damage such as inundation and flooding. Related to this, a technique for observing rain clouds such as cumulonimbus clouds in the sky and estimating the weather condition in the sky is known. In addition, a technique for estimating the risk of flooding based on the measurement data of a rain gauge on the ground is known. However, with the conventional technology, there is a case where the degree of influence on the ground cannot be accurately predicted based on the weather conditions in the sky.
特開平10-288674号公報Japanese Patent Laid-Open No. 10-288664 特開2009-128180号公報JP 2009-128180 A
 本発明が解決しようとする課題は、上空の気象状態に基づいて、地上への影響の度合いを精度良く予測することができる気象予測装置、気象予測方法、および気象予測プログラムを提供することである。 The problem to be solved by the present invention is to provide a weather prediction device, a weather prediction method, and a weather prediction program capable of accurately predicting the degree of influence on the ground based on the weather conditions in the sky. .
 実施形態の気象予測装置は、降水リスク導出部と、出力部とを持つ。降水リスク導出部は、レーダ装置によって得られた上空の気象状態に基づいて、地上における降水のリスクを導出する。出力部は、降水リスク導出部により導出された降水のリスクに基づく情報を出力する。 The weather prediction apparatus of the embodiment has a precipitation risk deriving unit and an output unit. The precipitation risk deriving unit derives the risk of precipitation on the ground based on the weather condition in the sky obtained by the radar device. The output unit outputs information based on precipitation risk derived by the precipitation risk deriving unit.
第1の実施形態における気象予測装置100の構成の一例を示す図。The figure which shows an example of a structure of the weather prediction apparatus 100 in 1st Embodiment. 記憶部30に格納される観測データ32の一例を示す図。The figure which shows an example of the observation data 32 stored in the memory | storage part. 上空の3次元空間における鉛直方向を含む平面での断面に、メッシュパラメータ算出部12による算出結果を対応付けた図。The figure which matched the calculation result by the mesh parameter calculation part 12 with the cross section in the plane containing the vertical direction in three-dimensional space of the sky. 予想降水領域Sの形成結果の一例を示す図。Diagram showing an example of the formation results in the expected rainfall regions S k. 降水地点情報に基づく画面の一例を示す図。The figure which shows an example of the screen based on precipitation point information. 雨雲規模情報に基づく画面の一例を示す図。The figure which shows an example of the screen based on rain cloud scale information. 第1の実施形態における気象予測装置100による処理の一例を示すフローチャート。The flowchart which shows an example of the process by the weather prediction apparatus 100 in 1st Embodiment. 複数の予想降水領域Sが互いに重なり合う場合の一例を示す図。It illustrates an example of a case where a plurality of predicted precipitation region S k overlap each other. 地表面Gが平坦でない場合の一例を示す図。The figure which shows an example in case the ground surface G is not flat. 地上において降水コア領域CRを導出する様子を模式的に示す図。Figure schematically showing how to derive a precipitation core region CR k in the ground. 第2の実施形態における気象予測装置100による処理の一例を示すフローチャート。The flowchart which shows an example of the process by the weather prediction apparatus 100 in 2nd Embodiment. 第3の実施形態における気象予測装置100Bの構成の一例を示す図。The figure which shows an example of a structure of the weather prediction apparatus 100B in 3rd Embodiment. 第4の実施形態における気象予測装置100Cの構成の一例を示す図。The figure which shows an example of a structure of the weather prediction apparatus 100C in 4th Embodiment. 温度および湿度に基づく粒子の種類の判別方法を説明するための図。The figure for demonstrating the discrimination | determination method of the kind of particle | grains based on temperature and humidity. 第4の実施形態における粒子毎落下速度情報36の一例を示す図である。It is a figure which shows an example of the fall speed information 36 for every particle in 4th Embodiment. 第4の実施形態における気象予測装置100Cによる処理の一例を示すフローチャート。The flowchart which shows an example of the process by 100 C of weather prediction apparatuses in 4th Embodiment. 第4の実施形態の変形例における気象予測装置100Cによる処理の他の例を示すフローチャート。The flowchart which shows the other example of the process by the weather prediction apparatus 100C in the modification of 4th Embodiment. 第5の実施形態における気象予測装置100Dの構成の一例を示す図。The figure which shows an example of a structure of the weather prediction apparatus 100D in 5th Embodiment. 第5の実施形態における粒子毎落下速度情報36の一例を示す図。The figure which shows an example of the fall speed information 36 for every particle in 5th Embodiment. 第6の実施形態における気象予測装置100Eの構成の一例を示す図。The figure which shows an example of a structure of the weather prediction apparatus 100E in 6th Embodiment.
 以下、実施形態の気象予測装置、気象予測方法、および気象予測プログラムを、図面を参照して説明する。 Hereinafter, a weather prediction device, a weather prediction method, and a weather prediction program according to an embodiment will be described with reference to the drawings.
 (第1の実施形態)
 図1は、第1の実施形態における気象予測装置100の構成の一例を示す図である。第1の実施形態における気象予測装置100は、気象レーダ装置200によって受信された電波の受信電力、あるいは電波の信号強度に基づいて、地上に降る雨や雪の量を推定し、推定した量を地上にいるユーザに対するリスクとして判定する。
(First embodiment)
FIG. 1 is a diagram illustrating an example of a configuration of a weather prediction apparatus 100 according to the first embodiment. The weather prediction device 100 according to the first embodiment estimates the amount of rain and snow falling on the ground based on the received power of the radio waves received by the weather radar device 200 or the signal strength of the radio waves, and calculates the estimated amount. Judge as a risk to users on the ground.
 気象レーダ装置200は、例えば、フェーズドアレイアンテナを含む装置であり、フェーズドアレイアンテナを構成するアレイ状のアンテナ素子に入力する信号の位相を制御することによって、指向角を電子的に変動させる。気象レーダ装置200は、アンテナの指向角を変動させながら電波を送受信する。例えば、気象レーダ装置200は、電気的な位相制御によって、エレベーション方向(垂直方向)における指向角を、一定の角度範囲(例えば90度)内で変動させる。また、気象レーダ装置200は、アジマス方向(水平方向)における指向角を、図示しない駆動機構によって機械的に変動させる。また、気象レーダ装置200は、アジマス方向とエレベーション方向との双方において、電気的な位相制御によって指向角を変動させてもよい。 The weather radar apparatus 200 is an apparatus including a phased array antenna, for example, and electronically varies the directivity angle by controlling the phase of a signal input to an arrayed antenna element constituting the phased array antenna. The weather radar apparatus 200 transmits and receives radio waves while changing the directivity angle of the antenna. For example, the weather radar apparatus 200 changes the directivity angle in the elevation direction (vertical direction) within a certain angle range (for example, 90 degrees) by electrical phase control. The weather radar apparatus 200 mechanically varies the directivity angle in the azimuth direction (horizontal direction) by a drive mechanism (not shown). Further, the weather radar apparatus 200 may change the directivity angle by electrical phase control in both the azimuth direction and the elevation direction.
 また、気象レーダ装置200は、上述したフェーズドアレイアンテナの他、パラボラアンテナや、パッチアンテナ、ポールアンテナ、シャントフィードアンテナ、スロットアンテナなどをアンテナ含む装置であってよい。アンテナがパラボラアンテナである場合、気象レーダ装置200は、図示しない駆動機構によってアンテナの指向角を機械的に変更しながら電波を送受信する。 In addition, the weather radar apparatus 200 may be an apparatus including a parabolic antenna, a patch antenna, a pole antenna, a shunt feed antenna, a slot antenna, and the like in addition to the above-described phased array antenna. When the antenna is a parabolic antenna, the weather radar apparatus 200 transmits and receives radio waves while mechanically changing the antenna directivity angle by a driving mechanism (not shown).
 気象レーダ装置200は、受信した電波を電気信号に変換して、復調や信号強度の増幅、周波数変換等の信号処理を行う。そして、気象レーダ装置200は、信号処理を行った信号(以下、処理済み信号と称する)を観測データとして気象予測装置100に送信する。例えば、気象レーダ装置200は、所定の探索周期の間において生成した複数の処理済み信号を1つの観測データとして気象予測装置100に送信する。観測データは、例えば、3次元空間を、距離方向、水平方向、および鉛直方向のそれぞれについて所定幅で分割し、分割した領域(以下、メッシュ領域Mと称する)ごとに、電波に基づく物理量が対応付けられているボリュームデータである。なお、気象レーダ装置200の観測対象は気象レーダ装置200から十分に遠いため、メッシュ領域Mは立方体とみなせるものとする。 The weather radar apparatus 200 converts received radio waves into electrical signals, and performs signal processing such as demodulation, signal strength amplification, and frequency conversion. Then, the weather radar apparatus 200 transmits a signal subjected to signal processing (hereinafter referred to as a processed signal) to the weather prediction apparatus 100 as observation data. For example, the weather radar device 200 transmits a plurality of processed signals generated during a predetermined search cycle to the weather prediction device 100 as one observation data. Observation data, for example, a three-dimensional space, the distance direction, divided by a predetermined width for each of the horizontal direction and the vertical direction, the divided regions each (hereinafter, referred to as a mesh area M i), the physical quantity based on radio waves The volume data is associated with the volume data. Incidentally, the observation target of the meteorological radar apparatus 200 sufficiently far from the weather radar system 200, the mesh area M i shall be regarded as a cube.
 気象予測装置100は、通信インターフェース10と、メッシュパラメータ算出部12と、降水コア領域導出部14と、風向風速推定部16と、移流予測部18と、降水リスク導出部20と、画像生成部22と、出力部24と、記憶部30とを含んでよいが、これに限定されない。上述した気象予測装置100の構成要素の一部または全部は、CPU(Central Processing Unit)等のプロセッサが記憶部30に記憶されたプログラムを実行することにより実現されてよい。また、気象予測装置100の構成要素の一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等のハードウェアによって実現されてもよい。 The weather prediction device 100 includes a communication interface 10, a mesh parameter calculation unit 12, a precipitation core region derivation unit 14, a wind direction and wind speed estimation unit 16, an advection prediction unit 18, a precipitation risk derivation unit 20, and an image generation unit 22. The output unit 24 and the storage unit 30 may be included, but are not limited thereto. Some or all of the constituent elements of the weather prediction apparatus 100 described above may be realized by a processor such as a CPU (Central Processing Unit) executing a program stored in the storage unit 30. Further, some or all of the components of the weather prediction apparatus 100 may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array).
 記憶部30は、例えば、ROM(Read Only Memory)、フラッシュメモリ、HDD(Hard Disk Drive)、SDカード、MRAM(Magnetoresistive Random Access Memory)等の不揮発性の記憶媒体と、RAM(Random Access Memory)、レジスタ等の揮発性の記憶媒体とによって実現されてもよい。記憶部30は、気象予測装置100のプロセッサが実行するプログラムを格納する他、後述する観測データ32やコア毎解析データ34等を格納する。 The storage unit 30 includes, for example, a nonvolatile storage medium such as a ROM (Read Only Memory), a flash memory, an HDD (Hard Disk Drive), an SD card, an MRAM (Magnetoresistive Random Access Memory), a RAM (Random Access Memory), It may be realized by a volatile storage medium such as a register. The storage unit 30 stores programs executed by the processor of the weather prediction apparatus 100, and stores observation data 32, analysis data 34 for each core, and the like, which will be described later.
 通信インターフェース10は、気象レーダ装置200等と通信を行い、気象レーダ装置200から観測データ32を受信する。通信インターフェース10により受信された観測データ32は、記憶部30に格納される。 The communication interface 10 communicates with the weather radar apparatus 200 and the like, and receives observation data 32 from the weather radar apparatus 200. Observation data 32 received by the communication interface 10 is stored in the storage unit 30.
 図2は、記憶部30に格納される観測データ32の一例を示す図である。観測データ32は、上空の雲を含む3次元空間を分割したメッシュ領域Mごとに、レーダ反射因子Zと、ドップラー速度Dとが対応付けられている。レーダ反射因子Zは、電波を反射する粒子の粒径に応じて変動するパラメータであり、気象レーダ装置200が電波を受信した際の受信電力と、気象レーダ装置200から電波を反射した雲粒までの距離とに基づいて算出される。電波を反射する粒子は、例えば、雲を構成する粒子であり、以下、雲粒と称して説明する。雲粒には、例えば、水滴や氷晶等が含まれる。また、ドップラー速度Dは、メッシュ領域M内の雲粒の移動方向および移動速度を表すパラメータであり、気象レーダ装置200が電波を送信した際の送信周波数と、電波を受信した際の受信周波数との差に基づいて算出される。ドップラー速度Dは、各メッシュ領域Mの風向および風速に算出する際に用いられる指標である。これらの指標は、気象レーダ装置200において信号処理の結果として算出されてもよいし、気象予測装置100において算出されてもよい。 FIG. 2 is a diagram illustrating an example of observation data 32 stored in the storage unit 30. In the observation data 32, a radar reflection factor Z i and a Doppler velocity D i are associated with each mesh region M i obtained by dividing a three-dimensional space including clouds in the sky. The radar reflection factor Z i is a parameter that varies according to the particle size of particles that reflect radio waves. The received power when the weather radar device 200 receives radio waves and the cloud particles that reflect the radio waves from the weather radar device 200. It is calculated based on the distance to. The particles that reflect radio waves are, for example, particles that form clouds, and will be described below as cloud particles. Cloud droplets include, for example, water droplets and ice crystals. The Doppler velocity D i is a parameter representing the moving direction and moving velocity of the cloud particles in the mesh region M i , and the transmission frequency when the weather radar device 200 transmits the radio wave and the reception when the radio wave is received. It is calculated based on the difference from the frequency. The Doppler speed D i is an index used when calculating the wind direction and wind speed of each mesh region M i . These indices may be calculated as a result of signal processing in the weather radar apparatus 200, or may be calculated in the weather prediction apparatus 100.
 メッシュ領域Mの大きさは、気象レーダ装置200の時間分解能および空間分解能に応じて変更されてよい。また、各メッシュ領域Mには、気象レーダ装置200の位置を原点とする直交座標系の位置座標が対応付けられている。例えば、気象レーダ装置200が標高の高い高台や山頂等に設置されている場合、メッシュ領域Mの位置座標は高度方向においてマイナスの値をとってよい。観測データ32は、上空の気象状態を表した情報の一例である。座標系は直交座標系に限らず、極座標系であっても良い。 The size of the mesh region M i may be changed according to the time resolution and spatial resolution of the weather radar apparatus 200. In addition, each mesh area M i, the position coordinates of the orthogonal coordinate system is associated with the origin position of the meteorological radar apparatus 200. For example, if the weather radar system 200 is installed in a high hill or summit like elevations, the position coordinates of a mesh area M i may take a negative value in the altitude direction. The observation data 32 is an example of information representing weather conditions in the sky. The coordinate system is not limited to an orthogonal coordinate system, and may be a polar coordinate system.
 メッシュパラメータ算出部12は、記憶部30に記憶された観測データ32のメッシュ領域Mごとに、降水強度Rを算出する。例えば、降水強度Rは、メッシュ領域Mごとのレーダ反射因子Zを数式(1)に代入することにより算出される。降水強度Rの単位は、例えば、mm/hである。なお、降水強度Rは、他の方法で算出されても良い。 The mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 stored in the storage unit 30. For example, precipitation intensity R i is calculated by substituting the radar reflectivity factor Z i for each mesh area M i in Equation (1). Units of precipitation intensity R i is, for example, mm / h. The precipitation intensity R i may be calculated by other methods.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記数式(1)におけるBおよびβは、雨量計による観測値から決定される定数であり、雲粒が水滴の場合、Bが200程度、βが1.6程度に設定され、雲粒が氷晶の場合はBが500から2000程度、βが2.0程度に設定される。なお、定数Bおよびβのそれぞれには、全メッシュ領域Mにおいて同じ値が設定されてもよいし、メッシュ領域Mごとに異なる値が設定されてもよい。 B and β in the above formula (1) are constants determined from the observation values by the rain gauge. When the cloud droplet is a water droplet, B is set to about 200, β is set to about 1.6, and the cloud particle is ice. In the case of crystals, B is set to about 500 to 2000, and β is set to about 2.0. The constants B and β may be set to the same value in all mesh areas M i or may be set to different values for each mesh area M i .
 降水コア領域導出部14は、降水の度合を雲内部の降水強度Rに応じて分類するため、メッシュパラメータ算出部12により算出された降水強度Rが同程度のメッシュ領域M同士を合わせた降水コア領域CRを、上空の雲を含む3次元空間において導出する。 The precipitation core region deriving unit 14 classifies the degree of precipitation according to the precipitation intensity R i inside the cloud, so that the mesh regions M i having the same precipitation intensity R i calculated by the mesh parameter calculation unit 12 are combined. The precipitation core region CR k is derived in a three-dimensional space including the clouds above.
 図3は、上空の3次元空間における鉛直方向を含む平面での断面に、メッシュパラメータ算出部12による算出結果を対応付けた図である。図中Z軸は、鉛直方向を、X軸およびY軸は、水平方向に含まれる直交成分を示す。図示の例では、上空の3次元空間のうち、あるXZ平面の断面のみを表している。各メッシュ領域Mには、後述するドップラー速度Dに基づく風向風速を示すベクトル(矢印V)と、メッシュパラメータ算出部12により算出された降水強度Rが対応付けられている。なお、図中では、降水強度Rは、X軸およびZ軸に対応した降水強度Rを示すために、Rxzで表現している。矢印Vで示すベクトルの向きは、風向を示し、ベクトルの大きさは、風速を示している。このような、上空の3次元空間を仮想的に表したメッシュ領域Mごとに、降水強度Rおよび風向風速を示すベクトル矢印Vが対応付けられている情報は、コア毎解析データ34として記憶部30に格納される。 FIG. 3 is a diagram in which a calculation result by the mesh parameter calculation unit 12 is associated with a cross section in a plane including a vertical direction in the above three-dimensional space. In the figure, the Z axis indicates the vertical direction, and the X axis and the Y axis indicate orthogonal components included in the horizontal direction. In the illustrated example, only a cross section of a certain XZ plane in the above three-dimensional space is shown. Each mesh region M i is associated with a vector (arrow V i ) indicating the wind direction and wind speed based on the Doppler speed D i described later, and the precipitation intensity R i calculated by the mesh parameter calculation unit 12. In the drawing, the precipitation intensity R i is expressed by R xz in order to indicate the precipitation intensity R corresponding to the X axis and the Z axis. Direction of the vector indicated by the arrow V i indicates the wind direction, the magnitude of the vector indicates the wind speed. The information in which the precipitation intensity R i and the vector arrow V i indicating the wind direction and wind speed are associated with each mesh region M i that virtually represents the three-dimensional space in the sky as the analysis data 34 for each core. It is stored in the storage unit 30.
 降水コア領域導出部14は、メッシュ領域Mごとの降水強度Rを参照して、降水強度Rが同程度のメッシュ領域M(以下、合致メッシュ領域と称する)を結合して、1つの降水コア領域CRを導出する。降水コア領域導出部14は、例えば、降水強度Rが、段階的に選択される二つの閾値Thの間に収まるメッシュ領域Mを、合致メッシュ領域とする。そして、降水コア領域導出部14は、複数の合致メッシュ領域を集めた領域の境界線を連ねて、この境界線を輪郭とした降水コア領域CRを導出する。なお、周囲のメッシュ領域Mと降水強度Rが同程度でないメッシュ領域Mが単独で存在する場合、これを無視して周囲と同化させてもよい。 Precipitation core region deriving unit 14 refers to the precipitation intensity R i for each mesh area M i, precipitation intensity R i is comparable mesh area M i (hereinafter, referred to as matching mesh regions) bound to the 1 Two precipitation core regions CR k are derived. The precipitation core region deriving unit 14 sets, for example, a mesh region M i in which the precipitation intensity R i falls between two threshold values Th k selected in stages as a matching mesh region. The precipitation core region deriving unit 14 lined with boundaries of the region gathered a plurality of matching mesh regions, derives precipitation core region CR k that the boundary line between contours. Incidentally, if the mesh area M i around the mesh area M i and precipitation intensity R i is not at the same level is present alone, it may be assimilated with the surrounding ignoring it.
 本実施形態では、一例として、降水強度Rに対して2つの閾値Th、Thが設定されているものとして説明する。降水コア領域導出部14は、2つの閾値Th、Thを用いて、3つの降水コア領域CR、CR、CRを導出する。例えば、コア領域CRは、降水強度Rが閾値Th以上のものであり、コア領域CRは、降水強度Rが閾値Th以上閾値Th未満のものであり、コア領域CRは、降水強度Rが閾値Th未満のものである。コア領域CRは、例えば、80mm/hを中心とした降水強度Rであり、コア領域CRは、例えば、50mm/hを中心とした降水強度Rであり、コア領域CRは、例えば、30mm/hを中心とした降水強度Rである。 In the present embodiment, as an example, it is assumed that two threshold values Th 1 and Th 2 are set for the precipitation intensity R i . The precipitation core region deriving unit 14 derives three precipitation core regions CR 1 , CR 2 , and CR 3 using the two threshold values Th 1 and Th 2 . For example, the core region CR 1 has a precipitation intensity R i that is greater than or equal to the threshold Th 2 , and the core region CR 2 has a precipitation intensity R i that is greater than or equal to the threshold Th 1 and less than the threshold Th 2 , and the core region CR 3 Is a precipitation intensity R i less than the threshold Th 1 . The core region CR 1 is, for example, precipitation intensity R i centered at 80 mm / h, the core region CR 2 is, for example, precipitation intensity R i centered at 50 mm / h, and the core region CR 3 is For example, precipitation intensity R i centered at 30 mm / h.
 風向風速推定部16は、例えば、メッシュ領域Mごとのレーダ反射因子Zとドップラー速度Dに基づいて、メッシュ領域Mごとの風向および風速を推定する。例えば、風向風速推定部16は、複数の観測データを用いて推定した雲粒の落下速度と、気象レーダ装置200により電波が受信された際の方位角および仰角と、レーダ反射因子Zとドップラー速度Dとに基づいて、風向および風速を推定する。また、風向風速推定部16は、VVP(Volume Velocity Processing)法やGal-Chen法等の3次元風解析手法を用いて風向および風速を推定してもよい。 Wind estimating unit 16, for example, on the basis of radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i. For example, the wind direction and wind speed estimation unit 16 uses a plurality of observation data to estimate the cloud droplet fall speed, the azimuth and elevation angles when the radio wave is received by the weather radar device 200, the radar reflection factor Z i and the Doppler. Based on the speed D i , the wind direction and the wind speed are estimated. Further, the wind direction and wind speed estimation unit 16 may estimate the wind direction and the wind speed using a three-dimensional wind analysis method such as a VVP (Volume Velocity Processing) method or a Gal-Chen method.
 そして、風向風速推定部16は、例えば、降水コア領域CR内のメッシュ領域Mごとに推定した風向および風速を、降水コア領域CRごとに平均し、この平均した風向および風速を降水コア領域CRの風向および風速とする。 Then, Wind estimating unit 16, for example, precipitation core region CR of the wind direction and wind velocity were estimated for each mesh area M i in the k, and the average for each downcomer core region CR k, the average wind direction and precipitation core wind speed the wind direction and wind speed region CR k.
 移流予測部18は、降水コア領域導出部14により導出された降水コア領域CRごとに、移流予測を行う。移流予測とは、観測対象の雲内部の降水コア領域CRが地上に到達するまでに大気中でどの程度拡散するのか、あるいは地上に到達するまでにどの程度風によって流されるのかを予測することである。 The advection prediction unit 18 performs advection prediction for each precipitation core region CR k derived by the precipitation core region deriving unit 14. The advection prediction, the precipitation core region CR k internal cloud observation target is to predict whether flowing by how wind before reaching to or, or ground to what extent the diffusion in the air before reaching the ground It is.
 まず、移流予測部18は、どの程度先の将来まで予測するのかを決めるために、降水コア領域CRが地上に到達するまでの時間(以下、予測到達時間と称する)を算出する。移流予測部18は、降水コア領域CRの風向および風速を示すベクトルUと、降水コア領域CRの質量と重力加速度とを乗算したベクトルとの合成ベクトルに基づいて、降水コア領域CRが現在の位置(高度)から地上に到達するまでの予測到達時間を算出する。降水コア領域CRの質量は、降水強度Rに応じて決定される。例えば、降水コア領域CRの質量は降水強度Rが大きいほど大きくなる傾向にある。 First, advection prediction unit 18, to determine whether to predict to future extent destination, precipitation core region CR k is time to reach the ground (hereinafter, referred to as the predicted arrival time) is calculated. Advection prediction unit 18, based on the combined vector of the vector U k indicating the wind direction and wind speed of precipitation core region CR k, and the vector obtained by multiplying the mass and gravitational acceleration of precipitation core region CR k, precipitation core region CR k Calculates the estimated arrival time from the current position (altitude) to the ground. The mass of the precipitation core region CR k is determined according to the precipitation intensity R i . For example, the mass of the precipitation core region CR k tends to increase as the precipitation intensity R i increases.
 移流予測部18は、CUL(Cubic Lagrange)等の移流モデルに従って、降水コア領域CRが地上に到達する際の位置(以下、予測到達位置と称する)を、シミュレーションによって算出する。数式(2)は、移流モデルを示す数式の一例である。 The advection prediction unit 18 calculates a position (hereinafter referred to as a predicted arrival position) when the precipitation core region CR k reaches the ground according to an advection model such as CUL (Cubic Lagrange) by simulation. Formula (2) is an example of a formula indicating an advection model.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記式中のzは、水平面(x,y)上に設定された気象レーダ装置200の位置を原点とする直交座標系において、気象レーダ装置200による観測時の時刻tにおけるメッシュ領域Mごとの降水強度Rを表すパラメータ(すなわちzは(x,y,t)の関数)である。Uは、x軸方向に関する降水コア領域CRの風向および風速を示すベクトルであり、Vは、y軸方向に関する降水コア領域CRの風向および風速を示すベクトルであり、Wは、降水コア領域CRの移動に伴う形状の変化量を表す定数(発達衰弱項)である。移動に伴う形状の変化量とは、回転、せん断的歪み、膨張、収縮等により形状が変化する際の度合を示す指標である。鉛直方向(z軸方向)における降水コア領域CRの変化量は、Wの定数項として考慮されるものとする。移流予測部18は、これらU、V、Wのパラメータを、数式(3)に示す連立1次式を最小自乗推定問題や逐次推定問題として解くことで決定する。 In the above equation, z is a value for each mesh region M i at time t at the time of observation by the weather radar device 200 in an orthogonal coordinate system whose origin is the position of the weather radar device 200 set on the horizontal plane (x, y). This is a parameter representing precipitation intensity R i (ie, z is a function of (x, y, t)). U is a vector indicating the wind direction and wind speed of precipitation core region CR k in the x-axis direction, V is a vector indicating the wind direction and wind speed of precipitation core region CR k the y-axis direction, W is precipitation core region It is a constant (developmental debilitating term) representing the amount of change in shape accompanying the movement of CR k . The amount of change in shape accompanying movement is an index indicating the degree to which the shape changes due to rotation, shear distortion, expansion, contraction, or the like. The amount of change in the precipitation core region CR k in the vertical direction (z-axis direction) is considered as a constant term of W. The advection prediction unit 18 determines these U, V, and W parameters by solving simultaneous linear equations shown in Equation (3) as a least square estimation problem or a sequential estimation problem.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 cからcのパラメータは、過去に観測された観測データを用いて決定され、予め記憶部30に格納されていてよい。これらcからcのパラメータは、所定の期間(例えば1時間程度)一定であるものとして扱われる。移流予測部18は、cからcのパラメータを、数式(4)に示す特性微分方程式に代入し、Wによって表される降水強度Rに対応するメッシュ領域Mの予測到達位置を算出する。 The parameters c 1 to c 9 are determined using observation data observed in the past, and may be stored in the storage unit 30 in advance. These parameters c 1 to c 9 are treated as being constant for a predetermined period (for example, about 1 hour). The advection prediction unit 18 substitutes the parameters c 1 to c 9 into the characteristic differential equation shown in Equation (4), and calculates the predicted arrival position of the mesh region M i corresponding to the precipitation intensity R i represented by W. To do.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 数式dx/dt、dy/dtによって定められる特性曲線上で、降水強度Rを表すパラメータWは、dz/dtに従って変化する。例えば、着目するメッシュ領域Mごとの現時刻t0での位置座標を(xt0,yt0)として表す場合、移流予測部18は、上述した数式(4)に基づいて、現在の位置座標(xt0,yt0)から、予測到達時間分進んだ将来の時刻τにおける位置座標(xτ,yτ)を算出する。この将来の時刻τにおける位置座標(xτ,yτ)は、水平方向におけるメッシュ領域Mの移動量のみを表しているため、移流予測部18は、さらに降水コア領域CRの質量と重力加速度とに基づいて、将来の時刻τにおける位置座標を鉛直方向(z軸方向)において補正する。これによって、移流予測部18は、予測到達時間分進んだ将来の時刻τにおけるメッシュ領域Mの位置座標(xτ,yτ,zτ)を予測する。なお、移流予測部18は、さらに降水コア領域CRが地上に到達するまでに受ける空気抵抗等を考慮して、メッシュ領域Mの位置座標(xτ,yτ,zτ)を予測してもよい。このようにして予測された将来の時刻τにおけるメッシュ領域Mの位置座標(xτ,yτ,zτ)は、予測到達時間を考慮したことから、地上の地表面上、あるいは地表面近傍に位置する。本実施形態では、将来の時刻τにおけるメッシュ領域Mの位置座標(xτ,yτ,zτ)は、地表面上にあるものとして説明する。 On the characteristic curve defined by the mathematical formulas dx / dt and dy / dt, the parameter W representing the precipitation intensity R i changes according to dz / dt. For example, when the position coordinates at the current time t0 for each mesh area M i of interest are represented as (x t0 , y t0 ), the advection prediction unit 18 determines the current position coordinates ( The position coordinates (x τ , y τ ) at the future time τ advanced by the predicted arrival time are calculated from x t0 , y t0 ). Coordinates (x τ, y τ) in this future time tau, since it represents only the amount of movement of the mesh area M i in the horizontal direction, advection prediction unit 18 further mass and gravity precipitation core region CR k Based on the acceleration, the position coordinates at a future time τ are corrected in the vertical direction (z-axis direction). As a result, the advection prediction unit 18 predicts the position coordinates (x τ , y τ , z τ ) of the mesh region M i at a future time τ advanced by the predicted arrival time. The advection prediction unit 18 further predicts the position coordinates (x τ , y τ , z τ ) of the mesh region M i in consideration of the air resistance received before the precipitation core region CR k reaches the ground. May be. Thus the position coordinates of a mesh area M i in the predicted future time tau by (x τ, y τ, z τ) , since in consideration of the expected arrival time, on the ground of the ground surface or the ground surface near, Located in. In the present embodiment, the position coordinates of a mesh area M i at a future time τ (x τ, y τ, z τ) is described as being on the surface of the earth.
 移流予測部18は、上述した移流予測のシミュレーションを、降水コア領域CRを構成する全てのメッシュ領域M、あるいは代表されるいくつかのメッシュ領域Mに対して行い、メッシュ領域Mのそれぞれの将来の時刻τにおける位置座標を算出する。移流予測部18は、算出した位置座標に仮想的にメッシュ領域Mを配置し、地表面上において複数のメッシュ領域Mにより仮想的に形成される領域(以下、予想降水領域Sと称する)の位置を、降水コア領域CRの予測到達位置として算出する。 Advection prediction unit 18, a simulation of advection prediction described above is performed for all of the mesh area M i or typified by several mesh area M i, that make up the downcomer core region CR k, the mesh area M i The position coordinates at each future time τ are calculated. Advection prediction unit 18, a virtually mesh area M i to the calculated position coordinates arranged, regions virtually formed by a plurality of mesh areas M i on the ground surface (hereinafter, referred to as the expected precipitation region S k the position of the) is calculated as the predicted arrival position of precipitation core region CR k.
 図4は、予想降水領域Sの形成結果の一例を示す図である。図示の例では、3つの降水コア領域CR、CR、CRには、同一の風向および風速を示すベクトルUが設定されている。また、図中に示す符号Gは、地上の地表面を示す。 Figure 4 is a diagram showing an example of the formation results in the expected rainfall regions S k. In the illustrated example, vectors U k indicating the same wind direction and wind speed are set in the three precipitation core regions CR 1 , CR 2 , and CR 3 . Moreover, the code | symbol G shown in a figure shows the ground surface on the ground.
 一般的に、降水強度Rの大きい降水コア領域CRほど、降雨量(または降雪量)が多い傾向がある。このような降水強度Rの大きい降水コア領域CRは、単位体積当たりの雲粒の密度が高い、あるいは雲粒自体の大きさが大きい場合が多い。従って、降水強度Rの大きい降水コア領域CRほど、質量が大きく、降雨(または降雪)時に上空から地上に到達するまでの時間が短くなりやすい。 In general, the precipitation core region CR k having a higher precipitation intensity R i tends to have more rainfall (or snowfall). The precipitation core region CR k having such a large precipitation intensity R i often has a high density of cloud particles per unit volume or a large size of the cloud particles themselves. Therefore, the precipitation core region CR k having a higher precipitation intensity R i has a larger mass and tends to have a shorter time until it reaches the ground from the sky during rainfall (or snowfall).
 例えば、3つの降水コア領域CR、CR、CRの中で最も降水強度Rの大きい降水コア領域CRは、質量が大きいため風の影響を受けにくく、雲の直下付近に降水コア領域CRに対応した予想降水領域Sが形成されやすい。また、3つの降水コア領域CR、CR、CRの中で最も降水強度Rの小さい降水コア領域CRは、質量が小さいため風の影響を受けやすい。そのため、降水コア領域CRに対応する予想降水領域Sは、降水コア領域CRやCRに対応した予想降水領域Sの位置よりも、より遠い位置に形成されやすい。また、降水コア領域CRに対応する予想降水領域Sは、風の影響により、地上に到達するまでの間に領域が広がりやすい。そのため、予想降水領域Sは、降水コア領域CRを単に地表面Gに投影させたときの領域に比してより大きい領域として形成されやすい。 For example, most precipitation intensity R larger downcomer core region CR 1 of i is less affected by wind for large mass, precipitation core near just below the cloud of the three precipitation core region CR 1, CR 2, CR 3 A predicted precipitation region S 1 corresponding to the region CR 1 is likely to be formed. Further, three precipitation core region CR 1, CR 2, CR most precipitation intensity R i lower downcomer core region CR 3 of among the three are susceptible to wind for small mass. Therefore, expected rainfall area S 3 corresponding to the precipitation core region CR 3, rather than the position of the expected rainfall regions S k corresponding to the precipitation core region CR 1 and CR 2, likely to be formed farther. Also, expected rainfall area S 3 corresponding to the precipitation core region CR 3 is due to the influence of the wind, the area is likely to spread before reaching the ground. Therefore, it expected rainfall area S 3, an area likely to be formed as a larger area than the when precipitation core region CR 3 were simply projected onto the ground surface G.
 降水リスク導出部20は、降水コア領域導出部14により導出された降水コア領域CRごとの降水強度Rと、移流予測部18により算出された予測到達時間とに基づいて、地上における降水のリスクPを導出する。降水のリスクPとは、降水量や降水に至るまでの時間に応じた指標である。例えば、降水のリスクPは、降水コア領域CRの到達位置ごとに導出され、地上に到達する降水コア領域CRの降水強度Rを、降水コア領域CRの予測到達時間で除算した値として定義される。そのため、降水リスク導出部20は、降水強度Rの大きい降水コア領域CRほど、降水のリスクPを高い値で導出する。 The precipitation risk deriving unit 20 calculates the precipitation on the ground based on the precipitation intensity R i for each precipitation core region CR k derived by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18. A risk P k is derived. The risk Pk of precipitation is an index according to the amount of precipitation and the time until precipitation. For example, the risk P k of precipitation is derived for each arrival position of precipitation core region CR k, the precipitation intensity R i Precipitation core region CR k to reach the ground, divided by the expected arrival time of precipitation core region CR k Defined as a value. Therefore, the precipitation risk deriving unit 20 derives the precipitation risk P k at a higher value for the precipitation core region CR k having the larger precipitation intensity R i .
 降水リスク導出部20は、移流予測部18の予測結果によって、地表面Gの各予想降水領域Sに対して、降水のリスクPを導出する。例えば、降水リスク導出部20は、導出した降水のリスクPを基準値Dと比較することで、降水のリスクPを分類する。本実施形態では、降水リスク導出部20は、2つの基準値Dx、Dyを用いて、降水のリスクPを3つのカテゴリーに分類する。例えば、降水リスク導出部20は、降水のリスクPがDx以上(R≧Dx)である場合、降水のリスクPをリスクが高い(高リスク)ことを示すカテゴリーに分類し、降水のリスクPがDx未満且つDy以上(Dx>R≧Dy)である場合、降水のリスクPをリスクが中程度(中リスク)であることを示すカテゴリーに分類し、降水のリスクPがDy未満(Dy>R)である場合、降水のリスクPをリスクが低い(低リスク)ことを示すカテゴリーに分類する。なお、この基準値Dは、1つであってもよいし、3つ以上であってもよい。この場合、降水リスク導出部20は、降水のリスクPを2つ、あるいは4つ以上のカテゴリーに分類する。 Precipitation risk deriving unit 20, the prediction result of advection predictor 18 for each of the predicted rainfall regions S k of the ground surface G, to derive the risk P k of precipitation. For example, the precipitation risk deriving unit 20 classifies the precipitation risk P k by comparing the derived precipitation risk P k with the reference value D. In the present embodiment, the precipitation risk deriving unit 20 classifies the precipitation risk P k into three categories using the two reference values Dx and Dy. For example, precipitation risk deriving unit 20, the risk P k of rainfall than Dx case where (R i ≧ Dx), classifies the risk P k of precipitation category indicating that high risk (high risk), the precipitation If the risk P k is less than Dx and greater than or equal to Dy (Dx> R i ≧ Dy), the precipitation risk P k is classified into a category indicating that the risk is medium (medium risk), and the precipitation risk P k Is less than Dy (Dy> R i ), the risk Pk of precipitation is classified into a category indicating low risk (low risk). The reference value D may be one, or may be three or more. In this case, the precipitation risk deriving unit 20 classifies the precipitation risk P k into two, or four or more categories.
 上述した図4の例では、降水リスク導出部20は、予想降水領域Sに対して、予測元の降水コア領域CRの降水強度Rおよび予測到達時間に基づいて降水のリスクPを導出する。図示の例では、予想降水領域Sに対する降水のリスクPは、“高リスク”に分類されている。同様に、降水リスク導出部20は、降水コア領域CRの予想降水領域Sと、降水コア領域CRの予想降水領域Sとに対して、それぞれの予測元の降水コア領域CRの降水強度Rおよび予測到達時間に基づいて降水のリスクPを導出する。図示の例では、降水コア領域CRに対応する予想降水領域Sに対する降水のリスクPは“中リスク”に分類され、降水コア領域CRに対応する予想降水領域Sに対する降水のリスクPは“低リスク”に分類されている。 In the example of FIG. 4 described above, precipitation risk deriving unit 20, to the predicted rainfall areas S 1, risk P 1 of precipitation based on precipitation intensity R 1 and predicted arrival time of the prediction source precipitation core region CR 1 To derive. In the example shown in the figure, the precipitation risk P 1 for the predicted precipitation region S 1 is classified as “high risk”. Similarly, the precipitation risk deriving unit 20 applies the predicted precipitation region S k of the precipitation core region CR 2 to the predicted precipitation region S 2 of the precipitation core region CR 2 and the predicted precipitation region S 3 of the precipitation core region CR 3 . A precipitation risk P k is derived based on the precipitation intensity R i and the predicted arrival time. In the illustrated example, the risk P 2 precipitation for predicted rainfall area S 2 which corresponds to the precipitation core region CR 2 is classified as a "medium risk" of precipitation for the expected rainfall area S 3 corresponding to the precipitation core region CR 3 Risk P 3 is classified as "low risk".
 画像生成部22は、降水リスク導出部20によって導出された予想降水領域Sごとの降水のリスクPの分類結果と、地表面Gの地図情報とを組み合わせた情報(以下、降水地点情報と称する)に基づいて、画像を生成する。例えば、画像生成部22は、カテゴリーごとの降水のリスクPの代表値(例えば平均値)を輝度値に変換した画像を生成する。ここで、輝度値とは、色空間における色を表現する3つの成分に関する情報である。例えば、画像生成部22は、YUVやYCbCr等の所定の色フォーマットに準じて降水のリスクPの代表値を輝度値に変換する。 Image generating unit 22, the classification results of risk P k of precipitation of each predicted rainfall regions S k derived by the precipitation risk deriving unit 20, information of a combination of a Map of the ground surface G (hereinafter, the precipitation point information An image is generated based on the For example, the image generation unit 22 generates an image obtained by converting a representative value (for example, an average value) of precipitation risk P k for each category into a luminance value. Here, the luminance value is information regarding three components that represent colors in the color space. For example, the image generation unit 22 converts the representative value of the risk Pk of precipitation into a luminance value according to a predetermined color format such as YUV or YCbCr.
 また、画像生成部22は、降水コア領域導出部14により導出された降水コア領域CRごとの降水強度Rを示す情報(以下、雨雲規模情報と称する)と、地表面Gから降水コア領域CRまでの距離(高度)を示す情報とに基づいて、画像を生成してもよい。例えば、画像生成部22は、降水コア領域CRごとの降水強度Rを輝度値に変換した画像を生成する。 The image generation unit 22 also includes information indicating the precipitation intensity R i for each precipitation core region CR k derived by the precipitation core region deriving unit 14 (hereinafter referred to as rain cloud scale information) and the precipitation core region from the ground surface G. An image may be generated based on information indicating a distance (altitude) to CR k . For example, the image generation unit 22 generates an image obtained by converting the precipitation intensity R i for each precipitation core region CR k into a luminance value.
 出力部24は、画像生成部22により生成された画像を示す情報を、例えば、WAN(Wide Area Network)等のネットワークを介して、ユーザが操作するスマートフォンやタブレット端末等の表示装置を兼ねる携帯型の端末装置や据え置き型の端末装置に出力する。この場合、端末装置には、図5、6に示すような画面が表示される。 The output unit 24 uses information indicating the image generated by the image generation unit 22 as a portable device that also serves as a display device such as a smartphone or a tablet terminal operated by a user via a network such as a WAN (Wide Area Network), for example. Output to a terminal device or a stationary terminal device. In this case, a screen as shown in FIGS. 5 and 6 is displayed on the terminal device.
 図5は、降水地点情報に基づく画面の一例を示す図である。図示の例のように、端末装置の画面には、地表面Gを示す地図情報上に予想降水領域Sが表示され、この予想降水領域Sがリスクのカテゴリーごとに色分けされて表示される。例えば、“高リスク”のカテゴリーに属する予想降水領域Sは赤色、“中リスク”のカテゴリーに属する予想降水領域Sは黄色、“低リスク”のカテゴリーに属する予想降水領域Sは青色、といったように色分けされる。 FIG. 5 is a diagram illustrating an example of a screen based on precipitation point information. Like the example of illustration, on the screen of a terminal device, the prediction precipitation area | region Sk is displayed on the map information which shows the ground surface G, and this prediction precipitation area | region Sk is color-coded and displayed for every category of risk. . For example, the expected precipitation area S 1 belonging to the “high risk” category is red, the expected precipitation area S 2 belonging to the “medium risk” category is yellow, the expected precipitation area S 3 belonging to the “low risk” category is blue, And so on.
 図6は、雨雲規模情報に基づく画面の一例を示す図である。図示の例のように、端末装置の画面には、上空の位置に降水コア領域CRが色分けされて表示される。 FIG. 6 is a diagram illustrating an example of a screen based on rain cloud scale information. As in the illustrated example, the screen of the terminal device, precipitation core region CR k are displayed in different colors at a position in the sky.
 また、出力部24は、画像生成部22により生成された画像を示す情報を、ウェブサーバに出力してもよい。このウェブサーバは、例えば、端末装置がウェブブラウザを介してアクセス可能なウェブページを提供するものであり、気象予測装置100から受信した画像等をウェブページ上に組み込み、このウェブページを端末装置に提供する。この結果、端末装置には、上述した図5、6に示すような降水地点情報あるいは雨雲規模情報に基づく画面が表示される。なお、出力部24は、降水地点情報に基づく画像の情報と、雨雲規模情報に基づく画像の情報との双方を、端末装置やウェブサーバ等に出力してもよい。 Further, the output unit 24 may output information indicating the image generated by the image generation unit 22 to the web server. This web server provides, for example, a web page that can be accessed by a terminal device via a web browser. The web server incorporates an image received from the weather prediction device 100 on the web page, and the web page is stored in the terminal device. provide. As a result, a screen based on precipitation point information or rain cloud scale information as shown in FIGS. 5 and 6 is displayed on the terminal device. Note that the output unit 24 may output both image information based on precipitation point information and image information based on rain cloud scale information to a terminal device, a web server, or the like.
 図7は、第1の実施形態における気象予測装置100による処理の一例を示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われる。 FIG. 7 is a flowchart showing an example of processing performed by the weather prediction apparatus 100 according to the first embodiment. The processing of this flowchart is repeatedly performed at a predetermined cycle, for example.
 まず、メッシュパラメータ算出部12は、通信インターフェース10により観測データが受信されると(ステップS100;Yes)、観測データ32のメッシュ領域Mごとに、降水強度Rを算出する(ステップS102)。次に、降水コア領域導出部14は、メッシュパラメータ算出部12により算出された降水強度Rが同程度のメッシュ領域M同士を合わせた降水コア領域CRを、上空の雲を含む3次元空間において導出する(ステップS104)。 First, when the observation data is received by the communication interface 10 (step S100; Yes), the mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 (step S102). Next, the precipitation core region deriving unit 14 calculates the precipitation core region CR k obtained by combining the mesh regions M i having the same precipitation intensity R i calculated by the mesh parameter calculation unit 12 and includes the three-dimensional cloud including the sky above. Derivation is performed in space (step S104).
 次に、風向風速推定部16は、メッシュ領域Mごとのレーダ反射因子Zとドップラー速度Dに基づいて、メッシュ領域Mごとの風向および風速を推定する(ステップS106)。次に、移流予測部18は、降水コア領域導出部14により導出された降水コア領域CRごとに、移流予測を行って、降水コア領域CRごとの予測到達時間および予測到達位置を算出する(ステップS108)。 Then, Wind estimation unit 16, based on the radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i (step S106). Next, the advection prediction unit 18 performs advection prediction for each precipitation core region CR k derived by the precipitation core region deriving unit 14, and calculates a predicted arrival time and a predicted arrival position for each precipitation core region CR k. (Step S108).
 次に、降水リスク導出部20は、降水コア領域導出部14により導出された降水コア領域CRごとの降水強度Rと、移流予測部18により算出された予測到達時間とに基づいて、地上における降水のリスクPを導出する(ステップS110)。次に、画像生成部22は、降水リスク導出部20によって導出された予想降水領域Sごとの降水のリスクPの分類結果と、地表面Gの地図情報とを組み合わせた降水地点情報に基づいて、画像を生成する(ステップS112)。次に、出力部24は、画像生成部22により生成された画像を示す情報を、端末装置やウェブサーバ等に出力する(ステップS114)。これによって、本フローチャートの処理が終了する。 Next, the precipitation risk deriving unit 20 is based on the precipitation intensity R i for each precipitation core region CR k derived by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18. The risk Pk of precipitation in is derived (step S110). Then, the image generator 22, based on the precipitation point information in combination with the classification results of risk P k of precipitation of each predicted rainfall regions S k derived by the precipitation risk deriving unit 20, and the map information of the ground surface G Then, an image is generated (step S112). Next, the output unit 24 outputs information indicating the image generated by the image generation unit 22 to a terminal device, a web server, or the like (step S114). Thereby, the process of this flowchart is complete | finished.
 以上説明した第1の実施形態における気象予測装置100によれば、気象レーダ装置200によって得られた上空の気象状態に基づいて、地上における降水のリスクPを導出することにより、降水による地上への影響の度合いを精度良く予測することができる。 According to the weather prediction apparatus 100 in the first embodiment described above, the risk Pk of precipitation on the ground is derived based on the weather condition in the sky obtained by the weather radar apparatus 200, so It is possible to accurately predict the degree of influence.
 また、第1の実施形態における気象予測装置100によれば、地上における降水のリスクPを示す情報を画像情報として、ユーザが操作する端末装置等に送信するため、ユーザは、降水による地上への影響の度合いを事前に知ることができる。 Further, according to the weather prediction apparatus 100 in the first embodiment, information indicating the risk Pk of precipitation on the ground is transmitted as image information to a terminal device or the like operated by the user. The degree of influence can be known in advance.
 (第1の実施形態の変形例)
 以下、第1の実施形態の変形例について説明する。上述した第1の実施形態における降水リスク導出部20は、地表面Gに形成された複数の予想降水領域Sが互いに重なり合う場合、重なり合った領域Sに対して、新たに降水のリスクPを導出してよい。
(Modification of the first embodiment)
Hereinafter, modifications of the first embodiment will be described. Precipitation risk deriving unit 20 in the first embodiment described above, when a plurality of predicted rainfall regions S k formed on the ground surface G overlap each other with respect to overlapping area S x, new risk of precipitation P k May be derived.
 図8は、複数の予想降水領域Sが互いに重なり合う場合の一例を示す図である。図示の例では、降水コア領域CRに対応する予想降水領域Sと、降水コア領域CRに対応する予想降水領域Sとが重なり合っている。この場合、降水リスク導出部20は、予想降水領域Sと予想降水領域Sとが重なり合う領域S(以下、重畳領域Sと称する)を導出する。そして、降水リスク導出部20は、重畳領域Sの降水のリスクPを新たに導出する。 Figure 8 is a diagram showing an example of a case where a plurality of predicted precipitation region S k overlap each other. In the illustrated example, the expected precipitation region S 1 corresponding to the precipitation core region CR 1, and overlap the expected precipitation area S 3 corresponding to the precipitation core region CR 3. In this case, the precipitation risk deriving unit 20 derives a region S x where the predicted precipitation region S 1 and the predicted precipitation region S 3 overlap (hereinafter, referred to as a superimposed region S x ). Then, the precipitation risk deriving unit 20 newly derives the precipitation risk P k of the overlapping region S x .
 例えば、降水リスク導出部20は、重畳領域Sにおいて、予想降水領域Sの降水強度Rと予想降水領域Sの降水強度Rとの平均を算出すると共に、降水コア領域CRの予測到達時間と降水コア領域CRの予測到達時間との平均を算出する。降水リスク導出部20は、平均した降水強度および予測到達時間に基づいて、重畳領域Sにおける降水のリスクPを導出する。この結果として、図示の例では、重畳領域Sが“中リスク”のカテゴリーに分類されている。 For example, precipitation risk deriving unit 20, in the overlapping area S x, calculates the average of the precipitation intensity R 3 predicted precipitation region S 3 and precipitation intensity R 1 predicted precipitation area S 1, the precipitation core region CR 1 calculating the average of the predicted arrival time of the expected arrival time and precipitation core region CR 3. The precipitation risk deriving unit 20 derives the precipitation risk P k in the overlapping region S x based on the average precipitation intensity and the predicted arrival time. As a result, in the illustrated example, the overlapping region Sx is classified into the “medium risk” category.
 また、降水リスク導出部20は、重なり合う複数の予想降水領域Sのうち、より降水強度Rの大きい予想降水領域Sに対して導出された降水のリスクPを、重畳領域Sの降水のリスクPとしてもよい。この場合、図8の例では、降水リスク導出部20は、重畳領域Sを、予想降水領域Sの一部領域として扱う。また反対に、降水リスク導出部20は、重なり合う複数の予想降水領域Sのうち、より降水強度Rの小さい予想降水領域Sに対して導出された降水のリスクPを、重畳領域Sの降水のリスクPとしてもよい。 Also, precipitation risk deriving unit 20 overlaps among a plurality of predicted rainfall regions S k, more large expected rainfall regions S k risk P k of precipitation that is derived for the precipitation intensity R i, the overlapping area S x It may be the risk Pk of precipitation. In this case, in the example of FIG. 8, the precipitation risk deriving unit 20 treats the overlapping region S x as a partial region of the predicted precipitation region S 3 . On the contrary, precipitation risk deriving unit 20 overlaps among a plurality of predicted precipitation area S k, the risk P k of derived precipitation for a greater rainfall intensities R i little expected rainfall regions S k, superimposed area S It is good also as the risk Pk of precipitation of x .
 また、山間部のように地表面Gが平坦でない場合、降水リスク導出部20は、各降水コア領域CRの予測到達位置に応じて、移流予測部18により算出された予測到達時間に対して重みを付けてよい。 Also, if the ground surface G as mountainous areas is not flat, precipitation risk deriving unit 20 in accordance with the predicted arrival position of each downcomer core region CR 1, with respect to expected arrival time calculated by the advection predictor 18 May be weighted.
 図9は、地表面Gが平坦でない場合の一例を示す図である。図示の例では、風向および風速を示すベクトルUが示す方向に沿って、ある地表面Gの一部が鉛直方向に高さ(高度)H分だけ隆起している。この場合、降水リスク導出部20は、例えば、より高い位置に形成される予想降水領域Sや予想降水領域Sの降水のリスクP、Pを導出する際に、これら予想降水領域S、Sの予測到達位置に応じて予測到達時間に重みを付ける。この結果、本来であれば上述した図4に示すように、予想降水領域Sは、“低リスク”のカテゴリーに分類されるが、図9の例では、予測到達時間に重みを付けたことにより、“中リスク”のカテゴリーに分類されている。また、同じ予想降水領域S内であっても、地表面Gの高度に応じて予想到達時間が変動するため、領域内の位置応じて降水のリスクPにばらつきが生じる。そのため、降水リスク導出部20は、同じ予想降水領域S内でもカテゴリーを分けてよい。図9の例では、降水リスク導出部20は、降水コア領域CRに対応する予想降水領域をSとS#とに分割し、これら2つの予想降水領域を異なるカテゴリーに分類している。これによって、画像生成部22は、同じ予想降水領域S内を、地表面Gの高度に応じて色分けした画像を生成することができる。 FIG. 9 is a diagram illustrating an example when the ground surface G is not flat. In the illustrated example, a part of a certain ground surface G rises in the vertical direction by a height (altitude) H along the direction indicated by the vector U k indicating the wind direction and the wind speed. In this case, for example, when the precipitation risk deriving unit 20 derives the precipitation risks P 2 and P 3 of the predicted precipitation region S 2 and the predicted precipitation region S 3 formed at a higher position, these predicted precipitation regions S 2 are derived. 2, to weight the predicted arrival time in accordance with a predicted arrival position of S 2. As a result, as shown in FIG. 4 described above would otherwise, the expected precipitation area S 3, are classified into the category of "low risk", in the example of FIG. 9, it has to weight the predicted arrival time Is classified into the “medium risk” category. Even within the same expected precipitation region Sk , the expected arrival time varies depending on the altitude of the ground surface G, and therefore the precipitation risk Pk varies depending on the position in the region. Therefore, precipitation risk deriving unit 20 may divide the category even with the same expected rainfall area S k. In the example of FIG. 9, the precipitation risk deriving unit 20 divides the predicted precipitation region corresponding to the precipitation core region CR 2 into S 2 and S 2 #, and classifies these two predicted precipitation regions into different categories. . Thus, the image generating unit 22, the same predicted rainfall area S k, it is possible to generate an image color-coded depending on the altitude of the ground surface G.
 (第2の実施形態)
 以下、第2の実施形態における気象予測装置100Aについて説明する。第2の実施形態における気象予測装置100Aでは、地上において降水コア領域CRを導出する点で第1の実施形態と相違する。従って、係る相違点を中心に説明し、共通する部分についての説明は省略する。
(Second Embodiment)
Hereinafter, the weather prediction apparatus 100A in the second embodiment will be described. The weather prediction apparatus 100A according to the second embodiment is different from the first embodiment in that the precipitation core region CR k is derived on the ground. Therefore, it demonstrates centering on such a difference and abbreviate | omits description about a common part.
 図10は、地上において降水コア領域CRを導出する様子を模式的に示す図である。第2実施形態における移流予測部18は、メッシュ領域Mごとの降水強度Rに基づいて、メッシュ領域Mごとに予測到達時間を算出する。そして、移流予測部18は、メッシュ領域Mごとの風向および風速および降水強度Rに基づいて移流予測のシミュレーションを行い、全てのメッシュ領域Mのそれぞれの将来の時刻τにおける位置座標を地表面G上で算出し、この位置座標にメッシュ領域Mを仮想的に配置する。 FIG. 10 is a diagram schematically showing how the precipitation core region CR k is derived on the ground. Advection predictor 18 in the second embodiment is based on the precipitation intensity R i for each mesh area M i, it calculates the predicted arrival time for each mesh area M i. Then, the advection prediction unit 18 performs advection prediction simulation based on the wind direction and wind speed for each mesh region M i and the precipitation intensity R i , and determines the position coordinates of all the mesh regions M i at the future time τ. calculated on the surface G, which virtually arranged the mesh area M i to the position coordinates.
 降水コア領域導出部14は、地表面G上に仮想的に配置されたメッシュ領域Mを、降水強度Rが同程度のメッシュ領域M同士を合わせた降水コア領域CRを、地上の地表面Gにおいて導出する。図示の例では、降水コア領域導出部14は、地表面Gにおいて、降水コア領域CRと降水コア領域CRとを導出している。降水リスク導出部20は、降水コア領域導出部14により地表面Gにおいて導出された降水コア領域CRに対して、降水のリスクPを導出する。 Precipitation core region deriving unit 14, the mesh area M i virtually arranged on the surface of the earth G, precipitation core region CR k where precipitation intensity R i is the sum of comparable mesh area M i between, ground Derived at the ground surface G. In the illustrated example, the precipitation core region deriving unit 14 derives the precipitation core region CR 1 and the precipitation core region CR 2 on the ground surface G. The precipitation risk deriving unit 20 derives a precipitation risk P k for the precipitation core region CR k derived on the ground surface G by the precipitation core region deriving unit 14.
 図11は、第2の実施形態における気象予測装置100による処理の一例を示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われる。 FIG. 11 is a flowchart illustrating an example of processing by the weather prediction apparatus 100 according to the second embodiment. The processing of this flowchart is repeatedly performed at a predetermined cycle, for example.
 まず、メッシュパラメータ算出部12は、通信インターフェース10により観測データが受信されると(ステップS200;Yes)、観測データ32のメッシュ領域Mごとに、降水強度Rを算出する(ステップS202)。次に、風向風速推定部16は、メッシュ領域Mごとのレーダ反射因子Zとドップラー速度Dに基づいて、メッシュ領域Mごとの風向および風速を推定する(ステップS204)。 First, when the observation data is received by the communication interface 10 (step S200; Yes), the mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 (step S202). Then, Wind estimation unit 16, based on the radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i (step S204).
 次に、移流予測部18は、メッシュ領域Mごとに移流予測を行って、メッシュ領域Mごとの予測到達時間および予測到達位置を算出する(ステップS206)。次に、降水コア領域導出部14は、メッシュ領域Mごとの予測到達位置に基づいて、降水強度Rが同程度のメッシュ領域M同士を合わせた降水コア領域CRを、地上の地表面Gにおいて導出する(ステップS208)。 Next, advection prediction unit 18 performs the advection prediction for each mesh area M i, calculates the predicted arrival time and the predicted arrival position of each mesh area M i (step S206). Then, the precipitation core region deriving unit 14, based on the predicted arrival position of each mesh area M i, precipitation core region CR k where precipitation intensity R i is the sum of comparable mesh area M i between ground land of Derivation is performed on the surface G (step S208).
 次に、降水リスク導出部20は、降水コア領域導出部14により地表面Gにおいて導出された降水コア領域CRごとの降水強度Rと、移流予測部18により算出された予測到達時間とに基づいて、地上における降水のリスクPを導出する(ステップS210)。次に、画像生成部22は、降水リスク導出部20によって導出された降水コア領域CRごとの降水のリスクPの分類結果と、地表面Gの地図情報とを組み合わせた降水地点情報に基づいて、画像を生成する(ステップS212)。次に、出力部24は、画像生成部22により生成された画像を示す情報を、端末装置やウェブサーバ等に出力する(ステップS214)。これによって、本フローチャートの処理が終了する。 Next, the precipitation risk deriving unit 20 calculates the precipitation intensity R i for each precipitation core region CR k derived on the ground surface G by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18. Based on this, the risk Pk of precipitation on the ground is derived (step S210). Next, the image generation unit 22 is based on the precipitation point information obtained by combining the classification result of the precipitation risk P k for each precipitation core region CR k derived by the precipitation risk deriving unit 20 and the map information of the ground surface G. Thus, an image is generated (step S212). Next, the output unit 24 outputs information indicating the image generated by the image generation unit 22 to a terminal device, a web server, or the like (step S214). Thereby, the process of this flowchart is complete | finished.
 以上説明した第2の実施形態における気象予測装置100Aによれば、第1の実施形態と同様に、気象レーダ装置200によって得られた上空の気象状態に基づいて、地上における降水のリスクPを導出することにより、降水による地上への影響の度合いを精度良く予測することができる。 According to the weather prediction apparatus 100A in the second embodiment described above, the risk Pk of precipitation on the ground is calculated based on the weather condition in the sky obtained by the weather radar apparatus 200, as in the first embodiment. By deriving, it is possible to accurately predict the degree of influence of precipitation on the ground.
 (第3の実施形態)
 以下、第3の実施形態における気象予測装置100Bについて説明する。第3の実施形態における気象予測装置100Bでは、風向風速計測装置300によって計測された風向および風速を、降水コア領域CRの風向および風速として扱う点で第1および第2の実施形態と相違する。従って、係る相違点を中心に説明し、共通する部分についての説明は省略する。
(Third embodiment)
Hereinafter, the weather prediction apparatus 100B in 3rd Embodiment is demonstrated. In weather forecasting apparatus 100B in the third embodiment, the wind direction and wind speed measured by the wind direction and speed measurement device 300, differs from the first and second embodiments in that handled as wind direction and wind speed of precipitation core region CR k . Therefore, it demonstrates centering on such a difference and the description about a common part is abbreviate | omitted.
 図12は、第3の実施形態における気象予測装置100Bの構成の一例を示す図である。第3の実施形態における気象予測装置100Bでは、風向風速推定部16が省略されてよい。風向風速計測装置300は、例えば、プロペラと、垂直尾翼とを含み、風が吹くと垂直尾翼により胴体が回転しプロペラが風上に向く。風向風速計測装置300は、胴体の向きから風向を、プロペラの回転数から風速を測定する。風向風速計測装置300は、測定した風向および風速を示す情報(風向風速情報)と、自身が設置された位置を示す情報(位置情報)とを気象予測装置100Bに送信する。例えば、風向風速計測装置300は、各地に点在するように設置される。 FIG. 12 is a diagram illustrating an example of the configuration of the weather prediction device 100B according to the third embodiment. In the weather prediction device 100B according to the third embodiment, the wind direction and wind speed estimation unit 16 may be omitted. The wind direction and wind speed measuring device 300 includes, for example, a propeller and a vertical tail, and when the wind blows, the fuselage is rotated by the vertical tail and the propeller faces the windward. The wind direction and wind speed measuring device 300 measures the wind direction from the direction of the fuselage and the wind speed from the rotation speed of the propeller. The wind direction and wind speed measuring apparatus 300 transmits information indicating the measured wind direction and wind speed (wind direction and wind speed information) and information indicating the position where the wind is installed (position information) to the weather prediction apparatus 100B. For example, the wind direction and wind speed measuring device 300 is installed to be scattered in various places.
 第3の実施形態における通信インターフェース10は、複数の風向風速計測装置300と通信を行い、複数の風向風速計測装置300から風向風速情報および位置情報をそれぞれ受信する。例えば、移流予測部18は、風向風速計測装置300の設置位置と、降水コア領域CRの水平方向における位置とを比較して、降水コア領域CRの水平方向における位置に最も近い風向風速計測装置300を特定し、この特定した風向風速計測装置300により測定された風向および風速を、降水コア領域CR、あるいは降水コア領域CRを構成する複数のメッシュ領域Mのそれぞれの風向および風速とする。そして、移流予測部18は、風向風速計測装置300により測定された風向および風速を用いて、メッシュ領域Mごとに移流予測を行う。 The communication interface 10 in the third embodiment communicates with a plurality of wind direction wind speed measurement devices 300 and receives wind direction wind speed information and position information from the plurality of wind direction wind speed measurement devices 300, respectively. For example, advection prediction unit 18 compares the installation position of the wind speed and direction measuring device 300, and a position in the horizontal direction of precipitation core region CR k, the closest Anemometer Measurements in position in the horizontal direction of precipitation core region CR k identify device 300, the measured wind direction and wind speed wind measuring apparatus 300 in this particular, each of the wind direction and wind velocity of the plurality of mesh areas M i constituting the precipitation core region CR k or precipitation core region CR k, And The advection prediction unit 18 uses the measured wind direction and wind speed Wind measuring device 300, performs advection prediction for each mesh area M i.
 なお、気象予測装置100Bは、上述した風向風速計測装置300から得られる情報に代えて、気球等の飛翔物に設けられた気象観測装置(ラジオゾンデ)から、大気中の気圧、気温、湿度、風向、風速、高度等の情報を取得することで、メッシュ領域Mごとに移流予測を行ってもよい。 In addition, the weather prediction apparatus 100B replaces with the information obtained from the wind direction wind speed measurement apparatus 300 mentioned above, from the weather observation apparatus (radiosonde) provided in flying objects, such as a balloon, atmospheric pressure, temperature, humidity, wind direction, wind speed, by acquiring the information of the altitude and the like, may be performed advection prediction for each mesh area M i.
 以上説明した第3の実施形態における気象予測装置100Bによれば、第1および第2の実施形態と同様に、気象レーダ装置200によって得られた上空の気象状態に基づいて、地上における降水のリスクPを導出することにより、降水による地上への影響の度合いを精度良く予測することができる。 According to the weather prediction device 100B in the third embodiment described above, the risk of precipitation on the ground based on the weather conditions in the sky obtained by the weather radar device 200, as in the first and second embodiments. By deriving P k , it is possible to accurately predict the degree of influence of precipitation on the ground.
 (第4の実施形態)
 以下、第4の実施形態における気象予測装置100Cについて説明する。第4の実施形態における気象予測装置100Cでは、温湿度計測装置400によって計測された温度および湿度のうち、少なくとも温度に基づいて、雲粒の粒子の種類を判別する点で第1から第3の実施形態と相違する。従って、係る相違点を中心に説明し、共通する部分についての説明は省略する。
(Fourth embodiment)
Hereinafter, the weather prediction apparatus 100C according to the fourth embodiment will be described. In the weather prediction device 100C according to the fourth embodiment, the first to third points are used in that the type of cloud particle is discriminated based on at least the temperature and the humidity measured by the temperature / humidity measuring device 400. It is different from the embodiment. Therefore, it demonstrates centering on such a difference and the description about a common part is abbreviate | omitted.
 図13は、第4の実施形態における気象予測装置100Cの構成の一例を示す図である。第4の実施形態における気象予測装置100Cは、上述した実施形態と同様に、通信インターフェース10と、メッシュパラメータ算出部12と、降水コア領域導出部14と、風向風速推定部16と、移流予測部18と、降水リスク導出部20と、画像生成部22と、出力部24と、記憶部30との他に、更に粒子判別部26を備える。また、記憶部30には、観測データ32およびコア毎解析データ34の他に、更に粒子毎落下速度情報36が記憶される。 FIG. 13 is a diagram illustrating an example of the configuration of the weather prediction apparatus 100C according to the fourth embodiment. The weather prediction apparatus 100C according to the fourth embodiment has a communication interface 10, a mesh parameter calculation unit 12, a precipitation core region derivation unit 14, a wind direction and wind speed estimation unit 16, and an advection prediction unit, as in the above-described embodiment. 18, a precipitation risk deriving unit 20, an image generation unit 22, an output unit 24, and a storage unit 30, and further includes a particle discrimination unit 26. Further, in addition to the observation data 32 and the analysis data 34 for each core, the particle fall speed information 36 is further stored in the storage unit 30.
 温湿度計測装置400は、例えば、気球等の飛翔物に設けられ、飛翔物の周囲の大気の温度および湿度を計測する装置である。また、温湿度計測装置400は、地上に設置され、地上の温度および湿度を計測する装置であってもよい。この場合、温湿度計測装置400は、地上において計測した温度および湿度に基づいて、気象レーダ装置200が観測対象とする上空の高度の温度および湿度を推定してもよい。例えば、温湿度計測装置400は、設置された地上の高度と、気象レーダ装置200が観測対象とする上空の高度との差に基づいて、地上において計測した温度および湿度を補正することにより、上空の温度および湿度を推定する。 The temperature / humidity measuring device 400 is a device that is provided on a flying object such as a balloon and measures the temperature and humidity of the atmosphere around the flying object. Moreover, the temperature / humidity measuring apparatus 400 may be an apparatus that is installed on the ground and measures the temperature and humidity on the ground. In this case, the temperature / humidity measuring apparatus 400 may estimate the temperature and humidity of the altitude above the sky to be observed by the weather radar apparatus 200 based on the temperature and humidity measured on the ground. For example, the temperature / humidity measuring apparatus 400 corrects the temperature and humidity measured on the ground based on the difference between the installed altitude and the altitude of the sky that the weather radar apparatus 200 observes. Estimate temperature and humidity.
 また、温湿度計測装置400は、過去に計測または推定した温度および湿度を参照して、現在の温度および湿度を推定してもよい。例えば、温湿度計測装置400は、観測季節が4月である場合、過去の4月の所定期間(例えば10年間程度)分の平均気温および平均湿度を、現在の4月の温度および湿度として導出してよい。 Also, the temperature / humidity measuring apparatus 400 may estimate the current temperature and humidity with reference to the temperature and humidity measured or estimated in the past. For example, when the observation season is April, the temperature / humidity measuring apparatus 400 derives the average temperature and average humidity for a predetermined period (for example, about 10 years) in the past April as the temperature and humidity of the present April. You can do it.
 そして、温湿度計測装置400は、計測または推定した温度および湿度の情報(以下、温湿度情報と称する)を気象予測装置100Cに送信する。 Then, the temperature / humidity measuring apparatus 400 transmits the measured or estimated temperature and humidity information (hereinafter referred to as temperature / humidity information) to the weather prediction apparatus 100C.
 第4の実施形態における通信インターフェース10は、気象レーダ装置200および温湿度計測装置400と通信を行い、気象レーダ装置200から観測データ32を受信すると共に、温湿度計測装置400から温湿度情報を受信する。 The communication interface 10 according to the fourth embodiment communicates with the weather radar device 200 and the temperature / humidity measurement device 400, receives the observation data 32 from the weather radar device 200, and receives the temperature / humidity information from the temperature / humidity measurement device 400. To do.
 粒子判別部26は、通信インターフェース10によって温湿度計測装置400から受信された温湿度情報に基づいて、メッシュ領域Mごとの雲粒の粒子の種類を判別する。例えば、粒子判別部26は、温湿度情報によって示される上空の温度および湿度に応じて、気象レーダ装置200により観測された雲粒が液相であるのか、または固相であるのかを判別する。すなわち、粒子判別部26は、粒子の相を判別する。 Particle determination unit 26, based on the communication interface 10 to the temperature and humidity information received from the temperature and humidity measuring unit 400 determines the type of particle cloud particles per mesh area M i. For example, the particle discriminating unit 26 discriminates whether the cloud particles observed by the weather radar apparatus 200 are in a liquid phase or a solid phase according to the temperature and humidity in the sky indicated by the temperature / humidity information. That is, the particle discriminating unit 26 discriminates the phase of particles.
 図14は、温度および湿度に基づく粒子の種類の判別方法を説明するための図である。図示のように、例えば、粒子判別部26は、温度Tが基準温度Tx以上高い場合、あるいは湿度Hが基準湿度Hx以上高い場合、粒子が液相であると判定する。基準温度Txは、例えば、0[℃]程度であり、基準湿度Hxは、30[%]程度である。また、粒子判別部26は、温度Tが基準温度Tx未満であり、且つ湿度Hが基準湿度Hx未満である場合、粒子が固相であると判定する。これによって、降水強度Rが同程度のメッシュ領域Mであっても、その領域に存在する粒子が固相であるのか、あるいは液相であるのかを判別することができる。この結果、地上に降り注ぐ物体が、雨なのか、あるいは雪やひょう、あられであるのかを区別することができる。 FIG. 14 is a diagram for explaining a method of determining the type of particles based on temperature and humidity. As illustrated, for example, when the temperature T is higher than the reference temperature Tx or when the humidity H is higher than the reference humidity Hx, the particle determination unit 26 determines that the particles are in the liquid phase. The reference temperature Tx is, for example, about 0 [° C.], and the reference humidity Hx is about 30 [%]. Moreover, the particle | grain discrimination | determination part 26 determines with particle | grains being a solid phase, when the temperature T is less than the reference temperature Tx and the humidity H is less than the reference humidity Hx. As a result, even if the precipitation intensity R i is the same mesh area M i , it is possible to determine whether the particles existing in the area are in a solid phase or a liquid phase. As a result, it is possible to distinguish whether the object falling on the ground is rain, snow, hail, or hail.
 第4の実施形態における移流予測部18は、移流予測を行う処理の過程において、粒子判別部26により判別された粒子の種類に基づいて、記憶部30に記憶された粒子毎落下速度情報36を参照して、メッシュ領域Mごとの落下速度を導出する。 The advection prediction unit 18 in the fourth embodiment uses the particle fall velocity information 36 stored in the storage unit 30 based on the type of particles determined by the particle determination unit 26 in the process of performing advection prediction. Referring to, it derives the falling speed of each mesh area M i.
 図15は、第4の実施形態における粒子毎落下速度情報36の一例を示す図である。図示のように、粒子毎落下速度情報36は、粒子が液相である場合と、固相である場合との双方において、レーダ反射因子Zに対して、粒子の落下速度が対応付けられた情報である。図中(a)は、粒子が液相(雨粒)である場合の落下速度を表し、(b)は、粒子が固相(例えば雪)である場合の落下速度を表している。移流予測部18は、粒子判別部26により判別された粒子の種類に基づいて対応する情報を参照し、観測データ32に含まれるレーダ反射因子Zに対応する落下速度を取得することで、メッシュ領域Mごとの落下速度を導出する。なお、粒子毎落下速度情報36が示す落下速度は、その粒子の形状に応じた空気抵抗について考慮されていてもよい。 FIG. 15 is a diagram illustrating an example of the particle fall speed information 36 according to the fourth embodiment. As shown in the figure, the drop speed information 36 for each particle associates the drop speed of the particle with the radar reflection factor Z i in both the case where the particle is in the liquid phase and the case where the particle is in the solid phase. Information. In the figure, (a) represents the falling speed when the particles are in a liquid phase (raindrops), and (b) represents the falling speed when the particles are in a solid phase (for example, snow). The advection prediction unit 18 refers to the corresponding information based on the type of particle determined by the particle determination unit 26, and acquires the falling velocity corresponding to the radar reflection factor Z i included in the observation data 32, thereby obtaining a mesh. It derives the falling speed of each region M i. The drop speed indicated by the drop speed information 36 for each particle may be taken into consideration for air resistance according to the shape of the particle.
 そして、移流予測部18は、導出したメッシュ領域Mごとの落下速度を用いて予測到達時間を算出し、算出した予測到達時間に基づいて、移流モデルを用いて、降水コア領域CRが地上に到達する際の予測到達位置を算出する。例えば、雲粒の粒子の大部分が雨粒で構成される降水コア領域CRは、雪やあられといった固相の粒子で構成される降水コア領域CRと比べて、落下速度が速いことから、予測到達時間が短くなりやすい。このように、降水コア領域CRを構成するメッシュ領域Mごとに落下速度を求めるため、降水コア領域CRごとの予測到達時間をより精度良く算出することができる。 Then, the advection prediction unit 18 calculates a predicted arrival time using the derived fall speed for each mesh region M i , and based on the calculated predicted arrival time, the precipitation core region CR k is calculated on the ground. The predicted arrival position when arriving at is calculated. For example, the precipitation core region CR k , in which most of the cloud particles are composed of raindrops, has a faster fall speed than the precipitation core region CR k , which is composed of solid phase particles such as snow and hail, Estimated arrival time tends to be short. Thus, to determine the fall velocity for each mesh area M i constituting the precipitation core region CR k, it is possible to more accurately calculate the expected arrival time for each downcomer core region CR k.
 また、同じレーダ反射因子Zであっても、予測到達位置の算出時に、液相と液相とで落下速度を変えるため、予測到達時間分進んだ将来の時刻τにおけるメッシュ領域Mの位置座標(xτ,yτ,zτ)についても更に精度良く予測することができる。 Moreover, even with the same radar reflectivity factor Z i, when calculating the predicted arrival position, to alter the falling velocity in a liquid phase and a liquid phase, the position of a mesh area M i at time of future advanced expected arrival time period τ The coordinates (x τ , y τ , z τ ) can also be predicted with higher accuracy.
 図16は、第4の実施形態における気象予測装置100Cによる処理の一例を示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われる。 FIG. 16 is a flowchart illustrating an example of processing performed by the weather prediction apparatus 100C according to the fourth embodiment. The processing of this flowchart is repeatedly performed at a predetermined cycle, for example.
 まず、メッシュパラメータ算出部12は、通信インターフェース10により観測データが受信されると(ステップS300;Yes)、観測データ32のメッシュ領域Mごとに、降水強度Rを算出する(ステップS302)。次に、降水コア領域導出部14は、メッシュパラメータ算出部12により算出された降水強度Rが同程度のメッシュ領域M同士を合わせた降水コア領域CRを、上空の雲を含む3次元空間において導出する(ステップS304)。 First, when the observation data is received by the communication interface 10 (step S300; Yes), the mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 (step S302). Next, the precipitation core region deriving unit 14 calculates the precipitation core region CR k obtained by combining the mesh regions M i having the same precipitation intensity R i calculated by the mesh parameter calculation unit 12 and includes the three-dimensional cloud including the sky above. Derivation is performed in space (step S304).
 粒子判別部26は、通信インターフェース10によって温湿度計測装置400から受信された温湿度情報に基づいて、メッシュ領域Mごとの雲粒の粒子の種類を判別する(ステップS306)。 Particle determination unit 26, based on the communication interface 10 to the temperature and humidity information received from the temperature and humidity measuring unit 400 determines the type of particle cloud particles per mesh area M i (step S306).
 次に、風向風速推定部16は、メッシュ領域Mごとのレーダ反射因子Zとドップラー速度Dに基づいて、メッシュ領域Mごとの風向および風速を推定する(ステップS308)。 Then, Wind estimation unit 16, based on the radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i (step S308).
 次に、移流予測部18は、降水コア領域導出部14により導出された降水コア領域CRの各メッシュ領域Mの落下速度に基づいて、移流予測を行って、降水コア領域CRごとの予測到達時間および予測到達位置を算出する(ステップS310)。 Next, the advection prediction unit 18 performs advection prediction based on the falling speed of each mesh region M i of the precipitation core region CR k derived by the precipitation core region deriving unit 14, and performs the advection prediction for each precipitation core region CR k . A predicted arrival time and a predicted arrival position are calculated (step S310).
 次に、降水リスク導出部20は、降水コア領域導出部14により導出された降水コア領域CRごとの降水強度Rと、移流予測部18により算出された予測到達時間とに基づいて、地上における降水のリスクPを導出する(ステップS312)。 Next, the precipitation risk deriving unit 20 is based on the precipitation intensity R i for each precipitation core region CR k derived by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18. The risk Pk of precipitation in is derived (step S312).
 次に、画像生成部22は、降水リスク導出部20によって導出された予想降水領域Sごとの降水のリスクPの分類結果と、地表面Gの地図情報とを組み合わせた降水地点情報に基づいて、画像を生成する(ステップS314)。 Then, the image generator 22, based on the precipitation point information in combination with the classification results of risk P k of precipitation of each predicted rainfall regions S k derived by the precipitation risk deriving unit 20, and the map information of the ground surface G Then, an image is generated (step S314).
 次に、出力部24は、画像生成部22により生成された画像を示す情報を、端末装置やウェブサーバ等に出力する(ステップS316)。これによって、本フローチャートの処理が終了する。 Next, the output unit 24 outputs information indicating the image generated by the image generation unit 22 to a terminal device, a web server, or the like (step S316). Thereby, the process of this flowchart is complete | finished.
 また、第4の実施形態における気象予測装置100Cは、上空で降水コア領域CRを導出するのに代えて、地上において降水コア領域CRを導出する場合、すなわち、上述した第2の実施形態と同様の処理を行う場合、以下のフローチャートに従う。 Also, weather forecasting apparatus 100C in the fourth embodiment, if the place to derive precipitation core region CR k in the sky, to derive a precipitation core region CR k at ground, i.e., the second embodiment described above When the same processing is performed, the following flowchart is followed.
 図17は、第4の実施形態の変形例における気象予測装置100Cによる処理の他の例を示すフローチャートである。本フローチャートの処理は、例えば、所定の周期で繰り返し行われる。 FIG. 17 is a flowchart illustrating another example of the process performed by the weather prediction device 100C according to the modification of the fourth embodiment. The processing of this flowchart is repeatedly performed at a predetermined cycle, for example.
 まず、メッシュパラメータ算出部12は、通信インターフェース10により観測データが受信されると(ステップS400;Yes)、観測データ32のメッシュ領域Mごとに、降水強度Rを算出する(ステップS402)。 First, when the observation data is received by the communication interface 10 (step S400; Yes), the mesh parameter calculation unit 12 calculates the precipitation intensity R i for each mesh region M i of the observation data 32 (step S402).
 次に、粒子判別部26は、通信インターフェース10によって温湿度計測装置400から受信された温湿度情報に基づいて、メッシュ領域Mごとの雲粒の粒子の種類を判別する(ステップS404)。 Then, the particle determination unit 26, based on the communication interface 10 to the temperature and humidity information received from the temperature and humidity measuring unit 400 determines the type of particle cloud particles per mesh area M i (step S404).
 次に、風向風速推定部16は、メッシュ領域Mごとのレーダ反射因子Zとドップラー速度Dに基づいて、メッシュ領域Mごとの風向および風速を推定する(ステップS406)。 Then, Wind estimation unit 16, based on the radar reflectivity factor Z i and Doppler velocity D i for each mesh area M i, estimating the wind direction and wind speed for each mesh area M i (step S406).
 次に、移流予測部18は、粒子判別部26により粒子の種類が判別されたメッシュ領域Mごとに移流予測を行って、メッシュ領域Mごとの予測到達時間および予測到達位置を算出する(ステップS408)。例えば、移流予測部18は、雲粒の粒子の種類ごとにメッシュ領域Mごとの落下速度を算出することにより、予測到達時間および予測到達位置を精度良く算出することができる。 Next, the advection prediction unit 18 performs advection prediction for each mesh region M i in which the particle type is determined by the particle determination unit 26, and calculates a predicted arrival time and a predicted arrival position for each mesh region M i ( Step S408). For example, advection prediction unit 18, by calculating the falling speed of each mesh area M i for each type of particles of cloud particles, it is possible to accurately calculate the predicted arrival time and the predicted arrival position.
 次に、降水コア領域導出部14は、メッシュ領域Mごとの予測到達位置に基づいて、降水強度Rが同程度のメッシュ領域M同士を合わせた降水コア領域CRを、地上の地表面Gにおいて導出する(ステップS410)。 Then, the precipitation core region deriving unit 14, based on the predicted arrival position of each mesh area M i, precipitation core region CR k where precipitation intensity R i is the sum of comparable mesh area M i between ground land of Derivation is performed on the surface G (step S410).
 次に、降水リスク導出部20は、降水コア領域導出部14により地表面Gにおいて導出された降水コア領域CRごとの降水強度Rと、移流予測部18により算出された予測到達時間とに基づいて、地上における降水のリスクPを導出する(ステップS412)。 Next, the precipitation risk deriving unit 20 calculates the precipitation intensity R i for each precipitation core region CR k derived on the ground surface G by the precipitation core region deriving unit 14 and the predicted arrival time calculated by the advection prediction unit 18. Based on this, the risk Pk of precipitation on the ground is derived (step S412).
 次に、画像生成部22は、降水リスク導出部20によって導出された降水コア領域CRごとの降水のリスクPの分類結果と、地表面Gの地図情報とを組み合わせた降水地点情報に基づいて、画像を生成する(ステップS414)。 Next, the image generation unit 22 is based on the precipitation point information obtained by combining the classification result of the precipitation risk P k for each precipitation core region CR k derived by the precipitation risk deriving unit 20 and the map information of the ground surface G. Thus, an image is generated (step S414).
 次に、出力部24は、画像生成部22により生成された画像を示す情報を、端末装置やウェブサーバ等に出力する(ステップS416)。これによって、本フローチャートの処理が終了する。 Next, the output unit 24 outputs information indicating the image generated by the image generation unit 22 to a terminal device, a web server, or the like (step S416). Thereby, the process of this flowchart is complete | finished.
 以上説明した第4の実施形態における気象予測装置100Cによれば、上空で降水コア領域CRを導出する場合、粒子の種類に基づいて降水コア領域CRを構成するメッシュ領域Mごとに落下速度を求めるため、降水コア領域CRごとの予測到達時間をより精度良く算出することができると共に、予測到達時間分進んだ将来の時刻τにおけるメッシュ領域Mの位置座標(xτ,yτ,zτ)についても更に精度良く予測することができる。この結果、降水による地上への影響の度合いを更に精度良く予測することができる。 According to the weather forecast apparatus 100C in the fourth embodiment described above, when deriving the downcomer core region CR k in the sky, dropping each mesh area M i constituting the precipitation core region CR k based on the type of particle to determine the rate, it is possible to more accurately calculate the expected arrival time for each downcomer core region CR k, the position coordinates (x tau of a mesh area M i in the prediction arrival time min advanced future time tau, y tau , Z τ ) can be predicted with higher accuracy. As a result, the degree of the influence of precipitation on the ground can be predicted with higher accuracy.
 また、上述した第4の実施形態における気象予測装置100Cによれば、地上において降水コア領域CRを導出する場合、上空において、粒子の種類に基づいてメッシュ領域Mごとの予測到達時間および予測到達位置を算出するため、地上において降水コア領域CRを精度良く導出することができる。この結果、降水による地上への影響の度合いを更に精度良く予測することができる。 Further, according to the weather forecast apparatus 100C in the fourth embodiment described above, when deriving the downcomer core region CR k in the ground, in the sky, the predicted arrival time and predicted for each mesh area M i based on the type of particle In order to calculate the arrival position, the precipitation core region CR k can be accurately derived on the ground. As a result, the degree of the influence of precipitation on the ground can be predicted with higher accuracy.
 (第5の実施形態)
 以下、第5の実施形態における気象予測装置100Dについて説明する。第5の実施形態における気象予測装置100Dは、二重偏波レーダ装置200Aによって観測された観測データを取得する点で第1から第4の実施形態と相違する。従って、係る相違点を中心に説明し、共通する部分についての説明は省略する。
(Fifth embodiment)
Hereinafter, the weather prediction apparatus 100D in 5th Embodiment is demonstrated. The weather prediction device 100D in the fifth embodiment is different from the first to fourth embodiments in that the observation data observed by the dual polarization radar device 200A is acquired. Therefore, it demonstrates centering on such a difference and the description about a common part is abbreviate | omitted.
 二重偏波レーダ装置200Aは、水平偏波と垂直偏波の2つの電波を送受信する。そして、二重偏波レーダ装置200Aは、水平偏波に関するレーダ反射因子Z、垂直偏波に関するレーダ反射因子Z、レーダ反射因子差ZDR、偏波間位相差φDP、伝搬位相差変化率KDP、偏波間相関係数ρhvなどのパラメータを含む観測データを取得する。レーダ反射因子差ZDRは、例えば、水平偏波に関するレーダ反射因子Zを垂直偏波に関するレーダ反射因子Zで除算した値の対数値であり、粒子の縦横径の比に依存するパラメータである。二重偏波レーダ装置200Aは、取得した二重偏波に関する各種パラメータを含む観測データ(以下、二重偏波観測データと称する)を気象予測装置100Dに送信する。 The dual-polarization radar device 200A transmits and receives two radio waves of horizontal polarization and vertical polarization. The dual-polarization radar apparatus 200A includes a radar reflection factor Z h for horizontal polarization, a radar reflection factor Z V for vertical polarization, a radar reflection factor difference Z DR , an inter-polarization phase difference φ DP , and a propagation phase difference change rate. Observation data including parameters such as K DP and correlation coefficient ρ hv between polarizations is acquired. Radar reflectivity factor difference Z DR is, for example, a logarithm of a value obtained by dividing the radar reflectivity factor Z h about horizontal polarization radar reflectivity factor Z V about a vertical polarization, a parameter that depends on the ratio of the vertical and horizontal size of the particles is there. The dual-polarization radar apparatus 200A transmits observation data including various parameters related to the acquired dual-polarization (hereinafter referred to as dual-polarization observation data) to the weather prediction apparatus 100D.
 図18は、第5の実施形態における気象予測装置100Dの構成の一例を示す図である。第5の実施形態における気象予測装置100Dの通信インターフェース10は、二重偏波レーダ装置200Aから二重偏波観測データを受信する。 FIG. 18 is a diagram illustrating an example of the configuration of the weather prediction device 100D according to the fifth embodiment. The communication interface 10 of the weather prediction apparatus 100D in the fifth embodiment receives the dual polarization observation data from the dual polarization radar apparatus 200A.
 第5の実施形態における粒子判別部26は、通信インターフェース10によって二重偏波レーダ装置200Aから受信された二重偏波観測データに基づいて、メッシュ領域Mごとの雲粒の粒子の種類を判別する。例えば、粒子判別部26は、二重偏波観測データに含まれる各種パラメータ(特にレーダ反射因子差ZDRや伝搬位相差変化率KDPなど)に基づいて、粒子の扁平の度合や粒径などの形状を推定して、雲粒の粒子の種類を判別する。例えば、粒子判別部26は、粒子が扁平している場合は、当該粒子を雨粒として判別し、粒径が基準径(例えば5[mm])より大きく、且つ扁平していない場合は、当該粒子をひょうとして判別する。また、粒子判別部26は、粒径が基準径(例えば5[mm])より小さく、且つ扁平していない場合は、当該粒子をあられや雪として判別する。また、粒子判別部26は、偏波間相関係数ρhvに基づいて、固相と液相が混合した状態(融解層)についても判別してもよい。例えば、粒子判別部26は、固相と液相が混合した状態としてみぞれを判別してよい。 Particle determination unit 26 in the fifth embodiment, on the basis of the communication interface 10 to the dual polarization observation data received from the dual polarization radar apparatus 200A, the type of particle cloud particles per mesh area M i Determine. For example, the particle discriminating unit 26 determines the degree of particle flatness, the particle size, and the like based on various parameters (particularly, the radar reflection factor difference ZDR and the propagation phase difference change rate KDP ) included in the dual polarization observation data. To determine the type of cloud particle. For example, when the particle is flat, the particle determination unit 26 determines the particle as raindrop, and when the particle size is larger than a reference diameter (for example, 5 [mm]) and is not flat, the particle Is identified as hail. Moreover, the particle | grain discrimination | determination part 26 discriminate | determines the said particle | grain as hail or snow, when a particle size is smaller than a reference | standard diameter (for example, 5 [mm]) and it is not flat. Moreover, the particle | grain discrimination | determination part 26 may discriminate | determine also about the state (molten layer) which the solid phase and the liquid phase mixed based on the correlation coefficient (rho) hv between polarization | polarized- lights . For example, the particle determination unit 26 may determine the sleet as a state where the solid phase and the liquid phase are mixed.
 第5の実施形態における移流予測部18は、移流予測を行う処理の過程において、粒子判別部26により判別された粒子の種類に基づいて、記憶部30に記憶された粒子毎落下速度情報36を参照して、メッシュ領域Mごとの落下速度を導出する。 The advection prediction unit 18 in the fifth embodiment uses the particle fall velocity information 36 stored in the storage unit 30 based on the type of particle determined by the particle determination unit 26 in the process of performing advection prediction. Referring to, it derives the falling speed of each mesh area M i.
 図19は、第5の実施形態における粒子毎落下速度情報36の一例を示す図である。図示のように、粒子毎落下速度情報36は、各粒子の種別毎に、レーダ反射因子Zに対して、粒子の落下速度が対応付けられた情報である。図中(a)は、粒子が雨である場合の落下速度を表し、(b)は、粒子が雪(あるいはみぞれ)である場合の落下速度を表し、(c)は、粒子があられである場合の落下速度を表し、(d)は、粒子がひょうである場合の落下速度を表している。移流予測部18は、粒子判別部26により判別された粒子の種類に基づいて対応する情報を参照し、観測データ32に含まれるレーダ反射因子Zに対応する落下速度を取得することで、メッシュ領域Mごとの落下速度を導出する。なお、粒子毎落下速度情報36が示す落下速度は、その粒子の形状に応じた空気抵抗について予め考慮されていてもよい。 FIG. 19 is a diagram illustrating an example of the particle fall speed information 36 according to the fifth embodiment. As shown in the figure, the particle fall velocity information 36 is information in which the particle fall velocity is associated with the radar reflection factor Z i for each particle type. In the figure, (a) shows the falling speed when the particles are rain, (b) shows the falling speed when the particles are snow (or sleet), and (c) shows that the particles are hit. (D) represents the drop speed when the particles are hail. The advection prediction unit 18 refers to the corresponding information based on the type of particle determined by the particle determination unit 26, and acquires the falling velocity corresponding to the radar reflection factor Z i included in the observation data 32, thereby obtaining a mesh. It derives the falling speed of each region M i. Note that the drop speed indicated by the drop speed information 36 for each particle may be considered in advance for air resistance corresponding to the shape of the particle.
 以上説明した第5の実施形態における気象予測装置100Dによれば、上空で降水コア領域CRを導出する場合、上述した第4の実施形態と同様に、粒子の種類に基づいて降水コア領域CRを構成するメッシュ領域Mごとに落下速度を求めるため、降水コア領域CRごとの予測到達時間をより精度良く算出することができると共に、予測到達時間分進んだ将来の時刻τにおけるメッシュ領域Mの位置座標(xτ,yτ,zτ)についても更に精度良く予測することができる。この結果、降水による地上への影響の度合いを更に精度良く予測することができる。 According to the weather prediction apparatus 100D in the fifth embodiment described above, when the precipitation core region CR k is derived above the precipitation core region CR k based on the type of particles as in the fourth embodiment described above. Since the drop speed is obtained for each mesh region M i constituting k , the predicted arrival time for each precipitation core region CR k can be calculated more accurately, and the mesh region at a future time τ advanced by the predicted arrival time M i position coordinates (x τ, y τ, z τ) can be further predicted accurately also. As a result, the degree of the influence of precipitation on the ground can be predicted with higher accuracy.
 また、上述した第5の実施形態における気象予測装置100Dによれば、地上において降水コア領域CRを導出する場合、上述した第4の実施形態と同様に、上空において、粒子の種類に基づいてメッシュ領域Mごとの予測到達時間および予測到達位置を算出するため、地上において降水コア領域CRを精度良く導出することができる。この結果、降水による地上への影響の度合いを更に精度良く予測することができる。 Further, according to the weather forecast apparatus 100D of the fifth embodiment described above, when deriving the downcomer core region CR k at ground, as in the fourth embodiment described above, in the sky, on the basis of the type of particle Since the predicted arrival time and predicted arrival position for each mesh region M i are calculated, the precipitation core region CR k can be accurately derived on the ground. As a result, the degree of the influence of precipitation on the ground can be predicted with higher accuracy.
 (第6の実施形態)
 以下、第6の実施形態における気象予測装置100Eについて説明する。第6の実施形態における気象予測装置100Eは、二重偏波レーダ装置200Aによって観測された二重偏波観測データと、温湿度計測装置400によって測定された温湿度情報とに基づいて、雲粒の粒子の種類を判別する点で第1から第5の実施形態と相違する。従って、係る相違点を中心に説明し、共通する部分についての説明は省略する。
(Sixth embodiment)
Hereinafter, the weather prediction apparatus 100E in 6th Embodiment is demonstrated. The weather prediction apparatus 100E according to the sixth embodiment is based on double polarization observation data observed by the dual polarization radar apparatus 200A and temperature / humidity information measured by the temperature / humidity measurement apparatus 400. This is different from the first to fifth embodiments in that the type of the particles is discriminated. Therefore, it demonstrates centering on such a difference and the description about a common part is abbreviate | omitted.
 図20は、第6の実施形態における気象予測装置100Eの構成の一例を示す図である。第6の実施形態における気象予測装置100Eの通信インターフェース10は、二重偏波レーダ装置200Aから二重偏波観測データを受信する。また、気象予測装置100Eの通信インターフェース10は、温湿度計測装置400から温湿度情報を受信する。 FIG. 20 is a diagram illustrating an example of a configuration of a weather prediction device 100E according to the sixth embodiment. The communication interface 10 of the weather prediction apparatus 100E in the sixth embodiment receives the dual polarization observation data from the dual polarization radar apparatus 200A. The communication interface 10 of the weather prediction device 100E receives temperature / humidity information from the temperature / humidity measurement device 400.
 第6の実施形態における粒子判別部26は、二重偏波観測データと温湿度情報とに基づいて、メッシュ領域Mごとの雲粒の粒子の種類を判別する。これによって、上述した実施形態よりも更に精度良く粒子の種類を判別することができる。 Sixth particle determination unit 26 in the embodiment of, based on the dual polarization observation data and temperature and humidity information, determines the type of particle cloud particles per mesh area M i. Thereby, the kind of particle | grain can be discriminate | determined still more accurately than embodiment mentioned above.
 以上説明した少なくともひとつの実施形態によれば、気象レーダ装置200によって得られた上空の気象状態に基づいて、地上における降水のリスクPを導出することにより、降水による地上への影響の度合いを精度良く予測することができる。 According to at least one embodiment described above, the risk of precipitation on the ground is derived by deriving the risk Pk of precipitation on the ground based on the weather conditions in the sky obtained by the weather radar apparatus 200. Predict with high accuracy.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
10…通信インターフェース、12…メッシュパラメータ算出部、14…降水コア領域導出部、16…風向風速推定部、18…移流予測部、20…降水リスク導出部、22…画像生成部、24…出力部、26…粒子予測部、30…記憶部、100…気象予測装置、200…気象レーダ装置、200A…二重偏波レーダ装置、300…風向風速計測装置、400…温湿度計測装置
 
DESCRIPTION OF SYMBOLS 10 ... Communication interface, 12 ... Mesh parameter calculation part, 14 ... Precipitation core area | region derivation part, 16 ... Wind direction wind speed estimation part, 18 ... Advection prediction part, 20 ... Precipitation risk derivation part, 22 ... Image generation part, 24 ... Output part , 26 ... Particle prediction unit, 30 ... Storage unit, 100 ... Weather prediction device, 200 ... Weather radar device, 200A ... Dual polarization radar device, 300 ... Wind direction and wind speed measurement device, 400 ... Temperature and humidity measurement device

Claims (12)

  1.  レーダ装置によって得られた上空の気象状態に基づいて、地上における降水のリスクを導出する降水リスク導出部と、
     前記降水リスク導出部により導出された前記降水のリスクに基づく情報を出力する出力部と、
     を備える気象予測装置。
    A precipitation risk deriving unit for deriving the risk of precipitation on the ground based on the weather conditions in the sky obtained by the radar device;
    An output unit for outputting information based on the risk of precipitation derived by the precipitation risk deriving unit;
    A weather prediction apparatus comprising:
  2.  前記上空の3次元空間を仮想的に分割した複数のメッシュ領域ごとに電波の強度に関する情報と、前記上空の風向および風速を示す情報とが対応付けられている情報を、前記レーダ装置から受信するインターフェースと、
     前記インターフェースにより受信された情報に基づいて、前記複数のメッシュ領域のそれぞれに対して降水強度を算出するメッシュパラメータ算出部と、
     前記メッシュパラメータ算出部により算出された前記降水強度を示す値が同程度の前記メッシュ領域同士を合わせた降水コア領域を導出する降水コア領域導出部と、
     前記降水コア領域導出部により導出された前記降水コア領域ごとに、前記インターフェースによって受信された前記風向および風速に基づいて、前記降水コア領域が地上に到達するまでの時間と、前記降水コア領域が地上に到達する位置とを予測する移流予測部と、を更に備え、
     前記降水リスク導出部は、前記移流予測部により予測された前記時間と、前記降水コア領域導出部により導出された前記降水コア領域に含まれる前記メッシュ領域ごとの前記降水強度とに基づいて、前記移流予測部により予測された前記地上の位置における降水のリスクを導出する、
     請求項1に記載の気象予測装置。
    Receive information from the radar apparatus that associates information on the intensity of radio waves with information indicating the wind direction and wind speed in the sky for each of a plurality of mesh regions virtually dividing the above three-dimensional space. Interface,
    Based on information received by the interface, a mesh parameter calculation unit that calculates precipitation intensity for each of the plurality of mesh regions;
    A precipitation core region deriving unit for deriving a precipitation core region obtained by combining the mesh regions having the same value indicating the precipitation intensity calculated by the mesh parameter calculation unit;
    For each precipitation core region derived by the precipitation core region deriving unit, based on the wind direction and wind speed received by the interface, the time until the precipitation core region reaches the ground, and the precipitation core region An advection prediction unit that predicts a position reaching the ground,
    The precipitation risk deriving unit is based on the time predicted by the advection prediction unit and the precipitation intensity for each mesh region included in the precipitation core region derived by the precipitation core region deriving unit. Deriving the risk of precipitation at the ground position predicted by the advection prediction unit,
    The weather prediction apparatus according to claim 1.
  3.  前記降水リスク導出部は、前記移流予測部により予測された前記位置が重なる場合、前記位置が重なる降水コア領域のそれぞれに対応する前記降水強度に応じて、前記地上における降水のリスクを導出する、
     請求項2に記載の気象予測装置。
    When the position predicted by the advection prediction unit overlaps, the precipitation risk deriving unit derives a risk of precipitation on the ground according to the precipitation intensity corresponding to each of the precipitation core regions where the position overlaps.
    The weather prediction apparatus according to claim 2.
  4.  前記降水リスク導出部は、前記移流予測部により予測された前記位置の高度に応じて、前記移流予測部により予測された前記時間に重みを付けて、前記地上の降水コア領域における降水のリスクを導出する、
     請求項2または3に記載の気象予測装置。
    The precipitation risk deriving unit weights the time predicted by the advection prediction unit according to the altitude of the position predicted by the advection prediction unit, and calculates a risk of precipitation in the ground precipitation core region. To derive,
    The weather prediction apparatus according to claim 2 or 3.
  5.  前記上空の3次元空間を仮想的に分割した複数のメッシュ領域ごとに電波の強度に関する情報と、前記上空の風向および風速を示す情報とが対応付けられている情報を、前記レーダ装置から受信するインターフェースと、
     前記インターフェースにより受信された情報に基づいて、前記複数のメッシュ領域のそれぞれに対して降水強度を算出するメッシュパラメータ算出部と、
     前記メッシュ領域ごとに、前記メッシュパラメータ算出部により算出された前記降水強度と、前記メッシュ領域ごとに対応付けられている前記風向および風速とに基づいて、前記メッシュ領域が地上に到達するまでの時間と、前記メッシュ領域が地上に到達する位置とを予測する移流予測部と、
     前記移流予測部により予測された前記位置に基づいて、前記地上において、前記降水強度を示す値が同程度の前記メッシュ領域同士を合わせた降水コア領域を導出する降水コア領域導出部と、を更に備え、
     前記降水リスク導出部は、前記移流予測部により予測された前記時間と、前記降水コア領域導出部により導出された前記降水コア領域に含まれる前記メッシュ領域ごとの前記降水強度とに基づいて、前記地上の降水コア領域における降水のリスクを導出する、
     請求項1に記載の気象予測装置。
    Receive information from the radar apparatus that associates information on the intensity of radio waves with information indicating the wind direction and wind speed in the sky for each of a plurality of mesh regions virtually dividing the above three-dimensional space. Interface,
    Based on information received by the interface, a mesh parameter calculation unit that calculates precipitation intensity for each of the plurality of mesh regions;
    Time until the mesh area reaches the ground based on the precipitation intensity calculated by the mesh parameter calculation unit and the wind direction and wind speed associated with each mesh area for each mesh area An advection prediction unit that predicts a position where the mesh region reaches the ground;
    A precipitation core region deriving unit for deriving a precipitation core region combining the mesh regions having the same value indicating the precipitation intensity on the ground based on the position predicted by the advection prediction unit; Prepared,
    The precipitation risk deriving unit is based on the time predicted by the advection prediction unit and the precipitation intensity for each mesh region included in the precipitation core region derived by the precipitation core region deriving unit. Deriving the risk of precipitation in the ground precipitation core area,
    The weather prediction apparatus according to claim 1.
  6.  前記降水リスク導出部は、前記移流予測部により予測された前記位置が重なる場合、前記位置が重なるメッシュ領域のそれぞれに対応する前記降水強度に応じて、前記地上における降水のリスクを導出する、
     請求項5に記載の気象予測装置。
    When the position predicted by the advection prediction unit overlaps, the precipitation risk deriving unit derives a risk of precipitation on the ground according to the precipitation intensity corresponding to each mesh region where the position overlaps.
    The weather prediction apparatus according to claim 5.
  7.  前記降水リスク導出部により導出された前記地上における降水のリスクを示す情報と、前記地上の地図情報とに基づく画像と、前記降水コア領域導出部により導出された降水コア領域ごとの降水強度を示す情報に基づく画像とのうちいずれか一方または双方を生成する画像生成部を更に備え、
     前記出力部は、前記画像生成部により生成された前記画像を示す情報を出力する、
     請求項2から6のうちいずれか1項に記載の気象予測装置。
    An image based on the information indicating the risk of precipitation on the ground derived by the precipitation risk deriving unit, the map information on the ground, and the precipitation intensity for each precipitation core region derived by the precipitation core region deriving unit An image generation unit that generates one or both of the image based on the information;
    The output unit outputs information indicating the image generated by the image generation unit;
    The weather prediction apparatus according to any one of claims 2 to 6.
  8.  前記インターフェース部は、更に、前記上空の温度の情報を外部装置から受信し、
     前記インターフェースにより受信された前記上空の温度の情報と、前記電波の強度に関する情報とに基づいて、前記上空の雲粒の粒子の種類を判別する判別部を更に備え、
     前記移流予測部は、前記風向および風速と、前記判別部により判別された粒子の種類とに基づいて、前記降水コア領域ごとに、前記降水コア領域が地上に到達するまでの時間と、前記降水コア領域が地上に到達する位置とを予測する、
     請求項2から7のうちいずれか1項に記載の気象予測装置。
    The interface unit further receives information on the temperature of the sky from an external device,
    Based on the information on the temperature of the sky received by the interface and the information on the intensity of the radio wave, further includes a determination unit that determines the type of particles of the cloud particles in the sky,
    The advection prediction unit, for each precipitation core region, based on the wind direction and wind speed and the type of particle determined by the determination unit, the time until the precipitation core region reaches the ground, the precipitation Predict where the core area will reach the ground,
    The weather prediction apparatus according to any one of claims 2 to 7.
  9.  前記インターフェース部は、更に、前記上空の湿度の情報を前記外部装置から受信し、
     前記判別部は、前記インターフェースにより受信された前記上空の温度および湿度の情報と、前記電波の強度に関する情報とに基づいて、前記上空の雲粒の粒子の種類を判別する、
     請求項8に記載の気象予測装置。
    The interface unit further receives information on the humidity of the sky from the external device,
    The determining unit determines the type of particles of the cloud particles in the sky based on the information on the temperature and humidity in the sky received by the interface and the information on the intensity of the radio wave.
    The weather prediction apparatus according to claim 8.
  10.  前記インターフェース部は、更に、前記レーダ装置から、二重偏波パラメータを含む情報を受信し、
     前記インターフェースにより受信された情報に含まれる前記二重偏波パラメータに基づいて、前記上空の雲粒の粒子の種類を判別する判別部を更に備え、
     前記移流予測部は、前記風向および風速と、前記判別部により判別された粒子の種類とに基づいて、前記降水コア領域ごとに、前記降水コア領域が地上に到達するまでの時間と、前記降水コア領域が地上に到達する位置とを予測する、
     請求項2から9のうちいずれか1項に記載の気象予測装置。
    The interface unit further receives information including a dual polarization parameter from the radar device,
    Based on the dual polarization parameter included in the information received by the interface, further comprising a determination unit for determining the type of cloud particles above the cloud,
    The advection prediction unit, for each precipitation core region, based on the wind direction and wind speed and the type of particle determined by the determination unit, the time until the precipitation core region reaches the ground, the precipitation Predict where the core area will reach the ground,
    The weather prediction apparatus according to any one of claims 2 to 9.
  11.  コンピュータが、
     レーダ装置によって得られた上空の気象状態に基づいて、地上における降水のリスクを導出し、
     前記導出した前記降水のリスクに基づく情報を出力する、
     気象予測方法。
    Computer
    Based on the weather conditions in the sky obtained by the radar device, the risk of precipitation on the ground is derived,
    Outputting information based on the derived risk of precipitation;
    Weather forecast method.
  12.  コンピュータに、
     レーダ装置によって得られた上空の気象状態に基づいて、地上における降水のリスクを導出させ、
     前記導出させた前記降水のリスクに基づく情報を出力させる、
     気象予測プログラム。
    On the computer,
    Based on the weather conditions of the sky obtained by the radar device, the risk of precipitation on the ground is derived,
    Outputting information based on the derived risk of precipitation;
    Weather forecast program.
PCT/JP2016/081174 2016-01-12 2016-10-20 Weather forecasting device, weather forecasting method, and weather forecasting program WO2017122408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016003545A JP2019045146A (en) 2016-01-12 2016-01-12 Weather forecasting device, weather forecasting method, and weather forecasting program
JP2016-003545 2016-01-12

Publications (1)

Publication Number Publication Date
WO2017122408A1 true WO2017122408A1 (en) 2017-07-20

Family

ID=59311062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081174 WO2017122408A1 (en) 2016-01-12 2016-10-20 Weather forecasting device, weather forecasting method, and weather forecasting program

Country Status (3)

Country Link
JP (1) JP2019045146A (en)
TW (1) TWI637191B (en)
WO (1) WO2017122408A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111641A1 (en) * 2017-12-06 2019-06-13 古野電気株式会社 Precipitation particle identification device, precipitation particle identification method, and precipitation particle identification program
JP2019211342A (en) * 2018-06-05 2019-12-12 株式会社東芝 Weather analyzer, weather analysis method, and program
JP2019219209A (en) * 2018-06-18 2019-12-26 株式会社東芝 Processing device, processing method, and program
CN115600639A (en) * 2022-09-30 2023-01-13 国网四川省电力公司眉山供电公司(Cn) Wind speed sensor, power transmission line wind speed prediction method and early warning system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686866A4 (en) * 2017-09-22 2021-06-23 Kabushiki Kaisha Toshiba Aviation weather control system
JP6689304B2 (en) * 2018-03-05 2020-04-28 株式会社東芝 Meteorological radar device and heavy rain forecasting method
CN115545259A (en) * 2021-06-30 2022-12-30 浙江三一装备有限公司 Wind condition information prediction method and device, terminal equipment and hoisting equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189773A (en) * 1996-01-12 1997-07-22 Toshiba Corp Rainfall prediction system
JP2003344556A (en) * 2002-05-27 2003-12-03 Toshiba Corp Weather observation and estimation system, meteorological radar information analyzer and weather estimation modeling apparatus
JP2008051616A (en) * 2006-08-24 2008-03-06 Meteorological Engineering Center Snowfall predicting method
JP2013130419A (en) * 2011-12-20 2013-07-04 Kansai Electric Power Co Inc:The Rainfall prediction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1344092A2 (en) * 2000-12-15 2003-09-17 Daniel Rosenfeld Location-based weather nowcast system and method
CN1800876A (en) * 2005-08-01 2006-07-12 中国科学院寒区旱区环境与工程研究所 Dual-channel simultaneous transmitting and receiving type Doppler polarization weather radar
TWM352099U (en) * 2008-08-11 2009-03-01 Garmin Corp Navigation device with real time information display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189773A (en) * 1996-01-12 1997-07-22 Toshiba Corp Rainfall prediction system
JP2003344556A (en) * 2002-05-27 2003-12-03 Toshiba Corp Weather observation and estimation system, meteorological radar information analyzer and weather estimation modeling apparatus
JP2008051616A (en) * 2006-08-24 2008-03-06 Meteorological Engineering Center Snowfall predicting method
JP2013130419A (en) * 2011-12-20 2013-07-04 Kansai Electric Power Co Inc:The Rainfall prediction method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019111641A1 (en) * 2017-12-06 2019-06-13 古野電気株式会社 Precipitation particle identification device, precipitation particle identification method, and precipitation particle identification program
JPWO2019111641A1 (en) * 2017-12-06 2020-12-17 古野電気株式会社 Precipitation particle discrimination device, precipitation particle discrimination method, and precipitation particle discrimination program
JP2019211342A (en) * 2018-06-05 2019-12-12 株式会社東芝 Weather analyzer, weather analysis method, and program
JP7438655B2 (en) 2018-06-05 2024-02-27 株式会社東芝 Weather analysis equipment, weather analysis methods, and programs
JP2019219209A (en) * 2018-06-18 2019-12-26 株式会社東芝 Processing device, processing method, and program
JP7110003B2 (en) 2018-06-18 2022-08-01 株式会社東芝 Processing device, processing method, and program
CN115600639A (en) * 2022-09-30 2023-01-13 国网四川省电力公司眉山供电公司(Cn) Wind speed sensor, power transmission line wind speed prediction method and early warning system
CN115600639B (en) * 2022-09-30 2023-11-14 国网四川省电力公司眉山供电公司 Wind speed sensor, wind speed prediction method of power transmission line and early warning system

Also Published As

Publication number Publication date
TW201730584A (en) 2017-09-01
JP2019045146A (en) 2019-03-22
TWI637191B (en) 2018-10-01

Similar Documents

Publication Publication Date Title
WO2017122408A1 (en) Weather forecasting device, weather forecasting method, and weather forecasting program
US7109912B1 (en) Weather radar hazard detection system and method
JP7438655B2 (en) Weather analysis equipment, weather analysis methods, and programs
US11353625B1 (en) Systems and methods for forecasting lightning and severe storms
US8902100B1 (en) System and method for turbulence detection
US10935693B2 (en) Prediction of ice crystal presence in a volume of airspace
JP5727761B2 (en) System and method for estimating hail and lightning using aerial weather radar volume buffer
US9869766B1 (en) Enhancement of airborne weather radar performance using external weather data
US9244166B1 (en) System and method for ice detection
KR101966639B1 (en) Apparatus for forecasting of hydrometeor classification using numerical weather prediction model and method thereof
JP6689396B2 (en) Weather forecasting device, weather forecasting method, and program
CA2940747C (en) An apparatus determining the conditions of cloud development stage based on meteorological observation
US9459348B2 (en) Millimeter wave radar system for and method of weather detection
US9846230B1 (en) System and method for ice detection
Shao et al. Intelligent wind retrieval from Chinese gaofen-3 SAR imagery in quad polarization
Beaucage et al. Synthetic aperture radar satellite data for offshore wind assessment: A strategic sampling approach
Ramanujam et al. On the effect of non-raining parameters in retrieval of surface rain rate using TRMM PR and TMI measurements
Xu et al. A validation of passive microwave rain-rate retrievals from the Chinese FengYun-3B satellite
KR101538368B1 (en) method of hydrometeor classification using raw data of X band dual polarization radar
Notaros Meteorological electromagnetics: optical and radar measurements, modeling, and characterization of snowflakes and snow
Qing et al. Observation and analysis of atmospheric rainfall based on the very high frequency radar
Miyao et al. A combined balloon photography and buoy-tracking experiment for mapping surface currents in coastal waters
Alpers et al. Study of a wind front over the northern South China Sea generated by the freshening of the north-east monsoon
JP6994735B2 (en) Lightning risk judgment device
JP2019219236A (en) Processing device, processing method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16885011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16885011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP