WO2017122261A1 - Liquid chromatograph analysis device - Google Patents

Liquid chromatograph analysis device Download PDF

Info

Publication number
WO2017122261A1
WO2017122261A1 PCT/JP2016/050626 JP2016050626W WO2017122261A1 WO 2017122261 A1 WO2017122261 A1 WO 2017122261A1 JP 2016050626 W JP2016050626 W JP 2016050626W WO 2017122261 A1 WO2017122261 A1 WO 2017122261A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
analysis
needle
flow path
unit
Prior art date
Application number
PCT/JP2016/050626
Other languages
French (fr)
Japanese (ja)
Inventor
覚 渡辺
岩田 庸助
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2016/050626 priority Critical patent/WO2017122261A1/en
Publication of WO2017122261A1 publication Critical patent/WO2017122261A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/16Injection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/24Automatic injection systems

Definitions

  • the present invention relates to a liquid chromatograph analyzer such as a liquid chromatograph mass spectrometer provided with a plurality of pretreatment units for performing processing for analysis on a sample.
  • a liquid chromatograph analyzer such as a liquid chromatograph mass spectrometer provided with a plurality of pretreatment units for performing processing for analysis on a sample.
  • the liquid chromatograph mass spectrometer is provided with a plurality of liquid chromatograph units, and the liquid components separated by the plurality of liquid chromatograph units are sequentially introduced into one mass spectrometer for analysis. There is.
  • Each liquid chromatograph section includes an analysis column and a flow path for introducing a mobile phase into the analysis column.
  • Each of these flow paths has a separate unit for injecting a sample into each flow path.
  • the automatic sample injection device is connected. When a sample is injected into the channel 1 by the automatic sample injection device, the sample is introduced into the analysis column together with the mobile phase, and the components in the sample are separated. A number of samples can be analyzed in a short time by performing such processing in parallel in a plurality of liquid chromatograph units and sequentially introducing the separated components into a mass spectrometer.
  • FIG. 4 shows an example of a liquid chromatograph mass spectrometer having two liquid chromatograph units each having such a mechanism.
  • the two liquid chromatograph units have the same configuration, and each includes a trap column 350 that collects the target component and an analysis column 380 that temporally separates the target component.
  • a sample is introduced from one sample injection unit 331 into the mobile phase flow path of each liquid chromatograph unit.
  • the target component of the introduced sample is once collected by the trap column 350, and other contaminant components are discarded. Thereafter, the target component collected in each trap column 350 is introduced into each analysis column 380 by each mobile phase pump 370 and separated, and then introduced into one mass spectrometer 400.
  • each liquid chromatograph section After the trap column 350 collects the target component, the flow path switching valve 340 is switched to disconnect the flow path between the sample injection section 331 and the trap column 350.
  • the sample injection unit 331 in parallel with the above-described separation and detection, the inside of the sample injection unit is cleaned and preparations for injecting the next sample are made.
  • the time required for analysis is shortened by performing parallel processing in each liquid chromatograph section.
  • the sample injection unit 331 is provided in each chromatograph unit, and a needle or the like for injecting a sample therein is provided on the automatic sample injection device 330 side, and is shared by a plurality of sample injection units 331. become.
  • the needle must be moved from the place where the sample bottle is placed to the sample injection section of the plurality of flow paths, but the mechanism for moving the needle to the plurality of sample injection sections is complicated, and each sample injection section
  • the flow path between the trap column and the separation column must be switched in each liquid chromatograph section.
  • the sample injection timing and the switching timing of these channels need to be adjusted well, and the sample injection operation determines the processing speed and processing time of the entire apparatus.
  • the problem to be solved by the present invention is to provide a liquid chromatograph analysis apparatus including a plurality of liquid chromatograph units, which can inject a sample in a shorter time than conventional.
  • the liquid chromatograph analyzer comprises: a) a plurality of analysis channels each including a collection unit for collecting a target component contained in a sample, and a separation unit for temporally separating the target component; b) one detection unit for detecting the target component separated by each separation unit, commonly connected to the plurality of analysis flow paths; c) one sample injection channel for feeding the carrier; d) a sample injection section for injecting a sample into the sample injection flow path; e) an analysis channel switching unit that selectively connects the sample injection channel downstream of the sample injection unit to any of the plurality of analysis channels; It is characterized by having.
  • one sample injection channel is switched (connected) to one of the analysis channels by the analysis channel switching unit. Then, the sample is injected into the sample injection channel through which the carrier is fed by the sample injection section. The carrier into which the sample is injected enters the analysis channel connected to the sample injection channel, and the target component is once collected by the collection part of the analysis channel. Thereafter, by switching the flow channel in the analysis flow channel, the components collected in the collection unit are sent to the separation unit, where the components are separated in time. The components separated in time are sequentially detected by the detection unit, and the sample is analyzed based on this detection signal (data).
  • the sample is injected into the single sample injection flow path, so that a complicated needle movement / position adjustment mechanism is unnecessary, and the sample is actually taken in the injection section.
  • the time until injection is shortened. And it becomes easy to adjust the timing of sample injection into a plurality of analysis channels and the timing of channel switching between the collection unit and the separation unit in each analysis channel.
  • the liquid chromatograph analyzer is The sample injection part is d1) the needle, d2) a sample suction unit for sucking the sample in the sample bottle into the needle; d3) a needle port into which the tip of the needle is inserted and connects the tip to the outlet of the sample injection part; d4)
  • the inlet of the sample injection part is selectively connected to either the introduction channel connected to the outlet through the needle and the needle port or the passage channel directly connected to the outlet.
  • An injection flow path switching unit to d5) It is preferable to have a needle moving part that moves the tip of the needle to the sample bottle and the needle port.
  • the needle is inserted into the sample bottle by the needle moving part, and the sample in the sample bottle is sucked into the needle by the sample suction part. Thereafter, the needle is moved, and the tip of the needle is inserted into the needle port. Then, the inlet is connected to the sample injection channel by the injection channel switching unit, and the carrier is passed through the needle from the inlet to flow all the sample to the outlet.
  • liquid chromatograph analyzer since the carrier passes through the needle, no sample remains in the needle. Therefore, it is not necessary to clean the inside of the needle, and preparations for injecting the next sample can be made in a short time.
  • a sample is injected into one sample injection channel, so that a complicated needle movement / position adjustment mechanism is not required, and the time until the sample is injected is shortened. .
  • the sample can be injected in a shorter time than before.
  • FIG. 1 is a schematic configuration diagram of a liquid chromatograph analyzer having a plurality of flow paths according to a first embodiment of the present invention.
  • 1 is a schematic configuration diagram of an automatic sample injection device according to a first embodiment of the present invention.
  • FIG. 6 is a schematic configuration diagram illustrating another form of the automatic sample injection device of the liquid chromatograph analyzer according to the second embodiment of the present invention.
  • the schematic block diagram of the liquid chromatograph analyzer which has the conventional several flow path.
  • FIG. 1 is a schematic configuration diagram of a liquid chromatograph analyzer having a plurality of flow paths according to the first embodiment of the present invention.
  • the liquid chromatograph analyzer is configured by connecting two analysis channels 101 and 102 downstream of one sample injection channel 100 and connecting one mass spectrometer 200 downstream of the two analysis channels.
  • a carrier liquid container 110 containing a carrier liquid (carrier in the present invention), a carrier liquid pump 120 for feeding the carrier liquid, and a sample is injected into the fed carrier liquid.
  • an analysis channel switching valve 140 that selectively connects the sample injection channel 100 to any one of the analysis channels.
  • FIG. 2 is a schematic configuration diagram of the automatic sample injection device 130.
  • the automatic sample injection device 130 sucks a sample from the sample bottle storage unit 1308 and any of the plurality of sample bottles 1304 stored in the sample bottle storage unit 1308, and into the carrier liquid flowing through the sample injection channel. And a sample injection part 131 for injection.
  • the automatic sample injection device 130 is a so-called full-volume injection type sample injection device that injects all the samples sucked into the sample injection unit 131 into the sample injection flow channel 100.
  • the sample injection unit 131 includes an injection channel switching valve 1307 connected to the sample injection channel 100 between the carrier liquid pump 120 and the analysis channel switching valve 140, and a syringe connected to the injection channel switching valve 1307.
  • the sample injection channel 100 is connected to the port f and port e of the injection channel switching valve 1307.
  • the needle 1302 is connected to the port a of the injection flow path switching valve 1307 via the sample loop 1306, and the syringe 1301 (sample suction part in the present invention) is connected to the port b of the injection flow path switching valve 1307.
  • Needle port 1305 is connected to port d of injection flow path switching valve 1307.
  • the first analysis flow channel 101 includes a trap column 150 (a collection unit in the present invention), an analysis column 180 (a separation unit in the present invention), a first eluate container 161, a second eluate container 162, 1 eluate liquid feed pump 171, second eluate liquid feed pump 172, mixer 175, and first flow path switching valve 141.
  • the first eluate container 161 and the second eluate container 162 contain solutions having different elution outputs.
  • gradient analysis is performed in which the analysis is performed by changing the ratio of these two eluates over time. It is also possible to employ a configuration in which one eluate container and one eluate feed pump are provided without using gradient analysis. Since the second analysis channel 102 has the same configuration as the first analysis channel 101, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
  • the outlet ends of the analysis columns 180 provided in the first analysis flow path 102 and the second analysis flow path 102 are connected to separate ports of the detection flow path switching valve 190, respectively.
  • the detection flow path switching valve 190 selectively connects one of the ports to which the outlet ends of both columns are connected to the port to which the mass spectrometer 200 is connected.
  • the analysis channel switching valve 140 is brought into a state where the sample injection channel 100 and the first analysis channel 101 are connected.
  • the first flow path switching valve 141 of the first analysis flow path 101 is in a state where the port f and the port e, the port a and the port b, and the port c and the port d are connected.
  • the automatic sample injection device 130 is in the state shown in FIG. 2, that is, the port f and port e, the port a and port b, and the port c and port d of the injection flow path switching valve 1307 are connected to each other (hereinafter referred to as The flow path in this state is referred to as “passage flow path”).
  • the tip of the needle 1302 is inserted into any of the sample bottles 1304. In this state, first, when the carrier liquid pump 120 is driven to deliver the carrier liquid from the carrier liquid container 110, the carrier liquid is introduced into the automatic sample injector 130.
  • the port f and port a, the port b and port c, and the port d and port e of the injection flow path switching valve 1307 are respectively connected (hereinafter this state is referred to as “introduction flow”).
  • introduction flow When switched to “path”, the carrier liquid is introduced into the sample loop 1306 via the ports f and a.
  • the sample in the sample loop 1306 is sent to the analysis flow path switching valve 140 through the needle 1302, the needle port 1305, and the ports d and e of the injection flow path switching valve 1307 together with the carrier liquid.
  • the carrier liquid containing the sample is introduced into the first analysis flow path 101.
  • the carrier liquid containing the sample is introduced into the trap column 150 via the ports f and e of the first flow path switching valve 141.
  • the trap column 150 collects a plurality of target components contained in the sample. The components and the carrier liquid that have not been collected are discarded via the ports b and a of the first flow path switching valve 141, and the collection process is completed.
  • the liquid chromatograph analyzer first switches the first flow path switching valve 141 so that the port f and port a, the port b and port c, and the port d and port e are connected to each other.
  • the pump, the trap column 150, and the analysis column 180 are connected as one flow path.
  • the first eluate liquid feed pump 171 and the second eluate liquid feed pump 172 respectively send the eluate at a predetermined flow rate, and the mixer 175 mixes these solutions.
  • the mixed solution is introduced into the trap column 150 via the ports d and e of the first flow path switching valve 141, and the target component collected in the column is eluted.
  • the eluate containing the target component is introduced into the analysis column 180, and a plurality of components in the target component are temporally separated.
  • gradient analysis is performed by changing the flow rate of the first eluate liquid feed pump 161 and the second eluate liquid feed pump 162 with time to change the solution output of the solution flowing through the analysis column 180.
  • the target component that has passed through the analysis column 180 is introduced into the mass spectrometer 200 by the analysis flow path switching valve 190 and detected by the mass spectrometer 200.
  • the liquid chromatograph analyzer performs the following operation in parallel with the analysis process in the first analysis channel 101 after the collection process of the first channel 101 is completed.
  • the analysis flow path switching valve 140 is switched to connect the sample injection flow path 100 and the second analysis flow path 102. Further, the injection flow path switching valve 1307 in the automatic sample injection device 130 and the first flow path switching valve 141 of the second analysis flow path 102 are set to the same settings as in the collection process of the first analysis flow path 101. Thereafter, the automatic sample injection device 130 injects the sample into the carrier liquid in the same manner as in the collection step of the first analysis channel 101, and then introduces the sample and the carrier liquid into the second analysis channel 102 for the second analysis. A target component is collected by a trap column 150 provided in the flow path 102.
  • the analysis flow path switching valve 190 is switched to connect the second analysis flow path 102 and the mass spectrometer 200, and Connected to one flow path switching valve 141. Thereafter, the analysis process of the second analysis channel 102 is performed in the same manner as the analysis process of the first analysis channel 101.
  • the second analysis is performed again in the first analysis channel 101 while the analysis process of the second analysis channel 102 is being performed.
  • the analysis process of the first analysis flow path 101 is performed.
  • the processing can be performed in parallel in the two flow paths.
  • the liquid chromatograph analyzer since there is one sample injection channel, only one carrier liquid pump or carrier liquid container is required, and the analyzer can be miniaturized. .
  • the first and second transport liquid pumps are always operated in order to clean the sample attached to the flow path. For this reason, the conveyance liquid according to the number of conveyance liquid pumps is consumed.
  • the analyzer according to the present invention since there is one carrier liquid pump, the consumption amount of the carrier liquid can be suppressed as compared with the conventional case.
  • FIG. 3 shows a schematic configuration diagram of an automatic sample injection device using a loop injection method.
  • the automatic sample injection device 230 is connected to the sample bottle storage unit 2308, a needle 2302 for sucking a sample from any of the plurality of sample bottles 2304 stored in the sample bottle storage unit 2308, and the needle 2302.
  • the syringe 2301 and the sample injection unit 231 for injecting the sample injected from the needle 2302 into the carrier liquid flowing through the analysis flow path.
  • the sample injection unit 231 includes an injection channel switching valve 2307 connected to the sample injection channel 200 between the carrier liquid pump 220 and the analysis channel switching valve 240, and a needle connected to the injection channel switching valve 2307.
  • a port 2305, a sample loop 2306, and a needle 2302 are provided.
  • the sample injection channel 200 is connected to the port f and port e of the injection channel switching valve 2307.
  • the sample loop 2306 is connected to the ports a and d of the injection flow path switching valve 2307, and the needle port 2305 is connected to the port b.
  • the operation of the automatic sample injection device 230 will be described. First, the ports f and e of the injection flow path switching valve 2307, the ports a and b, and the ports c and d are connected.
  • the needle 2302 is inserted into the sample bottle 2304, and the sample in the sample bottle 2304 is sucked into the needle 2302 by the syringe 2301. Then, the needle 2302 is inserted into the needle port 2305, and the sample in the needle 2302 is injected toward the needle port 2305 by the syringe 2301.
  • the sample is introduced into the sample loop 2306 via the needle port 2305 and the ports b and a of the injection flow path switching valve 2307.
  • the port f and port a, the port b and port c, and the port d and port e of the injection flow path switching valve 2307 are connected. Then, the carrier liquid is introduced into the sample loop 2306 via the ports f and a of the injection channel switching valve 2307, and the sample is sent out toward the analysis channel switching valve 240. Thereafter, the sample can be analyzed in the same manner as in the first embodiment by introducing the sample into each analysis channel by the analysis channel switching valve 240.
  • the said embodiment is an example and can be suitably changed in accordance with the meaning of this invention.
  • two eluate liquid feed pumps are provided in each of the two flow paths, and the high pressure gradient analysis is performed, but the low pressure is provided with one pump and a plurality of eluate containers in each flow path.
  • a configuration may be used in which gradient analysis or isocratic analysis is performed with one pump and one eluent container in each flow path.
  • the number of analysis flow paths is two, but may be three or more.
  • the analysis process can be performed in one flow path, the collection process can be performed in another flow path, and the process can be stopped in other flow paths, and processing can be performed while sequentially switching them.
  • processing such as column cleaning in a flow path in which neither the analysis process nor the collection process is performed.
  • the detection flow path switching valve is switched at the start of the analysis process, it may be switched during the analysis process.
  • the collected components may include those that do not need to be analyzed. In such a case, it is possible to prevent unnecessary components from flowing into the mass spectrometer by checking in advance the time when the component to be analyzed flows from the analytical column and connecting the analytical column and the mass spectrometer only during that time.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Provided is a liquid chromatograph analysis device in which a sample can be injected in a shorter time than the conventionally required times and which is provided with a plurality of liquid chromatograph units. The liquid chromatograph analysis device comprises: a plurality of analysis flow paths 101, 102 each of which is provided with a collection unit 150 that collects target components included in a sample and a separation unit 180 that temporally separates the target components; one detection unit 200 which is connected in common to the plurality of analysis flow paths and which is configured to detect the target components separated by the separation unit; one sample injection flow path which feeds a carrier; a sample injection unit which injects the sample into the sample injection flow path; and an analysis flow path switching unit 140 which selectively connects the sample injection flow path 100 downstream of the sample injection unit 131, to any one of the plurality of analysis flow paths, wherein the sample is injected into the sample injection flow path 100, and thereby, the injection time in the injection unit 131 is shortened.

Description

液体クロマトグラフ分析装置Liquid chromatograph analyzer
 本発明は、試料に分析のための処理を行う前処理部を複数備える液体クロマトグラフ質量分析装置等の液体クロマトグラフ分析装置に関する。 The present invention relates to a liquid chromatograph analyzer such as a liquid chromatograph mass spectrometer provided with a plurality of pretreatment units for performing processing for analysis on a sample.
 液体クロマトグラフ質量分析装置には、複数の液体クロマトグラフ部を設け、該複数の液体クロマトグラフ部で分離された液体成分を順次、1台の質量分析計に導入して分析するようにしたものがある。 The liquid chromatograph mass spectrometer is provided with a plurality of liquid chromatograph units, and the liquid components separated by the plurality of liquid chromatograph units are sequentially introduced into one mass spectrometer for analysis. There is.
 各液体クロマトグラフ部は分析カラムと、該分析カラムに移動相を導入するための流路を備えており、これらの流路には、各流路に試料を注入する、別途設けられた1台の自動試料注入装置が接続される。1の流路に自動試料注入装置により試料が注入されると、該試料は移動相とともに分析カラムに導入され、試料中の成分が分離される。このような処理を複数の液体クロマトグラフ部で並行して行い、分離した成分を順次、質量分析計に導入することにより、多数の試料を短時間で分析することができる。 Each liquid chromatograph section includes an analysis column and a flow path for introducing a mobile phase into the analysis column. Each of these flow paths has a separate unit for injecting a sample into each flow path. The automatic sample injection device is connected. When a sample is injected into the channel 1 by the automatic sample injection device, the sample is introduced into the analysis column together with the mobile phase, and the components in the sample are separated. A number of samples can be analyzed in a short time by performing such processing in parallel in a plurality of liquid chromatograph units and sequentially introducing the separated components into a mass spectrometer.
 また、液体クロマトグラフ質量分析装置には、試料中の夾雑成分を取り除いた後、目的成分を分離するようにしたものがある(非特許文献1)。2台の液体クロマトグラフ部を有し、それぞれについてこのような機構を有する液体クロマトグラフ質量分析装置の例を図4に示す。この液体クロマトグラフ質量分析装置では2台の液体クロマトグラフ部は同一の構成を有しており、それぞれ、目的成分を捕集するトラップカラム350と、目的成分を時間的に分離する分析カラム380を備えている。各液体クロマトグラフ部の移動相流路には1台の試料注入部331より試料が導入される。各液体クロマトグラフ部では、導入された試料の目的成分をトラップカラム350で一旦捕集し、それ以外の夾雑成分を廃棄する。その後、各移動相ポンプ370により、各トラップカラム350に捕集した目的成分を各分析カラム380に導入し、分離した後、1台の質量分析計400に導入する。 In addition, some liquid chromatograph mass spectrometers are designed to separate target components after removing contaminant components in the sample (Non-patent Document 1). FIG. 4 shows an example of a liquid chromatograph mass spectrometer having two liquid chromatograph units each having such a mechanism. In this liquid chromatograph mass spectrometer, the two liquid chromatograph units have the same configuration, and each includes a trap column 350 that collects the target component and an analysis column 380 that temporally separates the target component. I have. A sample is introduced from one sample injection unit 331 into the mobile phase flow path of each liquid chromatograph unit. In each liquid chromatograph section, the target component of the introduced sample is once collected by the trap column 350, and other contaminant components are discarded. Thereafter, the target component collected in each trap column 350 is introduced into each analysis column 380 by each mobile phase pump 370 and separated, and then introduced into one mass spectrometer 400.
 各液体クロマトグラフ部では、トラップカラム350が目的成分を捕集した後、流路切替バルブ340が切り替えられることにより、試料注入部331とトラップカラム350の流路が切り離される。試料注入部331では、上述の分離及び検出と並行して、試料注入部内の清掃等が行われ、次の試料を注入するための準備がなされる。このように、各液体クロマトグラフ部において並行処理を行うことで、分析にかかる時間を短縮している。 In each liquid chromatograph section, after the trap column 350 collects the target component, the flow path switching valve 340 is switched to disconnect the flow path between the sample injection section 331 and the trap column 350. In the sample injection unit 331, in parallel with the above-described separation and detection, the inside of the sample injection unit is cleaned and preparations for injecting the next sample are made. Thus, the time required for analysis is shortened by performing parallel processing in each liquid chromatograph section.
 試料注入部331は各クロマトグラフ部に設けられているが、そこに試料を注入するためのニードル等は自動試料注入装置330側に設けられており、複数の試料注入部331で共有されることになる。この場合、ニードルを試料瓶を載置した箇所から複数の流路の試料注入部に移動させなければならないが、複数の試料注入部に移動させるための機構が複雑になるとともに、各試料注入部においてニードルを正確に注入箇所に刺入するための位置調整に時間がかかり、全体の分析の速度を上げることができないという問題がある。これは、試料注入部、すなわちクロマトグラフ部の数が多くなるにつれて大きな問題となる。 The sample injection unit 331 is provided in each chromatograph unit, and a needle or the like for injecting a sample therein is provided on the automatic sample injection device 330 side, and is shared by a plurality of sample injection units 331. become. In this case, the needle must be moved from the place where the sample bottle is placed to the sample injection section of the plurality of flow paths, but the mechanism for moving the needle to the plurality of sample injection sections is complicated, and each sample injection section However, it takes time to adjust the position for accurately inserting the needle into the injection site, and the overall analysis speed cannot be increased. This becomes a big problem as the number of sample injection parts, that is, chromatograph parts increases.
 また、上記のようにトラップカラム350を設けた液体クロマトグラフ分析装置では、各液体クロマトグラフ部内でトラップカラムと分離カラムの流路の切替を行わなければならないが、複数の液体クロマトグラフ部間で、試料注入のタイミングとこれら流路の切り替えのタイミングをうまく調整する必要があり、試料の注入動作が装置全体としての処理速度や処理時間を律速することになる。 Moreover, in the liquid chromatograph analyzer provided with the trap column 350 as described above, the flow path between the trap column and the separation column must be switched in each liquid chromatograph section. The sample injection timing and the switching timing of these channels need to be adjusted well, and the sample injection operation determines the processing speed and processing time of the entire apparatus.
 これら問題は検出器が質量分析計である場合に限らず、1台の検出器に複数台のクロマトグラフ部を接続する場合に共通の問題である。 These problems are not limited to the case where the detector is a mass spectrometer, but are common problems when a plurality of chromatograph units are connected to one detector.
 本発明が解決しようとする課題は、従来より短い時間で試料を注入することができる、複数の液体クロマトグラフ部を備える液体クロマトグラフ分析装置を提供することである。 The problem to be solved by the present invention is to provide a liquid chromatograph analysis apparatus including a plurality of liquid chromatograph units, which can inject a sample in a shorter time than conventional.
 上記課題を解決するために成された本発明に係る液体クロマトグラフ分析装置は、
 a) それぞれ、試料に含まれる目的成分を捕集する捕集部、及び、該目的成分を時間的に分離する分離部を備える複数の分析流路と、
 b) 前記複数の分析流路に共通に接続された、各分離部で分離された目的成分を検出するための1台の検出部と、
 c) キャリヤを送給する1本の試料注入流路と、
 d) 前記試料注入流路に試料を注入する試料注入部と、
 e) 前記試料注入部の下流の前記試料注入流路を前記複数の分析流路のいずれかに選択的に接続する分析流路切替部と、
 を有することを特徴とする。
In order to solve the above problems, the liquid chromatograph analyzer according to the present invention comprises:
a) a plurality of analysis channels each including a collection unit for collecting a target component contained in a sample, and a separation unit for temporally separating the target component;
b) one detection unit for detecting the target component separated by each separation unit, commonly connected to the plurality of analysis flow paths;
c) one sample injection channel for feeding the carrier;
d) a sample injection section for injecting a sample into the sample injection flow path;
e) an analysis channel switching unit that selectively connects the sample injection channel downstream of the sample injection unit to any of the plurality of analysis channels;
It is characterized by having.
 本発明に係る液体クロマトグラフ分析装置では、分析流路切替部により1本の試料注入流路をいずれかの分析流路に切り替えて(接続して)おく。そして、キャリヤが送給されている該試料注入流路に試料注入部により試料を注入する。試料が注入されたキャリヤは、試料注入流路に接続された分析流路に入り、その分析流路の捕集部により一旦目的成分が捕集される。その後、その分析流路内で流路を切り替えることにより、該捕集部に捕集された成分を分離部に送り、そこで該成分を時間的に分離する。時間的に分離された成分は順次検出部により検出され、この検出信号(データ)を基に試料の分析が行われる。
 このように本発明に係る液体クロマトグラフ分析装置では、試料は定まった1本の試料注入流路に注入されるため複雑なニードル移動・位置調整機構が不要であり、注入部において試料を実際に注入するまでの時間も短縮される。そして、複数の分析流路への試料注入のタイミングと、各分析流路内における捕集部と分離部の流路切替のタイミングも調整しやすくなる。
In the liquid chromatograph analyzer according to the present invention, one sample injection channel is switched (connected) to one of the analysis channels by the analysis channel switching unit. Then, the sample is injected into the sample injection channel through which the carrier is fed by the sample injection section. The carrier into which the sample is injected enters the analysis channel connected to the sample injection channel, and the target component is once collected by the collection part of the analysis channel. Thereafter, by switching the flow channel in the analysis flow channel, the components collected in the collection unit are sent to the separation unit, where the components are separated in time. The components separated in time are sequentially detected by the detection unit, and the sample is analyzed based on this detection signal (data).
As described above, in the liquid chromatograph analysis apparatus according to the present invention, the sample is injected into the single sample injection flow path, so that a complicated needle movement / position adjustment mechanism is unnecessary, and the sample is actually taken in the injection section. The time until injection is shortened. And it becomes easy to adjust the timing of sample injection into a plurality of analysis channels and the timing of channel switching between the collection unit and the separation unit in each analysis channel.
 上記液体クロマトグラフ分析装置は、
 前記試料注入部が、
 d1) ニードルと、
 d2) 試料瓶内の試料を前記ニードル内に吸引する試料吸引部と、
 d3) 前記ニードルの先端が刺入され、該先端を前記試料注入部の流出口に接続するニードルポートと、
 d4) 前記試料注入部の流入口を、前記ニードル及び前記ニードルポートを経由して前記流出口に接続する導入流路、又は前記流出口に直接接続する通過流路のいずれかに選択的に接続する注入流路切替部と、
 d5) 前記ニードルの先端を前記試料瓶と前記ニードルポートに移動させるニードル移動部と
 を有することが好ましい。
The liquid chromatograph analyzer is
The sample injection part is
d1) the needle,
d2) a sample suction unit for sucking the sample in the sample bottle into the needle;
d3) a needle port into which the tip of the needle is inserted and connects the tip to the outlet of the sample injection part;
d4) The inlet of the sample injection part is selectively connected to either the introduction channel connected to the outlet through the needle and the needle port or the passage channel directly connected to the outlet. An injection flow path switching unit to
d5) It is preferable to have a needle moving part that moves the tip of the needle to the sample bottle and the needle port.
 本発明に係る液体クロマトグラフ分析装置の試料注入部では、ニードル移動部により試料瓶にニードルを刺入し、試料吸引部により試料瓶内の試料をニードル内に吸引する。その後、ニードルを移動して、該ニードルの先端をニードルポートに刺入する。そして注入流路切替部により流入口を試料注入流路に接続し、該流入口からニードル内にキャリヤを通過させることで、前記試料を全て流出口に流す。 In the sample injection part of the liquid chromatograph analyzer according to the present invention, the needle is inserted into the sample bottle by the needle moving part, and the sample in the sample bottle is sucked into the needle by the sample suction part. Thereafter, the needle is moved, and the tip of the needle is inserted into the needle port. Then, the inlet is connected to the sample injection channel by the injection channel switching unit, and the carrier is passed through the needle from the inlet to flow all the sample to the outlet.
 本発明に係る液体クロマトグラフ分析装置は、ニードルの内部をキャリヤが通過するため、ニードルの内部に試料が残留しない。従って、ニードルの内部を洗浄する必要がなく、短時間で次の試料を注入する準備を行うことができる。 In the liquid chromatograph analyzer according to the present invention, since the carrier passes through the needle, no sample remains in the needle. Therefore, it is not necessary to clean the inside of the needle, and preparations for injecting the next sample can be made in a short time.
 本発明に係る液体クロマトグラフ分析装置によれば、試料が1本の試料注入流路に注入されるため複雑なニードル移動・位置調整機構が不要となり、試料を注入するまでの時間も短縮される。これにより従来よりも短い時間で試料を注入することができる。 According to the liquid chromatograph analyzer of the present invention, a sample is injected into one sample injection channel, so that a complicated needle movement / position adjustment mechanism is not required, and the time until the sample is injected is shortened. . As a result, the sample can be injected in a shorter time than before.
本発明の第1の実施形態に係る複数流路を有する液体クロマトグラフ分析装置の概略構成図。1 is a schematic configuration diagram of a liquid chromatograph analyzer having a plurality of flow paths according to a first embodiment of the present invention. 本発明の第1の実施形態における自動試料注入装置の概略構成図。1 is a schematic configuration diagram of an automatic sample injection device according to a first embodiment of the present invention. 本発明の第2の実施形態に係る液体クロマトグラフ分析装置の自動試料注入装置の別の形態を説明する概略構成図。FIG. 6 is a schematic configuration diagram illustrating another form of the automatic sample injection device of the liquid chromatograph analyzer according to the second embodiment of the present invention. 従来の複数流路を有する液体クロマトグラフ分析装置の概略構成図。The schematic block diagram of the liquid chromatograph analyzer which has the conventional several flow path.
 本発明を実施する形態について図面を参照しつつ説明する。 Embodiments for carrying out the present invention will be described with reference to the drawings.
 図1は本発明の第1の実施形態に係る、複数流路を有する液体クロマトグラフ分析装置の概略構成図である。液体クロマトグラフ分析装置は、1つの試料注入流路100の下流に2つの分析流路101、102を接続し、該2つの分析流路の下流に1つの質量分析計200を接続して構成される。 FIG. 1 is a schematic configuration diagram of a liquid chromatograph analyzer having a plurality of flow paths according to the first embodiment of the present invention. The liquid chromatograph analyzer is configured by connecting two analysis channels 101 and 102 downstream of one sample injection channel 100 and connecting one mass spectrometer 200 downstream of the two analysis channels. The
 試料注入流路100には、搬送液(本発明におけるキャリヤ)を収容した搬送液容器110と、該搬送液を送液する搬送液ポンプ120と、送液された搬送液の中に試料を注入する自動試料注入装置130と、試料注入流路100を各分析流路のいずれかに選択的に接続する分析流路切替バルブ140が設けられている。 In the sample injection channel 100, a carrier liquid container 110 containing a carrier liquid (carrier in the present invention), a carrier liquid pump 120 for feeding the carrier liquid, and a sample is injected into the fed carrier liquid. And an analysis channel switching valve 140 that selectively connects the sample injection channel 100 to any one of the analysis channels.
 図2は自動試料注入装置130の概略構成図である。この自動試料注入装置130は、試料瓶収納部1308と、該試料瓶収納部1308に収納された複数の試料瓶1304のいずれかからか試料を吸引し、試料注入流路を流れる搬送液中に注入する試料注入部131とを備えている。自動試料注入装置130は、試料注入部131内に吸引した全ての試料を試料注入流路100に注入する、いわゆる全量注入方式の試料注入装置である。試料注入部131は、搬送液ポンプ120と分析流路切替バルブ140の間の試料注入流路100に接続された注入流路切替バルブ1307と、この注入流路切替バルブに1307に接続されたシリンジ1301、ニードル1302、ニードルポート1305、及びサンプルループ1306と、ニードル1302を、試料瓶1304とニードルポート1305の間で移動させるニードル移動機構1303(本発明におけるニードル移動部)を備えている。試料注入流路100は、注入流路切替バルブ1307のポートfとポートeに接続されている。ニードル1302は、サンプルループ1306を介して注入流路切替バルブ1307のポートaに、シリンジ1301(本発明におけ試料吸引部)は、注入流路切替バルブ1307のポートbにそれぞれ接続されている。ニードルポート1305は注入流路切替バルブ1307のポートdに接続されている。 FIG. 2 is a schematic configuration diagram of the automatic sample injection device 130. The automatic sample injection device 130 sucks a sample from the sample bottle storage unit 1308 and any of the plurality of sample bottles 1304 stored in the sample bottle storage unit 1308, and into the carrier liquid flowing through the sample injection channel. And a sample injection part 131 for injection. The automatic sample injection device 130 is a so-called full-volume injection type sample injection device that injects all the samples sucked into the sample injection unit 131 into the sample injection flow channel 100. The sample injection unit 131 includes an injection channel switching valve 1307 connected to the sample injection channel 100 between the carrier liquid pump 120 and the analysis channel switching valve 140, and a syringe connected to the injection channel switching valve 1307. 1301, a needle 1302, a needle port 1305, a sample loop 1306, and a needle moving mechanism 1303 (needle moving unit in the present invention) that moves the needle 1302 between the sample bottle 1304 and the needle port 1305. The sample injection channel 100 is connected to the port f and port e of the injection channel switching valve 1307. The needle 1302 is connected to the port a of the injection flow path switching valve 1307 via the sample loop 1306, and the syringe 1301 (sample suction part in the present invention) is connected to the port b of the injection flow path switching valve 1307. Needle port 1305 is connected to port d of injection flow path switching valve 1307.
 第1分析流路101は、トラップカラム150(本発明における捕集部)と、分析カラム180(本発明における分離部)と、第1溶出液容器161と、第2溶出液容器162と、第1溶出液送液ポンプ171と、第2溶出液送液ポンプ172と、ミキサ175と、第1流路切替バルブ141と、を有する。第1溶出液容器161及び第2溶出液容器162にはそれぞれ溶出力の異なる溶液が収容されている。本実施形態では、これら2つの溶出液の割合を時間的に変化させて分析を行うグラジエント分析とする。なお、グラジエント分析を使用せずに、溶出液容器及び溶出液送液ポンプを1つずつ設けた構成とすることも可能である。なお、第2分析流路102は第1分析流路101と同一の構成であるため、対応する構成品に同一の符号を付し、説明を省略する。 The first analysis flow channel 101 includes a trap column 150 (a collection unit in the present invention), an analysis column 180 (a separation unit in the present invention), a first eluate container 161, a second eluate container 162, 1 eluate liquid feed pump 171, second eluate liquid feed pump 172, mixer 175, and first flow path switching valve 141. The first eluate container 161 and the second eluate container 162 contain solutions having different elution outputs. In the present embodiment, gradient analysis is performed in which the analysis is performed by changing the ratio of these two eluates over time. It is also possible to employ a configuration in which one eluate container and one eluate feed pump are provided without using gradient analysis. Since the second analysis channel 102 has the same configuration as the first analysis channel 101, the corresponding components are denoted by the same reference numerals and description thereof is omitted.
 第1分析流路102と第2分析流路102に設けられた分析カラム180のそれぞれの出口端は、それぞれ検出流路切替バルブ190の別々のポートに接続されている。検出流路切替バルブ190は、両カラムの出口端が接続されたポートのいずれか一方と、質量分析計200が接続されたポートを選択的に接続する。 The outlet ends of the analysis columns 180 provided in the first analysis flow path 102 and the second analysis flow path 102 are connected to separate ports of the detection flow path switching valve 190, respectively. The detection flow path switching valve 190 selectively connects one of the ports to which the outlet ends of both columns are connected to the port to which the mass spectrometer 200 is connected.
 次に、本実施形態に係る分析装置の動作について図1及び図2を参照しつつ説明する。この分析装置では、第1分析流路101と第2分析流路102のそれぞれにおいて以下に説明する捕集工程と分析工程を繰り返すことで複数試料の分析を行う。 Next, the operation of the analyzer according to this embodiment will be described with reference to FIG. 1 and FIG. In this analyzer, a plurality of samples are analyzed by repeating the collection process and the analysis process described below in each of the first analysis channel 101 and the second analysis channel 102.
 第1分析流路101の捕集工程について説明する。捕集工程では分析流路切替バルブ140を試料注入流路100と第1分析流路101が接続された状態にする。第1分析流路101の第1流路切替バルブ141は、ポートfとポートe、ポートaとポートb、ポートcとポートdがそれぞれ接続された状態にする。また、自動試料注入装置130を図2に示す状態、すなわち、注入流路切替バルブ1307のポートfとポートe、ポートaとポートb、ポートcとポートdがそれぞれ接続された状態にする(以下、この状態の流路を「通過流路」という。)。また、ニードル1302の先端を試料瓶1304のいずれかに刺入した状態にする。この状態で、まず、搬送液ポンプ120を駆動して搬送液容器110から搬送液を送出すると、自動試料注入装置130に搬送液が導入される。 The collection process of the first analysis channel 101 will be described. In the collection step, the analysis channel switching valve 140 is brought into a state where the sample injection channel 100 and the first analysis channel 101 are connected. The first flow path switching valve 141 of the first analysis flow path 101 is in a state where the port f and the port e, the port a and the port b, and the port c and the port d are connected. Further, the automatic sample injection device 130 is in the state shown in FIG. 2, that is, the port f and port e, the port a and port b, and the port c and port d of the injection flow path switching valve 1307 are connected to each other (hereinafter referred to as The flow path in this state is referred to as “passage flow path”). Further, the tip of the needle 1302 is inserted into any of the sample bottles 1304. In this state, first, when the carrier liquid pump 120 is driven to deliver the carrier liquid from the carrier liquid container 110, the carrier liquid is introduced into the automatic sample injector 130.
 この状態で、自動試料注入装置130のシリンジ1301を動作させると、ニードル1302によって試料瓶1304内の試料が吸引され、該試料はニードル1302内部を通過してサンプルループ1306に保持される。その後、ニードル1302を移動させてニードルポート1305に刺入する。 In this state, when the syringe 1301 of the automatic sample injection device 130 is operated, the sample in the sample bottle 1304 is sucked by the needle 1302, and the sample passes through the inside of the needle 1302 and is held in the sample loop 1306. Thereafter, the needle 1302 is moved and inserted into the needle port 1305.
 試料をサンプルループ1306に保持した状態で、注入流路切替バルブ1307のポートfとポートa、ポートbとポートc、ポートdとポートeがそれぞれ接続された状態(以下、この状態を「導入流路」という。)に切り替えられると、搬送液がポートfとaを経由してサンプルループ1306に導入される。そしてサンプルループ1306内の試料は、搬送液とともにニードル1302、ニードルポート1305、注入流路切替バルブ1307のポートdとeを経由して分析流路切替バルブ140に送出される。 With the sample held in the sample loop 1306, the port f and port a, the port b and port c, and the port d and port e of the injection flow path switching valve 1307 are respectively connected (hereinafter this state is referred to as “introduction flow”). When switched to “path”, the carrier liquid is introduced into the sample loop 1306 via the ports f and a. The sample in the sample loop 1306 is sent to the analysis flow path switching valve 140 through the needle 1302, the needle port 1305, and the ports d and e of the injection flow path switching valve 1307 together with the carrier liquid.
 分析流路切替バルブ140は第1分析流路101に接続されているため、試料を含む搬送液は第1分析流路101に導入される。試料を含む搬送液は、第1流路切替バルブ141のポートfとeを経由してトラップカラム150に導入される。トラップカラム150は試料に含まれる複数の目的成分を捕集する。捕集されなかった成分と搬送液は、第1流路切替バルブ141のポートbとaを経由して廃棄され、捕集工程が完了する。 Since the analysis flow path switching valve 140 is connected to the first analysis flow path 101, the carrier liquid containing the sample is introduced into the first analysis flow path 101. The carrier liquid containing the sample is introduced into the trap column 150 via the ports f and e of the first flow path switching valve 141. The trap column 150 collects a plurality of target components contained in the sample. The components and the carrier liquid that have not been collected are discarded via the ports b and a of the first flow path switching valve 141, and the collection process is completed.
 次に第1分析流路101の分析工程について説明する。液体クロマトグラフ分析装置は、まず、第1流路切替バルブ141を切り替えて、ポートfとポートa、ポートbとポートc、ポートdとポートeがそれぞれ接続された状態にし、各溶出液送液ポンプとトラップカラム150と分析カラム180を1つの流路として接続する。そして、第1溶出液送液ポンプ171と第2溶出液送液ポンプ172がそれぞれ溶出液を所定の流量で送出し、ミキサ175がこれらの溶液を混合する。混合された溶液は第1流路切替バルブ141のポートdとeを経由してトラップカラム150に導入され、該カラムに捕集されている目的成分を溶出させる。目的成分を含んだ溶出液は、分析カラム180に導入され、該目的成分中の複数の成分が時間的に分離される。また、第1溶出液送液ポンプ161と第2溶出液送液ポンプ162の流量を時間的に変化させることで、分析カラム180に流れる溶液の溶出力を変化させたグラジエント分析が行われる。 Next, the analysis process of the first analysis channel 101 will be described. The liquid chromatograph analyzer first switches the first flow path switching valve 141 so that the port f and port a, the port b and port c, and the port d and port e are connected to each other. The pump, the trap column 150, and the analysis column 180 are connected as one flow path. Then, the first eluate liquid feed pump 171 and the second eluate liquid feed pump 172 respectively send the eluate at a predetermined flow rate, and the mixer 175 mixes these solutions. The mixed solution is introduced into the trap column 150 via the ports d and e of the first flow path switching valve 141, and the target component collected in the column is eluted. The eluate containing the target component is introduced into the analysis column 180, and a plurality of components in the target component are temporally separated. In addition, gradient analysis is performed by changing the flow rate of the first eluate liquid feed pump 161 and the second eluate liquid feed pump 162 with time to change the solution output of the solution flowing through the analysis column 180.
 分析カラム180を通過した目的成分は分析流路切替バルブ190により質量分析計200に導入され、質量分析計200により検出される。 The target component that has passed through the analysis column 180 is introduced into the mass spectrometer 200 by the analysis flow path switching valve 190 and detected by the mass spectrometer 200.
 次に、第2分析流路102の動作について説明する。液体クロマトグラフ分析装置は、第1流路101の捕集工程が終了した後、以下の動作を上述の第1分析流路101における分析工程と並行して行う。 Next, the operation of the second analysis channel 102 will be described. The liquid chromatograph analyzer performs the following operation in parallel with the analysis process in the first analysis channel 101 after the collection process of the first channel 101 is completed.
 まず、分析流路切替バルブ140を切り替えて、試料注入流路100と第2分析流路102を接続する。また、自動試料注入装置130内の注入流路切替バルブ1307及び第2分析流路102の第1流路切替バルブ141を第1分析流路101の捕集工程と同様の設定にする。その後、自動試料注入装置130で第1分析流路101の捕集工程と同様にして試料を搬送液に注入した後、該試料と搬送液を第2分析流路102に導入し、第2分析流路102に設けられたトラップカラム150で目的成分を捕集する。 First, the analysis flow path switching valve 140 is switched to connect the sample injection flow path 100 and the second analysis flow path 102. Further, the injection flow path switching valve 1307 in the automatic sample injection device 130 and the first flow path switching valve 141 of the second analysis flow path 102 are set to the same settings as in the collection process of the first analysis flow path 101. Thereafter, the automatic sample injection device 130 injects the sample into the carrier liquid in the same manner as in the collection step of the first analysis channel 101, and then introduces the sample and the carrier liquid into the second analysis channel 102 for the second analysis. A target component is collected by a trap column 150 provided in the flow path 102.
 そして、第1分析流路101の分析工程が終了した後、分析流路切替バルブ190を切り替えて、第2分析流路102と質量分析装置200を接続するとともに、第2分析流路102の第1流路切替バルブ141に接続する。その後、第2分析流路102の分析工程を第1分析流路101の分析工程と同様にして行う。 Then, after the analysis process of the first analysis flow path 101 is completed, the analysis flow path switching valve 190 is switched to connect the second analysis flow path 102 and the mass spectrometer 200, and Connected to one flow path switching valve 141. Thereafter, the analysis process of the second analysis channel 102 is performed in the same manner as the analysis process of the first analysis channel 101.
 さらに、他の試料が試料瓶1304に存在する場合には、第2分析流路102の分析工程を行っている間に、再び、第1分析流路101において捕集工程を行い、第2分析流路102の分析工程が完了した後に、第1分析流路101の分析工程を実施する。このように第1分析流路101と第2分析流路102で交互に捕集工程と分析工程を実施することで、2つの流路で並行して処理を行うことができる。 Further, when another sample is present in the sample bottle 1304, the second analysis is performed again in the first analysis channel 101 while the analysis process of the second analysis channel 102 is being performed. After the analysis process of the flow path 102 is completed, the analysis process of the first analysis flow path 101 is performed. As described above, by alternately performing the collection process and the analysis process in the first analysis flow path 101 and the second analysis flow path 102, the processing can be performed in parallel in the two flow paths.
 このように本発明に係る液体クロマトグラフ分析装置では、試料注入流路が1つであるため、搬送液ポンプや搬送液容器も1つだけでよく、分析装置を小型化することが可能である。また、従来技術では流路などに付着した試料を清掃するために、第1及び第2搬送液ポンプは常に動作させる。このため搬送液ポンプの数に応じた搬送液が消費されることになる。これに対し、本発明に係る分析装置によれば、搬送液ポンプが1つであるため、搬送液の消費量を従来よりも抑えることができる。 Thus, in the liquid chromatograph analyzer according to the present invention, since there is one sample injection channel, only one carrier liquid pump or carrier liquid container is required, and the analyzer can be miniaturized. . In the prior art, the first and second transport liquid pumps are always operated in order to clean the sample attached to the flow path. For this reason, the conveyance liquid according to the number of conveyance liquid pumps is consumed. On the other hand, according to the analyzer according to the present invention, since there is one carrier liquid pump, the consumption amount of the carrier liquid can be suppressed as compared with the conventional case.
 次に、本発明に係る液体クロマトグラフ分析装置の第2の実施形態である、自動試料注入装置をループ注入方式とした例について説明する。図3にループ注入方式による自動試料注入装置の概略構成図を示す。この自動試料注入装置230は、試料瓶収納部2308と、該試料瓶収納部2308に収納された複数の試料瓶2304のいずれかからか試料を吸引するためのニードル2302と、ニードル2302に接続されたシリンジ2301と、ニードル2302から注入された試料を分析流路を流れる搬送液中に注入する試料注入部231とを備えている。試料注入部231は、搬送液ポンプ220と分析流路切替バルブ240の間の試料注入流路200に接続された注入流路切替バルブ2307と、この注入流路切替バルブに2307に接続されたニードルポート2305と、サンプルループ2306と、ニードル2302を備えている。試料注入流路200は、注入流路切替バルブ2307のポートfとポートeに接続されている。サンプルループ2306は注入流路切替バルブ2307のポートaとポートdに、ニードルポート2305はポートbにそれぞれ接続されている。 Next, an example in which the automatic sample injector is a loop injection method, which is a second embodiment of the liquid chromatograph analyzer according to the present invention, will be described. FIG. 3 shows a schematic configuration diagram of an automatic sample injection device using a loop injection method. The automatic sample injection device 230 is connected to the sample bottle storage unit 2308, a needle 2302 for sucking a sample from any of the plurality of sample bottles 2304 stored in the sample bottle storage unit 2308, and the needle 2302. The syringe 2301 and the sample injection unit 231 for injecting the sample injected from the needle 2302 into the carrier liquid flowing through the analysis flow path. The sample injection unit 231 includes an injection channel switching valve 2307 connected to the sample injection channel 200 between the carrier liquid pump 220 and the analysis channel switching valve 240, and a needle connected to the injection channel switching valve 2307. A port 2305, a sample loop 2306, and a needle 2302 are provided. The sample injection channel 200 is connected to the port f and port e of the injection channel switching valve 2307. The sample loop 2306 is connected to the ports a and d of the injection flow path switching valve 2307, and the needle port 2305 is connected to the port b.
 自動試料注入装置230の動作について説明する。まず、注入流路切替バルブ2307のポートfとポートe、ポートaとポートb、ポートcとポートdがそれぞれ接続された状態にする。ニードル2302を試料瓶2304に刺入し、シリンジ2301により試料瓶2304内の試料をニードル2302内に吸引する。そして、ニードル2302をニードルポート2305に刺入し、シリンジ2301によりニードル2302内の試料をニードルポート2305に向けて注入する。試料はニードルポート2305、注入流路切替バルブ2307のポートbとaを経由して、サンプルループ2306に導入される。サンプルループ2306への試料の導入後、注入流路切替バルブ2307のポートfとポートa、ポートbとポートc、ポートdとポートeがそれぞれ接続された状態にする。すると搬送液が注入流路切替バルブ2307のポートfとaを経由してサンプルループ2306に導入され、試料を分析流路切替バルブ240に向けて送出する。その後、分析流路切替バルブ240により各分析流路に試料を導入することで、第1の実施形態と同様に試料の分析を行うことができる。 The operation of the automatic sample injection device 230 will be described. First, the ports f and e of the injection flow path switching valve 2307, the ports a and b, and the ports c and d are connected. The needle 2302 is inserted into the sample bottle 2304, and the sample in the sample bottle 2304 is sucked into the needle 2302 by the syringe 2301. Then, the needle 2302 is inserted into the needle port 2305, and the sample in the needle 2302 is injected toward the needle port 2305 by the syringe 2301. The sample is introduced into the sample loop 2306 via the needle port 2305 and the ports b and a of the injection flow path switching valve 2307. After the sample is introduced into the sample loop 2306, the port f and port a, the port b and port c, and the port d and port e of the injection flow path switching valve 2307 are connected. Then, the carrier liquid is introduced into the sample loop 2306 via the ports f and a of the injection channel switching valve 2307, and the sample is sent out toward the analysis channel switching valve 240. Thereafter, the sample can be analyzed in the same manner as in the first embodiment by introducing the sample into each analysis channel by the analysis channel switching valve 240.
 上記実施形態は一例であって、本発明の趣旨に沿って適宜変更することができる。
 例えば、上記実施形態では、2つの流路にそれぞれ2つの溶出液送液ポンプを設け、高圧グラジエント分析を行う構成としたが、各流路に1つのポンプと複数の溶出液容器を設けた低圧グラジエント分析、または、各流路に1つのポンプ及び1つの溶出液容器をアイソクラティック分析を行う構成としてもよい。
The said embodiment is an example and can be suitably changed in accordance with the meaning of this invention.
For example, in the above-described embodiment, two eluate liquid feed pumps are provided in each of the two flow paths, and the high pressure gradient analysis is performed, but the low pressure is provided with one pump and a plurality of eluate containers in each flow path. A configuration may be used in which gradient analysis or isocratic analysis is performed with one pump and one eluent container in each flow path.
 上記実施形態では分析流路の数を2つとしたが、3つ以上であってもよい。この場合、1つの流路で分析工程、別の1つの流路で捕集工程、他の流路では停止した状態とし、これらを順次交代しつつ処理を行うことができる。また、分析工程、捕集工程のいずれも行っていない流路において、カラムの清掃等の処理を行うことも可能である。 In the above embodiment, the number of analysis flow paths is two, but may be three or more. In this case, the analysis process can be performed in one flow path, the collection process can be performed in another flow path, and the process can be stopped in other flow paths, and processing can be performed while sequentially switching them. Moreover, it is also possible to perform processing such as column cleaning in a flow path in which neither the analysis process nor the collection process is performed.
 また、検出流路切替バルブを分析工程の開始時に切り替えたが、分析工程の途中で切り替えてもよい。上記実施形態に係る液体クロマトグラフ分析装置では、トラップカラムで複数の成分を捕集するため、捕集した成分に分析する必要のないものが含まれる場合がある。このような場合は、分析カラムから分析したい成分が流れ出る時間を予め調べ、その時間のみ分析カラムと質量分析計を接続することで、不要な成分が質量分析計に流れることを防ぐことができる。 In addition, although the detection flow path switching valve is switched at the start of the analysis process, it may be switched during the analysis process. In the liquid chromatograph analyzer according to the above embodiment, since a plurality of components are collected by the trap column, the collected components may include those that do not need to be analyzed. In such a case, it is possible to prevent unnecessary components from flowing into the mass spectrometer by checking in advance the time when the component to be analyzed flows from the analytical column and connecting the analytical column and the mass spectrometer only during that time.
101、301…第1分析流路
102、302…第2分析流路
110、210、310…搬送液容器
120、220、320…搬送液ポンプ
130、230、330…自動試料注入装置
 131、231、331…試料注入部
 1301、2301…シリンジ
 1302、2302…ニードル
 1303、2303…ニードル移動機構
 1304、2304…試料瓶
 1305、2305…ニードルポート
 1306、2306…サンプルループ
 1307、2307…注入流路切替バルブ
 1308、2308…試料瓶収納部
140、240…分析流路切替バルブ
141、341…第1流路切替バルブ
150、350…トラップカラム
161、360…第1溶出液容器
162…第2溶出液容器
171、370…第1溶出液送液ポンプ
172…第2溶出液送液ポンプ
180、380…分析カラム
190、390…検出流路切替バルブ
200、400…質量分析計
101, 301 ... first analysis flow path 102, 302 ... second analysis flow path 110, 210, 310 ... transport liquid container 120, 220, 320 ... transport liquid pump 130, 230, 330 ... automatic sample injection apparatus 131, 231; 331: Sample injection unit 1301, 2301 ... Syringe 1302, 2302 ... Needle 1303, 2303 ... Needle moving mechanism 1304, 2304 ... Sample bottle 1305, 2305 ... Needle port 1306, 2306 ... Sample loop 1307, 2307 ... Injection flow path switching valve 1308 2308 ... Sample bottle storage sections 140 and 240 ... Analysis flow path switching valves 141 and 341 ... First flow path switching valves 150 and 350 ... Trap columns 161, 360 ... First eluate container 162 ... Second eluate container 171 370 ... First eluate feed pump 172 ... Second eluate Liquid pumps 180 and 380 ... analytical column 190,390 ... detecting channel switching valve 200, 400 ... mass spectrometer

Claims (2)

  1.  a) それぞれ、試料に含まれる目的成分を捕集する捕集部、及び、該目的成分を時間的に分離する分離部を備える複数の分析流路と、
     b) 前記複数の分析流路に共通に接続された、各分離部で分離された目的成分を検出するための1台の検出部と、
     c) キャリヤを送給する1本の試料注入流路と、
     d) 前記試料注入流路に試料を注入する試料注入部と、
     e) 前記試料注入部の下流の前記試料注入流路を前記複数の分析流路のいずれかに選択的に接続する分析流路切替部と
     を有することを特徴とする液体クロマトグラフ分析装置。
    a) a plurality of analysis channels each including a collection unit for collecting a target component contained in a sample, and a separation unit for temporally separating the target component;
    b) one detection unit for detecting the target component separated by each separation unit, commonly connected to the plurality of analysis flow paths;
    c) one sample injection channel for feeding the carrier;
    d) a sample injection section for injecting a sample into the sample injection flow path;
    e) an analysis channel switching unit that selectively connects the sample injection channel downstream of the sample injection unit to any of the plurality of analysis channels.
  2.  前記試料注入部が、
     d1) ニードルと、
     d2) 試料瓶内の試料を前記ニードル内に吸引する試料吸引部と、
     d3) 前記ニードルの先端が刺入され、該先端を前記試料注入部の流出口に接続するニードルポートと、
     d4) 前記試料注入部の流入口を、前記ニードル及び前記ニードルポートを経由して前記流出口に接続する導入流路、又は前記流出口に直接接続する通過流路のいずれかに選択的に接続する注入流路切替部と、
     d5) 前記ニードルの先端を前記試料瓶と前記ニードルポートに移動させるニードル移動部と
     を有することを特徴とする請求項1に記載の液体クロマトグラフ分析装置。
    The sample injection part is
    d1) the needle,
    d2) a sample suction unit for sucking the sample in the sample bottle into the needle;
    d3) a needle port into which the tip of the needle is inserted and connects the tip to the outlet of the sample injection part;
    d4) The inlet of the sample injection part is selectively connected to either the introduction channel connected to the outlet through the needle and the needle port or the passage channel directly connected to the outlet. An injection flow path switching unit to
    d5) The liquid chromatograph analyzer according to claim 1, further comprising a needle moving unit that moves a tip of the needle to the sample bottle and the needle port.
PCT/JP2016/050626 2016-01-12 2016-01-12 Liquid chromatograph analysis device WO2017122261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050626 WO2017122261A1 (en) 2016-01-12 2016-01-12 Liquid chromatograph analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050626 WO2017122261A1 (en) 2016-01-12 2016-01-12 Liquid chromatograph analysis device

Publications (1)

Publication Number Publication Date
WO2017122261A1 true WO2017122261A1 (en) 2017-07-20

Family

ID=59312020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050626 WO2017122261A1 (en) 2016-01-12 2016-01-12 Liquid chromatograph analysis device

Country Status (1)

Country Link
WO (1) WO2017122261A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171240A1 (en) 2019-02-22 2020-08-27 株式会社日立ハイテク Analysis device
CN113474647A (en) * 2019-03-13 2021-10-01 株式会社岛津制作所 Automatic sample injector for chromatograph
CN113514570A (en) * 2020-04-03 2021-10-19 株式会社岛津制作所 Liquid chromatography system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053445A (en) * 2002-07-22 2004-02-19 Shimadzu Corp Analyzer equipped with plurality of analytical flow passages
JP3172222U (en) * 2011-09-27 2011-12-08 株式会社島津製作所 Sample injection unit and liquid chromatograph
JP2013200231A (en) * 2012-03-26 2013-10-03 Toppan Printing Co Ltd Chromatograph analyzer having multiple channels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053445A (en) * 2002-07-22 2004-02-19 Shimadzu Corp Analyzer equipped with plurality of analytical flow passages
JP3172222U (en) * 2011-09-27 2011-12-08 株式会社島津製作所 Sample injection unit and liquid chromatograph
JP2013200231A (en) * 2012-03-26 2013-10-03 Toppan Printing Co Ltd Chromatograph analyzer having multiple channels

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020171240A1 (en) 2019-02-22 2020-08-27 株式会社日立ハイテク Analysis device
CN113474647A (en) * 2019-03-13 2021-10-01 株式会社岛津制作所 Automatic sample injector for chromatograph
CN113474647B (en) * 2019-03-13 2024-01-23 株式会社岛津制作所 Automatic sampler for chromatograph
CN113514570A (en) * 2020-04-03 2021-10-19 株式会社岛津制作所 Liquid chromatography system
CN113514570B (en) * 2020-04-03 2024-01-19 株式会社岛津制作所 Liquid chromatography system

Similar Documents

Publication Publication Date Title
WO2017050096A1 (en) Simulated internal standard method, device and application for mass spectrometry quantitative analysis
US9470664B2 (en) Chromatographic interface
US20040124128A1 (en) Liquid chromatograph
US20110016955A1 (en) Sample Dilution for Chromatography of Multiple Process Streams
WO2014097731A1 (en) Sample injector
US10732153B2 (en) Separation/purification apparatus
CN109416349B (en) Preparative liquid chromatograph
CN103238066A (en) Liquid chromatograph, sample introduction device for liquid chromatograph, and method for cleaning sample introduction device for liquid chromatograph
CN101191790A (en) Liquid chromatographic analysis apparatus
JP2003149217A (en) Fractionating liquid chromatograph
WO2017122261A1 (en) Liquid chromatograph analysis device
US20100000301A1 (en) Liquid chromatograph
US10018603B2 (en) Two-dimensional liquid chromatography system for heart-cut method
JP2005214899A (en) Liquid chromatograph
JP2012088133A (en) Online sample introduction apparatus
JP5930075B2 (en) Sample concentrator
US20070023639A1 (en) Liquid chromatographic apparatus
JP6260719B2 (en) Liquid chromatograph
JP5707264B2 (en) Sample introduction device
CN113396328A (en) Analysis device
JP6733733B2 (en) Liquid chromatograph
JP2005128030A (en) Liquid chromatograph
CN116529594A (en) Testing a sampling unit fluidly coupled to a source
US20230136050A1 (en) Method of cleaning liquid chromatographic system and liquid chromatographic system
JP2743124B2 (en) Liquid chromatograph

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP