WO2017121415A1 - 一种上行信号发送方法和装置 - Google Patents

一种上行信号发送方法和装置 Download PDF

Info

Publication number
WO2017121415A1
WO2017121415A1 PCT/CN2017/074745 CN2017074745W WO2017121415A1 WO 2017121415 A1 WO2017121415 A1 WO 2017121415A1 CN 2017074745 W CN2017074745 W CN 2017074745W WO 2017121415 A1 WO2017121415 A1 WO 2017121415A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency
unit
uplink
frequency unit
Prior art date
Application number
PCT/CN2017/074745
Other languages
English (en)
French (fr)
Inventor
杨维维
戴博
夏树强
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017121415A1 publication Critical patent/WO2017121415A1/zh
Priority to US15/987,888 priority Critical patent/US10644850B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present application relates to, but is not limited to, the field of wireless communication technologies, and in particular, to an uplink signal transmission method and apparatus.
  • 5G fifth generation mobile communication technology
  • MTC Machine Type Communication
  • MTC Machine to Machine
  • M2M Machine to Machine
  • GSM Global System of Mobile communication
  • 3GPP 3rd Generation Partnership Project
  • NB-IoT Narrow Bang-Internet Of Things
  • the system bandwidth of the NB-IoT system is 200 kilohertz (kHz), which is the same as the channel bandwidth of the Global System for Mobile Communication (GSM) system. This is the NB-IoT system reuses the GSM spectrum and reduces the proximity.
  • LTE Long Term Evolution
  • PRB Physical Resource Block
  • the uplink data in the NB-IoT is based on the sub-data.
  • This paper provides an uplink signal transmission method and device.
  • the uplink data transmission mode is designed reasonably, so that the uplink demodulation reference signal can be transmitted in sub-carriers as a scheduling unit.
  • an embodiment of the present invention provides an uplink signaling method, including:
  • the generating, by the first time-frequency unit, an uplink demodulation reference signal to be sent including :
  • the generating, by the first time-frequency unit, an uplink demodulation reference signal to be sent including :
  • an uplink demodulation reference sequence of a second length Generating, according to the fixed length, an uplink demodulation reference sequence of a second length; performing an iterative processing or an extension processing or an intercepting process on the second length of the uplink demodulation reference sequence to generate an uplink solution to be sent in the first time-frequency unit Adjust the reference signal.
  • the frequency domain of the first time-frequency unit is The first time-frequency position is determined according to one or both of a corresponding second time-frequency position and a time-domain offset in the second sub-unit of each first time-frequency unit.
  • a fourth possible implementation manner when the subcarrier spacing of the uplink system is a first interval threshold, and the first time slot unit is the second sub When the unit length is 1 millisecond:
  • the second time-frequency location is a third orthogonal frequency division multiplexing OFDM symbol in the second sub-unit of the first time-frequency unit, where the second time-frequency unit includes three third sub-units The OFDM symbol.
  • a fifth possible implementation manner when the subcarrier spacing of the uplink system is a first interval threshold, and the first time slot unit is the second sub When the length of the unit is 2 milliseconds:
  • the second time-frequency location is the second or fourth OFDM symbol in the second sub-unit of the first time-frequency unit, where the second time-frequency unit includes six of the second sub-units OFDM symbol; or,
  • the second time-frequency location is the third or fifth OFDM symbol in the second sub-unit of the first time-frequency unit, wherein the first time-frequency unit includes seven of the second sub-units OFDM symbol; or,
  • the second time-frequency position is the fifth, sixth, and seventh OFDM in the second sub-unit of the first time-frequency unit. a symbol, or the first, second, and third OFDM symbols in the second subunit of the first time-frequency unit, wherein the first time-frequency unit includes seven of the second sub-units OFDM symbol.
  • a sixth possible implementation manner when the subcarrier spacing of the uplink system is a first interval threshold, and the first time slot unit is the second sub When the length of the unit is 4 milliseconds:
  • the second time-frequency position is the second and eighth OFDM symbols in the second sub-unit of the first time-frequency unit, or the second time-frequency position is the second time of the first time-frequency unit a fourth and tenth OFDM symbol in the unit, wherein the first time-frequency unit includes 12 in the second sub-unit The OFDM symbols; or,
  • the second time-frequency position is the third and tenth OFDM symbols in the second sub-unit of the first time-frequency unit, or the second time-frequency position is the second time of the first time-frequency unit
  • the time domain offset is at least according to a cell index, a subframe index, a radio frame index, and a slot index. One or more determined.
  • the generating, by the first time-frequency unit, an uplink demodulation reference signal to be sent including :
  • the frequency domain of the first time-frequency location is all subcarriers corresponding to the first time-frequency unit;
  • the frequency domain of the first time-frequency location is all subcarriers of the uplink system.
  • the frequency domain of the first time-frequency location is one of the sub-carriers of the first time-frequency unit;
  • the frequency domain of the first time-frequency location is all sub-carriers corresponding to the first time-frequency unit;
  • the frequency domain of the first time-frequency location is one of the first time-frequency units.
  • the frequency domain position of the one sub-carrier in the first time-frequency unit is at least according to a cell index, Determining one or more of a terminal index, a radio frame index, a subframe index, and a slot index, or the frequency domain position of the one subcarrier in the first time-frequency unit is determined according to signaling .
  • the time domain of the first time-frequency location is N OFDM symbols in the middle of the fourth sub-unit of each first time-frequency unit, where the N is a positive integer;
  • the time domain of the first time-frequency location is N OFDM symbols uniformly distributed in units of P OFDM symbols in a fourth sub-unit of each first time-frequency unit, wherein the P and the N are positive Integer.
  • the location of the P OFDM symbols in the time domain of the first time-frequency location is at least according to the cell index, Determined by one or more of a subframe index and a radio frame index.
  • the expanding processing includes expanding by using an orthogonal sequence, where the positive The index of the interleaved sequence is determined based at least on one or more of a cell index, a radio frame index, a subframe index, a slot index, and a terminal index.
  • the index of the uplink demodulation reference sequence is at least according to a cell index, a radio frame One or more of an index, a subframe index, a slot index, and a terminal index are determined.
  • the uplink demodulation reference sequence is: Hadamard sequence, discrete Fourier Transforming a DFT sequence, a constant envelope zero autocorrelation CAZAC sequence, a ZC sequence, a pseudorandom sequence, a computer search sequence CGS, and one or more of a low peak average power ratio PAPR sequence.
  • an uplink signal sending apparatus including:
  • a signal generating module configured to generate an uplink demodulation reference signal to be sent in the first time-frequency unit, where a frequency domain of the first time-frequency unit is a single sub-carrier or multiple sub-carriers;
  • mapping module configured to map an uplink demodulation reference signal generated by the signal generating module to a first time-frequency location of the first time-frequency unit
  • the sending module is configured to send the uplink demodulation reference signal in the first time-frequency unit and the uplink data corresponding to the uplink demodulation reference signal.
  • the signal generating module when the frequency domain of the first time-frequency unit is a single sub-carrier, the signal generating module includes:
  • the first sequence generating unit is configured to generate a first length of the uplink demodulation reference sequence according to at least the bandwidth of the uplink system and the subcarrier spacing of the uplink system;
  • the first signal determining unit is configured to obtain, according to the frequency domain position where the first time-frequency unit is located, the first time-frequency unit first subframe obtained from the first-stage uplink demodulation reference sequence generated by the first sequence generating unit The uplink demodulation reference signal corresponding to the unit;
  • the first signal generating unit is configured to perform a repetitive processing or an extension process on the uplink demodulation reference signal corresponding to the first sub-unit of the first time-frequency unit obtained by the first signal determining unit, to generate the first time-frequency unit The uplink demodulation reference signal to be transmitted.
  • the signal generating module is configured to generate a second length of an uplink demodulation reference sequence according to the number of resource units occupied by the uplink demodulation reference signal in the first time-frequency unit, where the second length of the uplink demodulation reference sequence is Determining an uplink demodulation reference signal to be transmitted in the first time-frequency unit; or
  • the signal generating module includes: a second sequence generating unit, configured to generate a second length of the uplink demodulation reference sequence according to the fixed length;
  • the second signal generating unit is configured to perform a repetitive processing or an extension processing or an intercepting process on the second demodulation reference sequence of the second length generated by the second sequence generating unit, to generate an uplink to be sent in the first time-frequency unit. Demodulate the reference signal.
  • the first time-frequency position is a second sub-portion according to each first time-frequency unit.
  • One or two of the corresponding second time-frequency position and time domain offset in the unit are determined.
  • the sub-carrier spacing of the uplink system is a first interval threshold, and the second sub-unit length of the first time-frequency unit is 1 millisecond:
  • the second time-frequency location is a third orthogonal frequency division multiplexing OFDM symbol in the second sub-unit of the first time-frequency unit, where the second time-frequency unit includes three third sub-units The OFDM symbol.
  • a fifth possible implementation manner when the subcarrier spacing of the uplink system is a first interval threshold, and the first time slot unit is the second sub When the length of the unit is 2 milliseconds:
  • the second time-frequency location is the second or fourth OFDM symbol in the second sub-unit of the first time-frequency unit, where the second time-frequency unit includes six of the second sub-units OFDM symbol; or,
  • the second time-frequency location is the third or fifth OFDM symbol in the second sub-unit of the first time-frequency unit, wherein the first time-frequency unit includes seven of the second sub-units OFDM symbol; or,
  • the second time-frequency position is the fifth, sixth, and seventh OFDM in the second sub-unit of the first time-frequency unit. a symbol, or the first, second, and third OFDM symbols in the second subunit of the first time-frequency unit, wherein the first time-frequency unit includes seven of the second sub-units OFDM symbol.
  • the subcarrier spacing of the uplink system is a first interval threshold
  • the first time slot unit is the second sub
  • the length of the unit is 4 milliseconds
  • the second time-frequency position is the second and eighth OFDM symbols in the second sub-unit of the first time-frequency unit, or the second time-frequency position is the second time-frequency unit a fourth and a tenth OFDM symbol in the subunit, wherein the second time unit of the first time frequency unit includes 12 of the OFDM symbols; or
  • the second time-frequency position is the third and tenth OFDM symbols in the second sub-unit of the first time-frequency unit, or the second time-frequency position is the second time of the first time-frequency unit In the unit The 5th and 12th OFDM symbols, wherein the first time-frequency unit includes 14 of the OFDM symbols in the second sub-unit.
  • the time domain offset is at least according to a cell index, a subframe index, a radio frame index, and a slot index. One or more determined.
  • the signal generating module includes:
  • the third sequence generating unit is configured to generate a third length of the uplink demodulation reference sequence according to the number of the subcarriers corresponding to the first time-frequency unit, where the third length of the uplink demodulation reference sequence is the first time-frequency An uplink demodulation reference signal corresponding to the third subunit of the unit;
  • the third signal generating unit is configured to perform a repetitive processing or an extension process on the uplink demodulation reference signal corresponding to the third subunit of the first time frequency unit generated by the third sequence generating unit, to generate the first time frequency unit The uplink demodulation reference signal to be transmitted.
  • the frequency domain of the first time-frequency location is all subcarriers corresponding to the first time-frequency unit;
  • the frequency domain of the first time-frequency location is all subcarriers of the uplink system.
  • the frequency domain of the first time-frequency location is one of the sub-carriers of the first time-frequency unit;
  • the frequency domain of the first time-frequency location is all subcarriers corresponding to the first time-frequency unit;
  • the frequency domain of the first time-frequency location is one of the first time-frequency units.
  • the frequency domain position of the one sub-carrier in the first time-frequency unit is at least according to a cell index, End Determining one or more of a side index, a radio frame index, a subframe index, and a slot index, or the frequency domain position of the one subcarrier in the first time-frequency unit is determined according to signaling .
  • the time domain of the first time-frequency location is N OFDM symbols in the middle of the fourth sub-unit of each first time-frequency unit, where the N is a positive integer;
  • the time domain of the first time-frequency location shown is N OFDM symbols uniformly distributed in a fourth sub-unit of each first time-frequency unit in units of P OFDM symbols, wherein the P and the N are positive Integer.
  • the location of the P OFDM symbols in the time domain of the first time-frequency location is at least according to the cell index, Determined by one or more of a subframe index and a radio frame index.
  • the expanding process includes expanding by an orthogonal sequence, wherein the positive The index of the interleaved sequence is determined based at least on one or more of a cell index, a radio frame index, a subframe index, a slot index, or a terminal index.
  • the index of the uplink demodulation reference sequence is at least according to a cell index, a radio frame One or more of an index, a subframe index, a slot index, and a terminal index are determined.
  • the uplink demodulation reference sequence is: Hadamard sequence, discrete Fourier Transforming a DFT sequence, a constant envelope zero autocorrelation CAZAC sequence, a ZC sequence, a pseudorandom sequence, a computer search sequence CGS, and one or more of a low peak average power ratio PAPR sequence.
  • an embodiment of the present invention provides a computer readable storage medium, where computer executable instructions are stored, and the computer executable instructions are executed by a processor to implement the uplink signal sending method.
  • the uplink signal sending method and device provided by the embodiment of the present invention maps the uplink demodulation reference signal to the first time-frequency single by generating an uplink demodulation reference signal to be sent in the first time-frequency unit. Transmitting, by the first time-frequency unit, an uplink demodulation reference signal and an uplink data corresponding to the uplink demodulation reference signal, where the frequency domain of the first time-frequency unit may be a single sub-carrier or The method provided by the embodiment of the present invention can transmit the uplink demodulation reference signal by using a subcarrier as a scheduling unit by appropriately designing an uplink data transmission manner.
  • FIG. 1 is a flowchart of an uplink signal sending method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a first time-frequency unit in a signal transmitting method provided by the embodiment shown in FIG. 1;
  • FIG. 3 is a flowchart of another method for sending an uplink signal according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of still another method for transmitting an uplink signal according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a first time-frequency unit in a signal transmitting method provided by the embodiment shown in FIG. 3;
  • FIG. 6 is a schematic diagram of a first time-frequency unit in a signal transmitting method provided by the embodiment shown in FIG. 4;
  • FIG. 7 is a schematic diagram of another first time-frequency unit in the signal transmitting method provided by the embodiment shown in FIG. 4;
  • FIG. 8 is a flowchart of still another uplink signal sending method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8; FIG.
  • FIG. 10 is a schematic diagram of another first time-frequency unit in the signal transmitting method provided by the embodiment shown in FIG. 8; FIG.
  • FIG. 11 is still another first time-frequency unit in the signal sending method provided in the embodiment shown in FIG. Schematic diagram
  • FIG. 12 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8; FIG.
  • FIG. 13 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8; FIG.
  • FIG. 14 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8; FIG.
  • FIG. 15 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8;
  • FIG. 16 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8;
  • FIG. 17 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8;
  • FIG. 18 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8; FIG.
  • FIG. 19 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8; FIG.
  • FIG. 20 is a schematic diagram of still another first time-frequency unit in the signal sending method provided in the embodiment shown in FIG. 8;
  • 21 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8;
  • FIG. 22 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8; FIG.
  • FIG. 23 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8;
  • FIG. 24 is a schematic structural diagram of an uplink signal sending apparatus according to an embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of another uplink signal sending apparatus according to an embodiment of the present invention.
  • the terminal device in the following embodiments of the present invention may be, for example, a terminal device in the Internet of Things.
  • the following embodiments are provided to be able to be combined with each other, and the same or similar concepts or processes may not be described in some embodiments.
  • FIG. 1 is a flowchart of a method for transmitting an uplink signal according to an embodiment of the present invention.
  • the uplink signal sending method provided in this embodiment is applicable to the uplink signal demodulation reference signal transmission in the NB-IoT, and the method may be implemented by the uplink signal sending device, where the uplink signal sending device is implemented by combining hardware and software.
  • the device can be integrated into the processor of the terminal device for use by the processor.
  • the method in this embodiment may include:
  • the uplink signal sending method provided by the embodiment of the present invention is configured to reasonably configure an uplink demodulation reference signal, and a sending position of the uplink data corresponding to the uplink demodulation reference signal, where the uplink demodulation reference signal is, for example, a DMRS (Demodulation Reference Signal) )signal.
  • the transmission of the uplink demodulation reference signal includes the sequence, the location, and the ratio of the uplink data to the uplink data.
  • the sequence is the content of the uplink demodulation reference signal
  • the location is the time-frequency location where the signal is transmitted.
  • the ratio of the uplink demodulation reference signal to the uplink data is 1:6.
  • the scheduling unit of the uplink data is a PRB, so the design of the uplink demodulation reference signal is based on an RB (Resource Block) unit, that is, The frequency domain is a multiple of 12 or 12 subcarriers.
  • the scheduling unit of the uplink data corresponding to the uplink demodulation reference signal is a sub-carrier, that is, one or more sub-carriers in the frequency domain, that is, the first time-frequency unit for transmitting the uplink demodulation reference signal in this embodiment.
  • the frequency domain can be a single subcarrier or multiple subcarriers.
  • the mapping of the uplink demodulation reference signal is to map the uplink demodulation reference signal to the first time-frequency position.
  • the sub-carrier spacing of the uplink system may be a smaller sub-carrier spacing, such as 3.75 kHz, or 15 kHz, for the first time-frequency unit.
  • the subcarrier spacing of the uplink system is 15 kHz.
  • FIG. 2 it is a schematic diagram of a first time-frequency unit in the signal sending method provided in the embodiment shown in FIG. 1.
  • the frequency domain of the first time-frequency unit in FIG. Carrier assuming that the time-frequency sub-unit in the first time-frequency unit is 1 ms, and the sub-carrier spacing of the uplink system is 3.75 kHz, the time-frequency sub-unit includes 3 OFDM symbols, and assuming that the time domain offset is 0, then
  • the first time-frequency location is on the third OFDM symbol in the time-frequency sub-unit, and the first time-frequency unit includes a plurality of such time-frequency sub-units.
  • the uplink signal sending method provided in this embodiment is configured to map the uplink demodulation reference signal to the first time-frequency position of the first time-frequency unit by generating an uplink demodulation reference signal to be sent in the first time-frequency unit, Transmitting, by the first time-frequency unit, an uplink demodulation reference signal and an uplink data corresponding to the uplink demodulation reference signal, where the frequency domain of the first time-frequency unit may be a single sub-carrier or multiple sub-carriers; Method By reasonably designing the uplink data transmission mode, the uplink demodulation reference signal can be transmitted in the subcarrier as a scheduling unit.
  • FIG. 3 is a flowchart of another uplink signaling method according to an embodiment of the present invention.
  • the frequency domain of the first time-frequency unit in this embodiment is a single sub-carrier.
  • the method for generating an uplink demodulation reference signal sent in the first time-frequency unit in this embodiment is used. , that is, S110 can include:
  • S111 Generate a first length according to at least an bandwidth of the uplink system and a subcarrier spacing of the uplink system. Uplink demodulation reference sequence.
  • S113 Perform an iterative process or an extension process on the uplink demodulation reference signal corresponding to the first sub-unit of the first time-frequency unit to generate an uplink demodulation reference signal to be transmitted in the first time-frequency unit.
  • FIG. 4 is a flowchart of still another uplink signal sending method according to an embodiment of the present invention.
  • the frequency domain of the first time-frequency unit in this embodiment is also a single sub-carrier.
  • the uplink demodulation reference signal sent in the first time-frequency unit is generated in this embodiment.
  • the mode, that is, S110, may include:
  • S114 Generate, according to the number of resource units occupied by the uplink demodulation reference signal in the first time-frequency unit, a second length of the uplink demodulation reference sequence, where the second-length uplink demodulation reference sequence is to be sent in the first time-frequency unit. Uplink demodulation reference signal.
  • S110 may include:
  • S116 Perform a repetition process or an extension process or a intercept process on the second length of the uplink demodulation reference sequence to generate an uplink demodulation reference signal to be sent in the first time-frequency unit.
  • the S114 and S115-S116 in the embodiment shown in FIG. 4 are two optional execution modes, which are alternatively performed.
  • the first time-frequency position is a second time-frequency position and a time-domain offset corresponding to the second sub-unit in each first time-frequency unit. One or two of them are determined.
  • the first time-frequency unit in this embodiment has a plurality of first time-frequency unit second sub-units, and the first time-frequency unit shown in FIG. 2 may be referred to, where the time-frequency sub-unit is the first time-frequency unit.
  • the second sub-unit, the time domain length of the second sub-unit of the first time-frequency unit may be, for example, 1 ms, 2 ms or 4 ms, and the number of OFDM symbols per 1 ms is related to the interval of sub-carriers.
  • the first time domain position in the embodiment of the present invention is determined by one or both of the second time frequency position and the time domain offset.
  • the time domain offset is determined based at least on one or more of a cell index, a subframe index, a radio frame, and a slot index.
  • the time domain offset is determined according to the cell index, that is, the time domain offset corresponding to each cell is not Similarly, for example, the time domain offset corresponding to the serving cell 1 is 1, that is, 1 subframe is shifted to the right based on the second time-frequency position, and the time domain offset corresponding to the serving cell 2 is 2, that is, Deviating to the right by 2 subframes based on the second time domain offset, wherein the time domain offset is assumed to be the number of offset subframes, and the time domain offset and the number of offset subframes may also be defined in advance. relationship.
  • the following describes some possible cases of the second time-frequency position when the frequency domain of the first time-frequency unit is a single sub-carrier:
  • Case 1 When the subcarrier spacing of the uplink system is the first interval threshold, and the length of the second subunit of the first time frequency unit is 1 ms, the second time frequency position is the first of the second subunits of the first time frequency unit. 3 OFDM symbols, wherein the second time unit of the first time-frequency unit includes 3 OFDM symbols.
  • FIG. 5 is a schematic diagram of a first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 3.
  • the first interval threshold is 3.75 kHz
  • the number of subcarriers in the uplink system is 48.
  • the first time-frequency unit is a single sub-carrier with a sub-carrier index of 1, and the second sub-unit of the first time-frequency unit.
  • the length is 1ms.
  • the embodiment shown in FIG. 5 generates an uplink demodulation reference signal according to the manner shown in FIG. 3. Since the number of subcarriers in the uplink system is 48, a ZC (Zadoff-chu) sequence ⁇ Z(0) having a length of 48 is generated.
  • the uplink demodulation reference signal Z(1) corresponding to the first sub-unit of the first time-frequency unit is obtained, and the uplink demodulation is performed.
  • the reference signal Z(1) is subjected to repetition processing or extension processing, for example, by performing repeated processing to obtain an uplink demodulation reference signal ⁇ Z(1), Z(1), ..., Z(1) ⁇ of the first time-frequency unit.
  • the second time-frequency position corresponding to the uplink demodulation reference signal is the third OFDM symbol in the second sub-unit of the first time-frequency unit, and the position is as shown in FIG. 5, because the length of the second sub-unit of the first time-frequency unit is 1 ms. Shown.
  • Case 2 When the subcarrier spacing of the uplink system is the first interval threshold, and the length of the second subunit of the first time frequency unit is 2 ms, the second time frequency position is the second subunit of the first time frequency unit. 2 or a fourth OFDM symbol, where the second time unit of the first time-frequency unit includes 6 OFDM symbols; or the second time-frequency position is the third of the second sub-units of the first time-frequency unit.
  • the second time-frequency position is the second sub-unit of the first time-frequency unit. 5, 6th, and 7th OFDM symbols, or 1st, 2nd, and 3rd OFDM symbols in the second subunit of the first time-frequency unit, and the first time-frequency in the application scenario
  • the second subunit of the unit also includes 7 OFDM symbols.
  • FIG. 6 is a schematic diagram of a first time-frequency unit in the signal transmitting method provided by the embodiment shown in FIG. 4.
  • the first interval threshold is 3.75 kHz
  • the number of subcarriers in the uplink system is 48.
  • the first time-frequency unit is a single sub-carrier with a sub-carrier index of 1, and the second sub-unit of the first time-frequency unit.
  • the length is 2ms and includes 6 OFDM symbols.
  • the embodiment shown in FIG. 6 generates an uplink demodulation reference signal according to the manner shown in FIG.
  • the uplink demodulation reference signal in the first time-frequency unit is ⁇ Z(0), Z(1), ..., Z(23) ⁇ .
  • the second time-frequency position corresponding to the uplink demodulation reference signal is the second or fourth OFDM symbol in the second sub-unit of the first time-frequency unit, because the length of the second sub-unit of the first time-frequency unit is 2 ms. 6 shows an example in which the second time-frequency position is the second OFDM symbol in the second sub-unit of the first time-frequency unit.
  • a sequence of a multiple of 12 may be generated, or a sequence of a fixed length may be generated, and an uplink demodulation reference signal may be obtained by repeated processing or extension processing or intercept processing.
  • FIG. 7 is a schematic diagram of another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 4.
  • the first interval threshold is 3.75 kHz and the uplink signal is only a HARQ-ACK response signal.
  • the first time-frequency unit is a single sub-carrier with a sub-carrier index of 1, and the time domain is 8 ms.
  • the first time-frequency unit has a length of 2 ms and includes 7 OFDM symbols.
  • the embodiment shown in FIG. 7 generates an uplink demodulation reference signal according to the manner shown in FIG.
  • the uplink demodulation reference signal in the first time-frequency unit is an OCC sequence of length 3 [W(0) ), W(1), W(2)], extending the length of the 4 long CGS sequence ⁇ C(0), C(1), ..., C(3) ⁇ to obtain [C(0)W(0) , C(0)W(1), C(0)W(2), C(1)W(0), C(1) W(1), ..., C(3)W(3)].
  • the OCC sequence is as shown in Table 1 below.
  • the OCC sequence index is determined by at least the serving cell index and the slot index.
  • One example is OCC.
  • Mod is the modulo operation, For the serving cell index, n s is the slot index.
  • OCC sequence index OCC sequence 0 [1 1 1] 1 [1 e j2 ⁇ / 3 e j4 ⁇ / 3] 2 [1 e j4 ⁇ /3 e j2 ⁇ /3 ]
  • the Sounding Reference Signal (SRS) in LTE is located in the last symbol of each subframe, and the Demodulation Reference Signal (DMRS) mapping considers the collision problem with LTE SRS, so Map on the 1st, 2nd, and 3rd symbols, or the 5th, 6th, and 7th symbols.
  • the second time-frequency position corresponding to the uplink demodulation reference signal in FIG. 7 is the first one of the second sub-units of the first time-frequency unit, and the second and third OFDM symbols are taken as an example.
  • the second time frequency position is the first of the second subunits of the first time frequency unit. 2 and 8th OFDM symbols, or a second time-frequency position is the 4th and 10th OFDM symbols in the second sub-unit of the first time-frequency unit, wherein the first time-frequency unit is in the second sub-unit Including 12 OFDM symbols; or, the second time-frequency position is the third and tenth OFDM symbols in the second time-frequency unit, or the second time-frequency position is the second one in the second sub-unit of the first time-frequency unit 5 and 12th OFDM symbols, wherein the first time-frequency unit includes 14 OFDM symbols in the second sub-unit.
  • the time domain location of the above DMRS is determined based on one or more of the following conditions: (1) considering collision with LTE SRS; (2) not spanning 2 LTE subframes.
  • FIG. 8 is a flowchart of still another uplink signal sending method according to an embodiment of the present invention.
  • the frequency domain of the first time-frequency unit in this embodiment is a plurality of sub-carriers.
  • the uplink demodulation reference signal to be sent in the first time-frequency unit is generated.
  • the mode, that is, S110, may include:
  • S118 Perform an iterative process or an extension process on the uplink demodulation reference signal corresponding to the third subunit of the first time-frequency unit to generate an uplink demodulation reference signal to be transmitted in the first time-frequency unit.
  • the length of the uplink demodulation reference sequence generated in this embodiment is usually the same as the number of subcarriers in the first time-frequency unit.
  • FIG. 9 is a schematic diagram of a first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • the subcarrier spacing of the uplink system is 15 kHz
  • the number of subcarriers in the uplink system is 12,
  • the number of uplink subcarriers allocated by the base station to the terminal device is 2.
  • the embodiment shown in FIG. 9 generates an uplink demodulation reference signal according to the manner shown in FIG. 8. Since the frequency domain length of the first time-frequency unit is 2, a Discrete Fourier Transform (Discrete Fourier Transform) of length 2 is generated.
  • Discrete Fourier Transform Discrete Fourier Transform
  • the uplink demodulation reference signal corresponding to the third sub-unit of the first time-frequency unit is repeatedly processed to obtain an uplink demodulation reference signal to be transmitted in the first time-frequency unit, and the first time-frequency position is as shown in FIG. 9.
  • the embodiment shown in FIG. 9 is a schematic description of the first time-frequency position in the case where the frequency domain of the first time-frequency unit is a plurality of sub-carriers.
  • the extension processing in the foregoing embodiments of the present invention includes performing extension by orthogonal sequence, wherein the index of the orthogonal sequence is at least one of a cell index, a radio frame index, a subframe index, a slot index, and a terminal index.
  • the index of the uplink demodulation reference sequence is determined according to at least one of a cell index, a radio frame index, a subframe index, a slot index, and a terminal index;
  • the uplink demodulation reference sequence is usually : Hadmard sequence, DFT sequence, Const Amplitude Zero Auto-Corelation (CAZAC) sequence, ZC sequence, pseudo-random (Pseudo-Random) sequence, computer search sequence (Computer Search Sequence, referred to as: CGS) and one or more of the Peak to Average Power Ratio (PAPR) sequence.
  • a second length of the uplink demodulation reference sequence is generated according to the number of resource units occupied by the uplink demodulation reference signal in the first time-frequency unit, and the resources occupied by the uplink demodulation reference signal in the first time-frequency unit are assumed.
  • the number of units is 16, then the length of the second length of the uplink demodulation reference sequence is 16, assuming that the uplink demodulation reference sequence is obtained by multiplying the Hadamard sequence and the pseudo-random sequence; assuming that the length of the 32-length based on the Hadamard sequence is
  • the sequence of 16 is [UH 16 H 16 ], where H 16 is a 16-length Hadamard matrix and U is a 1 ⁇ 16 matrix. Table 2 below gives a practical example.
  • the pseudo-random sequence is a sequence used in the LTE system.
  • the initial value of the pseudo-random sequence is determined according to one or more of the length of the resource unit corresponding to the single carrier, the subframe index, the radio frame index, the terminal index, and the slot index. I won't go into details here.
  • the third length of the uplink demodulation reference sequence is a Computer Search Sequence (CGS), and then the sequence is searched according to the following rules: (1) satisfying a certain cubic metric (Cubic Metric, referred to as : CM) characteristics, (2) satisfying a certain cross-correlation; (3) based on Quadrature Phase Shift Keyin (QPSK) symbols; an example is as follows, assuming a third length of uplink The demodulation reference sequence has a length of 6, and the searched sequence is 0 ⁇ n ⁇ 5, where u is the serial number, As shown in the following table:
  • CCS Computer Search Sequence
  • the searched sequence is 0 ⁇ n ⁇ 2, where u is a serial number, ⁇ (n) is as shown in Tables 4 to 8 below, and the number of sequences corresponding to Tables 4 to 8 is 3, 4, 6, 8, and 16, respectively.
  • the uplink demodulation reference signal is obtained according to the existing uplink demodulation reference sequence generation manner in LTE.
  • the uplink demodulation reference signal is mapped into the first time-frequency position of the first time-frequency unit, where the first time-frequency unit includes multiple
  • the third subunit of the first time-frequency unit, the frequency domain and the time-frequency position of the first time-frequency position in this implementation are:
  • the frequency domain of the first time-frequency location is all subcarriers corresponding to the first time-frequency unit.
  • the frequency domain of the first time-frequency location is all subcarriers of the uplink system.
  • the frequency domain of the first time-frequency location is one of the sub-carriers of the first time-frequency unit.
  • the frequency domain of the first time-frequency location is all sub-carriers corresponding to the first time-frequency unit.
  • the frequency domain of the first time-frequency location is one of the first time-frequency units.
  • the frequency domain position of the one sub-carrier in the first time-frequency unit is at least according to the cell index, the terminal index, and the radio frame.
  • One or more of an index, a subframe index, and a slot index are determined, or the frequency domain position of the one subcarrier in the first time-frequency unit is determined according to signaling.
  • the manner of generating the uplink demodulation reference signal may also be the generation of the uplink demodulation reference in the embodiment shown in FIG. 3 or FIG. The way the signal is.
  • the time domain of the first time-frequency location is the middle N OFDM symbols of the fourth sub-unit of each first time-frequency unit.
  • the time domain of the first time-frequency location is N OFDM symbols uniformly distributed in the fourth sub-unit of each first time-frequency unit in units of P OFDM symbols.
  • N and P are both positive integers; in addition, the positions of the P OFDM symbols in the time domain of the first time-frequency position are at least one of a cell index, a subframe index, a radio frame index, and a slot index. Or a variety of determined.
  • the frequency domain of the first time-frequency unit is multiple subcarriers
  • various possible situations of the first time-frequency location are illustrated.
  • the subcarrier spacing of the uplink system is assumed to be 15 kHz
  • the number of subcarriers in the uplink system is 12, and the ratio of the uplink demodulation reference signal to the uplink data is 1:6.
  • the frequency domain of the first time-frequency location is all subcarriers corresponding to the first time-frequency unit.
  • time domain is the middle N OFDM symbols of the fourth sub-unit of each first time-frequency unit.
  • FIG. 10 is a schematic diagram of another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • FIG. 10 illustrates all subcarriers (2 subcarriers) in the frequency domain of the first time-frequency unit, and 1 subframe in the time domain, the ratio of the uplink demodulation reference signal to the uplink data is 1:6, and the frequency domain is continuous.
  • the middle 2 OFDM symbols of the fourth sub-unit that is, the 6th and 7th OFDM symbols, where the symbol is a 0 start number.
  • FIG. 11 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • FIG. 11 illustrates the ratio of the uplink demodulation reference signal to the uplink data for all subcarriers (2 subcarriers) in the frequency domain in the first time-frequency unit and 2 subframes in the time domain.
  • the subcarrier, the time domain is the middle 4 OFDM symbols of the fourth subunit of the first time-frequency unit, ie, the 12th, 13th, 14th and 15th symbols, wherein the symbol is a 0-start number.
  • time domain is N OFDM symbols uniformly distributed in units of P OFDM symbols in the fourth sub-unit of each first time-frequency unit.
  • FIG. 12 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • FIG. 12 illustrates all subcarriers (2 subcarriers) in the frequency domain of the first time-frequency unit, and 2 subframes in the time domain, the ratio of the uplink demodulation reference signal to the uplink data is 1:6, and the mapping in the frequency domain is continuous.
  • the frequency domain of the first time-frequency position For all the subcarriers corresponding to the first time-frequency unit, the time domain is the middle 4 OFDM symbols of the fourth sub-unit of the first time-frequency unit, that is, the 3rd, 10th, 17th and 24th symbols, wherein the symbol is a 0-start number.
  • FIG. 13 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • FIG. 13 illustrates all subcarriers (2 subcarriers) in the frequency domain of the first time-frequency unit, and 2 subframes in the time domain, the ratio of the uplink demodulation reference signal to the uplink data is 1:6, and the mapping in the frequency domain is continuous.
  • the frequency domain of the first time-frequency position For all the subcarriers corresponding to the first time-frequency unit, the time domain is the middle 4 OFDM symbols of the fourth sub-unit of the first time-frequency unit, that is, the sixth, seventh, 20, and 21 symbols, wherein the symbol is a 0-start number.
  • time domain is N OFDM symbols uniformly distributed in units of P OFDM symbols in the fourth sub-unit of each first time-frequency unit.
  • FIG. 14 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • 1 is a discrete mapping for the unit, and a continuous mapping method for the time domain; as shown in FIG. 14, the mapping is performed in units of ⁇ frequency domain 1 subcarrier, time domain 4 symbols ⁇ .
  • FIG. 15 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • 2 is a discrete mapping for the unit, and a continuous mapping mode in the time domain; as shown in FIG. 15, the mapping is performed in units of ⁇ frequency domain 2 subcarriers, time domain 4 symbols ⁇ .
  • FIG. 16 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • the domain 1 symbol ⁇ is a unit map.
  • FIG. 17 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • the domain 1 symbol ⁇ is a unit map.
  • FIG. 18 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • the domain 2 symbols ⁇ are unit maps.
  • FIG. 19 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • FIG. 19 illustrates all subcarriers (4 subcarriers) in the frequency domain of the first time-frequency unit, and 2 subframes in the time domain, and the ratio of the uplink demodulation reference signal to the uplink data is 1:6, for example, Q in the frequency domain.
  • the time domain 2 symbols ⁇ is a unit map.
  • the frequency domain of the first time-frequency location is all sub-carriers of the uplink system.
  • time domain is the middle N OFDM symbols of the fourth sub-unit of each first time-frequency unit.
  • FIG. 20 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • 12 is a unit mapping, and continuous mapping in the time domain; as shown in FIG.
  • time domain is uniformly distributed in units of P OFDM symbols in N OFDM symbols in the fourth sub-unit of each first time-frequency unit.
  • FIG. 21 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • the frequency domain of the first time-frequency location is one of the sub-carriers of the first time-frequency unit.
  • time domain is the middle N OFDM symbols of the fourth sub-unit of each first time-frequency unit.
  • FIG. 22 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • time domain is uniformly distributed in units of P OFDM symbols in N OFDM symbols in the fourth sub-unit of each first time-frequency unit.
  • FIG. 23 is a schematic diagram of still another first time-frequency unit in the signal sending method provided by the embodiment shown in FIG. 8.
  • FIG. 23 illustrates all subcarriers (4 subcarriers) in the frequency domain of the first time-frequency unit, and 1 subframe in the time domain, where the frequency domain is one subcarrier in the first time-frequency unit, for example, the frequency domain is indexed as
  • the fourth case when the number of subcarriers of the first time-frequency unit is 12, the frequency domain of the first time-frequency location is all sub-carriers corresponding to the first time-frequency unit. For example, when the first time-frequency unit is sub-loaded When the number of waves is 12, the number of subcarriers corresponding to the frequency domain of the first time-frequency position is also 12.
  • the frequency domain of the first time-frequency location is one of the first time-frequency units.
  • the number of subcarriers corresponding to the frequency domain of the first time-frequency location is one.
  • the uplink demodulation reference signal is mapped to the frequency domain position corresponding to the time domain position of the fourth sub-unit of the first time-frequency unit.
  • the uplink data is mapped, and in the two cases, the frequency domain position of the subcarrier where the uplink demodulation reference signal is located may be notified to the terminal device by the base station, or may be preset, or related to the index and the cell index of the terminal device.
  • the padded cells in the time-frequency unit in FIG. 9 to FIG. 23 represent the uplink demodulation reference signal, and the padded cells represent the uplink data, FIG. 22 and FIG. The location in 23 that does not map the upstream data has been identified by text.
  • the uplink demodulation reference signal is mapped to the first time-frequency position on the first time-frequency unit, which is only some mapping rules of the embodiment of the present invention.
  • the embodiment of the present invention does not limit the mapping rule of the uplink demodulation reference signal, and the uplink signal transmission provided by the embodiment of the present invention may be applied as long as the mapping of the uplink demodulation reference signal can be implemented and the preset mapping rule is met. In the method.
  • FIG. 24 is a schematic structural diagram of an uplink signal sending apparatus according to an embodiment of the present invention.
  • the uplink signal transmitting apparatus is implemented by combining hardware and software, and the apparatus may be integrated in the processor of the terminal device. Used by the processor to call.
  • the uplink signal transmission in this embodiment includes: a signal generating module 11, a mapping module 12, and a transmitting module 13.
  • the signal generating module 11 is configured to generate an uplink demodulation reference signal to be sent in the first time-frequency unit, where the frequency domain of the first time-frequency unit is a single sub-carrier or multiple sub-carriers.
  • the uplink signal sending apparatus provided by the embodiment of the present invention can reasonably configure the uplink demodulation reference signal and the sending position of the uplink data corresponding to the uplink demodulation reference signal.
  • the reason why the scheduling unit of the uplink demodulation reference signal and the reason why it cannot be applied to the NB-IoT system in the LTE/LTE-A technology has been described in the foregoing embodiment, and has been described in the above embodiments, and therefore will not be described herein.
  • the mapping module 12 is configured to map the uplink demodulation reference signal generated by the signal generating module 11 Go to the first time-frequency location of the first time-frequency unit.
  • the mapping of the uplink demodulation reference signal is based on the ratio of the uplink demodulation reference signal to the corresponding uplink data, and a preset mapping rule, and mapping the uplink demodulation reference signal to the first time-frequency position.
  • the first time-frequency unit is a single sub-carrier or multiple sub-carriers, and the sub-carrier spacing of the uplink system is smaller, such as 3.75 KHz, and may also be 15 kHz, for the first time-frequency.
  • the subcarrier spacing of the uplink system is 15 kHz.
  • the sending module 13 is configured to send the uplink demodulation reference signal in the first time-frequency unit and the uplink data corresponding to the uplink demodulation reference signal.
  • the first time-frequency unit shown in FIG. 2, FIG. 6 to FIG. 8 can also be referred to in various cases of the first mapping position.
  • the uplink signal sending apparatus provided by the embodiment of the present invention is configured to perform the uplink signal sending method provided by the embodiment shown in FIG. 1 of the present invention, and has a corresponding functional module, and the implementation principle and the technical effect thereof are similar, and details are not described herein again.
  • FIG. 25 is a schematic structural diagram of another uplink signal sending apparatus according to an embodiment of the present invention.
  • the frequency domain of the first time-frequency unit in this embodiment is a single sub-carrier.
  • the signal generating module 11 in this embodiment includes: a first sequence generating unit 14 configured to be at least Generating a first length of the uplink demodulation reference sequence according to the bandwidth of the uplink system and the subcarrier spacing of the uplink system; the first signal determining unit 15 is configured to be from the first sequence generating unit 14 according to the frequency domain location where the first time-frequency unit is located.
  • the first signal generating unit 16 is configured as the first obtained by the first signal determining unit 15
  • the uplink demodulation reference signal corresponding to the first subunit of the time-frequency unit is subjected to repetition processing or extension processing to generate an uplink demodulation reference signal to be transmitted in the first time-frequency unit.
  • the uplink signal sending apparatus provided by the embodiment of the present invention is used to perform the uplink signal sending method provided by the embodiment shown in FIG. 3 of the present invention, and has a corresponding functional module, and the implementation principle and the technical effect thereof are similar, and details are not described herein again.
  • the uplink demodulation reference signal can be generated by the device shown in FIG. 24, and the signal generating module 11 is configured to: generate a second length according to the number of resource units occupied by the uplink demodulation reference signal in the first time-frequency unit.
  • the uplink demodulation reference sequence of the second length is an uplink demodulation reference signal to be transmitted in the first time-frequency unit.
  • the signal generating module 11 includes: a second sequence generating unit, configured to generate a second length of the uplink demodulation reference sequence according to the fixed length; and the second signal generating unit is configured to Performing a repetition process or an extension process or a clipping process on the second length of the uplink demodulation reference sequence generated by the second sequence generating unit to generate an uplink demodulation reference signal to be transmitted in the first time-frequency unit.
  • the uplink signal sending apparatus provided by the embodiment of the present invention is used to perform the uplink signal sending method provided by the embodiment shown in FIG. 4 of the present invention, and has a corresponding function module, and the implementation principle and the technical effect thereof are similar, and details are not described herein again.
  • the first time-frequency position is a second time-frequency position and a time-domain offset corresponding to the second sub-unit in each first time-frequency unit. One or two of them are determined.
  • the first time domain position in the embodiment of the present invention is determined by one or both of the second time frequency position and the time domain offset.
  • the time-frequency offset is determined based on at least one of a cell index, a subframe index, a radio frame, and a slot index.
  • the second time-frequency location includes the following situations:
  • Case 1 When the subcarrier spacing of the uplink system is the first interval threshold, and the length of the second subunit of the first time frequency unit is 1 ms, the second time frequency position is the first of the second subunits of the first time frequency unit. 3 OFDM symbols, wherein the second time unit of the first time-frequency unit includes 3 OFDM symbols.
  • Case 2 When the subcarrier spacing of the uplink system is the first interval threshold, and the length of the second subunit of the first time frequency unit is 2 ms, the second time frequency position is the second subunit of the first time frequency unit. 2 or a fourth OFDM symbol, where the second time unit of the first time-frequency unit includes 6 OFDM symbols; or the second time-frequency position is the third of the second sub-units of the first time-frequency unit. Or a fifth OFDM symbol, where the second sub-unit of the first time-frequency unit includes 7 OFDM symbols.
  • the second time frequency position is the first of the second subunits of the first time frequency unit. 2 and 8th OFDM symbols, or a second time-frequency position is the 4th and 10th OFDM symbols in the second sub-unit of the first time-frequency unit, wherein the first time-frequency unit is in the second sub-unit Including 12 OFDM symbols; or, the second time-frequency position is the third and tenth OFDM symbols in the second time-frequency unit, or the second time-frequency position is the second one in the second sub-unit of the first time-frequency unit 5 and 12th OFDM symbols, wherein the first time-frequency unit includes 14 OFDM symbols in the second sub-unit.
  • case of case one to case three is the same as the example in the above embodiment, and reference may be made to the first time-frequency unit and the second time unit of the first time-frequency unit shown in FIGS. 5 and 6.
  • the uplink demodulation reference signal can also be generated by using the apparatus shown in FIG. 24 in the following manner: the signal generating module 11 includes: a third sequence generating unit, and setting Generating, according to the number of subcarriers corresponding to the first time-frequency unit, a third length of the uplink demodulation reference sequence, where the uplink demodulation reference sequence of the third length is the uplink demodulation corresponding to the third sub-unit of the first time-frequency unit a third signal generating unit, configured to perform a repetitive processing or an extension process on the uplink demodulation reference signal corresponding to the third sub-unit of the first time-frequency unit generated by the third sequence generating unit, to generate a first time-frequency unit The uplink demodulation reference signal to be transmitted.
  • the signal generating module 11 includes: a third sequence generating unit, and setting Generating, according to the number of subcarriers corresponding to the first time-frequency unit, a third length of the uplink demodulation reference sequence, where the uplink demodulation reference
  • the extension processing in the foregoing embodiments of the present invention includes performing extension by orthogonal sequence, wherein the index of the orthogonal sequence is at least one of a cell index, a radio frame index, a subframe index, a slot index, and a terminal index.
  • the index of the uplink demodulation reference sequence is determined according to at least one of a cell index, a radio frame index, a subframe index, a slot index, and a terminal index;
  • the uplink demodulation reference sequence is usually : Hadmard sequence, DFT sequence, Const Amplitude Zero Auto-Corelation (CAZAC) sequence, ZC sequence, pseudo-random sequence (Pseudo-Random Sequence), computer search sequence (Computer Search Sequence, abbreviated as: CGS) and one or more of the Peak to Average Power Ratio (PAPR) sequence.
  • the uplink demodulation reference signal is mapped into the first time-frequency position of the first time-frequency unit, where the first time-frequency unit includes multiple
  • the third subunit of the first time-frequency unit, the frequency domain and the time-frequency position of the first time-frequency position in this implementation are:
  • the frequency domain of the first time-frequency location is all subcarriers corresponding to the first time-frequency unit.
  • the frequency domain of the first time-frequency location is all subcarriers of the uplink system.
  • the frequency domain of the first time-frequency location is one of the sub-carriers of the first time-frequency unit.
  • the frequency domain of the first time-frequency location is all sub-carriers corresponding to the first time-frequency unit.
  • the frequency domain of the first time-frequency location is one of the first time-frequency units.
  • the frequency domain position of the one sub-carrier in the first time-frequency unit is at least according to the cell index, the terminal index, the radio frame index, The one or more of the subframe index, the slot index, and the terminal index are determined, or the frequency domain position of the one subcarrier in the first time-frequency unit is determined according to signaling.
  • the manner of generating the uplink demodulation reference signal may also be the uplink solution generated in the foregoing embodiment shown in FIG. 3 or FIG. The way the reference signal is adjusted.
  • the time domain of the first time-frequency location is the middle N OFDM symbols of the fourth sub-unit of each first time-frequency unit.
  • the time domain of the first time-frequency location is N OFDM symbols uniformly distributed in the fourth sub-unit of each first time-frequency unit in units of P OFDM symbols.
  • N and P are both positive integers; in addition, the positions of the P OFDM symbols in the time domain of the first time-frequency position are at least one of a cell index, a subframe index, a radio frame index, and a slot index. A variety of certain.
  • the first time-frequency unit in the embodiment shown in FIG. 10 to FIG. 23, and the first time-frequency unit.
  • the first time-frequency position some possible cases of the first time-frequency position have been schematically illustrated in the above embodiment, and therefore will not be described here.
  • the embodiment of the invention further provides a computer readable storage medium, which stores a computer executable finger
  • the above-described uplink signal transmitting method is implemented when the computer executable instructions are executed by the processor.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • Embodiments of the invention are not limited to any specific form of combination of hardware and software.
  • the uplink signal sending method and apparatus maps the uplink demodulation reference signal to the first time of the first time-frequency unit by generating an uplink demodulation reference signal to be transmitted in the first time-frequency unit.
  • the first time-frequency unit uplink demodulation reference signal and the uplink data corresponding to the uplink demodulation reference signal are sent, where the frequency domain of the first time-frequency unit may be a single sub-carrier or multiple sub-carriers;
  • the method provided by the embodiment of the invention can transmit the uplink demodulation reference signal by using a subcarrier as a scheduling unit by reasonably designing an uplink data transmission manner.

Abstract

本文公布一种上行信号发送方法和装置,所述上行信号发送方法包括:生成第一时频单元内待发送的上行解调参考信号,该第一时频单元的频域为单个子载波或多个子载波;将上行解调参考信号映射到第一时频单元的第一时频位置中;发送第一时频单元内的上行解调参考信号和上行解调参考信号对应的上行数据。

Description

一种上行信号发送方法和装置 技术领域
本申请涉及但不限于无线通信技术领域,尤指一种上行信号发送方法和装置。
背景技术
随着无线通信技术的发展,移动网络应用中,对业务量的需求、终端数量和终端种类都呈现出爆发式的增长趋势,第五代移动通信技术(5th Generation,简称为:5G)已成为未来网络发展的趋势。机器间通信(Machine Type Communication,简称为:MTC)作为5G系统的重要场景和技术手段之一,已经受到越来越多的关注。
MTC,又称机器到机器(Machine to Machine,简称为:M2M)通信,该通信方式是现阶段物联网的主要应用形式。目前市场上部署的MTC设备主要基于全球移动通信(Global System of Mobile communication,简称为:GSM)系统,在第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)技术报告TR45.820V200中公开了几种适用于蜂窝级物联网(Comb-Internet Of Things,简称为C-IOT)的技术,其中,窄带物联网(Narrow Bang-Internet Of Things,简称为NB-IoT)技术最为引人注目。该NB-IoT系统的系统带宽为200千赫兹(kHz),与全球移动通信(Global system for Mobile Communication,简称为:GSM)系统的信道带宽相同,这为NB-IoT系统重用GSM频谱并降低邻近与GSM信道的相互干扰带来了极大便利。考虑到已有长期演进(Long Term Evolution,简称为:LTE)系统中的上行数据都是基于物理资源块(Physical Resource Block,简称为:PRB)调度的,而NB-IoT中上行数据是基于子载波调度的,所以无法直接沿用LTE系统中上行解调参考信号。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供了一种上行信号发送方法和装置,通过合理的设计上行数据发送方式,以使上行解调参考信号可以以子载波为调度单位进行发送。
第一方面,本发明实施例提供一种上行信号发送方法,包括:
生成第一时频单元内待发送的上行解调参考信号,所述第一时频单元的频域为单个子载波或多个子载波;
将所述上行解调参考信号映射到所述第一时频单元的第一时频位置中;
发送所述第一时频单元内的所述上行解调参考信号和所述上行解调参考信号对应的上行数据。
在第一方面的第一种可能的实现方式中,当所述第一时频单元的频域为单个子载波时,所述生成第一时频单元内待发送的上行解调参考信号,包括:
至少根据上行系统的带宽和所述上行系统的子载波间隔生成第一长度的上行解调参考序列;
根据所述第一时频单元所在的频域位置从所述第一长度的上行解调参考序列中得到第一时频单元第一子单元对应的上行解调参考信号;
对所述第一时频单元第一子单元对应的上行解调参考信号进行重复处理或扩展处理,生成所述第一时频单元内待发送的上行解调参考信号。
在第一方面的第二种可能的实现方式中,当所述第一时频单元的频域为单个子载波时,所述生成第一时频单元内待发送的上行解调参考信号,包括:
根据第一时频单元内上行解调参考信号所占的资源单元数生成第二长度的上行解调参考序列,所述第二长度的上行解调参考序列为所述第一时频单元内待发送的上行解调参考信号;或者,
根据固定长度生成第二长度的上行解调参考序列;对所述第二长度的上行解调参考序列进行重复处理或扩展处理或截取处理,生成所述第一时频单元内待发送的上行解调参考信号。
在第一方面的第三种可能的实现方式中,当所述第一时频单元的频域为 单个子载波时;所述第一时频位置为根据每个第一时频单元第二子单元中对应的第二时频位置和时域偏移量中的一种或两种确定的。
根据第一方面的第三种可能的实现方式中,在第四种可能的实现方式中,当所述上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元长度为1毫秒时:
所述第二时频位置为所述第一时频单元第二子单元中的第3个正交频分复用OFDM符号,其中,所述第一时频单元第二子单元中包括3个所述OFDM符号。
根据第一方面的第三种可能的实现方式中,在第五种可能的实现方式中,当所述上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元的长度为2毫秒时:
所述第二时频位置为所述第一时频单元第二子单元中的第2个或第4个OFDM符号,其中,所述第一时频单元第二子单元中包括6个所述OFDM符号;或者,
所述第二时频位置为所述第一时频单元第二子单元中的第3个或第5个OFDM符号,其中,所述第一时频单元第二子单元中包括7个所述OFDM符号;或者,
所述上行信号为混合自动重传请求应答HARQ-ACK信号时,所述第二时频位置为所述第一时频单元第二子单元中的第5个、第6个和第7个OFDM符号,或者为所述第一时频单元第二子单元中的第1个、第2个和第3个OFDM符号,其中,所述第一时频单元第二子单元中包括7个所述OFDM符号。
根据第一方面的第三种可能的实现方式中,在第六种可能的实现方式中,当所述上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元的长度为4毫秒时:
所述第二时频位置为所述第一时频单元第二子单元中的第2个和第8个OFDM符号,或所述第二时频位置为所述第一时频单元第二子单元中的第4个和第10个OFDM符号,其中,所述第一时频单元第二子单元中包括12 个所述OFDM符号;或者,
所述第二时频位置为所述第一时频单元第二子单元中的第3个和第10个OFDM符号,或所述第二时频位置为所述第一时频单元第二子单元中的第5个和第12个OFDM符号,其中,所述第一时频单元第二子单元中包括14个所述OFDM符号。
根据第一方面的第三种可能的实现方式中,在第七种可能的实现方式中,所述时域偏移量为至少根据小区索引、子帧索引、无线帧索引和时隙索引中的一种或多种确定的。
在第一方面的第八种可能的实现方式中,当所述第一时频单元的频域为多个子载波时;所述生成第一时频单元内待发送的上行解调参考信号,包括:
根据所述第一时频单元对应的子载波的个数生成第三长度的上行解调参考序列,所述第三长度的上行解调参考序列为第一时频单元第三子单元对应的上行解调参考信号;
对所述第一时频单元第三子单元对应的上行解调参考信号进行重复处理或扩展处理,生成所述第一时频单元内待发送的上行解调参考信号。
在第一方面的第九种可能的实现方式中,当所述第一时频单元的频域为多个子载波时:
所述第一时频位置的频域为所述第一时频单元对应的全部子载波;或者,
所述第一时频位置的频域为上行系统的全部子载波;或者,
所述第一时频位置的频域为所述第一时频单元的其中一个子载波;或者,
当所述第一时频单元的子载波个数为12时,所述第一时频位置的频域为所述第一时频单元对应的全部子载波;或者,
当所述第一时频单元的子载波个数小于12时,所述第一时频位置的频域为所述第一时频单元中的其中一个子载波。
根据第一方面的第九种可能的实现方式中,在第十种可能的实现方式中,
当所述第一时频位置的频域为所述第一时频单元的其中一个子载波时,所述一个子载波在所述第一时频单元中的频域位置为至少根据小区索引、终端索引、无线帧索引、子帧索引和时隙索引中的一种或多种确定的,或者,所述一个子载波在所述第一时频单元中的频域位置为根据信令确定的。
在第一方面的第十一种可能的实现方式中,当所述第一时频单元的频域为多个子载波时:
所述第一时频位置的时域为每个第一时频单元第四子单元中间N个OFDM符号,其中,所述N为正整数;或者,
所述第一时频位置的时域为以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号,其中,所述P和所述N为正整数。
根据第一方面的第十一种可能的实现方式中,在第十二种可能的实现方式中,所述第一时频位置的时域中的P个OFDM符号的位置为至少根据小区索引、子帧索引和无线帧索引中的一种或多种所确定的。
根据第一方面的第一种或第二种或第八种可能的实现方式中,在第十三种可能的实现方式中,所述扩展处理包含通过正交序列进行扩展,其中,所述正交序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的。
根据第一方面的第一种或第二种或第八种可能的实现方式中,在第十四种可能的实现方式中,所述上行解调参考序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的。
根据第一方面的第一种或第二种或第八种可能的实现方式中,在第十五种可能的实现方式中,所述上行解调参考序列为:哈达玛序列,离散傅里叶变换DFT序列,恒包络零自相关CAZAC序列,ZC序列,伪随机序列,计算机搜索序列CGS和低峰值平均功率比PAPR序列中的一种或多种。
第二方面,本发明实施例提供一种上行信号发送装置,包括:
信号生成模块,设置为生成第一时频单元内待发送的上行解调参考信号,所述第一时频单元的频域为单个子载波或多个子载波;
映射模块,设置为将所述信号生成模块生成的上行解调参考信号映射到所述第一时频单元的第一时频位置中;
发送模块,设置为发送所述第一时频单元内的所述上行解调参考信号和所述上行解调参考信号对应的上行数据。
在第二方面的第一种可能的实现方式中,当所述第一时频单元的频域为单个子载波时,所述信号生成模块包括:
第一序列生成单元,设置为至少根据上行系统的带宽和所述上行系统的子载波间隔生成第一长度的上行解调参考序列;
第一信号确定单元,设置为根据所述第一时频单元所在的频域位置从所述第一序列生成单元生成的第一长度的上行解调参考序列中得到第一时频单元第一子单元对应的上行解调参考信号;
第一信号生成单元,设置为对所述第一信号确定单元得到的第一时频单元第一子单元对应的上行解调参考信号进行重复处理或扩展处理,生成所述第一时频单元内待发送的上行解调参考信号。
在第二方面的第二种可能的实现方式中,当所述第一时频单元的频域为单个子载波时;
所述信号生成模块设置为:根据第一时频单元内上行解调参考信号所占的资源单元数生成第二长度的上行解调参考序列,所述第二长度的上行解调参考序列为所述第一时频单元内待发送的上行解调参考信号;或者
所述信号生成模块包括:第二序列生成单元,设置为根据固定长度生成第二长度的上行解调参考序列;
第二信号生成单元,设置为对所述第二序列生成单元生成的第二长度的上行解调参考序列进行重复处理或扩展处理或截取处理,生成所述第一时频单元内待发送的上行解调参考信号。
在第二方面的第三种可能的实现方式中,当所述第一时频单元的频域为单个子载波时;所述第一时频位置为根据每个第一时频单元第二子单元中对应的第二时频位置和时域偏移量中的一种或两种确定的。
根据第二方面的第三种可能的实现方式中,在第四种可能的实现方式 中,当所述上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元长度为1毫秒时:
所述第二时频位置为所述第一时频单元第二子单元中的第3个正交频分复用OFDM符号,其中,所述第一时频单元第二子单元中包括3个所述OFDM符号。
根据第二方面的第三种可能的实现方式中,在第五种可能的实现方式中,当所述上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元的长度为2毫秒时:
所述第二时频位置为所述第一时频单元第二子单元中的第2个或第4个OFDM符号,其中,所述第一时频单元第二子单元中包括6个所述OFDM符号;或者,
所述第二时频位置为所述第一时频单元第二子单元中的第3个或第5个OFDM符号,其中,所述第一时频单元第二子单元中包括7个所述OFDM符号;或者,
所述上行信号为混合自动重传请求应答HARQ-ACK信号时,所述第二时频位置为所述第一时频单元第二子单元中的第5个、第6个和第7个OFDM符号,或者为所述第一时频单元第二子单元中的第1个、第2个和第3个OFDM符号,其中,所述第一时频单元第二子单元中包括7个所述OFDM符号。
根据第二方面的第三种可能的实现方式中,在第六种可能的实现方式中,当所述上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元的长度为4毫秒时:
所述第二时频位置为所述第一时频单元第二子单元中的第2个和第8个OFDM符号,或者,所述第二时频位置为所述第一时频单元第二子单元中的第4个和第10个OFDM符号,其中,所述第一时频单元第二子单元中包括12个所述OFDM符号;或者,
所述第二时频位置为所述第一时频单元第二子单元中的第3个和第10个OFDM符号,或者所述第二时频位置为所述第一时频单元第二子单元中 的第5个和第12个OFDM符号,其中,所述第一时频单元第二子单元中包括14个所述OFDM符号。
根据第二方面的第三种可能的实现方式中,在第七种可能的实现方式中,所述时域偏移量为至少根据小区索引、子帧索引、无线帧索引和时隙索引中的一种或多种确定的。
在第二方面的第八种可能的实现方式中,当所述第一时频单元的频域为多个子载波时;所述信号生成模块包括:
第三序列生成单元,设置为根据所述第一时频单元对应的子载波的个数生成第三长度的上行解调参考序列,所述第三长度的上行解调参考序列为第一时频单元第三子单元对应的上行解调参考信号;
第三信号生成单元,设置为对所述第三序列生成单元生成的第一时频单元第三子单元对应的上行解调参考信号进行重复处理或扩展处理,生成所述第一时频单元内待发送的上行解调参考信号。
在第二方面的第九种可能的实现方式中,当所述第一时频单元的频域为多个子载波时:
所述第一时频位置的频域为所述第一时频单元对应的全部子载波;或者,
所述第一时频位置的频域为上行系统的全部子载波;或者,
所述第一时频位置的频域为所述第一时频单元的其中一个子载波;或者,
当上行系统的子载波的个数为12时,所述第一时频位置的频域为所述第一时频单元对应的全部子载波;或者,
当上行系统的子载波的个数小于12时,所述第一时频位置的频域为所述第一时频单元中的其中一个子载波。
根据第二方面的第九种可能的实现方式中,在第十种可能的实现方式中,
当所述第一时频位置的频域为所述第一时频单元的其中一个子载波时,所述一个子载波在所述第一时频单元中的频域位置为至少根据小区索引、终 端索引、无线帧索引、子帧索引和时隙索引中的一种或多种确定的,或者,所述一个子载波在所述第一时频单元中的频域位置为根据信令确定的。
在第二方面的第十一种可能的实现方式中,当所述第一时频单元的频域为多个子载波时:
所述第一时频位置的时域为每个第一时频单元第四子单元中间N个OFDM符号,其中,所述N为正整数;或者,
所示第一时频位置的时域为以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号,其中,所述P和所述N为正整数。
根据第二方面的第十一种可能的实现方式中,在第十二种可能的实现方式中,所述第一时频位置的时域中的P个OFDM符号的位置为至少根据小区索引、子帧索引和无线帧索引中的一种或多种所确定的。
根据第二方面的第一种或第二种或第八种可能的实现方式中,在第十三种可能的实现方式中,所述扩展处理包含通过正交序列进行扩展,其中,所述正交序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引、或终端索引中的一种或多种确定的。
根据第二方面的第一种或第二种或第八种可能的实现方式中,在第十四种可能的实现方式中,所述上行解调参考序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的。
根据第二方面的第一种或第二种或第八种可能的实现方式中,在第十五种可能的实现方式中,所述上行解调参考序列为:哈达玛序列,离散傅里叶变换DFT序列,恒包络零自相关CAZAC序列,ZC序列,伪随机序列,计算机搜索序列CGS和低峰值平均功率比PAPR序列中的一种或多种。
第三方面,本发明实施例提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述上行信号发送方法。
本发明实施例提供的上行信号发送方法和装置,通过生成第一时频单元内待发送的上行解调参考信号,将该上行解调参考信号映射到第一时频单 元的第一时频位置中,发送所述第一时频单元上行解调参考信号和该上行解调参考信号对应的上行数据,其中,第一时频单元的频域可以为单个子载波或多个子载波;本发明实施例提供的方法通过合理的设计上行数据发送方式,可以使上行解调参考信号以子载波为调度单位进行发送。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1为本发明实施例提供的一种上行信号发送方法的流程图;
图2为图1所示实施例提供的信号发送方法中一种第一时频单元的示意图;
图3为本发明实施例提供的另一种上行信号发送方法的流程图;
图4为本发明实施例提供的又一种上行信号发送方法的流程图;
图5为图3所示实施例提供的信号发送方法中一种第一时频单元的示意图;
图6为图4所示实施例提供的信号发送方法中一种第一时频单元的示意图;
图7为图4所示实施例提供的信号发送方法中另一种第一时频单元的示意图;
图8为本发明实施例提供的再一种上行信号发送方法的流程图;
图9为图8所示实施例提供的信号发送方法中的一种第一时频单元的示意图;
图10为图8所示实施例提供的信号发送方法中的另一种第一时频单元的示意图;
图11为图8所示实施例提供的信号发送方法中的又一种第一时频单元 的示意图;
图12为图8所示实施例提供的信号发送方法中的再一种第一时频单元的示意图;
图13为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图14为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图15为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图16为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图17为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图18为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图19为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图20为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图21为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图22为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图23为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图;
图24为本发明实施例提供的一种上行信号发送装置的结构示意图;
图25为本发明实施例提供的另一种上行信号发送装置的结构示意图。
详述
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
下面通过实施例对本申请的技术方案进行详细说明,本发明以下各实施例中的终端设备例如可以为物联网中的终端设备。本文提供以下几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图1为本发明实施例提供的一种上行信号发送方法的流程图。本实施例提供的上行信号发送方法适用于NB-IoT中上行解调参考信号发送的情况中,该方法可以由上行信号发送装置执行,该上行信号发送装置通过硬件和软件结合的方式来实现,该装置可以集成在终端设备的处理器中,供处理器调用使用。如图1所示,本实施例的方法可以包括:
S110,生成第一时频单元内待发送的上行解调参考信号,该第一时频单元的频域为单个子载波或多个子载波。
本发明实施例提供的上行信号发送方法,目的在于合理的配置上行解调参考信号,以及该上行解调参考信号对应的上行数据的发送位置,该上行解调参考信号例如为DMRS(Demodulation Reference Signal)信号。通常地,上行解调参考信号的发送包括序列、位置和与上行数据比例这几方面的内容,序列为上行解调参考信号的内容,位置为信号发送时所在的时频位置,已有LTE中,上行解调参考信号与上行数据的比例为1:6。
已有的LTE/LTE-A(LTE-Advanced,LTE的演进)技术中,上行数据的调度单位为PRB,所以上行解调参考信号的设计基于RB(Resource Block,资源块)为单位,即频域以12或12的倍数个子载波,本发各明实施例中, 上行解调参考信号对应的上行数据的调度单位为子载波,即频域上可以1个或多个子载波,也就是说,本实施例中用于发送上行解调参考信号的第一时频单元的频域可以为单个子载波或者多个子载波。
S120,将上行解调参考信号映射到第一时频单元的第一时频位置中。
在本实施例中,对上行解调参考信号的映射就是将该上行解调参考信号映射到第一时频位置。本实施例在实际实现中,对于第一时频单元为单个子载波时,上行系统的子载波间隔可以为更小的子载波间隔,如3.75KHz,还可以为15KHz,对于第一时频单元为多个子载波时,上行系统的子载波间隔为15KHz。
S130,发送第一时频单元内的上行解调参考信号和上行解调参考信号对应的上行数据。
在本实施例中,如图2所示,为图1所示实施例提供的信号发送方法中一种第一时频单元的示意图,图2中的第一时频单元的频域为单个子载波,假设第一时频单元中的时频子单元为1ms,上行系统的子载波间隔为3.75KHz,则上述时频子单元包含3个OFDM符号,并且假设时域偏移量为0,那么第一时频位置为该时频子单元中的第3个OFDM符号上,第一时频单元包括多个这样的时频子单元。
本实施例所提供的上行信号发送方法,通过生成第一时频单元内待发送的上行解调参考信号,将该上行解调参考信号映射到第一时频单元的第一时频位置中,发送所述第一时频单元上行解调参考信号和该上行解调参考信号对应的上行数据,其中,第一时频单元的频域可以为单个子载波或多个子载波;本实施例提供的方法通过合理的设计上行数据发送方式,可以使上行解调参考信号以子载波为调度单位进行发送。
图3为本发明实施例提供的另一种上行信号发送方法的流程图。本实施例中的第一时频单元的频域为单个子载波,在上述图1所示实施例的基础上,本实施例中生成第一时频单元内发送的上行解调参考信号的方式,即S110可以包括:
S111,至少根据上行系统的带宽和上行系统的子载波间隔生成第一长度 的上行解调参考序列。
S112,根据第一时频单元所在的频域位置从第一长度的上行解调参考序列中得到第一时频单元第一子单元对应的上行解调参考信号。
S113,对第一时频单元第一子单元对应的上行解调参考信号进行重复处理或扩展处理,生成第一时频单元内待发送的上行解调参考信号。
图4为本发明实施例提供的又一种上行信号发送方法的流程图。本实施例中的第一时频单元的频域同样为单个子载波,在上述图1所示实施例的基础上,本实施例中生成第一时频单元内发送的上行解调参考信号的方式,即S110可以包括:
S114,根据第一时频单元内上行解调参考信号所占的资源单元数生成第二长度的上行解调参考序列,该第二长度的上行解调参考序列为第一时频单元内待发送的上行解调参考信号。
在图4所示实施例的另一种可能的实现方式中,S110可以包括:
S115,根据固定长度生成第二长度的上行解调参考序列。
S116,对第二长度的上行解调参考序列进行重复处理或扩展处理或截取处理,生成第一时频单元内待发送的上行解调参考信号。
其中,图4所示实施例中的S114与S115~S116是两种可选的执行方式,为择一执行的。
上述各实施例在所述第一时频单元为单个子载波时,第一时频位置为根据每个第一时频单元第二子单元中对应的第二时频位置和时域偏移量中的一种或两种确定的。本实施例中的第一时频单元中具有多个第一时频单元第二子单元,可以参考图2所示的第一时频单元,其中的时频子单元即为第一时频单元第二子单元,该第一时频单元第二子单元的时域长度例如可以是1ms、2ms或4ms,每1ms内OFDM符号的数量与子载波的间隔相关。在实际实现中,由于通常存在时域偏移量,因此,本发明实施例中的第一时域位置由第二时频位置和时域偏移量中的一种或两种决定。该时域偏移量为至少根据小区索引、子帧索引、无线帧索和时隙索引中的一种或多种确定的。以时域偏移量根据小区索引确定举例说明,即每个小区对应的时域偏移量不 同,例如服务小区1对应的时域偏移量为1,也就是在第二时频位置的基础上向右偏移1个子帧,服务小区2对应的时域偏移量为2,也就是在第二时域偏移的基础上向右偏移2个子帧,其中假设时域偏移量即为偏移的子帧数量,也可以预先定义时域偏移量和偏移子帧数量的关系。
结合上述图3和图4中生成上行解调参考信号的方式,以下通过一些实例说明第一时频单元的频域为单个子载波时,第二时频位置的几种可能情况:
情况一、当上行系统的子载波间隔为第一间隔阈值,且第一时频单元第二子单元的长度为1ms时,第二时频位置为第一时频单元第二子单元中的第3个OFDM符号,其中,该第一时频单元第二子单元中包括3个OFDM符号。
举例来说,图5为图3所示实施例提供的信号发送方法中一种第一时频单元的示意图。本实施例中的第一间隔阈值为3.75KHz,上行系统的子载波个数为48个,例如第一时频单元为子载波索引为1的单个子载波,第一时频单元第二子单元的长度为1ms。图5所示实施例为按照图3所示方式生成上行解调参考信号,因为上行系统的子载波个数为48,所以生成长度为48的ZC(Zadoff-chu)序列{Z(0),Z(1),…,Z(47)},根据第一时频单元所在的频域位置得到第一时频单元第一子单元对应的上行解调参考信号Z(1),对上行解调参考信号Z(1)进行重复处理或扩展处理,例如进行重复处理得到第一时频单元的上行解调参考信号{Z(1),Z(1),…,Z(1)}。由于第一时频单元第二子单元长度为1ms,那么上行解调参考信号对应的第二时频位置为第一时频单元第二子单元中的第3个OFDM符号上,位置如图5所示。
情况二、当上行系统的子载波间隔为第一间隔阈值,且第一时频单元第二子单元的长度为2ms时,第二时频位置为第一时频单元第二子单元中的第2或者为第4个个OFDM符号,其中,该第一时频单元第二子单元中包括6个OFDM符号;或者,第二时频位置为第一时频单元第二子单元中的第3或第5个OFDM符号,其中,该第一时频单元第二子单元中包括7个OFDM符号;另外,在该情况的一种特殊应用场景中,当上行信号仅为混合自动重 传请求(Hybrid Automatic Repeat reQuest,简称为:HARQ)应答信号(Acknowledgement,简称为:ACK)信号,即HARQ-ACK信号时,第二时频位置为第一时频单元第二子单元中的第5个、第6个和第7个OFDM符号,或者为第一时频单元第二子单元中的第1个、第2个和第3个OFDM符号,并且该应用场景中的第一时频单元第二子单元中同样包括7个OFDM符号。
举例来说,图6为图4所示实施例提供的信号发送方法中一种第一时频单元的示意图。本实施例中的第一间隔阈值为3.75KHz,上行系统的子载波个数为48个,例如第一时频单元为子载波索引为1的单个子载波,第一时频单元第二子单元的长度为2ms,且包括6个OFDM符号。图6所示实施例为按照图4所示方式生成上行解调参考信号,因为第一时频单元的时域长度为48ms,且第一时频单元第二子单元的长度为2ms,所以生成长度为24的ZC序列{Z(0),Z(1),…,Z(23)},那么第一时频单元内的上行解调参考信号为{Z(0),Z(1),…,Z(23)}。由于第一时频单元第二子单元长度为2ms,那么上行解调参考信号对应的第二时频位置为第一时频单元第二子单元中的第2个或第4个OFDM符号,图6所示以第二时频位置为第一时频单元第二子单元中的第2个OFDM符号为例予以示出。
本实施例中也可以生成长度为12的倍数的序列,或者生成固定长度的序列,通过重复处理或扩展处理或截取处理得到上行解调参考信号。
举例来说,图7为图4所示实施例提供的信号发送方法中另一种第一时频单元的示意图。本实施例中的第一间隔阈值为3.75KHz且上行信号仅为HARQ-ACK应答信号,例如第一时频单元为子载波索引为1的单个子载波,时域为8ms,第一时频单元第二子单元的长度为2ms且包括7个OFDM符号。图7所示实施例为按照图4所示方式生成上行解调参考信号,因为第一时频单元的时域长度为8ms,且第一时频单元第二子单元的长度为2ms,所以生成长度为4的CGS序列{C(0),C(1),…,C(3)},那么第一时频单元内的上行解调参考信号为使用长度为3的OCC序列[W(0),W(1),W(2)],将长度为4长CGS序列{C(0),C(1),…,C(3)}进行扩展得到[C(0)W(0),C(0)W(1),C(0)W(2),C(1)W(0),C(1) W(1),…,C(3)W(3)]。其中OCC序列如下表1所示,OCC序列索引至少通过服务小区索引,时隙索引确定,一个例子为OCC
Figure PCTCN2017074745-appb-000001
mod为取模操作,
Figure PCTCN2017074745-appb-000002
为服务小区索引,ns为时隙索引。
表1长度为3的OCC序列
OCC序列索引 OCC序列
0 [1 1 1]
1 [1 ej2π/3 ej4π/3]
2 [1 ej4π/3 ej2π/3]
因为LTE中探测参考信号(Sounding Reference Signal,简称为:SRS)位于每个子帧的最后一个符号,而解调参考信号(Demodulation Reference Signal,简称为:DMRS)映射时考虑和LTE SRS碰撞问题,所以映射在第1个、第2个和第3个符号,或者第5个、第6个和第7个符号上。图7中以上行解调参考信号对应的第二时频位置为第一时频单元第二子单元中的第1个,第2个和第3个OFDM符号为例。
情况三、当上行系统的子载波间隔为第一间隔阈值,且第一时频单元第二子单元的长度为4ms时,第二时频位置为第一时频单元第二子单元中的第2个和第8个OFDM符号,或第二时频位置为第一时频单元第二子单元中的第4个和第10个OFDM符号,其中,该第一时频单元第二子单元中包括12个OFDM符号;或者,第二时频位置为第二时频单元中的第3个和第10个OFDM符号,或第二时频位置为第一时频单元第二子单元中的第5个和第12个OFDM符号,其中,该第一时频单元第二子单元中包括14个OFDM符号。
上述DMRS的时域位置是基于以下条件中的一种或多种确定的:(1)考虑了和LTE SRS碰撞;(2)不跨2个LTE子帧。
图8为本发明实施例提供的再一种上行信号发送方法的流程图。本实施例中的第一时频单元的频域为多个子载波,在上述图1所示实施例的基础上,本实施例中生成第一时频单元内待发送的上行解调参考信号的方式,即S110可以包括:
S117,根据第一时频单元对应的子载波的个数生成第三长度的上行解调参考序列,该第三长度的上行解调参考信号为第一时频单元第三子单元对应的上行解调参考信号。
S118,对第一时频单元第三子单元对应的上行解调参考信号进行重复处理或扩展处理,生成第一时频单元内待发送的上行解调参考信号。
本实施例中生成的上行解调参考序列的长度通常与第一时频单元中子载波的个数相同。举例来说,图9为图8所示实施例提供的信号发送方法中的一种第一时频单元的示意图。本实施例中上行系统的子载波间隔为15KHz,上行系统的子载波个数为12个,基站为终端设备分配的上行子载波的个数为2个。图9所示实施例为按照图8所示方式生成上行解调参考信号,因为第一时频单元的频域长度为2,所以生成长度为2的离散傅里叶变换(Discrete Fourier Transform,简称为:DFT)序列{D(0),D(1)},该序列{D(0),D(1)}即为第一时频单元第三子单元对应的上行解调参考信号,对第一时频单元第三子单元对应的上行解调参考信号进行重复处理得到第一时频单元内待发送的上行解调参考信号,第一时频位置如图9所示。图9所示实施例为对第一时频单元的频域为多个子载波情况下,第一时频位置的一个示意性的描述。
本发明上述各实施例中的扩展处理包括通过正交序列进行扩展,其中,该正交序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的;上行解调参考序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的;上行解调参考序列通常为:哈达玛(Hadmard)序列,DFT序列,恒包络零自相关(Const Amplitude Zero Auto-Corelation,简称为:CAZAC)序列,ZC序列,伪随机(Pseudo-Random)序列,计算机搜索序列(Computer Search Sequence,简称为:CGS)和低峰值平均功率比(Peak to Average Power Ratio,简称为:PAPR)序列中的一项或多项。
举例来说,假设根据第一时频单元内上行解调参考信号所占的资源单元数生成第二长度的上行解调参考序列,假设第一时频单元内上行解调参考信号所占的资源单元数为16,那么第二长度的上行解调参考序列的长度为16, 假设上行解调参考序列为根据哈达玛序列和伪随机序列相乘得到;假设基于哈达玛序列得到的32条长度为16的序列为[UH16H16],其中H16为16长的哈达玛矩阵,U为1x16的矩阵,下表2给出一种实际的例子,伪随机序列为LTE系统中采用的序列,伪随机序列的初始值根据单载波对应的资源单元的长度,子帧索引,无线帧索引,终端索引和时隙索引中的一种或多种确定。这里不再赘述。
表2 32条长度为16的序列
Figure PCTCN2017074745-appb-000003
Figure PCTCN2017074745-appb-000004
再举例来说,第三长度的上行解调参考序列为计算机搜索序列(Computer Search Sequence,简称为:CGS),那么按照以下规则搜索序列:(1)满足一定的立方度量(Cubic Metric,简称为:CM)特性,(2)满足一定的互相关性;(3)基于正交相移键控(Quadrature Phase Shift Keyin,简称为:QPSK)符号;一个例子如下所示,假设第三长度的上行解调参考序列的长度为6,那么搜索得到的序列为
Figure PCTCN2017074745-appb-000005
0≤n≤5,其中,u为序列号,
Figure PCTCN2017074745-appb-000006
如下表所示:
表3序列长度为6时的
Figure PCTCN2017074745-appb-000007
Figure PCTCN2017074745-appb-000008
Figure PCTCN2017074745-appb-000009
当序列长度为3时,那么搜索得到的序列为
Figure PCTCN2017074745-appb-000010
0≤n≤2,其中,u为序列号,φ(n)如下表4~表8所示,表4~表8对应的序列个数分别为3,4,6,8,16。
表4序列长度为3时的
Figure PCTCN2017074745-appb-000011
Figure PCTCN2017074745-appb-000012
表5序列长度为3时的
Figure PCTCN2017074745-appb-000013
Figure PCTCN2017074745-appb-000014
表6序列长度为3时的
Figure PCTCN2017074745-appb-000015
Figure PCTCN2017074745-appb-000016
表7序列长度为3时的
Figure PCTCN2017074745-appb-000017
Figure PCTCN2017074745-appb-000018
表8序列长度为3时的
Figure PCTCN2017074745-appb-000019
Figure PCTCN2017074745-appb-000020
Figure PCTCN2017074745-appb-000021
当第一时频单元对应的子载波的个数为12时,按照已有LTE中上行解调参考序列生成方式得到上行解调参考信号。
本实施例中在第一时频单元的频域为多个子载波时,将上行解调参考信号映射到第一时频单元的第一时频位置中,其中该第一时频单元中包括多个第一时频单元第三子单元,本实施中第一时频位置的频域和时频的位置为:
本实施例中第一时频位置的频域的几种情况为:
第一种,第一时频位置的频域为第一时频单元对应的全部子载波。
第二种,第一时频位置的频域为上行系统的全部子载波。
第三种,第一时频位置的频域为第一时频单元的其中一个子载波。
第四种,当第一时频单元的子载波个数为12时,第一时频位置的频域为第一时频单元对应的全部子载波。
第五种,当第一时频单元的子载波个数小于12时,第一时频位置的频域为第一时频单元中的其中一个子载波。
当第一时频位置的频域为第一时频单元的其中一个子载波时,该一个子载波在第一时频单元中的频域位置为至少根据小区索引、终端索引、无线帧 索引、子帧索引和时隙索引中的一种或多种确定的,或者,该一个子载波在第一时频单元中的频域位置为根据信令确定的。当第一时频位置的频域为第一时频单元的其中一个子载波时,上行解调参考信号的生成方式也可以为上述图3或图4所示实施例中的生成上行解调参考信号的方式。
本实施例中第一时频位置的时域的几种情况为:
第一种,第一时频位置的时域为每个第一时频单元第四子单元中间N个OFDM符号。
第二种,第一时频位置的时域为以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号。
上述N和P均为正整数;另外,上述第一时频位置的时域中的P个OFDM符号的位置为至少根据小区索引、子帧索引、无线帧索引、和时隙索引中的一种或多种所确定的。
以下通过一些实例,对第一时频单元的频域为多个子载波时,第一时频位置的多种可能情况做以说明。以下实例中均假设上行系统的子载波间隔为15KHz,上行系统的子载波个数为12,上行解调参考信号与上行数据的比例为1:6。
第一种情况:第一时频位置的频域为第一时频单元对应的全部子载波。
假设时域为每个第一时频单元第四子单元中间N个OFDM符号。
举例来说,图10为图8所示实施例提供的信号发送方法中的另一种第一时频单元的示意图。其中,图10示意出第一时频单元中频域的全部子载波(2个子载波),时域的1个子帧,上行解调参考信号与上行数据的比例为1:6,频域上为连续的映射方式,时域N=2且2个符号为连续;如图10所示,第一时频位置的频域为第一时频单元对应的全部子载波,时域为第一时频单元第四子单元的中间2个OFDM符号,即第6个和第7个OFDM符号,其中符号为0开始编号。
再举例来说,图11为图8所示实施例提供的信号发送方法中的又一种第一时频单元的示意图。其中,图11示意出第一时频单元中频域的全部子载波(2个子载波),时域的2个子帧,上行解调参考信号与上行数据的比 例为1:6,频域上为连续的映射方式,时域N=4且4个符号为连续;如图11所示,第一时频位置的频域为第一时频单元对应的全部子载波,时域为第一时频单元第四子单元的中间4个OFDM符号,即第12、13、14和15个符号,其中符号为0开始编号。
假设时域为以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号。
举例来说,图12为图8所示实施例提供的信号发送方法中的再一种第一时频单元的示意图。图12示意出第一时频单元中频域的全部子载波(2个子载波),时域的2个子帧,上行解调参考信号与上行数据的比例为1:6,频域上为连续的映射方式,时域N=4且4个符号以P=1为单位均匀分布在第一时频单元第四子单元中的4个OFDM符号;如图12所示,第一时频位置的频域为第一时频单元对应的全部子载波,时域为第一时频单元第四子单元的中间4个OFDM符号,即第3、10、17和24个符号,其中符号为0开始编号。
再举例来说,图13为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图13示意出第一时频单元中频域的全部子载波(2个子载波),时域的2个子帧,上行解调参考信号与上行数据的比例为1:6,频域上为连续的映射方式,时域N=4且4个符号以P=2为单位均匀分布在第一时频单元第四子单元中的4个OFDM符号;如图13所示,第一时频位置的频域为第一时频单元对应的全部子载波,时域为第一时频单元第四子单元的中间4个OFDM符号,即第6、7、20和21个符号,其中符号为0开始编号。
假设时域为以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号。
再举例来说,图14为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图13示意出第一时频单元中频域的全部子载波(4个子载波),时域的2个子帧,上行解调参考信号与上行数据的比例为1:6,例如频域上以Q=1为单位进行离散映射,时域上为连续的映射方式;如图14所示,以{频域1个子载波,时域4个符号}为单位映射。
再举例来说,图15为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图15示意出第一时频单元中频域的全部子载波(4个子载波),时域的2个子帧,上行解调参考信号与上行数据的比例为1:6,例如频域上以Q=2为单位进行离散映射,时域上为连续的映射方式;如图15所示,以{频域2个子载波,时域4个符号}为单位映射。
再举例来说,图16为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图16示意出第一时频单元中频域的全部子载波(4个子载波),时域的2个子帧,上行解调参考信号与上行数据的比例为1:6,例如频域上以Q=1为单位进行离散映射,时域上以P=1为单位均匀分布在第一时频单元第四子单元中的4个OFDM符号;如图16所示,以{频域1个子载波,时域1个符号}为单位映射。
再举例来说,图17为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图17示意出第一时频单元中频域的全部子载波(4个子载波),时域的2个子帧,上行解调参考信号与上行数据的比例为1:6,例如频域上以Q=2为单位进行离散映射,时域上以P=1为单位均匀分布在第一时频单元第四子单元中的4个OFDM符号;如图17所示,以{频域2个子载波,时域1个符号}为单位映射。
再举例来说,图18为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图18示意出第一时频单元中频域的全部子载波(4个子载波),时域的2个子帧,上行解调参考信号与上行数据的比例为1:6,例如频域上以Q=1为单位进行离散映射,时域上以P=2为单位均匀分布在第一时频单元第四子单元中的4个OFDM符号;如图18所示,以{频域1个子载波,时域2个符号}为单位映射。
再举例来说,图19为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图19示意出第一时频单元中频域的全部子载波(4个子载波),时域上为2个子帧,上行解调参考信号与上行数据的比例为1:6,例如频域上以Q=2为单位进行离散映射,时域上以P=2为单位均匀分布在第一时频单元第四子单元中的4个OFDM符号;如图19所示,以{频域2个子载波,时域2个符号}为单位映射。
第二种情况:第一时频位置的频域为上行系统的全部子载波。
假设时域为每个第一时频单元第四子单元中间N个OFDM符号。
举例来说,图20为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图20示意出第一时频单元中频域的全部子载波(12个子载波),时域的1个子帧,其中,频域为上行系统的子载波个数的总数,例如频域上以Q=12为单位映射,时域上连续映射;如图20所示。
假设时域以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号。
举例来说,图21为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图21示意出第一时频单元中频域的全部子载波(12个子载波),时域的1个子帧,其中,频域为上行系统的子载波个数的总数,例如频域上以Q=12为单位映射,时域上以P=1为单位均匀分布在第一时频单元第四子单元中的4个OFDM符号;如图21所示。
第三种情况:第一时频位置的频域为第一时频单元的其中一个子载波。
假设时域为每个第一时频单元第四子单元中间N个OFDM符号。
举例来说,图22为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图22示意出第一时频单元中频域的全部子载波(4个子载波),时域的1个子帧,其中,频域为第一时频单元中的一个子载波,例如频域为索引为1的子载波,时域上N=2且为连续;如图22所示。
假设时域以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号。
举例来说,图23为图8所示实施例提供的信号发送方法中的还一种第一时频单元的示意图。图23示意出第一时频单元中频域的全部子载波(4个子载波),时域的1个子帧,其中,频域为第一时频单元中的一个子载波,例如频域为索引为1的子载波,时域上以P=2为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号;如图23所示。
第四种情况:当第一时频单元的子载波个数为12时,第一时频位置的频域为第一时频单元对应的全部子载波。举例来说,当第一时频单元的子载 波个数为12时,第一时频位置的频域对应的子载波个数也为12。
第五种情况:当第一时频单元的子载波个数小于12时,第一时频位置的频域为第一时频单元中的其中一个子载波。举例来说,当第一时频单元的子载波个数为12时,第一时频位置的频域对应的子载波个数为1个。
上述第一时频单元的频域为多个子载波的实例的图22和图23中,上行解调参考信号映射到第一时频单元第四子单元的时域位置对应的频域位置上不映射上行数据,并且该两种情况中,上行解调参考信号所在子载波的频域位置可以由基站通过信令通知给终端设备,或者预先设定,或者与终端设备的索引、小区索引相关。另外,本发明上述各实施例的图5和图6,图9到图23中时频单元中的填充的方格表示上行解调参考信号,为填充的方格表示上行数据,图22和图23中不映射上行数据的位置已用文字标识出来。
上述第一时频单元的频域为单个子载波或多个子载波时,将上行解调参考信号映射到第一时频单元上的第一时频位置,仅为本发明实施例的一些映射规则,本发明实施例并不限制上行解调参考信号的映射规则,只要是可以实现上行解调参考信号的映射,并且符合预置的映射规则,都可以应用在本发明实施例提供的上行信号发送方法中。
图24为本发明实施例提供的一种上行信号发送装置的结构示意图。本实施例提供的上行信号发送装置适用终端设备进行上行解调参考信号发送的情况中,该上行信号发送装置通过硬件和软件结合的方式来实现,该装置可以集成在终端设备的处理器中,供处理器调用使用。如图24所示,本实施例的上行信号发送包括:信号生成模块11、映射模块12和发送模块13。
其中,信号生成模块11,设置为生成第一时频单元内待发送的上行解调参考信号,该第一时频单元的频域为单个子载波或多个子载波。
本发明实施例提供的上行信号发送装置,可以合理的配置上行解调参考信号,以及该上行解调参考信号对应的上行数据的发送位置。上述实施例中已经说明LTE/LTE-A技术中,上行解调参考信号的调度单位和无法应用于NB-IoT系统中的原因,在上述实施例中已经说明,故在此不再赘述。
映射模块12,设置为将信号生成模块11生成的上行解调参考信号映射 到第一时频单元的第一时频位置中。
在本实施例中,对上行解调参考信号的映射就是按照上行解调参考信号与对应的上行数据的比例,以及预置的映射规则,将该上行解调参考信号映射到第一时频位置。
本实施例在实际实现中,对于第一时频单元是单个子载波或多个子载波,上行系统的子载波间隔更小的子载波间隔,如3.75KHz,还可以为15KHz,对于第一时频单元为多个子载波时,上行系统的子载波间隔为15KHz。
发送模块13,设置为发送第一时频单元内的上行解调参考信号和上行解调参考信号对应的上行数据。
在本实施例中,第一映射位置的多种情况,同样可以参考图2、图6到图8所示的第一时频单元。
本发明实施例提供的上行信号发送装置用于执行本发明图1所示实施例提供的上行信号发送方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
图25为本发明实施例提供的另一种上行信号发送装置的结构示意图。本实施例中的第一时频单元的频域为单个子载波,在上述图24所示实施例的基础上,本实施例中信号生成模块11包括:第一序列生成单元14,设置为至少根据上行系统的带宽和上行系统的子载波间隔生成第一长度的上行解调参考序列;第一信号确定单元15,设置为根据第一时频单元所在的频域位置从第一序列生成单元14生成的第一长度的上行解调参考序列中得到第一时频单元第一子单元对应的上行解调参考信号;第一信号生成单元16,设置为对第一信号确定单元15得到的第一时频单元第一子单元对应的上行解调参考信号进行重复处理或扩展处理,生成所述第一时频单元内待发送的上行解调参考信号。
本发明实施例提供的上行信号发送装置用于执行本发明图3所示实施例提供的上行信号发送方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
可以通过上述图24所示的装置生成上行解调参考信号,其实现方式为:信号生成模块11设置为:根据第一时频单元内上行解调参考信号所占的资源单元数生成第二长度的上行解调参考序列,该第二长度的上行解调参考序列为第一时频单元内待发送的上行解调参考信号。在本实施例的另一种可能的实现方式中,信号生成模块11包括:第二序列生成单元,设置为根据固定长度生成第二长度的上行解调参考序列;第二信号生成单元,设置为对第二序列生成单元生成的第二长度的上行解调参考序列进行重复处理或扩展处理或截取处理,生成第一时频单元内待发送的上行解调参考信号。
本发明实施例提供的上行信号发送装置用于执行本发明图4所示实施例提供的上行信号发送方法,具备相应的功能模块,其实现原理和技术效果类似,此处不再赘述。
上述各实施例在所述第一时频单元为单个子载波时,第一时频位置为根据每个第一时频单元第二子单元中对应的第二时频位置和时域偏移量中的一种或两种确定的。在实际实现中,由于通常存在时域偏移量,因此,本发明实施例中的第一时域位置由第二时频位置和时域偏移量中的一种或两种决定。该时频偏移量为至少根据小区索引、子帧索引、无线帧索和时隙索引中的一种或多种确定的。
在上述第一时频单元的频域为单个子载波的情况下,上述第二时频位置包括以下几种情况:
情况一、当上行系统的子载波间隔为第一间隔阈值,且第一时频单元第二子单元的长度为1ms时,第二时频位置为第一时频单元第二子单元中的第3个OFDM符号,其中,该第一时频单元第二子单元中包括3个OFDM符号。
情况二、当上行系统的子载波间隔为第一间隔阈值,且第一时频单元第二子单元的长度为2ms时,第二时频位置为第一时频单元第二子单元中的第2或者为第4个个OFDM符号,其中,该第一时频单元第二子单元中包括6个OFDM符号;或者,第二时频位置为第一时频单元第二子单元中的第3或第5个OFDM符号,其中,该第一时频单元第二子单元中包括7个OFDM符号。
情况三、当上行系统的子载波间隔为第一间隔阈值,且第一时频单元第二子单元的长度为4ms时,第二时频位置为第一时频单元第二子单元中的第2个和第8个OFDM符号,或第二时频位置为第一时频单元第二子单元中的第4个和第10个OFDM符号,其中,该第一时频单元第二子单元中包括12个OFDM符号;或者,第二时频位置为第二时频单元中的第3个和第10个OFDM符号,或第二时频位置为第一时频单元第二子单元中的第5个和第12个OFDM符号,其中,该第一时频单元第二子单元中包括14个OFDM符号。
情况一到情况三的实例与上述实施例中的实例相同,可以参考图5和图6所示的第一时频单元和第一时频单元第二子单元。
当所述第一时频单元的频域为多载波时,同样可以通过上述图24所示的装置生成上行解调参考信号,其方式为:信号生成模块11包括:第三序列生成单元,设置为根据第一时频单元对应的子载波的个数生成第三长度的上行解调参考序列,该第三长度的上行解调参考序列为第一时频单元第三子单元对应的上行解调参考信号;第三信号生成单元,设置为对所述第三序列生成单元生成的第一时频单元第三子单元对应的上行解调参考信号进行重复处理或扩展处理,生成第一时频单元内待发送的上行解调参考信号。
本发明上述各实施例中的扩展处理包括通过正交序列进行扩展,其中,该正交序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的;上行解调参考序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的;上行解调参考序列通常为:哈达玛(Hadmard)序列,DFT序列,恒包络零自相关(Const Amplitude Zero Auto-Corelation,简称为:CAZAC)序列,ZC序列,伪随机序列(Pseudo-Random Sequence),计算机搜索序列(Computer Search Sequence,简称为:CGS)和低峰值平均功率比(Peak to Average Power Ratio,简称为:PAPR)序列中的一项或多项。
本实施例中在第一时频单元的频域为多个子载波时,将上行解调参考信号映射到第一时频单元的第一时频位置中,其中该第一时频单元中包括多个第一时频单元第三子单元,本实施中第一时频位置的频域和时频的位置为:
本实施例中第一时频位置的频域的几种情况为:
第一种,第一时频位置的频域为第一时频单元对应的全部子载波。
第二种,第一时频位置的频域为上行系统的全部子载波。
第三种,第一时频位置的频域为第一时频单元的其中一个子载波。
第四种,当第一时频单元的子载波个数为12时,第一时频位置的频域为第一时频单元对应的全部子载波。
第五种,当第一时频单元的子载波个数小于12时,第一时频位置的频域为第一时频单元中的其中一个子载波。
当第一时频位置的频域为第一时频单元的其中一个子载波时,该一个子载波在第一时频单元中的频域位置为至少根据小区索引、终端索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的,或者,该一个子载波在第一时频单元中的频域位置为根据信令确定的。当第一时频位置的频域为第一时频单元的其中一个子载波时,所述上行解调参考信号的生成方式也可以为上述图3或图4所示实施例中的生成上行解调参考信号的方式。
本实施例中第一时频位置的时域的几种情况为:
第一种,第一时频位置的时域为每个第一时频单元第四子单元中间N个OFDM符号。
第二种,第一时频位置的时域为以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号。
上述N和P均为正整数;另外,上述第一时频位置的时域中的P个OFDM符号的位置为至少根据小区索引、子帧索引、无线帧索引和时隙索引中的一种或多种确定的。
上述几种第一时频位置的频域和时域的几种情况的实例,可以参照上述图10到图23所示实施例中的第一时频单元,和该第一时频单元中的第一时频位置,上述实施例中已经示意性的说明了第一时频位置的一些可能的情况,故在此不再说明。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指 令,所述计算机可执行指令被处理器执行时实现上述上行信号发送方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明实施例不限制于任何特定形式的硬件和软件的结合。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明本发明实施例提供的上行信号发送方法和装置,通过生成第一时频单元内待发送的上行解调参考信号,将该上行解调参考信号映射到第一时频单元的第一时频位置中,发送所述第一时频单元上行解调参考信号和该上行解调参考信号对应的上行数据,其中,第一时频单元的频域可以为单个子载波或多个子载波;本发明本发明实施例提供的方法通过合理的设计上行数据发送方式,可以使上行解调参考信号以子载波为调度单位进行发送。

Claims (32)

  1. 一种上行信号发送方法,包括:
    生成第一时频单元内待发送的上行解调参考信号,所述第一时频单元的频域为单个子载波或多个子载波;
    将所述上行解调参考信号映射到所述第一时频单元的第一时频位置中;
    发送所述第一时频单元内的所述上行解调参考信号和所述上行解调参考信号对应的上行数据。
  2. 根据权利要求1所述的上行信号发送方法,其中,当所述第一时频单元的频域为单个子载波时,所述生成第一时频单元内待发送的上行解调参考信号,包括:
    至少根据上行系统的带宽和所述上行系统的子载波间隔生成第一长度的上行解调参考序列;
    根据所述第一时频单元所在的频域位置从所述第一长度的上行解调参考序列中得到第一时频单元第一子单元对应的上行解调参考信号;
    对所述第一时频单元第一子单元对应的上行解调参考信号进行重复处理或扩展处理,生成所述第一时频单元内待发送的上行解调参考信号。
  3. 根据权利要求1所述的上行信号发送方法,其中,当所述第一时频单元的频域为单个子载波时,所述生成第一时频单元内待发送的上行解调参考信号,包括:
    根据第一时频单元内上行解调参考信号所占的资源单元数生成第二长度的上行解调参考序列,所述第二长度的上行解调参考序列为所述第一时频单元内待发送的上行解调参考信号;或者,
    根据固定长度生成第二长度的上行解调参考序列;对所述第二长度的上行解调参考序列进行重复处理或扩展处理或截取处理,生成所述第一时频单元内待发送的上行解调参考信号。
  4. 根据权利要求1所述的上行信号发送方法,其中,当所述第一时频单元的频域为单个子载波时;所述第一时频位置为根据每个第一时频单元第 二子单元中对应的第二时频位置和时域偏移量中的一种或两种确定的。
  5. 根据权利要求4所述的上行信号发送方法,其中,当上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元长度为1毫秒时:
    所述第二时频位置为所述第一时频单元第二子单元中的第3个正交频分复用OFDM符号,其中,所述第一时频单元第二子单元中包括3个所述OFDM符号。
  6. 根据权利要求4所述的上行信号发送方法,其中,当上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元的长度为2毫秒时:
    所述第二时频位置为所述第一时频单元第二子单元中的第2个或第4个OFDM符号,其中,所述第一时频单元第二子单元中包括6个所述OFDM符号;或者,
    所述第二时频位置为所述第一时频单元第二子单元中的第3个或第5个OFDM符号,其中,所述第一时频单元第二子单元中包括7个所述OFDM符号;或者,
    所述上行信号为混合自动重传请求应答HARQ-ACK信号时,所述第二时频位置为所述第一时频单元第二子单元中的第5个、第6个和第7个OFDM符号,或者为所述第一时频单元第二子单元中的第1个、第2个和第3个OFDM符号,其中,所述第一时频单元第二子单元中包括7个所述OFDM符号。
  7. 根据权利要求4所述的上行信号发送方法,其中,当上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元的长度为4毫秒时:
    所述第二时频位置为所述第一时频单元第二子单元中的第2个和第8个OFDM符号,或所述第二时频位置为所述第一时频单元第二子单元中的第4个和第10个OFDM符号,其中,所述第一时频单元第二子单元中包括12个所述OFDM符号;或者,
    所述第二时频位置为所述第一时频单元第二子单元中的第3个和第10个OFDM符号,或所述第二时频位置为所述第一时频单元第二子单元中的第5个和第12个OFDM符号,其中,所述第一时频单元第二子单元中包括14个所述OFDM符号。
  8. 根据权利要求4所述的上行信号发送方法,其中,所述时域偏移量为至少根据小区索引、子帧索引、无线帧索引和时隙索引中的一种或多种确定的。
  9. 根据权利要求1所述的上行信号发送方法,其中,当所述第一时频单元的频域为多个子载波时;所述生成第一时频单元内待发送的上行解调参考信号,包括:
    根据所述第一时频单元对应的子载波的个数生成第三长度的上行解调参考序列,所述第三长度的上行解调参考序列为第一时频单元第三子单元对应的上行解调参考信号;
    对所述第一时频单元第三子单元对应的上行解调参考信号进行重复处理或扩展处理,生成所述第一时频单元内待发送的上行解调参考信号。
  10. 根据权利要求1所述的上行信号发送方法,其中,当所述第一时频单元的频域为多个子载波时:
    所述第一时频位置的频域为所述第一时频单元对应的全部子载波;或者,
    所述第一时频位置的频域为上行系统的全部子载波;或者,
    所述第一时频位置的频域为所述第一时频单元的其中一个子载波;或者,
    当所述第一时频单元的子载波个数为12时,所述第一时频位置的频域为所述第一时频单元对应的全部子载波;或者,
    当所述第一时频单元的子载波个数小于12时,所述第一时频位置的频域为所述第一时频单元中的其中一个子载波。
  11. 根据权利要求10所述的上行信号发送方法,其中,
    当所述第一时频位置的频域为所述第一时频单元的其中一个子载波时, 所述一个子载波在所述第一时频单元中的频域位置为至少根据小区索引、终端索引、无线帧索引、子帧索引和时隙索引中的一种或多种确定的,或者,所述一个子载波在所述第一时频单元中的频域位置为根据信令确定的。
  12. 根据权利要求1所述的上行信号发送方法,其中,当所述第一时频单元的频域为多个子载波时:
    所述第一时频位置的时域为每个第一时频单元第四子单元中间N个OFDM符号,其中,所述N为正整数;或者,
    所述第一时频位置的时域为以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号,其中,所述P和所述N为正整数。
  13. 根据权利要求12所述的上行信号发送方法,其中,所述第一时频位置的时域中的P个OFDM符号的位置为至少根据小区索引、子帧索引和无线帧索引中的一种或多种所确定的。
  14. 根据权利要求2或3或9中所述的上行信号发送方法,其中,所述扩展处理包含通过正交序列进行扩展,其中,所述正交序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的。
  15. 根据权利要求2或3或9所述的上行信号发送方法,其中,所述上行解调参考序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的。
  16. 根据权利要求2或3或9所述的上行信号发送方法,其中,所述上行解调参考序列为:哈达玛序列,离散傅里叶变换DFT序列,恒包络零自相关CAZAC序列,ZC序列,伪随机序列,计算机搜索序列CGS和低峰值平均功率比PAPR序列中的一种或多种。
  17. 一种上行信号发送装置,包括:
    信号生成模块,设置为生成第一时频单元内待发送的上行解调参考信号,所述第一时频单元的频域为单个子载波或多个子载波;
    映射模块,设置为将所述信号生成模块生成的上行解调参考信号映射到 所述第一时频单元的第一时频位置中;
    发送模块,设置为发送所述第一时频单元内的所述上行解调参考信号和所述上行解调参考信号对应的上行数据。
  18. 根据权利要求17所述的上行信号发送装置,其中,当所述第一时频单元的频域为单个子载波时,所述信号生成模块包括:
    第一序列生成单元,设置为至少根据上行系统的带宽和所述上行系统的子载波间隔生成第一长度的上行解调参考序列;
    第一信号确定单元,设置为根据所述第一时频单元所在的频域位置从所述第一序列生成单元生成的第一长度的上行解调参考序列中得到第一时频单元第一子单元对应的上行解调参考信号;
    第一信号生成单元,设置为对所述第一信号确定单元得到的第一时频单元第一子单元对应的上行解调参考信号进行重复处理或扩展处理,生成所述第一时频单元内待发送的上行解调参考信号。
  19. 根据权利要求17所述的上行信号发送装置,其中,当所述第一时频单元的频域为单个子载波时:
    所述信号生成模块设置为:根据第一时频单元内上行解调参考信号所占的资源单元数生成第二长度的上行解调参考序列,所述第二长度的上行解调参考序列为所述第一时频单元内待发送的上行解调参考信号;或者
    所述信号生成模块包括:第二序列生成单元,设置为根据固定长度生成第二长度的上行解调参考序列;
    第二信号生成单元,设置为对所述第二序列生成单元生成的第二长度的上行解调参考序列进行重复处理或扩展处理或截取处理,生成所述第一时频单元内待发送的上行解调参考信号。
  20. 根据权利要求17所述的上行信号发送装置,其中,当所述第一时频单元的频域为单个子载波时;所述第一时频位置为根据每个第一时频单元第二子单元中对应的第二时频位置和时域偏移量中的一种或两种确定的。
  21. 根据权利要求20所述的上行信号发送装置,其中,当上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元长度为1毫秒 时:
    所述第二时频位置为所述第一时频单元第二子单元中的第3个正交频分复用OFDM符号,其中,所述第一时频单元第二子单元中包括3个所述OFDM符号。
  22. 根据权利要求20所述的上行信号发送装置,其中,当上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元的长度为2毫秒时:
    所述第二时频位置为所述第一时频单元第二子单元中的第2个或第4个OFDM符号,其中,所述第一时频单元第二子单元中包括6个所述OFDM符号;或者,
    所述第二时频位置为所述第一时频单元第二子单元中的第3个或第5个OFDM符号,其中,所述第一时频单元第二子单元中包括7个所述OFDM符号;或者,
    所述上行信号为混合自动重传请求应答HARQ-ACK信号时,所述第二时频位置为所述第一时频单元第二子单元中的第5个、第6个和第7个OFDM符号,或者为所述第一时频单元第二子单元中的第1个、第2个和第3个OFDM符号,其中,所述第一时频单元第二子单元中包括7个所述OFDM符号。
  23. 根据权利要求20所述的上行信号发送装置,其中,当上行系统的子载波间隔为第一间隔阈值,且所述第一时频单元第二子单元的长度为4毫秒时:
    所述第二时频位置为所述第一时频单元第二子单元中的第2个和第8个OFDM符号,或者,所述第二时频位置为所述第一时频单元第二子单元中的第4个和第10个OFDM符号,其中,所述第一时频单元第二子单元中包括12个所述OFDM符号;或者,
    所述第二时频位置为所述第一时频单元第二子单元中的第3个和第10个OFDM符号,或者所述第二时频位置为所述第一时频单元第二子单元中的第5个和第12个OFDM符号,其中,所述第一时频单元第二子单元中包 括14个所述OFDM符号。
  24. 根据权利要求20所述的上行信号发送装置,其中,所述时域偏移量为至少根据小区索引、子帧索引、无线帧索引和时隙索引中的一种或多种确定的。
  25. 根据权利要求17所述的上行信号发送装置,其中,当所述第一时频单元的频域为多个子载波时;所述信号生成模块包括:
    第三序列生成单元,设置为根据所述第一时频单元对应的子载波的个数生成第三长度的上行解调参考序列,所述第三长度的上行解调参考序列为第一时频单元第三子单元对应的上行解调参考信号;
    第三信号生成单元,设置为对所述第三序列生成单元生成的第一时频单元第三子单元对应的上行解调参考信号进行重复处理或扩展处理,生成所述第一时频单元内待发送的上行解调参考信号。
  26. 根据权利要求17所述的上行信号发送装置,其中,当所述第一时频单元的频域为多个子载波时:
    所述第一时频位置的频域为所述第一时频单元对应的全部子载波;或者,
    所述第一时频位置的频域为上行系统的全部子载波;或者,
    所述第一时频位置的频域为所述第一时频单元的其中一个子载波;或者,
    当上行系统的子载波的个数为12时,所述第一时频位置的频域为所述第一时频单元对应的全部子载波;或者,
    当上行系统的子载波的个数小于12时,所述第一时频位置的频域为所述第一时频单元中的其中一个子载波。
  27. 根据权利要求26所述的上行信号发送装置,其中,
    当所述第一时频位置的频域为所述第一时频单元的其中一个子载波时,所述一个子载波在所述第一时频单元中的频域位置为至少根据小区索引、终端索引、无线帧索引、子帧索引和时隙索引中的一种或多种确定的,或者,所述一个子载波在所述第一时频单元中的频域位置为根据信令确定的。
  28. 根据权利要求17所述的上行信号发送装置,其中,当所述第一时频单元的频域为多个子载波时:
    所述第一时频位置的时域为每个第一时频单元第四子单元中间N个OFDM符号,其中,所述N为正整数;或者,
    所示第一时频位置的时域为以P个OFDM符号为单元均匀分布在每个第一时频单元第四子单元中的N个OFDM符号,其中,所述P和所述N为正整数。
  29. 根据权利要求28所述的上行信号发送装置,其中,所述第一时频位置的时域中的P个OFDM符号的位置为至少根据小区索引、子帧索引和无线帧索引中的一种或多种所确定的。
  30. 根据权利要求18或19或25中所述的上行信号发送装置,其中,所述扩展处理包含通过正交序列进行扩展,其中,所述正交序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的。
  31. 根据权利要求18或19或25所述的上行信号发送装置,其中,所述上行解调参考序列的索引为至少根据小区索引、无线帧索引、子帧索引、时隙索引和终端索引中的一种或多种确定的。
  32. 根据权利要求18或19或25所述的上行信号发送装置,其中,所述上行解调参考序列为:哈达玛序列,离散傅里叶变换DFT序列,恒包络零自相关CAZAC序列,ZC序列,伪随机序列,计算机搜索序列CGS和低峰值平均功率比PAPR序列中的一种或多种。
PCT/CN2017/074745 2016-01-11 2017-02-24 一种上行信号发送方法和装置 WO2017121415A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/987,888 US10644850B2 (en) 2016-01-11 2018-05-23 Method and apparatus for uplink signal transmission

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610019212.3 2016-01-11
CN201610019212 2016-01-11
CN201610206786.1A CN106961408B (zh) 2016-01-11 2016-04-05 一种上行信号发送方法和装置
CN201610206786.1 2016-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/987,888 Continuation US10644850B2 (en) 2016-01-11 2018-05-23 Method and apparatus for uplink signal transmission

Publications (1)

Publication Number Publication Date
WO2017121415A1 true WO2017121415A1 (zh) 2017-07-20

Family

ID=59480876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074745 WO2017121415A1 (zh) 2016-01-11 2017-02-24 一种上行信号发送方法和装置

Country Status (3)

Country Link
US (1) US10644850B2 (zh)
CN (1) CN106961408B (zh)
WO (1) WO2017121415A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3678430A4 (en) * 2017-09-08 2020-10-28 Huawei Technologies Co., Ltd. PROCESS AND DEVICE FOR EMISSION AND RECEPTION OF SIGNALS

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872415B (zh) * 2016-09-23 2022-07-15 中兴通讯股份有限公司 一种数据传输方法及装置
CN109474408B (zh) * 2017-09-08 2024-03-26 华为技术有限公司 基于序列的信号处理方法及装置
CN109660316A (zh) * 2017-10-11 2019-04-19 中兴通讯股份有限公司 信号发送方法及装置
US20190149298A1 (en) * 2017-11-15 2019-05-16 Mediatek Inc. Reference Signals With Improved Cross-Correlation Properties In Wireless Communications
EP3706482B1 (en) * 2017-11-16 2024-01-03 Beijing Xiaomi Mobile Software Co., Ltd. Physical layer resource mapping method and device, user equipment and base station
CN112532368B (zh) * 2017-11-16 2021-08-20 华为技术有限公司 基于序列的信号处理方法及信号处理装置
WO2019096268A1 (zh) * 2017-11-16 2019-05-23 华为技术有限公司 基于序列的信号处理方法及信号处理装置
CN109802812B (zh) * 2017-11-17 2023-05-12 夏普株式会社 支持时分双工的窄带物联网系统的方法、用户设备和基站
CN112787967B (zh) 2017-12-11 2022-07-15 中兴通讯股份有限公司 参考信号的传输方法及装置
CN110299980B (zh) * 2018-03-23 2022-11-25 中兴通讯股份有限公司 一种传输参考信号的方法、装置和系统
JP7126562B2 (ja) * 2018-05-04 2022-08-26 テレフオンアクチーボラゲット エルエム エリクソン(パブル) アップリンク参照信号の送信
CN110492969B (zh) * 2018-05-11 2022-04-29 中兴通讯股份有限公司 信号发送、接收方法及装置
US11082279B2 (en) 2018-09-27 2021-08-03 At&T Intellectual Property I, L.P. Facilitation of reduction of peak to average power ratio for 5G or other next generation network
US10659270B2 (en) * 2018-10-10 2020-05-19 At&T Intellectual Property I, L.P. Mapping reference signals in wireless communication systems to avoid repetition
US11418992B2 (en) 2018-11-02 2022-08-16 At&T Intellectual Property I, L.P. Generation of demodulation reference signals in advanced networks
CN111277528B (zh) * 2019-01-11 2022-02-01 维沃移动通信有限公司 传输方法及第一通信设备
CN113542178A (zh) 2019-04-28 2021-10-22 华为技术有限公司 生成参考信号的方法、检测参考信号的方法和通信装置
CN112449403B (zh) * 2019-09-05 2023-10-20 海能达通信股份有限公司 低轨卫星通信中的随机接入信道传输方法及装置
CN112804751A (zh) * 2019-11-13 2021-05-14 中国电信股份有限公司 上行覆盖提升方法和装置、存储介质和终端设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123013A (zh) * 2010-01-08 2011-07-13 中兴通讯股份有限公司 一种解调参考符号的映射方法和装置
CN103096389A (zh) * 2011-11-07 2013-05-08 华为技术有限公司 上行参考信号的发送方法、用户设备和基站
US20140286255A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2851383A1 (fr) * 2003-02-17 2004-08-20 Wavecom Procede de transmission de donnees radio, signal, systeme et dispositifs correspondant
CN101662443B (zh) * 2009-09-18 2014-10-22 中兴通讯股份有限公司 一种参考信号的序列产生和映射方法及发送装置
CN101902301B (zh) * 2010-08-12 2018-11-20 中兴通讯股份有限公司 上行控制信令发送、上行解调参考信号的承载方法及装置
WO2015109609A1 (zh) * 2014-01-27 2015-07-30 华为技术有限公司 一种窄带传输的方法、设备、基站及用户设备
WO2017113425A1 (zh) * 2015-12-31 2017-07-06 华为技术有限公司 传输数据的方法和用户设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102123013A (zh) * 2010-01-08 2011-07-13 中兴通讯股份有限公司 一种解调参考符号的映射方法和装置
CN103096389A (zh) * 2011-11-07 2013-05-08 华为技术有限公司 上行参考信号的发送方法、用户设备和基站
US20140286255A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3678430A4 (en) * 2017-09-08 2020-10-28 Huawei Technologies Co., Ltd. PROCESS AND DEVICE FOR EMISSION AND RECEPTION OF SIGNALS

Also Published As

Publication number Publication date
US10644850B2 (en) 2020-05-05
CN106961408A (zh) 2017-07-18
US20180278396A1 (en) 2018-09-27
CN106961408B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2017121415A1 (zh) 一种上行信号发送方法和装置
RU2436252C2 (ru) Способ передачи управляющих сигналов в системе беспроводной связи
EP2269327B1 (en) Method of transmitting control signal in wireless communication system
US10312990B2 (en) Signal sending or receiving method and device
KR101441147B1 (ko) 무선 통신 시스템에서 sr 전송 방법
KR100951033B1 (ko) 무선통신 시스템에서 제어신호 전송방법
JP5042320B2 (ja) 無線通信システムにおけるサウンディング基準信号伝送方法
JP4972694B2 (ja) Phich送信資源領域情報の獲得方法及びこれを用いるpdcch受信方法
KR100943154B1 (ko) 무선통신 시스템에서 상향링크 제어신호들을 전송하는 방법
CA2664481C (en) Apparatus, method and computer program product providing multiplexing for data-non-associated control channel
CN105471555B (zh) 在无线通信系统中发送参考信号的方法和用户设备
EP2367391A1 (en) Method of transmitting a scheduling request on an uplink control channel in a wireless communication system and user equipment comprising a processor for transmitting the scheduling request
EP2168269A2 (en) Method of transmitting control information in wireless communication system
CN109391576B (zh) 基于序列的信号处理方法、通信设备及通信系统
EP3713177B1 (en) Sequence-based signal processing method and signal processing apparatus
CN109906645A (zh) 上行信号的传输方法和装置
TWI762531B (zh) 資源映射的方法和通訊設備
CN109803393B (zh) 信息发送方法及装置
KR20090111271A (ko) 무선 통신 시스템에서 제어신호 전송 방법
WO2020200056A1 (zh) 解调导频参考信号生成方法及装置
CN112600785B (zh) 基于序列的信号处理方法与装置
WO2018126968A1 (zh) 一种信号发送、接收方法及装置
CN110299980B (zh) 一种传输参考信号的方法、装置和系统
CN111130726B (zh) 一种上行资源请求的通信处理方法和相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738228

Country of ref document: EP

Kind code of ref document: A1