WO2017121409A1 - 一种数据发送方法及装置 - Google Patents

一种数据发送方法及装置 Download PDF

Info

Publication number
WO2017121409A1
WO2017121409A1 PCT/CN2017/073039 CN2017073039W WO2017121409A1 WO 2017121409 A1 WO2017121409 A1 WO 2017121409A1 CN 2017073039 W CN2017073039 W CN 2017073039W WO 2017121409 A1 WO2017121409 A1 WO 2017121409A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
subsequences
manner
repeating
adopts
Prior art date
Application number
PCT/CN2017/073039
Other languages
English (en)
French (fr)
Inventor
许进
戴博
徐俊
陈泽为
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/069,452 priority Critical patent/US10637618B2/en
Publication of WO2017121409A1 publication Critical patent/WO2017121409A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0084Formats for payload data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/009Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location arrangements specific to transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1874Buffer management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • the embodiments of the present invention relate to, but are not limited to, the field of wireless communications, and in particular, to a data sending method and apparatus.
  • MTC Machine Type Communication
  • UE User Equipment, User Equipment or Terminal
  • M2M Machine to Machine
  • C-IOT Cellular Internet of Things
  • NB-LTE Narrowband Long-Term Evolution, the technology of the narrowband long-term evolution, is the most eye-catching.
  • the system bandwidth of the system is 200 kHz, which is the same as the channel bandwidth of the GSM (Global System for Mobile Communication) system. This is a great result for the NB-LTE system to reuse the GSM spectrum and reduce the mutual interference between the adjacent and GSM channels. convenient.
  • the NB-LTE system has the same bandwidth and sub-carrier spacing as the PRB (Physical Resource Block) of the LTE system.
  • PRB Physical Resource Block
  • CB Chemical Buffer
  • RM Random Matching
  • the bits selected for transmission can be read from any point in the circular buffer. If the end of the circular buffer is reached, the data can be read around the beginning of the circular buffer until the completion of reading L bits. Different locations can be specified in the loop buffer as the starting point for each HARQ (Hybrid Automatic Repeat reQuest) packet read.
  • the definition of the redundancy version determines the multiple starting positions of the HARQ data packets read in the circular buffer.
  • the redundancy version determines the specific starting position of the HARQ data packets read in the circular buffer.
  • the cyclic buffer rate matching based HARQ process defines four types of cyclic redundancy.
  • the L-bit long sub-packet for each HARQ retransmission is composed of L bits clockwise selected starting from the starting point defined by the redundancy version.
  • the system based on OFDM includes an OFDMA (Orthogonal Frequency Division Multiple Access) system and an SC-FDMA (Single-carrier Frequency-Division Multiple Access) Frequency division multiple access) systems, etc.
  • one RB (Resource Block) is a time-frequency two-dimensional unit composed of a plurality of subcarriers consecutive in a plurality of OFDM symbol intervals and frequencies in time, that is, The length of one RB is one subframe, and the frequency includes multiple subcarriers.
  • One column in Figure 2 is an OFDM symbol, one acting on one subcarrier.
  • the entire transmission block is generally repeated.
  • the inventors of the present application found in the process of coverage enhancement of the narrowband Internet of Things system that in a narrowband LTE communication system, one transmission block tends to occupy multiple subframes continuously due to the small available bandwidth in the frequency domain. If the current repetition mode is adopted, the time span is too long, which is disadvantageous for the receiver to perform fast combining and decoding.
  • the wireless channel is a time-varying channel, the longer the time span, the greater the variation of the wireless channel, and the performance of data combining is also reduced.
  • Embodiments of the present invention provide a data transmission method and apparatus suitable for a narrowband Internet of Things system capable of coverage enhancement.
  • a data transmission method includes:
  • T is a positive integer
  • the sum of the number of repetitions of the N subsequences N*T is not less than a preset number of repetitions R, and the R is a positive integer.
  • the method before the sending, the method further includes:
  • N sub-sequences of the transport block that are repeated T times and digital baseband modulated are mapped onto physical channel resources.
  • the preset number of repetitions R is directly or indirectly indicated from a preset set of values by any one or more of the following: a downlink control signaling indication by the transport block And transmitting, by the physical layer, a message indicating that the RRC signaling indication is controlled by the radio resource.
  • the preset set of values is a set of results obtained by performing a predetermined function operation on the coverage level indication information.
  • a starting position of the kth subsequence in a data buffer of the transport block is indicated by a redundancy version rv_k of the kth subsequence;
  • the redundancy version rv_k of the kth subsequence is obtained by cyclically taking the elements in the redundancy version sequence; or the redundancy version rv_k of the kth subsequence is the i th in the redundancy version sequence.
  • Elements, where i mod(k-1,g)+1, g is the number of elements in the redundancy version sequence, i, k and g are positive integers, and 1 ⁇ i ⁇ g, mod is the remainder Operator.
  • the redundancy version sequence includes any one of the following: [0, 2, 3, 1], [0, 1, 2, 3], [0, 1], [0, 2] , [0, 1, 2], [0, 2, 3].
  • the digital baseband modulation method includes one of the following:
  • the manner in which the N subsequences of the transport block are repeated T times includes any one or more of the following:
  • each of the N subsequences is respectively in units of orthogonal frequency division multiplexing OFDM symbols, starting from the first OFDM symbol, and repeating T times until the last OFDM symbol;
  • each of the N subsequences is in a subframe, starting from the first subframe, and repeating T times until the last subframe;
  • each of the N subsequences is respectively in a predetermined physical resource unit, starting from the first physical resource unit, and sequentially repeating T times until the last physical resource unit;
  • the preset physical resource unit is a physical resource that includes x subframes in time; wherein x is a positive integer, and 1 ⁇ x ⁇ 12.
  • the manner in which the N subsequences are repeated adopts mode one; when the number of available subcarriers is greater than the first threshold
  • the manner of repeating the N subsequences adopts at least one of mode 2, mode 3, mode 4, mode 5, and mode 6;
  • the manner in which the N subsequences are repeated adopts at least one of mode one and mode two; when the number of available subcarriers When the second sub-threshold is greater than the second threshold, the manner of repeating the N sub-sequences adopts at least one of mode three, mode four, mode five, and mode six;
  • the manner of repeating the N subsequences adopts at least one of mode 1, mode 2, and mode 3;
  • the manner of repeating the N sub-sequences adopts at least one of mode four, mode five, and mode six;
  • the manner of repeating the N subsequences adopts at least one of mode 1, mode 2, mode 3, and mode 4
  • the N The repeating manner of the subsequence adopts at least one of the fifth method and the sixth method
  • the manner of repeating the N subsequences is at least one of mode one, mode two, mode three, mode four, and mode five.
  • the manner in which the N subsequences are repeated adopts mode six.
  • mapping the N repeated T times and the digital baseband modulated subsequences to the physical channel resources of the transport block includes:
  • mapping is performed according to any of the following mapping methods:
  • Monophonic mode mapping the transport block or the subsequence to one subcarrier of a frequency domain and one or more subframes of a time domain;
  • Multi-tone mode mapping the transport block or the sub-sequence to one or more subframes of a frequency domain and one or more subframes of a time domain;
  • Physical resource block mode mapping the transport block or the subsequence to one physical resource block of the frequency domain and one or more subframes of the time domain.
  • the manner of repeating the N sub-sequences adopts at least one of mode one to mode four;
  • mapping mode is the multi-tone mode
  • manner of repeating the N sub-sequences adopts at least one of mode one to mode six;
  • the mapping mode is the physical resource block mode
  • the manner of repeating the N sub-sequences adopts at least one of mode three to mode six.
  • a data transmitting device includes:
  • the subsequence component module 31 is configured to select some or all of the bits from the data buffer of the transport block to form the kth subsequence of the transport block, and form a total of N subsequences; wherein, 1 ⁇ k ⁇ N;
  • the sending module 32 is configured to repeat the N sub-sequences T times and perform digital baseband adjustment After the system is configured, the sending is performed.
  • the T is a positive integer
  • the sum of the number of repetitions of the N sub-sequences N*T is not less than a preset number of repetitions R, and the R is a positive integer.
  • the transmitting module 32 is further configured to map the N repeated T times and the digital baseband modulated subsequences of the transport block onto the physical channel resource before transmitting.
  • the preset number of repetitions R is directly or indirectly indicated from a preset set of values by any one or more of the following: a downlink control signaling indication by the transport block And transmitting, by the physical layer, a message indicating that the RRC signaling indication is controlled by the radio resource.
  • the preset set of values is a set of results obtained by performing a predetermined function operation on the coverage level indication information.
  • a starting position of the kth subsequence in a data buffer of the transport block is indicated by a redundancy version rv_k of the kth subsequence;
  • the redundancy version rv_k of the kth subsequence is obtained by cyclically taking the elements in the redundancy version sequence; or the redundancy version rv_k of the kth subsequence is the i th in the redundancy version sequence.
  • Elements, where i mod(k-1,g)+1, g is the number of elements in the redundancy version sequence, i, k and g are positive integers, and 1 ⁇ i ⁇ g, mod is the remainder Operator.
  • the redundancy version sequence includes any one of the following: [0, 2, 3, 1], [0, 1, 2, 3], [0, 1], [0, 2] , [0, 1, 2], [0, 2, 3].
  • the digital baseband modulation mode includes at least one of the following:
  • the repeating manner in which the sending module 32 repeats the N sub-sequences of the transport block by T times includes any one or more of the following:
  • each of the N subsequences is respectively in units of orthogonal frequency division multiplexing OFDM symbols, starting from the first OFDM symbol, and repeating T times until the last OFDM symbol;
  • each of the N subsequences is in a subframe, starting from the first subframe, and repeating T times until the last subframe;
  • each of the N subsequences is respectively in a predetermined physical resource unit, starting from the first physical resource unit, and sequentially repeating T times until the last physical resource unit;
  • the preset physical resource unit is a physical resource that includes x subframes in time; wherein x is a positive integer, and 1 ⁇ x ⁇ 12.
  • the manner in which the N subsequences are repeated adopts mode one; when the number of available subcarriers is greater than When a threshold is used, the manner of repeating the N subsequences adopts at least one of mode 2, mode 3, mode 4, mode 5, and mode 6;
  • the manner in which the N subsequences are repeated adopts at least one of mode one and mode two; when the number of available subcarriers When the second sub-threshold is greater than the second threshold, the manner of repeating the N sub-sequences adopts at least one of mode three, mode four, mode five, and mode six;
  • the manner of repeating the N subsequences adopts at least one of mode 1, mode 2, and mode 3;
  • the manner of repeating the N sub-sequences adopts at least one of mode four, mode five, and mode six;
  • the manner of repeating the N subsequences adopts at least one of mode 1, mode 2, mode 3, and mode 4
  • the N The repeating manner of the subsequence adopts at least one of the fifth method and the sixth method
  • the manner of repeating the N subsequences is at least one of mode one, mode two, mode three, mode four, and mode five.
  • the manner in which the N subsequences are repeated adopts mode six.
  • the sending module 32 maps the N sub-sequences of the transport block that are repeated T times and is modulated by the digital baseband to the physical channel resources, including:
  • the transmitting module 32 After the N subsequences are repeated T times and subjected to digital baseband modulation, the transmitting module 32 performs mapping according to any of the following mapping modes:
  • Monophonic mode mapping the transport block or the subsequence to one subcarrier of a frequency domain and one or more subframes of a time domain;
  • Multi-tone mode mapping the transport block or the sub-sequence to one or more subframes of a frequency domain and one or more subframes of a time domain;
  • Physical resource block mode mapping the transport block or the subsequence to one physical resource block of the frequency domain and one or more subframes of the time domain.
  • the manner of repeating the N sub-sequences adopts at least one of mode one to mode four;
  • mapping mode is a multi-tone mode
  • manner of repeating the N sub-sequences adopts at least one of mode one to mode six;
  • the mapping mode is the physical resource block mode
  • the manner of repeating the N sub-sequences adopts at least one of mode three to mode six.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions for implementing the above method.
  • the embodiments of the present invention can provide coverage enhancement for the characteristics of the narrowband Internet of Things system, and improve the performance of the data combination.
  • the alternative of the embodiment of the present invention uses different redundancy versions in the repeated transmission to generate incremental redundant sub-sequences. Further increase the merge gain.
  • FIG. 1 is a schematic diagram of a HARQ processing procedure based on cyclic buffer rate matching in a 3GPP system
  • FIG. 2 is a schematic diagram of RBs in an OFDM system
  • FIG. 3 is a schematic flowchart diagram of a data transmission method according to Embodiment 1;
  • FIG. 4 is a schematic view showing a starting position of a subsequence in Embodiment 1;
  • FIG. 5 is a schematic diagram showing the subsequence repeating four times in the first embodiment according to the first embodiment
  • FIG. 6 is a schematic diagram of repeating four sub-sequences according to mode three in the second embodiment
  • FIG. 7 is a schematic diagram of repeating four sub-sequences according to mode two in the third embodiment
  • FIG. 8 is a schematic diagram showing the subsequence repeating four times according to the fourth method in the fourth embodiment.
  • FIG. 9 is a schematic diagram showing the subsequences repeated four times in accordance with mode five in the embodiment 6;
  • FIG. 10 is a schematic diagram showing the subsequence repeating four times in accordance with mode six in the embodiment 7;
  • Figure 11 is a diagram showing the data transmitting apparatus of the second embodiment.
  • Embodiment 1 A data sending method, as shown in FIG. 3, includes:
  • S120 Repeat N times of the N subsequences of the transport block, and perform digital baseband modulation, and then send, where T is a positive integer, and the sum of the repetition times of the N subsequences (ie, N*T) is not less than A preset number of repetitions R, where R is a positive integer.
  • the sending may be, but is not limited to, being sent to the next processing unit, or may be sent to the peer device directly or after subsequent processing.
  • the repeated T times means that there are T sub-sequences in the formed transport block, which means that each sub-sequence will be repeatedly transmitted T times.
  • the method may further include:
  • N sub-sequences of the transport block that are repeated T times and digital baseband modulated are mapped onto physical channel resources.
  • the N subsequences may be digital baseband modulated, and the N mapped subsequences may be repeated T times.
  • the preset number of repetitions R may be directly or indirectly indicated from a preset set of values by any one or more of the following: downlink control signaling through the transport block
  • the indication is indicated by a physical layer broadcast message, and is indicated by RRC (Radio Resource Control) signaling.
  • the direct indication refers to an explicit indication manner, such as directly informing which element in the preset set of values is R; the indirect indication is an implicit indication manner, such as other information carried according to the message or signaling. Data, which element of the selected value set is determined as R according to a pre-agreed or default correspondence.
  • the preset set of values is a set of results obtained by performing a predetermined function operation on the coverage level indication information.
  • the starting position of the kth subsequence in the data buffer may be determined by the redundancy version rv_k of the kth subsequence; the redundancy version rv_k of the kth subsequence is as follows One way to determine:
  • rv_k is obtained by circularly taking the elements in the redundancy version sequence; for example, the redundancy version of the first subsequence is the first element in the redundancy version sequence, and the redundancy of the second subsequence The version is the second element in the redundancy version sequence, and so on, when the subsequence When the redundancy version takes the last element of the redundancy version sequence, the redundancy version of the next subsequence is the first element of the redundancy version sequence.
  • the redundancy version of the first subsequence may also be the jth element in the redundancy version sequence, and the redundancy version of the second subsequence is the j+1th element, and so on, when the value reaches the last one.
  • the value is taken from the first element.
  • the redundancy version sequence includes any one of the following: [0, 2, 3, 1], [0, 1, 2, 3], [0, 1], [0, 2], [0, 1 , 2], [0, 2, 3].
  • the digital baseband modulation mode includes at least one of the following:
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • 8PSK 8Phase Shift Keying
  • 16QAM 16Quadrature Amplitude Modulation, Hexadecimal quadrature amplitude modulation
  • ⁇ /2-BPSK binary phase shift keying of ⁇ /2 phase offset
  • ⁇ /4-QPSK quadrature phase shift keying of ⁇ /4 phase offset
  • ⁇ /8-8PSK 8-bit phase shift keying with ⁇ /8 phase offset
  • 8-BPSK (8-state binary phase shift keying).
  • mapping the N repeated T times and the digital baseband modulated subsequences to the physical channel resources includes: after the N subsequences are repeated T times and after digital baseband modulation, according to Map any of the following mapping methods:
  • Monophonic mode mapping the transport block or the subsequence to one subcarrier of a frequency domain and one or more subframes of a time domain;
  • Multi-tone mode mapping the transport block or the sub-sequence to one or more subframes of a frequency domain and one or more subframes of a time domain;
  • Physical resource block mode mapping the transport block or the subsequence to one physical resource block of the frequency domain and one or more subframes of the time domain.
  • the manner in which the N subsequences of the transport block are repeated T times includes any one or more of the following:
  • each of the N subsequences is respectively in units of orthogonal frequency division multiplexing (OFDM) symbols, starting from the first OFDM symbol, and repeating T times until the last OFDM symbol;
  • OFDM orthogonal frequency division multiplexing
  • each of the N subsequences is in a subframe, starting from the first subframe, and repeating T times until the last subframe;
  • each of the N subsequences is in a unit of a preset physical resource unit, starting from the first physical resource unit, and sequentially repeating T times until the last physical resource unit; wherein
  • the preset physical resource unit is a physical resource that includes x subframes in time.
  • x is a positive integer and 1 ⁇ x ⁇ 12;
  • the subsequences are repeated T times, and the mode one to the fourth mode are repeated T times in different parts of each subsequence; in the fifth mode, one subsequence itself is repeated T times as a whole.
  • Mode 6 is that N subsequences are repeated T times as a whole. In practical applications, only one or any of the above repetition modes may be selected; the repetition mode may include other repetition modes in addition to the above six types, for example, each subcarrier is repeated T times in predetermined units.
  • the manner of repeating the N sub-sequences adopts at least one of mode one to mode four;
  • mapping mode is the multi-tone mode
  • manner of repeating the N sub-sequences adopts at least one of mode one to mode six;
  • mapping mode is the physical resource block mode
  • manner of repeating the N sub-sequences adopts at least one of mode three to mode six.
  • the manner in which the N subsequences are repeated may also be determined according to the number of available subcarriers:
  • the repetition manner of the N subsequences adopts mode one; when the number of available subcarriers is greater than C1, the N subsequences The repetition manner adopts at least one of the second method, the third method, the fourth method, the fifth method and the sixth method;
  • the manner of repeating the N subsequences adopts at least one of mode one and mode two; when available subcarriers The number is greater than C2, and the manner of repeating the N subsequences is at least one of mode 3, mode 4, mode 5, and mode 6.
  • the manner of repeating the N subsequences is at least one of mode one, mode two, and mode three;
  • the number of subcarriers is greater than C3, and the manner of repeating the N subsequences adopts at least one of mode four, mode five, and mode six;
  • the manner of repeating the N subsequences adopts at least one of mode one, mode two, mode three, and mode four.
  • the manner in which the N subsequences are repeated adopts at least one of mode 5 and mode 6;
  • the repetition manner of the N subsequences is adopted in the first mode, the second mode, the third mode, the fourth mode, and the fifth mode. At least one; when the number of available subcarriers is greater than C5, the manner in which the N subsequences are repeated adopts mode six.
  • the values of the first threshold to the fifth threshold may be, but are not limited to, a relationship from small to large, that is, the fifth threshold is the largest, the fourth threshold is the second largest, ..., and the first threshold is the smallest.
  • the data transmission method of a wireless communication system includes steps 101, 102, and 103:
  • Step 101 Select some or all bits from the data buffer of the transport block to form the a kth subsequence of the transport block; wherein 1 ⁇ k ⁇ N, where N represents the number of all subsequences formed;
  • the starting position of the kth subsequence in the data buffer may be indicated by the redundancy version information rv_k.
  • R TB is the number of rows of interleavers in the data buffer of the transport block
  • N TB is the size of the data buffer of the transport block
  • N rv represents the number of elements in the redundant sequence
  • operation() represents Rounding operation
  • the operation method includes: rounding up, rounding down, or rounding
  • A is a constant that takes a positive integer
  • offset is a column offset, and the value is a non-negative integer.
  • rv_k is obtained by cyclically taking the elements in the redundancy version sequence; for example, the redundancy version of the first subsequence is the first element in the redundancy version sequence, and the redundancy of the second subsequence The version is the second element in the redundancy version sequence, and so on.
  • the redundancy version of the subsequence reaches the last element of the redundancy version sequence, the redundancy version of the next subsequence is redundant. The first element of the version sequence.
  • the determining method of the redundancy version rv_k may also be determined by the following equivalent manner:
  • the redundancy version sequence may be [0, 2, 3, 1], or [0, 1, 2, 3], or [0, 1], or [0, 2], or [0, 1, 2 ], or one of [0, 2, 3].
  • the redundancy version sequence is [0, 2]
  • the redundancy version of the first subsequence is 0, and the redundancy version of the second subsequence is 2.
  • the redundancy version of the third subsequence is 0,
  • the redundancy version of the fourth subsequence is 2, ..., and so on, the redundancy version of the odd subsequence is 0, and the redundancy version of the even subsequence is 2.
  • the redundancy version of the 32nd subsequence is 2. The corresponding starting position is shown in Figure 4.
  • the message or higher layer signaling indicates that the indication may be an explicit or implicit indication.
  • the information may be explicitly indicated by the dedicated one or more bits of information in the DCI, the physical layer broadcast message, or the high layer signaling, or implicitly indicated in the physical resource indication information or the coded modulation indication information of the DCI.
  • R is which of the set of values of 2 n set in advance.
  • the preset set of values is a set of results obtained by performing a predetermined function operation on the coverage level indication information.
  • the maximum value R1 in the set of values of R is not less than the maximum value R2 in the set of values of R when the coverage level is medium or low coverage level, that is, R1 ⁇ R2.
  • Set_A ⁇ 16, 32, 64, 128 ⁇
  • Set_B ⁇ 2, 4, 8, 16 ⁇
  • the set Set_A is in the case of a high coverage level.
  • Set of values of the number of repetitions Set_B is a set of values of the number of repetitions in the case of a medium-low coverage level.
  • the maximum value in Set_A is greater than the maximum value in Set_B.
  • the transport block is in a high coverage level scenario, and therefore, the set of the number of repetitions is Set_A;
  • the value of the number of repetitions R is explicitly indicated by two bits in the DCI, for example, the bit “00” indicates that the value of R is the first element in Set_A, with bits. "01” indicates that the value of R is the second element in Set_A, the bit “10” indicates that the value of R is the third element in Set_A, and the bit "11” indicates that the value of R is in Set_A.
  • R can also display an indication using two bits in the physical layer broadcast message or higher layer signaling.
  • the R may also be implicitly indicated by the resource allocation signaling or the MCS (Modulation and Coding Scheme) in the DCI, that is, the resource allocation signaling or the coded modulation indication information also indicates the repetition number R. value.
  • the digital baseband modulation mode of the subsequence may be one of the following: BPSK, QPSK, 8PSK, 16QAM, ⁇ /2-BPSK, ⁇ /4-QPSK, ⁇ /8-8PSK, 8-BPSK.
  • the modulation scheme is QPSK, that is, one subsequence contains Q QPSK modulation symbols, and Q is a positive integer.
  • the repetition manner of performing T repetitions on the N sub-sequences is one selected from the following six modes:
  • each of the N subsequences is respectively in units of orthogonal frequency division multiplexing (OFDM) symbols, starting from the first OFDM symbol, and repeating T times until the last OFDM symbol;
  • OFDM orthogonal frequency division multiplexing
  • each of the N subsequences is in a subframe, starting from the first subframe, and repeating T times until the last subframe;
  • each of the N subsequences is in a unit of a preset physical resource unit, starting from the first physical resource unit, and sequentially repeating T times until the last physical resource unit; wherein
  • the preset physical resource unit may be a physical resource that includes x subframes in time.
  • x is a positive integer and 1 ⁇ x ⁇ 12;
  • which repetition mode is adopted may be determined according to the mapping manner of the physical channel.
  • the manner of repeating the N sub-sequences adopts at least one of mode one to mode four; when the mapping mode is a multi-tone mode
  • the method for repeating the N sub-sequences adopts at least one of the first mode to the sixth mode; when the mapping mode is the physical resource block mode, the repeating manner of the N sub-sequences adopts the third mode to the sixth mode. At least one way.
  • the physical channel mapping mode is a tone mode, and the first repetition mode is adopted.
  • the first modulation symbol of the kth subsequence is repeated 4 times, and then the second modulation symbol is repeated 4 times, ... until the Q modulation symbols are repeated.
  • Step 103 Map the N sub-sequences that are repeated T times and undergo baseband modulation onto physical channel resources.
  • the physical resource mapping manner includes a single tone mode, a multi-tone mode, or a physical resource block mode.
  • Monophonic mode mapping the transport block or the subsequence to one subcarrier of a frequency domain and one or more subframes of a time domain;
  • Multi-tone mode mapping the transport block or the sub-sequence to one or more subframes of a frequency domain and one or more subframes of a time domain;
  • Physical resource block mode mapping the transport block or the subsequence to one physical resource block of the frequency domain and one or more subframes of the time domain.
  • the physical channel mapping mode is a tone mode, that is, the transport block occupies only one subcarrier in the frequency domain, and occupies multiple OFDM symbols in the time domain.
  • One OFDM symbol can only carry one modulation symbol, and therefore, repetition in units of modulation symbols in step 102 is equivalent to repetition in units of OFDM symbols.
  • the data transmission method of a wireless communication system includes step 201, step 202, step 203, and step 204:
  • Step 201 Select some or all bits from the data buffer of the transport block to form a kth subsequence of the transport block; where 1 ⁇ k ⁇ N, where N represents the number of all subsequences formed;
  • the starting position of the kth subsequence in the data buffer may be indicated by the redundancy version information rv_k.
  • R TB is the number of rows of interleavers in the data buffer of the transport block
  • N TB is the size of the data buffer of the transport block
  • N rv represents the number of elements in the redundant sequence
  • operation() represents Rounding operation
  • the operation method includes: rounding up, rounding down, or rounding
  • A is a constant that takes a positive integer
  • offset is a column offset, and the value is a non-negative integer.
  • the rv_k in the above equation is obtained by cyclically taking the elements in the redundancy version sequence; for example, the redundancy version of the first subsequence is the first element in the redundancy version sequence, and the redundancy version of the second subsequence Is the second element in the redundancy version sequence, and so on.
  • the redundancy version of the subsequence reaches the last element of the redundancy version sequence
  • the redundancy version of the next subsequence is the redundancy version.
  • the first element of the sequence is the redundancy version sequence.
  • the determining method of the redundancy version rv_k may also be determined by the following equivalent manner:
  • the redundancy version sequence is any one of the following: [0, 2, 3, 1], [0, 1, 2, 3], [0, 1], [0, 2], [0, 1, 2 ], [0, 2, 3].
  • the redundancy version of the first subsequence is 0, and the redundancy of the second subsequence
  • the remaining version is 1, the redundancy version of the third subsequence is 2, and the redundancy version of the fourth subsequence is 3.
  • Step 202 Perform digital baseband modulation on the N subsequences.
  • the digital baseband modulation mode of the subsequence may be one of the following:
  • BPSK QPSK
  • 8PSK 16QAM
  • ⁇ /2-BPSK ⁇ /4-QPSK
  • ⁇ /8-8PSK 8-BPSK
  • the modulation method is QPSK.
  • R may be indicated by DCI, physical layer broadcast message, or higher layer signaling.
  • the mode can be either explicit or implicit.
  • the information may be explicitly indicated by the dedicated one or more bits of information in the DCI, the physical layer broadcast message, or the high layer signaling, or implicitly indicated in the physical resource indication information or the coded modulation indication information of the DCI.
  • R is which of the set of values of 2 n set in advance.
  • the preset set of values is a set of results obtained by performing a predetermined function operation on the coverage level indication information.
  • the maximum value R1 in the set of values of R is not less than the maximum value R2 in the set of values of R when the coverage level is the medium-low coverage level, that is, R1 ⁇ R2.
  • Set_A ⁇ 16, 32, 64, 128 ⁇
  • Set_B ⁇ 2, 4, 8, 16 ⁇
  • the set Set_A is in the case of a high coverage level.
  • Set of values of the number of repetitions Set_B is a set of values of the number of repetitions in the case of a medium-low coverage level.
  • the maximum value in Set_A is greater than the maximum value in Set_B.
  • the transport block is in a medium-low coverage level scenario, and therefore, the set of values of the number of repeated transmissions is Set_B;
  • the value of the number of repetitions R is explicitly indicated by two bits in the DCI, for example, the bit “00” indicates that the value of R is the first element in Set_B, with bits. "01” indicates that the value of R is the second element in Set_B, the bit “10” indicates that the value of R is the third element in Set_B, and the bit "11” indicates that the value of R is in Set_B.
  • R can also be explicitly indicated by two bits in the physical layer broadcast message or higher layer signaling.
  • the R may also indicate the value of the repetition number R by the resource allocation signaling or the MCS implicit indication in the DCI, that is, the resource allocation signaling or the MCS.
  • the repetition manner of performing T repetitions on the N sub-sequences is one selected from the following six modes:
  • each of the N subsequences is respectively in units of orthogonal frequency division multiplexing (OFDM) symbols, starting from the first OFDM symbol, and repeating T times until the last OFDM symbol;
  • OFDM orthogonal frequency division multiplexing
  • each of the N subsequences is in a subframe, starting from the first subframe, and repeating T times until the last subframe;
  • each of the N subsequences is respectively in a predetermined physical resource unit, starting from the first physical resource unit, and sequentially repeating T times until the last physical resource unit;
  • the preset physical resource unit may be a physical resource that contains x subframes in time. Where x is a positive integer and 1 ⁇ x ⁇ 12;
  • the repetition mode can be determined according to the mapping mode of the physical channel.
  • the mapping mode is the monophonic mode
  • the repetition manner of the N sub-sequences adopts at least one of the first mode to the fourth mode; when the mapping mode is the multi-tone mode, the repetition of the N sub-sequences
  • the mode adopts at least one of the first mode and the sixth mode.
  • the mapping mode is the physical resource block mode
  • the N subsequences are repeated in at least one of the third mode and the sixth mode.
  • the physical channel mapping mode is assumed to be a physical resource block mode, and the repeating mode is the third mode.
  • the kth subsequence occupies a total of m subframes in the time domain. M ⁇ 1.
  • Step 204 Map the N sub-sequences that have undergone baseband modulation and repeat T times to physical letters. On the road resources.
  • the physical resource mapping manner includes a single tone mode, a multi-tone mode, or a physical resource block mode.
  • Monophonic mode mapping the transport block or the subsequence to one subcarrier of a frequency domain and one or more subframes of a time domain;
  • Multi-tone mode mapping the transport block or the sub-sequence to one or more subframes of a frequency domain and one or more subframes of a time domain;
  • Physical resource block mode mapping the transport block or the subsequence to one physical resource block of the frequency domain and one or more subframes of the time domain.
  • the physical channel mapping mode is a physical resource block mode.
  • the N baseband subsequences occupy one physical resource block in the frequency domain and occupy one or more subframes in the time domain.
  • the physical channel resource mapping manner is a multi-tone mode. That is, the transport block occupies multiple subcarriers in the frequency domain and occupies one or more subframes in the time domain.
  • the first OFDM symbol of the kth subsequence is first repeated 4 times, and then the second OFDM number is repeated 4 times, ... until the P OFDM symbols are repeated.
  • the number of subframes in the time domain of the predefined physical resource unit is inversely proportional to the number of subcarriers in the frequency domain, and the number of subframes in the time domain is not greater than 12. For example, when there is only one subcarrier in the frequency domain (physical channel resource mapping in the tone mode), the predefined physical resource unit occupies 12 subframes in the time domain; when there are 6 subcarriers in the frequency domain (multitone When the physical channel resource mapping is performed in the manner, the predefined physical resource unit occupies 2 subframes in the time domain.
  • T 4 times are repeated for each physical resource unit symbol, as shown in the figure.
  • six subcarriers in the frequency domain and two subframes in the time domain are taken as an example.
  • the first physical resource unit of the kth subsequence is repeated four times, and then the second physical resource unit is repeated four times, ... until the E physical resource units are repeated.
  • the repetition mode adopted in the present embodiment is the mode 3, and the implementation example 2 can be referred to.
  • the repetition mode employed in the present embodiment is the mode five.
  • the repetition manner of the N subsequences is determined according to the number of available subcarriers:
  • the repetition manner of the N subsequences adopts mode one; when the number of available subcarriers is greater than C1, the N subsequences The repetition manner adopts at least one of the second method, the third method, the fourth method, the fifth method and the sixth method;
  • the manner of repeating the N subsequences adopts at least one of mode one and mode two; when available subcarriers The number is greater than C2, and the manner of repeating the N subsequences is at least one of mode 3, mode 4, mode 5, and mode 6.
  • the manner of repeating the N subsequences is at least one of mode one, mode two, and mode three;
  • the number of subcarriers is greater than C3, and the manner of repeating the N subsequences adopts at least one of mode four, mode five, and mode six;
  • the manner of repeating the N subsequences adopts at least one of mode one, mode two, mode three, and mode four.
  • the manner in which the N subsequences are repeated adopts at least one of mode 5 and mode 6;
  • the repetition manner of the N subsequences is adopted in the first mode, the second mode, the third mode, the fourth mode, and the fifth mode. At least one; when the number of available subcarriers is greater than C5, the manner in which the N subsequences are repeated adopts mode six.
  • Embodiment 2 A data transmitting apparatus, as shown in FIG. 11, includes:
  • the subsequence component module 31 is configured to select some or all of the bits from the data buffer of the transport block to form the kth subsequence of the transport block, and form a total of N subsequences; wherein, 1 ⁇ k ⁇ N;
  • the sending module 32 is configured to repeat the N sub-sequences T times and perform digital baseband modulation, where the T is a positive integer, and the sum of the repetition times of the N sub-sequences is N*T, Less than a preset number of repetitions R, the R is a positive integer.
  • the operation of the transmitting module 32 repeating the subsequence and the operation of performing the digital baseband modulation may be performed in any order, and any operation may be performed first, and then another operation may be performed.
  • the sending module 32 is further configured to map the N repeated T times and the digital baseband modulated subsequences to the transport block before transmitting the transport block to the next processing unit. Physical channel resources.
  • the preset number of repetitions R is directly or indirectly indicated from a preset set of values by any one or more of the following: a downlink control signaling indication by the transport block And transmitting, by the physical layer, a message indicating that the RRC signaling indication is controlled by the radio resource.
  • the preset set of values is a set of results obtained by performing a predetermined function operation on the coverage level indication information.
  • a starting position of the kth subsequence in a data buffer of the transport block is indicated by a redundancy version rv_k of the kth subsequence; wherein the kth subsequence
  • the redundancy version rv_k is obtained by looping through the elements in the redundancy version sequence.
  • a starting position of the kth subsequence in a data buffer of the transport block is indicated by a redundancy version rv_k of the kth subsequence; wherein the kth subsequence
  • the redundancy version sequence includes any one of the following: [0, 2, 3, 1], [0, 1, 2, 3], [0, 1], [0, 2] , [0, 1, 2], [0, 2, 3].
  • the digital baseband modulation mode includes at least one of the following:
  • the sending module 32 maps the N sub-sequences of the transport block that are repeated T times and is modulated by the digital baseband to the physical channel resources, including:
  • the transmitting module 32 After the N subsequences are repeated T times and subjected to digital baseband modulation, the transmitting module 32 performs mapping according to any of the following mapping modes:
  • Monophonic mode mapping the transport block or the subsequence to one subcarrier of a frequency domain and one or more subframes of a time domain;
  • Multi-tone mode mapping the transport block or the sub-sequence to one or more subframes of a frequency domain and one or more subframes of a time domain;
  • Physical resource block mode mapping the transport block or the subsequence to one physical resource block of the frequency domain and one or more subframes of the time domain.
  • the repeating manner in which the sending module 32 repeats the N sub-sequences of the transport block by T times includes any one or more of the following:
  • each of the N subsequences is respectively in units of orthogonal frequency division multiplexing OFDM symbols, starting from the first OFDM symbol, and repeating T times in sequence until the last one Up to the OFDM symbol;
  • each of the N subsequences is in a subframe, starting from the first subframe, and repeating T times until the last subframe;
  • each of the N subsequences is respectively in a predetermined physical resource unit, starting from the first physical resource unit, and sequentially repeating T times until the last physical resource unit;
  • the predetermined physical resource unit is a physical resource that includes x subframes in time; wherein x is a positive integer, and 1 ⁇ x ⁇ 12.
  • the manner of repeating the N sub-sequences adopts at least one of mode one to mode four.
  • the manner of repeating the N sub-sequences adopts at least one of mode one to mode six.
  • the manner of repeating the N sub-sequences adopts at least one of mode three to mode six.
  • the manner in which the N subsequences are repeated adopts mode one; when the number of available subcarriers is greater than When a threshold is used, the manner of repeating the N subsequences adopts at least one of mode 2, mode 3, mode 4, mode 5, and mode 6;
  • the manner in which the N subsequences are repeated adopts at least one of mode one and mode two; when the number of available subcarriers When the second sub-threshold is greater than the second threshold, the manner of repeating the N sub-sequences adopts at least one of mode three, mode four, mode five, and mode six;
  • the manner of repeating the N subsequences adopts at least one of mode 1, mode 2, and mode 3;
  • the repetition of the N subsequences when the number of carriers is greater than a third threshold The method adopts at least one of mode four, mode five and mode six;
  • the manner of repeating the N subsequences adopts at least one of mode 1, mode 2, mode 3, and mode 4
  • the manner in which the N subsequences are repeated adopts at least one of mode 5 and mode 6;
  • the manner of repeating the N subsequences is at least one of mode one, mode two, mode three, mode four, and mode five.
  • the manner in which the N subsequences are repeated adopts mode six.
  • Embodiment 1 For other implementation details, refer to Embodiment 1 and the above implementation examples.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiments of the present invention can provide coverage enhancement for the characteristics of the narrowband Internet of Things system, and improve the performance of the data combination.
  • the alternative of the embodiment of the present invention uses different redundancy versions in the repeated transmission to generate incremental redundant sub-sequences. Further increase the merge gain.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据发送方法及装置;所述方法包括:从传输块的数据缓存区中选择部分或全部比特组成所述传输块的第k个子序列,共组成N个子序列;其中,1≤k≤N;将所述传输块的N个子序列重复T次,并进行数字基带调制后,进行发送;其中,T为正整数,所述N个子序列的重复次数之和N*T不小于预先设定的重复次数R,其中R为正整数。

Description

一种数据发送方法及装置 技术领域
本发明实施例涉及但不限于无线通信领域,尤指一种数据发送方法及装置。
背景技术
MTC(Machine Type Communication,机器类型通信)UE(User Equipment,用户设备或终端),又称M2M(Machine to Machine,机器到机器)用户通信设备,是目前物联网的主要应用形式。在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)技术报告TR45.820V200中公开了几种适用于C-IOT(Cellular Internet of Things,蜂窝级物联网)的技术,其中,NB-LTE(Narrowband Long-Term Evolution,窄带长期演进)技术最为引人注目。该系统的系统带宽为200kHz,与GSM(Global system for Mobile Communication,全球移动通信)系统的信道带宽相同,这为NB-LTE系统重用GSM频谱并降低邻近与GSM信道的相互干扰带来了极大便利。NB-LTE系统的发射带宽与下行链路子载波间隔分别为180kHz和15kHz,分别与LTE系统一个PRB(Physical Resource Block,物理资源块)的带宽和子载波间隔相同。
作为3GPP Rel-6速率匹配算法的替代,基于CB(Circular Buffer,循环缓冲区)的RM(Rate Matching,速率匹配)提供了一个可以简单地生成性能优良的打孔(puncture)图样的方法。被选择用于传输的比特可以从循环缓存的任何一个点开始被读出来,如果到达循环缓存的末尾,则可以绕到循环缓存的开始位置继续读数据,直到完成读取L个比特为止。在循环缓存中可以指定不同的位置作为每次传输HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)数据包读取的起点位置。冗余版本的定义即确定了HARQ数据包在循环缓存中读取的多个起点位置,冗余版本取值便确定了本次传输HARQ数据包在循环缓存中读取的具体起点位置。如图1所示,在3GPP系统中,基于循环缓冲速率匹配的HARQ处理过程定义了4种循环冗 余(RV)版本(RV=0、1、2、3)。每次HARQ重传的L比特长的子包是由从冗余版本定义的起点开始,顺时针选取的L个比特组成的。
基于OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)的系统包括OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址)系统、SC-FDMA(Single-carrier Frequency-Division Multiple Access,单载波频分多址)系统等。
如图2所示,在OFDM系统中,一个RB(Resource Block,资源块)是由在时间上连续的多个OFDM符号间隔和频率上连续的多个子载波构成的一个时频二维单元,即,一个RB的时间长度为一个子帧,频率上包含多个子载波。图2中一列为一个OFDM符号,一行为一个子载波。
为了增强窄带物联网系统的覆盖,需要考虑通过对信息数据编码后再进行多次重复传输,这样可以增强接收信号。
目前的覆盖增强技术中,一般都是对传输块整体进行重复。但是,本申请的发明人在研究窄带物联网系统覆盖增强的过程中发现,在窄带LTE通信系统中,由于频域上的可用带宽较小,一个传输块往往会连续占用多个子帧。如果采用目前的重复方式,则时间跨度太长,不利于接收端进行快速合并和译码。同时,由于无线信道是时变信道,时间跨度越长,无线信道的变化越大,也会降低数据合并的性能。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种适用于窄带物联网系统,能进行覆盖增强的数据发送方法和装置。
一种数据发送方法,包括:
从传输块的数据缓存区中选择部分或全部比特,组成所述传输块的第k个子序列,共组成N个子序列;其中,1≤k≤N;
将所述传输块的N个子序列重复T次,并进行数字基带调制后,进行 发送;其中,所述T为正整数,所述N个子序列的重复次数之和N*T不小于预先设定的重复次数R,所述R为正整数。
在一种实施方式中,所述进行发送前,所述方法还包括:
将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上。
在一种实施方式中,所述预先设定的重复次数R通过以下任意一种或多种方式从预先设定的取值集合中直接或间接指示:通过所述传输块的下行控制信令指示、通过物理层广播消息指示、通过无线资源控制RRC信令指示。
在一种实施方式中,所述预先设定的取值集合是对覆盖等级指示信息进行预定的函数运算所得到的结果的集合。
在一种实施方式中,所述第k个子序列在所述传输块的数据缓存区中的起始位置由所述第k个子序列的冗余版本rv_k指示;
其中,所述第k个子序列的冗余版本rv_k通过对冗余版本序列中的元素进行循环取值得到;或者,所述第k个子序列的冗余版本rv_k是冗余版本序列中的第i个元素,其中,i=mod(k-1,g)+1,g是冗余版本序列中元素的个数,i、k和g都是正整数,且1≤i≤g,mod是求余运算符。
在一种实施方式中,所述冗余版本序列包括以下任一种:[0,2,3,1]、[0,1,2,3]、[0,1]、[0,2]、[0,1,2]、[0,2,3]。
在一种实施方式中,所述数字基带调制方式包括以下之一:
二进制相移键控BPSK,正交相移键控QPSK,8进制相移键控8PSK,16进制正交幅度调制16QAM,π/2相位偏移的二进制相移键控π/2-BPSK,π/4相位偏移的正交相移键控π/4-QPSK,π/8相位偏移的8进制相移键控π/8-8PSK,8状态二进制相移键控8-BPSK。
在一种实施方式中,将所述传输块的N个子序列重复T次的重复方式包括以下任意一种或多种:
方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
方式二:所述N个子序列中的每个子序列分别以正交频分复用OFDM符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个OFDM符号为止;
方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;
方式五:所述N个子序列中的每个子序列分别重复T次;
方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
在一种实施方式中,所述预先设定的物理资源单元是时间上包含x个子帧的物理资源;其中x是正整数,且1≤x≤12。
在一种实施方式中,当物理信道资源上的可用子载波的数目不大于预先设置的第一阈值时,所述N个子序列的重复方式采用方式一;当可用子载波的数目大于第一阈值时,所述N个子序列的重复方式采用方式二、方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第二阈值,所述N个子序列的重复方式采用方式一和方式二中的至少一种;当可用子载波的数目大于第二阈值时,所述N个子序列的重复方式采用方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第三阈值,所述N个子序列的重复方式采用方式一、方式二和方式三中的至少一种;当可用子载波的数目大于第三阈值时,所述N个子序列的重复方式采用方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第四阈值,所述N个子序列的重复方式采用方式一、方式二,方式三和方式四中的至少一种方式;当可用子载波的数目大于第四阈值时,所述N个 子序列的重复方式采用方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第五阈值,所述N个子序列的重复方式采用方式一、方式二、方式三、方式四和方式五中的至少一种;当可用子载波的数目大于第五阈值时,所述N个子序列的重复方式采用方式六。
在一种实施方式中,将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上,包括:
在N个子序列重复T次并经过数字基带调制后,按照以下映射方式中任一种进行映射:
单音方式:将所述传输块或者所述子序列映射到频域的一个子载波和时域的一个或多个子帧上;
多音方式:将所述传输块或者所述子序列映射到频域的多个子载波和时域的一个或多个子帧上;
物理资源块方式:将所述传输块或者所述子序列映射到频域的一个物理资源块和时域的一个或多个子帧上。
在一种实施方式中,当映射方式为单音方式时,所述N个子序列的重复方式采用方式一到方式四中的至少一种方式;
或者,当映射方式为多音方式时,所述N个子序列的重复方式采用方式一到方式六中的至少一种方式;
或者,当映射方式为物理资源块方式时,所述N个子序列的重复方式采用方式三到方式六中的至少一种方式。
一种数据发送装置,包括:
子序列组成模块31,设置为从传输块的数据缓存区中,选择部分或全部比特,组成所述传输块的第k个子序列,共组成N个子序列;其中,1≤k≤N;以及
发送模块32,设置为将所述N个子序列重复T次,并进行数字基带调 制后,进行发送;其中,所述T为正整数,所述N个子序列的重复次数之和N*T不小于预先设定的重复次数R,所述R为正整数。
在一种实施方式中,所述发送模块32还设置为在进行发送之前,将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上。
在一种实施方式中,所述预先设定的重复次数R通过以下任意一种或多种方式从预先设定的取值集合中直接或间接指示:通过所述传输块的下行控制信令指示、通过物理层广播消息指示、通过无线资源控制RRC信令指示。
在一种实施方式中,所述预先设定的取值集合是对覆盖等级指示信息进行预定的函数运算所得到的结果的集合。
在一种实施方式中,所述第k个子序列在所述传输块的数据缓存区中的起始位置由所述第k个子序列的冗余版本rv_k指示;
其中,所述第k个子序列的冗余版本rv_k通过对冗余版本序列中的元素进行循环取值得到;或者,所述第k个子序列的冗余版本rv_k是冗余版本序列中的第i个元素,其中,i=mod(k-1,g)+1,g是冗余版本序列中元素的个数,i、k和g都是正整数,且1≤i≤g,mod是求余运算符。
在一种实施方式中,所述冗余版本序列包括以下任一种:[0,2,3,1]、[0,1,2,3]、[0,1]、[0,2]、[0,1,2]、[0,2,3]。
在一种实施方式中,所述数字基带调制方式至少包括以下之一:
二进制相移键控BPSK,正交相移键控QPSK,8进制相移键控8PSK,16进制正交幅度调制16QAM,π/2相位偏移的二进制相移键控π/2-BPSK,π/4相位偏移的正交相移键控π/4-QPSK,π/8相位偏移的8进制相移键控π/8-8PSK,8状态二进制相移键控8-BPSK。
在一种实施方式中,所述发送模块32将所述传输块的N个子序列重复T次的重复方式包括以下任意一种或多种:
方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
方式二:所述N个子序列中的每个子序列分别以正交频分复用OFDM符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个OFDM符号为止;
方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;
方式五:所述N个子序列中的每个子序列分别重复T次;
方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
在一种实施方式中,所述预先设定的物理资源单元是时间上包含x个子帧的物理资源;其中x是正整数,且1≤x≤12。
在一种实施方式中,当所述物理信道资源上的可用子载波的数目不大于预先设置的第一阈值时,所述N个子序列的重复方式采用方式一;当可用子载波的数目大于第一阈值时,所述N个子序列的重复方式采用方式二、方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第二阈值,所述N个子序列的重复方式采用方式一和方式二中的至少一种;当可用子载波的数目大于第二阈值时,所述N个子序列的重复方式采用方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第三阈值,所述N个子序列的重复方式采用方式一、方式二和方式三中的至少一种;当可用子载波的数目大于第三阈值时,所述N个子序列的重复方式采用方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第四阈值,所述N个子序列的重复方式采用方式一、方式二,方式三和方式四中的至少一种方式;当可用子载波的数目大于第四阈值时,所述N个 子序列的重复方式采用方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第五阈值,所述N个子序列的重复方式采用方式一、方式二、方式三、方式四和方式五中的至少一种;当可用子载波的数目大于第五阈值时,所述N个子序列的重复方式采用方式六。
在一种实施方式中,所述发送模块32将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上,包括:
所述发送模块32在N个子序列重复T次并经过数字基带调制后,按照以下映射方式中任一种进行映射:
单音方式:将所述传输块或者所述子序列映射到频域的一个子载波和时域的一个或多个子帧上;
多音方式:将所述传输块或者所述子序列映射到频域的多个子载波和时域的一个或多个子帧上;
物理资源块方式:将所述传输块或者所述子序列映射到频域的一个物理资源块和时域的一个或多个子帧上。
在一种实施方式中,当所述映射方式为单音方式时,所述N个子序列的重复方式采用方式一到方式四中的至少一种方式;
或者,当所述映射方式为多音方式时,所述N个子序列的重复方式采用方式一到方式六中的至少一种方式;
或者,当所述映射方式为物理资源块方式时,所述N个子序列的重复方式采用方式三到方式六中的至少一种方式。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于实现上述方法。
本发明实施例能够针对窄带物联网系统的特点进行覆盖增强,提高数据合并的性能;本发明实施例的可选方案在重复传输中采用不同的冗余版本,以产生递增冗余的子序列,进一步提高合并增益。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是3GPP系统中,基于循环缓冲速率匹配的HARQ处理过程示意图;
图2是OFDM系统中RB的示意图;
图3是实施例一的数据发送方法的流程示意图;
图4是实施示例1中子序列起始位置的示意图;
图5是实施示例1中对子序列按照方式一重复4次的示意图;
图6是实施示例2中对子序列按照方式三重复4次的示意图;
图7是实施示例3中对子序列按照方式二重复4次的示意图;
图8是实施示例4中对子序列按照方式四重复4次的示意图;
图9是实施示例6中对子序列按照方式五重复4次的示意图;
图10是实施示例7中对子序列按照方式六重复4次的示意图;
图11是实施例二的数据发送装置的示意图。
详述
下面将结合附图对本发明实施例的技术方案进行详细的说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本申请权利要求的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一、一种数据发送方法,如图3所示,包括:
S110、从传输块的数据缓存区中,选择部分或全部比特,组成所述传输块的第k个子序列,共组成N个子序列;其中,1≤k≤N,N表示全部子序列的数目;
S120、将所述传输块的N个子序列重复T次,并进行数字基带调制后,进行发送;其中,T为正整数,所述N个子序列的重复次数之和(即N*T)不小于预先设定的重复次数R,其中R为正整数。
本实施例中,所述进行发送可以但不限于是指发送给下一个处理单元,也可以是指直接或经过后续处理后发送给对端设备。
本实施例中,所述重复T次是指所形成的传输块中,每个子序列有T个,这也就意味着每个子序列将被重复传输T次。
所述步骤S120中,在进行发送之前还可以包括:
将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上。
需要说明的是,本实施例中,对所述N个子序列的重复和数字基带调制并无先后顺序之分。即:也可以先将所述N个子序列进行数字基带调制,再分别对所述N个映射后的子序列分别重复T次。
在一种实施方式中,所述预先设定的重复次数R可以通过以下任意一种或多种方式从预先设定的取值集合中直接或间接指示:通过所述传输块的下行控制信令指示、通过物理层广播消息指示、通过RRC(Radio Resource Control,无线资源控制)信令指示。其中,直接指示是指显式的指示方式,比如直接告知将预先设定的取值集合中的哪个元素作为R;间接指示是指隐含的指示方式,比如根据消息或信令的携带的其它数据,按照预先约定或默认的对应关系确定选择取值集合中的哪个元素作为R。
其中,所述预先设定的取值集合是对覆盖等级指示信息进行预定的函数运算所得到的结果的集合。
在一种实施方式中,所述第k个子序列在数据缓存区中的起始位置可以通过第k个子序列的冗余版本rv_k确定;所述第k个子序列的冗余版本rv_k是通过如下任一方式确定:
一种方式是:rv_k通过对冗余版本序列中的元素进行循环取值得到;比如,第1个子序列的冗余版本是冗余版本序列中的第1个元素,第2个子序列的冗余版本是冗余版本序列中的第2个元素,依此类推,当子序列的 冗余版本取值到达冗余版本序列的最后一个元素时,下一个子序列的冗余版本取值是冗余版本序列的第一个元素。当然,第1个子序列的冗余版本也可以是冗余版本序列中的第j个元素,第2个子序列的冗余版本则是第j+1个元素,依次类推,当取值到达最后一个元素时,再从第一个元素开始取值。
另一种方式是,rv_k是冗余版本序列中的第i个元素,其中,i=mod(k-1,g)+1,其中,g是冗余版本序列中元素的个数;k,i和g都是正整数,且1≤k≤N,1≤i≤g,mod是求余运算符。
其中,所述冗余版本序列包括以下任一种:[0,2,3,1]、[0,1,2,3]、[0,1]、[0,2]、[0,1,2]、[0,2,3]。
在一种实施方式中,所述数字基带调制方式至少包括以下之一:
BPSK(Binary Phase Shift Keying,二进制相移键控),QPSK(Quadrature Phase Shift Keying,正交相移键控),8PSK(8Phase Shift Keying,8进制相移键控),16QAM(16Quadrature Amplitude Modulation,16进制正交幅度调制),π/2-BPSK(π/2相位偏移的二进制相移键控),π/4-QPSK(π/4相位偏移的正交相移键控),π/8-8PSK(π/8相位偏移的8进制相移键控),8-BPSK(8状态二进制相移键控)。
在一种实施方式中,将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上,包括:在N个子序列重复T次并经过数字基带调制后,按照以下映射方式中任一种进行映射:
单音方式:将所述传输块或者所述子序列映射到频域的一个子载波和时域的一个或多个子帧上;
多音方式:将所述传输块或者所述子序列映射到频域的多个子载波和时域的一个或多个子帧上;
物理资源块方式:将所述传输块或者所述子序列映射到频域的一个物理资源块和时域的一个或多个子帧上。
在一种实施方式中,将所述传输块的N个子序列重复T次的重复方式包括以下任意一种或多种:
方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
方式二:所述N个子序列中的每个子序列分别以正交频分复用(OFDM)符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个OFDM符号为止;
方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;其中,所述预先设定的物理资源单元是时间上包含x个子帧的物理资源。其中x是正整数,且1≤x≤12;
方式五:所述N个子序列中的每个子序列分别重复T次;
方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
其中,方式一~方式五均是子序列分别重复T次,方式一~方式四是每个子序列中不同部分分别重复T次;方式五是一个子序列本身作为一个整体重复T次。方式六是N个子序列作为一个整体重复T次。实际应用时,可以只选用上述任一种或任几种重复方式;重复方式除了上述六种以外,也可以包括其它的重复方式,比如每个子载波分别以预定的单位重复T次。
在一种实施方式中,当所述映射方式为单音方式时,所述N个子序列的重复方式采用方式一到方式四中的至少一种方式;
当所述映射方式为多音方式时,所述N个子序列的重复方式采用方式一到方式六中的至少一种方式;
当所述映射方式为物理资源块方式时,所述N个子序列的重复方式采用方式三到方式六中的至少一种方式。
在一种实施方式中,所述N个子序列的重复方式还可以根据可用子载波数确定:
当所述物理信道资源上的可用子载波的数目不大于预先设置的第一阈值C1时,所述N个子序列的重复方式采用方式一;当可用子载波的数目大于C1,所述N个子序列的重复方式采用方式二、方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第二阈值C2,所述N个子序列的重复方式采用方式一和方式二中的至少一种;当可用子载波的数目大于C2,所述N个子序列的重复方式采用方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第三阈值C3,所述N个子序列的重复方式采用方式一、方式二和方式三中的至少一种;当可用子载波的数目大于C3,所述N个子序列的重复方式采用方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第四阈值C4,所述N个子序列的重复方式采用方式一、方式二,方式三和方式四中的至少一种方式;当可用子载波的数目大于C4,所述N个子序列的重复方式采用方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第五阈值C5,所述N个子序列的重复方式采用方式一、方式二、方式三、方式四和方式五中的至少一种;当可用子载波的数目大于C5,所述N个子序列的重复方式采用方式六。
其中,第一阈值~第五阈值的取值可以但不限于是从小到大的关系,即,第五阈值最大,第四阈值第二大,……,第一阈值最小。
以下通过八个具体的实施示例对本发明实施例进行说明。
实施示例1
本实施示例提供的一种无线通信系统的数据发送方法包括步骤101、步骤102和步骤103:
步骤101:从传输块的数据缓存区中,选择部分或全部比特,组成所述 传输块的第k个子序列;其中,1≤k≤N,N表示所组成的全部子序列的数目;
其中,第k个子序列在数据缓存区中的起始位置可以通过冗余版本信息rv_k指示。
其中,起始位置
Figure PCTCN2017073039-appb-000001
其中RTB是所述传输块的数据缓存区中的交织器的行数;NTB是所述传输块的数据缓存区的大小;Nrv表示冗余序列中的元素的数目,operation()表示取整运算,运算方法包括:向上取整、向下取整、或舍入取整;A是一个取值为正整数的常数;offset是列偏移量,取值为非负整数。
本实施示例中,rv_k是对冗余版本序列中的元素进行循环取值得到;比如,第1个子序列的冗余版本是冗余版本序列中的第1个元素,第2个子序列的冗余版本是冗余版本序列中的第2个元素,依此类推,当子序列的冗余版本取值到达冗余版本序列的最后一个元素时,下一个子序列的冗余版本取值是冗余版本序列的第一个元素。
在一种实施方式中,上述冗余版本rv_k的确定方法也可以通过如下等价方式确定,:
rv_k是冗余版本序列中的第i个元素,其中,i=mod(k-1,g)+1,其中,g是冗余版本序列中元素的个数;k,i和g都是正整数,且1≤k≤N,1≤i≤g,mod是求余运算符。
所述冗余版本序列可以为[0,2,3,1],或者[0,1,2,3],或者[0,1],或者[0,2],或者[0,1,2],或者[0,2,3]中的一种。
在本实施示例中,假设全部子序列数目为N=32,冗余版本序列为[0,2],则第一个子序列的冗余版本为0,第二个子序列的冗余版本为2,第三个子序列的冗余版本为0,第四个子序列的冗余版本为2,……,依此类推,奇数子序列的冗余版本为0,偶数子序列的冗余版本为2,第32个子序列的冗余版本为2。对应的起始位置如图4所示。
步骤102:将所述N=32个子序列重复T=4次,并进行数字基带调制。
其中,所述传输块的总的重复次数为N*T=128次,N*T不小于预先设定的重复次数R,其中R可以由DCI(Downlink Control Information,下行控制信息)、物理层广播消息或者高层信令指示,指示的方式可以是显式或者隐含指示。例如,可以在DCI、物理层广播消息或者高层信令中用专用的一个或多个比特的信息显式指示,或者在DCI的物理资源指示信息或编码调制指示信息中隐含指示所述重复次数R是预先设定的大小为2n的取值集合中的哪一个元素。
其中,所述预先设定的取值集合是对覆盖等级指示信息进行预定的函数运算所得到的结果的集合。当覆盖等级为高覆盖等级时R的取值集合中的最大值R1,不小于覆盖等级为中或低覆盖等级时的R的取值集合中的最大值R2,即R1≥R2。
在本实施示例中,假设有两个预先设定的取值集合,其中Set_A={16,32,64,128},Set_B={2,4,8,16},其中集合Set_A是高覆盖等级情况下的重复次数的取值集合,Set_B是中低覆盖等级情况下的重复次数的取值集合。在高覆盖等级情况下需要更多的重复次数以增强信号的接收功率,因此Set_A中的最大值大于Set_B中的最大值。在本实施示例中,假设所述传输块处于高覆盖等级场景,因此,重复次数的取值集合是Set_A;
在本实施示例中,假设重复次数R的取值是通过DCI中的两个比特来显式指示的,例如,用比特“00”指示R的取值是Set_A中的第一个元素,用比特“01”指示R的取值是Set_A中的第二个元素,用比特“10”指示R的取值是Set_A中的第三个元素,用比特“11”指示R的取值是Set_A中的第四个元素。本实施示例假定R是Set_A中的最后一个元素,即R=128。
同样R也可以用物理层广播消息或者高层信令中的两个比特显示指示。
此外,R还可以通过DCI中的资源分配信令或者MCS(Modulation and Coding Scheme,调制编码策略)来隐含指示,即资源分配信令或编码调制指示信息中也同时指示了重复次数R的取值。
其中,所述子序列的数字基带调制方式可以是以下之一:BPSK、 QPSK、8PSK、16QAM、π/2-BPSK、π/4-QPSK、π/8-8PSK、8-BPSK。
在本实施示例中,假设调制方式是QPSK,即一个子序列中包含Q个QPSK调制符号,Q是正整数。
其中,对N个子序列进行T次重复的重复方式是从以下6种方式中选择的一种:
方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
方式二:所述N个子序列中的每个子序列分别以正交频分复用(OFDM)符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个OFDM符号为止;
方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;其中,所述预先设定的物理资源单元可以是时间上包含x个子帧的物理资源。其中x是正整数,且1≤x≤12;
方式五:所述N个子序列中的每个子序列分别直接重复T次;
方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
本实施示例中,可以根据物理信道的映射方式决定采用哪种重复方式。
当所述映射方式为单音(single tone)方式时,所述N个子序列的重复方式采用方式一到方式四中的至少一种方式;当所述映射方式为多音(multi-tone)方式时,所述N个子序列的重复方式采用方式一到方式六中的至少一种方式;当所述映射方式为物理资源块方式时,所述N个子序列的重复方式采用方式三到方式六中的至少一种方式。
在本实施示例中,假设物理信道映射方式为单音方式,采用所述第一种重复方式。
所述第k个子序列可以表示为如下的调制符号序列[S1,S2,S3……,SQ],对每个调制符号依次重复T=4次,如图5所示。先将第k个子序列的第一个调制符号重复4次,再将第二个调制符号重复4次,……,直到Q个调制符号都重复完毕。
所述N个子序列中的每个子序列均按照图5的方式进行重复。
步骤103:将所述N个重复T次并经过基带调制的子序列映射到物理信道资源上。
其中,物理资源映射方式包括单音方式、多音方式或者物理资源块方式;
单音方式:将所述传输块或者所述子序列映射到频域的一个子载波和时域的一个或多个子帧上;
多音方式:将所述传输块或者所述子序列映射到频域的多个子载波和时域的一个或多个子帧上;
物理资源块方式:将所述传输块或者所述子序列映射到频域的一个物理资源块和时域的一个或多个子帧上。
在本实施示例中,假设物理信道映射方式为单音方式,即所述传输块在频域上只占用一个子载波,在时域上占用多个OFDM符号。
需要注意的是,对于单音映射方式来说。一个OFDM符号只能承载一个调制符号,因此,在步骤102中以调制符号为单位重复与以OFDM符号为单位重复是等价的。
实施示例2:
本实施示例提供的一种无线通信系统的数据发送方法包括步骤201、步骤202、步骤203和步骤204:
步骤201:从传输块的数据缓存区中,选择部分或全部比特,组成所述传输块的第k个子序列;其中,1≤k≤N,N表示所组成的全部子序列的数目;
其中,第k个子序列在数据缓存区中的起始位置可以通过冗余版本信息rv_k指示。
其中,起始位置
Figure PCTCN2017073039-appb-000002
其中RTB是所述传输块的数据缓存区中的交织器的行数;NTB是所述传输块的数据缓存区的大小;Nrv表示冗余序列中的元素的数目,operation()表示取整运算,运算方法包括:向上取整、向下取整、或舍入取整;A是一个取值为正整数的常数;offset是列偏移量,取值为非负整数。
上式中的rv_k是对冗余版本序列中的元素进行循环取值得到;比如,第1个子序列的冗余版本是冗余版本序列中的第1个元素,第2个子序列的冗余版本是冗余版本序列中的第2个元素,依此类推,当子序列的冗余版本取值到达冗余版本序列的最后一个元素时,下一个子序列的冗余版本取值是冗余版本序列的第一个元素。
在一种实施方式中,上述冗余版本rv_k的确定方法也可以通过如下等价方式确定:
rv_k是冗余版本序列中的第i个元素,其中,i=mod(k-1,g)+1,其中,g是冗余版本序列中元素的个数;k,i和g都是正整数,且1≤k≤N,1≤i≤g,mod是求余运算符。
所述冗余版本序列为以下任一种:[0,2,3,1]、[0,1,2,3]、[0,1]、[0,2]、[0,1,2]、[0,2,3]。
在本实施示例中,假设全部子序列数目为N=4,冗余版本序列为[0,1,2,3],则第一个子序列的冗余版本为0,第二个子序列的冗余版本为1,第三个子序列的冗余版本为2,第四个子序列的冗余版本为3。
步骤202:将所述N个子序列进行数字基带调制。
其中,所述子序列的数字基带调制方式可以是以下之一:
BPSK、QPSK、8PSK、16QAM、π/2-BPSK、π/4-QPSK、π/8-8PSK、8-BPSK。
在本实施示例中,假设调制方式是QPSK。
步骤203:将所述N=4个子序列重复T=4次。
其中,所述传输块的总的重复次数为N*T=16次,N*T不小于预先设定的重复次数R,其中R可以由DCI、物理层广播消息或者高层信令指示,指示的方式可以为显式或者隐含指示。例如,可以在DCI、物理层广播消息或者高层信令中用专用的一个或多个比特的信息显式指示,或者在DCI的物理资源指示信息或编码调制指示信息中隐含指示所述重复次数R是预先设定的大小为2n的取值集合中的哪一个元素。
其中,所述预先设定的取值集合是对覆盖等级指示信息进行预定的函数运算所得到的结果的集合。当覆盖等级为高覆盖等级时R的取值集合中的最大值R1,不小于覆盖等级为中低覆盖等级时的R的取值集合中的最大值R2,即R1≥R2。
在本实施示例中,假设有两个预先设定的取值集合,其中Set_A={16,32,64,128},Set_B={2,4,8,16},其中集合Set_A是高覆盖等级情况下的重复次数的取值集合,Set_B是中低覆盖等级情况下的重复次数的取值集合。在高覆盖等级情况下需要更多的重复次数以增强信号的接收功率,因此Set_A中的最大值大于Set_B中的最大值。在本实施示例中,假设所述传输块处于中低覆盖等级场景,因此,重复传输次数的取值集合是Set_B;
在本实施示例中,假设重复次数R的取值是通过DCI中的两个比特来显式指示的,例如,用比特“00”指示R的取值是Set_B中的第一个元素,用比特“01”指示R的取值是Set_B中的第二个元素,用比特“10”指示R的取值是Set_B中的第三个元素,用比特“11”指示R的取值是Set_B中的第四个元素。本实施示例假定R是Set_B中的最后一个元素,即R=16。
同样R也可以用物理层广播消息或者高层信令中的两个比特显式指示。
此外,R还可以通过DCI中的资源分配信令或者MCS隐含指示,即资源分配信令或MCS中也同时指示了重复次数R的取值。
其中,对N个子序列进行T次重复的重复方式是从以下6种方式中选择的一种:
方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
方式二:所述N个子序列中的每个子序列分别以正交频分复用(OFDM)符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个OFDM符号为止;
方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;所述预先设定的物理资源单元可以是时间上包含x个子帧的物理资源。其中x是正整数,且1≤x≤12;
方式五:所述N个子序列中的每个子序列分别直接重复T次;
方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
可以根据物理信道的映射方式决定采用哪种重复方式。
当所述映射方式为单音方式时,所述N个子序列的重复方式采用方式一到方式四中的至少一种方式;当所述映射方式为多音方式时,所述N个子序列的重复方式采用方式一到方式六中的至少一种方式;当所述映射方式为物理资源块方式时,所述N个子序列的重复方式采用方式三到方式六中的至少一种方式。
在本实施示例中,假设物理信道映射方式为物理资源块方式,重复方式采用所述方式三。
在本实施例中,假设第k个子序列在时域上共占用m个子帧。m≥1。
所述第k个子序列可以表示为如下的子帧序列[sf1,sf2,sf3……,sfm],对每个子帧依次重复T=4次,如图6所示。先将第k个子序列的第一个子帧重复4次,再将第二个子帧重复4次,……,直到m个子帧都重复完毕。
所述N个子序列中的每个子序列均按照图6的方式进行重复。
步骤204:将所述N个经过基带调制并重复T次的子序列映射到物理信 道资源上。
其中,物理资源映射方式包括单音方式、多音方式或者物理资源块方式;
单音方式:将所述传输块或者所述子序列映射到频域的一个子载波和时域的一个或多个子帧上;
多音方式:将所述传输块或者所述子序列映射到频域的多个子载波和时域的一个或多个子帧上;
物理资源块方式:将所述传输块或者所述子序列映射到频域的一个物理资源块和时域的一个或多个子帧上。
在本实示施中,假设物理信道映射方式为物理资源块方式。所述N个基带子序列在频域上占用一个物理资源块,在时域上占用一个或多个子帧。
实施示例3
本实施示例与实施示例1或实施示例2的区别是:在本实施示例中,物理信道资源映射方式为多音方式。即所述传输块在频域上占用多个子载波,在时域上占用1个或多个子帧。
重复方式采用方式二。
所述第k个子序列可以表示为如下的OFDM符号序列[OF1,OF2,OF3……,OFP],对每个OFDM符号依次重复T=4次,如图7所示。先将第k个子序列的第一个OFDM符号重复4次,再将第二个OFDM号重复4次,……,直到P个OFDM符号都重复完毕。
所述N个子序列中的每个子序列均按照图7的方式进行重复。
实施示例4:
本实施示例与实施示例1或实施示例3的区别是,在本实施示例中重复方式采用方式四。
其中,预先定义的物理资源单元在时域上的子帧数目与频域上子载波的数目成反比,且所述时域上的子帧数目不大于12。例如,当频域上只有一个子载波(单音方式进行物理信道资源映射)时,所述预先定义的物理资源单元在时域上占用12个子帧;当频域上有6个子载波(多音方式进行物理信道资源映射)时,所述预先定义的物理资源单元在时域上占用2个子帧。
其中,所述第k个子序列可以表示为如下的物理资源单元序列[PRU1,PRU2,PRU3,……,PRUE],对每个物理资源单元符号依次重复T=4次,如图8所示,以频域上6个子载波,时域上2个子帧为例。先将第k个子序列的第一个物理资源单元重复4次,再将第二个物理资源单元重复4次,……,直到E个物理资源单元都重复完毕。
所述N个子序列中的每个子序列均按照图8的方式进行重复。
实施示例5:
本实施示例与实施示例1或实施示例3的区别是:在本实施示例中采用的重复方式为所述方式三,可参见实施示例2。
实施示例6:
本实施示例与实施示例2或实施示例3的区别是:在本实施示例中采用的重复方式为所述方式五。
所述传输块可以表示为如下的子序列排列[SS1,SS2,SS3,…,SSN],所述每个子序列直接重复T=4次后再级联。如图9所示,第1子序列直接重复T=4次后,第2直接重复T=4次……,直到N个子序列都重复完毕。
实施示例7
本实施示例与实施示例6的区别是:在本实施示例中采用的重复方式为所述的方式六。
如图10所示,所述N个子序列按照子序列序号的顺序依次排列,并对排列后的N个子序列整体重复T=4次。
实施示例8:
本实施示例与实施示例1至实施示例7的区别是:
所述N个子序列的重复方式根据可用子载波数确定:
当所述物理信道资源上的可用子载波的数目不大于预先设置的第一阈值C1时,所述N个子序列的重复方式采用方式一;当可用子载波的数目大于C1,所述N个子序列的重复方式采用方式二、方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第二阈值C2,所述N个子序列的重复方式采用方式一和方式二中的至少一种;当可用子载波的数目大于C2,所述N个子序列的重复方式采用方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第三阈值C3,所述N个子序列的重复方式采用方式一、方式二和方式三中的至少一种;当可用子载波的数目大于C3,所述N个子序列的重复方式采用方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第四阈值C4,所述N个子序列的重复方式采用方式一、方式二,方式三和方式四中的至少一种方式;当可用子载波的数目大于C4,所述N个子序列的重复方式采用方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第五阈值C5,所述N个子序列的重复方式采用方式一、方式二、方式三、方式四和方式五中的至少一种;当可用子载波的数目大于C5,所述N个子序列的重复方式采用方式六。
在本实施示例中,假设C1=1,C2=2,C3=4,C4=6,C5=8。因此,当可用子载波的数目不大于C1=1,即单音方式进行物理信道资源映射时,对 所述N个子序列采用方式一进行重复;当可用子载波的数目不大于C1=2,对所述N个子序列采用方方式二进行重复;当可用子载波的数目不大于C3=4,对所述N个子序列采用方式三进行重复;当可用子载波的数目不大于C4=6,对所述N个子序列采用方式四进行重复;当可用子载波的数目不大于C5=8,对所述N个子序列采用方式五进行重复;当可用子载波的数目大于C5=8,对所述N个子序列采用方式六进行重复;
实施例二、一种数据发送装置,如图11所示,包括:
子序列组成模块31,设置为从传输块的数据缓存区中选择部分或全部比特,组成所述传输块的第k个子序列,共组成N个子序列;其中,1≤k≤N;以及
发送模块32,设置为将所述N个子序列重复T次,并进行数字基带调制后,进行发送;其中,所述T为正整数,所述N个子序列的重复次数之和N*T,不小于预先设定的重复次数R,所述R为正整数。
其中,所述发送模块32重复子序列的操作及进行数字基带调制的操作可以不分先后,可以先进行任一操作,再进行另一个操作。
在一种实施方式中,所述发送模块32还设置为在将所述传输块发送给下一处理单元之前,将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上。
在一种实施方式中,所述预先设定的重复次数R通过以下任意一种或多种方式从预先设定的取值集合中直接或间接指示:通过所述传输块的下行控制信令指示、通过物理层广播消息指示、通过无线资源控制RRC信令指示。
在一种实施方式中,所述预先设定的取值集合是对覆盖等级指示信息进行预定的函数运算所得到的结果的集合。
在一种实施方式中,所述第k个子序列在所述传输块的数据缓存区中的起始位置由所述第k个子序列的冗余版本rv_k指示;其中,所述第k个子序列的冗余版本rv_k通过对冗余版本序列中的元素进行循环取值得到。
在一种实施方式中,所述第k个子序列在所述传输块的数据缓存区中的起始位置由所述第k个子序列的冗余版本rv_k指示;其中,所述第k个子序列的冗余版本rv_k是冗余版本序列中的第i个元素,其中,i=mod(k-1,g)+1;g是冗余版本序列中元素的个数,i、k和g都是正整数,且1≤i≤g,mod是求余运算符。
在一种实施方式中,所述冗余版本序列包括以下任一种:[0,2,3,1]、[0,1,2,3]、[0,1]、[0,2]、[0,1,2]、[0,2,3]。
在一种实施方式中,所述数字基带调制方式至少包括以下之一:
二进制相移键控BPSK,正交相移键控QPSK,8进制相移键控8PSK,16进制正交幅度调制16QAM,π/2相位偏移的二进制相移键控π/2-BPSK,π/4相位偏移的正交相移键控π/4-QPSK,π/8相位偏移的8进制相移键控π/8-8PSK,8状态二进制相移键控8-BPSK。
在一种实施方式中,所述发送模块32将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上,包括:
所述发送模块32在N个子序列重复T次并经过数字基带调制后,按照以下映射方式中任一种进行映射:
单音方式:将所述传输块或者所述子序列映射到频域的一个子载波和时域的一个或多个子帧上;
多音方式:将所述传输块或者所述子序列映射到频域的多个子载波和时域的一个或多个子帧上;
物理资源块方式:将所述传输块或者所述子序列映射到频域的一个物理资源块和时域的一个或多个子帧上。
在一种实施方式中,所述发送模块32将所述传输块的N个子序列重复T次的重复方式包括以下任意一种或多种:
方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
方式二:所述N个子序列中的每个子序列分别以正交频分复用OFDM符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个 OFDM符号为止;
方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;
方式五:所述N个子序列中的每个子序列分别重复T次;
方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
其中,所述预先设定的物理资源单元是时间上包含x个子帧的物理资源;其中x是正整数,且1≤x≤12。
在一种实施方式中,当所述映射方式为单音方式时,所述N个子序列的重复方式采用方式一到方式四中的至少一种方式。
在一种实施方式中,当所述映射方式为多音方式时,所述N个子序列的重复方式采用方式一到方式六中的至少一种方式。
在一种实施方式中,当所述映射方式为物理资源块方式时,所述N个子序列的重复方式采用方式三到方式六中的至少一种方式。
在一种实施方式中,当所述物理信道资源上的可用子载波的数目不大于预先设置的第一阈值时,所述N个子序列的重复方式采用方式一;当可用子载波的数目大于第一阈值时,所述N个子序列的重复方式采用方式二、方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第二阈值,所述N个子序列的重复方式采用方式一和方式二中的至少一种;当可用子载波的数目大于第二阈值时,所述N个子序列的重复方式采用方式三、方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第三阈值,所述N个子序列的重复方式采用方式一、方式二和方式三中的至少一种;当可用子载波的数目大于第三阈值时,所述N个子序列的重复 方式采用方式四、方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第四阈值,所述N个子序列的重复方式采用方式一、方式二,方式三和方式四中的至少一种方式;当可用子载波的数目大于第四阈值时,所述N个子序列的重复方式采用方式五和方式六中的至少一种方式;
或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第五阈值,所述N个子序列的重复方式采用方式一、方式二、方式三、方式四和方式五中的至少一种;当可用子载波的数目大于第五阈值时,所述N个子序列的重复方式采用方式六。
其它实现细节可参考实施例一及上述实施示例。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理单元的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
本领域的普通技术人员应当理解,可以对本发明实施例的技术方案进行修改或者等同替换,而不脱离本申请技术方案的精神和范围,均应涵盖在本申请的权利要求范围当中。
工业实用性
本发明实施例能够针对窄带物联网系统的特点进行覆盖增强,提高数据合并的性能;本发明实施例的可选方案在重复传输中采用不同的冗余版本,以产生递增冗余的子序列,进一步提高合并增益。

Claims (27)

  1. 一种数据发送方法,包括:
    从传输块的数据缓存区中选择部分或全部比特,组成所述传输块的第k个子序列,共组成N个子序列;其中,1≤k≤N;
    将所述传输块的N个子序列重复T次,并进行数字基带调制后,进行发送;其中,所述T为正整数,所述N个子序列的重复次数之和N*T不小于预先设定的重复次数R,所述R为正整数。
  2. 如权利要求1所述的方法,所述进行发送前,所述方法还包括:
    将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上。
  3. 如权利要求1所述的方法,其中:
    所述预先设定的重复次数R通过以下任意一种或多种方式从预先设定的取值集合中直接或间接指示:通过所述传输块的下行控制信令指示、通过物理层广播消息指示、通过无线资源控制RRC信令指示。
  4. 如权利要求3所述的方法,其中:所述预先设定的取值集合是对覆盖等级指示信息进行预定的函数运算所得到的结果的集合。
  5. 如权利要求1所述的方法,其中,所述第k个子序列在所述传输块的数据缓存区中的起始位置由所述第k个子序列的冗余版本rv_k指示;
    其中,所述第k个子序列的冗余版本rv_k通过对冗余版本序列中的元素进行循环取值得到;或者,所述第k个子序列的冗余版本rv_k是冗余版本序列中的第i个元素,其中,i=mod(k-1,g)+1,g是冗余版本序列中元素的个数,i、k和g都是正整数,且1≤i≤g,mod是求余运算符。
  6. 如权利要求5所述的方法,其中,所述冗余版本序列包括以下任一种:[0,2,3,1]、[0,1,2,3]、[0,1]、[0,2]、[0,1,2]、[0,2,3]。
  7. 如权利要求1所述的方法,其中,所述数字基带调制方式包括以下之一:
    二进制相移键控BPSK,正交相移键控QPSK,8进制相移键控8PSK,16进制正交幅度调制16QAM,π/2相位偏移的二进制相移键控π/2-BPSK,π/4相位偏移的正交相移键控π/4-QPSK,π/8相位偏移的8进制相移键控π/8-8PSK,8状态二进制相移键控8-BPSK。
  8. 如权利要求1或2所述的方法,其中,将所述传输块的N个子序列重复T次的重复方式包括以下任意一种或多种:
    方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
    方式二:所述N个子序列中的每个子序列分别以正交频分复用OFDM符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个OFDM符号为止;
    方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
    方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;
    方式五:所述N个子序列中的每个子序列分别重复T次;
    方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
  9. 如权利要求8所述的方法,其中,所述预先设定的物理资源单元是时间上包含x个子帧的物理资源;其中x是正整数,且1≤x≤12。
  10. 如权利要求8所述的方法,其中:
    当物理信道资源上的可用子载波的数目不大于预先设置的第一阈值时,所述N个子序列的重复方式采用方式一;当可用子载波的数目大于第一阈值时,所述N个子序列的重复方式采用方式二、方式三、方式四、方式五和方式六中的至少一种方式;
    或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第二阈值,所述N个子序列的重复方式采用方式一和方式二中的至少一 种;当可用子载波的数目大于第二阈值时,所述N个子序列的重复方式采用方式三、方式四、方式五和方式六中的至少一种方式;
    或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第三阈值,所述N个子序列的重复方式采用方式一、方式二和方式三中的至少一种;当可用子载波的数目大于第三阈值时,所述N个子序列的重复方式采用方式四、方式五和方式六中的至少一种方式;
    或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第四阈值,所述N个子序列的重复方式采用方式一、方式二,方式三和方式四中的至少一种方式;当可用子载波的数目大于第四阈值时,所述N个子序列的重复方式采用方式五和方式六中的至少一种方式;
    或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第五阈值,所述N个子序列的重复方式采用方式一、方式二、方式三、方式四和方式五中的至少一种;当可用子载波的数目大于第五阈值时,所述N个子序列的重复方式采用方式六。
  11. 如权利要求2所述的方法,其中,将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上,包括:
    在N个子序列重复T次并经过数字基带调制后,按照以下映射方式中任一种进行映射:
    单音方式:将所述传输块或者所述子序列映射到频域的一个子载波和时域的一个或多个子帧上;
    多音方式:将所述传输块或者所述子序列映射到频域的多个子载波和时域的一个或多个子帧上;
    物理资源块方式:将所述传输块或者所述子序列映射到频域的一个物理资源块和时域的一个或多个子帧上。
  12. 如权利要求11所述的方法,其中,将所述传输块的N个子序列重复T次的重复方式包括以下任意一种或多种:
    方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
    方式二:所述N个子序列中的每个子序列分别以正交频分复用OFDM符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个OFDM符号为止;
    方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
    方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;
    方式五:所述N个子序列中的每个子序列分别重复T次;
    方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
  13. 如权利要求12所述的方法,其中:
    当映射方式为单音方式时,所述N个子序列的重复方式采用方式一、方式二、方式三和方式四中的至少一种方式;
    或者,当映射方式为多音方式时,所述N个子序列的重复方式采用方式一、方式二、方式三、方式四、方式五和方式六中的至少一种方式;
    或者,当映射方式为物理资源块方式时,所述N个子序列的重复方式采用方式三、方式四、方式五和方式六中的至少一种方式。
  14. 一种数据发送装置,包括:
    子序列组成模块(31),设置为从传输块的数据缓存区中选择部分或全部比特,组成所述传输块的第k个子序列,共组成N个子序列;其中,1≤k≤N;以及
    发送模块(32),设置为将所述N个子序列重复T次,并进行数字基带调制后,进行发送;其中,所述T为正整数,所述N个子序列的重复次数之和N*T不小于预先设定的重复次数R,所述R为正整数。
  15. 如权利要求14所述的装置,其中:
    所述发送模块(32)还设置为在进行发送之前,将所述传输块的N个 重复T次并经过数字基带调制的子序列映射到物理信道资源上。
  16. 如权利要求14所述的装置,其中:
    所述预先设定的重复次数R通过以下任意一种或多种方式从预先设定的取值集合中直接或间接指示:通过所述传输块的下行控制信令指示、通过物理层广播消息指示、通过无线资源控制RRC信令指示。
  17. 如权利要求16所述的装置,其中:所述预先设定的取值集合是对覆盖等级指示信息进行预定的函数运算所得到的结果的集合。
  18. 如权利要求14所述的装置,其中,所述第k个子序列在所述传输块的数据缓存区中的起始位置由所述第k个子序列的冗余版本rv_k指示;
    其中,所述第k个子序列的冗余版本rv_k通过对冗余版本序列中的元素进行循环取值得到;或者,所述第k个子序列的冗余版本rv_k是冗余版本序列中的第i个元素,其中,i=mod(k-1,g)+1,g是冗余版本序列中元素的个数,i、k和g都是正整数,且1≤i≤g,mod是求余运算符。
  19. 如权利要求18所述的装置,其中,所述冗余版本序列包括以下任一种:[0,2,3,1]、[0,1,2,3]、[0,1]、[0,2]、[0,1,2]、[0,2,3]。
  20. 如权利要求14所述的装置,其中,所述数字基带调制方式包括以下之一:
    二进制相移键控BPSK,正交相移键控QPSK,8进制相移键控8PSK,16进制正交幅度调制16QAM,π/2相位偏移的二进制相移键控π/2-BPSK,π/4相位偏移的正交相移键控π/4-QPSK,π/8相位偏移的8进制相移键控π/8-8PSK,8状态二进制相移键控8-BPSK。
  21. 如权利要求14或15所述的装置,其中,所述发送模块(32)将所述传输块的N个子序列重复T次的重复方式包括以下任意一种或多种:
    方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
    方式二:所述N个子序列中的每个子序列分别以正交频分复用OFDM符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个 OFDM符号为止;
    方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
    方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;
    方式五:所述N个子序列中的每个子序列分别重复T次;
    方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
  22. 如权利要求21所述的装置,其中,所述预先设定的物理资源单元是时间上包含x个子帧的物理资源;其中x是正整数,且1≤x≤12。
  23. 如权利要求21所述的装置,其中:
    当所述物理信道资源上的可用子载波的数目不大于预先设置的第一阈值时,所述N个子序列的重复方式采用方式一;当可用子载波的数目大于第一阈值时,所述N个子序列的重复方式采用方式二、方式三、方式四、方式五和方式六中的至少一种方式;
    或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第二阈值,所述N个子序列的重复方式采用方式一和方式二中的至少一种;当可用子载波的数目大于第二阈值时,所述N个子序列的重复方式采用方式三、方式四、方式五和方式六中的至少一种方式;
    或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第三阈值,所述N个子序列的重复方式采用方式一、方式二和方式三中的至少一种;当可用子载波的数目大于第三阈值时,所述N个子序列的重复方式采用方式四、方式五和方式六中的至少一种方式;
    或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第四阈值,所述N个子序列的重复方式采用方式一、方式二,方式三和方式四中的至少一种方式;当可用子载波的数目大于第四阈值时,所述N个子序列的重复方式采用方式五和方式六中的至少一种方式;
    或者,当所述物理信道资源上的可用子载波的数目不大于预先设置的第五阈值,所述N个子序列的重复方式采用方式一、方式二、方式三、方式四和方式五中的至少一种;当可用子载波的数目大于第五阈值时,所述N个子序列的重复方式采用方式六。
  24. 如权利要求15所述的装置,其中,所述发送模块(32)将所述传输块的N个重复T次并经过数字基带调制的子序列映射到物理信道资源上,包括:
    所述发送模块(32)在N个子序列重复T次并经过数字基带调制后,按照以下映射方式中任一种进行映射:
    单音方式:将所述传输块或者所述子序列映射到频域的一个子载波和时域的一个或多个子帧上;
    多音方式:将所述传输块或者所述子序列映射到频域的多个子载波和时域的一个或多个子帧上;
    物理资源块方式:将所述传输块或者所述子序列映射到频域的一个物理资源块和时域的一个或多个子帧上。
  25. 如权利要求24所述的装置,其中,所述发送模块(32)将所述传输块的N个子序列重复T次的重复方式包括以下任意一种或多种:
    方式一:所述N个子序列中的每个子序列分别以调制符号为单位,从第1个调制符号开始,依次重复T次,直到最后一个调制符号为止;
    方式二:所述N个子序列中的每个子序列分别以正交频分复用OFDM符号为单位,从第1个OFDM符号开始,依次重复T次,直到最后一个OFDM符号为止;
    方式三:所述N个子序列中的每个子序列分别以子帧为单位,从第1个子帧开始,依次重复T次,直到最后一个子帧为止;
    方式四:所述N个子序列中的每个子序列分别以预先设定的物理资源单元为单位,从第1个物理资源单元开始,依次连续重复T次,直到最后一个物理资源单元为止;
    方式五:所述N个子序列中的每个子序列分别重复T次;
    方式六:所述N个子序列按照顺序依次排列,并对排列后的N个子序列重复T次。
  26. 如权利要求25所述的装置,其中:
    当所述映射方式为单音方式时,所述N个子序列的重复方式采用方式一、方式二、方式三和方式四中的至少一种方式;
    或者,当所述映射方式为多音方式时,所述N个子序列的重复方式采用方式一、方式二、方式三、方式四、方式五和方式六中的至少一种方式;
    或者,当所述映射方式为物理资源块方式时,所述N个子序列的重复方式采用方式三、方式四、方式五和方式六中的至少一种方式。
  27. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-13任一项所述的方法。
PCT/CN2017/073039 2016-01-11 2017-02-07 一种数据发送方法及装置 WO2017121409A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/069,452 US10637618B2 (en) 2016-01-11 2017-02-07 Data transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610017538.2 2016-01-11
CN201610017538.2A CN106961317B (zh) 2016-01-11 2016-01-11 一种数据发送方法及装置

Publications (1)

Publication Number Publication Date
WO2017121409A1 true WO2017121409A1 (zh) 2017-07-20

Family

ID=59310880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073039 WO2017121409A1 (zh) 2016-01-11 2017-02-07 一种数据发送方法及装置

Country Status (3)

Country Link
US (1) US10637618B2 (zh)
CN (1) CN106961317B (zh)
WO (1) WO2017121409A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913202A (zh) * 2018-11-02 2021-06-04 高通股份有限公司 用于二进制相移键控调制数据的计算机生成的序列设计

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959647B (zh) * 2016-10-14 2022-02-25 中兴通讯股份有限公司 多载波系统的符号配置方法及装置、数据解调方法及装置
CN108400838B (zh) * 2017-02-06 2021-05-18 华为技术有限公司 数据处理方法及设备
US10869312B2 (en) * 2017-10-31 2020-12-15 Ofinno, Llc Scheduling with bandwidth part switching
CN109787708B (zh) * 2017-11-13 2022-03-01 珠海市魅族科技有限公司 指示或接收冗余版本的方法及装置
CN109802788B (zh) 2017-11-17 2022-02-25 中兴通讯股份有限公司 一种信号的生成与发送方法
CN110475238B (zh) 2018-05-11 2022-01-14 华为技术有限公司 一种数据传输方法及通信装置
WO2020029130A1 (zh) * 2018-08-08 2020-02-13 北京小米移动软件有限公司 混合自动重传请求harq反馈方法及装置
CN111555848B (zh) * 2019-02-11 2023-05-09 中国移动通信有限公司研究院 一种参考信号传输方法及通信设备
CN111800870B (zh) * 2019-04-02 2023-01-03 大唐移动通信设备有限公司 信息传输方法及终端
CN114499803A (zh) * 2019-04-04 2022-05-13 华为技术有限公司 发送数据的方法、通信装置、计算机存储介质
WO2021154031A1 (ko) * 2020-01-30 2021-08-05 엘지전자 주식회사 무선 통신 시스템에서 상향링크 채널 반복 전송 방법 및 장치
CN114071428A (zh) * 2020-08-10 2022-02-18 华为技术有限公司 一种数据传输的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119182A (zh) * 2007-08-13 2008-02-06 中兴通讯股份有限公司 一种高阶调制中的比特优先选择方法
CN101183875A (zh) * 2007-12-07 2008-05-21 中兴通讯股份有限公司 一种Turbo码的有限长度循环缓存的速率匹配方法
US20090147724A1 (en) * 2007-12-11 2009-06-11 Motorola, Inc. Method and appratus for rate matching within a communication system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050220131A1 (en) * 2004-03-31 2005-10-06 Boris Ginzburg Method and apparatus to multicast transmission
US8552835B2 (en) * 2005-10-28 2013-10-08 Mojix, Inc. RFID system with low complexity implementation and pallet coding error correction
US9883428B2 (en) * 2015-01-16 2018-01-30 Sharp Kabushiki Kaisha Wireless terminals, base stations, communication systems, communication methods, and integrated circuits

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119182A (zh) * 2007-08-13 2008-02-06 中兴通讯股份有限公司 一种高阶调制中的比特优先选择方法
CN101183875A (zh) * 2007-12-07 2008-05-21 中兴通讯股份有限公司 一种Turbo码的有限长度循环缓存的速率匹配方法
US20090147724A1 (en) * 2007-12-11 2009-06-11 Motorola, Inc. Method and appratus for rate matching within a communication system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112913202A (zh) * 2018-11-02 2021-06-04 高通股份有限公司 用于二进制相移键控调制数据的计算机生成的序列设计
US11909573B2 (en) 2018-11-02 2024-02-20 Qualcomm Incorporated Computer-generated sequence design for binary phase shift keying modulation data
CN112913202B (zh) * 2018-11-02 2024-04-26 高通股份有限公司 用于二进制相移键控调制数据的计算机生成的序列设计

Also Published As

Publication number Publication date
US20190020453A1 (en) 2019-01-17
CN106961317B (zh) 2020-05-26
US10637618B2 (en) 2020-04-28
CN106961317A (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2017121409A1 (zh) 一种数据发送方法及装置
US11652600B2 (en) Method, device and system for determining coding modulation parameter
JP6678758B2 (ja) データ共有チャネルの伝送パラメーターの決定方法、装置及びシステム
USRE48741E1 (en) Method and apparatus for transmitting control information in a wireless communication system
CN107005388B (zh) 一种发送物理上行链路控制信道的方法和用户设备
US10523372B2 (en) Method and apparatus for the transmission of uplink control information
US9948442B2 (en) Method and apparatus for transmitting control information in a wireless communication system
AU2011230241B2 (en) Communication method, mobile station apparatus, base station apparatus and mobile communication system
US8660094B2 (en) Method and apparatus for data transmission using a plurality of resources in a multiple antenna system
US8990656B2 (en) Method for transmitting uplink control information in a wireless access system and terminal for same
US10887066B2 (en) Method, device, and system for determining transmission information
US20130343327A1 (en) Method and apparatus for transmitting channel quality control information using pucch format 3 in a wireless access system
US11026181B2 (en) Terminal apparatus, base station apparatus, communication method, and integrated circuit
CN111567006A (zh) 终端装置、基站装置以及通信方法
US11038625B2 (en) Base station apparatus, terminal apparatus, and communication method
US11943749B2 (en) Method of transmitting data over indicated resource blocks
TWI693854B (zh) 上行鏈路控制資訊處理方法及使用者設備
CN108966349B (zh) 通信方法和通信设备
CN102377536A (zh) 反馈信息的传输方法及设备
WO2017121416A1 (zh) 上行控制信息的发送方法及装置
US20210306107A1 (en) Harq-ack timing and pucch resource determination for ultra-low latency pdsch transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738222

Country of ref document: EP

Kind code of ref document: A1