WO2017121289A1 - 信息的传输方法及装置 - Google Patents

信息的传输方法及装置 Download PDF

Info

Publication number
WO2017121289A1
WO2017121289A1 PCT/CN2017/070448 CN2017070448W WO2017121289A1 WO 2017121289 A1 WO2017121289 A1 WO 2017121289A1 CN 2017070448 W CN2017070448 W CN 2017070448W WO 2017121289 A1 WO2017121289 A1 WO 2017121289A1
Authority
WO
WIPO (PCT)
Prior art keywords
narrowband
frequency
information
uplink
frequency offset
Prior art date
Application number
PCT/CN2017/070448
Other languages
English (en)
French (fr)
Inventor
张雯
夏树强
戴博
石靖
刘锟
陈宪明
方惠英
袁弋非
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017121289A1 publication Critical patent/WO2017121289A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for transmitting information.
  • Machine Type Communication MTC
  • UE User Equipment
  • M2M Machine to Machine
  • C-IOT Comb-Internet Of Things
  • 3GPP 3rd Generation Partnership Project
  • TR45.820V200 Technical Report TR45.820V200
  • NB-IoT Narrow Band-Internet of Things
  • the system bandwidth of the system is 200 kHz, which is the same as the channel bandwidth of the Global System for Mobile Communication (GSM) GSM system.
  • GSM Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • GSM Global System for Mobile Communication
  • the present invention provides a method and apparatus for transmitting information to at least solve the problem of how to determine a narrow band of a transmission channel in the bandwidth of an LTE system in the related art.
  • a method for transmitting information including:
  • the network device determines frequency offset information or frequency domain location information
  • a narrow band of transmission information is determined according to the frequency offset information or frequency domain location information, and information is transmitted on the narrow band.
  • the determining, by the network device, the frequency offset information includes one of the following:
  • the notification information of the receiving network device determines the frequency offset information.
  • the frequency offset information includes one of the following:
  • the frequency offset information carried in the primary system information block MIB wherein the frequency offset information indicates a frequency offset of the first narrowband and the second narrowband
  • the first narrowband is a narrowband that transmits at least one of: a system information block SIB, RAR, a paging message, a downlink control channel, and a PDSCH
  • the second narrowband being a narrowband transmitting at least one of: a primary synchronization signal PSS, secondary synchronization signal SSS, and physical broadcast channel PBCH;
  • the frequency offset information carried in the SIB wherein the frequency offset information indicates a frequency offset of a third narrowband and a fourth narrowband, wherein the third narrowband is a narrowband transmitting at least one of: random connection
  • the fourth narrowband is a narrowband that transmits at least one of: PSS, SSS, PBCH, and SIB;
  • the frequency offset information carried in the SIBx wherein the frequency offset information indicates a frequency offset of a fifth narrowband and a sixth narrowband
  • the fifth narrowband is a narrowband that transmits at least one of: RAR, a paging message, a downlink control channel and a PDSCH, and an SIB other than the SIBx
  • the sixth narrowband is a narrowband transmitting at least one of: PSS, SSS, PBCH, and SIBx
  • the SIBx is a designated SIB Message
  • the frequency offset information carried in the primary synchronization signal PSS and the secondary synchronization signal SSS wherein the frequency offset information indicates a frequency offset of a seventh narrowband and an eighth narrowband, wherein the seventh narrowband is transmitted below At least one of the narrowband: PBCH, SIB, RAR, paging message, downlink control channel, and PDSCH, the eighth narrowband is a narrowband that transmits at least one of: PSS and SSS.
  • the first narrowband, the third narrowband, the fifth narrowband, and the seventh narrowband are one physical resource block PRB in a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • a center frequency of a center subcarrier of the second narrowband, the fourth narrowband, the sixth narrowband, and the eighth narrowband satisfies an integer multiple of 100 KHz.
  • the frequency offset information indicates the number of offset subcarriers.
  • the absolute value of the frequency offset X indicated by the frequency offset information is less than or equal to Y subcarriers, X is an integer, and Y is a preset positive integer.
  • X is an integer between -5 and 6, or an integer between -6 and 5, or an integer between 0 and 11.
  • the frequency offset information includes:
  • the frequency offset information carried in the MIB or the SIB is an offset between a specified narrowband and a preset frequency
  • the specified narrowband is a narrowband that transmits at least one of: PSS, SSS, PBCH, SIB, RAR, and seek Call message, downlink control channel and PDSCH.
  • the preset frequency is an integer multiple of 100 KHz.
  • the specified narrowband is one PRB in the LTE system.
  • the frequency offset indicated by the frequency offset information is an integer multiple or an odd multiple of 2.5 KHz; the frequency offset information is a frequency offset corresponding to an index in a predefined set.
  • the frequency offset information is one of the following:
  • the frequency domain location information is a PRB index corresponding to an uplink narrowband.
  • the predefined information or the notification information includes at least one of the following:
  • the first value is a frequency offset between the uplink narrowband and a center frequency of the uplink system bandwidth
  • the second value is a downlink narrowband and a downlink The frequency offset between the center frequency points of the system bandwidth.
  • the center frequency of the uplink narrowband is:
  • F UL F UL_LOW + 0.1 (N UL - N Offs - UL ) + 0.015 n UL ;
  • F UL F UL_LOW + 0.1 (N UL - N Offs - UL ) + 0.09 n UL ;
  • F UL is the center frequency of the uplink narrowband
  • F UL_LOW is the lowest frequency of the working frequency band in which the uplink narrowband is located
  • N UL is the uplink carrier frequency corresponding to the system bandwidth
  • N Offs-UL is the operation of the uplink narrowband.
  • n UL is the frequency offset value
  • n UL is an integer
  • F UL , F UL_LOW , N UL and N Offs-UL units are all MHz.
  • the center frequency of the uplink narrowband is:
  • F UL F UL_LOW +0.1(N UL -N Offs-UL )+0.01n UL
  • F UL is the center frequency of the uplink narrowband
  • F UL_LOW is the lowest frequency of the working frequency band in which the uplink narrowband is located
  • N UL is the uplink carrier frequency corresponding to the uplink narrowband
  • N Offs-UL is the narrowband with the uplink
  • n UL is the frequency offset value
  • n UL is an integer
  • F UL , F UL_LOW , N UL and N Offs-UL units are all MHz.
  • the center frequency of the uplink narrowband is:
  • F UL is the center frequency of the uplink narrowband
  • F DL is the center frequency of the downlink narrowband or the frequency of the center subcarrier
  • ⁇ f is the default UE transmit-receive frequency interval
  • both F UL and F DL units are MHz
  • n UL is the frequency offset value
  • n UL is an integer.
  • the center frequency of the uplink narrowband is:
  • F UL is the center frequency of the uplink narrowband
  • F DL ' is the center frequency of the downlink system bandwidth
  • ⁇ f is the default UE transmit-receive frequency interval
  • F UL and F DL ' are both MHz
  • n UL is The frequency offset value
  • n UL is an integer.
  • the center frequency of the uplink narrowband is:
  • F UL is the center frequency of the uplink narrowband
  • F DL is the center frequency of the downlink narrowband or the frequency of the center subcarrier
  • ⁇ f is the default UE transmit-receive frequency interval
  • both F UL and F DL units are MHz
  • n UL is the frequency offset value
  • n UL is an integer
  • x is 1 or -1
  • x is a predefined or higher layer signaling indication.
  • the center frequency of the downlink narrowband is:
  • F DL F DL_LOW +0.1(N DL -N Offs-DL )+0.3n DL ;
  • F DL F DL_LOW +0.1(N DL -N Offs-DL )+0.2n DL ;
  • F DL is the center frequency of the downlink narrowband or the frequency of the center subcarrier
  • F DL_LOW is the lowest frequency of the working frequency band in which the downlink narrowband is located
  • N DL is the downlink carrier frequency corresponding to the system bandwidth
  • N Offs-DL For the offset value corresponding to the working frequency band in which the downlink narrowband is located, n DL is a frequency offset value, n DL is an integer, and F DL , F DL_LOW , N DL , and N Offs-DL units are all MHz.
  • a device for transmitting information which is located in a network device, includes:
  • Determining a module setting the network device to determine frequency offset information or frequency domain location information
  • the transmission module is configured to determine a narrowband of the transmission information according to the frequency offset information or the frequency domain location information, and transmit the information on the narrowband.
  • the determining module includes one of the following:
  • a custom unit configured to determine the frequency domain offset information according to the predefined information
  • the receiving unit is configured to receive the notification information of the network device to determine the frequency offset information.
  • Another embodiment of the present invention provides a computer storage medium, where the computer storage medium stores execution instructions for performing one or a combination of the steps in the foregoing method embodiments.
  • the network device determines the frequency offset information or the frequency domain location information, determines the narrowband of the transmission information according to the frequency offset information or the frequency domain location information, and transmits the information on the narrowband, thereby solving the bandwidth of the LTE system.
  • the problem of determining the narrow band of the transmission channel determines the narrow band of the transmission channel.
  • FIG. 1 is a flow chart of a method for transmitting information according to an embodiment of the present invention
  • FIG. 2 is a block diagram 1 of a structure of an information transmission apparatus according to an embodiment of the present invention.
  • FIG. 3 is a block diagram 2 of a structure of an information transmission apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of frequency offset information in a system bandwidth in accordance with a preferred embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for transmitting information according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 the network device determines frequency offset information or frequency domain location information.
  • Step S104 determining a narrowband of the transmission information according to the frequency offset information or the frequency domain location information, and transmitting the information on the narrowband.
  • the network device determines frequency offset information or frequency domain location information, determines a narrowband of the transmission information according to the frequency offset information or the frequency domain location information, and transmits information on the narrowband, and solves the problem on the bandwidth of the LTE system.
  • the problem of determining the narrow band of the transmission channel determines the narrow band of the transmission channel.
  • the network device determines that the frequency offset information comprises one of the following:
  • the notification information of the receiving network device determines the frequency offset information.
  • the frequency offset information comprises one of the following:
  • the frequency offset information carried in the primary system information block MIB wherein the frequency offset information indicates a frequency offset of the first narrowband and the second narrowband, the first narrowband being a narrowband transmitting at least one of: a system information block SIB, RAR, paging message, downlink control channel and PDSCH, the second narrowband is a narrowband transmitting at least one of: a primary synchronization signal PSS, a secondary synchronization signal SSS, and a physical broadcast channel PBCH;
  • the frequency offset information carried in the SIB wherein the frequency offset information indicates a frequency offset of the third narrowband and the fourth narrowband
  • the third narrowband is a narrowband that transmits at least one of: a random access response RAR a paging message, a downlink control channel, and a physical downlink shared channel (PDSCH)
  • the fourth narrowband is a narrowband that transmits at least one of: PSS, SSS, PBCH, and SIB;
  • the frequency offset information carried in the SIBx wherein the frequency offset information indicates a frequency offset of the fifth narrowband and the sixth narrowband
  • the fifth narrowband is a narrowband that transmits at least one of: RAR, paging message a downlink control channel and a PDSCH, and an SIB other than the SIBx
  • the sixth narrowband is a narrowband that transmits at least one of: PSS, SSS, PBCH, and SIBx, wherein the SIBx is a designated SIB message;
  • the frequency offset information carried in the primary synchronization signal PSS and the secondary synchronization signal SSS wherein the frequency offset information indicates a frequency offset of the seventh narrowband and the eighth narrowband, wherein the seventh narrowband transmits at least one of the following Narrowband: PBCH, SIB, RAR, paging message, downlink control channel, and PDSCH.
  • the eighth narrowband is a narrowband that transmits at least one of: PSS and SSS.
  • the first narrowband, the third narrowband, the fifth narrowband, and the seventh narrowband are one physical resource block PRB in a Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the center frequency of the central subcarrier of the second narrowband, the fourth narrowband, the sixth narrowband, and the eighth narrowband satisfies an integer multiple of 100 KHz.
  • the frequency offset information indicates the number of offset subcarriers.
  • the absolute value of the frequency offset X indicated by the frequency offset information is less than or equal to Y subcarriers, X is an integer, and Y is a preset positive integer.
  • X is an integer between -5 and 6, or an integer between -6 and 5, or an integer between 0 and 11.
  • the frequency offset information includes:
  • the frequency offset information carried in the MIB or the SIB is an offset between the specified narrowband and the preset frequency, and the specified narrowband is a narrowband that transmits at least one of: PSS, SSS, PBCH, SIB, RAR, paging message , downlink control channel and PDSCH.
  • the preset frequency is an integer multiple of 100 KHz.
  • the designated narrowband is a PRB in an LTE system.
  • the frequency offset indicated by the frequency offset information is an integer multiple or an odd multiple of 2.5 KHz; the frequency offset information is a frequency offset corresponding to an index in a predefined set.
  • the frequency offset information is one of the following:
  • the frequency domain location information is a PRB index corresponding to the uplink narrowband.
  • the predefined information or the notification information includes at least one of the following:
  • the first value is a frequency offset between the uplink narrowband and a center frequency of the uplink system bandwidth
  • the second value is a downlink narrowband and a downlink system bandwidth.
  • the frequency offset value between the center frequency points.
  • the center frequency of the uplink narrowband is:
  • F UL F UL_LOW + 0.1 (N UL - N Offs - UL ) + 0.015 n UL ;
  • F UL F UL_LOW + 0.1 (N UL - N Offs - UL ) + 0.09 n UL ;
  • F UL is the center frequency of the uplink narrowband
  • F UL_LOW is the lowest frequency of the working frequency band in which the uplink narrowband is located
  • N UL is the uplink carrier frequency corresponding to the system bandwidth
  • N Offs-UL is the working frequency band corresponding to the uplink narrowband
  • the offset value, n UL is the frequency offset value, n UL is an integer
  • F UL , F UL_LOW , N UL and N Offs-UL units are all MHz.
  • the center frequency of the uplink narrowband is:
  • F UL F UL_LOW +0.1(N UL -N Offs-UL )+0.01n UL
  • F UL is the center frequency of the uplink narrowband
  • F UL_LOW is the lowest frequency of the working frequency band in which the uplink narrowband is located
  • N UL is the uplink carrier frequency corresponding to the uplink narrowband
  • N Offs-UL is the operating frequency band corresponding to the uplink narrowband
  • n UL is the frequency offset value
  • n UL is an integer
  • F UL , F UL_LOW , N UL , and N Offs-UL units are all MHz.
  • the center frequency of the uplink narrowband is:
  • F UL is the center frequency of the uplink narrowband
  • F DL is the center frequency of the downlink narrowband or the frequency of the center subcarrier
  • ⁇ f is the default UE transmit-receive frequency interval
  • both F UL and F DL are MHz.
  • n UL is the frequency offset value
  • n UL is an integer.
  • the center frequency of the uplink narrowband is:
  • F UL is the center frequency of the uplink narrowband
  • F DL ' is the center frequency of the downlink system bandwidth
  • ⁇ f is the default UE transmit-receive frequency interval
  • F UL and F DL ' are both MHz
  • n UL is The frequency offset value
  • n UL is an integer.
  • the center frequency of the uplink narrowband is:
  • F UL is the center frequency of the uplink narrowband
  • F DL is the center frequency of the downlink narrowband or the frequency of the center subcarrier
  • ⁇ f is the default UE transmit-receive frequency interval
  • both F UL and F DL are MHz.
  • n UL is the frequency offset value
  • n UL is an integer
  • x is 1 or -1
  • x is a predefined or higher layer signaling indication.
  • a center frequency of the downlink narrowband of the narrowband is:
  • F DL F DL_LOW +0.1(N DL -N Offs-DL )+0.3n DL ;
  • F DL F DL_LOW +0.1(N DL -N Offs-DL )+0.2n DL ;
  • F DL is the center frequency of the downlink narrowband or the frequency of the center subcarrier
  • F DL_LOW is the lowest frequency of the working frequency band in which the downlink narrowband is located
  • N DL is the downlink carrier frequency corresponding to the system bandwidth
  • N Offs-DL is The offset value corresponding to the working frequency band in which the downlink narrowband is located
  • n DL is a frequency offset value
  • n DL is an integer
  • F DL , F DL_LOW , N DL , and N Offs-DL units are all MHz.
  • a device for transmitting information is provided, which is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 2 is a block diagram showing the structure of an information transmission apparatus according to an embodiment of the present invention. As shown in FIG. 2, the apparatus is located in a network device, and the apparatus includes:
  • the determining module 22 is configured to determine, by the network device, frequency offset information or frequency domain location information;
  • the transmission module 24 is configured to determine a narrowband of the transmission information according to the frequency offset information or the frequency domain location information, and transmit the information on the narrowband.
  • the determining module 22 is configured to determine, by the network device, frequency offset information or frequency domain location information
  • the transmitting module 24 is configured to determine a narrowband of the transmission information according to the frequency offset information or the frequency domain location information, and transmit the information on the narrowband. It solves the problem of how to determine the narrow band of the transmission channel on the bandwidth of the LTE system, and determines the narrow band of the transmission channel.
  • FIG. 3 is a structural block diagram 2 of a device for transmitting information according to an embodiment of the present invention.
  • the determining module 24 includes one of the following:
  • the custom unit 32 is configured to determine the frequency domain offset information according to the predefined information
  • the receiving unit 34 is configured to receive the notification information of the network device to determine the frequency offset information.
  • the preferred embodiment provides a method of determining the frequency offset and transmitting the channel/information.
  • the preferred embodiment is described by taking the NB-IoT system as an example.
  • the actual application is not limited to the application in the NB-IoT system, and can also be applied to other systems.
  • the UE needs to perform channel raster at an integer multiple of 100 KHz to receive a synchronization channel.
  • the subcarrier width is 15 kHz, so the frequency of the DC subcarrier in the LTE system is a common multiple of 15 kHz and 100 kHz, that is, 300 kHz.
  • the frequency of the center subcarrier of the synchronization channel PSS/SSS is an integer multiple of 300 kHz.
  • the central subcarrier of the PSS/SSS is the subcarrier #4 of the PRB #8, which satisfies an integer multiple of 300 kHz, wherein the PRB index is a PRB index in the prior art, that is, all in the system bandwidth.
  • the PRB is indexed from zero to highest from zero, and the subcarrier index on the PRB is an index obtained by numbering the subcarriers on the PRB from zero to highest from zero.
  • the other subcarriers occupied by the synchronization channel may be 6 subcarriers on either side of the central subcarrier, or 6 subcarriers on one side and 5 subcarriers on the other side, which are not limited in the present invention. Any one of practical applications can be used.
  • the eNB may arbitrarily select one mode to send, and the UE performs blind detection according to the foregoing methods.
  • the subcarrier occupation mode is preset. For example, the number of subcarriers fixed to a frequency smaller than the center subcarrier frequency is five, and the number of subcarriers having a frequency greater than the center subcarrier frequency is six.
  • the PBCH is also transmitted on the same narrow band as the sync channel.
  • the downlink other information/channels other than the synchronization channel and the PBCH are transmitted on a narrow band that has an offset from the PSS/SSS.
  • at least one of the information/channel other than the synchronization channel and the PBCH is transmitted on a narrow band that has an offset from the PSS/SSS.
  • the advantage of this is that only the sync channel and the PBCH channel are not aligned with the existing PRB, while other channels and existing The PRBs are all aligned. Compared with the manner in which all channels are transmitted on the narrowband corresponding to the PSS/SSS, the manner given by the present invention has the least impact on the legacy UE.
  • FIG. 4 is a schematic diagram of frequency offset information in a system bandwidth according to a preferred embodiment of the present invention.
  • the system bandwidth is 20 MHz
  • a thick line frame represents a PRB
  • a small box in a thick line frame represents a sub- Carrier.
  • the central subcarrier of the PSS/SSS is the subcarrier #4 of the PRB#8, and the occupied narrowband is as shown in the gray part.
  • the left side of the center subcarrier occupies 5 subcarriers, the right side occupies 6 subcarriers, and the narrowband occupied by other channels is as follows. As shown by the slash line, it occupies PRB#8.
  • the eNB may indicate in the PBCH that the other channels are offset by one subcarrier from the narrower band of the PSS/SSS channel to the higher frequency side.
  • the UE offsets one subcarrier to the higher frequency side to receive other channels.
  • the UE accesses the system, if it needs to re-receive the PSS/SSS/PBCH, it needs to hop to the narrow band where the PSS/SSS/PBCH is located to receive.
  • the offset information may be preset, such as being preset to shift one subcarrier to a direction of high frequency.
  • this method is used for the scenario where the PSS/SSS is transmitted at a preset location, for example, when the NB-IoT system is only used for system bandwidths of 10 MHz and 20 MHz, the center frequency of the PSS/SSS is in some PRBs. Sent on subcarrier #4.
  • the offset information may be notified by the eNB.
  • the eNB notifies the offset in the MIB, the unit of the offset being a subcarrier.
  • the offset information may be a positive integer between 0 and 11, or may be an integer between -6 and 5, or may be an integer between -5 and 6, may be indicated by 4 bits, or Coding instructions can be combined with other information.
  • the location of the PSS/SSS/PBCH transmission of the NB-IoT system may be limited to reduce signaling overhead.
  • the restriction is transmitted on subcarriers #4 and #7 of some PRBs, and the offset corresponding to subcarrier #4 is +1, that is, one subcarrier is shifted to the side with high frequency, subcarrier.
  • #7 corresponds to an offset of -2, that is, 2 subcarriers are offset to the lower frequency side; for odd system bandwidths, it is restricted to be transmitted on subcarriers #5 and #6 of some PRBs, and subcarrier #5 corresponds to The offset is 0, and the offset corresponding to subcarrier #6 is -1.
  • 2 bits can be used in the PBCH to indicate 4 kinds of offsets, and the UE determines to receive narrow bands of other channels according to the indication.
  • the PSS/SSS/PBCH occupies part of the subcarriers of one PRB, and the PRB is allocated to one UE, the data of the UE on the partial subcarriers is destroyed, and the eNB may adopt a lower The code rate is transmitted to the UE to increase the accuracy of the transmission.
  • the UE may align the center frequency of the receiving narrowband of the receiver with the center subcarrier. For example, in FIG. 4, the UE aligns the center frequency of the receiving narrowband of the receiver with the subcarrier #4.
  • the center frequency of the receiving narrowband of the receiver may be offset from the center subcarrier by a frequency domain position. For example, in FIG. 4, the UE aligns the center frequency of the receiver's received narrowband with subcarrier 4 and subcarrier 5. The central position is shifted by half a subcarrier relative to the center subcarrier in the direction of high frequency, ie 7.5 KHz.
  • the eNB notifies the offset of the DC subcarrier of the downlink narrowband and the system bandwidth in the PBCH or the MIB, for example, +60, that is, the central subcarrier of the downlink narrowband is on the side of the DC subcarrier of the system bandwidth to the high frequency.
  • the UE may obtain a sequence value of the CRS on the downlink narrowband by using the information, where the CRS may be used for the downlink Demodulation of information on a narrow band.
  • the preferred embodiment provides a method of determining the frequency offset and transmitting the channel/information.
  • the preferred embodiment is described by taking the NB-IoT system as an example.
  • the actual application is not limited to the application in the NB-IoT system, and can also be applied to other systems.
  • the PSS/SSS, PBCH, and SIB1 are all transmitted on the same narrowband, and the eNB notifies the downlink narrowband and PSS/SSS of at least one of the channel/information or other channel/information of the PSS/SSS, the PBCH, and the SIB in the SIB1. , PBCH and the offset between the transmission narrowband of SIB1.
  • the UE receives the frequency offset information in SIB1 and receives the downlink signal on the corresponding narrowband. Or the offset is preset, and the UE receives the downlink signal on the corresponding narrowband according to the frequency shift.
  • the PSS/SSS, the PBCH, and the SIB are all transmitted on the same narrowband, and the eNB notifies the transmission narrowband and PSS of at least one of the downlink other channels/information or other channels/information other than the PSS/SSS, the PBCH, and the SIB in the SIB.
  • /SSS, PBCH, and the offset between the transmission narrowbands of the SIB such as notifying the offset information in SIB1 or other SIB messages, the UE receiving the frequency offset information, and receiving the downlink signal on the corresponding narrowband.
  • the offset is preset, and the UE receives the downlink signal on the corresponding narrowband according to the frequency shift.
  • the PSS/SSS, the PBCH, and the part of the SIB are all transmitted on the same narrowband, and the eNB notifies the downlink narrowband of the PSS/SSS, the PBCH, and other channels/information of the partial SIB or at least one of the other channels/information in the SIB.
  • an offset between the transmission narrowband of the PSS/SSS, the PBCH, and the partial SIB such as the eNB notifying the offset information in the SIB2, the UE receiving the frequency offset information, receiving the SIB3 and all subsequent times on the corresponding narrowband SIB and other downlink channels/information or other channels/information.
  • the offset is preset, and the UE receives the downlink signal on the corresponding narrowband according to the frequency shift.
  • the preferred embodiment provides a method of determining the frequency offset and transmitting the channel/information.
  • the preferred embodiment is described by taking the NB-IoT system as an example.
  • the actual application is not limited to the application in the NB-IoT system, and can also be applied to other systems.
  • the downlink narrowband of the NB-IoT is a complete PRB of the LTE system, and at least one of all downlink channels or downlink channels is transmitted on the PRB.
  • the center frequency of all PRBs is not an integer multiple of 100KHz, and the UE performs sweeping according to an integer multiple of 100KHz, so that the UE receives a certain frequency offset when receiving. For example, for a 10 MHz system bandwidth, when PSS/SSS is transmitted on PRB #4, there is a 2.5 KHz frequency offset with an integer multiple of 100 KHz.
  • the eNB notifies the frequency offset in the PBCH/SIB.
  • the frequency offset is an integer multiple of 2.5 KHz.
  • the frequency offset may be a value in a set, such as ⁇ +7.5KHz, -7.5KHz, +2.5KHz, -2.5KHz ⁇ , and the eNB indicates the frequency offset information in the PBCH/SIB by using 2 bits. Then, after receiving the PBCH/SIB, the UE can obtain the frequency offset value, and then the center frequency can be adjusted to the center of one PRB to receive the downlink signal. With such a method, the UE is prevented from being affected by the frequency offset when receiving the subsequent channel, and the receiving performance of the UE is improved.
  • the frequency offset is a frequency offset corresponding to an index in a predefined set.
  • the set is a few PRBs Set
  • each PRB is represented by an index
  • each PRB corresponds to a frequency offset value.
  • a total of 4 PRBs can be used as narrowband of the NB-IoT system, respectively, PRB#2, 7, and 17 22, the 2 PRBs are indicated by 2 bits, the offset corresponding to PRB #2, 7 is +7.5 KHz, and the offset corresponding to PRB #2, 7 is -7.5 KHz, then the UE can obtain the PRB according to the 2 bit information notified by the eNB. Index, and then get the offset information.
  • the preferred embodiment provides a method of determining the frequency offset and transmitting the channel/information.
  • the preferred embodiment is described by taking the NB-IoT system as an example.
  • the actual application is not limited to the application in the NB-IoT system, and can also be applied to other systems.
  • the offset between the narrowband of PBCH and PSS/SSS is preset.
  • the narrowband of PSS/SSS is offset from the narrowband of PBCH by 2 PRBs to the lower frequency side.
  • it may be a subcarrier level offset, for example, the narrowband of the PSS/SSS is offset from the narrowband of the PBCH to the side of the higher frequency by 20 subcarriers.
  • the location of the PSS/SSS transmission narrowband is preset.
  • the central subcarrier of the PSS/SSS narrowband is located on the higher frequency side of the DC subcarrier of the system bandwidth (or may also be the frequency)
  • the 60th subcarrier of the lower side this subcarrier satisfies an integer multiple of 100KHz.
  • the first subcarrier whose frequency is higher than the DC subcarrier is the first subcarrier, and so on.
  • the subcarriers occupied by the PSS/SSS are the 55th subcarrier to the 66th subcarrier.
  • the offset between the PBCH and the narrowband of the PSS/SSS is offset by 18 subcarriers from the low frequency direction, that is, the 37th subcarrier to the 48th subcarrier.
  • the PBCH can be transmitted on one PRB, reducing the transmission to the legacy UE. Impact.
  • the frequency offset information may be included in the PSS/SSS.
  • the frequency offset information is included in the SSS.
  • the frequency offset is selected in a preset set.
  • multiple channels are transmitted over multiple narrowbands.
  • the preferred embodiment is described by taking the NB-IoT system as an example.
  • the actual application is not limited to the application in the NB-IoT system, and can also be applied to other systems.
  • PSS/SSS is transmitted on a narrow band.
  • the central subcarrier of the PSS/SSS satisfies an integer multiple of 100 KHz.
  • the remaining downlink channels are transmitted on one or more other narrowbands.
  • the narrow band of the PBCH can be obtained by preset or information contained in the PSS/SSS.
  • the narrowband where the SIB is located is notified in the PBCH, such as the narrowband PRB information in the MIB that informs the SIB, such as the index of the PRB where the SIB narrowband is located.
  • the narrowband offset information of the narrowband relative to the MIB where the SIB is located is notified, for example, offsetting 2 PRBs from the side with the high frequency.
  • the cheap information may be an integer number of PRBs or an integer number of subcarriers.
  • the UE receives the SIB according to the offset information.
  • the downlink control channel and/or the narrowband information where the PDSCH is located, or the offset information of the narrowband relative to the SIB, where the downlink control channel includes the PDCCH and/or the EPDCCH, may be included.
  • Multiple channels are transmitted over multiple narrowbands depending on the type/function of the message/channel.
  • the PSS/SSS/MIB is transmitted on the same narrow band, and the remaining downlink channels are transmitted on the other one or more narrow bands.
  • the MIB contains the narrowband information where the SIB1 is located, or the narrowband offset information of the narrowband relative to the PSS/SSS/MIB where the SIB is located in the MIB.
  • the PSS/SSS/MIB/SIB is transmitted on the same narrow band, and the remaining downlink channels are transmitted on the other one or more narrow bands.
  • the SIB includes narrowband information of the downlink control channel and/or the PDSCH, or offset information of the narrowband in which the narrowband and the MIB where the downlink control channel and/or the PDSCH are located are located in the SIB.
  • the narrowband information indicating the RAR, the downlink control information for scheduling the RAR, the paging message, and the downlink control information for scheduling the paging message in the SIB.
  • the PSS/SSS/MIB/SIB and all public messages are transmitted on the same narrowband, and the public message includes RAR, downlink control information for scheduling RAR, paging message, and downlink control information for scheduling paging messages.
  • the unicast information of the UE is sent on other narrowbands, and the eNB indicates to the UE in the SIB that the UE receives the downlink control channel of the unicast information and/or the narrowband of the PDSCH.
  • the PSS/SSS/MIB/SIB and the part of the public message are transmitted on the same narrowband, and the public message includes the RAR, the downlink control information for scheduling the RAR, the paging message, and the downlink control information for scheduling the paging message.
  • the eNB indicates in the SIB the narrowband where the remaining public messages are located and the narrowband of the unicast information of the UE.
  • the PSS/SSS/MIB/SIB and all/part of the public message are transmitted on a narrowband, and the UE receives the downlink signal on the narrowband before receiving the narrowband information of the downlink control channel sent by the eNB. If the UE receives the narrowband information for detecting the downlink control channel, the UE detects the downlink control channel on the narrowband.
  • the eNB includes the narrowband information in the RRC signaling sent to the UE, or the narrowband information in the message 4.
  • the downlink control channel and the PDSCH may only notify the narrowband of the downlink control channel in the same narrowband, such as the SIB, and the narrowband of the PDSCH is the same as the narrowband of the downlink control information.
  • the downlink control channel may have only one narrowband or multiple.
  • the UE receives the downlink control channel on a narrowband according to a preset rule, for example, according to the C-RNTI.
  • All narrowbands are narrowbands that operate independently, that is, all downlink channels/information are transmitted on each narrowband, including PSS/SSS, PBCH, SIB, RAR, paging message, downlink control channel, and downlink data channel.
  • Some narrowbands are narrowbands that operate independently, that is, all downlink channels/information are transmitted on the narrowband, including PSS/SSS, PBCH, SIB, RAR, paging message, downlink control channel, and downlink data channel.
  • the remaining narrowband is a narrowband supporting only unicast data, and is used to transmit a UE-specific downlink control channel and PDSCH.
  • the UE can always work on a narrow band.
  • the UE may perform frequency hopping transmission.
  • the frequency hopping transmission may be hopping to a narrow band to receive certain information.
  • the UE receives the synchronization signal on the PSS/SSS narrowband, and then hops to The downlink control channel is detected on a narrow band.
  • the frequency hopping transmission can also be used to improve the performance of a certain transmission, and frequency hopping transmission on multiple narrowbands. For example, in a coverage enhancement scenario, a UE needs to repeatedly transmit 20 subframes, then the UE performs frequency hopping transmission on multiple narrowbands, increases frequency diversity gain, and improves transmission performance.
  • the preferred embodiment provides a method of obtaining an upstream narrow band.
  • the preferred embodiment is illustrated by taking the NB-IoT system as an example, and the proposed method is not limited to application in the NB-IoT system.
  • N Offs-UL is an offset value corresponding to the uplink working frequency band, and is a constant. For example, for band #1, N Offs-UL is 18000.
  • the frequency domain position of the uplink narrowband satisfies:
  • F UL F UL_LOW +0.1(N UL -N Offs-UL )+0.015n UL
  • n UL is an integer. That is to say, the center frequency of the uplink narrowband is an integer multiple of subcarriers in the direction of low or high frequency of the center frequency of the uplink system bandwidth.
  • F UL F UL_LOW +0.1(N UL -N Offs-UL )+0.09n UL
  • n UL is an integer. That is to say, the center frequency of the uplink narrowband is an integer multiple of the half PRB offset from the center frequency of the uplink system bandwidth to the low or high frequency.
  • the center frequency of the uplink narrowband is an odd multiple of half the PRB offset from the center frequency of the uplink system bandwidth to the low or high frequency; when the system bandwidth is odd, the center frequency of the uplink narrowband
  • the center frequency of the uplink system bandwidth is shifted by an even multiple of half a PRB in the direction of low or high frequency.
  • the frequency domain location of the uplink narrowband is obtained by using a preset manner, for example, the foregoing n UL is a preset value.
  • the preset or the eNB notifies the UE of the DC location information of the system bandwidth, and the frequency domain location of the uplink narrowband is obtained according to the information.
  • the eNB notifies the UE of the DC and downlink narrowband offset information, and the information may be included in the SIB.
  • the eNB informs the UE that the DC is the downlink frequency band/center subcarrier/starting subcarrier/cutoff subcarrier to the kth subcarrier in the low frequency direction, or the kth subcarrier and the k+1th subcarrier.
  • Intermediate position, or the center frequency point/center subcarrier/starting subcarrier/down subcarrier of the downlink narrowband is the kth subcarrier in the direction of DC high frequency, or the kth subcarrier and the k+1th subcarrier The middle position.
  • the subcarrier index is from 0 to N-1 from the lowest frequency to the highest. If N is even, the center frequency is the intermediate position of subcarrier #(N/2-1) and subcarrier#n, and the center subcarrier is subcarrier ( N/2-1) is either N, the starting subcarrier is 0, and the cutoff subcarrier is N-1.
  • the downlink narrowband occupies 12 subcarriers, and the subcarrier index is from 0 to 11 from the lowest frequency to the highest, respectively, then the center frequency point is the intermediate position of the subcarriers #5 and 6, and the center subcarrier is the subcarrier 5 or 6, the start.
  • the subcarrier is 0, and the cutoff subcarrier is 11. If N is an odd number, the center frequency point is the center frequency point of the subcarrier #(N/2), the center subcarrier is the subcarrier (N/2), and the starting subcarrier is 0, the cutoff subcarrier is N-1.
  • the starting subcarrier/cutoff subcarrier/central subcarrier of the downlink narrowband is the nth subcarrier with a frequency higher/lower than the DC
  • the center frequency of the downlink narrowband is higher/lower f1 than the center frequency of the downlink system bandwidth
  • the eNB may also notify the UE of the offset value between the center frequency points of the uplink narrowband and the uplink system bandwidth.
  • the offset value may be an offset value of the uplink subcarrier/infrared subcarrier/center frequency/central subcarrier of the uplink narrowband and the center frequency of the uplink system bandwidth.
  • the UE After obtaining the center frequency of the uplink system bandwidth, the UE obtains the location of the uplink narrowband according to the offset value, where the offset value may indicate an integer multiple of subcarriers, or an integer multiple of PRBs, such as n UL in the above formula .
  • the eNB notifies the UE of the system bandwidth information, and notifies the UE of the PRB index corresponding to the uplink narrowband, and the UE can obtain the location of the uplink narrowband according to the system bandwidth and the PRB index.
  • the eNB notifies the frequency offset between the PRB index corresponding to the uplink narrowband and the PRB index corresponding to the downlink narrowband, where the PRB index corresponding to the downlink narrowband is a PRB index where the downlink narrowband is located, or is a starter of the downlink narrowband
  • the PRB index of the carrier/following subcarrier/center frequency point/center subcarrier is a PRB index where the downlink narrowband is located.
  • the preferred embodiment provides a method of obtaining an upstream narrow band.
  • the preferred embodiment is illustrated by taking the NB-IoT system as an example, and the proposed method is not limited to application in the NB-IoT system.
  • the frequency domain position of the uplink narrowband satisfies:
  • F UL F UL_LOW +0.1(N UL -N Offs-UL )+0.015n UL
  • n UL is an integer. That is to say, the center frequency of the uplink narrowband is an integer multiple of subcarriers in the direction of low or high frequency of the center frequency of the uplink system bandwidth.
  • the frequency domain position of the uplink frequency point can satisfy the following formula:
  • F UL F UL_LOW +0.1(N UL -N Offs-UL )+0.09n UL
  • n UL is an integer. That is to say, the center frequency of the uplink narrowband is an integer multiple of the half PRB offset from the center frequency of the uplink system bandwidth to the low or high frequency.
  • the center frequency of the uplink narrowband is an odd multiple of half the PRB offset from the center frequency of the uplink system bandwidth to the low or high frequency; when the system bandwidth is odd, the center frequency of the uplink narrowband
  • the center frequency of the uplink system bandwidth is shifted by an even multiple of half a PRB in the direction of low or high frequency.
  • the frequency domain location of the uplink frequency point may be determined as follows. If the system bandwidth is an odd bandwidth, such as 3MHz/5MHz/15MHz, the frequency domain position of the uplink frequency point can satisfy the following formula:
  • F UL F UL_LOW +0.1(N UL -N Offs-UL )+0.18n UL
  • n UL is an integer. That is to say, the center frequency of the uplink narrowband is an integer multiple of the center frequency of the uplink system bandwidth shifted to the low or high frequency of the PRB.
  • the frequency domain position of the uplink frequency point can satisfy the following formula:
  • F UL F UL_LOW +0.1(N UL -N Offs-UL )+0.09(2n UL +1)
  • n UL is an integer. That is to say, the center frequency of the uplink narrowband is an odd multiple of half the PRB offset from the center frequency of the uplink system bandwidth to the low or high frequency.
  • the frequency domain location of the uplink narrowband is obtained by using a preset manner, for example, the foregoing n UL is a preset value.
  • the preset or the eNB notifies the UE of the DC location information of the system bandwidth, and the frequency domain location of the uplink narrowband is obtained according to the information.
  • the eNB notifies the UE of the DC and downlink narrowband offset information, and the information may be included in the SIB.
  • the eNB informs the UE that the DC is the downlink frequency band/center subcarrier/starting subcarrier/cutoff subcarrier to the kth subcarrier in the low frequency direction, or the kth subcarrier and the k+1th subcarrier.
  • Intermediate position, or the center frequency point/center subcarrier/starting subcarrier/down subcarrier of the downlink narrowband is the kth subcarrier in the direction of DC high frequency, or the kth subcarrier and the k+1th subcarrier
  • the middle position It is assumed that the downlink narrowband occupies N subcarriers, and the subcarrier index is from 0 to N-1 from the lowest frequency to the highest, and if N is an even number, the center frequency is subcarrier #(N/2-1) and subcarrier#n.
  • the center subcarrier is a subcarrier (N/2-1) or N, the starting subcarrier is 0, and the cutoff subcarrier is N-1.
  • the downlink narrowband occupies 12 subcarriers, and the subcarrier index is from 0 to 11 from the lowest frequency to the highest, respectively, then the center frequency point is the intermediate position of the subcarriers #5 and 6, and the center subcarrier is the subcarrier 5 or 6, the start.
  • the subcarrier is 0, and the cutoff subcarrier is 11. If N is an odd number, the center frequency point is the center frequency point of the subcarrier #(N/2), the center subcarrier is the subcarrier (N/2), and the starting subcarrier is 0, the cutoff subcarrier is N-1.
  • the starting subcarrier/cutoff subcarrier/central subcarrier of the downlink narrowband is the nth subcarrier with a frequency higher/lower than the DC
  • the center frequency of the downlink narrowband is higher/lower f1 than the center frequency of the downlink system bandwidth
  • the eNB may also notify the UE of the offset value between the center frequency points of the uplink narrowband and the uplink system bandwidth.
  • the offset value may be an offset value of the uplink subcarrier/infrared subcarrier/center frequency/central subcarrier of the uplink narrowband and the center frequency of the uplink system bandwidth.
  • the UE After obtaining the center frequency of the uplink system bandwidth, the UE obtains the location of the uplink narrowband according to the offset value, where the offset value may indicate an integer multiple of subcarriers, or an integer multiple of PRBs, such as nUL in the above formula.
  • the eNB notifies the UE of the system bandwidth information, and notifies the UE of the PRB index corresponding to the uplink narrowband, and the UE can obtain the location of the uplink narrowband according to the system bandwidth and the PRB index.
  • the eNB notifies the frequency offset between the PRB index corresponding to the uplink narrowband and the PRB index corresponding to the downlink narrowband, where the PRB index corresponding to the downlink narrowband is a PRB index where the downlink narrowband is located, or is a starter of the downlink narrowband
  • the PRB index of the carrier/following subcarrier/center frequency point/center subcarrier is a PRB index where the downlink narrowband is located.
  • the uplink narrowband should be a PRB in the system.
  • the uplink narrowband may not be aligned with the PRB.
  • the preferred embodiment provides a method of obtaining an upstream narrow band.
  • the preferred embodiment is illustrated by taking the NB-IoT system as an example, and the proposed method is not limited to application in the NB-IoT system.
  • the eNB notifies the UE of the uplink carrier frequency N UL corresponding to the uplink narrowband, and the UE can obtain the center frequency of the uplink narrowband according to the N UL , and the center frequency of the uplink narrowband is:
  • F UL F UL_LOW +0.1(N UL -N Offs-UL )+0.01n UL ,
  • n UL is an integer.
  • n UL 0,1,2,3,4,5,6,7,8,9 ⁇
  • F UL_LOW is the lowest frequency of the operation band of the uplink operating band corresponding to the N UL , and the unit is MHz
  • N Offs-UL is an offset corresponding to the uplink working frequency band, which is a constant, for example, for band#1
  • N Offs-UL is 18000.
  • the n UL is preset, for example, is fixed to 0, or n UL is notified by the eNB, may be notified in the SIB, or notified in the RRC signaling, for example, the eNB uses 4 bits to indicate n UL , or This information can also be combined with other information for indication.
  • the preferred embodiment provides a method of obtaining an upstream narrow band.
  • the preferred embodiment is illustrated by taking the NB-IoT system as an example, and the proposed method is not limited to application in the NB-IoT system.
  • the UE obtains a default UE transmit-receive frequency interval Default UE TX-RX frequency separation ⁇ f corresponding to the working frequency band according to the downlink center frequency point obtained by the channel raster frequency sweep, and according to the operation frequency band Operation Band of the downlink center frequency point.
  • the uplink center frequency point is obtained according to the downlink frequency point and the transmission-reception center frequency interval, and the uplink center frequency point is:
  • F DL is the center frequency of the downlink narrowband or the center frequency of the downlink center subcarrier
  • the center frequency of the downlink central subcarrier may be simply referred to as the frequency of the downlink central subcarrier
  • n UL is an integer, indicating that relative to the transmission - The number of subcarriers of the uplink center frequency offset obtained by receiving the center frequency interval.
  • the n UL may be preset, such as 0, or may be notified by the eNB, such as indicated in the SIB.
  • the nUL may be an integer between 0 and 11, or an integer between -5 and 6, or an integer between -6 and 5.
  • n UL is an integer indicating that the uplink center frequency point obtained with respect to the transmission-reception center frequency interval is shifted by an integer multiple of half PRB in the direction of high/low frequency.
  • the n UL may be preset, such as 0, or may be notified by the eNB, such as indicated in the SIB.
  • the n UL may be an integer between -110 and 110.
  • the preferred embodiment provides a method of obtaining an upstream narrow band.
  • the preferred embodiment is illustrated by taking the NB-IoT system as an example, and the proposed method is not limited to application in the NB-IoT system.
  • the center frequency of the upstream narrowband is:
  • F UL is the center frequency of the uplink narrowband
  • F DL ' is the center frequency of the downlink system bandwidth
  • ⁇ f is the default UE transmit-receive frequency interval
  • F UL and F DL ' are both MHz
  • n UL is The frequency offset value
  • n UL is an integer.
  • the F DL ' may be notified to the UE by the eNB, for example, the eNB notifies the UE of the frequency interval between the center of the system bandwidth and the center subcarrier of the downlink narrow band.
  • the preferred embodiment provides a method of obtaining an upstream narrow band.
  • the preferred embodiment is illustrated by taking the NB-IoT system as an example, and the proposed method is not limited to application in the NB-IoT system.
  • the UE obtains a default UE transmit-receive frequency interval corresponding to the working frequency band according to the downlink center frequency point obtained by the channel raster frequency sweep, and according to the operation frequency band Operation Band of the downlink center frequency point, and then according to the downlink frequency point and
  • the transmit-receive center frequency interval gets the uplink center frequency point, and the uplink center frequency point is:
  • F DL is the center frequency point of the downlink narrowband
  • n UL is an integer indicating the number of subcarriers offset from the uplink center frequency offset obtained from the transmission-reception center frequency interval.
  • the n UL may be preset, such as 0, or may be notified by the eNB, such as indicated in the SIB.
  • the nUL may be an integer between 0 and 11, or an integer between -5 and 6, or an integer between -6 and 5.
  • x is 1 or -1, so that when the downlink center frequency is between two subcarriers, the center of the uplink frequency is also guaranteed to be in the middle of the two subcarriers.
  • n UL is an integer indicating that the uplink center frequency point obtained with respect to the transmission-reception center frequency interval is shifted by an integer multiple of half PRB in the direction of high/low frequency.
  • the n UL may be preset, such as 0, or may be notified by the eNB, such as indicated in the SIB.
  • the n UL may be an integer between -110 and 110.
  • the center frequency of the center frequency point/center subcarrier of the downlink narrowband satisfies:
  • F DL F DL_LOW +0.1(N DL -N Offs-DL )
  • F DL_LOW is the lowest frequency of the operation band of the downlink working frequency band corresponding to the N DL , and the unit is MHz
  • N Offs-DL is an offset value corresponding to the downlink working frequency band, which is a constant, for example, for band#1 , N Offs-DL is 0.
  • the center frequency of the center frequency point/center subcarrier of the downlink narrowband satisfies:
  • F DL F DL_LOW +0.1(N DL -N Offs-DL )+0.3n DL
  • the N DL is the N DL corresponding to the center frequency of the system bandwidth
  • the n DL is an integer, preset, or configured by the eNB, for example, the eNB configures the UE, or is determined according to information configured by the eNB to the UE.
  • n DL is an integer between -3 and -29 or between 3 and 29.
  • the center frequency of the centerband/center subcarrier of the downlink narrowband satisfies:
  • F DL F DL_LOW +0.1(N DL -N Offs-DL )+0.2n DL
  • the N DL is the N DL corresponding to the center frequency of the system bandwidth
  • the n DL is preset, or is configured by the eNB, for example, the eNB configures the UE, or is determined according to information configured by the eNB to the UE.
  • the minimum value of n DL is determined by the system bandwidth of the cell.
  • the uplink digital baseband and the analog baseband are staggered by 7.5 kHz, that is, half of the subcarriers.
  • a subcarrier width of 3.75 kHz is introduced, in order to avoid interference with the legacy UE.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a storage medium.
  • the storage medium may be configured to store program code for performing the method steps of the above embodiment:
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the processor performs the method steps of the foregoing embodiments according to the stored program code in the storage medium.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the method and apparatus for transmitting information provided by the embodiments of the present invention have the following beneficial effects: how to determine the narrowband of the transmission channel in the bandwidth of the LTE system, and determining the narrowband of the transmission channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信息的传输方法及装置,其中,该方法包括:网络设备确定频率偏移信息或者频域位置信息,依据该频率偏移信息或者频域位置信息确定传输信息的窄带,在该窄带上传输信息。通过上述技术方案,解决了在LTE系统带宽上,如何确定传输信道的窄带的问题,确定了传输信道的窄带。

Description

信息的传输方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种信息的传输方法及装置。
背景技术
机器类型通信(Machine Type Communication,简称为MTC)用户终端(User Equipment,简称为UE),又称机器到机器(Machine to Machine,简称为M2M)用户通信设备,是目前物联网的主要应用形式。在第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)技术报告TR45.820V200中公开了几种适用于蜂窝级物联网(Comb-Internet Of Things,简称为C-IOT)的技术,其中,窄带长期演进(Narrow Band-Internet of Things,简称为NB-IoT)技术最为引人注目。该系统的系统带宽为200kHz,与全球移动通信(Global system for Mobile Communication,简称为GSM)GSM系统的信道带宽相同,这为NB-IoT系统重用GSM频谱并降低邻近与GSM信道的相互干扰带来了极大便利。NB-IoT有三种工作场景,分别是独立运营“standalone”、在保护带上传输“guard band”以及在LTE中的一个PRB上传输“inband”。
针对相关技术中,在LTE系统带宽上,如何确定传输信道的窄带,目前还没有有效的解决方案。
发明内容
本发明提供了一种信息的传输方法及装置,以至少解决相关技术中在LTE系统带宽上,如何确定传输信道的窄带的问题。
根据本发明的一个方面,提供了一种信息的传输方法,包括:
网络设备确定频率偏移信息或者频域位置信息;
依据所述频率偏移信息或者频域位置信息确定传输信息的窄带,在所述窄带上传输信息。
可选地,所述网络设备确定频率偏移信息包括以下之一:
依据预定义信息确定所述频域偏移信息;
接收网络设备的通知信息确定所述频率偏移信息。
可选地,所述频率偏移信息包括以下之一:
主系统信息块MIB中携带的所述频率偏移信息,其中,所述频率偏移信息指示第一窄带与第二窄带的频率偏移,所述第一窄带为传输以下至少之一的窄带:系统信息块SIB、RAR、寻呼消息、下行控制信道和PDSCH,所述第二窄带为传输以下至少之一的窄带:主同步信号 PSS、辅同步信号SSS以及物理广播信道PBCH;
SIB中携带的所述频率偏移信息,其中,所述频率偏移信息指示第三窄带与第四窄带的频率偏移,其中,所述第三窄带为传输以下至少之一的窄带:随机接入响应RAR、寻呼消息、下行控制信道和物理下行共享信道PDSCH,所述第四窄带为传输以下至少之一的窄带:PSS、SSS、PBCH以及SIB;
SIBx中携带的所述频率偏移信息,其中,所述频率偏移信息指示第五窄带与第六窄带的频率偏移,其中,所述第五窄带为传输以下至少之一的窄带:RAR、寻呼消息、下行控制信道和PDSCH、以及除了SIBx之外的SIB,所述第六窄带为传输以下至少之一的窄带:PSS、SSS、PBCH以及SIBx,其中,所述SIBx为一个指定的SIB消息;
主同步信号PSS和辅同步信号SSS中携带的所述频率偏移信息,其中,所述频率偏移信息指示第七窄带与第八窄带的频率偏移,其中,所述第七窄带为传输以下至少之一的窄带:PBCH、SIB、RAR、寻呼消息、下行控制信道和PDSCH,所述第八窄带为传输以下至少之一的窄带:PSS以及SSS。
可选地,所述第一窄带、所述第三窄带、所述第五窄带和所述第七窄带为长期演进LTE系统中的一个物理资源块PRB。
可选地,所述第二窄带、所述第四窄带、所述第六窄带和所述第八窄带的中心子载波的中心频点满足100KHz的整数倍。
可选地,所述频率偏移信息指示偏移的子载波的个数。
可选地,所述频率偏移信息指示的频率偏移X的绝对值小于等于Y个子载波,X为整数,Y为预设正整数。
可选地,X为-5到6之间的整数,或者为-6到5之间的整数,或者为0~11之间的整数。
可选地,所述频率偏移信息包括:
MIB或者SIB中携带的的所述频率偏移信息为指定窄带与预设频率之间的偏移,所述指定窄带为传输以下至少之一的窄带:PSS、SSS、PBCH、SIB、RAR、寻呼消息、下行控制信道和PDSCH。
可选地,所述预设频率为100KHz的整数倍。
可选地,所述指定窄带为LTE系统中的一个PRB。
可选地,所述频率偏移信息指示的频率偏移为2.5KHz的整数倍或者奇数倍;所述频率偏移信息为预定义集合中的索引对应的频率偏移。
可选地,在所述窄带为上行窄带的情况下,所述频率偏移信息为以下之一:
所述上行窄带与上行系统带宽的中心频点之间的频率偏移;
所述上行窄带与100KHz的整数倍之间的频率偏移;
所述上行窄带与指定频点之间的频率偏移,所述指定频点由缺省的UE发送-接收频率间隔确定;
可选地,在所述窄带为上行窄带的情况下,所述频域位置信息为与上行窄带对应的PRB索引。
可选地,所述预定义信息或者通知信息包括以下至少之一:
系统带宽;
与所述上行窄带对应的PRB信息;
与所述下行窄带对应的PRB信息;
下行窄带与系统带宽的直流DC子载波的偏移;
所述上行窄带对应的PRB索引与下行窄带对应的PRB索引之差;
第一取值和第二取值之差,所述第一取值为所述上行窄带与上行系统带宽的中心频点之间的频率偏移值,所述第二取值为下行窄带与下行系统带宽的中心频点之间的频率偏移值。
可选地,在所述窄带为上行窄带的情况下,所述上行窄带的中心频点为:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.015nUL
或者,
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.09nUL
其中,FUL是上行窄带的中心频点,FUL_LOW为所述上行窄带所在的工作频段的最低频率,NUL是系统带宽对应的上行载波频率,NOffs-UL为所述上行窄带所在的工作频段对应的偏移值,nUL为频率偏移值,nUL为整数,FUL、FUL_LOW、NUL和NOffs-UL单位均为MHz。
可选地,在所述窄带为上行窄带的情况下,所述上行窄带的中心频点为:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.01nUL
其中,FUL是上行窄带的中心频点,FUL_LOW为所述上行窄带所在的工作频段的最低频率,NUL是上行窄带对应的上行载波频率,NOffs-UL为与所述上行窄带所在的工作频段对应的偏移值,nUL为频率偏移值,nUL为整数,FUL、FUL_LOW、NUL和NOffs-UL单位均为MHz。
可选地,nUL∈{-4,-3,-2,-1,0,1,2,3,4,5},
或者,nUL∈{-5,-4,-3,-2,-1,0,1,2,3,4}
或者,nUL∈{0,1,2,3,4,5,6,7,8,9}。
可选地,在所述窄带为上行窄带的情况下,所述上行窄带的中心频点为:
FUL=FDL-Δf+0.015nUL
或者,
FUL=FDL-Δf+0.09nUL
其中,FUL是所述上行窄带的中心频点,FDL为下行窄带的中心频点或者中心子载波的频率,Δf为缺省的UE发送-接收频率间隔,FUL和FDL单位均为MHz,nUL为频率偏移值,nUL为整数。
可选地,所述上行窄带的中心频点为:
FUL=FDL′-Δf+0.09nUL
其中,FUL是上行窄带的中心频点,FDL′为下行系统带宽的中心频点,Δf为缺省的UE发送-接收频率间隔,FUL和FDL′单位均为MHz,nUL为频率偏移值,nUL为整数。
可选地,所述上行窄带的中心频点为:
FUL=FDL-Δf+0.015nUL+x·0.0075;
或者,
FUL=FDL-Δf+0.09nUL+x·0.0075;
其中,FUL是所述上行窄带的中心频点,FDL为下行窄带的中心频点或者中心子载波的频率,Δf为缺省的UE发送-接收频率间隔,FUL和FDL单位均为MHz,nUL为频率偏移值,nUL为整数,x为1或者-1,x为预定义的或者高层信令指示的。
可选地,在所述窄带为下行窄带的情况下,所述下行窄带的中心频点为:
FDL=FDL_LOW+0.1(NDL-NOffs-DL)+0.3nDL
或者,
FDL=FDL_LOW+0.1(NDL-NOffs-DL)+0.2nDL
其中,FDL为所述下行窄带的中心频点或者中心子载波的频率,FDL_LOW为所述下行窄带所在的工作频段的最低频率,NDL为系统带宽对应的下行载波频率,NOffs-DL为与所述下行窄带所在的工作频段对应的偏移值,nDL为频率偏移值,nDL为整数,FDL、FDL_LOW、NDL和NOffs-DL单位均为MHz。
根据本发明的另一个方面,还提供了一种信息的传输装置,位于网络设备中,包括:
确定模块,设置为网络设备确定频率偏移信息或者频域位置信息;
传输模块,设置为依据所述频率偏移信息或者频域位置信息确定传输信息的窄带,在所述窄带上传输信息。
可选地,所述确定模块包括以下之一:
自定义单元,设置为依据预定义信息确定所述频域偏移信息;
接收单元,设置为接收网络设备的通知信息确定所述频率偏移信息。
本发明另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有执行指令,所述执行指令用于执行上述方法实施例中的步骤之一或其组合。
通过本发明,网络设备确定频率偏移信息或者频域位置信息,依据该频率偏移信息或者频域位置信息确定传输信息的窄带,在该窄带上传输信息,解决了在LTE系统带宽上,如何确定传输信道的窄带的问题,确定了传输信道的窄带。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种信息的传输方法的流程图;
图2是根据本发明实施例的一种信息的传输装置的结构框图一;
图3是根据本发明实施例的一种信息的传输装置的结构框图二;
图4是根据本发明优选实施例的在系统带宽中频率偏移信息的示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种信息的传输方法,图1是根据本发明实施例的一种信息的传输方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,网络设备确定频率偏移信息或者频域位置信息;
步骤S104,依据该频率偏移信息或者频域位置信息确定传输信息的窄带,在该窄带上传输信息。
通过上述步骤,网络设备确定频率偏移信息或者频域位置信息,依据该频率偏移信息或者频域位置信息确定传输信息的窄带,在该窄带上传输信息,解决了在LTE系统带宽上,如何确定传输信道的窄带的问题,确定了传输信道的窄带。
在本发明的实施例中,该网络设备确定频率偏移信息包括以下之一:
依据预定义信息确定该频域偏移信息;
接收网络设备的通知信息确定该频率偏移信息。
在本发明的实施例中,该频率偏移信息包括以下之一:
主系统信息块MIB中携带的该频率偏移信息,其中,该频率偏移信息指示第一窄带与第二窄带的频率偏移,该第一窄带为传输以下至少之一的窄带:系统信息块SIB、RAR、寻呼消息、下行控制信道和PDSCH,该第二窄带为传输以下至少之一的窄带:主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
SIB中携带的该频率偏移信息,其中,该频率偏移信息指示第三窄带与第四窄带的频率偏移,其中,该第三窄带为传输以下至少之一的窄带:随机接入响应RAR、寻呼消息、下行控制信道和物理下行共享信道PDSCH,该第四窄带为传输以下至少之一的窄带:PSS、SSS、PBCH以及SIB;
SIBx中携带的该频率偏移信息,其中,该频率偏移信息指示第五窄带与第六窄带的频率偏移,其中,该第五窄带为传输以下至少之一的窄带:RAR、寻呼消息、下行控制信道和PDSCH、以及除了SIBx之外的SIB,该第六窄带为传输以下至少之一的窄带:PSS、SSS、PBCH以及SIBx,其中,该SIBx为一个指定的SIB消息;
主同步信号PSS和辅同步信号SSS中携带的该频率偏移信息,其中,该频率偏移信息指示第七窄带与第八窄带的频率偏移,其中,该第七窄带为传输以下至少之一的窄带:PBCH、SIB、RAR、寻呼消息、下行控制信道和PDSCH,该第八窄带为传输以下至少之一的窄带:PSS以及SSS。
在本发明的实施例中,该第一窄带、该第三窄带、该第五窄带和该第七窄带为长期演进LTE系统中的一个物理资源块PRB。
在本发明的实施例中,该第二窄带、该第四窄带、该第六窄带和该第八窄带的中心子载波的中心频点满足100KHz的整数倍。
在本发明的实施例中,该频率偏移信息指示偏移的子载波的个数。
在本发明的实施例中,该频率偏移信息指示的频率偏移X的绝对值小于等于Y个子载波,X为整数,Y为预设正整数。
在本发明的实施例中,X为-5到6之间的整数,或者为-6到5之间的整数,或者为0~11之间的整数。
在本发明的实施例中,该频率偏移信息包括:
MIB或者SIB中携带的的该频率偏移信息为指定窄带与预设频率之间的偏移,该指定窄带为传输以下至少之一的窄带:PSS、SSS、PBCH、SIB、RAR、寻呼消息、下行控制信道和PDSCH。
在本发明的实施例中,该预设频率为100KHz的整数倍。
在本发明的实施例中,该指定窄带为LTE系统中的一个PRB。
在本发明的实施例中,该频率偏移信息指示的频率偏移为2.5KHz的整数倍或者奇数倍;该频率偏移信息为预定义集合中的索引对应的频率偏移。
在本发明的实施例中,在该窄带为上行窄带的情况下,该频率偏移信息为以下之一:
该上行窄带与上行系统带宽的中心频点之间的频率偏移;
该上行窄带与100KHz的整数倍之间的频率偏移;
该上行窄带与指定频点之间的频率偏移,该指定频点由缺省的UE发送-接收频率间隔确定;
在本发明的实施例中,在该窄带为上行窄带的情况下,该频域位置信息为与上行窄带对应的PRB索引。
在本发明的实施例中,该预定义信息或者通知信息包括以下至少之一:
系统带宽;
与该上行窄带对应的PRB信息;
与该下行窄带对应的PRB信息;
下行窄带与系统带宽的直流DC子载波的偏移;
该上行窄带对应的PRB索引与下行窄带对应的PRB索引之差;
第一取值和第二取值之差,该第一取值为该上行窄带与上行系统带宽的中心频点之间的频率偏移值,该第二取值为下行窄带与下行系统带宽的中心频点之间的频率偏移值。
可选地,在该窄带为上行窄带的情况下,该上行窄带的中心频点为:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.015nUL
或者,
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.09nUL
其中,FUL是上行窄带的中心频点,FUL_LOW为该上行窄带所在的工作频段的最低频率,NUL是系统带宽对应的上行载波频率,NOffs-UL为该上行窄带所在的工作频段对应的偏移值,nUL为频率偏移值,nUL为整数,FUL、FUL_LOW、NUL和NOffs-UL单位均为MHz。
在本发明的实施例中,在该窄带为上行窄带的情况下,该上行窄带的中心频点为:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.01nUL
其中,FUL是上行窄带的中心频点,FUL_LOW为该上行窄带所在的工作频段的最低频率,NUL是上行窄带对应的上行载波频率,NOffs-UL为与该上行窄带所在的工作频段对应的偏移值,nUL为频率偏移值,nUL为整数,FUL、FUL_LOW、NUL和NOffs-UL单位均为MHz。
在本发明的实施例中,nUL∈{-4,-3,-2,-1,0,1,2,3,4,5},
或者,nUL∈{-5,-4,-3,-2,-1,0,1,2,3,4};
或者,nUL∈{0,1,2,3,4,5,6,7,8,9}。
在本发明的实施例中,在所述窄带为上行窄带的情况下,该上行窄带的中心频点为:
FUL=FDL-Δf+0.015nUL
或者,
FUL=FDL-Δf+0.09nUL
其中,FUL是该上行窄带的中心频点,FDL为下行窄带的中心频点或者中心子载波的频率, Δf为缺省的UE发送-接收频率间隔,FUL和FDL单位均为MHz,nUL为频率偏移值,nUL为整数。
在本发明的实施例中,该上行窄带的中心频点为:
FUL=FDL′-Δf+0.09nUL
其中,FUL是上行窄带的中心频点,FDL′为下行系统带宽的中心频点,Δf为缺省的UE发送-接收频率间隔,FUL和FDL′单位均为MHz,nUL为频率偏移值,nUL为整数。
在本发明的实施例中,该上行窄带的中心频点为:
FUL=FDL-Δf+0.015nUL+x·0.0075;
或者,
FUL=FDL-Δf+0.09nUL+x·0.0075;
其中,FUL是该上行窄带的中心频点,FDL为下行窄带的中心频点或者中心子载波的频率,Δf为缺省的UE发送-接收频率间隔,FUL和FDL单位均为MHz,nUL为频率偏移值,nUL为整数,x为1或者-1,x为预定义的或者高层信令指示的。
在本发明的实施例中,在该窄带为下行窄带的情况下,该窄带的下行窄带的中心频点为:
FDL=FDL_LOW+0.1(NDL-NOffs-DL)+0.3nDL
或者,
FDL=FDL_LOW+0.1(NDL-NOffs-DL)+0.2nDL
其中,FDL为该下行窄带的中心频点或者中心子载波的频率,FDL_LOW为该下行窄带所在的工作频段的最低频率,NDL为系统带宽对应的下行载波频率,NOffs-DL为与该下行窄带所在的工作频段对应的偏移值,nDL为频率偏移值,nDL为整数,FDL、FDL_LOW、NDL和NOffs-DL单位均为MHz。
在本实施例中还提供了一种信息的传输装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的一种信息的传输装置的结构框图一,如图2所示,该装置位于网络设备中,该装置包括:
确定模块22,设置为网络设备确定频率偏移信息或者频域位置信息;
传输模块24,设置为依据该频率偏移信息或者频域位置信息确定传输信息的窄带,在该窄带上传输信息。
通过上述装置,确定模块22设置为网络设备确定频率偏移信息或者频域位置信息,传输模块24设置为依据该频率偏移信息或者频域位置信息确定传输信息的窄带,在该窄带上传输信息,解决了在LTE系统带宽上,如何确定传输信道的窄带的问题,确定了传输信道的窄带。
图3是根据本发明实施例的一种信息的传输装置的结构框图二,如图3所示,该确定模块24包括以下之一:
自定义单元32,设置为依据预定义信息确定该频域偏移信息;
接收单元34,设置为接收网络设备的通知信息确定该频率偏移信息。
下面结合优选实施例和实施方式对本发明进行详细说明。
优选实施例一:
本优选实施例给出一种确定频率偏移量,并传输信道/信息的方法。本优选实施例以NB-IoT系统为例来说明,实际应用中不限于应用在NB-IoT系统中,也可以用于其他的系统。
在相关技术中,UE需要在100KHz的整数倍处进行扫频(channel raster),接收同步信道。在LTE系统中,子载波宽度为15KHz,因此LTE系统中DC子载波的频率为15KHz与100KHz的公倍数,即300KHz。
在NB-IoT系统中,同步信道PSS/SSS的中心子载波的频率为300KHz的整数倍。比如,当系统带宽为20MHz时,PSS/SSS的中心子载波为PRB#8的子载波#4满足300KHz的整数倍,其中,PRB索引为现有技术中的PRB索引,即将系统带宽中的所有PRB按照从频率最低到最高从零开始编号后的索引,PRB上的子载波索引为将所述PRB上的子载波按照从频率最低到最高从零开始编号后的索引。同步信道占用的其他子载波可以为中心子载波两侧各6个子载波,或者,一侧6个子载波,另一侧5个子载波,本发明不做限定。实际应用中可采用任意一种。eNB可以任意选择一种方式发送,UE按照上述几种方式进行盲检测。优选地,子载波占用方式是预设的,比如固定为频率小于中心子载波频率的子载波为5个,频率大于中心子载波频率的子载波为6个。PBCH也和同步信道在相同的窄带上发送。
下行除了同步信道和PBCH之外的其他信息/信道,比如SIB、下行控制信道、PDSCH等,均在与所述PSS/SSS有个偏移的窄带上发送。或者,除了同步信道和PBCH之外的其他信息/信道的至少之一在与所述PSS/SSS有个偏移的窄带上发送。
这样做的好处是,只有同步信道和PBCH信道和现有的PRB不对齐,而其他信道和现有 的PRB均是对齐的。与所有信道都在PSS/SSS对应的窄带上发送的方式相比,本发明给出的方式对legacy UE的影响最小。
图4是根据本发明优选实施例的在系统带宽中频率偏移信息的示意图,如图4所示,系统带宽为20MHz,粗线框代表一个PRB,粗线框里面的小方框代表一个子载波。其中PSS/SSS的中心子载波为PRB#8的子载波#4,占用的窄带如灰色部分所示,中心子载波左侧占用5个子载波,右侧占用6个子载波,其他信道占用的窄带如斜线部分所示,即占用PRB#8。eNB可以在PBCH中指示,其他信道相对PSS/SSS信道的窄带向频率较高的一侧偏移了1个子载波。
这样,在UE接收了PSS/SSS以及PBCH之后,UE会向频率较高的一侧偏移1个子载波去接收其他的信道。UE接入系统之后,如果需要重新去接收PSS/SSS/PBCH,那么需要跳频到PSS/SSS/PBCH所在的窄带上去接收。
所述偏移信息可以是预设的,比如预设为向高频率的方向偏移一个子载波。优选地,这种方式用于PSS/SSS是在预设的位置的发送的场景,比如当NB-IoT系统只用于10MHz和20MHz的系统带宽,PSS/SSS的中心频率都是在某些PRB的子载波#4上发送。
或者,所述偏移信息可以是eNB通知的。eNB在MIB中通知偏移量,所述偏移量的单位为子载波。所述偏移信息可以为0到11之间的正整数,或者也可以为-6到5之间的整数,或者也可以为-5到6之间的整数,可以用4bit来指示,或者也可以和其他信息联合编码指示。
可选地,可以对NB-IoT系统的PSS/SSS/PBCH发送的位置做限制,以减少信令开销。比如,对于偶数系统带宽,限制在某些PRB的子载波#4和#7上发送,子载波#4对应的偏移为+1,即向频率高的一侧偏移一个子载波,子载波#7对应的偏移为-2,即向频率低的一侧偏移2个子载波;对于奇数系统带宽,限制在某些PRB的子载波#5和#6上发送,子载波#5对应的偏移是0,子载波#6对应的偏移是-1。那么可以在PBCH中采用2bit来指示4种偏移,UE根据指示确定接收其他信道的窄带。
可选地,当PSS/SSS/PBCH占用一个PRB的部分子载波时,所述PRB又分配给一个UE时,所述部分子载波上的UE的数据被打掉,eNB可以通过采用较低的码率来给所述UE传输,增加传输的正确率。
可选地,UE在接收同步信号时,可以将接收机的接收窄带的中心频率对准中心子载波,比如在图4中,UE将接收机的接收窄带的中心频率对准子载波#4。或者,接收机的接收窄带的中心频率可以和中心子载波有一定偏移的频域位置,比如,对于在图4中,UE将接收机的接收窄带的中心频率对准子载波4和子载波5的中心位置,即相对于中心子载波向频率高的方向偏移了半个子载波,即7.5KHz。
可选地,eNB在PBCH或者MIB中通知下行窄带与系统带宽的DC子载波的偏移,比如为+60,即下行窄带的中心子载波在系统带宽的DC子载波向频率高的一侧的第60个子载波上,通过所述信息,UE可以获得所述下行窄带上的CRS的序列值,所述CRS可以用于所述下行 窄带上的信息的解调。
优选实施例二:
本优选实施例给出一种确定频率偏移量,并传输信道/信息的方法。本优选实施例以NB-IoT系统为例来说明,实际应用中不限于应用在NB-IoT系统中,也可以用于其他的系统。
与优选实施例一类似,不同的是:
PSS/SSS、PBCH以及SIB1都在相同的窄带上发送,eNB在SIB1中通知下行除了PSS/SSS、PBCH以及SIB的其他信道/信息或者其他信道/信息的至少之一的传输窄带和PSS/SSS、PBCH以及SIB1的传输窄带之间的偏移。UE接收SIB1中的频率偏移信息,在相应的窄带上接收下行信号。或者所述偏移是预设的,UE根据所述频移在相应的窄带上接收下行信号。
或者,PSS/SSS、PBCH以及SIB都在相同的窄带上发送,eNB在SIB中通知除了PSS/SSS、PBCH以及SIB的下行其他信道/信息或者其他信道/信息的至少之一的传输窄带和PSS/SSS、PBCH以及SIB的传输窄带之间的偏移,比如在SIB1或者其他SIB消息中通知所述偏移信息,UE接收所述频率偏移信息,在相应的窄带上接收下行信号。或者所述偏移是预设的,UE根据所述频移在相应的窄带上接收下行信号。
或者,PSS/SSS,PBCH以及部分SIB都在相同的窄带上发送,eNB在SIB中通知下行除了PSS/SSS,PBCH以及部分SIB的其他信道/信息或者其他信道/信息的至少之一的传输窄带和PSS/SSS、PBCH以及部分SIB的传输窄带之间的偏移,比如eNB在SIB2中通知所述偏移信息,UE接收所述频率偏移信息,在相应的窄带上接收SIB3以及之后的所有SIB以及下行其他信道/信息或者其他信道/信息。或者所述偏移是预设的,UE根据所述频移在相应的窄带上接收下行信号。
优选实施例三:
本优选实施例给出一种确定频率偏移量,并传输信道/信息的方法。本优选实施例以NB-IoT系统为例来说明,实际应用中不限于应用在NB-IoT系统中,也可以用于其他的系统。
NB-IoT的下行窄带即为LTE系统的一个完整PRB,所有的下行信道或者下行信道的至少之一在所述PRB上发送。但在LTE系统中,所有PRB的中心频点都不是100KHz的整数倍,UE会按照100KHz的整数倍来做扫频,这样UE接收时会有一定的频偏。比如,对于10MHz系统带宽,当PSS/SSS在PRB#4上发送时,和100KHz的整数倍会有2.5KHz的频偏。
在本优选实施例中,eNB在PBCH/SIB中通知所述频偏。可选地,所述频偏为2.5KHz的整数倍。所述频偏可以在一个集合中取值,比如为{+7.5KHz,-7.5KHz,+2.5KHz,-2.5KHz},eNB采用2bit在PBCH/SIB中指示所述频偏信息。那么UE在接收完PBCH/SIB之后,可以得到所述频偏值,那么可以将中心频率调整到一个PRB的中心进行接收下行信号。采用这样的方法,使得UE在接收之后的信道时避免受到频偏的影响,提升了UE的接收性能。
可选地,所述频偏为预定义集合中的索引对应的频率偏移。比如所述集合为几个PRB的 集合,每个PRB由一个索引表示,每个PRB对应一个频率偏移值,比如对于5MHz系统带宽,一共有4个PRB可用于作为NB-IoT系统的窄带,分别是PRB#2、7、17、22,用2bit指示这4个PRB,PRB#2、7对应的偏移是+7.5KHz,PRB#2、7对应的偏移是-7.5KHz,那么UE可以根据eNB通知的2bit信息得到PRB索引,进而得到偏移信息。
优选实施例四:
本优选实施例给出一种确定频率偏移量,并传输信道/信息的方法。本优选实施例以NB-IoT系统为例来说明,实际应用中不限于应用在NB-IoT系统中,也可以用于其他的系统。
PBCH和PSS/SSS的窄带之间的偏移是预设的,比如PSS/SSS的窄带相对PBCH的窄带向频率低的一侧偏移2个PRB。或者也可以是子载波级的偏移,比如PSS/SSS的窄带相对PBCH的窄带向频率高的一侧偏移20个子载波。
优选地,PSS/SSS发送窄带的位置是预设的,比如对于所有系统带宽,PSS/SSS窄带的中心子载波都位于系统带宽的DC子载波的频率高的一侧(或者,也可以是频率低的一侧)的第60个子载波,这个子载波满足100KHz的整数倍。这里,频率高于DC子载波的第一个子载波为第一个子载波,以此类推。PSS/SSS占用的子载波为第55个子载波到第66个子载波。PBCH相对PSS/SSS的窄带之间的偏移是向频率低的方向偏移18个子载波,即第37个子载波到第48个子载波.这样,PBCH可以在一个PRB上发送,减少对legacy UE传输的影响。
或者,可以在PSS/SSS中包含所述频率偏移量信息。比如,在SSS中包含所述频率偏移量信息。所述频率偏移量在一个预设的集合中选择。
优选实施例五:
在本优选实施例中,多个信道在多个窄带上传输。本优选实施例以NB-IoT系统为例来说明,实际应用中不限于应用在NB-IoT系统中,也可以用于其他的系统。
下面给出几种传输方式。
方式一:
PSS/SSS在一个窄带上传输。优选地,所述PSS/SSS的中心子载波满足100KHz的整数倍。
除了PSS/SSS之外,其余下行信道在其他一个或者多个窄带上传输。类似优选实施例四,PBCH的窄带可以通过预设或者PSS/SSS中包含的信息得到。SIB所在的窄带在PBCH中通知,比如MIB中通知SIB所在的窄带的PRB信息,比如给出SIB窄带所在的PRB的索引。或者MIB中通知SIB所在的窄带相对MIB所在的窄带的偏移信息,比如向频率高的一侧偏移2个PRB。所述便宜信息可以是整数个PRB,也可以是整数个子载波。UE根据所述偏移信息接收SIB。
可选地,SIB中,可以包含下行控制信道和/或PDSCH所在的窄带信息,或者相对SIB所在的窄带的偏移信息,这里下行控制信道包括PDCCH和/或EPDCCH。
方式二:
按照消息/信道的类型/功能,将多个信道在多个窄带上传输。
在相同的一个窄带上传输PSS/SSS/MIB,其余下行信道在其他一个或者多个窄带上传输。MIB中包含SIB1所在的窄带信息,或者MIB中通知SIB所在的窄带相对PSS/SSS/MIB所在的窄带的偏移信息。
或者,在相同的一个窄带上传输PSS/SSS/MIB/SIB,其余下行信道在其他一个或者多个窄带上传输。SIB中包含下行控制信道和/或PDSCH的窄带信息,或者SIB中通知下行控制信道和/或PDSCH所在的窄带相对MIB所在的窄带的偏移信息。可选地,SIB中指示RAR、调度RAR的下行控制信息、寻呼消息以及调度寻呼消息的下行控制信息的窄带信息。
或者,在相同的一个窄带上传输PSS/SSS/MIB/SIB以及全部公有消息,所述公有消息包括RAR、调度RAR的下行控制信息、寻呼消息以及调度寻呼消息的下行控制信息。UE的单播信息在其他窄带上发送,eNB在SIB中给UE指示UE接收单播信息的下行控制信道和/或PDSCH的窄带。
或者,在相同的一个窄带上传输PSS/SSS/MIB/SIB以及部分公有消息,所述公有消息包括RAR、调度RAR的下行控制信息、寻呼消息以及调度寻呼消息的下行控制信息。eNB在SIB中指示其余公有消息所在的窄带以及UE的单播信息的窄带。
或者,PSS/SSS/MIB/SIB以及全部/部分公有消息都在一个窄带上传输,UE在收到eNB发送的检测下行控制信道的窄带信息之前,都在所述窄带上接收下行信号。如果UE接收到检测下行控制信道的窄带信息,UE到所述窄带上检测下行控制信道。eNB在发送给UE的RRC信令中包含所述窄带信息,或者在消息四中包含所述窄带信息。
可选地,下行控制信道和PDSCH可以在相同的窄带,比如SIB中只通知下行控制信道的窄带,PDSCH的窄带和下行控制信息的窄带相同。下行控制信道的窄带可以只有一个,也可以有多个,UE按照预设的规则在一个窄带上接收下行控制信道,比如根据C-RNTI确定。
方式三:
所有窄带都是独立运营的窄带,即每个窄带上都会发送所有的下行信道/信息,包括PSS/SSS、PBCH、SIB、RAR、寻呼消息、下行控制信道和下行数据信道。
方式四:
某些窄带是独立运营的窄带,即所述窄带上都会发送所有的下行信道/信息,包括PSS/SSS、PBCH、SIB、RAR、寻呼消息、下行控制信道和下行数据信道。其余窄带为只支持单播数据的窄带,用于发送UE专有的下行控制信道和PDSCH。
在以上几种方式中,对于方式三和方式四,UE可以一直在一个窄带上工作。对于所有方式,UE都可以跳频传输,这里,跳频传输可以是跳频到一个窄带上去接收某个信息,比如对于方式一,UE在PSS/SSS窄带上接收同步信号,之后又跳频到某个窄带上检测下行控制信道。 跳频传输还可以是为了提高某次传输的性能,在多个窄带上跳频传输。比如在覆盖增强场景下,某个UE需要重复传输20个子帧,那么UE在多个窄带上跳频传输,增加频率分集增益,提高传输性能。
优选实施例六:
本优选实施例给出一种获得上行窄带的方法。本优选实施例以NB-IoT系统为例来说明,提出的方法不限于应用在NB-IoT系统中。
eNB给UE通知系统带宽对应的上行载波频率NUL,UE根据NUL可以获得上行系统带宽的中心频点FUL′=FUL_LOW+0.1(NUL-NOffs-UL),其中FUL_LOW为所述NUL对应的上行的工作频段Operation Band的最低频率,单位为MHz,NUL对应的上行的工作频段即所述上行窄带所在的工作频段。NOffs-UL为所述上行的工作频段对应的偏移值,是一个常数,比如对于band#1,NOffs-UL为18000。
上行窄带的频域位置满足:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.015nUL
其中,nUL为整数。也就是说,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移整数倍个子载波。
或者,
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.09nUL
其中,nUL为整数。也就是说,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移半个PRB的整数倍。当系统带宽为偶数时,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移半个PRB的奇数倍;当系统带宽为奇数时,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移半个PRB的偶数倍。
可选地,上行窄带的频域位置采用预设的方式得到,比如,上述nUL为预设值。
可选地,预设或者eNB给UE通知系统带宽的DC位置信息,上行窄带的频域位置根据所述信息得到。比如eNB给UE通知DC和下行窄带的偏移信息,所述信息可以包含在SIB中。比如eNB给UE通知DC为下行窄带的中心频点/中心子载波/起始子载波/截止子载波向频率低的方向的第k个子载波,或者在第k个子载波和第k+1个子载波的中间位置,或者下行窄带的中心频点/中心子载波/起始子载波/截至子载波在DC向频率高的方向的第k个子载波,或者在第k个子载波和第k+1个子载波的中间位置。其中,假设下行窄带占用N个子载波, 子载波索引从频率最低到最高分别为0~N-1,如果N为偶数,中心频点为子载波#(N/2-1)和子载波#n的中间位置,中心子载波为子载波(N/2-1)或者为N,起始子载波为0,截止子载波为N-1。比如下行窄带占用12个子载波,子载波索引从频率最低到最高分别为0~11,那么中心频点为子载波#5和6的中间位置,中心子载波为子载波5或者为6,起始子载波为0,截止子载波为11.如果N为奇数,中心频点为子载波#(N/2)的中心频点,中心子载波为子载波(N/2),起始子载波为0,截止子载波为N-1.假设下行窄带的起始子载波/截止子载波/中心子载波是频率高于/低于DC的第n1个子载波,上行窄带的起始子载波/截止子载波/中心子载波是高于/低于中心频点的第n2个子载波,其中n1=n2,或者n1-n2=c,其中c为整数,且为预设的常数。或者,下行窄带的中心频点比下行系统带宽中心频点高/低f1,上行窄带的中心频点比上行系统带宽中心频点高/低f2,其中f1=f2,或者f1-f2=c,其中c=(15m+7.5)KHz,或者c=(15m)KHz其中m为整数。
可选地,eNB还可以给UE通知上行窄带和上行系统带宽的中心频点之间的偏移值。所述偏移值可以为上行窄带的起始子载波/截至子载波/中心频点/中心子载波与上行系统带宽的中心频点的偏移值。UE获得上行系统带宽的中心频点后,根据所述偏移值,获得上行窄带的位置,所述偏移值可以指示整数倍个子载波,或者为整数倍个PRB,如上述公式中的nUL
可选地,eNB给UE通知系统带宽信息,并且给UE通知上行窄带对应的PRB索引,那么UE根据系统带宽和PRB索引可以得到上行窄带的位置。可选地,eNB通知上行窄带对应的PRB索引和下行窄带对应的PRB索引之间的频率偏移,所述下行窄带对应的PRB索引为下行窄带所在的PRB索引,或者为下行窄带的起始子载波/截至子载波/中心频点/中心子载波所在的PRB索引。
优选实施例七:
本优选实施例给出一种获得上行窄带的方法。本优选实施例以NB-IoT系统为例来说明,提出的方法不限于应用在NB-IoT系统中。
eNB给UE通知系统带宽对应的上行载波频率NUL,UE根据NUL可以获得上行系统带宽的中心频点FUL′=FUL_LOW+0.1(NUL-NOffs-UL),其中FUL_LOW为所述NUL对应的上行的工作频段Operation Band的最低频率,单位为MHz,NOffs-UL为所述上行的工作频段对应的偏移值,是一个常数,比如对于band#1,NOffs-UL为18000。
上行窄带的频域位置满足:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.015nUL
其中,nUL为整数。也就是说,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移整数倍个子载波。
可选地,上行频点的频域位置可以满足下式:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.09nUL
其中,nUL为整数。也就是说,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移半个PRB的整数倍。当系统带宽为偶数时,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移半个PRB的奇数倍;当系统带宽为奇数时,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移半个PRB的偶数倍。
可选地,当UE已知系统带宽为奇数带宽或者偶数带宽时,上行频点的频域位置可以按照如下的方式确定。如果系统带宽为奇数带宽,如3MHz/5MHz/15MHz时,上行频点的频域位置可以满足下式:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.18nUL
其中,nUL为整数。也就是说,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移PRB的整数倍。
如果系统带宽为偶数带宽,如10MHz/20MHz时,上行频点的频域位置可以满足下式:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.09(2nUL+1)
其中,nUL为整数。也就是说,上行窄带的中心频点为上行系统带宽的中心频点向频率低或者高的方向偏移半个PRB的奇数倍。
可选地,上行窄带的频域位置采用预设的方式得到,比如,上述nUL为预设值。
可选地,预设或者eNB给UE通知系统带宽的DC位置信息,上行窄带的频域位置根据所述信息得到。比如eNB给UE通知DC和下行窄带的偏移信息,所述信息可以包含在SIB中。比如eNB给UE通知DC为下行窄带的中心频点/中心子载波/起始子载波/截止子载波向频率低的方向的第k个子载波,或者在第k个子载波和第k+1个子载波的中间位置,或者下行窄带的中心频点/中心子载波/起始子载波/截至子载波在DC向频率高的方向的第k个子载波,或者在第k个子载波和第k+1个子载波的中间位置。其中,假设下行窄带占用N个子载波,子载波索引从频率最低到最高分别为0~N-1,如果N为偶数,中心频点为子载波#(N/2-1)和子载波#n的中间位置,中心子载波为子载波(N/2-1)或者为N,起始子载波为0,截止子载波为N-1。比如下行窄带占用12个子载波,子载波索引从频率最低到最高分别为0~11,那么中心频点为子载波#5和6的中间位置,中心子载波为子载波5或者为6,起始子载波为0,截止子载波为11.如果N为奇数,中心频点为子载波#(N/2)的中心频点,中心子载波为子载波(N/2),起始子载波为0,截止子载波为N-1.假设下行窄带的起始子载波/截止子载波/中心子载波是频率高于/低于DC的第n1个子载波,上行窄带的起始子载波/截止子载波/中心子载 波是高于/低于中心频点的第n2个子载波,其中n1=n2,或者n1-n2=c,其中c为整数,且为预设的常数。或者,下行窄带的中心频点比下行系统带宽中心频点高/低f1,上行窄带的中心频点比上行系统带宽中心频点高/低f2,其中f1=f2,或者f1-f2=c,其中c=(15m+7.5)KHz,或者c=(15m)KHz其中m为整数。
可选地,eNB还可以给UE通知上行窄带和上行系统带宽的中心频点之间的偏移值。所述偏移值可以为上行窄带的起始子载波/截至子载波/中心频点/中心子载波与上行系统带宽的中心频点的偏移值。UE获得上行系统带宽的中心频点后,根据所述偏移值,获得上行窄带的位置,所述偏移值可以指示整数倍个子载波,或者为整数倍个PRB,如上述公式中的nUL。
可选地,eNB给UE通知系统带宽信息,并且给UE通知上行窄带对应的PRB索引,那么UE根据系统带宽和PRB索引可以得到上行窄带的位置。可选地,eNB通知上行窄带对应的PRB索引和下行窄带对应的PRB索引之间的频率偏移,所述下行窄带对应的PRB索引为下行窄带所在的PRB索引,或者为下行窄带的起始子载波/截至子载波/中心频点/中心子载波所在的PRB索引。
可选地,对于inband场景,上行窄带应为系统中的一个PRB,对于guard band场景,上行窄带可以不和PRB对齐。
优选实施例八:
本优选实施例给出一种获得上行窄带的方法。本优选实施例以NB-IoT系统为例来说明,提出的方法不限于应用在NB-IoT系统中。
eNB给UE通知上行窄带对应的上行载波频率NUL,UE根据NUL可以获得上行窄带的中心频点,上行窄带的中心频点为:
FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.01nUL
其中nUL为整数。
优选地,nUL∈{-4,-3,-2,-1,0,1,2,3,4,5}
或者,nUL∈{-5,-4,-3,-2,-1,0,1,2,3,4}
或者,nUL∈{0,1,2,3,4,5,6,7,8,9}
其中FUL_LOW为所述NUL对应的上行的工作频段Operation Band的最低频率,单位为MHz,NOffs-UL为所述上行的工作频段对应的偏移值,是一个常数,比如对于band#1,NOffs-UL为18000。
可选地,所述nUL为预设的,比如固定为0,或者nUL是eNB通知的,可以在SIB中通知,或者在RRC信令中通知,比如eNB采用4bit来指示nUL,或者该信息也可以和其他信息进行联合编码进行指示。
优选实施例九:
本优选实施例给出一种获得上行窄带的方法。本优选实施例以NB-IoT系统为例来说明,提出的方法不限于应用在NB-IoT系统中。
UE根据channel raster扫频得到的下行中心频点,按照所述下行中心频点工作频段Operation Band,得到所述工作频段对应的缺省的UE发送-接收频率间隔Default UE TX-RX frequency separationΔf,然后根据所述下行频点和发送-接收中心频率间隔得到上行中心频点,上行中心频点为:
FUL=FDL-Δf+0.015nUL
其中,FDL为下行窄带的中心频点或者下行中心子载波的中心频点,下行中心子载波的中心频点可以简称为下行中心子载波的频点,nUL为整数,表示相对于发送-接收中心频率间隔得到的上行中心频点偏移的子载波数。所述nUL可以是预设的,比如为0,或者也可以是eNB通知的,比如在SIB中指示。可选地,所述nUL可以为0~11之间的整数,或者为-5~6之间的整数,或者为-6~5之间的整数。
或者,
FUL=FDL-Δf+0.09nUL
其中,nUL为整数,表示相对于发送-接收中心频率间隔得到的上行中心频点向频率高/低的方向偏移半个PRB的整数倍。所述nUL可以是预设的,比如为0,或者也可以是eNB通知的,比如在SIB中指示。可选地,所述nUL可以为-110~110之间的整数。
优选实施例十:
本优选实施例给出一种获得上行窄带的方法。本优选实施例以NB-IoT系统为例来说明,提出的方法不限于应用在NB-IoT系统中。
上行窄带的中心频点为:
FUL=FDL′-Δf+0.09nUL
其中,FUL是上行窄带的中心频点,FDL′为下行系统带宽的中心频点,Δf为缺省的UE发送-接收频率间隔,FUL和FDL′单位均为MHz,nUL为频率偏移值,nUL为整数。
FDL′可以是eNB通知给UE的,比如eNB给UE通知系统带宽的中心与下行窄带的中心子载波间的频率间隔。
优选实施例十一:
本优选实施例给出一种获得上行窄带的方法。本优选实施例以NB-IoT系统为例来说明,提出的方法不限于应用在NB-IoT系统中。
UE根据channel raster扫频得到的下行中心频点,按照所述下行中心频点工作频段Operation Band,得到所述工作频段对应的缺省的UE发送-接收频率间隔,然后根据所述下行频点和发送-接收中心频率间隔得到上行中心频点,上行中心频点为:
FUL=FDL-Δf+0.015nUL+x·0.0075
其中,FDL为下行窄带的中心频点,nUL为整数,表示相对于发送-接收中心频率间隔得到的上行中心频点偏移的子载波数。所述nUL可以是预设的,比如为0,或者也可以是eNB通知的,比如在SIB中指示。可选地,所述nUL可以为0~11之间的整数,或者为-5~6之间的整数,或者为-6~5之间的整数。x为1或者-1,是为了当下行的中心频点在两个子载波之间时,保证上行频点的中心也是在两个子载波中间的。
或者,
FUL=FDL-Δf+0.09nUL+x·0.0075
其中,nUL为整数,表示相对于发送-接收中心频率间隔得到的上行中心频点向频率高/低的方向偏移半个PRB的整数倍。所述nUL可以是预设的,比如为0,或者也可以是eNB通知的,比如在SIB中指示。可选地,所述nUL可以为-110~110之间的整数。
优选实施例十二:
下行窄带的中心频点/中心子载波的中心频点满足:
FDL=FDL_LOW+0.1(NDL-NOffs-DL)
其中FDL_LOW为所述NDL对应的下行的工作频段Operation Band的最低频率,单位为MHz,NOffs-DL为所述下行的工作频段对应的偏移值,是一个常数,比如对于band#1,NOffs-DL为0。
可选地,下行窄带的中心频点/中心子载波的中心频点满足:
FDL=FDL_LOW+0.1(NDL-NOffs-DL)+0.3nDL
其中,NDL为系统带宽的中心频点对应的NDL,nDL为整数,预设的,或者eNB配置的,比如eNB给UE配置的,或者根据eNB给UE配置的信息确定。
可选地,nDL为-3~-29或者3~29之间的整数。
可选地,对于工作在保护带guard band上的NB-IoT,下行窄带的中心频点/中心子载波的中心频点满足:
FDL=FDL_LOW+0.1(NDL-NOffs-DL)+0.2nDL
其中,NDL为系统带宽的中心频点对应的NDL,nDL为预设的,或者eNB配置的,比如eNB给UE配置的,或者根据eNB给UE配置的信息确定。可选地,nDL的最小值由小区的系统带宽确定。
优选实施例十三:
在LTE系统中,上行的数字基带和模拟基带之间错开了7.5KHz,即半个子载波,对于NB-IoT场景下,引入了3.75KHz的子载波宽度的传输,为了避免和legacy UE的干扰,那么上行的数字基带和模拟基带之间也应该错开7.5KHz,即错开7.5/3.75=2个子载波。如果上行采用2.5kHz的子载波宽度的传输,需要错开7.5/2.5=3个子载波。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行上述实施例的方法步骤的程序代码:
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种信息的传输方法及装置具有以下有益效果:解决了在LTE系统带宽上,如何确定传输信道的窄带的问题,确定了传输信道的窄带。

Claims (24)

  1. 一种信息的传输方法,包括:
    网络设备确定频率偏移信息或者频域位置信息;
    依据所述频率偏移信息或者频域位置信息确定传输信息的窄带,在所述窄带上传输信息。
  2. 根据权利要求1所述的方法,其中,所述网络设备确定频率偏移信息包括以下之一:
    依据预定义信息确定所述频率偏移信息;
    接收网络设备的通知信息确定所述频率偏移信息。
  3. 根据权利要求2所述的方法,其中,所述频率偏移信息包括以下之一:
    主系统信息块MIB中携带的所述频率偏移信息,其中,所述频率偏移信息指示第一窄带与第二窄带的频率偏移,所述第一窄带为传输以下至少之一的窄带:系统信息块SIB、RAR、寻呼消息、下行控制信道和PDSCH,所述第二窄带为传输以下至少之一的窄带:主同步信号PSS、辅同步信号SSS以及物理广播信道PBCH;
    SIB中携带的所述频率偏移信息,其中,所述频率偏移信息指示第三窄带与第四窄带的频率偏移,其中,所述第三窄带为传输以下至少之一的窄带:随机接入响应RAR、寻呼消息、下行控制信道和物理下行共享信道PDSCH,所述第四窄带为传输以下至少之一的窄带:PSS、SSS、PBCH以及SIB;
    SIBx中携带的所述频率偏移信息,其中,所述频率偏移信息指示第五窄带与第六窄带的频率偏移,其中,所述第五窄带为传输以下至少之一的窄带:RAR、寻呼消息、下行控制信道和PDSCH、以及除了SIBx之外的SIB,所述第六窄带为传输以下至少之一的窄带:PSS、SSS、PBCH以及SIBx,其中,所述SIBx为一个指定的SIB消息;
    主同步信号PSS和辅同步信号SSS中携带的所述频率偏移信息,其中,所述频率偏移信息指示第七窄带与第八窄带的频率偏移,其中,所述第七窄带为传输以下至少之一的窄带:PBCH、SIB、RAR、寻呼消息、下行控制信道和PDSCH,所述第八窄带为传输以下至少之一的窄带:PSS以及SSS。
  4. 根据权利要求3所述的方法,其中,
    所述第一窄带、所述第三窄带、所述第五窄带和所述第七窄带为长期演进LTE系统中的一个物理资源块PRB。
  5. 根据权利要求3所述的方法,其中,
    所述第二窄带、所述第四窄带、所述第六窄带和所述第八窄带的中心子载波的中心频点满足100KHz的整数倍。
  6. 根据权利要求1或3所述的方法,其中,
    所述频率偏移信息指示偏移的子载波的个数。
  7. 根据权利要求1或3所述的方法,其中,
    所述频率偏移信息指示的频率偏移X的绝对值小于等于Y个子载波,X为整数,Y为预设正整数。
  8. 根据权利要求6所述的方法,其中,
    X为-5到6之间的整数,或者为-6到5之间的整数,或者为0~11之间的整数。
  9. 根据权利要求1所述的方法,其中,所述频率偏移信息包括:
    MIB或者SIB中携带的的所述频率偏移信息为指定窄带与预设频率之间的偏移,所述指定窄带为传输以下至少之一的窄带:PSS、SSS、PBCH、SIB、RAR、寻呼消息、下行控制信道和PDSCH。
  10. 根据权利要求9所述的方法,其中,
    所述预设频率为100KHz的整数倍。
  11. 根据权利要求9所述的方法,其中,
    所述指定窄带为LTE系统中的一个PRB。
  12. 根据权利要求9所述的方法,其中,包括以下之一
    所述频率偏移信息指示的频率偏移为2.5KHz的整数倍或者奇数倍;
    所述频率偏移信息为预定义集合中的索引对应的频率偏移。
  13. 根据权利要求2所述的方法,其中,
    在所述窄带为上行窄带的情况下,所述频率偏移信息为以下之一:
    所述上行窄带与上行系统带宽的中心频点之间的频率偏移;
    所述上行窄带与100KHz的整数倍之间的频率偏移;
    所述上行窄带与指定频点之间的频率偏移,所述指定频点由缺省的UE发送-接收频率间隔确定。
  14. 根据权利要求1或2所述的方法,其中,
    在所述窄带为上行窄带的情况下,所述频域位置信息为与上行窄带对应的PRB索引。
  15. 根据权利要求2或13所述的方法,其中,
    所述预定义信息或者通知信息包括以下至少之一:
    系统带宽;
    与所述上行窄带对应的PRB信息;
    与所述下行窄带对应的PRB信息;
    下行窄带与系统带宽的直流DC子载波的偏移;
    所述上行窄带对应的PRB索引与下行窄带对应的PRB索引之差;
    第一取值和第二取值之差,所述第一取值为所述上行窄带与上行系统带宽的中心频点之间的频率偏移值,所述第二取值为下行窄带与下行系统带宽的中心频点之间的频率偏移值。
  16. 根据权利要求1或13所述的方法,其中,
    在所述窄带为上行窄带的情况下,所述上行窄带的中心频点为:
    FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.015nUL
    或者,
    FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.09nUL
    其中,FUL是上行窄带的中心频点,FUL_LOW为所述上行窄带所在的工作频段的最低频率,NUL是系统带宽对应的上行载波频率,NOffs-UL为所述上行窄带所在的工作频段对应的偏移值,nUL为频率偏移值,nUL为整数,FUL、FUL_LOW、NUL和NOffs-UL单位均为MHz。
  17. 根据权利要求1或13所述的方法,其中,
    在所述窄带为上行窄带的情况下,所述上行窄带的中心频点为:
    FUL=FUL_LOW+0.1(NUL-NOffs-UL)+0.01nUL
    其中,FUL是上行窄带的中心频点,FUL_LOW为所述上行窄带所在的工作频段的最低频率,NUL是上行窄带对应的上行载波频率,NOffs-UL为与所述上行窄带所在的工作频段对应的偏移值,nUL为频率偏移值,nUL为整数,FUL、FUL_LOW、NUL和NOffs-UL单位均为MHz。
  18. 根据权利要求17所述的方法,其中,
    nUL∈{-4,-3,-2,-1,0,1,2,3,4,5},
    或者,nUL∈{-5,-4,-3,-2,-1,0,1,2,3,4};
    或者,nUL∈{0,1,2,3,4,5,6,7,8,9}。
  19. 根据权利要求1或13所述的方法,其中,
    在所述窄带为上行窄带的情况下,所述上行窄带的中心频点为:
    FUL=FDL-Δf+0.015nUL
    或者,
    FUL=FDL-Δf+0.09nUL
    其中,FUL是所述上行窄带的中心频点,FDL为下行窄带的中心频点或者中心子载波的频率,Δf为缺省的UE发送-接收频率间隔,FUL和FDL单位均为MHz,nUL为频率偏移值,nUL为整数。
  20. 根据权利要求13所述的方法,其中,
    所述上行窄带的中心频点为:
    FUL=FDL′-Δf+0.09nUL
    其中,FUL是上行窄带的中心频点,FDL′为下行系统带宽的中心频点,Δf为缺省的UE发送-接收频率间隔,FUL和FDL′单位均为MHz,nUL为频率偏移值,nUL为整数。
  21. 根据权利要求13所述的方法,其中,
    所述上行窄带的中心频点为:
    FUL=FDL-Δf+0.015nUL+x·0.0075;
    或者,
    FUL=FDL-Δf+0.09nUL+x·0.0075;
    其中,FUL是所述上行窄带的中心频点,FDL为下行窄带的中心频点或者中心子载波的频率,Δf为缺省的UE发送-接收频率间隔,FUL和FDL单位均为MHz,nUL为频率偏移值,nUL为整数,x为1或者-1,x为预定义的或者高层信令指示的。
  22. 根据权利要求1或13所述的方法,其中,
    在所述窄带为下行窄带的情况下,所述下行窄带的中心频点为:
    FDL=FDL_LOW+0.1(NDL-NOffs-DL)+0.3nDL
    或者,
    FDL=FDL_LOW+0.1(NDL-NOffs-DL)+0.2nDL
    其中,FDL为所述下行窄带的中心频点或者中心子载波的频率,FDL_LOW为所述下行窄带所在的工作频段的最低频率,NDL为系统带宽对应的下行载波频率,NOffs-DL为与所述下行窄带所在的工作频段对应的偏移值,nDL为频率偏移值,nDL为整数,FDL、FDL_LOW、NDL和NOffs-DL单位均为MHz。
  23. 一种信息的传输装置,位于网络设备中,包括:
    确定模块,设置为网络设备确定频率偏移信息或者频域位置信息;
    传输模块,设置为依据所述频率偏移信息或者频域位置信息确定传输信息的窄带,在所述窄带上传输信息。
  24. 根据权利要求23所述的装置,其中,所述确定模块包括以下之一:
    自定义单元,设置为依据预定义信息确定所述频率偏移信息;
    接收单元,设置为接收网络设备的通知信息确定所述频率偏移信息。
PCT/CN2017/070448 2016-01-11 2017-01-06 信息的传输方法及装置 WO2017121289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610017055.2A CN106961734B (zh) 2016-01-11 2016-01-11 信息的传输方法及装置
CN201610017055.2 2016-01-11

Publications (1)

Publication Number Publication Date
WO2017121289A1 true WO2017121289A1 (zh) 2017-07-20

Family

ID=59310727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/070448 WO2017121289A1 (zh) 2016-01-11 2017-01-06 信息的传输方法及装置

Country Status (2)

Country Link
CN (1) CN106961734B (zh)
WO (1) WO2017121289A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019061910A1 (en) * 2017-09-26 2019-04-04 Huizhou Tcl Mobile Communication Co., Ltd. METHOD, DEVICE AND INFORMATION MEDIUM FOR PAGING PAGING
CN109803267A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种通讯方法、网络设备及终端设备
EP3547592A4 (en) * 2017-08-11 2020-02-26 Huawei Technologies Co., Ltd. COMMUNICATION METHOD, APPARATUS AND SYSTEM

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108235435A (zh) * 2016-12-15 2018-06-29 华为技术有限公司 一种资源指示方法及装置
KR102559382B1 (ko) * 2017-08-10 2023-07-25 삼성전자 주식회사 차세대 셀룰러 네트워크에서의 주파수 자원 결정 방법 및 장치
CN109831827B (zh) 2017-08-10 2020-03-10 华为技术有限公司 数据传输方法、终端和基站
CN109391426B (zh) * 2017-08-11 2021-11-16 中兴通讯股份有限公司 资源位置的指示、接收方法及装置
WO2019029728A1 (zh) * 2017-08-11 2019-02-14 华为技术有限公司 通信方法、装置和系统
CN109586869B (zh) * 2017-09-29 2021-08-06 中国移动通信有限公司研究院 Srs发送方法、相位差处理方法、通信设备及存储介质
CN109561506B (zh) * 2017-09-30 2020-06-16 华为技术有限公司 通信的方法和通信设备
EP3691374B1 (en) 2017-09-30 2022-02-16 Huawei Technologies Co., Ltd. Communication method and communication device
CN109803391A (zh) 2017-11-17 2019-05-24 华为技术有限公司 通信方法和通信装置
CN110167150A (zh) * 2018-02-12 2019-08-23 中兴通讯股份有限公司 一种资源分配的方法和装置
CN110915277A (zh) 2018-02-14 2020-03-24 Oppo广东移动通信有限公司 指示方法、检测方法及相关设备
CN116684055A (zh) * 2018-02-16 2023-09-01 索尼公司 基础设施设备、终端装置及通信方法
CN110366261B (zh) * 2018-03-26 2021-05-14 普天信息技术有限公司 一种连接态终端随机接入方法和装置
CN111757363B (zh) * 2019-03-29 2022-07-12 中国移动通信有限公司研究院 一种通信方法和终端、网络设备
CN113015182A (zh) * 2019-12-20 2021-06-22 维沃移动通信有限公司 一种确定dc位置的方法、终端设备和网络设备
CN117652192A (zh) * 2021-07-20 2024-03-05 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200683A (zh) * 2012-01-04 2013-07-10 中国移动通信集团公司 一种机器终端通信方法、装置和系统
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
CN103378939A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种下行数据传输方法及装置
WO2015102281A1 (ko) * 2013-12-30 2015-07-09 엘지전자 주식회사 복수의 파라미터 조합에 따른 랜덤 액세스 절차를 수행하는 방법 및 mtc 기기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299735B (zh) * 2007-04-30 2013-01-23 华为技术有限公司 一种载波频率偏移估计的方法和系统
CN102413079B (zh) * 2011-11-10 2014-09-03 复旦大学 3gpp-lte系统下行链路初始分数频偏估计方法
EP2883324B1 (en) * 2012-08-13 2016-10-05 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for reference signal transmission and reception
CN103118425B (zh) * 2013-02-19 2016-08-03 中邮科通信技术股份有限公司 支持td-lte双通道传输的实现方法及有源微功率分布系统
US9591599B2 (en) * 2013-12-30 2017-03-07 Mediatek Inc. Apparatuses and methods for physical broadcast channel (PBCH) assisted synchronization during a discontinuous reception (DRX) operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200683A (zh) * 2012-01-04 2013-07-10 中国移动通信集团公司 一种机器终端通信方法、装置和系统
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
CN103378939A (zh) * 2012-04-28 2013-10-30 电信科学技术研究院 一种下行数据传输方法及装置
WO2015102281A1 (ko) * 2013-12-30 2015-07-09 엘지전자 주식회사 복수의 파라미터 조합에 따른 랜덤 액세스 절차를 수행하는 방법 및 mtc 기기

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3547592A4 (en) * 2017-08-11 2020-02-26 Huawei Technologies Co., Ltd. COMMUNICATION METHOD, APPARATUS AND SYSTEM
US11075789B2 (en) 2017-08-11 2021-07-27 Huawei Technologies Co., Ltd. Communication method, communications apparatus, and communications system
RU2770687C2 (ru) * 2017-08-11 2022-04-21 Хуавей Текнолоджиз Ко., Лтд. Способ связи, устройство связи и система связи
WO2019061910A1 (en) * 2017-09-26 2019-04-04 Huizhou Tcl Mobile Communication Co., Ltd. METHOD, DEVICE AND INFORMATION MEDIUM FOR PAGING PAGING
US10798675B2 (en) 2017-09-26 2020-10-06 Huizhou Tcl Mobile Communication Co., Ltd. Method, device and readable storage medium for paging
US11653326B2 (en) 2017-09-26 2023-05-16 Huizhou Tcl Mobile Communication Co., Ltd. Method, device and readable storage medium for paging
CN109803267A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种通讯方法、网络设备及终端设备
US11405168B2 (en) 2017-11-17 2022-08-02 Huawei Technologies Co., Ltd. Communication method, network device, and terminal device
CN109803267B (zh) * 2017-11-17 2022-12-27 华为技术有限公司 一种通讯方法、网络设备及终端设备

Also Published As

Publication number Publication date
CN106961734A (zh) 2017-07-18
CN106961734B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2017121289A1 (zh) 信息的传输方法及装置
US11757680B2 (en) Reference signal sending and receiving methods, device and storage medium
US10602481B2 (en) Method and apparatus of enhanced paging
US10708850B2 (en) Wireless communications over unlicensed radio frequency spectrum
US10666484B2 (en) Method and apparatus for transmission of synchronization signal
US9844057B2 (en) Channel usage beacon signal design for cooperative communication systems
US9516654B2 (en) Cellular communication system support for limited bandwidth communication devices
JP2024026095A (ja) ディスカバリー信号を伝送する方法および装置、そしてディスカバリー信号を受信する方法および装置
US11128414B2 (en) Method and apparatus for broadcasting synchronization signals and system information in a new type carrier
US9077496B2 (en) Method, base station, and terminal for generating reference signal
CN113207110B (zh) 配置信息的传输方法和终端设备
CN108886811B (zh) 发送物理随机接入信道prach的方法、设备及系统
US10194466B2 (en) Sharing channel access across multiple radio access networks
CN111132366A (zh) 无线电通信网络中用于处理随机接入信道上前置码传送的用户设备、网络节点及其中的方法
CN112470516B (zh) 资源配置的方法和终端设备
CN105122861A (zh) 小规模小区中的接收方法和用户设备
CN109921889A (zh) 用于通信系统中的公共控制信道的系统和方法
WO2016107286A1 (zh) 探测参考信号srs发送方法、装置及接收方法、装置
CN110366863A (zh) 传输信号的方法、终端设备和网络设备
CN106413109B (zh) 一种利用非授权载波发送信号的方法和装置
WO2017133702A1 (zh) 传输信息的方法及装置
JP2022525727A (ja) 伝送帯域幅の決定方法、デバイス、及び記憶媒体
EP3493451A1 (en) Measurement signal transmission method and network device
US20220312383A1 (en) Frequency hopping techniques for uplink shared channel repetitions
CN113557771B (zh) 传输同步信号块的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738103

Country of ref document: EP

Kind code of ref document: A1