WO2017119282A1 - レーザ光を用いたガス分析装置及びそれに用いる計測セル - Google Patents

レーザ光を用いたガス分析装置及びそれに用いる計測セル Download PDF

Info

Publication number
WO2017119282A1
WO2017119282A1 PCT/JP2016/087948 JP2016087948W WO2017119282A1 WO 2017119282 A1 WO2017119282 A1 WO 2017119282A1 JP 2016087948 W JP2016087948 W JP 2016087948W WO 2017119282 A1 WO2017119282 A1 WO 2017119282A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement cell
laser light
measurement
laser
light
Prior art date
Application number
PCT/JP2016/087948
Other languages
English (en)
French (fr)
Inventor
出口 祥啓
崇博 神本
琢 高木
Original Assignee
国立大学法人徳島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学 filed Critical 国立大学法人徳島大学
Priority to JP2017560088A priority Critical patent/JP6710839B2/ja
Publication of WO2017119282A1 publication Critical patent/WO2017119282A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • the present invention relates to a gas analyzer that detects the concentration and temperature of a target gas using a laser beam and a measurement cell used in the gas analyzer.
  • the absorption method is a measurement method utilizing the property that gas molecules absorb infrared rays having a wavelength specific to chemical species and the temperature / concentration dependence of the absorption amount. Finding the ratio (I ⁇ / I ⁇ 0 ) of the intensity of the incident light (I ⁇ 0 ) and the intensity of the transmitted light (I ⁇ ) when the incident light passes through the absorption medium (target gas) with a uniform optical path length Thus, the concentration and temperature of the target gas can be measured.
  • Patent Document 1 As a technique for detecting the property (concentration and temperature) of a measurement target gas using an absorption method using a semiconductor laser, there is a technique disclosed in Patent Document 1 or the like.
  • the measurement target gas in the combustion chamber of the combustion engine is irradiated with laser light and the laser light transmitted through the measurement target gas is measured.
  • an apparatus hereinafter referred to as “measurement cell” for irradiating the combustion chamber with laser light and receiving laser light from the combustion chamber is required.
  • An object of the present invention is to realize a thin measurement cell used in an apparatus for analyzing a gas state by utilizing a semiconductor laser absorption method.
  • a measurement cell used in a gas analyzer is provided.
  • the measurement cell is A casing having a circular opening, a plurality of first optical paths for guiding light toward the opening, and a plurality of second optical paths provided corresponding to the first optical path and receiving light from the opening
  • a ring-shaped window member arranged along the opening and having translucency
  • a ring-shaped holding member that holds the window member.
  • the window member is composed of a plurality of arc-shaped members.
  • the holding member has a plurality of holes provided at positions corresponding to the first and second optical paths for transmitting light.
  • a two-dimensional gas analyzer including the cell.
  • Two-dimensional gas analyzer A laser light source for outputting laser light; A laser controller for controlling the laser light source; A duplexer for branching laser light from a laser light source into a plurality of optical paths; The measurement cell that inputs the laser beam branched by the duplexer to the first optical path; A plurality of light receivers that receive laser light from the second optical path of the measurement cell and output an electrical signal corresponding to the intensity of the received laser light; An analyzer for reconstructing a two-dimensional image relating to the temperature and / or concentration distribution of the measurement target gas based on the electrical signal output from each light receiver; Is provided.
  • a three-dimensional gas analyzer including the cell.
  • Three-dimensional gas analyzer A laser light source for outputting laser light; A laser controller for controlling the laser light source; A duplexer for branching laser light from a laser light source into a plurality of optical paths; A plurality of the measurement cells for inputting the laser beam branched by the branching filter; A plurality of light receivers that receive laser light from each measurement cell and output an electrical signal according to the intensity of the received laser light;
  • an analysis device is provided that reconstructs a two-dimensional image relating to the temperature and / or concentration distribution of the measurement target gas based on the electrical signal output from the light receiver.
  • the plurality of measurement cells are arranged side by side in a direction orthogonal to both the first optical path and the second optical path.
  • the window member disposed adjacent to the measurement field that is a high temperature and high pressure field is constituted by a plurality of members, so that even if the thickness of the window member is reduced, it is caused by thermal expansion. Damage to the window member can be prevented. As a result, the thickness of the window member and its peripheral members can be reduced, and the measurement cell can be made thinner.
  • the figure which showed the structure of the two-dimensional gas analyzer in Embodiment 1 of this invention Diagram showing the configuration of the measurement cell of the two-dimensional gas analyzer Diagram for explaining the relationship between measurement cell and optical adapter
  • the figure explaining the optical path formed in the lower body part of the measurement cell The figure explaining the state when a window member was inserted in the lower body part of a measurement cell
  • the figure explaining the composition of the window member of the measurement cell The figure explaining the frame of the window member
  • the figure explaining the divided window member in a window member A diagram explaining how the measurement cell is attached to the engine
  • the figure explaining the example of application to the burner of the measurement cell of Embodiment 1 of this invention The figure explaining the example of application to the jet engine of the measurement cell of Embodiment 1 of this invention
  • the figure which showed the example of the structure of the three-dimensional gas analyzer using the measurement cell of Embodiment 1 of this invention The figure explaining the light transmission hole of the elliptical shape formed in the holding frame
  • FIG. 1 shows a configuration of a two-dimensional gas analyzer equipped with an embodiment of a measurement cell according to the present invention.
  • the two-dimensional gas analyzer is a device that can two-dimensionally measure the concentration and temperature of the measurement target gas.
  • the two-dimensional gas analyzer 1 includes a laser 11, a laser controller 14, a fiber splitter 15, a measurement cell 30, an amplifier 21, and an analyzer 23.
  • the laser 11 is a light source (laser diode) capable of outputting laser light of a predetermined wavelength band, and is composed of, for example, a DFB (Distributed Feedback) laser or an external resonator type semiconductor laser.
  • a light source laser diode
  • DFB Distributed Feedback
  • the laser control device 14 controls the laser 11 to control the wavelength and intensity of the laser light output from the laser 11. Specifically, the laser control device 14 controls the laser 11 to output laser light while temporally changing (scanning) the wavelength of the laser light.
  • various commercially available devices for injecting current into the laser diode and emitting (driving) the laser diode can be used.
  • an LD driver ALP-7033CC manufactured by Asahi Data Systems can be used. .
  • the fiber splitter 15 branches the laser beam from the laser 11 into a plurality of optical paths and outputs it.
  • the measurement cell 30 is an apparatus that is used by being placed in a measurement field that includes a measurement target gas and that defines the optical path of laser light in the measurement field.
  • the measurement target gas is irradiated with laser light from the measurement cell 30, and the laser light transmitted through the measurement target gas is incident on the measurement cell 30 again.
  • Optical adapters 51a, 51b, 53a, 53b are attached to the measurement cell 30.
  • Each of the optical adapters 51a and 51b includes a plurality of collimators 17 therein.
  • the collimator 17 is an optical member (lens) for adjusting the traveling direction of the laser light.
  • the optical adapters 51 a and 51 b and the fiber splitter 15 are connected by an optical fiber 18.
  • Each of the optical adapters 53a and 53b includes a plurality of light receivers 19 inside.
  • the respective light receivers 19 included in the optical adapters 53a and 53b are arranged to face the corresponding collimators 17 in the optical adapters 51a and 51b, respectively.
  • the light receiver 19 includes a light receiving element such as a photodiode or a phototransistor, receives the laser light transmitted through the measurement target gas, and converts the laser light into an electrical signal corresponding to the intensity of the received laser light.
  • the optical adapters 53a and 53b and the amplifier 21 are connected by a wiring 20 that transmits an electrical signal.
  • the measurement cell 30 has a circular opening 35 in the center.
  • the measurement cell 30 is arranged and used such that the opening 35 is arranged in the measurement field.
  • the amplifier 21 amplifies the electrical signal (analog signal) from the light receiver 19 and converts it into a digital signal.
  • the analysis device 23 receives the signal from the amplifier 21, analyzes the waveform (absorption spectrum) of the input signal, and analyzes the gas concentration and temperature.
  • the analysis device 23 can be realized by a computer (information processing device), for example.
  • the measurement cell 30 is arranged in a measurement field including the measurement target gas, and measures a gas component in the opening region of the measurement cell 30.
  • FIG. 2A is a development view of the measurement cell 30.
  • the measurement cell 30 includes an upper frame 31a, a lower frame 31b, an upper O-ring 42a, a window member 44, a holding frame 42, and a lower O-ring 42b. Is done.
  • the upper and lower frames 31a and 31b are made of metal. As will be described later, the upper and lower frames 31a and 31b are provided with optical paths for allowing laser light to pass therethrough.
  • the window member 44 has a ring shape (or a cylindrical shape with a low height), and is formed of a translucent material (for example, a glass material).
  • the holding frame 42 is a metal member that fixes the window member 44.
  • a holding frame 42 is disposed outside the window member 44.
  • the holding frame 42 is provided with a plurality of light transmission holes 41 provided corresponding to the optical paths formed in the upper and lower frames 31a and 31b.
  • the O-rings 42 a and 42 b are provided with upper and lower frames 31 a and 31 b, a window member 44 and a holding frame 42 in order to prevent gas in the opening (measurement field) of the measurement cell 30 from leaking to the outside of the measurement cell 30. Inserted between.
  • FIG. 2B is a side view of the measurement cell 30.
  • the casing 31 of the measurement cell 30 is formed by bringing the upper and lower frames 31a and 31b into close contact with each other.
  • the window member 44 is held inside the holding frame 42 and is disposed along the opening 35 of the measurement cell 30 at the boundary portion between the upper and lower frames 31a and 31b (hereinafter, the window member 44 and the window member 44 are held).
  • the holding frame 42 is referred to as “window structure 40”).
  • a plurality of holes 39 through which laser light passes are arranged on the side surface of the measurement cell 30.
  • FIG. 3 is a front view of the measurement cell 30.
  • the measurement cell 30 has an opening 35 at the center portion, and optical adapters 51a and 51b having the collimator 17 therein and optical adapters 53a and 53b having the light receiver 19 inside are attached to the side surfaces.
  • the radially extending broken line shown in the measurement cell 30 indicates an optical path (path through which laser light passes) formed in the measurement cell 30.
  • the optical path is used to guide the laser light from the optical adapters 51a and 51b to the opening 35 (that is, the measurement field) of the measurement cell 30 or through the gas in the opening 35 (that is, the measurement field) of the measurement cell 30.
  • This is a laser beam path provided to guide light to the light receiver 19 of the optical adapters 53a and 53b.
  • the cross section of the optical path (cross section cut along a plane perpendicular to the traveling direction of light) is circular.
  • the optical path in the measurement cell 30 is formed in the vicinity of the boundary between the upper frame 31a and the lower frame 31b that are combined as shown in FIG.
  • the plurality of holes 39 on the side surface of the measurement cell 30 are entrances or exits of an optical path formed in the measurement cell 30.
  • Each hole 39 is connected to an optical path formed in the casing 31 of the measurement cell 30.
  • FIG. 2B shows the side surface of the measurement cell 30 on the side where a part of the optical adapter 53a and the optical adapter 51b is attached.
  • the first to seventh holes from the left are provided at positions corresponding to the position of the light receiver 19 in the optical adapter 53a.
  • the two holes on the right side are provided at positions corresponding to the position of the collimator 17 in the optical adapter 51b.
  • the pair of the collimator 17 and the light receiver 19 forms a path at the opening 35.
  • the measurement cell 30 has 18 paths. Each path is formed to be included in the same plane, and two-dimensional measurement is possible in this plane. In the following description, the normal direction of the plane including each path is referred to as “the normal direction of the measurement cell 30”.
  • FIG. 4 is a front view of the lower frame 31b constituting the casing 31 of the measurement cell 30.
  • FIG. 4 As shown in FIG. 4, in the lower frame 31b, grooves 33a to 33r for constituting an optical path for guiding the laser light from the optical adapters 51a and 51b to the opening 35 (that is, the measurement field) of the measurement cell 30 are provided. Is provided. Further, in the lower frame 31b, grooves 34a to 34r for forming an optical path for guiding the light that has passed through the opening 35 (that is, the measurement field) of the measurement cell 30 to the light receiver 19 of the optical adapters 53a and 53b are formed. Has been.
  • the upper frame 31a grooves are formed at positions corresponding to the grooves 33a to 33r and 34a to 34r of the lower frame 31b. That is, the upper frame 31a has the same configuration as the lower frame 31b.
  • the upper frame 31a and the lower frame 31b By combining the upper frame 31a and the lower frame 31b, one optical path having a circular cross section is formed. Therefore, the cross sections of the grooves 33a to 33r and 34a to 34r are semicircular.
  • the same reference numerals as those of the grooves 33a to 33r and 34a to 34r constituting each optical path will be used for each optical path formed in the casing 31 of the measurement cell.
  • an optical path formed by the groove 33a is referred to as an “optical path 33a”.
  • the lower frame 31 b has an area 37 for arranging the window structure 40 around the opening 35.
  • FIG. 5 is a view showing a state in which the window structure 40 is arranged in the region 37 of the lower frame 31b.
  • a broken-line arrow shown in the opening 35 of the lower frame 31b indicates a path through which the laser light passes.
  • FIG. 6 is a diagram showing the configuration of the window structure 40.
  • FIG. 7 is a diagram showing the configuration of the holding frame 42.
  • FIG. 8 is a view showing the configuration of the window member 44.
  • the holding frame 42 is disposed outside the window member 44.
  • the holding frame 42 is formed of a metal material (for example, titanium).
  • the holding frame 42 has a ring shape and is provided with projections 46a to 46d that protrude toward the inner periphery.
  • the protrusions 46a to 46d are provided at positions that divide the inner periphery of the holding frame 42 into four equal parts.
  • the side surface of the holding frame 42 has light transmission holes 41 for allowing the laser light to pass therethrough at positions corresponding to the respective optical paths formed in the casing 31 of the measurement cell 30. Is formed.
  • the window member 44 is composed of four arcuate members 44a to 44d. That is, the window member 44 is formed by dividing a circular member into four equal parts. As shown in FIG. 6, each of the arcuate members 44a to 44d is disposed between two adjacent protrusions 46a to 46d on the inner peripheral side of the holding frame 42.
  • the arc-shaped members 44a to 44d are formed so that gaps are formed between the arc-shaped members 44a to 44d and the protrusions 46a to 46d arranged on both sides thereof. Be placed. For example, gaps 47a and 47b are formed between the arcuate member 44a and the protrusions 46a and 46b arranged on both sides thereof. Even if the arcuate members 44a to 44d expand due to thermal expansion, the gap absorbs the increase due to the expansion of the arcuate members 44a to 44d and prevents the arcuate members 44a to 44d from being damaged. it can.
  • the two-dimensional gas analyzer 1 irradiates the measurement target gas with laser light while scanning the wavelength of the laser light output from the laser 11, and analyzes the absorption spectrum of the laser light obtained at that time, thereby measuring the measurement target gas. Measure the concentration and temperature.
  • the laser 11 outputs, for example, laser light in a wavelength band including a specific wavelength that is absorbed by the component of the measurement target gas.
  • the laser 11 may output laser light in a wavelength band including a specific wavelength that is not absorbed by the measurement target gas component or a wavelength that absorbs a gas component other than the measurement target gas.
  • the laser light emitted from the laser 11 is input to the fiber splitter 15.
  • the fiber splitter 15 branches the laser beam from the laser 11 and inputs it to each collimator 17 in the optical adapters 51a and 51b.
  • the laser light input to each collimator 17 is input to optical paths 33a to 33r provided in the housing of the measurement cell 30.
  • the laser light input to each of the optical paths 33a to 33r passes through the light transmission hole 41 and the window member 44 formed in the holding frame 42, and is irradiated to the measurement field (opening of the measurement cell 30).
  • the specific wavelength component is absorbed by the measurement target gas contained in the gas of the measurement field.
  • Laser light that has passed through the measurement field (opening of the measurement cell 30) enters the light paths 34a to 34r on the light receiving side via the window member 44 and the light transmission hole 41 of the holding frame 42, and is disposed in the optical adapters 53a and 53b. Is incident on the received light receiver 19.
  • the light receiver 19 converts the received laser light into an electrical signal.
  • the electrical signal from the light receiver 19 is amplified by the amplifier 21, converted into a digital signal, and input to the analysis device 23.
  • the analysis device 23 analyzes the signal waveform from each light receiver 19 and reconstructs a two-dimensional image showing the concentration and / or temperature distribution of the gas component. Reconstruction of a two-dimensional image can be performed using existing CT (Computed Tomography) technology.
  • FIG. 9 is a diagram for explaining a state in which the measurement cell 30 is attached to the engine in the two-dimensional gas analyzer of the present embodiment when analyzing the combustion state of the engine.
  • the measurement cell 30 is arranged above the cylinder 210 of the engine 200 so that the opening 35 of the measurement cell 30 is located in the combustion chamber of the engine 200.
  • the measurement cell 30 is arranged so that the opening 35 of the measurement cell 30 is arranged in the combustion chamber of the engine 200.
  • the flow of exhaust gas discharged from the cylinder 210 is changed.
  • You may provide the measurement cell 30 with respect to the exhaust pipe which is a path. According to this configuration, the state of the exhaust gas can be measured and analyzed.
  • a plurality of measurement cells 30 may be arranged in the normal direction with respect to the cylinder 210 or the exhaust pipe. This makes it possible to measure the gas state three-dimensionally.
  • the two-dimensional gas analyzer 1 using the measurement cell 30 of the present embodiment can detect the temperature and concentration of various gases in the cylinder of the engine or in the exhaust system, and can cause combustion transients and unburned fuel. It is useful for elucidating fuel emission behavior.
  • a measurement cell 30 used in the two-dimensional gas analyzer 1 of the present embodiment includes a circular opening 35 and a plurality of optical paths 33a to 33r for guiding laser light toward the opening 35 (an example of a first optical path). ) And a plurality of optical paths 34 a to 34 r (an example of a second optical path) that are provided corresponding to the optical paths 33 a to 33 r and receive light from the opening 35, and are disposed along the opening 35.
  • a ring-shaped translucent window member 44 and a ring-shaped holding frame 42 that holds the window member 44 are provided.
  • the window member 44 is composed of a plurality of arcuate members 44a to 44d.
  • the holding frame 42 has a plurality of holes 41 provided at positions corresponding to the optical paths 33a to 33r and 34a to 34r, respectively, for transmitting light.
  • the window member 44 is constituted by a plurality of arc-shaped members 44a to 44d and fixed by the holding frame 42, so that the window is not expanded by the thermal expansion under high temperature and high pressure without increasing the thickness of the window. Damage can be prevented.
  • the two-dimensional gas analyzer 1 of the present embodiment includes a laser light source 11 that outputs laser light, a laser control device 14 that controls the laser light source 11, and a fiber splitter that branches the laser light from the laser light source 11 into a plurality of optical paths.
  • Measurement cell 30 for inputting the laser beam branched by fiber splitter 15 to optical paths 33 a to 33 r (first optical path), and optical paths 34 a to 34 r (second optical path) of measurement cell 30
  • a plurality of light receivers 19 that receive laser light from each of them and output an electrical signal corresponding to the intensity of the received laser light, and the temperature and / or concentration of the measurement target gas based on the electrical signals output from each light receiver 19
  • an analysis device 23 for reconstructing a two-dimensional image related to the distribution of
  • the two-dimensional gas analyzer 1 of the present embodiment makes it possible to two-dimensionally measure the temperature and concentration distribution of the measurement target gas.
  • FIG. 10 (A) is a diagram illustrating application of the above-described two-dimensional gas analyzer 1 to a boiler burner.
  • the measurement cell 30 is arranged so that the opening 35 of the measurement cell 30 is arranged in the combustion chamber 110 of the boiler. Thereby, it becomes possible to grasp the combustion state in the combustion chamber 110 of the burner 100 two-dimensionally.
  • the combustion state can be measured three-dimensionally by arranging a plurality of measurement cells 30 in the normal direction of the measurement cell 30 with respect to the combustion chamber 110. It becomes possible (details will be described later).
  • FIG. 11A is a diagram illustrating application of the two-dimensional gas analyzer 1 of the present embodiment to a jet engine.
  • the airflow taken in is compressed by a compressor that uses the rotational force of the turbine 303 as a driving force, and is mixed with fuel in the combustor 301 and burned.
  • the combustion gas generated by the combustion rotates the turbine 303 and is exhausted to the outside from the injection port.
  • the measurement cell 30 may be provided near the injection port of the jet engine 300 as shown in FIG.
  • a plurality of measurement cells 30 may be arranged in the vicinity of the injection port in the exhaust direction of the combustion gas, so that the combustion state can be detected three-dimensionally. (Details will be described later).
  • the configuration of the two-dimensional gas analyzer 1 according to the first embodiment is applied to a technique for measuring the temperature / concentration distribution in two dimensions or three dimensions, thereby simplifying and quantifying the apparatus and increasing the sensitivity. It is possible to apply and deploy to combustion equipment such as boilers, engines and gas turbines.
  • a three-dimensional gas analyzer that measures the temperature and concentration of the combustion gas three-dimensionally can be configured by overlapping a plurality of measurement cells. is there.
  • the configuration of the three-dimensional gas analyzer will be described.
  • FIG. 12 is a diagram showing an example of the configuration of the three-dimensional gas analyzer.
  • the three-dimensional gas analyzer 1b includes a laser light source 11 that outputs laser light, a laser control device 14 that controls the laser light source 11, and a fiber splitter (branch splitter) that branches the laser light from the laser light source 11 into a plurality of optical paths. ) 15 and a plurality of measurement cells 30 each receiving laser light branched by the fiber splitter 15.
  • the configuration and operation of each component constituting the three-dimensional gas analyzer 1b are basically the same as those described in the first embodiment.
  • Each measurement cell 30 has a plurality of optical paths 33a to 33r (first optical path) and 34a to 34r (second optical path) as described in the first embodiment.
  • the plurality of measurement cells 30 are arranged in the normal direction of the measurement cell 30, that is, in a direction orthogonal to both the optical paths 33a to 33r (first optical path) and the optical paths 34a to 34r (second optical path).
  • the direction of the straight line connecting the centers of the openings of the measurement cells matches the normal direction of the measurement cell (the direction orthogonal to both the first optical path and the second optical path).
  • Optical adapters 51a, 51b, 53a, 53b are attached to each measurement cell 30.
  • Each of the optical adapters 51a and 51b includes a plurality of collimators 17 therein.
  • the optical adapters 53a and 53b include a light receiver 19 that receives laser light from each measurement cell 30 and outputs an electrical signal corresponding to the intensity of the received laser light.
  • the three-dimensional gas analyzer 1b further amplifies the electric signal (analog signal) from the light receiver 19 and converts it into a digital signal, and the electric signal output from the light receiver 19 for each measurement cell 30. And an analysis device 23 for reconstructing a two-dimensional image relating to the distribution of the temperature and / or concentration of the measurement target gas.
  • the analysis device 23 synthesizes a two-dimensional measurement result (two-dimensional image) regarding the temperature and concentration of the combustion gas obtained for each measurement cell 30. Thereby, the three-dimensional measurement result regarding the temperature and concentration of the combustion gas can be obtained.
  • each of the arc-shaped members constituting the window member 44 has an arc shape obtained by dividing the circular member into four equal parts, but other shapes may be used. That is, the circular member may be divided into two equal parts, six equal parts, eight equal parts, etc. to form an arcuate member.
  • each circular member 44a to 44d and each of the circular members 44a to 46d are formed so that gaps are formed between the projecting portions 46a to 46d arranged on both sides thereof.
  • Arc-shaped members 44a to 44d are arranged.
  • the gaps are not necessarily provided at both ends of the arcuate members 44a to 44d, but may be provided between the projections 46a to 46d at at least one end of the arcuate members 44a to 44d.
  • the cross section of the light transmission hole 41 of the holding frame 42 and the cross sections of the optical paths 33a to 33r and 34a to 34r are circular (perfect circles), but may be elliptical.
  • the cross section of the light paths 34a to 34r on the light receiving side is preferably elliptical.
  • a phenomenon occurs in which the refractive index changes due to a change in the internal pressure of the internal combustion engine, and the traveling direction of light changes. For example, in an engine, light may oscillate in a direction orthogonal to the direction of travel of the piston as the refractive index changes due to a change in pressure.
  • the cross section of the light transmission hole 41 of the holding frame 42 may be an oval having a longer circumferential length, and thereby a direction orthogonal to the piston traveling direction (piston traveling). Even when light is shaken in the horizontal direction (when the direction is the vertical direction), the light can be reliably received by the light receiving element. The same applies to the cross section of the light path on the light receiving side formed in the measurement cell 30.
  • the two-dimensional gas analyzer 1 of the above embodiment only one laser light source is used, but two types of laser light sources may be used.
  • the laser beams from the two types of laser light sources are combined using a multiplexer and then input to a fiber splitter and branched into a plurality of optical paths.
  • a wavelength band of laser light (hereinafter referred to as “laser light 1”) output from one laser light source and a wavelength band of laser light (hereinafter referred to as “laser light 2”) output from the other laser light source.
  • the wavelength band of the laser light 1 is a wavelength band including a specific wavelength that is absorbed by the measurement target gas component
  • the wavelength band of the laser light 2 is a wavelength band including a specific wavelength that is not absorbed by the measurement target gas component.
  • the measurement target gas component can be measured by the absorption line observed in the absorption spectrum of the laser beam 1.
  • the wavelength band when scanning the laser light 1 is a wavelength band including the specific wavelength (first wavelength) absorbed by the component of the first measurement target gas, and the wavelength band when scanning the laser light 2.
  • two gas components can be simultaneously measured by the absorption lines observed in the respective absorption spectra of the laser beam 1 and the laser beam 2.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Engines (AREA)
  • Control Of Combustion (AREA)
  • Optical Measuring Cells (AREA)

Abstract

計測セルは、円形状の開口(35)に向けて光を誘導する複数の第1の光路(33a~33r)と、第1の光路に対応して設けられ、開口からの光を受ける複数の第2の光路(34a~34r)とを有する筐体(31a)と、開口に沿って配置されたリング状で透光性を有する窓部材(44)と、窓部材を保持するリング状の保持部材(42)とを備える。窓部材(44)は複数の円弧状部材(44a~44d)で構成される。保持部材(42)は、第1及び第2の光路のそれぞれに対応した位置に設けられた、光を透過させるための複数の孔を有する。

Description

レーザ光を用いたガス分析装置及びそれに用いる計測セル
 本発明は、レーザ光を用いて対象ガスの濃度や温度を検出するガス分析装置及びそれに使用される計測セルに関する。
 近年、地球温暖化、化石燃料の枯渇、環境汚染等の防止の観点から、様々な分野で地球環境保全やエネルギーの有効利用に関心が集まっており、そのため種々の環境技術の研究がなされている。
 そのような環境技術において、エンジンやバーナー等における燃焼現象の燃焼構造や、その過渡的な振る舞いを詳細に解明することは重要なことである。近年、燃焼ガスにおいて温度や濃度の分布を高応答で時系列的に計測する手段として、半導体レーザ吸収法を活用した計測技術が開発されている。
 一般に吸収法は気体分子が化学種に特有の波長の赤外線を吸収する性質及びその吸収量の温度・濃度依存性を利用した計測法である。入射光が光路長の一様な吸収媒体(対象ガス)を通過したときの、入射光の強度(Iλ0)と透過光(Iλ)の強度の比(Iλ/Iλ0)を求めることにより、対象ガスの濃度や温度を計測することができる。
 半導体レーザを用いて吸収法を活用して計測対象ガスの性質(濃度や温度)を検出する技術として特許文献1等に開示された技術がある。
特開2015-040747号公報
 半導体レーザ吸収法を活用して、エンジンやバーナー等の燃焼機関における燃焼現象を解析する場合、燃焼機関の燃焼室内の計測対象ガスにレーザ光を照射し、計測対象ガスを透過したレーザ光を測定する必要がある。このため、燃焼室にレーザ光を照射し、また、燃焼室からレーザ光を受光するための装置(以下「計測セル」という)が必要になる。
 しかし、燃焼室のような高温、高圧場では、強度を保つために計測セルの構造(厚み)を大きく(例えば数センチメートル)する必要がある。計測セルの構造の増大化は燃焼機関内への計測セルの設置を難しくし、半導体レーザ吸収法を活用した燃焼現象の解析技術の実用化に際して障害となっていた。
 本発明は、半導体レーザ吸収法を活用してガスの状態を分析する装置において使用される計測セルの薄型化を実現することを目的とする。
 本開示の第1の態様において、ガス分析装置に使用される計測セルが提供される。計測セルは、
 円形状の開口と、開口に向けて光を誘導する複数の第1の光路と、第1の光路に対応して設けられ、開口からの光を受ける複数の第2の光路とを有する筐体と、
 開口に沿って配置されたリング状で透光性を有する窓部材と、
 窓部材を保持するリング状の保持部材と、を備える。
 窓部材は複数の円弧状部材で構成される。保持部材は、第1及び第2の光路のそれぞれに対応した位置に設けられた、光を透過させるための複数の孔を有する。
 本開示の第2の態様において、上記セルを備えた二次元ガス分析装置が提供される。
 二次元ガス分析装置は、
  レーザ光を出力するレーザ光源と、
  レーザ光源を制御するレーザ制御部と、
  レーザ光源からのレーザ光を複数の光路に分岐する分波器と、
  分波器により分岐されたレーザ光を前記第1の光路に入力する上記の計測セルと、
  計測セルの第2の光路からレーザ光を受光し、受光したレーザ光の強度に応じた電気信号を出力する複数の受光器と、
  各受光器から出力された電気信号に基づき、計測対象ガスの温度及び/または濃度の分布に関する二次元画像を再構築する解析装置と、
を備える。
 本開示の第3の態様において、上記セルを備えた三次元ガス分析装置が提供される。
 三次元ガス分析装置は、
  レーザ光を出力するレーザ光源と、
  レーザ光源を制御するレーザ制御部と、
  レーザ光源からのレーザ光を複数の光路に分岐する分波器と、
  分波器により分岐されたレーザ光を入力する複数の上記の計測セルと、
  各計測セルからレーザ光を受光し、受光したレーザ光の強度に応じた電気信号を出力する複数の受光器と、
  計測セル毎に、受光器から出力された電気信号に基づき、計測対象ガスの温度及び/または濃度の分布に関する二次元画像を再構築する解析装置と、を備える。
  複数の計測セルは、第1の光路と前記第2の光路の双方に直交する方向に並べて配置されている。
 本発明によれば、計測セルにおいて、高温、高圧場となる計測場に隣接して配置される窓部材を複数の部材で構成したことにより、窓部材の厚みを薄くしても、熱膨張による窓部材の破損を防止できる。その結果、窓部材及びその周辺の部材の厚みを小さくでき、計測セルの薄型化を実現することができる。
本発明の実施の形態1における二次元ガス分析装置の構成を示した図 二次元ガス分析装置の計測セルの構成を示した図 計測セルと光学アダプタの関係を説明するための図 計測セルの下側本体部に形成された光路を説明した図 計測セルの下側本体部に窓部材がはめ込まれたときの状態を説明した図 計測セルの窓部材の構成を説明した図 窓部材のフレームを説明した図 窓部材における分割された窓部材を説明した図 エンジンに対する計測セルの取り付け状態を説明した図 本発明の実施の形態1の計測セルのバーナーへの適用例を説明した図 本発明の実施の形態1の計測セルのジェットエンジンへの適用例を説明した図 本発明の実施の形態1の計測セルを用いた三次元ガス分析装置の構成の例を示した図 保持フレームに形成された楕円形形状の光透過孔を説明した図
 以下、添付の図面を参照して、本発明に係る、ガス分析装置に用いる計測セルの実施の形態を説明する。
(実施の形態)
1.二次元ガス分析装置の構成
 図1は、本発明に係る計測セルの一実施の形態を備えた二次元ガス分析装置の構成を示す。二次元ガス分析装置は、計測対象ガスの濃度や温度を二次元的に計測可能な装置である。図1に示すように、二次元ガス分析装置1は、レーザ11と、レーザ制御装置14と、ファイバスプリッタ15と、計測セル30と、アンプ21と、解析装置23とを備える。
 レーザ11は所定の波長帯域のレーザ光を出力可能な光源(レーザダイオード)であり、例えば、DFB(Distributed Feedback)レーザや外部共振器型半導体レーザで構成される。
 レーザ制御装置14は、レーザ11を制御して、レーザ11が出力するレーザ光の波長及び強度を制御する。具体的には、レーザ制御装置14はレーザ11を制御して、レーザ光の波長を時間的に変化(走査)させながらレーザ光を出力させる。レーザ制御装置14としては、レーザダイオードに電流を注入し、レーザダイオードを発光(駆動)させるための市販の種々の装置が使用でき、例えば、旭データシステムズ社製のLDドライバALP-7033CCが使用できる。
 ファイバスプリッタ15はレーザ11からのレーザ光を複数の光路に分岐して出力する。
 計測セル30は、計測セル30は計測対象ガスが含まれる計測場に配置されて使用され、計測場におけるレーザ光の光路を規定する装置である。計測セル30から、計測対象ガスに対してレーザ光が照射され、計測対象ガスを透過したレーザ光は再び計測セル30内に入射する。
 計測セル30には、光学アダプタ51a、51b、53a、53bが取り付けられている。光学アダプタ51a、51bはそれぞれ複数のコリメータ17を内部に含む。コリメータ17はレーザ光の進行方向を調整するための光学部材(レンズ)である。光学アダプタ51a、51bとファイバスプリッタ15とは光ファイバ18で接続される。
 光学アダプタ53a、53bはそれぞれ複数の受光器19を内部に含む。光学アダプタ53a、53bに含まれる各受光器19はそれぞれ、光学アダプタ51a、51b内の対応するコリメータ17と対向して配置される。受光器19は、フォトダイオードやフォトトランジスタのような受光素子を含み、計測対象ガスを透過したレーザ光を受光し、受光したレーザ光の強度に応じた電気信号に変換する。光学アダプタ53a、53bとアンプ21の間は電気信号を伝達する配線20で接続される。
 計測セル30は中央に円形の開口35を有している。計測セル30は、その開口35が計測場内に配置されるように配置されて使用される。
 アンプ21は、受光器19からの電気信号(アナログ信号)を増幅するとともにデジタル信号に変換する。
 解析装置23は、アンプ21から信号を入力し、入力した信号の波形(吸収スペクトル)を解析して、ガスの濃度、温度を解析する。解析装置23は例えばコンピュータ(情報処理装置)により実現できる。
 以上のような構成を有する二次元ガス分析装置1は、計測セル30が計測対象のガスが含まれる計測場に配置され、計測セル30の開口領域におけるガス成分の測定を行う。
 1.1 計測セル
 図2~図8を参照して、二次元ガス分析装置1に使用される計測セル30の構造の詳細を説明する。
 図2(a)は計測セル30の展開図である。図2(a)に示すように、計測セル30は、上側フレーム31aと、下側フレーム31bと、上側オーリング42aと、窓部材44と、保持フレーム42と、下側オーリング42bとで構成される。
 上側及び下側フレーム31a、31bは金属で形成される。上側及び下側フレーム31a、31bには後述するように、レーザ光を通過させるための光路が設けられている。
 窓部材44はリング形状(または、高さの低い円筒状)を有し、透光性材料(例えば、ガラス材料)で形成される。保持フレーム42は、窓部材44を固定する金属製の部材である。窓部材44の外側に保持フレーム42が配置されている。保持フレーム42には、上側及び下側フレーム31a、31bに形成された光路に対応して設けられた光透過孔41が複数設けられている。
 オーリング42a、42bは、計測セル30の開口(計測場)内のガスが計測セル30の外部へ漏れるのを防ぐために、上側及び下側フレーム31a、31bと、窓部材44及び保持フレーム42との間に挿入される。
 図2(b)は計測セル30の側面図である。図2(b)に示すように、上側及び下側フレーム31a、31bを対向して密着させることにより計測セル30の筐体31を形成する。窓部材44は保持フレーム42の内側で保持されて、上側及び下側フレーム31a、31bの境界部分において計測セル30の開口35に沿って配置される(以下、窓部材44及び窓部材44を保持する保持フレーム42を合わせて「窓構造40」という)。計測セル30の側面には、レーザ光が通過する複数の孔39が配置されている。
 図3は、計測セル30の正面図である。計測セル30は中央部分に開口35を有し、側面に、コリメータ17を内部に備えた光学アダプタ51a、51bと、受光器19を内部に備えた光学アダプタ53a、53bとが取り付けられている。また、図3において、計測セル30内に示した放射状に延びる破線は、計測セル30内部に形成される光路(レーザ光が通過する経路)を示している。光路は、光学アダプタ51a、51bからのレーザ光を計測セル30の開口35(すなわち、計測場)へ導くために、又は、計測セル30の開口35(すなわち、計測場)内のガスを通過した光を光学アダプタ53a、53bの受光器19へ導くために設けられたレーザ光の通路である。光路の断面(光の進行方向に直交する平面で切断した断面)は円形である。
 計測セル30内の光路は、図2(b)に示すように合わさった上側フレーム31aと下側フレーム31bの境界付近に形成される。図2(b)に示すように、計測セル30の側面の複数の孔39は、計測セル30内に形成された光路の入口または出口である。各孔39は計測セル30の筐体31内に形成される光路につながっている。なお、図2(b)は、光学アダプタ53a及び光学アダプタ51bの一部が取り付けられる側の計測セル30の側面を示している。図2(b)において、9個の孔のうち左から1つ目から7つ目までの孔は、光学アダプタ53a内の受光器19の位置に対応した位置に設けられる。また、右側の2個の孔は、光学アダプタ51b内のコリメータ17の位置に対応した位置に設けられる。
 計測セル30は、その開口35において、コリメータ17と受光器19の対がパスを形成する。本実施の形態では、計測セル30は18個のパスを有する。各パスは同一平面に含まれるよう形成されており、この平面内において二次元的な計測が可能となる。なお、以下の説明において、各パスを含む平面の法線方向を「計測セル30の法線方向」という。
 図4は、計測セル30の筐体31を構成する下側フレーム31bの正面図である。図4に示すように、下側フレーム31bにおいて、光学アダプタ51a、51bからのレーザ光を計測セル30の開口35(すなわち、計測場)へ導くための光路を構成するための溝33a~33rが設けられている。さらに、下側フレーム31bにおいて、計測セル30の開口35(すなわち、計測場)を通過した光を光学アダプタ53a、53bの受光器19へ導くための光路を構成するための溝34a~34rが形成されている。上側フレーム31aにおいても、下側フレーム31bの各溝33a~33r、34a~34rと対応する位置に溝が形成されている。すなわち、上側フレーム31aも下側フレーム31bと同様の構成を有する。上側フレーム31aと下側フレーム31bとが合わさることにより、断面が円形状の1つの光路を形成する。このため、各溝33a~33r、34a~34rの断面は半円形状となる。なお、以下の説明において、計測セルの筐体31内に形成された各光路に対して、各光路を構成する溝33a~33r、34a~34rと同じ符号を用いて説明する。例えば、溝33aにより形成される光路を「光路33a」と呼ぶ。
 下側フレーム31bは、開口35の周囲に、窓構造40を配置するための領域37を有する。図5は、下側フレーム31bの領域37に窓構造40を配置した状態を示した図である。図5において、下側フレーム31bの開口35内に示した破線矢印はレーザ光が通過するパスを示している。
 図6は、窓構造40の構成を示した図である。図7は、保持フレーム42の構成を示した図である。図8は、窓部材44の構成を示した図である。
 図6、7(a)に示すように、窓構造40において、窓部材44の外側に保持フレーム42が配置される。保持フレーム42は金属材料(例えば、チタン)で形成される。保持フレーム42は、リング形状を有し、内周に向かって突出した突起部46a~46dが設けられている。突起部46a~46dは、保持フレーム42の内周を四等分する位置に設けられる。図7(b)に示すように、保持フレーム42の側面には、計測セル30の筐体31内に形成される各光路に対応した位置に、レーザ光を通過させるための光透過孔41が形成されている。
 図6,8(a)に示すように、窓部材44は4つの円弧状部材44a~44dで構成される。すなわち、窓部材44は円形状の部材を4等分して作成される。各円弧状部材44a~44dは、図6に示すように、保持フレーム42の内周側において、隣接する2つの突起部46a~46dの間に配置される。
 また、計測セル30の組み立て時において、各円弧状部材44a~44dと、その両側に配置される突起部46a~46dとの間に隙間が形成されるように、各円弧状部材44a~44dが配置される。例えば、円弧状部材44aと、その両側に配置される突起部46a、46bとの間には、隙間47a、47bが形成されている。この隙間により、熱膨張により円弧状部材44a~44dが膨張した場合であっても、円弧状部材44a~44dの膨張による増大分を吸収し、円弧状部材44a~44dの破損を防止することができる。
2.動作
 以上のように構成される二次元ガス分析装置1の動作を説明する。
 二次元ガス分析装置1は、レーザ11から出力されるレーザ光の波長を走査しながらレーザ光を計測対象ガスに照射し、その際得られるレーザ光の吸収スペクトルを解析することで、計測対象ガスの濃度や温度の計測を行う。
 レーザ11は、例えば、計測対象ガスの成分が吸収する特定の波長を含む波長帯のレーザ光を出力する。または、レーザ11は、計測対象ガス成分が吸収しない特定の波長、または計測対象ガス以外のガス成分を吸収する波長を含む波長帯のレーザ光を出力してもよい。
 レーザ11から出射されたレーザ光は、ファイバスプリッタ15に入力される。ファイバスプリッタ15はレーザ11からのレーザ光を分岐し光学アダプタ51a、51b内の各コリメータ17に入力させる。各コリメータ17に入力されたレーザ光は、計測セル30の筐体内に設けられた光路33a~33rに入力される。各光路33a~33rに入力されたレーザ光は保持フレーム42に形成された光透過孔41及び窓部材44を透過し、計測場(計測セル30の開口)に照射される。
 計測場(計測セル30の開口)に照射された光は、ガス中を透過する際、特定の波長成分が計測場のガス中に含まれている計測対象ガスによって吸収される。計測場(計測セル30の開口)を透過したレーザ光は、窓部材44及び保持フレーム42の光透過孔41を介して受光側の光路34a~34rに入射し、光学アダプタ53a、53b内に配置された受光器19にて入射される。受光器19は受光したレーザ光を電気信号に変換する。
 受光器19からの電気信号は、アンプ21で増幅され、デジタル信号に変換されて解析装置23に入力される。
 解析装置23は、各受光器19からの信号波形を解析して、ガス成分の濃度及び/または温度分布を示す二次元画像を再構築する。二次元画像の再構築は既存のCT(Computed Tomography)技術を用いて行うことができる。
 図9は、エンジンの燃焼状態の解析時における、本実施形態の二次元ガス分析装置における計測セル30のエンジンに対する取り付け状態を説明した図である。図9に示すにように、計測セル30の開口35がエンジン200の燃焼室に位置するように、エンジン200のシリンダ210の上部に計測セル30を配置する。このように計測セル30を配置することで、エンジン200内の燃焼室における燃焼ガスに対して、レーザ光を照射し、燃焼ガスを透過したレーザ光の測定が可能となり、導体レーザ吸収法を用いて燃焼ガスの燃焼状態(濃度、温度)を二次元的に解析することが可能となる。
 なお、上記の例では、計測セル30の開口35がエンジン200の燃焼室に配置されるように、計測セル30を配置したが、燃焼室に代えて、シリンダ210から排出される排気ガスの流路である排気管に対して計測セル30を設けてもよい。この構成によれば、排気ガスの状態を測定、解析することができる。また、また、シリンダ210または排気管に対して、計測セル30をその法線方向に複数並べて配置して設けてもよい。これにより、3次元的にガスの状態を測定することが可能になる。
 以上のように、本実施形態の計測セル30を用いた二次元ガス分析装置1は、エンジンのシリンダ内または排気系において各種ガスの温度、濃度の検出を可能とし、燃焼の過渡現象や未燃燃料排出挙動の解明に有用である。
3.まとめ
 本実施形態の二次元ガス分析装置1に使用される計測セル30は、円形状の開口35と、開口35に向けてレーザ光を誘導する複数の光路33a~33r(第1の光路の一例)と、光路33a~33rに対応して設けられ、開口35からの光を受ける複数の光路34a~34r(第2の光路の一例)とを有する筐体31と、開口35に沿って配置されたリング状の透光性を有する窓部材44と、窓部材44を保持するリング状の保持フレーム42と、を備える。窓部材44は、複数の円弧状部材44a~44dで構成される。保持フレーム42は、光路33a~33r、34a~34rのそれぞれに対応した位置に設けられた、光を透過させるための複数の孔41を有する。
 計測セル30において、窓部材44を複数の円弧状部材44a~44dで構成し、保持フレーム42で固定することで、窓の厚みを大きくすることなく、高温・高圧下での熱膨張による窓の破損を防止できる。
 本実施形態の二次元ガス分析装置1は、レーザ光を出力するレーザ光源11と、レーザ光源11を制御するレーザ制御装置14と、レーザ光源11からのレーザ光を複数の光路に分岐するファイバスプリッタ(分波器)15と、ファイバスプリッタ15により分岐されたレーザ光を光路33a~33r(第1の光路)に入力する計測セル30と、計測セル30の光路34a~34r(第2の光路)からレーザ光を受光し、受光したレーザ光の強度に応じた電気信号を出力する複数の受光器19と、各受光器19から出力された電気信号に基づき、計測対象ガスの温度及び/または濃度の分布に関する二次元画像を再構築する解析装置23と、を備える。
 本実施形態の二次元ガス分析装置1により、計測対象ガスの温度や濃度の分布を2次元的に計測することが可能となる。
(実施の形態2)
 本実施形態では、実施の形態1で示した二次元ガス分析装置1の適用例を説明する。
(1)適用例1
 上記の実施の形態の二次元ガス分析装置1は、火力発電所等で使用されるボイラ用バーナーの燃焼室内の燃焼状態(対象ガスの温度、濃度)の検出に適用することができる。図10(A)は、上述の二次元ガス分析装置1のボイラ用バーナーへの適用を説明した図である。例えば、図10(A)に示すように、計測セル30の開口35がボイラの燃焼室110に配置されるように、計測セル30を配置する。これにより、バーナー100の燃焼室110内の燃焼状態を二次元的に把握することが可能となる。さらに、図10(B)に示すように、燃焼室110に対して、計測セル30を、計測セル30の法線方向に複数並べて配置することで、3次元的に燃焼状態を測定することも可能になる(詳細は後述)。
(2)適用例2
 二次元ガス分析装置1は、ジェットエンジンや産業用ガスタービンの燃焼状態(対象ガスの温度、濃度)の検出にも適用することができる。図11(A)は、本実施形態の二次元ガス分析装置1のジェットエンジンへの適用を説明した図である。ジェットエンジン300(またはガスタービン)では、取り込んだ気流はタービン303の回転力を原動力とする圧縮機により圧縮され、燃焼器301において燃料と混合されて燃焼させられる。燃焼により生じた燃焼ガスはタービン303を回転させるとともに、噴射口から外部に排気される。計測セル30は、例えば、図11(A)に示すように、ジェットエンジン300の噴射口付近に設けてもよい。これにより、ジェット燃料シリンダ内部の燃焼状態を検出することが可能となる。このような技術は、流れ場及び燃料不均一性による振動現象の解明に有用である。また、図11(B)に示すように、計測セル30を、噴射口付近において、燃焼ガスの排気方向に複数並べて配置してもよく、これにより三次元的に燃焼状態の検出が可能となる(詳細は後述)。
 以上のように、実施の形態1の二次元ガス分析装置1の構成を二次元あるいは三次元で温度・濃度分布を計測する手法に適用することで、装置の簡略化と定量化、高感度化を達成しつつ、ボイラ、エンジン、ガスタービンなどの燃焼機器へ応用展開させることが可能となる。
(実施の形態3)
 図10(B)及び図11(B)に示すように、計測セルを複数重ね合わせることで、燃焼ガスの温度及び濃度を三次元的に計測する三次元ガス分析装置を構成することも可能である。以下、三次元ガス分析装置の構成を説明する。
 図12は、三次元ガス分析装置の構成の一例を示した図である。三次元ガス分析装置1bは、レーザ光を出力するレーザ光源11と、レーザ光源11を制御するレーザ制御装置14と、レーザ光源11からのレーザ光を複数の光路に分岐するファイバスプリッタ(分波器)15と、各々がファイバスプリッタ15により分岐されたレーザ光を入力する複数の計測セル30とを含む。なお、三次元ガス分析装置1bを構成する各構成要素の構成及び動作は基本的に実施の形態1で説明したものと同様である。
 各計測セル30は実施の形態1で説明したように複数の光路33a~33r(第1の光路)、34a~34r(第2の光路)を有する。複数の計測セル30は、計測セル30の法線方向、すなわち、光路33a~33r(第1の光路)と光路34a~34r(第2の光路)の双方に直交する方向に配置されている。換言すれば、複数の計測セルは、各計測セルの開口の中心を結ぶ直線の方向が計測セルの法線方向(第1の光路と第2の光路の双方に直交する方向)と一致するように並べて配置されている。
 各計測セル30には、光学アダプタ51a、51b、53a、53bが取り付けられている。光学アダプタ51a、51bはそれぞれ複数のコリメータ17を内部に含む。光学アダプタ53a、53bは、各計測セル30からレーザ光を受光し、受光したレーザ光の強度に応じた電気信号を出力する受光器19を含む。
 三次元ガス分析装置1bは、さらに、受光器19からの電気信号(アナログ信号)を増幅するとともにデジタル信号に変換するアンプ21と、計測セル30毎に、受光器19から出力された電気信号に基づき、計測対象ガスの温度及び/または濃度の分布に関する二次元画像を再構築する解析装置23とを備える。
 解析装置23は、計測セル30毎に得られた燃焼ガスの温度及び濃度に関する二次元的な測定結果(二次元画像)を合成する。これにより、燃焼ガスの温度及び濃度に関する三次元的な測定結果を得ることができる。
(変形例)
 上記の実施の形態では、窓部材44を構成する円弧状部材のそれぞれの形状を、円形状部材を四等分した円弧状にしたが、他の形状でもよい。すなわち、円形状部材を、二等分、六等分、八等分等に分割して円弧状部材を形成してもよい。
 また、上記の実施の形態では、図6に示すように、各円弧状部材44a~44dと、その両側に配置される突起部46a~46dとの間に隙間が形成されるように、各円弧状部材44a~44dが配置した。しかし、隙間は、必ずしも円弧状部材44a~44dの両端において設ける必要はなく、円弧状部材44a~44dの少なくとも一端において突起部46a~46dとの間に隙間を設ければ良い。
 また、上記の実施の形態では、保持フレーム42の光透過孔41の断面及び光路33a~33r、34a~34rの断面を円形(真円)としたが、楕円形としてもよい。特に、受光側の光路34a~34rの断面を楕円形とするのが好ましい。内燃機関の内部の圧力の変化により屈折率が変化し、光の進行方向が変化するという現象が発生する。例えば、エンジンにおいて、圧力の変化による屈折率の変化にともない、ピストンの進行方向に直交する方向に光が振れることがある。このため、光の進行方向が変化する方向に長軸を有する楕円形にすることで、対象ガスを透過した光を受光素子で確実に受光できるようになる。例えば、図13に示すように、保持フレーム42の光透過孔41の断面を円周方向の長さがより長い楕円形としてもよく、これにより、ピストンの進行方向に直交する方向(ピストンの進行方向を垂直方向としたときの水平方向)に光が振れた場合であっても、光を受光素子で確実に受光できるようになる。計測セル30内に形成される受光側の光路の断面についても同様である。
 上記の実施の形態の二次元ガス分析装置1では、レーザ光源を1つのみ用いたが、2種類のレーザ光源を用いてもよい。2種類のレーザ光源を用いる場合、2種類のレーザ光源それぞれからのレーザ光を合波器を用いて合成した後にファイバスプリッタに入力し、複数の光路に分岐する。
 また、一方のレーザ光源から出力されるレーザ光(以下「レーザ光1」という)の波長帯と、他方のレーザ光源から出力されるレーザ光(以下「レーザ光2」という)の波長帯とを異ならせる。例えば、レーザ光1の波長帯を、計測対象ガスの成分が吸収する特定の波長を含む波長帯とし、レーザ光2の波長帯を、計測対象ガス成分が吸収しない特定の波長を含む波長帯としてもよい。このとき、レーザ光1の吸収スペクトルに観測される吸収線により、計測対象ガス成分を計測することができる。または、レーザ光1を走査する際の波長帯を、第1の計測対象ガスの成分が吸収する特定の波長(第1の波長)を含む波長帯とし、レーザ光2を走査する際の波長帯を、第1の計測対象ガスではない他のガス成分(第2の計測対象ガス)が吸収する特定の波長(第2の波長)を含む波長帯としてもよい。この場合、レーザ光1及びレーザ光2それぞれの吸収スペクトルに観測される吸収線により、2つのガス成分を同時に計測することが可能となる。

Claims (8)

  1.  ガス分析装置に使用される計測セルであって、
     円形状の開口と、前記開口に向けて光を誘導する複数の第1の光路と、前記第1の光路に対応して設けられ、前記開口からの光を受ける複数の第2の光路とを有する筐体と、
     前記開口に沿って配置されたリング状で透光性を有する窓部材と、
     前記窓部材を保持するリング状の保持部材と、を備え、
     前記窓部材は複数の円弧状部材で構成され、
     前記保持部材は、前記第1及び第2の光路のそれぞれに対応した位置に設けられた、光を透過させるための複数の孔を有する
    計測セル。
  2.  前記保持部材は内周側に所定間隔毎に複数の突起部を有し、前記突起部間の領域に各円弧状部材が配置された、請求項1記載の計測セル。
  3.  前記突起部と前記円弧状部材との間に隙間を有する、請求項2記載の計測セル。
  4.  前記複数の第1の光路は、前記開口に対して二次元的に光を照射するように配置された、請求項1記載の計測セル。
  5.  前記第2の光路の断面は真円または楕円形状である、請求項1記載の計測セル。
  6.  前記窓部材はガラス材料で形成され、前記保持部材は金属材料で形成された請求項1から5のいずれかに記載の計測セル。
  7.  レーザ光を出力するレーザ光源と、
     前記レーザ光源を制御するレーザ制御部と、
     前記レーザ光源からのレーザ光を複数の光路に分岐する分波器と、
     前記分波器により分岐されたレーザ光を前記第1の光路に入力する請求項1から6のいずれかに記載の計測セルと、
     前記計測セルの第2の光路からレーザ光を受光し、受光したレーザ光の強度に応じた電気信号を出力する複数の受光器と、
     各受光器から出力された電気信号に基づき、計測対象ガスの温度及び/または濃度の分布に関する二次元画像を再構築する解析装置と、を備えた
    二次元ガス分析装置。
  8.  レーザ光を出力するレーザ光源と、
     前記レーザ光源を制御するレーザ制御部と、
     前記レーザ光源からのレーザ光を複数の光路に分岐する分波器と、
     前記分波器により分岐されたレーザ光を入力する、請求項1ないし6のいずれかに記載の複数の計測セルと、
     各計測セルからレーザ光を受光し、受光したレーザ光の強度に応じた電気信号を出力する複数の受光器と、
     計測セル毎に、受光器から出力された電気信号に基づき、計測対象ガスの温度及び/または濃度の分布に関する二次元画像を再構築する解析装置と、を備え
     前記複数の計測セルは、前記第1の光路と前記第2の光路の双方に直交する方向に並べて配置された、
    三次元ガス分析装置。
PCT/JP2016/087948 2016-01-06 2016-12-20 レーザ光を用いたガス分析装置及びそれに用いる計測セル WO2017119282A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017560088A JP6710839B2 (ja) 2016-01-06 2016-12-20 レーザ光を用いたガス分析装置及びそれに用いる計測セル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-000896 2016-01-06
JP2016000896 2016-01-06

Publications (1)

Publication Number Publication Date
WO2017119282A1 true WO2017119282A1 (ja) 2017-07-13

Family

ID=59274202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087948 WO2017119282A1 (ja) 2016-01-06 2016-12-20 レーザ光を用いたガス分析装置及びそれに用いる計測セル

Country Status (2)

Country Link
JP (1) JP6710839B2 (ja)
WO (1) WO2017119282A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112215950A (zh) * 2020-10-19 2021-01-12 陈雨轩 一种室内有毒有害气体浓度的三维重建方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147241A (ja) * 1983-02-01 1984-08-23 チャンピオン・インタ−ナショナル・コ−ポレ−ション トランスデューサ取付装置
JP2014115194A (ja) * 2012-12-10 2014-06-26 Mitsubishi Heavy Ind Ltd ガス測定用配管及びガス測定用配管の製造方法
JP2015040747A (ja) * 2013-08-21 2015-03-02 国立大学法人徳島大学 レーザ光を用いたガス分析装置及びガス分析方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169449A (ja) * 2009-01-20 2010-08-05 Mitsubishi Heavy Ind Ltd 濃度計測装置及び濃度計測方法
JP2012026949A (ja) * 2010-07-27 2012-02-09 Shimadzu Corp ガス濃度測定装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147241A (ja) * 1983-02-01 1984-08-23 チャンピオン・インタ−ナショナル・コ−ポレ−ション トランスデューサ取付装置
JP2014115194A (ja) * 2012-12-10 2014-06-26 Mitsubishi Heavy Ind Ltd ガス測定用配管及びガス測定用配管の製造方法
JP2015040747A (ja) * 2013-08-21 2015-03-02 国立大学法人徳島大学 レーザ光を用いたガス分析装置及びガス分析方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112215950A (zh) * 2020-10-19 2021-01-12 陈雨轩 一种室内有毒有害气体浓度的三维重建方法
CN112215950B (zh) * 2020-10-19 2024-02-06 陈雨轩 一种室内有毒有害气体浓度的三维重建方法

Also Published As

Publication number Publication date
JPWO2017119282A1 (ja) 2018-11-22
JP6710839B2 (ja) 2020-06-17

Similar Documents

Publication Publication Date Title
ES2671574T3 (es) Método y aparato para la monitorización y el control de combustión
US8934101B2 (en) Gas analysis apparatus
JP6057430B2 (ja) レーザ光を用いたガス分析装置及びガス分析方法
US10408745B2 (en) Method and device for measuring the concentration of substances in gaseous or fluid media through optical spectroscopy using broadband light sources
CN101956997B (zh) 用于燃烧控制的光学探询传感器
CN101400989B (zh) 废气分析仪中的传感器装置
JP2015040747A5 (ja)
JP2012514752A (ja) 分光測定のための方法及び装置
CN108463710B (zh) 使用激光束的气体分析装置以及气体分析方法
WO2009052157A1 (en) Translational laser absorption spectroscopy apparatus and method
CN103499545A (zh) 采用气体参考腔反馈补偿的半导体激光器气体检测系统
Doll et al. Temperature measurements at the outlet of a lean burn single-sector combustor by laser optical methods
WO2017119282A1 (ja) レーザ光を用いたガス分析装置及びそれに用いる計測セル
US20130100445A1 (en) Method for data acquisition
Whitney et al. Design of system for rugged, low-noise fiber-optic access to high-temperature, high-pressure environments
CN109991188A (zh) 气体检测方法及装置
JP2015114260A (ja) 排ガス分析装置
US11073378B2 (en) Clearance measurement device, clearance measurement sensor, and clearance measurement method
ES2853723T3 (es) Procedimiento y aparato para la verificación del funcionamiento del sistema TDLAS
WO2009061586A2 (en) In situ optical probe and methods
US20230408399A1 (en) Optoacoustic Fluid Sensing Apparatus
Lengden et al. Fibre laser imaging of gas turbine exhaust species–a review of CO2 aero engine imaging
Schoonbaert Design of an Optical Fiber-Coupled Sensor for Ambient Methane Measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883781

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017560088

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883781

Country of ref document: EP

Kind code of ref document: A1