WO2017118253A1 - 一种距离扩展模式的传输方法和装置 - Google Patents

一种距离扩展模式的传输方法和装置 Download PDF

Info

Publication number
WO2017118253A1
WO2017118253A1 PCT/CN2016/108602 CN2016108602W WO2017118253A1 WO 2017118253 A1 WO2017118253 A1 WO 2017118253A1 CN 2016108602 W CN2016108602 W CN 2016108602W WO 2017118253 A1 WO2017118253 A1 WO 2017118253A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
tone
extension mode
distance extension
bandwidth
Prior art date
Application number
PCT/CN2016/108602
Other languages
English (en)
French (fr)
Inventor
朱俊
张佳胤
庞继勇
刘乐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PL16883379T priority Critical patent/PL3389211T3/pl
Priority to CA3009081A priority patent/CA3009081C/en
Priority to RU2018128721A priority patent/RU2689999C1/ru
Priority to EP20192990.8A priority patent/EP3832940B1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16883379.6A priority patent/EP3389211B1/en
Priority to ES16883379T priority patent/ES2870015T3/es
Priority to MYPI2018702303A priority patent/MY193066A/en
Priority to BR112018012395-1A priority patent/BR112018012395B1/pt
Priority to AU2016384965A priority patent/AU2016384965B2/en
Priority to KR1020187018974A priority patent/KR102215932B1/ko
Priority to JP2018535370A priority patent/JP6720320B2/ja
Priority to EP23164275.2A priority patent/EP4231578A1/en
Priority to MX2018008319A priority patent/MX2018008319A/es
Publication of WO2017118253A1 publication Critical patent/WO2017118253A1/zh
Priority to US16/028,884 priority patent/US10819478B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/281TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission taking into account user or data type priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention belongs to the field of communication technologies, and in particular, to a transmission method and apparatus for a distance extension mode.
  • the existing wireless local area network (English: Wireless Local Access Network, WLAN) standard based on OFDM (English: Orthogonal Frequency-Division Multiplexing) technology is gradually evolved by 802.11a, 802.11n, 802.11.
  • the ac and other versions are composed.
  • the IEEE (English: Institute of Electrical and Electronic Engineers) 802.11 standard organization has launched a new generation WLAN standard called HEW (High Efficiency WLAN).
  • the IEEE 11ax draft standard supports three preamble formats, namely single-user (SU)/trigger-based uplink (MU) format, multi-user (MU) format, and extended range single user (Extended range).
  • SU referred to as EXT SU
  • the preamble of the EXT SU format is shown in FIG. 1.
  • the EXT SU format preamble includes a traditional preamble and a high efficiency preamble HE Preamble.
  • the legacy preamble portion of the 802.11ax preamble is identical to the legacy preamble portion of the 802.11n/ac preamble.
  • High efficiency preamble HE Preamble part consists of repeated traditional short training field RL-SIG, high efficiency signaling A field HE-SIGA, high efficiency short training field HE-STF, high efficiency long training field Composition of HE-LTF.
  • the L-STF field and the L-LTF field in the EXT SU format preamble have a transmission power enhancement of 3 dB; the information content carried by the RL-SIG and the L-SIG is the same; and the HE-SIGA in the EXT SU format preamble adopts a repetition mode. It consists of four OFDM symbols. HE-SIGA1 and HE-SIGA2 carry the same information content, and HE-SIGA3 and HE-SIGA4 carry the same information content.
  • the performance of each field in the preamble is much better than that of the data part, that is, the transmission coverage of the preamble is large and the coverage of the data part is much smaller than the coverage of the preamble. This will result in the preamble portion of the data packet being correctly received during long-distance transmission, but the data portion of the data packet has a high probability of being unable to be received correctly, and the long-distance transmission of the data packet cannot be truly realized.
  • the present invention provides a transmission method and apparatus for a distance extension mode, which is used in the DU to solve the problem that the data portion of the data packet in the long-distance transmission of the data packet in the existing WLAN cannot be correctly received.
  • an embodiment of the present invention provides a distance extension mode transmission method, which is applied to a wireless local area network WLAN, and the method includes:
  • a distance extension mode physical layer protocol data unit PPDU wherein the traditional preamble portion in the distance extension mode PPDU is transmitted using a 20 MHz bandwidth, and the data portion in the distance extension mode PPDU is transmitted in a narrowband, and the bandwidth of the narrowband transmission includes at least the following One parameter: 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU;
  • the distance extension mode PPDU is transmitted.
  • an embodiment of the present invention provides a distance extension mode transmission method, which is applied to a wireless local area network WLAN, and the method includes:
  • a distance extended mode physical layer protocol data unit PPDU wherein the distance extended mode PPDU is transmitted by using a 20 MHz bandwidth, wherein the data part of the PPDU includes a plurality of subbands carrying the same data, and the bandwidth of the subband includes at least one of the following Parameters: 26-tone RU, 52-tone RU, 106-toneRU and 242-toneRU;
  • an embodiment of the present invention provides a distance extension mode transmission apparatus, which is applied to a wireless local area network WLAN, and the apparatus includes:
  • a baseband circuit configured to generate a distance extension mode physical layer protocol data unit PPDU, wherein the traditional preamble portion in the distance extension mode PPDU is transmitted by using a 20 MHz bandwidth, and the data portion in the distance extension mode PPDU is transmitted by using a narrowband transmission, the narrowband transmission
  • the bandwidth includes at least one of the following parameters: 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU;
  • a radio frequency circuit configured to send the distance extension mode PPDU.
  • the embodiment of the present invention provides a distance extension mode transmission apparatus, which is applied to a wireless local area network WLAN, and the apparatus includes:
  • a distance extended mode physical layer protocol data unit PPDU wherein the distance extended mode PPDU is transmitted by using a 20 MHz bandwidth, wherein the data part of the PPDU includes a plurality of subbands carrying the same data, and the bandwidth of the subband includes at least one of the following Parameters: 26-tone RU, 52-tone RU, 106-toneRU and 242-toneRU;
  • the embodiment of the present invention proposes a new distance extension mode physical layer protocol data unit PPDU, wherein the traditional preamble portion in the distance extension mode PPDU is transmitted by using a 20 MHz bandwidth, and the data portion in the distance extension mode PPDU is transmitted in a narrow band.
  • the bandwidth of the narrowband transmission includes at least one of the following parameters: 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU, and narrowband transmission is adopted for the data portion in the extended-spread mode PPDU, and the enhanced data portion is used.
  • the transmission reliability makes the performance of each part of the PPDU in the EXT SU mode more balanced, ensuring the coverage of long-distance transmission.
  • Figure 1 is a block diagram of the Extended Range SU preamble in the existing WLAN standard.
  • FIG. 2 is a diagram of an application scenario of the present invention.
  • FIG. 3 is a flowchart of a transmission method in Embodiment 1 of the present invention.
  • Embodiment 4 is a structural diagram of an Extended Range SU preamble in Embodiment 1 of the present invention.
  • FIG. 5 is a diagram of RU allocation in a 20 MHz bandwidth in the present invention.
  • FIG. 6 is still another structural diagram of the Extended Range SU preamble in Embodiment 1 of the present invention.
  • FIG. 7 is still another structural diagram of the Extended Range SU preamble in Embodiment 1 of the present invention.
  • FIG. 8 is a flowchart of a transmission method in Embodiment 2 of the present invention.
  • FIG. 9 is a structural diagram of an Extended Range SU preamble in Embodiment 2 of the present invention.
  • FIG. 10 is still another structural diagram of the Extended Range SU preamble in Embodiment 2 of the present invention.
  • FIG. 11 is a block diagram showing another structure of a trigger frame in the present invention.
  • FIG. 12 is a block diagram showing another structure of an acknowledgement frame in the present invention.
  • the embodiments of the present invention can be applied to a WLAN.
  • the standard adopted by the WLAN is the IEEE 802.11 series.
  • the WLAN may include multiple basic service sets (English: Basic Service Set, BSS for short).
  • the network nodes in the basic service set are stations (English: Station, abbreviated as STA).
  • the site includes the access point class (abbreviation: AP). , English: Access Point) and non-access point class sites (English: None Access Point Station, referred to as: Non-AP STA).
  • Each basic service set may contain one AP and multiple Non-AP STAs associated with the AP.
  • Access point class sites also known as wireless access points or hotspots.
  • the AP is mainly deployed in the home, inside the building, and inside the park.
  • the typical coverage radius is tens of meters to hundreds of meters.
  • An AP is equivalent to a bridge connecting a wired network and a wireless network. Its main function is to connect the wireless network clients together and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a WiFi (English: Wireless Fidelity) chip.
  • the AP can support multiple formats such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • Non-AP STA A non-access point class (English: None Access Point Station, referred to as Non-AP STA), which can be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • a smartphone, a tablet, and a personal computer supporting WiFi communication functions, and supporting WiFi Communication-enabled set-top boxes and smart TVs, smart wearable devices that support WiFi communication, in-vehicle communication devices that support WiFi communication, and drones that support WiFi communication.
  • the site can support multiple formats such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a. It should be noted that the Non-AP STA is simply referred to as STA below.
  • FIG. 2 is a schematic diagram of a typical WLAN deployment scenario, including an AP and four STAs, and the AP communicates with STA1-STA4.
  • the working group TGax introduced OFDMA (Orthogonal Frequency Division Multiple Access) and uplink MU-MIMO (English: Multi User-Multiple Input and Multiple Output) for the next-generation WLAN standard.
  • Chinese multi-user multi-entry and multi-out technology.
  • Embodiment 1 of the present invention provides a distance extension mode transmission method, which can be applied to an access point and a station, for example, an AP and a STA1-STA4 in FIG. 2, and the access point and the station can support a next generation WLAN.
  • Standards for example: 802.11ax.
  • Figure 3 is a flow chart of the transmission method, the specific steps are as follows:
  • Step 310 Generate a distance extension mode physical layer protocol data unit PPDU, where the traditional preamble portion in the distance extension mode PPDU is transmitted by using a 20 MHz bandwidth, and the data portion in the distance extension mode PPDU is transmitted by using a narrowband transmission. At least one of the following parameters is included: 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU.
  • Step 320 Send the distance extension mode PPDU.
  • narrowband transmission is adopted for the data part in the PPDU, the power spectral density of the data part is improved, and the transmission reliability of the data part is enhanced, so that the performance of each part of the PPDU in the EXT SU mode is more balanced, and the long-distance transmission is ensured. Coverage.
  • the structure diagram of the distance extension mode PPDU is as shown in FIG. 4.
  • the subcarriers employed by the Efficient Short Training Field HE-STF and the Efficient Long Training Field HE-LTF in the Distance Extended Mode PPDU are the same as the data portions in the Distance Extended Mode PPDU.
  • the L-STF field to the HE-SIGA field is transmitted with a bandwidth of 20 MHz
  • the HE-STF field and The HE-LTF field and the EXT-SU-DATA field are transmitted in narrowband and use the same narrowband bandwidth.
  • the field in the PPDU with narrowband transmission may start from the HE-LTF portion, as shown in Figure 6, ie the HE-STF still uses the same 20 MHz bandwidth transmission as the previous part of the HE-STF.
  • the field in the PPDU with narrowband transmission may start from the EXT-SU-data portion, as shown in Figure 7, ie the HE-STF and HE-LTF still use the same 20 MHz bandwidth transmission as the previous part of the HE-STF.
  • the narrowband transmission mentioned in step 310 refers to transmission on a bandwidth less than or equal to 20 MHz
  • the RU mentioned in step 310 is a resource unit
  • the data part in the HE-PPDU defined by TGax adopts a 256-point FFT. Modulation, so the 20MHz bandwidth contains 256 subcarriers (English: tone), where the subcarrier distribution under the 20MHz bandwidth is shown in Figure 5.
  • the 20MHz bandwidth it includes 9 26-tone RUs, 4 52-tone RUs, 2 RU distribution method such as 106-tone RU or 1 242-tone RU.
  • the transmit power enhancement may be performed on the HE-LTF field in the preamble of the EXT SU format, including the following manners:
  • Mode 1 The high efficiency long training field HE-LTF power in the distance extension mode PPDU is enhanced by 3 dB.
  • the station performs power enhancement on the HE-LTF field by default, and the value of the power enhancement may be 3 dB or other values.
  • the high efficiency signaling HE-SIGA field in the distance extended mode PPDU includes a first identifier, where the first identifier is used to indicate whether the high efficiency long training field HE-LTF performs power enhancement.
  • the first identifier may be indicated by one or more bits.
  • the first identifier in the HE-SIGA carries 1 bit, and is used to indicate whether the HE-LTF is power enhanced. For example, 0 indicates that power enhancement is not performed, and 1 indicates enhancement of HE-LTF power.
  • the first identifier in the HE-SIGA carries a plurality of bits, and in addition to indicating whether the HE-LTF is power enhanced, the value of the power boost can also be indicated. In order to achieve simplicity, better, unified 3dB power enhancement for HE-LTF.
  • the power enhancement value of the HE-LTF field and the LTF ruler can be Inch and transmission bandwidth binding, for example, when the HE-LTF and data part transmission bandwidth is 52-tone RU, 4dB power enhancement is performed for 2xLTF; and when HE-LTF and data part transmission bandwidth is 106-tone RU, 3dB power boost for 4xLTF.
  • the enhancement of the transmission power of the HE-LTF can improve the accuracy of the channel estimation, thereby improving the bit error rate during data partial demodulation and decoding, and improving the transmission reliability of the data portion.
  • the high-efficiency signaling HE-SIGA field in the distance extension mode PPDU includes a second identifier, where the second identifier is used to indicate a bandwidth of the narrow-band transmission of the data portion in the distance extension mode PPDU.
  • the specific RU subcarrier distribution manner As shown in Table 0.
  • mapping relationship between the second identifier and the RU allocation includes the following manners:
  • Manner 1 The second identifier adopts 4 bits, and the HE-SIGA field in the preamble of the EXT SU format carries 4-bit resource allocation indication (Resource Allocation) signaling.
  • the specific indication manner may be as shown in Table 1. For example, 0000 indicates that the leftmost 26-tone RU1 is allocated for the bandwidth of the transmission from the HE-STF portion, and 0100 indicates that the allocated 26-tone RU5 is the middle.
  • the transmitted bandwidth starting from the HE-STF portion, 1000 represents the bandwidth of the right-most 26-tone RU9 from the HE-STF portion of the transmission.
  • 1001 indicates that the leftmost 52-tone RU1 is allocated
  • 1010 indicates that the second 52-tone RU2 from the left is allocated the bandwidth from the HE-STF portion for the current transmission
  • 1000 indicates that the rightmost 52-tone is allocated.
  • RU4 is this transmission The bandwidth starting from the HE-STF part.
  • the 106-tone RU1 assigned to the left is the bandwidth from the HE-STF portion of the transmission
  • 1110 indicates the bandwidth from the HE-STF portion of the 106-tone RU2 assigned to the right.
  • Bits Description 0000 ⁇ 1000 Indicates the assigned 26-tone RU 1001 ⁇ 1100 Indicates the assigned 52-tone RU 1101 ⁇ 1110 106-tone RU indicating the allocation 1111 Indicates the assigned 242-tone RU
  • the 1111 signaling bit may be used as a reserved bit.
  • the signaling in Table 1 and the contents of the indication thereof may be arranged in other orders, for example, 1111 to 0111 indicating the assigned 26-tone RU, 0110 to 0011 indicating the assigned 52-tone RU, and 0010 to 0001 indicating the allocation.
  • 106-tone RU, 0000 indicates that the distribution is 242-tone RU.
  • the second identifier adopts 3 bits, and the HE-SIGA field in the preamble of the EXT SU format carries 3-bit resource allocation (Resource Allocation) indication signaling.
  • the specific indication manner can be as shown in Table 2. For example, 000 indicates that the leftmost 52-tone RU1 is allocated for the bandwidth of the transmission from the HE-STF portion, and 011 indicates that the rightmost 52-tone RU4 is allocated for the current transmission. The bandwidth starting from the HE-STF part. For another example, 100 indicates that the 106-tone RU1 assigned to the left is the bandwidth from the HE-STF portion of the current transmission, and 101 indicates the bandwidth from the HE-STF portion of the 106-tone RU2 assigned to the right. 111 denotes a reserved bit.
  • the 110 signaling bits can also be used as reserved bits.
  • the signaling in Table 2 and the contents of its indication may be arranged in other orders.
  • the second identifier adopts 2 bits, and the HE-SIGA field in the preamble of the EXT SU format carries 2-bit resource allocation (Resource Allocation) indication signaling.
  • the specific indication manner can be as shown in Table 3. For example, 00 indicates that 106-tone RU1 on the left side of the allocation is the bandwidth from the HE-STF part of the transmission, and 01 indicates that the 106-tone RU2 on the right side is assigned to the slave transmission.
  • the bandwidth at the beginning of the HE-STF portion, 10 indicates that the 242-tone RU1 is allocated for the bandwidth of the transmission from the HE-STF portion, and 11 indicates the reserved bits.
  • the 242-tone RU is not specified as the transmission bandwidth starting from the HE-STF part, only 1 bit of RA indication signaling is required, and 0 means that the left 106-tone RU1 is allocated for the current transmission.
  • the signaling in Table 3 and the contents of its indication may be arranged in other orders.
  • Mode 4 Only some pre-selected RUs are used to transmit the part of the EXT SU PPDU starting from the HE-STF.
  • Table 4 uses the newly defined subcarrier distribution as shown in Table 4, there is only one RU per size, and subcarriers near the middle portion of the DC are used.
  • Table 4 is only an example, and other newly defined subcarrier distribution tables may also be used, for example, the subcarriers included in the 26-tone RU are [-14:-2, 2:14], and the 52-tone RU is included.
  • the subcarrier is [-27:-2, 2:27]
  • the subcarrier included in the 106-tone RU is [-56:-2, 2:56].
  • the HE-SIGA field in the preamble of the EXT SU format needs to carry 2-bit Resource Allocation indication signaling.
  • the specific indication manner may be as shown in Table 5. For example, 00 indicates that the 26-tone RU is allocated for the bandwidth of the transmission from the HE-STF portion, and 01 indicates that the 52-tone RU is allocated for the transmission from the HE-STF portion.
  • the starting bandwidth 10 indicates that the 106-tone RU is allocated for the bandwidth of the transmission from the HE-STF portion, and 11 indicates that the 242-tone RU is allocated for the bandwidth of the transmission starting from the HE-STF portion.
  • Bits Description 00 Indicates the assigned 26-tone RU 01
  • 106-tone RU indicating the allocation 11 Indicates the assigned 242-tone RU
  • 11 may be used as a reserved bit if the 242-tone RU is not specified as the transmission bandwidth starting from the HE-STF portion.
  • the 2-bit RA indication Signaling can use 00 for 52-tone RU, 01 for 106-tone RU, 10 for 242-tone RU, and 11 for reserved bits. If the 242-tone RU is not specified as the transmission bandwidth from the HE-STF part, the 1-bit RA indication signaling may be used, that is, 0 means The 52-tone RU is allocated for the bandwidth of the transmission starting from the HE-STF portion, and 1 is the bandwidth allocated from the HE-STF portion for the 106-tone RU allocation.
  • the above signaling and its indicated content may be arranged in other orders.
  • 0 indicates that the 106-tone RU is allocated for the bandwidth of the transmission from the HE-STF portion, and 1 indicates that the 52-tone RU is allocated for the bandwidth of the transmission from the HE-STF portion.
  • 0 indicates that the 242-tone RU is allocated for the bandwidth of the transmission from the HE-STF portion, and 1 indicates that the 106-tone RU is allocated for the bandwidth of the transmission starting from the HE-STF portion.
  • Mode 5 The RU is pre-selected according to the PAPR minimum principle of the HE-LTF field, and the pre-selected RU is used to transmit the part of the EXT SU PPDU starting from the HE-STF.
  • Table 6 gives the PAPR distribution of the HE-LTF field. The first number in each grid indicates the PAPR value of the RU corresponding to the 4xLTF, and the second number indicates the PAPR value of the RU corresponding to the 2xLTF.
  • a 3-bit resource allocation (Resource Allocation) indication message needs to be carried in the HE-SIGA field in the preamble of the EXT SU format. make.
  • the specific indication manner can be as shown in Table 7, for example, 000 indicates that the 26-tone RU assigned to the left gray is the beginning of the HE-STF part for this transmission.
  • Bandwidth, 001 indicates the bandwidth of the 26-tone RU assigned to the right gray for the current transmission from the HE-STF portion; 100 indicates the bandwidth of the 106-tone RU assigned gray for the transmission from the HE-STF portion.
  • 101 denotes the bandwidth of the 242-tone RU assigned gray for the transmission from the HE-STF portion.
  • 101 may also be used as a reserved bit if the 242-tone RU is not specified as the transmission bandwidth from the HE-STF portion.
  • the 2-bit RA indication signaling may use 00 for the 52-tone RU on the left gray and 01 for the 52-tone RU on the right. 10 denotes a gray 106-tone RU and 11 denotes a 242-tone RU. If 242-tone RU is not specified as the transmission bandwidth starting from the HE-STF portion, then 11 is a reserved bit.
  • RA indication signaling 0 means that 106-tone RU is allocated for the bandwidth from the HE-STF part of the transmission, 1 Indicates that the 242-tone RU is allocated for the bandwidth of the transmission starting from the HE-STF portion.
  • the above signaling and its indicated content may be arranged in other orders.
  • the RUs selected according to the above principles may also be other collections, for example, only the 26-tone RU on the left gray, the 52-tone RU on the right, the 106-tone RU on the left, and the 242-tone RU on the left.
  • only 2 bits of RA indication signaling are required, and 00 can be used to indicate 26-tone RU on the left gray, 01 is 52-tone RU on the right gray, and 10 is gray on the left.
  • 106-tone RU, 11 indicates 242-tone RU. If 242-tone RU is not specified as the transmission bandwidth starting from the HE-STF portion, then 11 is a reserved bit.
  • the 2-bit RA indication signaling may use 00 for the gray-to-right 52-tone RU and 01 for the gray-colored 106-tone RU. 10 denotes 242-tone RU, and 11 is a reserved bit. If 242-tone RU is not specified as the transmission bandwidth starting from the HE-STF part, only 1-bit RA indication signaling is required, 0 means 52-tone RU on the right gray, and 1 means 106-tone RU on the left gray.
  • the pre-selected RU may also be selected according to other principles, for example, according to the PAPR minimum of the HE-STF field. It is also possible to exclude 26-tone RU1, 26-tone RU9 and 52-tone RU1 and 52-tone RU4 on both sides in Table 0 according to the principle of preventing out-of-band leakage, and select the remaining RU as an optional RU.
  • the set contains N available RUs.
  • the N RUs in the set are sorted according to the number of subcarriers included in the RU and the location where the RU is located, for example, the number of subcarriers included in the RU is from small to large, and the position where the RU is located is sorted from left to right.
  • Bit signaling to sequentially indicate N available RUs, and redundant 2 k -N combinations can be used as reserved bits.
  • the second identifier may also jointly indicate a bandwidth of the narrowband transmission of the data part and a modulation and coding scheme MCS adopted by the data part.
  • the MCS field in the HE-SIGA field in the SU format preamble includes 4-bit indication information, and 0000 to 1010 are used to indicate the 10 MCSs of MCS0 to MCS9, and 1011 to 1111 are reserved bit combinations.
  • the 4-bit indication information may be redefined in the HE-SIGA field in the EXT SU format preamble, for example, 0000 indicates the use of 26-tone RU, MCS0 modulation coding; 0001 indicates the use of 52-tone RU, MCS0 coding; 0010 indicates use 106 -tone RU, MCS0 encoding; 0011 indicates the use of 242-tone RU, MCS0 encoding; 0100 indicates the use of 26-tone RU, MCS1 modulation encoding; 0101 indicates the use of 52-tone RU, MCS1 encoding; 0110 indicates the use of 106-tone RU, MCS1 Code; 0111
  • the indication uses 242-tone RU, MCS1 encoding; 1000-1111 is a reserved bit combination.
  • a part of the 4-bit indication information is used to indicate the MCS, and a part of the bits is used to indicate the RU allocation, for example, 1 bit indicates MCS information, 2 bits indicate RU allocation mode, and 1
  • the second identifier may further indicate a bandwidth of the data portion narrowband transmission and a spatial stream number used by the data portion.
  • the NSTS field in the HE-SIGA field in the SU format preamble contains 3-bit indication information, and eight space-time streams are indicated using 000-111.
  • the number of space-time streams used by the PPDU is less than 8. Therefore, a part of the bits of the 3-bit indication information may be redefined to indicate the MCS, and a part of the bits are used to indicate the RU allocation, for example, the 1-bit indicates the NSTS. 2 bits indicate the RU allocation mode.
  • the transmission bandwidth of the EXT SU PPDU can be limited to a maximum of 20 MHz, that is, the BW indication signaling carried in the HE-SIGA field in the preamble of the EXT SU format is set to 00 by default.
  • the transmission bandwidth may also be greater than 20 MHz bandwidth.
  • the fifth identifier included in the high efficiency signaling HE-SIGA field in the distance extension mode PPDU may be generated according to the method in the foregoing embodiment.
  • the fifth identifier is used to indicate a bandwidth of the narrowband transmission of the data portion in the distance extension mode PPDU.
  • the transmission bandwidth may also be greater than 20 MHz bandwidth.
  • the sixth identifier included in the high efficiency signaling HE-SIGA field in the distance extension mode PPDU may be generated according to the method in the foregoing embodiment.
  • the sixth identifier is used to indicate a bandwidth of the sub-band repeated transmission of the data portion in the distance extension mode PPDU.
  • the high-efficiency signaling HE-SIGA field in the distance extension mode PPDU includes a seventh identifier, where the seventh identifier is used to indicate ID information of the receiving end, such as an AID (Association ID) of the receiving end, or a Partial AID. Or STA ID or part of the STA ID, For example, the last 6 bits or the first 4 bits of the STA ID, or any other ID information associated with the receiving end.
  • the receiving end may determine, by the seventh identifier, whether the current transmission is sent to itself. If the seventh flag indicates that the current transmission is not sent to itself, the reception can be stopped, thereby saving device power consumption.
  • the embodiment of the present invention proposes a new distance extension mode physical layer protocol data unit PPDU, wherein the traditional preamble portion in the distance extension mode PPDU is transmitted by using a 20 MHz bandwidth, and the data portion in the distance extension mode PPDU is transmitted in a narrow band.
  • the bandwidth of the narrowband transmission includes at least one of the following parameters: 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU, and narrowband transmission is adopted for the data portion in the extended-spread mode PPDU, and the enhanced data portion is used.
  • the transmission reliability makes the performance of each part of the PPDU in the EXT SU mode more balanced, ensuring the coverage of long-distance transmission.
  • Embodiment 2 of the present invention provides a distance extension mode transmission method, which can be applied to an access point and a station, for example, the AP and STA1-STA4 in FIG. 2, and the access point and the station can support the next generation WLAN.
  • Standards for example: 802.11ax.
  • Figure 8 is a flow chart of the transmission method, the specific steps are as follows:
  • Step 810 Generate a distance extension mode physical layer protocol data unit PPDU, where the distance extension mode PPDU is transmitted by using a 20 MHz bandwidth, where the data part in the PPDU includes multiple subbands carrying the same data, and the bandwidth of the subband includes At least one of the following parameters: 26-tone RU, 52-tone RU, 106-toneRU, and 242-toneRU.
  • Step 820 Send the PPDU of the distance extension mode.
  • the structure diagram of the distance extension mode PPDU is as shown in FIG. 9.
  • Distance extension The efficient short training field HE-STF and the efficient long training field HE-LTF in the mode PPDU employ the same subcarriers as the data portion in the distance extension mode PPDU.
  • the HE-STF field adopts a transmission bandwidth of 20 MHz, and only the sub-carrier adopted by the HE-LTF part is the same as the data part in the distance extension mode PPDU.
  • the transmit power enhancement may be performed on the HE-LTF field in the preamble of the EXT SU format, including the following methods:
  • Mode 1 The high efficiency long training field HE-LTF power in the distance extension mode PPDU is enhanced by 3 dB.
  • the station performs power enhancement on the HE-LTF field by default, and the value of the power enhancement may be 3 dB or other values.
  • the High Efficiency Signaling HE-SIGA field in the Distance Extended Mode PPDU includes a third identifier, which is used to indicate whether the high efficiency long training field HE-LTF performs power enhancement.
  • the third identifier may be indicated by one or more bits.
  • the third identifier in the HE-SIGA carries 1 bit, and is used to indicate whether the HE-LTF is power enhanced. For example, 0 indicates that power enhancement is not performed, and 1 indicates enhancement of HE-LTF power.
  • the third identifier in the HE-SIGA carries a plurality of bits, and in addition to indicating whether the HE-LTF is power enhanced, the value of the power boost may also be indicated. In order to achieve simplicity, better, unified 3dB power enhancement for HE-LTF.
  • the power enhancement value of the HE-LTF field may be bound to the LTF size and the transmission bandwidth, for example, when the HE-LTF and the data part transmission bandwidth is 52-tone RU, 4 dB is performed on the 2 ⁇ LTF.
  • Power boost as in the case of HE-LTF and data portion transmission bandwidth of 106-tone RU, 3dB power boost is applied to 4xLTF.
  • the enhancement of the transmission power of the HE-LTF can improve the accuracy of the channel estimation, thereby improving the bit error rate during data partial demodulation and decoding, and improving the transmission reliability of the data portion.
  • the data part in the PPDU in step 810 includes multiple sub-bearers carrying the same data.
  • the band is specifically explained as follows:
  • the data part of the EXT SU PPDU adopts the method of repeated transmission in the frequency domain. For example, if 106-tone RU is selected, the same data information is carried on two 106-tone RUs in the 20 MHz bandwidth, that is, 2 times repeated; if 52-tone RU is selected, then 4 52 in the 20 MHz bandwidth in Table 2 -tone RU carries the same data information, ie repeats 4 times; if 6-tone RU is selected, the same data information is carried on the 9 26-tone RUs in the 20 MHz bandwidth in Table 2, ie 9 times repeated.
  • the high efficiency signaling HE-SIGA field in the distance extension mode PPDU includes a fourth identifier, where the fourth identifier is used to indicate the bandwidth of the subband.
  • the mapping between the fourth identifier and the self-contained bandwidth includes the following manners.
  • the HE-SIGA field in the preamble of the EXT SU format carries a 4-bit fourth identifier. For example, 00 indicates that the data portion is repeated 9 times with 26-tone RU, 01 indicates that the data portion is repeated 4 times with 52-tone RU, 10 indicates that the data portion is repeated twice with 106-tone RU, and 11 indicates that the data portion is 242-tone RU. If 242-tone RU is not specified as the transmission bandwidth starting from the HE-STF portion, then 11 is a reserved bit.
  • 26-tone RU when 26-tone RU is selected, the same data information can be carried on eight 26-tone RUs in the 20 MHz bandwidth except for the middle 26-tone RU, that is, 8 times.
  • Mode 2 The HE-SIGA field in the preamble of the EXT SU format carries a 4-bit fourth identifier. For example, use 00 to indicate that the data portion is repeated 4 times with 52-tone RU, 01 indicates that the data portion is repeated twice with 106-tone RU, 10 indicates that the data portion uses 242-tone RU, 11 is reserved, and 52-tone RU and 106 are used. -toneRU and 242-tone RU.
  • the HE-SIGA field in the preamble of the EXT SU format carries a 4-bit fourth identifier. For example: 0 means that the data portion is repeated 4 times with 52-tone RU, 1 means that the data portion is 106-tone, and only 52-tone RU and 106-tone RU are used.
  • the HE-SIGA field in the preamble of the EXT SU format carries a 4-bit fourth identifier. For example: 0 means that the data portion is repeated 2 times with 106-tone RU, 1 means that the data portion uses 242-tone RU, and only 106-toneRU and 242-toneRU are used.
  • the fourth identifier may further indicate a bandwidth of the subband and a modulation and coding scheme MCS adopted by the data unit.
  • the fourth identifier includes a part of the 4-bit indication information used to indicate the MCS, and a part of the bits is used to indicate the RU allocation, for example, 2 bits indicate MCS information, and 2 bits indicate bandwidth of the sub-band.
  • the fourth identifier may further indicate a bandwidth of the subband and a number of spatial streams used by the data unit.
  • the fourth identifier includes a part of the 3-bit information for indicating the number of space-time streams, and a part of the bits is used to indicate the RU allocation, for example, 1 bit indicates NSTS, and 2 bits indicates bandwidth of the sub-band.
  • the embodiment of the present invention provides a new distance extended mode physical layer protocol data unit PPDU, where the distance extended mode PPDU is transmitted by using a 20 MHz bandwidth, where the data part of the PPDU includes multiple subbands carrying the same data.
  • the bandwidth of the subband includes at least one of the following parameters: 26-tone RU, 52-tone RU, 106-toneRU, and 242-toneRU; the transmission reliability of the data portion can be enhanced by repeated transmission in the bandwidth, so that the PPDU in the EXT SU mode The performance of each part is more balanced, ensuring the coverage of long-distance transmission.
  • FIG. 11 is a schematic block diagram of a transmission device in a distance extension mode in a wireless local area network according to an embodiment of the present invention.
  • the transmission device is, for example, an access point or a site, or a dedicated circuit or chip that implements related functions.
  • the transmission device 1000 includes a processor 1010, a memory 1020, a baseband circuit 1030, a radio frequency circuit 1040, and an antenna 1050.
  • the transmission device may be the AP or STA shown in FIG. 2.
  • the processor 1010 controls the operation of the transmission device 1000.
  • the memory 1020 can include read only memory and random access memory and provides instructions and data to the processor 1010, which can be a general purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array, or other programmable logic. Device. A portion of memory 1020 may also include non-volatile line random access memory (NVRAM).
  • the baseband circuit 1030 is used to synthesize the baseband signal to be transmitted or to decode the received baseband signal.
  • the RF circuit 1040 is used to tune the low frequency baseband signal A high frequency carrier signal is generated, and a high frequency carrier signal is transmitted through the antenna 1050.
  • the radio frequency circuit is also used to demodulate the high frequency signal received by the antenna 1050 into a low frequency carrier signal.
  • the various components of transmission 1000 are coupled together by a bus 1060, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1060 in the figure. It should be noted that the above description of the transmission structure can be applied to the subsequent embodiments.
  • the baseband circuit 1030 is configured to generate a distance extended mode physical layer protocol data unit PPDU, where the traditional preamble portion in the distance extended mode PPDU is transmitted by using a 20 MHz bandwidth, and the data portion in the distance extended mode PPDU is transmitted by using a narrow band, the narrow band
  • the transmitted bandwidth contains at least one of the following parameters: 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU.
  • the radio frequency circuit 1040 is configured to send the distance extension mode PPDU.
  • the transmit power enhancement may be performed on the HE-LTF field in the preamble of the EXT SU format, including the following manners:
  • Mode 1 The high efficiency long training field HE-LTF power in the distance extension mode PPDU is enhanced by 3 dB.
  • the high efficiency signaling HE-SIGA field in the distance extended mode PPDU includes a first identifier, where the first identifier is used to indicate whether the high efficiency long training field HE-LTF performs power enhancement.
  • the high efficiency signaling HE-SIGA field in the distance extension mode PPDU includes a second identifier, where the second identifier is used to indicate a bandwidth of the narrowband transmission of the data part in the distance extension mode PPDU.
  • mapping relationship between the second identifier and the narrowband bandwidth is explained in detail in Embodiment 1, and details are not described herein again.
  • the high efficiency short training field HE-STF and the distance extended mode PPDU employs the same subcarriers as the data portion in the distance extension mode PPDU.
  • the field in the PPDU with narrowband transmission may start from the HE-LTF portion, as shown in Figure 6, ie the HE-STF still uses the same 20 MHz bandwidth transmission as the previous part of the HE-STF.
  • the field in the PPDU with narrowband transmission may start from the EXT-SU-data portion, as shown in Figure 7, ie the HE-STF and HE-LTF still use the same 20 MHz bandwidth transmission as the previous part of the HE-STF.
  • the embodiment of the present invention provides a transmission apparatus for generating and transmitting a new distance extended mode physical layer protocol data unit PPDU, where the traditional preamble part in the extended mode PPDU is transmitted by using a 20 MHz bandwidth, and the distance extended mode PPDU
  • the data portion is transmitted in a narrow band, and the bandwidth of the narrowband transmission includes at least one of the following parameters: 26-tone RU, 52-tone RU, 106-tone RU, and 242-tone RU, in the above manner, in the distance extension mode PPDU
  • the data part adopts narrow-band transmission and adopts narrow-band transmission to enhance the transmission reliability of the data part, so that the performance of each part of the PPDU in the EXT SU mode is more balanced, and the coverage of the long-distance transmission is ensured.
  • FIG. 12 is a schematic block diagram of a transmission apparatus in a distance extension mode in a wireless local area network, which is, for example, an access point or a station, or a dedicated circuit or chip for implementing related functions, according to an embodiment of the present invention.
  • the transmission device 1100 includes a processor 1110, a memory 1120, a baseband circuit 1130, a radio frequency circuit 1140, and an antenna 1150.
  • the transmission device may be the AP or STA shown in FIG. 2. It should be noted that the components in the transmission device 1100 have been explained in detail in Embodiment 3 and will not be described again.
  • the baseband circuit 1130 is configured to generate a distance extended mode physical layer protocol data unit PPDU, where the distance extended mode PPDU is transmitted by using a 20 MHz bandwidth, where the data part in the PPDU includes multiple subbands carrying the same data, and the subband
  • the bandwidth includes at least one of the following parameters: 26-tone RU, 52-tone RU, 106-toneRU, and 242-toneRU;
  • the RF circuit 1140 is configured to send the PPDU of the distance extension mode.
  • the transmit power enhancement may be performed on the HE-LTF field in the preamble of the EXT SU format, including the following methods:
  • Mode 1 The high efficiency long training field HE-LTF power in the distance extension mode PPDU is enhanced by 3 dB.
  • the High Efficiency Signaling HE-SIGA field in the Distance Extended Mode PPDU includes a third identifier, which is used to indicate whether power enhancement is performed.
  • the high efficiency signaling HE-SIGA field in the distance extension mode PPDU includes a fourth identifier, where the fourth identifier is used to indicate the bandwidth of the subband.
  • the sub-carriers adopted by the Efficient Short Training Field HE-STF and the Efficient Long Training Field HE-LTF in the Distance Extended Mode PPDU are the same as the data part in the Distance Extended Mode PPDU.
  • the HE-STF field adopts a transmission bandwidth of 20 MHz, and only the sub-carrier adopted by the HE-LTF part is the same as the data part in the distance extension mode PPDU.
  • the embodiment of the present invention provides a transmission apparatus for generating and transmitting a new distance extended mode physical layer protocol data unit PPDU, where the distance extended mode PPDU is transmitted by using a 20 MHz bandwidth, where the data part of the PPDU includes multiple A subband carrying the same data, the bandwidth of the subband comprising at least one of the following parameters: 26-tone RU, 52-tone RU, 106-toneRU, and 242-toneRU; the transmission reliability of the data portion can be enhanced by repeated transmission in the bandwidth This makes the performance of each part of the PPDU in EXT SU mode more balanced, ensuring the coverage of long-distance transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)
  • Transmitters (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明实施例提供了一种距离扩展模式的传输方法,该方法包括:生成距离扩展模式物理层协议数据单元PPDU,该距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,该距离扩展模式PPDU中的数据部分采用窄带传输,该窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU。本发明实施例还提供了相应的传输装置,通过应用本发明实施例的方法和装置,可以增强数据部分的传输可靠性,使得EXT SU模式下的PPDU各部分的性能更加平衡,保证了远距离传输的覆盖范围。

Description

一种距离扩展模式的传输方法和装置
本申请要求于2016年1月7日提交中国专利局、申请号为201610011376.1、发明名称为“一种距离扩展模式的传输方法和装置”的CN专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于通信技术领域,尤其涉及一种距离扩展模式的传输方法和装置。
背景技术
现有基于OFDM(英文:Orthogonal Frequency-Division Multiplexing,中文:正交频分复用)技术的无线局域网(英文:Wireless local Access Network,简称:WLAN)标准由逐步演进的802.11a、802.11n、802.11ac等版本组成,目前IEEE(英文:Institute of Electrical and Electronic Engineers,中文:电气与电子工程师协会)802.11标准组织已启动了称之为HEW(High Efficiency WLAN,高效率无线局域网)的新一代WLAN标准802.11ax的标准化工作,通过引入OFDMA(Orthogonal Frequency Division Multiple Access,正交频分复用多址)技术,802.11ax可以进一步提高WLAN在密集用户场景下的传输性能。
目前,IEEE 11ax标准草案中,共支持三种前导码格式,分别为单用户(SU)/基于触发的上行(Trigger based UL)格式,多用户(MU)格式,以及距离扩展单用户(Extended range SU,简称EXT SU)格式。其中EXT SU格式的前导码如图1所示,EXT SU格式前导码包括传统前导码和高效率前导码HE Preamble两部分。为保证后向兼容性,802.11ax前导码中的传统前导码部分和802.11n/ac前导码中的传统前导码部分完全相同。高效率前导码HE Preamble部分由重复的传统短训练字段RL-SIG,高效率信令A字段HE-SIGA,高效率短训练字段HE-STF,高效率长训练字段 HE-LTF组成。
其中,EXT SU格式前导码中的L-STF字段和L-LTF字段发射功率增强3dB;RL-SIG和L-SIG承载的信息内容相同;EXT SU格式前导码中的HE-SIGA采用重复模式,由四个OFDM符号组成,HE-SIGA1和HE-SIGA2承载的信息内容相同,HE-SIGA3和HE-SIGA4承载的信息内容相同。
EXT SU传输模式下,前导码中各个字段的性能要远好于数据部分的性能,即前导码的传输覆盖范围较大而数据部分的覆盖范围则远小于前导码的覆盖范围。这样会导致在长距离传输时,数据包的前导码部分可以正确接收,但数据包的数据部分却有很大概率无法正确接收,无法真正实现数据包的长距离传输。
发明内容
有鉴于此,本发明提供一种距离扩展模式的传输方法和装置,DU中传输,用于解决现有WLAN中数据包的长距离传输中数据包的数据部分很大概率无法正确接收的问题。
第一方面,本发明实施例提供了一种距离扩展模式的传输方法,应用于无线局域网WLAN,该方法包括:
生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,所述距离扩展模式PPDU中的数据部分采用窄带传输,所述窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU;
发送所述距离扩展模式PPDU。
第二方面,本发明实施例提供了一种距离扩展模式的传输方法,应用于无线局域网WLAN,所述方法包括:
生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU采用20MHz带宽传输,其中所述PPDU中的数据部分包含多个携带相同数据的子带,所述子带的带宽包含以下至少一个参数:26-tone RU、 52-tone RU、106-toneRU和242-toneRU;
发送所述距离扩展模式的PPDU。
第三方面,本发明实施例提供了一种距离扩展模式的传输装置,应用于无线局域网WLAN,所述装置包括:
基带电路,用于生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,所述距离扩展模式PPDU中的数据部分采用窄带传输,所述窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU;
射频电路,用于发送所述距离扩展模式PPDU。
第四方面,本发明实施例提供了一种距离扩展模式的传输装置,应用于无线局域网WLAN,所述装置包括:
生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU采用20MHz带宽传输,其中所述PPDU中的数据部分包含多个携带相同数据的子带,所述子带的带宽包含以下至少一个参数:26-tone RU、52-tone RU、106-toneRU和242-toneRU;
发送所述距离扩展模式的PPDU。
本发明实施例提出了一种新的距离扩展模式物理层协议数据单元PPDU,该距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,该距离扩展模式PPDU中的数据部分采用窄带传输,所述窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU,对距离扩展模式PPDU中的数据部分采用窄带传输采用窄带传输,增强数据部分的传输可靠性,使得EXT SU模式下的PPDU各部分的性能更加平衡,保证了远距离传输的覆盖范围。
附图说明
图1为现有WLAN标准中的Extended Range SU前导的结构图。
图2为本发明的应用场景图。
图3为本发明实施例1中传输方法的流程图。
图4为本发明实施例1中Extended Range SU前导的一种结构图。
图5为本发明中20MHz带宽下的RU分配图。
图6为本发明实施例1中Extended Range SU前导的又一种结构图。
图7为本发明实施例1中Extended Range SU前导的又一种结构图。
图8为本发明实施例2中传输方法的流程图。
图9为本发明实施例2中Extended Range SU前导的一种结构图。
图10为本发明实施例2中Extended Range SU前导的又一种结构图。
图11为本发明中又一种触发帧的分组结构图。
图12为本发明中又一种确认帧的分组结构图。
具体实施方式
下面结合附图对本发明具体实施例作进一步的详细描述。
本发明实施例可以应用于WLAN,目前WLAN采用的标准为IEEE802.11系列。WLAN可以包括多个基本服务集(英文:Basic Service Set,简称:BSS),基本服务集中的网络节点为站点(英文:Station,简称:STA),站点包括接入点类的站点(简称:AP,英文:Access Point)和非接入点类的站点(英文:None Access Point Station,简称:Non-AP STA)。每个基本服务集可以包含一个AP和多个关联于该AP的Non-AP STA。
接入点类站点,也称之为无线访问接入点或热点等。AP主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有WiFi(英文:Wireless Fidelity,中文:无线保真)芯片的终端设备或者网络设备。AP可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种制式。
非接入点类的站点(英文:None Access Point Station,简称:Non-AP STA),可以是无线通讯芯片、无线传感器或无线通信终端。具体地,例如:支持WiFi通讯功能的智能手机、平板电脑和个人计算机,支持WiFi 通讯功能的机顶盒和智能电视,支持WiFi通讯功能的智能可穿戴设备,支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的无人机。站点可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种制式。需要说明的是,下文将Non-AP STA简称为STA。
图2为一个典型的WLAN部署场景的系统示意图,包括一个AP和4个STA,AP与STA1-STA4进行通信。对于802.11家族,工作组TGax针对下一代WLAN标准引入了OFDMA(英文:Orthogonal Frequency Division Multiple Access,中文:正交频分多址)和上行MU-MIMO(英文:Multi User-Multiple Input and Multiple Output,中文:多用户多入多出)技术。采用上述技术后,STA1-STA4可以在相同时间的不同频率资源上或者相同时间的不同空间流上与AP传输数据。
实施例1
本发明实施例1提供了一种距离扩展模式的传输方法,该方法可以应用于接入点和站点,例如:图2中的AP和STA1-STA4,该接入点和站点可以支持下一代WLAN标准,例如:802.11ax制式。图3是该传输方法的流程图,具体步骤如下:
步骤310:生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,所述距离扩展模式PPDU中的数据部分采用窄带传输,所述窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU。
步骤320:发送所述距离扩展模式PPDU。
通过上述方式,对PPDU中的数据部分采用窄带传输,提高了数据部分的功率谱密度,增强数据部分的传输可靠性,使得EXT SU模式下的PPDU各部分的性能更加平衡,保证了远距离传输的覆盖范围。
具体地,该距离扩展模式PPDU的结构图如图4所示。所述距离扩展模式PPDU中的高效短训练字段HE-STF和高效长训练字段HE-LTF采用的子载波与所述距离扩展模式PPDU中的数据部分相同。具体来说,其中L-STF字段到HE-SIGA字段采用20MHz的带宽传输,HE-STF字段和 HE-LTF字段和EXT-SU-DATA字段采用窄带传输,并且采用相同的窄带带宽。可选地,PPDU中采用窄带传输的字段可以从HE-LTF部分开始,如图6所示,即HE-STF仍然使用和HE-STF之前部分一样的20MHz带宽传输。
可选地,PPDU中采用窄带传输的字段可以从EXT-SU-data部分开始,如图7所示,即HE-STF和HE-LTF仍然使用和HE-STF之前部分一样的20MHz带宽传输。
需要说明的是,步骤310中提到的窄带传输是指在小于或者等于20MHz带宽上进行传输,步骤310中提到的RU为资源单元,TGax定义的HE-PPDU中的数据部分采用256点FFT调制,因此20MHz带宽包含256个子载波(英文:tone),其中20MHz带宽下的子载波分布如图5所示,在20MHz带宽时,包括9个26-tone RU、4个52-tone RU、2个106-tone RU或1个242-tone RU等RU分配方式。
除此以外,为进一步的提高EXT SU模式下数据部分的传输可靠性,可以对EXT SU格式的前导码中的HE-LTF字段进行发射功率增强,具体包括以下方式:
方式1:所述距离扩展模式PPDU中的高效长训练字段HE-LTF功率增强3dB。方式1中,站点在生成PPDU的过程中,默认对HE-LTF字段做功率增强,功率增强的数值可以为3dB或者其他值。
方式2:所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第一标识,所述第一标识用于指示高效长训练字段HE-LTF是否进行功率增强。方式2中,第一标识可以由1个或多个比特指示,举例说明:HE-SIGA中的第一标识携带1比特,用于指示是否对HE-LTF进行了功率增强。例如0表示没有进行功率增强,1表示对HE-LTF功率增强。此外,HE-SIGA中第一标识携带多个比特,除了用于指示是否对HE-LTF进行了功率增强,还可以指示功率增强的数值。为了实现简单,较优的,统一对HE-LTF采用3dB的功率增强。
可选地,在实际实现中,可以将HE-LTF字段的功率增强值与LTF尺 寸以及传输带宽绑定,例如当HE-LTF和数据部分传输带宽为52-tone RU时,对2xLTF进行4dB的功率增强;又如当HE-LTF和数据部分传输带宽为106-tone RU时,对4xLTF进行3dB的功率增强。
可选地,还可以对HE-STF部分单独进行发射功率增强。
通过上述方式,对HE-LTF进行发射功率增强可以提高信道估计的准确性,从而改善数据部分解调解码时的误码率,提高数据部分的传输可靠性。
具体地,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第二标识,所述第二标识用于指示所述距离扩展模式PPDU中的数据部分进行窄带传输的带宽。由图5可知,在20MHz带宽时,包括9个26-tone RU、4个52-tone RU、2个106-tone RU或1个242-tone RU等RU分配方式,具体的RU子载波分布方式如表0所示。
Figure PCTCN2016108602-appb-000001
表0
因此,第二标识与RU分配的映射关系包含以下方式:
方式1:第二标识采用4bits,在EXT SU格式的前导码中的HE-SIGA字段承载4比特的资源分配(Resource Allocation)指示信令。具体的指示方式可以如表1所示,例如0000表示分配最左边的26-tone RU1为本次传输的从HE-STF部分开始的带宽,0100表示分配的位于中间的26-tone RU5为本次传输的从HE-STF部分开始的带宽,1000表示分配最右边的26-tone RU9为本次传输的从HE-STF部分开始的带宽。又如1001表示分配最左边的52-tone RU1,1010表示分配的从左数第2个52-tone RU2为本次传输的从HE-STF部分开始的带宽,1000表示分配最右边的52-tone RU4为本次传输 的从HE-STF部分开始的带宽。再如1101表示分配左边的106-tone RU1为本次传输的从HE-STF部分开始的带宽,1110表示分配右边的106-tone RU2为本次传输的从HE-STF部分开始的带宽。
Bits Description
0000~1000 指示分配的26-tone RU
1001~1100 指示分配的52-tone RU
1101~1110 指示分配的106-tone RU
1111 指示分配的242-tone RU
表1
可选地,如果规定242-tone RU不作为所述从HE-STF部分开始的传输带宽,则所述1111信令比特可作为保留(Reserved)比特。
可选地,表1中的信令和其指示的内容可以按其他顺序排列,例如1111~0111指示分配的26-tone RU,0110~0011指示分配的52-tone RU,0010~0001指示分配的106-tone RU,0000指示分配的为242-tone RU。
方式2:第二标识采用3bits,EXT SU格式的前导码中的HE-SIGA字段承载3比特的资源分配(Resource Allocation)指示信令。具体的指示方式可以如表2所示,例如000表示分配最左边的52-tone RU1为本次传输的从HE-STF部分开始的带宽,011表示分配最右边的52-tone RU4为本次传输的从HE-STF部分开始的带宽。又如100表示分配左边的106-tone RU1为本次传输的从HE-STF部分开始的带宽,101表示分配右边的106-tone RU2为本次传输的从HE-STF部分开始的带宽。111表示保留比特。
Bits Description
000~011 指示分配的52-tone RU
100~101 指示分配的106-tone RU
110 指示分配的242-tone RU
111 Reserved
表2
可选地,如果规定242-tone RU不作为所述从HE-STF部分开始的传输 带宽,则所述110信令比特也可作为保留(Reserved)比特。
可选地,表2中的信令和其指示的内容可以按其他顺序排列。
方式3:第二标识采用2bits,EXT SU格式的前导码中的HE-SIGA字段承载2比特的资源分配(Resource Allocation)指示信令。具体的指示方式可以如表3所示,例如00表示分配左边的106-tone RU1为本次传输的从HE-STF部分开始的带宽,01表示分配右边的106-tone RU2为本次传输的从HE-STF部分开始的带宽,10表示分配242-tone RU1为本次传输的从HE-STF部分开始的带宽,11表示保留比特。
Bits Description
00~01 指示分配的106-tone RU
10 指示分配的242-tone RU
11 Reserved
表3
可选地,如果规定242-tone RU不作为所述从HE-STF部分开始的传输带宽,则仅需要1比特的RA指示信令,此时0表示分配左边的106-tone RU1为本次传输的从HE-STF部分开始的带宽,1表示分配右边的106-tone RU2为本次传输的从HE-STF部分开始的带宽。。
可选地,表3中的信令和其指示的内容可以按其他顺序排列。
方式4:仅使用某些预先选定的RU来传输EXT SU PPDU从HE-STF开始的部分。本例中,使用新定义的子载波分布如表4所示,每个大小的RU仅有一个,且使用靠近直流的中间部分的子载波。应理解,表4仅仅是一个示例,还可以使用其他新定义的子载波分布表,例如26-tone RU包含的子载波为[-14:-2,2:14],52-tone RU包含的子载波为[-27:-2,2:27],106-tone RU包含的子载波为[-56:-2,2:56]。
Figure PCTCN2016108602-appb-000002
表4
此时共有4种调度选择,因此需要在EXT SU格式的前导码中的HE-SIGA字段承载2比特的资源分配(Resource Allocation)指示信令。具体的指示方式可以如表5所示,例如00表示分配26-tone RU为本次传输的从HE-STF部分开始的带宽,01表示分配52-tone RU为本次传输的从HE-STF部分开始的带宽,10表示分配106-tone RU为本次传输的从HE-STF部分开始的带宽,11表示分配242-tone RU为本次传输的从HE-STF部分开始的带宽。
Bits Description
00 指示分配的26-tone RU
01 指示分配的52-tone RU
10 指示分配的106-tone RU
11 指示分配的242-tone RU
表5
可选地,如果规定242-tone RU不作为所述从HE-STF部分开始的传输带宽,则11可作为保留比特。
应理解,还可以进一步的限制仅使用表4中定义的52-tone RU,106-tone RU,242-tone RU来作为所述从HE-STF部分开始的传输带宽,此时2比特的RA指示信令可以使用00表示52-tone RU,01表示106-tone RU,10表示242-tone RU,11作为保留比特。如果规定242-tone RU不作为所述从HE-STF部分开始的传输带宽,则使用1比特RA指示信令即可,即0表示 分配52-tone RU为本次传输的从HE-STF部分开始的带宽,1表示分配106-tone RU为本次传输的从HE-STF部分开始的带宽。
应理解,还可以进一步的限制仅使用表4中定义的106-tone RU,242-tone RU来作为所述从HE-STF部分开始的传输带宽,此时仅使用1比特RA指示信令即可,即0表示分配106-tone RU为本次传输的从HE-STF部分开始的带宽,1表示分配242-tone RU为本次传输的从HE-STF部分开始的带宽。
可选地,上述信令和其指示的内容可以按其他顺序排列。例如0表示分配106-tone RU为本次传输的从HE-STF部分开始的带宽,1表示分配52-tone RU为本次传输的从HE-STF部分开始的带宽。又如,0表示分配242-tone RU为本次传输的从HE-STF部分开始的带宽,1表示分配106-tone RU为本次传输的从HE-STF部分开始的带宽。
方式5:根据HE-LTF字段的PAPR最小原则来预先选定RU,并使用所述预先选定的RU来传输EXT SU PPDU从HE-STF开始的部分。表6给出了HE-LTF字段的PAPR分布。每个格子中的第一个数字表示4xLTF对应RU的PAPR值,第二个数字表示2xLTF对应RU的PAPR值。
Figure PCTCN2016108602-appb-000003
表6
本例中共选择了PAPR较小的6种调度选择,即表6中的灰色背景部分,因此需要在EXT SU格式的前导码中的HE-SIGA字段承载3比特的资源分配(Resource Allocation)指示信令。具体的指示方式可以如表7所示,例如000表示分配左边灰色的26-tone RU为本次传输的从HE-STF部分开始 的带宽,001表示分配右边灰色的26-tone RU为本次传输的从HE-STF部分开始的带宽;100表示分配灰色的106-tone RU为本次传输的从HE-STF部分开始的带宽,101表示分配灰色的242-tone RU为本次传输的从HE-STF部分开始的带宽。
Bits Description
000~001 指示分配的26-tone RU
010~011 指示分配的52-tone RU
100 指示分配的106-tone RU
101 指示分配的242-tone RU
110~111 Reserved
表7
可选地,如果规定242-tone RU不作为所述从HE-STF部分开始的传输带宽,则101也可作为保留比特。
可选地,如果仅使用52-tone RU,106-toneRU和242-toneRU,则2比特的RA指示信令可以使用00表示左边灰色的52-tone RU,01表示右边灰色的52-tone RU,10表示灰色的106-tone RU,11表示242-tone RU。如果规定242-tone RU不作为所述从HE-STF部分开始的传输带宽,则11作为保留比特。
可选地,如果仅使用106-toneRU和242-toneRU,则只需要1比特的RA指示信令,此时0表示分配106-tone RU为本次传输的从HE-STF部分开始的带宽,1表示分配242-tone RU为本次传输的从HE-STF部分开始的带宽。
可选地,上述信令和其指示的内容可以按其他顺序排列。
应理解根据上述原则选出的RU还可以是别的集合,例如只选择左边灰色的26-tone RU,右边灰色的52-tone RU,左边灰色的106-tone RU和242-tone RU。此时仅需要2比特的RA指示信令,可以使用00表示左边灰色的26-tone RU,01表示右边灰色的52-tone RU,10表示左边灰色的 106-tone RU,11表示242-tone RU。如果规定242-tone RU不作为所述从HE-STF部分开始的传输带宽,则11作为保留比特。可选地,如果仅使用52-tone RU,106-toneRU和242-toneRU,则2比特的RA指示信令可以使用00表示右边灰色的52-tone RU,01表示左边灰色的106-tone RU,10表示242-tone RU,11为保留比特。如果规定242-tone RU不作为所述从HE-STF部分开始的传输带宽,则仅需1比特RA指示信令,0表示右边灰色的52-tone RU,1表示左边灰色的106-tone RU。
方式6:述预先选定的RU还可以是按照别的原则选出来的,例如根据HE-STF字段的PAPR最小来选择。还可以根据防止带外泄露的原理,排除表0中的位于两边的26-tone RU1,26-tone RU9以及52-tone RU1和52-tone RU4,选择其余的RU作为可选RU。
不论根据什么原则选出一个RU集合,设该集合包含N个可用RU。对所述集合中的N个RU按照RU包含的子载波数量以及RU所在的位置进行排序,例如RU包含的子载波数量从小到大以及RU所在的位置从左到右进行排序。随后使用
Figure PCTCN2016108602-appb-000004
比特信令来顺序指示N个可用RU,多余的2k-N种组合可作为保留比特。这里,
Figure PCTCN2016108602-appb-000005
表示向上取整。应理解,所述N个可用RU还可以按照别的规则来排序,本发明对此不做限制。
可选地,所述第二标识还可以联合指示所述数据部分窄带传输的带宽和所述数据部分采用的调制编码方案MCS。例如,SU格式前导码中的HE-SIGA字段中的MCS字段包含4比特指示信息,使用0000~1010指示MCS0~MCS9这10种MCS,1011~1111为保留比特组合。在EXT SU格式前导码中的HE-SIGA字段,可以重新定义这4比特指示信息,例如0000指示使用26-tone RU,MCS0调制编码;0001指示使用52-tone RU,MCS0编码;0010指示使用106-tone RU,MCS0编码;0011指示使用242-tone RU,MCS0编码;0100指示使用26-tone RU,MCS1调制编码;0101指示使用52-tone RU,MCS1编码;0110指示使用106-tone RU,MCS1编码;0111 指示使用242-tone RU,MCS1编码;1000~1111为保留比特组合。可选地,所述4比特指示信息中的一部分比特用于指示MCS,一部分比特用于指示RU分配,例如1比特指示MCS信息,2比特指示RU分配方式,1比特保留。
可选地,所述第二标识还可以指示所述数据部分窄带传输的带宽和所述数据部分采用的空间流数。例如,SU格式前导码中的HE-SIGA字段中的NSTS字段包含3比特指示信息,使用000~111指示8个空时流。在距离扩展模式中,PPDU使用的空时流数目小于8个,因此可以重新定义所述3比特指示信息中的一部分比特用于指示MCS,一部分比特用于指示RU分配,例如1比特指示NSTS,2比特指示RU分配方式。
应理解地,传输带宽越大,单位单位带宽的能量越低,则覆盖范围越小。较优的,为实现较大的覆盖范围,EXT SU PPDU的传输带宽最大可以限定为20MHz,即EXT SU格式的前导码中的HE-SIGA字段承载的BW指示信令默认设置为00。
可选的,传输带宽也可以是大于20MHz带宽的。此时可以根据40MHz/80MHz/160MHz/80+80MHz带宽的子载波分布,仿照前述实施例的方法来生成所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含的第五标识,所述第五标识用于指示所述距离扩展模式PPDU中的数据部分进行窄带传输的带宽。
可选的,传输带宽也可以是大于20MHz带宽的。此时可以根据40MHz/80MHz/160MHz/80+80MHz带宽的子载波分布,仿照前述实施例的方法来生成所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含的第六标识,所述第六标识用于指示所述距离扩展模式PPDU中的数据部分进行子带重复传输的带宽。
可选的,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第七标识,所述第七标识用于指示接收端的ID信息,例如接收端的AID(Association ID),或者Partial AID,或者STA ID或者部分的STA ID, 例如STA ID的后6位或者前4位等,或者其他任意和接收端相关的ID信息。接收端可以通过所述第七标识来判断本次传输是否是发给自己的。如果第七标识指示本次传输不是发送给自己的则可以停止接收,从而节省设备功耗。
本发明实施例提出了一种新的距离扩展模式物理层协议数据单元PPDU,该距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,该距离扩展模式PPDU中的数据部分采用窄带传输,所述窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU,对距离扩展模式PPDU中的数据部分采用窄带传输采用窄带传输,增强数据部分的传输可靠性,使得EXT SU模式下的PPDU各部分的性能更加平衡,保证了远距离传输的覆盖范围。
实施例2
本发明实施例2提供了一种距离扩展模式的传输方法,该方法可以应用于接入点和站点,例如:图2中的AP和STA1-STA4,该接入点和站点可以支持下一代WLAN标准,例如:802.11ax制式。图8是该传输方法的流程图,具体步骤如下:
步骤810:生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU采用20MHz带宽传输,其中所述PPDU中的数据部分包含多个携带相同数据的子带,所述子带的带宽包含以下至少一个参数:26-tone RU、52-tone RU、106-toneRU和242-toneRU.
步骤820:发送所述距离扩展模式的PPDU。
通过上述方式,对PPDU中的数据部分采用重复传输,增强数据部分的传输可靠性,使得EXT SU模式下的PPDU各部分的性能更加平衡,保证了远距离传输的覆盖范围。
具体地,该距离扩展模式PPDU的结构图如图9所示。所述距离扩展 模式PPDU中的高效短训练字段HE-STF和高效长训练字段HE-LTF采用的子载波与所述距离扩展模式PPDU中的数据部分相同。可选地,还可以是HE-STF字段采用20MHz的传输带宽,仅HE-LTF部分采用的子载波与所述距离扩展模式PPDU中的数据部分相同。可选地,还可以是HE-STF,HE-LTF采用20MHz的传输带宽,仅EXT-SU-DATA部分采用子带重复传输,如图10所示。
为进一步的提高EXT SU模式下数据部分的传输可靠性,可以对EXT SU格式的前导码中的HE-LTF字段进行发射功率增强,具体包括以下方式:
方式1:所述距离扩展模式PPDU中的高效长训练字段HE-LTF功率增强3dB。方式1中,站点在生成PPDU的过程中,默认对HE-LTF字段做功率增强,功率增强的数值可以为3dB或者其他值。
方式2:所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第三标识,所述第三标识用于指示高效长训练字段HE-LTF是否进行功率增强。方式2中,第三标识可以由1个或多个比特指示,举例说明:HE-SIGA中的第三标识携带1比特,用于指示是否对HE-LTF进行了功率增强。例如0表示没有进行功率增强,1表示对HE-LTF功率增强。此外,HE-SIGA中第三标识携带多个比特,除了用于指示是否对HE-LTF进行了功率增强,还可以指示功率增强的数值。为了实现简单,较优的,统一对HE-LTF采用3dB的功率增强。
可选地,在实际实现中,可以将HE-LTF字段的功率增强值与LTF尺寸以及传输带宽绑定,例如当HE-LTF和数据部分传输带宽为52-tone RU时,对2xLTF进行4dB的功率增强;又如当HE-LTF和数据部分传输带宽为106-tone RU时,对4xLTF进行3dB的功率增强。
可选地,还可以对HE-STF部分单独进行发射功率增强。
通过上述方式,对HE-LTF进行发射功率增强可以提高信道估计的准确性,从而改善数据部分解调解码时的误码率,提高数据部分的传输可靠性。
具体地,步骤810中PPDU中的数据部分包含多个携带相同数据的子 带,具体阐释如下:EXT SU PPDU的数据部分采用频域重复传输的方式。例如选择106-tone RU,则20MHz带宽内的2个106-tone RU上承载相同的数据信息,即重复2倍;又如选择52-tone RU,则在表2中20MHz带宽内的4个52-tone RU上承载相同的数据信息,即重复4倍;再如选择6-tone RU,则在表2中20MHz带宽内的9个26-tone RU上承载相同的数据信息,即重复9倍。
可选地,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第四标识,所述第四标识用于指示所述子带的带宽。具体地,第四标识与自带带宽的映射包括以下几种方式。
方式1:在EXT SU格式的前导码中的HE-SIGA字段承载2比特的第四标识。例如00表示数据部分采用26-tone RU重复9次,01表示数据部分采用52-tone RU重复4次,10表示数据部分采用106-tone RU重复2次,11表示数据部分采用242-tone RU。如果规定242-tone RU不作为所述从HE-STF部分开始的传输带宽,则11作为保留比特。
应理解,选择26-tone RU时,也可以在20MHz带宽内的除中间26-tone RU的8个26-tone RU上承载相同的数据信息,即重复8倍。
方式2:在EXT SU格式的前导码中的HE-SIGA字段承载2比特的第四标识。例如:使用00表示数据部分采用52-tone RU重复4次,01表示数据部分采用106-tone RU重复2次,10表示数据部分采用242-tone RU,11作为保留比特,使用52-toneRU和106-toneRU和242-tone RU。
方式3:在EXT SU格式的前导码中的HE-SIGA字段承载1比特的第四标识。例如:0表示数据部分采用52-tone RU重复4次,1表示数据部分采用106-tone,仅使用52-toneRU和106-toneRU。
方式4:在EXT SU格式的前导码中的HE-SIGA字段承载1比特的第四标识。例如:0表示数据部分采用106-tone RU重复2次,1表示数据部分采用242-tone RU,仅使用106-toneRU和242-toneRU。
可选地,所述第四标识还可以指示所述子带的带宽和所述数据单元采用的调制编码方案MCS。可选地,所述第四标识包含4比特指示信息中的一部分比特用于指示MCS,一部分比特用于指示RU分配,例如2比特指示MCS信息,2比特指示子带的带宽。
可选地,所述第四标识还可以指示所述子带的带宽和所述数据单元采用的空间流数。例如,第四标识包含3比特信息中的一部分比特用于指示空时流数,一部分比特用于指示RU分配,例如1比特指示NSTS,2比特指示子带的带宽。
本发明实施例提出了一种新的距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU采用20MHz带宽传输,其中所述PPDU中的数据部分包含多个携带相同数据的子带,所述子带的带宽包含以下至少一个参数:26-tone RU、52-tone RU、106-toneRU和242-toneRU;通过带宽内重复传输可以增强数据部分的传输可靠性,使得EXT SU模式下的PPDU各部分的性能更加平衡,保证了远距离传输的覆盖范围。
实施例3
请参照图11,为本发明实施例提供的一种无线局域网中距离扩展模式的传输装置的示意性框图,该传输装置例如为接入点或站点,或者实现相关功能的专用电路或者芯片。该传输装置1000包括处理器1010、存储器1020、基带电路1030、射频电路1040和天线1050。该传输装置可以为图2中示出的AP或STA。
具体地,处理器1010控制传输装置1000的操作。存储器1020可以包括只读存储器和随机存取存储器,并向处理器1010提供指令和数据,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件。存储器1020的一部分还可以包括非易失行随机存取存储器(NVRAM)。基带电路1030是用来合成即将发射的基带信号,或对接收到的基带信号进行解码。射频电路1040用于将低频的基带信号调 制到高频的载波信号,高频的载波信号通过天线1050发射。射频电路也用于将天线1050接收的高频信号解调成低频的载波信号。传输1000的各个组件通过总线1060耦合在一起,其中总线系统1060除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1060。需要说明的是,上述对于传输结构的描述,可应用于后续的实施例。
基带电路1030,用于生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,所述距离扩展模式PPDU中的数据部分采用窄带传输,所述窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU。
射频电路1040,用于发送所述距离扩展模式PPDU。
除此以外,为进一步的提高EXT SU模式下数据部分的传输可靠性,可以对EXT SU格式的前导码中的HE-LTF字段进行发射功率增强,具体包括以下方式:
方式1:所述距离扩展模式PPDU中的高效长训练字段HE-LTF功率增强3dB。
方式2:所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第一标识,所述第一标识用于指示高效长训练字段HE-LTF是否进行功率增强。
需要说明的是,对于HE-LTF字段进行发射功率增强的两种方式的具体设计在实施例1中已详细阐释,不再赘述。
可选地,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第二标识,所述第二标识用于指示所述距离扩展模式PPDU中的数据部分进行窄带传输的带宽。
需要说明的是,对于第二标识与窄带带宽的映射关系,在实施例1中已详细阐释,不再赘述。
可选地,所述距离扩展模式PPDU中的高效短训练字段HE-STF和 高效长训练字段HE-LTF采用的子载波与所述距离扩展模式PPDU中的数据部分相同。
可选地,PPDU中采用窄带传输的字段可以从HE-LTF部分开始,如图6所示,即HE-STF仍然使用和HE-STF之前部分一样的20MHz带宽传输。
可选地,PPDU中采用窄带传输的字段可以从EXT-SU-data部分开始,如图7所示,即HE-STF和HE-LTF仍然使用和HE-STF之前部分一样的20MHz带宽传输。
本发明实施例提出了一种传输装置,用于生成和发送新的距离扩展模式物理层协议数据单元PPDU,该距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,该距离扩展模式PPDU中的数据部分采用窄带传输,所述窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU,通过上述方式,对距离扩展模式PPDU中的数据部分采用窄带传输采用窄带传输,增强数据部分的传输可靠性,使得EXT SU模式下的PPDU各部分的性能更加平衡,保证了远距离传输的覆盖范围。
实施例4
请参照图12,为本发明实施例提供的一种无线局域网中距离扩展模式的传输装置的示意性框图,该传输装置例如为接入点或站点,或者实现相关功能的专用电路或者芯片。该传输装置1100包括处理器1110、存储器1120、基带电路1130、射频电路1140和天线1150。该传输装置可以为图2中示出的AP或STA。需要说明的是,传输装置1100中的各个组件在实施例3中已有详细阐释,不再赘述。
基带电路1130,用于生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU采用20MHz带宽传输,其中所述PPDU中的数据部分包含多个携带相同数据的子带,所述子带的带宽包含以下至少一个参数:26-tone RU、52-tone RU、106-toneRU和242-toneRU;
射频电路1140,用于发送所述距离扩展模式的PPDU。
通过上述方式,对PPDU中的数据部分采用重复传输,增强数据部分的传输可靠性,使得EXT SU模式下的PPDU各部分的性能更加平衡,保证了远距离传输的覆盖范围。
为进一步的提高EXT SU模式下数据部分的传输可靠性,可以对EXT SU格式的前导码中的HE-LTF字段进行发射功率增强,具体包括以下方式:
方式1:所述距离扩展模式PPDU中的高效长训练字段HE-LTF功率增强3dB。
方式2:所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第三标识,所述第三标识用于指示是否进行功率增强。
需要说明的是,对于HE-LTF字段进行发射功率增强的两种方式的具体设计在实施例1中已详细阐释,不再赘述。
可选地,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第四标识,所述第四标识用于指示所述子带的带宽。
需要说明的是,对于第四标识与子带的带宽的映射关系,在实施例2中已详细阐释,不再赘述。
可选地,所述距离扩展模式PPDU中的高效短训练字段HE-STF和高效长训练字段HE-LTF采用的子载波与所述距离扩展模式PPDU中的数据部分相同。可选地,还可以是HE-STF字段采用20MHz的传输带宽,仅HE-LTF部分采用的子载波与所述距离扩展模式PPDU中的数据部分相同。可选地,还可以是HE-STF,HE-LTF采用20MHz的传输带宽,仅EXT-SU-DATA部分采用子带重复传输,如图10所示。
本发明实施例提出了一种传输装置,用于生成和发送新的距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU采用20MHz带宽传输,其中所述PPDU中的数据部分包含多个携带相同数据的子带,所述子带的带宽包含以下至少一个参数:26-tone RU、52-tone RU、106-toneRU和242-toneRU;通过带宽内重复传输可以增强数据部分的传输可靠性,使得EXT SU模式下的PPDU各部分的性能更加平衡,保证了远距离传输的覆盖范围。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (20)

  1. 一种距离扩展模式的传输方法,应用于无线局域网WLAN,其特征在于,所述方法包括:
    生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,所述距离扩展模式PPDU中的数据部分采用窄带传输,所述窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU;
    发送所述距离扩展模式PPDU。
  2. 根据权利要求1所述的方法,其特征在于,所述距离扩展模式PPDU中的高效长训练字段HE-LTF功率增强3dB。
  3. 根据权利要求1所述的方法,其特征在于,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第一标识,所述第一标识用于指示高效长训练字段HE-LTF是否进行功率增强。
  4. 根据权利要求1所述的方法,其特征在于,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第二标识,所述第二标识用于指示所述距离扩展模式PPDU中的数据部分进行窄带传输的带宽。
  5. 根据权利要求1-4任一所述的方法,其特征在于,所述距离扩展模式PPDU中的高效短训练字段HE-STF和高效长训练字段HE-LTF采用的子载波与所述距离扩展模式PPDU中的数据部分相同。
  6. 一种距离扩展模式的传输方法,应用于无线局域网WLAN,其特征在于,所述方法包括:
    生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU采用20MHz带宽传输,其中所述PPDU中的数据部分包含多个携带相同数据的子带,所述子带的带宽包含以下至少一个参数:26-tone RU、52-tone RU、106-toneRU和242-toneRU;
    发送所述距离扩展模式的PPDU。
  7. 根据权利要求6所述的方法,其特征在于,所述距离扩展模式PPDU中的高效长训练字段HE-LTF功率增强3dB。
  8. 根据权利要求6所述的方法,其特征在于,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第三标识,所述第三标识用于指示是否进行功率增强。
  9. 根据权利要求6所述的方法,其特征在于,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第四标识,所述第四标识用于指示所述子带的带宽。
  10. 根据权利要求6-9任一所述的方法,其特征在于,所述距离扩展模式PPDU中的高效短训练字段HE-STF和高效长训练字段HE-LTF采用的子载波与所述距离扩展模式PPDU中的数据部分相同。
  11. 一种距离扩展模式的传输装置,应用于无线局域网WLAN,其特征在于,所述装置包括:
    基带电路,用于生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU中的传统前导部分采用20MHz带宽传输,所述距离扩展模式PPDU中的数据部分采用窄带传输,所述窄带传输的带宽包含以下至少一种参数:26-tone RU、52-tone RU、106-tone RU和242-tone RU;
    射频电路,用于发送所述距离扩展模式PPDU。
  12. 根据权利要求11所述的装置,其特征在于,所述距离扩展模式PPDU中的高效长训练字段HE-LTF功率增强3dB。
  13. 根据权利要求11所述的装置,其特征在于,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第一标识,所述第一标识用于指示高效长训练字段HE-LTF是否进行功率增强。
  14. 根据权利要求11所述的装置,其特征在于,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第二标识,所述第二标识用于指 示所述距离扩展模式PPDU中的数据部分进行窄带传输的带宽。
  15. 根据权利要求11-14任一所述的装置,其特征在于,所述距离扩展模式PPDU中的高效短训练字段HE-STF和高效长训练字段HE-LTF采用的子载波与所述距离扩展模式PPDU中的数据部分相同。
  16. 一种距离扩展模式的传输装置,应用于无线局域网WLAN,其特征在于,所述装置包括:
    生成距离扩展模式物理层协议数据单元PPDU,所述距离扩展模式PPDU采用20MHz带宽传输,其中所述PPDU中的数据部分包含多个携带相同数据的子带,所述子带的带宽包含以下至少一个参数:26-tone RU、52-tone RU、106-toneRU和242-toneRU;
    发送所述距离扩展模式的PPDU。
  17. 根据权利要求16所述的装置,其特征在于,所述距离扩展模式PPDU中的高效长训练字段HE-LTF功率增强3dB。
  18. 根据权利要求16所述的装置,其特征在于,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第三标识,所述第三标识用于指示是否进行功率增强。
  19. 根据权利要求16所述的装置,其特征在于,所述距离扩展模式PPDU中的高效信令HE-SIGA字段包含第四标识,所述第四标识用于指示所述子带的带宽。
  20. 根据权利要求16-19任一所述的装置,其特征在于,所述距离扩展模式PPDU中的高效短训练字段HE-STF和高效长训练字段HE-LTF采用的子载波与所述距离扩展模式PPDU中的数据部分相同。
PCT/CN2016/108602 2016-01-07 2016-12-05 一种距离扩展模式的传输方法和装置 WO2017118253A1 (zh)

Priority Applications (14)

Application Number Priority Date Filing Date Title
ES16883379T ES2870015T3 (es) 2016-01-07 2016-12-05 Método de transmisión y aparato en modo de alcance extendido
RU2018128721A RU2689999C1 (ru) 2016-01-07 2016-12-05 Способ и устройство для передачи данных в расширенном диапазоне частот
EP20192990.8A EP3832940B1 (en) 2016-01-07 2016-12-05 Extended range mode transmission method and apparatus
BR112018012395-1A BR112018012395B1 (pt) 2016-01-07 2016-12-05 Método e aparelho de transmissão de modo de faixa estendida
EP16883379.6A EP3389211B1 (en) 2016-01-07 2016-12-05 Transmission method and apparatus in extended range mode
CA3009081A CA3009081C (en) 2016-01-07 2016-12-05 Extended range mode transmission method and apparatus
MYPI2018702303A MY193066A (en) 2016-01-07 2016-12-05 Extended range mode transmission method and apparatus
PL16883379T PL3389211T3 (pl) 2016-01-07 2016-12-05 Sposób i urządzenie transmisji w trybie rozszerzonego zasięgu
AU2016384965A AU2016384965B2 (en) 2016-01-07 2016-12-05 Extended range mode transmission method and apparatus
KR1020187018974A KR102215932B1 (ko) 2016-01-07 2016-12-05 확장 범위 모드에서의 전송 방법 및 장치
JP2018535370A JP6720320B2 (ja) 2016-01-07 2016-12-05 拡張範囲モード送信方法および装置
EP23164275.2A EP4231578A1 (en) 2016-01-07 2016-12-05 Extended range mode transmission method and apparatus
MX2018008319A MX2018008319A (es) 2016-01-07 2016-12-05 Metodo y aparato de transmision de modo de rango extendido.
US16/028,884 US10819478B2 (en) 2016-01-07 2018-07-06 Extended range mode transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610011376.1A CN106953721B (zh) 2016-01-07 2016-01-07 一种距离扩展模式的传输方法和装置
CN201610011376.1 2016-01-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/028,884 Continuation US10819478B2 (en) 2016-01-07 2018-07-06 Extended range mode transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2017118253A1 true WO2017118253A1 (zh) 2017-07-13

Family

ID=59273315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108602 WO2017118253A1 (zh) 2016-01-07 2016-12-05 一种距离扩展模式的传输方法和装置

Country Status (13)

Country Link
US (1) US10819478B2 (zh)
EP (3) EP4231578A1 (zh)
JP (3) JP6720320B2 (zh)
KR (1) KR102215932B1 (zh)
CN (2) CN112152767A (zh)
AU (1) AU2016384965B2 (zh)
CA (1) CA3009081C (zh)
ES (1) ES2870015T3 (zh)
MX (1) MX2018008319A (zh)
MY (1) MY193066A (zh)
PL (1) PL3389211T3 (zh)
RU (1) RU2689999C1 (zh)
WO (1) WO2017118253A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505019A (ja) * 2017-11-22 2021-02-15 中興通訊股▲ふん▼有限公司Zte Corporation 効率的な制御シグナリングの方法及びシステム

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11057172B2 (en) 2016-07-22 2021-07-06 Panasonic Intellectual Property Corporation Of America Transmission apparatus and transmission method
US11109278B2 (en) * 2017-10-20 2021-08-31 Qualcomm Incorporated Multiplexing clients of different generations in trigger-based transmissions
CN109756928B (zh) * 2017-11-01 2022-03-04 展讯通信(上海)有限公司 无线局域网系统的数据发送方法及装置、存储介质、终端
US10667265B2 (en) * 2018-01-17 2020-05-26 Intel IP Corporation Enhanced tone mapping for trigger-based null data packet feedback
US11082983B2 (en) * 2018-09-10 2021-08-03 Intel Corporation Tone plans and preambles for extremely high throughput
WO2020071726A1 (ko) * 2018-10-01 2020-04-09 엘지전자 주식회사 무선 통신 시스템에서 프레임을 전송 및 수신하는 기법
KR20200054086A (ko) 2018-11-09 2020-05-19 한국전자통신연구원 높은 신뢰 조건을 가지는 데이터 또는 제어 정보의 전송 방법 및 이를 위한 장치
US11044753B2 (en) 2019-02-12 2021-06-22 Qts Holdings, Llc Method for collision avoidance in transfer of network packets
US11044679B2 (en) * 2019-03-27 2021-06-22 Cypress Semiconductor Corporation Devices, systems and methods for extending the range of a wireless communication system
US20230283421A1 (en) * 2020-06-30 2023-09-07 Lg Electronics Inc. Configuration of data unit for duplicate transmission
EP4422344A2 (en) * 2020-09-03 2024-08-28 LG Electronics Inc. Method and device for allocating resource by limiting rus and mrus for sta operating at only 20 mhz in wireless lan system
US20220312345A1 (en) * 2021-03-19 2022-09-29 Mediatek Singapore Pte. Ltd. Transmission Power Control For Distributed-Tone Resource Units And Multi-Resource Units In 6GHz Low-Power Indoor Systems
DE102021116127A1 (de) * 2021-06-22 2022-12-22 Intel Corporation Wi-fi-frequenzanpassung zur störtonminderung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8175134B1 (en) * 2009-04-29 2012-05-08 L-3 Communications, Corp Radio communications system and method having decreased capability for detection by an adversary
CN102792757A (zh) * 2010-02-09 2012-11-21 Lg电子株式会社 在无线局域网中请求信道接入的方法和装置
CN104919889A (zh) * 2013-01-11 2015-09-16 交互数字专利控股公司 在无线局域网中的范围扩展
CN105471469A (zh) * 2014-09-30 2016-04-06 商升特公司 无线通信方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2844598C (en) * 2011-08-07 2016-09-27 Lg Electronics Inc. Method and apparatus for transmitting and receiving frame on the basis of frequency selection transmission
WO2014182065A1 (ko) * 2013-05-07 2014-11-13 엘지전자 주식회사 데이터 유닛을 전송하는 방법 및 장치
CN105451824A (zh) * 2013-06-07 2016-03-30 涂层国外知识产权有限公司 喷枪及喷涂方法
CN105830410B (zh) * 2013-10-25 2020-07-03 马维尔亚洲私人有限公司 一种用于生成用于经由通信信道传输的物理层数据单元的方法和装置
EP3155779B1 (en) 2014-06-11 2019-10-16 Marvell World Trade Ltd. Compressed preamble for a wireless communication system
US10454732B2 (en) * 2014-08-21 2019-10-22 Lg Electronics Inc. Method for transmitting preamble in wireless LAN system
US10181930B2 (en) * 2015-05-10 2019-01-15 Newracom, Inc. Multiplexing acknowledgment messages in response to downlink frames
EP3148276B1 (en) * 2015-09-28 2018-09-05 MediaTek Inc. Structured resource allocation signaling
EP3357175B1 (en) * 2015-09-29 2021-05-05 Newracom, Inc. Resource allocation indication for multi-user multiple-input-multiple-output (mu-mimo) orthogonal frequency division multiple access (ofdma) communication
US10153820B2 (en) * 2015-11-25 2018-12-11 Newracom, Inc. Receiver address field for multi-user transmissions in WLAN systems
AU2016378733A1 (en) * 2015-12-21 2018-06-07 Qualcomm Incorporated Preamble design aspects for high efficiency wireless local area networks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8175134B1 (en) * 2009-04-29 2012-05-08 L-3 Communications, Corp Radio communications system and method having decreased capability for detection by an adversary
CN102792757A (zh) * 2010-02-09 2012-11-21 Lg电子株式会社 在无线局域网中请求信道接入的方法和装置
CN104919889A (zh) * 2013-01-11 2015-09-16 交互数字专利控股公司 在无线局域网中的范围扩展
CN105471469A (zh) * 2014-09-30 2016-04-06 商升特公司 无线通信方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021505019A (ja) * 2017-11-22 2021-02-15 中興通訊股▲ふん▼有限公司Zte Corporation 効率的な制御シグナリングの方法及びシステム
US11153042B2 (en) 2017-11-22 2021-10-19 Zte Corporation Efficient control signaling method and system
JP7055204B2 (ja) 2017-11-22 2022-04-15 中興通訊股▲ふん▼有限公司 効率的な制御シグナリングの方法及びシステム

Also Published As

Publication number Publication date
EP3832940B1 (en) 2023-04-05
JP2020115643A (ja) 2020-07-30
EP3389211B1 (en) 2021-03-17
AU2016384965B2 (en) 2019-07-25
CN106953721B (zh) 2020-09-08
EP3389211A4 (en) 2018-11-21
EP3389211A1 (en) 2018-10-17
CA3009081C (en) 2021-10-12
CA3009081A1 (en) 2017-07-13
JP2022184950A (ja) 2022-12-13
BR112018012395A2 (pt) 2018-12-04
RU2689999C1 (ru) 2019-05-30
ES2870015T3 (es) 2021-10-26
EP3832940A1 (en) 2021-06-09
JP7404473B2 (ja) 2023-12-25
MY193066A (en) 2022-09-26
MX2018008319A (es) 2018-09-21
JP6720320B2 (ja) 2020-07-08
JP7143357B2 (ja) 2022-09-28
EP4231578A1 (en) 2023-08-23
CN106953721A (zh) 2017-07-14
JP2019503143A (ja) 2019-01-31
KR102215932B1 (ko) 2021-02-16
PL3389211T3 (pl) 2021-09-27
US20180316467A1 (en) 2018-11-01
US10819478B2 (en) 2020-10-27
CN112152767A (zh) 2020-12-29
AU2016384965A1 (en) 2018-07-05
KR20180091032A (ko) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2017118253A1 (zh) 一种距离扩展模式的传输方法和装置
US10554354B2 (en) Flexible OFDMA packet structure for wireless communications
KR101901449B1 (ko) 무선랜 시스템에서 자원 유닛에 관한 정보를 포함하는 제어 필드를 구성하는 방법 및 장치
JP6615891B2 (ja) 混合レートワイヤレス通信ネットワークのためのトレーニングフィールドトーンプラン
CN107079458B (zh) 用于在无线lan系统中形成包括控制字段的控制信号的方法和装置
CN107005381B (zh) 在无线lan中基于不同的导频音图案发送数据的方法和装置
AU2014362047A1 (en) Method and device for transferring data from wireless LAN to plurality of STAs
US10171202B2 (en) Diversity repetition in mixed-rate wireless communication networks
TWI653862B (zh) 雙子載波調製方法和無線站點
US20140198705A1 (en) Orthogonal frequency division multiple access (OFDMA) and duplication signaling within wireless communications
KR20170053649A (ko) 다수의 서브캐리어를 포함하는 자원유닛을 사용하여 신호를 송신하는 방법 및 장치
BR112018012395B1 (pt) Método e aparelho de transmissão de modo de faixa estendida

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883379

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3009081

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018012395

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187018974

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187018974

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/008319

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2016384965

Country of ref document: AU

Date of ref document: 20161205

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018535370

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016883379

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016883379

Country of ref document: EP

Effective date: 20180709

ENP Entry into the national phase

Ref document number: 112018012395

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180618