WO2014182065A1 - 데이터 유닛을 전송하는 방법 및 장치 - Google Patents

데이터 유닛을 전송하는 방법 및 장치 Download PDF

Info

Publication number
WO2014182065A1
WO2014182065A1 PCT/KR2014/004049 KR2014004049W WO2014182065A1 WO 2014182065 A1 WO2014182065 A1 WO 2014182065A1 KR 2014004049 W KR2014004049 W KR 2014004049W WO 2014182065 A1 WO2014182065 A1 WO 2014182065A1
Authority
WO
WIPO (PCT)
Prior art keywords
hew
fft
ppdu
sta
size
Prior art date
Application number
PCT/KR2014/004049
Other languages
English (en)
French (fr)
Inventor
최진수
이욱봉
조한규
임동국
천진영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP14794287.4A priority Critical patent/EP2996271B1/en
Priority to EP19187659.8A priority patent/EP3588817B1/en
Priority to JP2016510630A priority patent/JP6201037B2/ja
Priority to CN201480025506.6A priority patent/CN105229951B/zh
Priority to KR1020157032002A priority patent/KR101719093B1/ko
Priority to US14/785,834 priority patent/US9871683B2/en
Priority to AU2014263335A priority patent/AU2014263335B2/en
Priority to CA2911262A priority patent/CA2911262C/en
Publication of WO2014182065A1 publication Critical patent/WO2014182065A1/ko
Priority to US15/840,539 priority patent/US10404513B2/en
Priority to US16/535,756 priority patent/US10999113B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
    • H04L27/2633Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators using partial FFTs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to wireless communications, and more particularly, to a method and apparatus for transmitting a data unit.
  • the Wireless Next Generation Standing Committee (WNG SC) of the Institute of Electrical and Electronic Engineers (IEEE) 802.11 is an ad-hoc committee that considers the next generation wireless local area network (WLAN) in the medium to long term.
  • HEW High Efficiency WLAN
  • 802.11 physical physical layer and medium access control (MAC) layer in the 2.4 GHz and 5 GHz bands.
  • MAC medium access control
  • HEW High Efficiency WLAN
  • MAC medium access control
  • HEW High Efficiency WLAN
  • APs access points
  • STAs stations
  • HEW discusses spectral efficiency and area throughput improvement in such a situation.
  • APs access points
  • STAs stations
  • HEW is interested in scenarios such as wireless office, smart home, stadium, hotspot, and building / apartment. Based on the scenario, APs and STAs There are discussions on improving system performance in many dense environments.
  • next-generation WLANs will increasingly have a technology range similar to that of mobile communications. Given the recent discussion of mobile and WLAN technologies in the area of small cell and direct-to-direct communications, the technological and business convergence of next-generation WLAN and mobile communications based on HEW will become more active. It is predicted.
  • Another object of the present invention is to provide an apparatus for transmitting a PPDU.
  • a method of transmitting a physical layer convergence procedure (PPDU) protocol data unit (PPDU) includes a station (STA) including a first portion and a second portion. Generating the PPDU and transmitting the PPDU by the STA, wherein the first portion is generated by performing an inverse fast fourier transform (IFFT) according to a first fast fourier transform (FFT) size; The second portion may be generated by performing the IFFF according to the second FFT size, and the first FFT size and the second FFT size may be different.
  • IFFT inverse fast fourier transform
  • FFT fast fourier transform
  • An STA for transmitting a PPDU in a WLAN is a processor (RF) unit and a processor selectively connected to the RF unit implemented to transmit a radio signal
  • the processor is configured to generate the PPDU including a first portion and a second portion and to transmit the PPDU, wherein the first portion is inverse fast according to a first fast fourier transform (FFT) size.
  • FFT fast fourier transform
  • Fourier transform is performed, and the second portion is generated by performing the IFFF according to the second FFT size, and the first FFT size and the second FFT size may be different.
  • the STA supporting the new format PPDU may quickly determine whether the received PPDU is a PPDU of the new format.
  • WLAN wireless local area network
  • FIG. 2 is a diagram illustrating a layer architecture of a WLAN system supported by IEEE 802.11.
  • FIG. 3 is a conceptual diagram illustrating a broadband media access control technique in a WLAN.
  • FIG. 4 is a conceptual diagram illustrating a PPDU format of a WLAN.
  • FIG. 5 is a conceptual diagram illustrating a PPDU transmitted through a channel.
  • FIG. 6 is a conceptual diagram illustrating a HEW format PPDU according to an embodiment of the present invention.
  • FIG. 7 is a conceptual diagram illustrating a HEW format PPDU according to an embodiment of the present invention.
  • FIG. 8 is a conceptual diagram illustrating a HEW format PPDU according to an embodiment of the present invention.
  • FIG. 9 is a conceptual diagram illustrating a HEW format PPDU according to an embodiment of the present invention.
  • FIG. 10 is a conceptual diagram illustrating a subcarrier for transmitting a HEW format PPDU according to an embodiment of the present invention.
  • FIG. 11 is a conceptual diagram illustrating a method in which an HEW STA detects an FFT size in a HEW format PPDU according to an embodiment of the present invention.
  • FIG. 12 is a conceptual diagram illustrating a method in which a HEW STA detects an FFT size in a HEW format PPDU according to an embodiment of the present invention.
  • FIG. 13 is a conceptual diagram illustrating a method of detecting an FFT size in a HEW format PPDU by a HEW STA according to an embodiment of the present invention.
  • FIG. 14 is a conceptual diagram illustrating an operation when a HEW PPDU is received by a legacy STA according to an embodiment of the present invention.
  • 15 is a block diagram illustrating a wireless device to which an embodiment of the present invention can be applied.
  • WLAN wireless local area network
  • FIG. 1 shows the structure of an infrastructure BSS (Basic Service Set) of the Institute of Electrical and Electronic Engineers (IEEE) 802.11.
  • BSS Basic Service Set
  • IEEE Institute of Electrical and Electronic Engineers 802.11
  • the WLAN system may include one or more infrastructure BSSs 100 and 105 (hereinafter, BSS).
  • BSSs 100 and 105 are a set of APs and STAs such as an access point 125 and a STA1 (station 100-1) capable of successfully synchronizing and communicating with each other, and do not indicate a specific area.
  • the BSS 105 may include one or more joinable STAs 105-1 and 105-2 to one AP 130.
  • the BSS may include at least one STA, APs 125 and 130 that provide a distribution service, and a distribution system DS that connects a plurality of APs.
  • the distributed system 110 may connect several BSSs 100 and 105 to implement an extended service set (ESS) 140 which is an extended service set.
  • ESS 140 may be used as a term indicating one network in which one or several APs 125 and 230 are connected through the distributed system 110.
  • APs included in one ESS 140 may have the same service set identification (SSID).
  • the portal 120 may serve as a bridge for connecting the WLAN network (IEEE 802.11) with another network (for example, 802.X).
  • a network between the APs 125 and 130 and a network between the APs 125 and 130 and the STAs 100-1, 105-1 and 105-2 may be implemented. However, it may be possible to perform communication by setting up a network even between STAs without the APs 125 and 130.
  • a network that performs communication by establishing a network even between STAs without APs 125 and 130 is defined as an ad-hoc network or an independent basic service set (BSS).
  • FIG. 1 is a conceptual diagram illustrating an IBSS.
  • the IBSS is a BSS operating in an ad-hoc mode. Since IBSS does not contain an AP, there is no centralized management entity. That is, in the IBSS, the STAs 150-1, 150-2, 150-3, 155-1, and 155-2 are managed in a distributed manner. In the IBSS, all STAs 150-1, 150-2, 150-3, 155-1, and 155-2 may be mobile STAs, and access to a distributed system is not allowed, thus allowing a self-contained network. network).
  • a STA is any functional medium that includes a medium access control (MAC) and physical layer interface to a wireless medium that conforms to the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard. May be used to mean both an AP and a non-AP STA (Non-AP Station).
  • MAC medium access control
  • IEEE Institute of Electrical and Electronics Engineers
  • the STA may include a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), a user equipment (UE), a mobile station (MS), a mobile subscriber unit ( It may also be called various names such as a mobile subscriber unit or simply a user.
  • WTRU wireless transmit / receive unit
  • UE user equipment
  • MS mobile station
  • UE mobile subscriber unit
  • It may also be called various names such as a mobile subscriber unit or simply a user.
  • FIG. 2 is a diagram illustrating a layer architecture of a WLAN system supported by IEEE 802.11.
  • FIG. 2 conceptually illustrates a PHY architecture of a WLAN system.
  • the hierarchical architecture of the WLAN system may include a medium access control (MAC) sublayer 220, a physical layer convergence procedure (PLCP) sublayer 210, and a physical medium dependent (PMD) sublayer 200.
  • MAC medium access control
  • PLCP physical layer convergence procedure
  • PMD physical medium dependent
  • the PLCP sublayer 210 is implemented such that the MAC sublayer 220 can operate with a minimum dependency on the PMD sublayer 200.
  • the PMD sublayer 200 may serve as a transmission interface for transmitting and receiving data between a plurality of STAs.
  • the MAC sublayer 220, the PLCP sublayer 210, and the PMD sublayer 200 may conceptually include a management entity.
  • the management unit of the MAC sublayer 220 is referred to as a MAC Layer Management Entity (MLME) 225, and the management unit of the physical layer is referred to as a PHY Layer Management Entity (PLME) 215.
  • MLME MAC Layer Management Entity
  • PLME PHY Layer Management Entity
  • Such management units may provide an interface on which layer management operations are performed.
  • the PLME 215 may be connected to the MLME 225 to perform management operations of the PLCP sublayer 210 and the PMD sublayer 200, and the MLME 225 may also be connected to the PLME 215 and connected to the MAC.
  • a management operation of the sublayer 220 may be performed.
  • SME 250 may operate as a component independent of the layer.
  • the MLME, PLME, and SME may transmit and receive information between mutual components based on primitives.
  • the PLCP sublayer 110 may convert the MAC Protocol Data Unit (MPDU) received from the MAC sublayer 220 according to the indication of the MAC layer between the MAC sublayer 220 and the PMD sublayer 200. Or a frame coming from the PMD sublayer 200 to the MAC sublayer 220.
  • the PMD sublayer 200 may be a PLCP lower layer to perform data transmission and reception between a plurality of STAs over a wireless medium.
  • the MAC protocol data unit (MPDU) delivered by the MAC sublayer 220 is called a physical service data unit (PSDU) in the PLCP sublayer 210.
  • the MPDU is similar to the PSDU. However, when an A-MPDU (aggregated MPDU) that aggregates a plurality of MPDUs is delivered, the individual MPDUs and the PSDUs may be different from each other.
  • the PLCP sublayer 210 adds an additional field including information required by the physical layer transceiver in the process of receiving the PSDU from the MAC sublayer 220 to the PMD sublayer 200.
  • the added field may include a PLCP preamble, a PLCP header, and tail bits required to return the convolutional encoder to a zero state in the PSDU.
  • the PLCP preamble may serve to prepare the receiver for synchronization and antenna diversity before the PSDU is transmitted.
  • the data field may include a coded sequence encoded with a padding bits, a service field including a bit sequence for initializing a scraper, and a bit sequence appended with tail bits in the PSDU.
  • the encoding scheme may be selected from either binary convolutional coding (BCC) encoding or low density parity check (LDPC) encoding according to the encoding scheme supported by the STA receiving the PPDU.
  • BCC binary convolutional coding
  • LDPC low density parity check
  • the PLCP header may include a field including information on a PLC Protocol Data Unit (PPDU) to be transmitted.
  • the PLCP sublayer 210 adds the above-described fields to the PSDU, generates a PPDU (PLCP Protocol Data Unit), and transmits it to the receiving station via the PMD sublayer 200, and the receiving station receives the PPDU to receive the PLCP preamble and PLCP. Obtain and restore information necessary for data restoration from the header.
  • PPDU PLCP Protocol Data Unit
  • FIG. 3 is a conceptual diagram illustrating a broadband media access control technique in a WLAN.
  • a wireless LAN Prior to the IEEE 802.11n standard, a wireless LAN supported only a channel bandwidth of 20 MHz. Starting with the IEEE 802.11n standard, channel bandwidths of 40 MHz were supported, and IEEE 802.11ac additionally supported channel bandwidths of 80 MHz and 160 MHz.
  • 3 shows channel access at 80 MHz of channel bandwidth supported by IEEE 802.11ac.
  • IEEE 802.11ac can define a 20MHz channel for channel access based on a distributed coordination function (DCF) and an enhanced distributed channel access (EDCA) protocol.
  • DCF distributed coordination function
  • EDCA enhanced distributed channel access
  • a 20 MHz channel for channel access based on the DCF and EDCA protocols may be referred to as a primary channel.
  • the STA may sense a state of a channel other than the primary channel 310 in order to transmit a frame through a channel bandwidth of 40 MHz or a channel bandwidth of 80 MHz.
  • the STA may monitor the states of channels other than the primary channel 310 (secondary channel 320, tertiary channel 330, and quaternary channel 340) for a predetermined period of time. After sensing (for example, PCF inter frame space), the channel bandwidth for transmitting the data 350 may be determined.
  • the STA can transmit data 350 through the channel bandwidth of 80 MHz, and block ACK (for each 20 MHz channel).
  • block acknowledgment (BA).
  • IEEE 802.11ac As an available channel bandwidth varies from 20 MHz to 160 MHz, determining an appropriate channel bandwidth between a transmitting STA and a receiving STA has become an important factor for determining the performance of a WLAN.
  • a dynamic channel bandwidth setting protocol based on a request to send (RTS) frame / clear to send (CTS) frame may be performed.
  • a transmitting STA may transmit an RTS frame over a wide band and a receiving STA may transmit a CTS frame through a currently available channel bandwidth.
  • a transmitting STA that wants to use a channel bandwidth of 160 MHz may transmit an RTS frame to a receiving STA through a channel bandwidth of 160 MHz.
  • the receiving STA may transmit a CTS frame to the transmitting STA through the channel bandwidth of 80 MHz.
  • the transmitting STA may transmit data to the receiving STA through a channel bandwidth smaller than the channel bandwidth of the 80 MHz receiving the CTS frame.
  • FIG. 4 is a conceptual diagram illustrating a VHT format PPDU format of a WLAN.
  • PPT Physical Layer Convergence Procedure
  • PPDU Physical Layer Convergence Procedure protocol data unit
  • the VHT format PPDU may include an L-STF 400, an L-LTF 410, and an L-SIG field 420.
  • L-STF 400 may include an L-STF sequence.
  • the L-STF sequence may be used for frame detection, automatic gain control (AGC), diversity detection, and coarse frequency / time synchronization.
  • AGC automatic gain control
  • L-LTF 410 may include an L-LTF sequence.
  • L-LTF sequences may be used for fine frequency / time synchronization and channel prediction.
  • the L-SIG 420 may include control information.
  • the L-SIG 420 may include information about a data rate and a data length.
  • the VHT-SIG-A 430 may include information for interpreting the VHT format PPDU.
  • VHT-SIG-A 430 may include VHT-SIG-A1 and VHT-SIG-A2.
  • VHT-SIG-A1 is a group ID and MU indicating STAs grouped for bandwidth information of a channel to be used, whether spatial space block coding is applied, multi-user (MU) or multiple input multiple output (MIMO). It may include information about the number of space-time streams used when performing MIMO.
  • the information on the channel bandwidth included in the VHT-SIG-A1 may include information on the bandwidth over which the field after the VHT-SIG-A1 is transmitted.
  • the VHT-SIG-A2 provides information on whether to use a short guard interval (GI), forward error correction (FEC) information, information on a modulation and coding scheme (MCS) for a single user, and multiple users.
  • GI short guard interval
  • FEC forward error correction
  • MCS modulation and coding scheme
  • the VHT-STF 440 may be used to improve automatic gain control estimation (AGC) in a MIMO environment.
  • AGC automatic gain control estimation
  • the VHT-LTF 450 is used for channel prediction in a MIMO environment.
  • the VHT-SIG-B 460 may include information about each STA, that is, information about a length of a PSDC (PLCP service data unit) and a modulation and coding scheme (MCS), a tail bit, and the like.
  • PSDC PLCP service data unit
  • MCS modulation and coding scheme
  • the data 470 may include a service field as a payload, a scrambled scrambled PLCP service data unit (PSDU), tail bits, and padding bits.
  • PSDU scrambled scrambled PLCP service data unit
  • FIG. 5 is a conceptual diagram illustrating a PPDU transmitted through a channel.
  • MU multi-user
  • MIMO multiple input multiple output
  • a space time stream transmitted by an AP is published during communication based on MU-MIMO between the AP and two STAs (first STA and second STA).
  • Two space-time streams 510, 520 of the four space-time streams 510, 520, 530, 540 are allocated for transmitting data to the first STA, and the remaining two space-time streams 530, 540 are the second STA. Can be allocated to transmit data.
  • Each space-time stream may be transmitted through a channel bandwidth of 20 MHz.
  • Each space-time stream is represented by the terms first space-time stream 510 to the fourth space-time stream 540, and the channel through which the first space-time stream 510 to the fourth space-time stream 540 is transmitted is the first channel to It may be expressed in terms of the fourth channel.
  • up to L-STF, L-LTF, L-SIG, and VHT-SIG-A among the fields transmitted through each of the first space-time stream 510 to the fourth space-time stream 540 are duplicated.
  • L-STF, L-LTF, L-SIG, and VHT-SIG-A transmitted through each of a plurality of 20 MHz channel bandwidths may be duplicated fields.
  • the fields after the VHT-SIG-A 550 may include different information according to the space-time stream.
  • Enhanced features such as MIMO, MU-MIMO, transmission over extended channel bandwidth, may be applied in the field after VHT-SIG-A 550.
  • the VHT-SIG-A 550 may include information about a bandwidth at which a transmitting STA transmits data and information about the number of space-time streams allocated to each receiving STA.
  • the receiving STA may determine a channel bandwidth for receiving data transmitted after the VHT-SIG-A 550 based on the bandwidth information transmitted through the VHT-SIG-A 550. If such bandwidth information is not transmitted through the VHT-SIG-A 550, the receiving STA must perform blind detection on a bandwidth that can be used for transmission to search for a bandwidth over which data is transmitted.
  • the receiving STA may determine a data stream to receive based on the spatiotemporal stream allocation information included in the VHT-SIG-A 550.
  • the VHT-SIG-A 550 may indicate 80 MHz of transmitting data as bandwidth information, and the first STA is information on the number of space-time streams allocated to each receiving STA. In this case, two space time streams 510 and 520 and two space time streams 530 and 540 may be allocated to the second STA.
  • the first STA and the second STA may receive data from the transmitting STA based on the information included in the VHT-SIG-A 550.
  • the embodiment of the present invention discloses the PPDU format of the next generation WLAN after IEEE802.11ac to satisfy the demand for high throughput and quality of experience (QoE) performance.
  • HEW High efficiency Wireless LAN
  • a frame supporting HEW a frame supporting HEW
  • a HEW frame a PPDU supporting HEW
  • a HEW format PPDU a HEW format PPDU
  • an STA supporting HEW using the term HEW STA.
  • legacy PPDUs other than the HEW format PPDUs such as non-HT format PPDUs, HT format PPDUs, or VHT format PPDUs are legacy frames, legacy frames, and legacy format PPDUs. It may be expressed in terms of STA. Terms expressed as above may be expressed in various other terms as arbitrary terms.
  • the HEW format PPDU When the HEW format PPDU is used in the HEW, the HEW format PPDU may be used to transmit and receive data in an environment that coexists with the legacy format PPDU for legacy STAs supporting the existing WLAN system. In such an environment, legacy STAs may not be backward compatible with HEW. Therefore, the HEW format PPDU should be defined so that legacy STAs are not affected. That is, the HEW format PPDU should be able to minimize the overhead of the PLCP preamble and simultaneously support the legacy STA.
  • the HEW format PPDU may be divided into a legacy part up to the L-SIG and a HEW part after the L-SIG for convenience.
  • the HEW portion may include at least one of fields for supporting HEW such as HEW-SIG-A, HEW-STF, HEW-LTF, and HEW-SIG-B.
  • a field for supporting such a HEW is an example of a field for interpreting a HEW format PPDU except for a legacy part.
  • HEW-SIG-A, HEW-SIG-B, HEW-SIG-A / B are examples of signaling fields including information for decoding the HEW part
  • HEW-STF and HEW-LTF (s) are HEW. It may be an example for a training field used for AGC and / or channel prediction, channel / frequency tracking in the part.
  • FIG. 6 is a conceptual diagram illustrating a HEW format PPDU according to an embodiment of the present invention.
  • the HEW portion sequentially includes the HEW-SIG-A 610, the HEW-STF 620, the HEW-LTF (s) 630, and the HEW-SIG-B 640. It may include. For convenience of explanation, it is assumed that the data field is also a HEW part.
  • the HEW-SIG-A 610 is the first signaling field of the HEW part.
  • the HEW-SIG-A 610 may include channel bandwidth information.
  • the channel bandwidth information may include fields included in the HEW portion after the HEW-SIG-A 610 (eg, the HEW-STF 620, the HEW-LTF 630, the HEW-SIG-B 640, and the data field). It may indicate the size of the channel bandwidth used for the transmission of (650).
  • the receiving STA receiving the HEW format PPDU may receive data included in a field transmitted after the HEW-SIG-A 610 through the channel bandwidth indicated by the channel bandwidth information.
  • the receiving STA should detect the size of the channel bandwidth for the HEW part after the HEW-SIG-A 610 based on blind detection.
  • the HEW-SIG-A 610 may include additional information for decoding the HEW format PPDU.
  • the HEW-STF 620 may be used for automatic gain control (AGC) on data transmitted after the HEW-STF 620 in a HEW format PPDU.
  • AGC automatic gain control
  • HEW-LTF (s) 630 may be used for channel prediction for decoding HEW-SIG-B 640 and / or data field 650.
  • the number of HEW-LTFs 630 may be determined by the number of space-time streams.
  • the HEW-SIG-B 640 may be used to provide information required for supporting DL (uplink) / UL (uplink) MU-MIMO or to deliver additional information for supporting HEW.
  • HEW-SIG-A, HEW-SIG-B or HEW-SIG-A / B published in the present invention may include the following information for supporting HEW.
  • HEW-SIG-A, HEW-SIG-B, or HEW-SIG-A / B may be expressed by the term HEW signaling field.
  • the HEW may support OFDMA in a multiple access scheme, and the HEW signaling field may include information for supporting multiple access.
  • the HEW signaling field may include information about a frequency band (or channel) allocated to each of the plurality of STAs.
  • Identifier information such as a group identifier (GID) of the STA may be used to indicate a frequency band allocated to each of the plurality of STAs, and the HEW signaling field indicates information on the used frequency band of the STA based on the GID of the STA. can do.
  • GID group identifier
  • the HEW may support UL-MIMO
  • the HEW signaling field may include information on whether to allow UL-MIMO, information on the number of space-time streams used in UL-MIMO, and information on channels used for UL-MIMO. It may also include.
  • the AP and the plurality of STAs may perform communication at the same time, and the AP may transmit information about the STA to simultaneously transmit and receive data.
  • the HEW signaling field may include information on the number of STAs acquiring the same transmission opportunity (TXOP) or the list of STAs acquiring the same TXOP.
  • the HEW signaling field may also transmit information about the duration of the TXOP.
  • FIG. 7 is a conceptual diagram illustrating a HEW format PPDU according to an embodiment of the present invention.
  • the HEW portion of the HEW format PPDU may include a HEW-STF 710, a HEW-LTF (s) 720, and a HEW-SIG-A / B 730.
  • the HEW-STF 710 may be located ahead of the signaling field (eg, the HEW-SIG-A / B 710).
  • the receiving STA should detect the size of the channel bandwidth for the HEW portion based on the blind detection.
  • the sequence constituting the HEW-STF 710 may include channel bandwidth information on the HEW portion.
  • the HEW-STF sequence may be allocated to a plurality of subcarriers on an OFDM symbol (HEW-STF OFDM symbol) that transmits the HEW-STF 710.
  • Different HEW-STF sequences may indicate different channel bandwidth sizes for the HEW part. That is, the specific HEW-STF sequence may indicate the size of a specific channel bandwidth allocated to the HEW portion.
  • the HEW-STF sequence may not include channel bandwidth information.
  • the HEW-STF sequence may include not only channel bandwidth information, but also information on a guard interval or a cyclic prefix (CP) of an OFDM symbol used to transmit the HEW part. Can be.
  • the guard interval and the CP may be interpreted to have the same meaning, and for convenience of description, the term guard interval (GI) will be described.
  • GI guard intervals
  • the HEW-STF sequence may include guard interval information of an OFDM symbol used for transmitting the HEW portion.
  • the length of the guard interval for the HEW format PPDU may vary according to a communication environment, and the HEW-STF sequence may include information about the length of the guard interval used.
  • an HEW format PPDU optimized according to the guard interval length may be used. That is, the HEW format PPDU may be configurable according to the length of the guard interval.
  • the HEW-STF sequence may independently transmit channel bandwidth information and guard interval information, but the HEW-STF sequence may transmit information on a combination of channel bandwidth information and guard interval information.
  • the first HEW-STF sequence may indicate the first channel bandwidth size and the length of the first guard interval
  • the second HEW-STF sequence may indicate the first channel bandwidth size and the length of the second guard interval. have.
  • the receiving STA may estimate the channel bandwidth information by roughly determining the size information of the fast fourier transform (FFT) based on the signal waveform of the HEW-STF sequence.
  • the estimated channel bandwidth information may be confirmed based on the channel bandwidth information included in the HEW-SIG-A / B 730 transmitted after the HEW-STF 710.
  • HEW-LTF (s) 720 may be used for channel prediction for decoding of HEW-SIG-A / B 730 and / or data field 740.
  • the number of HEW-LTFs 720 included in the HEW format PPDU may be determined by the number of space-time streams.
  • FIG. 8 is a conceptual diagram illustrating a HEW format PPDU according to an embodiment of the present invention.
  • the HEW portion of the HEW format PPDU may sequentially include a HEW-STF 810 and a HEW-SIG-A / B 820.
  • the HEW format PPDU may not include the HEW-LTF.
  • each of the HEW-SIG-A / B 820 and data field 830 may include a signal for channel prediction (eg, a pilot signal). Can be.
  • the signal for channel prediction may be used not only for channel prediction but also for channel tracking and / or frequency tracking.
  • the L-LTF 840 included in the legacy portion is HEW. Can be used for decoding parts.
  • the channel prediction result predicted based on the L-LTF 840 may be used to decode the HEW part.
  • FIG. 9 is a conceptual diagram illustrating a HEW format PPDU according to an embodiment of the present invention.
  • the HEW portion of the HEW format PPDU may include only the HEW-SIG-A / B 910.
  • the HEW format PPDU may not include the HEW-STF.
  • the L-STF 930 of the legacy portion may be used for AGC for the HEW portion.
  • the HEW portion does not include the HEW-STF and the L-STF 930 includes Can be used for AGC for HEW part.
  • the HEW format may not include the HEW-LTF.
  • each of the HEW-SIG-A / B 910 and the data field 920 may be a signal for channel prediction (eg, a pilot signal). ) May be included.
  • the L-LTF 940 included in the legacy part may be used for decoding the HEW part.
  • the transmitting STA that transmits the HEW format PPDU may periodically transmit the HEW format PPDU including the HEW-STF and / or the HEW-LTF.
  • the HEW-STF and HEW-LTF which are periodically transmitted through the HEW format PPDU, may be designed in a minimized structure in consideration of the function of synchronization.
  • the information on the transmission period of the HEW-STF and HEW-LTF is system information, which is a frame used for initial channel access (e.g., a beacon frame, a probe response frame, and a combination). It may be included in at least one frame of an association response frame) and transmitted.
  • FIG. 10 is a conceptual diagram illustrating a subcarrier for transmitting a HEW format PPDU according to an embodiment of the present invention.
  • the legacy part 1000 and the HEW part 1050 may be generated based on different FFT sizes.
  • a change in the FFT size between the legacy part 1000 and the HEW part 1050 will be described assuming the HEW format PPDU described above with reference to FIG. 6.
  • HEW portion 1050 includes a data field.
  • a delay spread may increase in size.
  • an FFT having a different size from the legacy portion 1000 may be applied to the HEW portion.
  • 64-FFT may be applied to the legacy portion 1000 in a channel bandwidth of 20 MHz.
  • 52 subcarriers based on 64-FFT may be used to transmit data, of which 48 of the 52 subcarriers may be used to transmit traffic data and 4 subcarriers may be used to transmit pilot signals.
  • the spacing between subcarriers may be 312.5 kHz.
  • the size (or width) of the OFDM symbol may be 4usec, and the TGI (length of the guard interval) may be 0.8usec.
  • the size of the effective OFDM symbol may be 3.2usec minus the size of the TGI (0.8usec) from the size of the OFDM symbol (4usec).
  • 128-FFT may be applied to the HEW portion 1050 in a channel bandwidth of 20 MHz.
  • 104 subcarriers based on 128-FFT may be used to transmit data.
  • the spacing between subcarriers may be the inverse of the effective OFDM symbol width minus the guard interval size. Therefore, when 104 subcarriers are used, the size of an effective OFDM symbol can be increased to 6.4usec, which is twice the size of 3.2usec, and the TGI can also be increased to 1.6usec, which is twice the size of 0.8use. That is, the length of the OFDM symbol may increase from 4usec to 8usec.
  • the length of the TGI may be adjusted according to the communication environment. If the length of the TGI is 0.8usec, the effective OFDM symbol length is increased to 7.2usec, and the data throughput per unit time (or per unit symbol) may be increased. By using the increased FFT size, the length of the guard interval can be increased and thus the transmission coverage of the HEW format PPDU can be increased.
  • FFTs of different sizes may be described as follows from the viewpoint of PPDU generation of the STA.
  • the STA may generate and transmit a PPDU including a first portion (legacy portion, or L-SIG) and a second portion (HEW portion, HEW-SIG-A, or HEW-SIG-A / B).
  • the first part may be generated by performing an inverse fast fourier transform (IFFT) according to the first FFT size
  • the second part may be generated by performing the IFFF according to the second FFT size.
  • IFFT inverse fast fourier transform
  • the first FFT size and the second FFT size may be different from each other, and the size of the second FFT may be a multiple of 2 times the size of the first FFT.
  • the first portion is transmitted on a first orthogonal frequency division multiplexing (OFDM) symbol and the second portion is transmitted on a second OFDM symbol.
  • the duration of the first OFDM symbol is a sum of a first guard interval duration and a first four fast transform period determined according to the first FFT size
  • the duration of the second OFDM symbol May be the sum of the second guard interval duration and the second FFT period determined according to the second FFT size.
  • the second guard interval duration may be longer than the first guard interval duration.
  • 128-FFT may also be used as an example of the increased FFT size, 256-FFT, 512-FFT, and such embodiments are also included in the scope of the present invention.
  • the increased FFT size By using the increased FFT size, the transmission coverage of the HEW format PPDU can be increased.
  • the OFDM numerology applied differently to the legacy part 1000 and the HEW part 1050 causes the STA to decode PPDUs. Problems may arise.
  • the HEW STA should be able to decode both the legacy portion 1000 and the HEW portion 1050. Therefore, the HEW STA should be able to detect portions of the HEW format PPDU to which different sizes of FFT are applied. Detecting the portion of the HEW format PPDU to which different sizes of FFT are applied may also be referred to as OFDM numerology check in other terms.
  • the HEW STA may determine that the received PPDU is a HEW format PPDU when there are portions in which the FPPs having different sizes (for example, multiples of 2 (for example, 4 times)) are applied to the received PPDU. .
  • the legacy STA determines that the legacy PPF (L-STF, L-LTF, L-SIG) 1000 has applied FFTs of different sizes after the legacy portion (L-STF, L-LTF, L-SIG) 1000, and determines additional decoding based on the HEW format PPDU. May not be performed.
  • a HEW STA posts a method of detecting a portion to which FFTs of different sizes are applied in a HEW format PPDU.
  • FIG. 11 is a conceptual diagram illustrating a method in which an HEW STA detects an FFT size in a HEW format PPDU according to an embodiment of the present invention.
  • a field after a legacy part (L-STF, L-LTF, L-SIG) 1100 of a received PPDU (in the case of an HEW format PPDU, the field located first in time in the HEW part) of the received PPDU
  • the FFT size applied in the guard interval period 1150 of the OFDM symbol allocated to may be determined. That is, the HEW STA may determine the size of the FFT used for the given channel bandwidth in the guard interval period 1150 of the OFDM symbol allocated to the field after the legacy part 1100. As a result of the determination, when the FFT size changes, the HEW STA may determine that the received PPDU is a HEW format PPDU.
  • the number of subcarriers on the OFDM symbol corresponding to the HEW portion may be a multiple of 2 (eg, 2 times, 4 times, etc.) of the number of subcarriers on the OFDM symbol corresponding to the legacy portion.
  • some OFDM symbols allocated to the HEW portion of the HEW format PPDU for determining the FFT size change by the STA may include a GI having a sufficient length.
  • the GI for some OFDM symbols allocated to the HEW part may be a long GI, a double GI, or a triple GI.
  • the double GI may be a length defined as twice the short GI length
  • the triple GI may be three times the short GI length.
  • FIG. 12 is a conceptual diagram illustrating a method in which a HEW STA detects an FFT size in a HEW format PPDU according to an embodiment of the present invention.
  • the HEW portion of the HEW format PPDU includes the HEW-SIG-A, HEW-STF, HEW-LTF, HEW-SIG-B, and data fields. Assume the case of inclusion. In addition, it is assumed that two OFDM symbols are allocated to the HEW-SIG-A.
  • the OFDM symbol for HEW-SIG-A which is the first field of the HEW part, may include a long GI, double GI, or triple GI.
  • a long GI 1250 may be included for each OFDM symbol corresponding to the HEW-SIG-A 1200.
  • the first OFDM symbol 1280 of the OFDM symbols allocated to the HEW-SIG-A 1270 may be a double GI 1290 or triple to more easily determine the FFT size change of the HEW STA as shown in the lower part of FIG. 12.
  • GI and the GI for the remaining OFDM symbol 1285 may include a GI of a relatively short length, or the remaining OFDM symbol 1285 may not include a GI.
  • FIG. 13 is a conceptual diagram illustrating a method of detecting an FFT size in a HEW format PPDU by a HEW STA according to an embodiment of the present invention.
  • the HEW STA may search for sequence correlation for an OFDM symbol (hereinafter, referred to as a search OFDM symbol 1350) transmitted after the legacy portion 1300.
  • a search OFDM symbol 1350 an OFDM symbol transmitted after the legacy portion 1300.
  • the HEW STA may determine the first FFT size. In addition, when the sequence correlation for the search OFDM symbol 1350 is determined as the second correlation characteristic, the HEW STA may determine the size of the second FFT. If it is determined that the second FFT is a second FFT, the HEW STA may determine an OFDM symbol transmitted after the legacy part 1300 as a HEW-STF included in the HEW part.
  • the HEW STA blinds in an OFDM symbol corresponding to the HEW-STF to obtain channel bandwidth information. Detection may need to be performed.
  • the HEW-STF sequence and the channel bandwidth information can be mapped, and the HEW STA can obtain the channel bandwidth information based on the HEW-STF sequence.
  • the HEW format PPDU includes HEW-STF, HEW-LTF, HEW-SIG-A / B, and data fields
  • the HEW-STF sequence contains channel bandwidth information and HEW-SIG has a separate channel bandwidth. May not contain information.
  • FIG. 14 is a conceptual diagram illustrating an operation when a HEW PPDU is received by a legacy STA according to an embodiment of the present invention.
  • FIG. 14 it is assumed that the HEW format PPDU disclosed in FIG. 6 is used.
  • the legacy STA may be a field located after the legacy portion 1400 (field after L-SIG) and may not be decoded (eg, a field generated based on another FFT size).
  • a network allocation vector NAV
  • NAV network allocation vector
  • the legacy STA may determine the HEW part 1450 as a field that cannot be decoded.
  • the legacy STA uses an auto-detection rule to determine whether the received PPDU is in a decodable PPDU format, and constellations to at least one OFDM symbol located behind the legacy portion 1400. You can also judge the information. That is, the legacy STA may determine whether the received PPDU is a decodeable PPDU format based on the constellation information of at least one OFDM symbol located behind the legacy part.
  • 15 is a block diagram illustrating a wireless device to which an embodiment of the present invention can be applied.
  • the wireless device 1500 may be an STA that may implement the above-described embodiment, and may be an AP 1500 or a non-AP station (or STA) 1550.
  • the AP 1500 includes a processor 1510, a memory 1520, and an RF unit 1530.
  • the RF unit 1530 may be connected to the processor 1520 to transmit / receive a radio signal.
  • the processor 1520 may implement the functions, processes, and / or methods proposed in the present invention.
  • the processor 1520 may be implemented to perform the operation of the wireless device according to the embodiment of the present invention described above.
  • the processor may perform an operation of the wireless device disclosed in the embodiment of FIGS. 6 to 14.
  • the processor 1520 may be implemented to generate a PPDU including the first portion and the second portion and transmit the PPDU.
  • the first part may be generated by performing an IFFT according to the first FFT size
  • the second part may be generated by performing an IFFF according to the second FFT size.
  • the STA 1550 includes a processor 1560, a memory 1570, and an RF unit 1580.
  • the RF unit 1580 may be connected to the processor 1560 to transmit / receive a radio signal.
  • the processor 1560 may implement the functions, processes, and / or methods proposed in the present invention.
  • the processor 1520 may be implemented to perform the operation of the wireless device according to the embodiment of the present invention described above.
  • the processor may perform the operation of the wireless device in the embodiment of FIGS. 6 to 14.
  • the processor 1560 may be implemented to determine a HEW portion of the received PPDU based on a change in the FFT size used in the received PPDU.
  • Processors 1510 and 1560 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • the memories 1520 and 1570 may include read-only memory (ROM), random access memory (RAM), flash memory, memory cards, storage media, and / or other storage devices.
  • the RF unit 1530 and 1580 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 1520 and 1570 and executed by the processors 1510 and 1560.
  • the memories 1520 and 1570 may be inside or outside the processors 1510 and 1560, and may be connected to the processors 1510 and 1560 by various well-known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

데이터 유닛을 전송하는 방법 및 장치가 게시되어 있다. PPDU를 전송하는 방법은 STA이 제1 부분과 제2 부분을 포함하는 상기 PPDU를 생성하는 단계와 STA이 상기 PPDU를 전송하는 단계를 포함할 수 있되, 제1 부분은 제1 FFT 크기에 따른 IFFT가 수행되어 생성되고, 제2 부분은 제2 FFT 크기에 따른 IFFF가 수행되어 생성되고, 제1 FFT 크기와 제2 FFT 크기는 다를 수 있다.

Description

데이터 유닛을 전송하는 방법 및 장치
본 발명은 무선 통신에 관한 것으로 보다 상세하게는 데이터 유닛을 전송하는 방법 및 장치에 관한 것이다.
IEEE(institute of electrical and electronic engineers) 802.11의 WNG SC(Wireless Next Generation Standing Committee)는 차세대 WLAN(wireless local area network)을 중장기적으로 고민하는 애드혹 위원회(committee)이다.
2013년 3월 IEEE 회의에서 브로드컴은 WLAN 표준화 히스토리를 기반으로, IEEE 802.11ac 표준이 마무리되는 2013년 상반기가 IEEE 802.11ac 이후의 차세대 WLAN에 대한 논의의 필요성을 제시하였다. 기술적 필요성 및 표준화의 필요성을 기반으로 2013년 3월 IEEE 회의에서 차세대 WLAN을 위한 스터디그룹 창설에 대한 모션이 통과되었다.
일명 HEW(High Efficiency WLAN)라고 불리는 차세대 WLAN 스터디 그룹에서 주로 논의되는 HEW의 범위(scope)는 1) 2.4GHz 및 5GHz 등의 대역에서 802.11 PHY(physical) 계층과 MAC(medium access control) 계층의 향상, 2) 스펙트럼 효율성(spectrum efficiency)과 영역 쓰루풋(area throughput)을 높이는 것, 3) 간섭 소스가 존재하는 환경, 밀집한 이종 네트워크(heterogeneous network) 환경 및 높은 사용자 부하가 존재하는 환경과 같은 실제 실내 환경 및 실외 환경에서 성능을 향상시키는 것 등이 있다. HEW에서 주로 고려되는 시나리오는 AP(access point)와 STA(station)이 많은 밀집 환경이며, HEW는 이러한 상황에서 스펙트럼 효율(spectrum efficiency)과 공간 전송률(area throughput) 개선에 대해 논의한다. 특히, 실내 환경뿐만 아니라, 기존 WLAN에서 많이 고려되지 않던 실외 환경에서의 실질적 성능 개선에 관심을 가진다.
HEW에서는 무선 오피스(wireless office), 스마트 홈(smart home), 스타디움(Stadium), 핫스팟(Hotspot), 빌딩/아파트(building/apartment)와 같은 시나리오에 관심이 크며, 해당 시나리오 기반으로 AP와 STA가 많은 밀집 환경에서의 시스템 성능 향상에 대한 논의가 수행되고 있다.
앞으로 HEW에서는 하나의 BSS(basic service set)에서의 단일 링크 성능 향상보다는, OBSS(overlapping basic service set) 환경에서의 시스템 성능 향상 및 실외 환경 성능 개선, 그리고 셀룰러 오프로딩 등에 대한 논의가 활발할 것으로 예상된다. 이러한 HEW의 방향성은 차세대 WLAN이 점점 이동 통신과 유사한 기술 범위를 갖게 됨을 의미한다. 최근 스몰 셀 및 D2D(Direct-to-Direct) 통신 영역에서 이동 통신과 WLAN 기술이 함께 논의되고 있는 상황을 고려해 볼 때, HEW를 기반한 차세대 WLAN과 이동 통신의 기술적 및 사업적 융합은 더욱 활발해질 것으로 예측된다.
본 발명의 PPDU를 전송하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 PPDU를 전송하는 장치를 제공하는 것이다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 일 측면에 따른 PPDU(PLCP(physical layer convergence procedure) protocol data unit)를 전송하는 방법은 STA(station)이 제1 부분과 제2 부분을 포함하는 상기 PPDU를 생성하는 단계와 상기 STA이 상기 PPDU를 전송하는 단계를 포함할 수 있되, 상기 제1 부분은 제1 FFT(fast fourier transform) 크기에 따른 IFFT(inverse fast fourier transform)가 수행되어 생성되고, 상기 제2 부분은 제2 FFT 크기에 따른 상기 IFFF가 수행되어 생성되고, 상기 제1 FFT 크기와 제2 FFT 크기는 다를 수 있다.
상술한 본 발명의 목적을 달성하기 위한 본 발명의 다른 측면에 따른 무선랜에서 PPDU를 전송하는 STA은 무선 신호를 송신하기 위해 구현된 RF(radio frequency)부와 상기 RF부와 선택적으로 연결되는 프로세서를 포함하되, 상기 프로세서는 제1 부분과 제2 부분을 포함하는 상기 PPDU를 생성하고 상기 PPDU를 전송하도록 구현되되, 상기 제1 부분은 제1 FFT(fast fourier transform) 크기에 따른 IFFT(inverse fast fourier transform)가 수행되어 생성되고, 상기 제2 부분은 제2 FFT 크기에 따른 상기 IFFF가 수행되어 생성되고, 상기 제1 FFT 크기와 제2 FFT 크기는 다를 수 있다.
새로운 포맷의 PPDU을 사용함에 있어서, PLCP 프리앰블의 오버헤드를 최소화하고 레가시(legacy) STA(station)에 대한 후방위 호환성(backward compatibility)을 제공할 수 있다. 또한, 새로운 포맷의 PPDU를 지원하는 STA이 수신한 PPDU가 새로운 포맷의 PPDU인지 여부를 빠르게 판단할 수 있다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 2는 IEEE 802.11에 의해 지원되는 무선랜 시스템의 계층 아키텍처를 나타낸 도면이다.
도 3은 무선랜에서 광대역 매체 접속 제어 기술을 나타낸 개념도이다.
도 4는 무선랜의 PPDU 포맷을 나타낸 개념도이다.
도 5는 채널을 통해 전송되는 PPDU를 나타낸 개념도이다.
도 6은 본 발명의 실시예에 따른 HEW 포맷 PPDU를 나타낸 개념도이다.
도 7은 본 발명의 실시예에 따른 HEW 포맷 PPDU를 나타낸 개념도이다.
도 8은 본 발명의 실시예에 따른 HEW 포맷 PPDU를 나타낸 개념도이다.
도 9는 본 발명의 실시예에 따른 HEW 포맷 PPDU를 나타낸 개념도이다.
도 10은 본 발명의 실시예에 따른 HEW 포맷 PPDU를 전송하기 위한 서브캐리어를 나타낸 개념도이다.
도 11은 본 발명의 실시예에 따른 HEW STA이 HEW 포맷 PPDU에서 FFT 크기를 탐지하는 방법을 나타낸 개념도이다.
도 12는 본 발명의 실시예에 따른 HEW STA이 HEW 포맷 PPDU에서 FFT 크기를 탐지하는 방법을 나타낸 개념도이다.
도 13은 본 발명의 실시예에 따른 HEW STA이 HEW 포맷 PPDU에서 FFT 크기를 탐지하는 방법을 나타낸 개념도이다.
도 14는 본 발명의 실시예에 따른 레가시 STA의 HEW PPDU 수신시 동작을 나타낸 개념도이다.
도 15는 본 발명의 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 1은 무선랜(wireless local area network, WLAN)의 구조를 나타낸 개념도이다.
도 1의 상단은 IEEE(institute of electrical and electronic engineers) 802.11의 인프라스트럭쳐 BSS(Basic Service Set)의 구조를 나타낸다.
도 1의 상단을 참조하면, 무선랜 시스템은 하나 또는 그 이상의 인프라스트럭쳐 BSS(100, 105)(이하, BSS)를 포함할 수 있다. BSS(100, 105)는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 AP(access point, 125) 및 STA1(Station, 100-1)과 같은 AP와 STA의 집합으로서, 특정 영역을 가리키는 개념은 아니다. BSS(105)는 하나의 AP(130)에 하나 이상의 결합 가능한 STA(105-1, 105-2)을 포함할 수도 있다.
BSS는 적어도 하나의 STA, 분산 서비스(Distribution Service)를 제공하는 AP(125, 130) 및 다수의 AP를 연결시키는 분산 시스템(Distribution System, DS, 110)을 포함할 수 있다.
분산 시스템(110)는 여러 BSS(100, 105)를 연결하여 확장된 서비스 셋인 ESS(extended service set, 140)를 구현할 수 있다. ESS(140)는 하나 또는 여러 개의 AP(125, 230)가 분산 시스템(110)을 통해 연결되어 이루어진 하나의 네트워크를 지시하는 용어로 사용될 수 있다. 하나의 ESS(140)에 포함되는 AP는 동일한 SSID(service set identification)를 가질 수 있다.
포털(portal, 120)은 무선랜 네트워크(IEEE 802.11)와 다른 네트워크(예를 들어, 802.X)와의 연결을 수행하는 브리지 역할을 수행할 수 있다.
도 1의 상단과 같은 BSS에서는 AP(125, 130) 사이의 네트워크 및 AP(125, 130)와 STA(100-1, 105-1, 105-2) 사이의 네트워크가 구현될 수 있다. 하지만, AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 것도 가능할 수 있다. AP(125, 130)가 없이 STA 사이에서도 네트워크를 설정하여 통신을 수행하는 네트워크를 애드-혹 네트워크(Ad-Hoc network) 또는 독립 BSS(independent basic service set, IBSS)라고 정의한다.
도 1의 하단은 IBSS를 나타낸 개념도이다.
도 1의 하단을 참조하면, IBSS는 애드-혹 모드로 동작하는 BSS이다. IBSS는 AP를 포함하지 않기 때문에 중앙에서 관리 기능을 수행하는 개체(centralized management entity)가 없다. 즉, IBSS에서 STA(150-1, 150-2, 150-3, 155-1, 155-2)들은 분산된 방식(distributed manner)으로 관리된다. IBSS에서는 모든 STA(150-1, 150-2, 150-3, 155-1, 155-2)이 이동 STA으로 이루어질 수 있으며, 분산 시스템으로의 접속이 허용되지 않아서 자기 완비적 네트워크(self-contained network)를 이룬다.
STA은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준의 규정을 따르는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리계층(Physical Layer) 인터페이스를 포함하는 임의의 기능 매체로서, 광의로는 AP와 비-AP STA(Non-AP Station)을 모두 포함하는 의미로 사용될 수 있다.
STA은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 유저(user) 등의 다양한 명칭으로도 불릴 수 있다.

도 2는 IEEE 802.11에 의해 지원되는 무선랜 시스템의 계층 아키텍처를 나타낸 도면이다.
도 2에서는 무선랜 시스템의 계층 아키텍처(PHY architecture)를 개념적으로 도시하였다.
무선랜 시스템의 계층 아키텍처는 MAC(medium access control) 부계층 (sublayer)(220)과 PLCP(Physical Layer Convergence Procedure) 부계층(210) 및 PMD(Physical Medium Dependent) 부계층(200)을 포함할 수 있다. PLCP 부계층(210)은 MAC 부계층(220)이 PMD 부계층(200)에 최소한의 종속성을 가지고 동작할 수 있도록 구현된다. PMD 부계층(200)는 복수의 STA 사이에서 데이터를 송수신하기 위한 전송 인터페이스 역할을 수행할 수 있다.
MAC 부계층(220)과 PLCP 부계층(210) 및 PMD 부계층(200)은 개념적으로 관리부(management entity)를 포함할 수 있다.
MAC 부계층(220)의 관리부는 MLME(MAC Layer Management Entity, 225), 물리 계층의 관리부는 PLME(PHY Layer Management Entity, 215)라고 한다. 이러한 관리부들은 계층 관리 동작이 수행되는 인터페이스를 제공할 수 있다. PLME(215)는 MLME(225)와 연결되어 PLCP 부계층(210) 및 PMD 부계층(200)의 관리 동작(management operation)을 수행할 수 있고 MLME(225)도 PLME(215)와 연결되어 MAC 부계층(220)의 관리 동작(management operation)을 수행할 수 있다.
올바른 MAC 계층 동작이 수행되기 위해서 SME(STA management entity, 250)가 존재할 수 있다. SME(250)는 계층에 독립적인 구성부로 운용될 수 있다. MLME, PLME 및 SME는 프리미티브(primitive)를 기반으로 상호 구성부 간에 정보를 송신 및 수신할 수 있다.
각 부계층에서의 동작을 간략하게 설명하면 아래와 같다. PLCP 부계층(110)은 MAC 부계층(220)과 PMD 부계층(200) 사이에서 MAC 계층의 지시에 따라 MAC 부계층(220)으로부터 받은 MPDU(MAC Protocol Data Unit)를 PMD 부계층(200)에 전달하거나, PMD 부계층(200)으로부터 오는 프레임을 MAC 부계층(220)에 전달한다. PMD 부계층(200)은 PLCP 하위 계층으로서 무선 매체를 통한 복수의 STA 사이에서의 데이터 송신 및 수신을 수행할 수 있다. MAC 부계층(220)이 전달한 MPDU(MAC protocol data unit)는 PLCP 부계층(210)에서 PSDU(Physical Service Data Unit)이라 칭한다. MPDU는 PSDU와 유사하나 복수의 MPDU를 어그리게이션(aggregation)한 A-MPDU(aggregated MPDU)가 전달된 경우 개개의 MPDU와 PSDU는 서로 상이할 수 있다.
PLCP 부계층(210)은 PSDU를 MAC 부계층(220)으로부터 받아 PMD 부계층(200)으로 전달하는 과정에서 물리 계층 송수신기에 의해 필요한 정보를 포함하는 부가필드를 덧붙인다. 이때 부가되는 필드는 PSDU에 PLCP 프리앰블(preamble), PLCP 헤더(header), 컨볼루션 인코더를 영상태(zero state)로 되돌리는데 필요한 꼬리 비트(Tail Bits) 등을 포함할 수 있다. PLCP 프리앰블은 PSDU이 전송되기 전에 수신기로 하여금 동기화 기능과 안테나 다이버시티를 준비하도록 하는 역할을 할 수 있다. 데이터 필드는 PSDU에 패딩 비트들, 스크랩블러를 초기화 하기 위한 비트 시퀀스를 포함하는 서비스 필드 및 꼬리 비트들이 덧붙여진 비트 시퀀스가 인코딩된 코드화 시퀀스(coded sequence)를 포함할 수 있다. 이 때, 인코딩 방식은 PPDU를 수신하는 STA에서 지원되는 인코딩 방식에 따라 BCC(Binary Convolutional Coding) 인코딩 또는 LDPC(Low Density Parity Check) 인코딩 중 하나로 선택될 수 있다. PLCP 헤더에는 전송할 PPDU(PLCP Protocol Data Unit)에 대한 정보를 포함하는 필드가 포함될 수 있다.
PLCP 부계층(210)에서는 PSDU에 상술한 필드를 부가하여 PPDU(PLCP Protocol Data Unit)를 생성하여 PMD 부계층(200)을 거쳐 수신 스테이션으로 전송하고, 수신 스테이션은 PPDU를 수신하여 PLCP 프리앰블, PLCP 헤더로부터 데이터 복원에 필요한 정보를 얻어 복원한다.

도 3은 무선랜에서 광대역 매체 접속 제어 기술을 나타낸 개념도이다.
IEEE 802.11n 표준 이전의 무선랜은 20MHz의 채널 대역폭(channel bandwidth)만을 지원하였다. IEEE 802.11n 표준부터는 40MHz의 채널 대역폭을 지원하기 시작하였고, IEEE 802.11ac에서는 추가적으로 80MHz, 160MHz의 채널 대역폭을 지원하였다.
도 3은 IEEE 802.11ac에서 지원되는 80MHz의 채널 대역폭에서 채널 액세스를 나타낸다.
기존 IEEE 802.11b/g/n과의 공존을 위해 IEEE 802.11ac는 DCF(distributed coordination function), EDCA(enhanced distributed channel access) 프로토콜 기반의 채널 액세스를 위한 20MHz 채널을 정의할 수 있다. DCF, EDCA 프로토콜을 기반의 채널 액세스를 위한 20MHz 채널을 프라이머리 채널(primary channel)이라고 할 수 있다.
STA은 40MHz의 채널 대역폭 또는 80MHz의 채널 대역폭을 통해 프레임을 전송하기 위해서 프라이머리 채널(310) 외의 다른 채널의 상태를 센싱할 수 있다. STA은 프라이머리 채널(310) 외의 채널(세컨더리 채널(secondary channel)(320), 터시어리 채널(tertiary channel)(330), 쿼터너리 채널(quaternary channel)(340))의 상태를 일정 시간 구간 동안(예를 들어, PIFS(PCF inter frame space)) 센싱한 후 데이터(350)를 전송하기 위한 채널 대역폭을 결정할 수 있다.
센싱 결과, 4개의 20MHz의 채널 대역폭(310, 320, 330, 340)이 모두 가용한 경우, STA은 80MHz의 채널 대역폭을 통해 데이터(350)를 전송할 수 있고, 각각의 20MHz 채널을 통해 블록 ACK(block acknowledgement, BA)를 수신할 수 있다.
IEEE 802.11ac에서는 가용한 채널 대역폭이 20MHz에서 160MHz까지 다양해짐에 따라 송신 STA과 수신 STA 사이에 적절한 채널 대역폭을 결정하는 것이 무선랜의 성능을 결정하기 위한 중요한 요인이 되었다. IEEE 802.11ac에서는 RTS(request to send) 프레임/CTS(clear to send) 프레임을 기반으로 한 동적 채널 대역폭 설정 프로토콜이 수행될 수 있다. 동적 채널 대역폭 설정 프로토콜에서는 송신 STA은 RTS 프레임을 광대역으로 전송하고 수신 STA은 현재 가용한 채널 대역폭을 통해 CTS 프레임을 전송할 수 있다. 구체적인 예로써, 160MHz의 채널 대역폭을 사용하고자 하는 송신 STA은 160MHz의 채널 대역폭을 통해 RTS 프레임을 수신 STA으로 전송할 수 있다. 현재 가용한 채널 대역폭이 80MHz인 경우, 수신 STA은 80MHz의 채널 대역폭을 통해 CTS 프레임을 송신 STA으로 전송할 수 있다.
송신 STA은 80MHz의 채널 대역폭을 통해 CTS 프레임을 수신하는 경우, CTS 프레임을 수신한 80MHz의 채널 대역폭보다 작은 채널 대역폭을 통해 데이터를 수신 STA으로 전송할 수 있다.

도 4는 무선랜의 VHT 포맷 PPDU 포맷을 나타낸 개념도이다.
도 4에서는 IEEE 802.11ac에서 정의된 VHT(very high throughput) 포맷 PPDU(PLCP(physical layer convergence procedure) protocol data unit)에 대해 게시한다.
레가시 STA과의 호환성을 위해서 VHT 포맷 PPDU는 L-STF(400), L-LTF(410), L-SIG 필드(420)를 포함할 수 있다.
L-STF(400)는 L-STF 시퀀스를 포함할 수 있다. L-STF 시퀀스는 프레임 탐지(frame detection), AGC(automatic gain control), 다이버시티 탐지(diversity detection), 대략적인 주파수/시간 동기화(coarse frequency/time synchronization)을 위해 사용될 수 있다.
L-LTF(410)는 L-LTF 시퀀스를 포함할 수 있다. L-LTF 시퀀스는 정밀한 주파수/시간 동기화(fine frequency/time synchronization) 및 채널 예측을 위해 사용될 수 있다.
L-SIG(420)는 제어 정보를 포함할 수 있다. 구체적으로 L-SIG(420)는 데이터 전송률(rate), 데이터 길이(length)에 대한 정보를 포함할 수 있다.
VHT-SIG-A(430)는 VHT 포맷 PPDU를 해석하기 위한 정보를 포함할 수 있다. VHT-SIG-A(430)는 VHT-SIG-A1 및 VHT-SIG-A2를 포함할 수 있다. VHT-SIG-A1는 사용하는 채널의 대역폭 정보, 공간 시간 블록 코딩의 적용 여부, MU(multi-user)-MIMO(multiple input multiple output)를 위해 그룹핑된 STA들을 지시하는 그룹 ID(identifier) 및 MU-MIMO를 수행시 사용되는 시공간 스트림(space-time stream)의 개수에 대한 정보 등을 포함할 수 있다. VHT-SIG-A1에 포함된 채널 대역폭의 정보는 VHT-SIG-A1 이후의 필드가 전송되는 대역폭에 대한 정보를 포함할 수 있다.
VHT-SIG-A2는 짧은 가드 인터벌(guard interval, GI) 사용 여부에 대한 정보, 포워드 에러 정정(FEC; forward error correction) 정보, 단일 사용자에 대한 MCS(modulation and coding scheme)에 관한 정보, 복수 사용자에 대한 채널 코딩의 종류에 관한 정보, 빔포밍 관련 정보, CRC(cyclic redundancy checking)를 위한 여분 비트(redundancy bits)와 컨벌루셔널 디코더(convolutional decoder)의 테일 비트(tail bit) 등을 포함할 수 있다.
VHT-STF(440)는 MIMO 환경에서 자동 이득 제어 추정(automatic gain control estimation, AGC)을 향상시키기 위하여 사용될 수 있다.
VHT-LTF(450)는 MIMO 환경에서 채널 예측을 위하여 사용된다.
VHT-SIG-B(460)는 각 STA에 대한 정보, 즉 PSDU(PLCP service data unit)의 길이와 MCS(modulation and coding scheme)에 관한 정보, 테일 비트 등을 포함할 수 있다.
데이터(470)는 페이로드(payload)로써 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PLCP service data unit), 테일 비트(tail bits), 패딩 비트(padding bits)를 포함할 수 있다.

도 5는 채널을 통해 전송되는 PPDU를 나타낸 개념도이다.
도 5는 MU(multi-user)-MIMO(multiple input multiple output)를 위한 PPDU 포맷을 게시한다.
도 5를 참조하면, AP와 2개의 STA(제1 STA 및 제2 STA) 사이에서 MU-MIMO를 기반으로 한 통신시 AP가 전송하는 시공간 스트림을 게시한다.
4개의 시공간 스트림(510, 520, 530, 540) 중 2개의 시공간 스트림(510, 520)은 제1 STA으로 데이터를 전송하기 위해 할당되고, 나머지 2개의 시공간 스트림(530, 540)은 제2 STA으로 데이터를 전송하기 위해 할당될 수 있다. 각각의 시공간 스트림은 20MHz의 채널 대역폭을 통해 전송될 수 있다. 각각의 시공간 스트림은 제1 시공간 스트림(510) 내지 제4 시공간 스트림(540)이라는 용어로 표현되고, 제1 시공간 스트림(510) 내지 제4 시공간 스트림(540)이 전송되는 채널은 제1 채널 내지 제4 채널이라는 용어로 표현될 수 있다.
도 5를 참조하면, 제1 시공간 스트림(510) 내지 제4 시공간 스트림(540) 각각을 통해 전송되는 필드 중 L-STF, L-LTF, L-SIG 및 VHT-SIG-A까지는 듀플리케이트(duplicate)될 수 있다. 즉, 복수의 20MHz의 채널 대역폭 각각을 통해 전송되는 L-STF, L-LTF, L-SIG 및 VHT-SIG-A는 듀플리케이트된 필드일 수 있다.
20MHz를 통해 전송되는 시공간 스트림 각각에서 VHT-SIG-A(550) 이후의 필드는 시공간 스트림에 따라 다른 정보를 포함할 수 있다. MIMO, MU-MIMO, 확장된 채널 대역폭을 통한 전송과 같은 향상된 특징(enhanced feature)들은 VHT-SIG-A(550) 이후의 필드에서 적용될 수 있다.
VHT-SIG-A(550)는 송신 STA이 데이터를 전송하는 대역폭에 대한 정보, 각각의 수신 STA에 할당된 시공간 스트림(space-time stream)의 개수에 대한 정보를 포함할 수 있다. 수신 STA은 VHT-SIG-A(550)를 통해 전송된 대역폭 정보를 기반으로 VHT-SIG-A(550) 이후에 전송되는 데이터를 수신하기 위한 채널 대역폭을 결정할 수 있다. 이러한 대역폭 정보가 VHT-SIG-A(550)를 통해 전송되지 않는 경우, 수신 STA은 전송에 사용될 수 있는 대역폭에 대해 블라인드 탐지를 수행하여 데이터가 전송되는 대역폭을 탐색해야 한다.
또한, MU-MIMO의 경우, 수신 STA은 VHT-SIG-A(550)에 포함된 시공간 스트림 할당 정보를 기반으로 수신할 데이터스트림을 결정할 수 있다.
구체적으로, VHT-SIG-A(550)는 대역폭 정보로써 데이터를 전송하는 80MHz를 지시할 수 있고, 각각의 수신 STA에 할당된 시공간 스트림(space-time stream)의 개수에 대한 정보로 제1 STA로 2개의 시공간 스트림(510, 520), 제2 STA으로 2개의 시공간 스트림(530, 540)이 각각 할당됨을 지시할 수 있다.
제1 STA과 제2 STA은 VHT-SIG-A(550)에 포함된 정보를 기반으로 송신 STA으로부터 데이터를 수신할 수 있다.

이하, 본 발명의 실시예에서는 높은 처리량(high throughput) 및 QoE(quality of experience) 성능 향상에 대한 요구를 만족시키기 위한 IEEE802.11ac 이후의 차세대 무선랜의 PPDU 포맷에 대해 게시한다.
이하, 본 발명에서는 설명의 편의상 차세대 무선랜을 HEW(High efficiency WirelessLAN), HEW를 지원하는 프레임을 HEW 프레임, HEW를 지원하는 PPDU를 HEW 포맷 PPDU, HEW를 지원하는 STA을 HEW STA이라는 용어로 표현할 수 있다.
또한, non-HT 포맷 PPDU, HT 포맷 PPDU 또는 VHT 포맷 PPDU 등의 HEW 포맷 PPDU 제외한 나머지 PPDU를 레가시 포맷 PPDU, 레가시 포맷 PPDU로 송신 및 수신되는 프레임을 레가시 프레임, 레가시 포맷 PPDU만을 지원하는 STA을 레가시 STA이라는 용어로 표현할 수 있다. 위와 같이 표현된 용어는 임의적인 용어로써 다른 다양한 용어로 표현될 수 있다.
HEW에서 HEW 포맷 PPDU가 사용되는 경우, HEW 포맷 PPDU는 기존 무선랜 시스템을 지원하는 레가시 STA들을 위한 레가시 포맷 PPDU와 공존하는 환경에서 데이터를 송신 및 수신하기 위해 사용될 수 있다. 이러한 환경에서 레가시 STA들은 HEW에 대한 후방위 호환성이 없을 수 있다. 따라서, 레가시 STA들에 영향이 없도록 HEW 포맷 PPDU가 정의되어야 한다. 즉, HEW 포맷 PPDU는 PLCP 프리앰블의 오버헤드를 최소화하고, 레가시 STA을 동시에 지원할 수 있어야 한다.
HEW 포맷 PPDU는 편의상 L-SIG까지의 레가시 부분(legacy part)과 L-SIG 이후의 HEW 부분(HEW part)으로 구분될 수 있다. 예를 들어, HEW 부분은 HEW-SIG-A, HEW-STF, HEW-LTF, HEW-SIG-B와 같은 HEW를 지원하기 위한 필드 중 적어도 하나를 포함할 수 있다. 이러한 HEW를 지원하기 위한 필드는 레가시 부분을 제외한 HEW 포맷 PPDU를 해석하기 위한 필드에 대한 예시이다. 구체적으로 HEW-SIG-A, HEW-SIG-B, HEW-SIG-A/B는 HEW 부분을 디코딩하기 위한 정보를 포함하는 시그널링 필드의 예시이고, HEW-STF, HEW-LTF(s)는 HEW 부분에서 AGC 및/또는 채널 예측, 채널/주파수 트래킹을 위해 사용되는 트레이닝 필드에 대한 예시일 수 있다.

도 6은 본 발명의 실시예에 따른 HEW 포맷 PPDU를 나타낸 개념도이다.
도 6을 참조하면, HEW 포맷 PPDU에서 HEW 부분은 순차적으로 HEW-SIG-A(610), HEW-STF(620), HEW-LTF(s) (630), HEW-SIG-B(640)를 포함할 수 있다. 설명의 편의상 데이터 필드도 HEW 부분으로 가정하여 설명한다.
HEW-SIG-A(610)는 HEW 부분의 첫번째 시그널링 필드이다. HEW-SIG-A(610)는 채널 대역폭 정보를 포함할 수 있다. 채널 대역폭 정보는 HEW-SIG-A(610) 이후 HEW 부분에 포함되는 필드들(예를 들어, HEW-STF(620), HEW-LTF(630), HEW-SIG-B(640) 및 데이터 필드(650))의 전송을 위해 사용되는 채널 대역폭의 크기를 지시할 수 있다. HEW 포맷 PPDU를 수신하는 수신 STA은 채널 대역폭 정보에 의해 지시된 채널 대역폭을 통해 HEW-SIG-A(610) 이후에 전송되는 필드에 포함된 데이터를 수신할 수 있다. 만약, 수신 STA이 채널 대역폭 정보를 알지 못하는 경우, 수신 STA은 블라인드 탐지(blind detection)를 기반으로 HEW-SIG-A(610) 이후 HEW 부분에 대한 채널 대역폭의 크기를 탐지해야 한다. 또한, HEW-SIG-A(610)는 HEW 포맷 PPDU를 디코딩하기 위한 추가적인 정보를 포함할 수 있다.
HEW-STF(620)는 HEW 포맷 PPDU에서 HEW-STF(620) 이후에 전송되는 데이터에 대한 AGC(automatic gain control)를 위해 사용될 수 있다.
HEW-LTF(s)(630)는 HEW-SIG-B(640) 및/또는 데이터 필드(650)의 디코딩을 위한 채널 예측을 위해 사용될 수 있다. HEW-LTF(630)의 개수는 시공간 스트림의 개수에 의해 결정될 수 있다.
HEW-SIG-B(640)는 DL(downlink)/UL(uplink) MU-MIMO 지원시 필요한 정보를 제공하거나 HEW를 지원하기 위한 추가적인 정보를 전달하기 위해 사용될 수 있다.
본 발명에서 게시되는 HEW-SIG-A, HEW-SIG-B 또는 HEW-SIG-A/B에는 HEW를 지원하기 위한 아래와 같은 정보들이 포함될 수 있다. HEW-SIG-A, HEW-SIG-B 또는 HEW-SIG-A/B를 HEW 시그널링 필드라는 용어로 표현할 수 있다.
HEW는 다중 액세스 방식으로 OFDMA를 지원할 수 있고, HEW 시그널링 필드는 다중 액세스를 지원하기 위한 정보를 포함할 수 있다. 예를 들어, HEW 시그널링 필드는 복수의 STA 각각으로 할당되는 주파수 대역(또는 채널)에 대한 정보를 포함할 수 있다. 복수의 STA 각각으로 할당되는 주파수 대역을 지시하기 위해 STA의 GID(group identifier)와 같은 식별자 정보가 사용될 수 있고, HEW 시그널링 필드는 이러한 STA의 GID를 기반으로 STA의 사용 주파수 대역에 대한 정보를 지시할 수 있다.
또한 HEW는 UL-MIMO를 지원할 수 있고, HEW 시그널링 필드는 UL-MIMO를 허용하는지 여부에 대한 정보, UL-MIMO 시 사용되는 시공간 스트림의 개수에 대한 정보, UL-MIMO에 사용되는 채널에 대한 정보를 포함할 수도 있다.
또는 HEW에서는 AP와 복수의 STA이 동시에 통신을 수행할 수 있고, AP는 동시에 데이터를 송신 및 수신할 STA에 대한 정보를 전송할 수 있다. HEW 시그널링 필드는 동일한 TXOP(transmission opportunity)를 획득하는 STA의 개수 또는 동일한 TXOP 획득하는 STA의 리스트에 대한 정보를 포함할 수 있다. 또한, HEW 시그널링 필드는 TXOP의 듀레이션(duration)에 대한 정보도 전송할 수도 있다.

도 7은 본 발명의 실시예에 따른 HEW 포맷 PPDU를 나타낸 개념도이다.
도 7을 참조하면, HEW 포맷 PPDU의 HEW 부분은 순차적으로 HEW-STF(710), HEW-LTF(s) (720), HEW-SIG-A/B(730)를 포함할 수 있다.
HEW 포맷 PPDU에서 HEW-STF(710)가 시그널링 필드(예를 들어, HEW-SIG-A/B(710))보다 선행되어 위치할 수 있다. 전술한 바와 같이 시그널링 필드를 통해 전송된 HEW 부분에 대한 채널 대역폭 정보가 없는 경우, 수신 STA은 블라인드 탐지를 기반으로 HEW 부분에 대한 채널 대역폭의 크기를 탐지해야 한다. 따라서, 블라인드 탐지를 피하기 위해 본 발명의 실시예에 따른 HEW 포맷 PPDU에서는 HEW-STF(710)를 구성하는 시퀀스(HEW-STF 시퀀스)가 HEW 부분에 대한 채널 대역폭 정보를 포함할 수 있다. HEW-STF 시퀀스는 HEW-STF(710)를 전송하는 OFDM 심볼(HEW-STF OFDM 심볼) 상의 복수의 서브캐리어에 할당될 수 있다.
서로 다른 HEW-STF 시퀀스는 HEW 부분에 대한 서로 다른 채널 대역폭의 크기를 지시할 수 있다. 즉, 특정 HEW-STF 시퀀스는 HEW 부분에 할당된 특정한 채널 대역폭의 크기를 지시할 수 있다.
본 발명의 또 다른 실시예에 따르면, 레가시 부분에서 지시된 채널 대역폭에 의해 HEW 부분에 대한 채널 대역폭이 결정되는 경우, HEW-STF 시퀀스는 채널 대역폭 정보를 포함하지 않을 수도 있다.
본 발명의 또 다른 실시예에 따르면, HEW-STF 시퀀스는 채널 대역폭 정보뿐만 아니라, HEW 부분을 전송하기 위해 사용되는 OFDM 심볼의 가드 인터벌(guard interval) 또는 CP(cyclic prefix)에 대한 정보를 포함할 수 있다. 이하, 본 발명의 실시예에서는 가드 인터벌과 CP를 동일한 의미로 해석될 수 있고, 설명의 편의상 가드 인터벌(GI)라는 용어를 사용하여 설명한다.
HEW에서는 무선 통신 환경에 따라 다양한 길이의 GI(guard interval)(long GI, double GI, triple GI)를 사용할 수 있다. HEW-STF 시퀀스는 HEW 부분을 전송하기 위해 사용되는 OFDM 심볼의 가드 인터벌 정보를 포함할 수 있다.
HEW에서는 통신 환경에 따라 HEW 포맷 PPDU에 대한 가드 인터벌의 길이가 달라질 수 있고, HEW-STF 시퀀스는 사용된 가드 인터벌의 길이에 대한 정보를 포함할 수 있다. HEW에서는 가드 인터벌의 길이에 따라 최적화된 HEW 포맷 PPDU이 사용될 수 있다. 즉, HEW 포맷 PPDU는 가드 인터벌의 길이에 따라 설정 가능(configuarble)할 수 있다.
HEW-STF 시퀀스는 채널 대역폭 정보와 가드 인터벌 정보를 독립적으로 전송할 수도 있으나, HEW-STF 시퀀스는 채널 대역폭 정보와 가드 인터벌 정보의 조합에 대한 정보를 전송할 수도 있다. 예를 들어, 제1 HEW-STF 시퀀스는 제1 채널 대역폭 크기 및 제1 가드 인터벌의 길이를 지시하고, 제2 HEW-STF 시퀀스는 제1 채널 대역폭 크기 및 제2 가드 인터벌의 길이를 지시할 수 있다.
또는 수신 STA은 HEW-STF 시퀀스의 신호 파형을 기반으로 FFT(fast fourier transform)의 크기 정보를 대략적으로 판단하여 채널 대역폭 정보를 추정할 수도 있다. 추정된 채널 대역폭 정보는 HEW-STF(710) 이후에 전송된 HEW-SIG-A/B(730)에 포함된 채널 대역폭 정보을 기반으로 확인될 수 있다.
HEW-LTF(s)(720)는 HEW-SIG-A/B(730) 및/또는 데이터 필드(740)의 디코딩을 위한 채널 예측을 위해 사용될 수 있다. HEW 포맷 PPDU에 포함되는 HEW-LTF(720)의 개수는 시공간 스트림의 개수에 의해 결정될 수 있다.

도 8은 본 발명의 실시예에 따른 HEW 포맷 PPDU를 나타낸 개념도이다.
도 8을 참조하면, HEW 포맷 PPDU의 HEW 부분은 순차적으로 HEW-STF(810), HEW-SIG-A/B(820)를 포함할 수 있다.
HEW 포맷 PPDU는 HEW-LTF를 포함하지 않을 수 있다. HEW-LTF를 대신하여 채널 예측을 수행하기 위해 HEW-SIG-A/B(820) 및 데이터 필드(830) 각각은 채널 예측을 위한 신호(예를 들어, 파일롯 신호(pilot signal))를 포함할 수 있다. 채널 예측을 위한 신호는 채널 예측을 위한 용도뿐만 아니라 채널 트래킹 및/또는 주파수 트래킹을 위한 용도로도 사용될 수도 있다.
본 발명의 또 다른 실시예에 따르면, 채널 환경의 변화가 크지 않아 코히어런스 시간(coherence time) 안에 충분히 HEW 포맷 PPDU가 전송될 수 있는 경우, 레가시 부분에 포함된 L-LTF(840)를 HEW 부분의 디코딩을 위해 사용할 수 있다. 구체적으로 L-LTF(840)를 기반으로 예측된 채널 예측 결과를 HEW 부분을 디코딩하기 위해 사용할 수 있다.

도 9는 본 발명의 실시예에 따른 HEW 포맷 PPDU를 나타낸 개념도이다.
도 9를 참조하면, HEW 포맷 PPDU의 HEW 부분은 HEW-SIG-A/B(910)만을 포함할 수 있다.
HEW 포맷 PPDU는 HEW-STF를 포함하지 않을 수 있다. 따라서, 레가시 부분의 L-STF(930)가 HEW 부분에 대한 AGC를 위해 사용될 수 있다. 구체적으로 레가시 부분과 HEW 부분 각각에서 ADC(analog digital converter)단의 양자화 레벨(quantization level)의 범위(range)가 크게 다르지 않다면, HEW 부분은 HEW-STF를 포함하지 않고 L-STF(930)가 HEW 부분에 대한 AGC를 위해 사용될 수 있다.
도 8에서 전술한 바와 같이 HEW 포맷은 HEW-LTF를 포함하지 않을 수도 있다. 전술한 바와 같이 HEW-LTF를 대신하여 채널 예측을 수행하기 위해 HEW-SIG-A/B(910) 및 데이터 필드(920) 각각은 채널 예측을 위한 신호(예를 들어, 파일롯 신호(pilot signal))를 포함할 수 있다. 또는 레가시 부분에 포함된 L-LTF(940)를 HEW 부분의 디코딩을 위해 사용할 수도 있다.
본 발명의 실시예에 따르면, HEW 포맷 PPDU를 전송하는 전송 STA은 주기적으로 HEW-STF 및/또는 HEW-LTF를 포함하는 HEW 포맷 PPDU를 전송할 수 있다.
HEW 포맷 PPDU를 통해 주기적으로 전송되는 HEW-STF 및 HEW-LTF는 동기화(synchronization)의 기능을 중점적으로 고려하여 최소화된 구조로 설계될 수 있다. HEW-STF 및 HEW-LTF의 전송 주기에 대한 정보는 시스템 정보(system information)로써 초기 채널 액세스에 사용되는 프레임(예를 들어, 비콘 프레임(beacon frame), 프로브 응답 프레임(probe response frame) 및 결합 응답 프레임(association response frame) 중 적어도 하나의 프레임)에 포함되어 전송될 수 있다.

도 10은 본 발명의 실시예에 따른 HEW 포맷 PPDU를 전송하기 위한 서브캐리어를 나타낸 개념도이다.
도 10을 참조하면, HEW 포맷 PPDU에서 레가시 부분(1000)과 HEW 부분(1050)은 서로 다른 FFT 크기를 기반으로 생성될 수 있다. 도 10에서는 도 6에서 전술한 HEW 포맷 PPDU를 가정하여 레가시 부분(1000)과 HEW 부분(1050)의 FFT 크기 변화에 대해 설명한다. HEW 부분(1050)이 데이터 필드를 포함하는 것으로 가정한다.
무선랜의 통신 환경이 실외(outdoor) 환경인 경우, 딜레이 스프레드(delay spread)의 크기가 증가할 수 있다. 딜레이 스프레드의 크기 증가로 인한 영향을 감소시키기 위하여 레가시 부분(1000)과는 다른 크기의 FFT가 HEW 부분에 적용될 수 있다.
구체적인 예로, 레가시 부분(1000)에는 20MHz 크기의 채널 대역폭에서 64-FFT가 적용될 수 있다. 64-FFT에 기반한 52개의 서브캐리어가 데이터를 전송하기 위해 사용될 수 있는데, 52개의 서브캐리어 중 48개는 트래픽 데이터, 4개의 서브캐리어는 파일롯 신호를 전송하기 위해 사용될 수 있다. 서브캐리어 간의 간격은 312.5kHz일 수 있다. 또한, OFDM 심볼의 크기(또는 폭)는 4usec, TGI(가드 인터벌의 길이)는 0.8usec일 수 있다. 유효 OFDM 심볼의 크기는 OFDM 심볼의 크기(4usec)에서 TGI의 크기(0.8usec)를 뺀 3.2usec일 수 있다.
본 발명의 실시예에 따르면, 20MHz 크기의 채널 대역폭에서 128-FFT가 HEW 부분(1050)에 적용될 수 있다.
128-FFT가 사용되는 경우, 128-FFT에 기반한 104개의 서브캐리어가 데이터를 전송하기 위해 사용될 수 있다. 104개의 서브캐리어를 사용하는 경우, 서브캐리어 간 간격은 312.5/2(=156.25)kHz일 수 있다. 서브캐리어 간의 간격은 OFDM 심볼의 크기에서 가드 인터벌의 크기를 뺀 유효 OFDM 심볼 폭의 역수일 수 있다. 따라서, 104개의 서브캐리어가 사용되는 경우, 유효 OFDM 심볼의 크기는 3.2usec의 두 배인 6.4usec로 증가할 수 있고, TGI도 0.8use의 두 배인 1.6usec로 증가할 수 있다. 즉, OFDM 심볼의 길이가 4usec에서 8usec로 증가할 수 있다. 본 발명의 실시예에 따르면 통신 환경에 따라 TGI의 길이를 조절할 수도 있다. 만약, TGI의 길이가 0.8usec를 사용하는 경우, 유효 OFDM 심볼 길이가 7.2usec로 증가되고, 단위 시간당(또는 단위 심볼당) 데이터 처리량이 증가할 수 있다. 증가된 FFT 크기를 사용함으로써 가드 인터벌의 길이가 증가하고 그에 따라 HEW 포맷 PPDU의 전송 커버리지가 증가될 수 있다.
서로 다른 크기의 FFT의 적용은 STA의 PPDU 생성 관점에서 아래와 같이 설명될 수 있다.
STA은 제1 부분(레가시 부분, 또는 L-SIG)과 제2 부분(HEW 부분, HEW-SIG-A, 또는 HEW-SIG-A/B)을 포함하는 PPDU를 생성하여 전송할 수 있다. 제1 부분은 제1 FFT 크기에 따른 IFFT(inverse fast fourier transform)가 수행되어 생성되고, 제2 부분은 제2 FFT 크기에 따른 상기 IFFF가 수행되어 생성될 수 있다. 이때 제1 FFT 크기와 제2 FFT 크기는 서로 다를 수 있고, 제2 FFT의 크기는 제1 FFT 크기의 2의 배수배일 수 있다.
제1 부분은 제1 OFDM(orthogonal frequency division multiplexing) 심볼 상에서 전송되고, 제2 부분은 제2 OFDM 심볼 상에서 전송되는 경우를 가정할 수 있다. 이러한 경우, 제1 OFDM 심볼의 듀레이션은 제1 가드 인터벌 듀레이션(guard interval duration)과 상기 제1 FFT 크기에 따라 결정되는 제1 FFT 기간(fast fourier transform period)의 합이고, 제2 OFDM 심볼의 듀레이션은 제2 가드 인터벌 듀레이션과 제2 FFT 크기에 따라 결정되는 제2 FFT 기간의 합일 수 있다. 이때 제2 가드 인터벌 듀레이션은 상기 제1 가드 인터벌 듀레이션보다 길 수 있다.
128-FFT는 증가된 FFT 크기에 대한 예시로써 256-FFT, 512-FFT도 사용될 수 있고 이러한 실시예 또한 본 발명의 권리 범위에 포함된다. 증가된 FFT 크기를 사용함으로써 HEW 포맷 PPDU의 전송 커버리지가 증가될 수 있다.
위와 같이 레가시 부분(1000)과 HEW 부분(1050)에 대한 FFT 크기가 변화할 경우, 레가시 부분(1000)과 HEW 부분(1050)에 다르게 적용되는 OFDM 뉴머놀로지(numerology)로 인해 STA의 PPDU 디코딩에 문제가 발생할 수도 있다.
HEW STA은 레가시 부분(1000)과 HEW 부분(1050)을 모두 디코딩할 수 있어야 한다. 따라서, HEW STA은 HEW 포맷 PPDU에서 서로 다른 크기의 FFT를 적용한 부분을 탐지할 수 있어야 한다. HEW 포맷 PPDU에서 서로 다른 크기의 FFT를 적용한 부분을 탐지하는 것을 다른 용어로 OFDM 뉴머놀로지 체크라고도 할 수 있다.
HEW STA은 수신한 PPDU에서 서로 다른 크기의 FFT(예를 들어, 2의 배수 배(예를 들어, 4배))를 적용한 부분이 존재하는 경우, 수신한 PPDU를 HEW 포맷 PPDU라고 판단할 수 있다. 반대로 레가시 STA은 수신한 PPDU의 레가시 부분(L-STF, L-LTF, L-SIG)(1000) 이후의 서로 다른 크기의 FFT를 적용한 부분이 존재하는 경우, HEW 포맷 PPDU로 판단하여 추가적인 디코딩을 수행하지 않을 수 있다.
이하, 본 발명의 실시예에서는 HEW STA이 HEW 포맷 PPDU에서 서로 다른 크기의 FFT가 적용된 부분을 탐지하는 방법에 대해 게시한다.

도 11은 본 발명의 실시예에 따른 HEW STA이 HEW 포맷 PPDU에서 FFT 크기를 탐지하는 방법을 나타낸 개념도이다.
도 11을 참조하면, HEW STA은 수신한 PPDU의 레가시 부분(L-STF, L-LTF, L-SIG)(1100) 이후의 필드(HEW 포맷 PPDU인 경우, HEW 부분에서 시간상으로 첫번째 위치한 필드)에 할당된 OFDM 심볼의 가드 인터벌 구간(1150)에서 적용된 FFT 크기를 판단할 수 있다. 즉, HEW STA은 레가시 부분(1100) 이후의 필드에 할당된 OFDM 심볼의 가드 인터벌 구간(1150)에서 주어진 채널 대역폭에서 사용되는 FFT의 크기를 판단할 수 있다. 판단 결과, FFT 크기가 변화할 경우, HEW STA은 수신한 PPDU를 HEW 포맷 PPDU라고 판단할 수 있다.
HEW 부분에 대응되는 OFDM 심볼 상의 서브캐리어의 수는 레가시 부분에 대응되는 OFDM 심볼 상의 서브캐리어의 수의 2의 배수 배(예를 들어, 2배, 4배 등)일 수 있다.
본 발명의 실시예에 따르면, STA에 의한 FFT 크기 변화의 판단을 위해 HEW 포맷 PPDU에서 HEW 부분으로 할당된 일부 OFDM 심볼은 충분한 길이의 GI를 포함할 수 있다. 예를 들어, HEW 부분으로 할당된 일부 OFDM 심볼에 대한 GI는 긴 GI(long GI), 더블 GI(double GI) 또는 트리플 GI(triple GI)일 수 있다. 예를 들어, 더블 GI는 짧은 GI 길이의 2배, 트리플 GI(triple GI)는 짧은 GI 길이의 3배로 정의된 길이일 수 있다.

도 12는 본 발명의 실시예에 따른 HEW STA이 HEW 포맷 PPDU에서 FFT 크기를 탐지하는 방법을 나타낸 개념도이다.
도 12에서는 HEW 포맷 PPDU에서 HEW 부분의 GI의 설정에 대해 게시한다.
도 12를 참조하면, HEW 포맷 PPDU의 구체적인 예로, 도 6에서 전술한 바와 같이 HEW 포맷 PPDU의 HEW 부분이 HEW-SIG-A, HEW-STF, HEW-LTF, HEW-SIG-B, 데이터 필드를 포함한 경우를 가정한다. 또한, HEW-SIG-A에 2개의 OFDM 심볼이 할당된 경우를 가정한다.
이러한 경우, HEW 부분의 첫번째 필드인 HEW-SIG-A에 대한 OFDM 심볼은 긴 GI, 더블 GI 또는 트리플 GI를 포함할 수 있다.
도 12의 상단과 같이 복수의 OFDM 심볼이 HEW-SIG-A(1200)에 할당된 경우, 긴 GI(1250)가 HEW-SIG-A(1200)에 대응되는 OFDM 심볼마다 포함될 수도 있다.
또는 도 12의 하단과 같이 HEW STA의 FFT 크기 변화에 대한 판단을 좀더 용이하게 하기 위해서 HEW-SIG-A(1270)에 할당되는 OFDM 심볼 중 첫번째 OFDM 심볼(1280)은 더블 GI(1290) 또는 트리플 GI를 포함하고, 나머지 OFDM 심볼(1285)에 대한 GI는 상대적으로 짧은 길이의 GI를 포함하거나 나머지 OFDM 심볼(1285)은 GI를 포함하지 않을 수 있다.

도 13은 본 발명의 실시예에 따른 HEW STA이 HEW 포맷 PPDU에서 FFT 크기를 탐지하는 방법을 나타낸 개념도이다.
도 13에서는 HEW 부분의 첫번째 필드로 HEW-STF(또는 HEW-LTF)와 같은 트레이닝 필드를 위치시키는 경우, HEW STA의 FFT 크기 탐지 방법에 대해 게시한다.
예를 들어, HEW STA은 레가시 부분(1300) 이후에 전송되는 OFDM 심볼(이하, 탐색 OFDM 심볼(1350))에 대한 시퀀스 코릴레이션(sequence correlation)를 탐색할 수 있다.
HEW STA은 탐색 OFDM 심볼(1350)에 대한 시퀀스 코릴레이션이 제1 코릴레이션 특성으로 판단되는 경우, 제1 FFT 크기로 판단할 수 있다. 또한, HEW STA은 탐색 OFDM 심볼(1350)에 대한 시퀀스 코릴레이션이 제2 코릴레이션 특성으로 판단되는 경우, 제2 FFT 크기로 판단할 수 있다. HEW STA은 제2 FFT로 판단되는 경우, 레가시 부분(1300) 이후에 전송되는 OFDM 심볼을 HEW 부분에 포함되는 HEW-STF로 판단할 수 있다.
전술한 바와 같이 HEW 부분에서 시그널링 필드(예를 들어, HEW-SIG-A) 이전에 HEW-STF가 위치하는 경우, HEW STA은 채널 대역폭 정보를 획득하기 위해 HEW-STF에 대응되는 OFDM 심볼에서 블라인드 탐지를 수행해야 할 수 있다. 이러한 문제점을 해결하기 위해 HEW-STF 시퀀스와 채널 대역폭 정보를 매핑할 수 있고, HEW STA은 HEW-STF 시퀀스를 기반으로 채널 대역폭 정보를 획득할 수 있다.
예를 들어, HEW 포맷 PPDU가 HEW-STF, HEW-LTF, HEW-SIG-A/B 및 데이터 필드를 포함하는 경우, HEW-STF 시퀀스가 채널 대역폭 정보를 포함하고 HEW-SIG는 별도의 채널 대역폭 정보를 포함하지 않을 수 잇다.

도 14는 본 발명의 실시예에 따른 레가시 STA의 HEW PPDU 수신시 동작을 나타낸 개념도이다.
도 14에서는 도 6에서 게시한 HEW 포맷 PPDU를 가정한다.
도 14를 참조하면, 레가시 STA은 레가시 부분(1400) 이후에 위치한 필드(L-SIG 이후의 필드)를 탐색하고 디코딩할 수 없는 필드(예를 들어, 다른 FFT 크기를 기반으로 생성된 필드)인 경우, 추가적인 디코딩을 수행하지 않고 L-SIG에 있는 길이 필드(length field)를 기반으로 NAV(network allocation vector) 설정을 하고 채널 접속을 연기(defer)할 수 있다.
즉, 서로 다른 OFDM 뉴머놀로지가 레가시 부분(1400)과 HEW 부분(1450)에 적용됨으로써 레가시 STA은 HEW 부분(1450)을 디코딩이 불가능한 필드로 판단할 수 있다.
또는 레가시 STA은 수신한 PPDU가 디코딩이 가능한 PPDU 포맷인지 여부를 판단하기 위해 자동 탐지 규칙(auto-detection rule)을 사용하여 레가시 부분(1400)의 뒤에 위치한 적어도 하나의 OFDM 심볼까지의 성상(constellation) 정보를 판단할 수도 있다. 즉, 레가시 STA은 레가시 부분의 뒤에 위치한 적어도 하나의 OFDM 심볼의 성상 정보를 기반으로 수신한 PPDU가 디코딩이 가능한 PPDU 포맷인지 여부를 판단할 수 있다.

도 15는 본 발명의 실시예가 적용될 수 있는 무선 장치를 나타내는 블록도이다.
도 15를 참조하면, 무선 장치(1500)는 상술한 실시예를 구현할 수 있는 STA로서, AP(1500) 또는 비 AP STA(non-AP station)(또는 STA)(1550)일 수 있다.
AP(1500)는 프로세서(1510), 메모리(1520) 및 RF부(radio frequency unit, 1530)를 포함한다.
RF부(1530)는 프로세서(1520)와 연결하여 무선신호를 송신/수신할 수 있다.
프로세서(1520)는 본 발명에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(1520)는 전술한 본 발명의 실시예에 따른 무선 장치의 동작을 수행하도록 구현될 수 있다. 프로세서는 도 6 내지 14의 실시예에서 개시한 무선 장치의 동작을 수행할 수 있다.
예를 들어, 프로세서(1520)는 제1 부분과 제2 부분을 포함하는 PPDU를 생성하고 PPDU를 전송하도록 구현될 수 있다. 제1 부분은 제1 FFT 크기에 따른 IFFT가 수행되어 생성되고, 제2 부분은 제2 FFT 크기에 따른 IFFF가 수행되어 생성될 수 있다.
STA(1550)는 프로세서(1560), 메모리(1570) 및 RF부(radio frequency unit, 1580)를 포함한다.
RF부(1580)는 프로세서(1560)와 연결하여 무선신호를 송신/수신할 수 있다.
프로세서(1560)는 본 발명에서 제안된 기능, 과정 및/또는 방법을 구현할 수 있다. 예를 들어, 프로세서(1520)는 전술한 본 발명의 실시예에 따른 무선 장치의 동작을 수행하도록 구현될 수 있다. 프로세서는 도 6 내지 14의 실시예에서 무선 장치의 동작을 수행할 수 있다.
예를 들어, 프로세서(1560)는 수신한 PPDU에서 사용된 FFT 크기의 변화를 기반으로 수신한 PPDU에서 HEW 부분을 판단하기 위해 구현될 수 있다.
프로세서(1510, 1560)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 메모리(1520, 1570)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(1530, 1580)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다.
실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(1520, 1570)에 저장되고, 프로세서(1510, 1560)에 의해 실행될 수 있다. 메모리(1520, 1570)는 프로세서(1510, 1560) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1510, 1560)와 연결될 수 있다.

Claims (10)

  1. PPDU(PLCP(physical layer convergence procedure) protocol data unit)를 전송하는 방법에 있어서,
    STA(station)이 제1 부분과 제2 부분을 포함하는 상기 PPDU를 생성하는 단계; 및
    상기 STA이 상기 PPDU를 전송하는 단계를 포함하되,
    상기 제1 부분은 제1 FFT(fast fourier transform) 크기에 따른 IFFT(inverse fast fourier transform)가 수행되어 생성되고,
    상기 제2 부분은 제2 FFT 크기에 따른 상기 IFFF가 수행되어 생성되고,
    상기 제1 FFT 크기와 제2 FFT 크기는 다른 방법.
  2. 제1항에 있어서,
    상기 제1 부분은 제1 OFDM(orthogonal frequency division multiplexing) 심볼 상에서 전송되고,
    상기 제2 부분은 제2 OFDM 심볼 상에서 전송되고,
    상기 제1 OFDM 심볼의 듀레이션은 제1 가드 인터벌 듀레이션(guard interval duration)과 상기 제1 FFT 크기에 따라 결정되는 제1 FFT 기간(fast fourier transform period)의 합이고,
    상기 제2 OFDM 심볼의 듀레이션은 제2 가드 인터벌 듀레이션과 상기 제2 FFT 크기에 따라 결정되는 제2 FFT 기간의 합인 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 제2 가드 인터벌 듀레이션은 상기 제1 가드 인터벌 듀레이션보다 긴 것을 특징으로 하는 방법.
  4. 제2항에 있어서,
    상기 제2 OFDM 심볼 상의 서브캐리어의 수는 상기 제1 OFDM 심볼 상의 서브캐리어의 수의 2의 배수 배인 방법.
  5. 제1항에 있어서,
    상기 제2 FFT의 크기는 상기 제1 FFT 크기의 2의 배수 배인 것을 특징으로 하는 방법.
  6. 무선랜에서 PPDU(PLCP(physical layer convergence procedure) protocol data unit)를 전송하는 STA(station)에 있어서, 상기 STA은,
    무선 신호를 송신하기 위해 구현된 RF(radio frequency)부; 및
    상기 RF부와 선택적으로 연결되는 프로세서를 포함하되,
    상기 프로세서는 제1 부분과 제2 부분을 포함하는 상기 PPDU를 생성하고 상기 PPDU를 전송하도록 구현되되,
    상기 제1 부분은 제1 FFT(fast fourier transform) 크기에 따른 IFFT(inverse fast fourier transform)가 수행되어 생성되고,
    상기 제2 부분은 제2 FFT 크기에 따른 상기 IFFF가 수행되어 생성되고,
    상기 제1 FFT 크기와 제2 FFT 크기는 다른 STA.
  7. 제6항에 있어서,
    상기 제1 부분은 제1 OFDM(orthogonal frequency division multiplexing) 심볼 상에서 전송되고,
    상기 제2 부분은 제2 OFDM 심볼 상에서 전송되고,
    상기 제1 OFDM 심볼의 듀레이션은 제1 가드 인터벌 듀레이션(guard interval duration)과 상기 제1 FFT 크기에 따라 결정되는 제1 FFT 기간(fast fourier transform period)의 합이고,
    상기 제2 OFDM 심볼의 듀레이션은 제2 가드 인터벌 듀레이션과 상기 제2 FFT 크기에 따라 결정되는 제2 FFT 기간의 합인 것을 특징으로 하는 STA.
  8. 제7항에 있어서,
    상기 제2 가드 인터벌 듀레이션은 상기 제1 가드 인터벌 듀레이션보다 긴 것을 특징으로 하는 STA.
  9. 제7항에 있어서,
    상기 제2 OFDM 심볼 상의 서브캐리어의 수는 상기 제1 OFDM 심볼 상의 서브캐리어의 수의 2의 배수 배인 것을 특징으로 하는 방법.
  10. 제6항에 있어서,
    상기 제2 FFT의 크기는 상기 제1 FFT 크기의 2의 배수 배인 것을 특징으로 하는 방법.

PCT/KR2014/004049 2013-05-07 2014-05-07 데이터 유닛을 전송하는 방법 및 장치 WO2014182065A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP14794287.4A EP2996271B1 (en) 2013-05-07 2014-05-07 Method and device for transmitting data unit
EP19187659.8A EP3588817B1 (en) 2013-05-07 2014-05-07 Method and device for transmitting data unit
JP2016510630A JP6201037B2 (ja) 2013-05-07 2014-05-07 データユニットを送信する方法及び装置
CN201480025506.6A CN105229951B (zh) 2013-05-07 2014-05-07 发送数据单元的方法和设备
KR1020157032002A KR101719093B1 (ko) 2013-05-07 2014-05-07 데이터 유닛을 전송하는 방법 및 장치
US14/785,834 US9871683B2 (en) 2013-05-07 2014-05-07 Method and device for transmitting data unit
AU2014263335A AU2014263335B2 (en) 2013-05-07 2014-05-07 Method and device for transmitting data unit
CA2911262A CA2911262C (en) 2013-05-07 2014-05-07 Method and device for transmitting data unit
US15/840,539 US10404513B2 (en) 2013-05-07 2017-12-13 Method and device for transmitting data unit
US16/535,756 US10999113B2 (en) 2013-05-07 2019-08-08 Method and device for transmitting data unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361820185P 2013-05-07 2013-05-07
US61/820,185 2013-05-07

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/785,834 A-371-Of-International US9871683B2 (en) 2013-05-07 2014-05-07 Method and device for transmitting data unit
US15/840,539 Continuation US10404513B2 (en) 2013-05-07 2017-12-13 Method and device for transmitting data unit

Publications (1)

Publication Number Publication Date
WO2014182065A1 true WO2014182065A1 (ko) 2014-11-13

Family

ID=51867478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004049 WO2014182065A1 (ko) 2013-05-07 2014-05-07 데이터 유닛을 전송하는 방법 및 장치

Country Status (8)

Country Link
US (3) US9871683B2 (ko)
EP (2) EP2996271B1 (ko)
JP (1) JP6201037B2 (ko)
KR (1) KR101719093B1 (ko)
CN (1) CN105229951B (ko)
AU (1) AU2014263335B2 (ko)
CA (1) CA2911262C (ko)
WO (1) WO2014182065A1 (ko)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076511A1 (ko) * 2014-11-16 2016-05-19 엘지전자 주식회사 무선랜 시스템에서 프레임 전송 방법
WO2016099140A1 (ko) * 2014-12-16 2016-06-23 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2016118237A1 (en) * 2015-01-21 2016-07-28 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency packet formats using a legacy portion of the preamble in wireless local-area networks
WO2016137673A1 (en) * 2015-02-27 2016-09-01 Intel IP Corporation Joint encoding of wireless communication allocation information
WO2016140402A1 (ko) * 2015-02-08 2016-09-09 엘지전자(주) 무선 통신 시스템에서 데이터 송수신을 위한 방법 및 이를 위한 장치
WO2016143970A1 (ko) * 2015-03-06 2016-09-15 엘지전자(주) 무선 통신 시스템의 데이터 전송 방법 및 장치
WO2016171475A1 (ko) * 2015-04-20 2016-10-27 주식회사 윌러스표준기술연구소 트레이닝 신호를 이용하는 무선 통신 방법 및 무선 통신 단말
WO2016175439A1 (ko) * 2015-04-27 2016-11-03 엘지전자(주) 무선 통신 시스템의 데이터 전송 방법 및 장치
WO2016178795A1 (en) * 2015-05-05 2016-11-10 Intel IP Corporation High-efficiency wireless preamble structures with efficient cyclic redundancy check
KR20160130944A (ko) * 2015-05-05 2016-11-15 삼성전자주식회사 무선 로컬 영역 네트워크 시스템에서 정보를 시그널링하기 위한 장치 및 방법
WO2016200020A1 (ko) * 2015-06-11 2016-12-15 엘지전자 주식회사 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2017061492A1 (ja) * 2015-10-05 2017-04-13 日本電信電話株式会社 無線通信システムおよび無線通信方法
WO2017076021A1 (zh) * 2015-11-06 2017-05-11 华为技术有限公司 一种发送数据帧的方法及相关设备
JP2017521924A (ja) * 2014-06-11 2017-08-03 マーベル ワールド トレード リミテッド 無線通信システム用圧縮プリアンブル
CN107079313A (zh) * 2014-12-15 2017-08-18 英特尔公司 与传统设备兼容的动态cca方案
CN107079441A (zh) * 2015-01-13 2017-08-18 华为技术有限公司 资源指示的方法、接入点和终端
KR20170139514A (ko) * 2015-04-24 2017-12-19 인텔 아이피 코포레이션 고효율 무선 근거리 네트워크에서의 와이드 채널 액세스를 위한 다중 사용자 송신 요구용 장치, 컴퓨터 판독 가능 매체 및 방법
US9847896B2 (en) 2015-01-21 2017-12-19 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency packet formats using a legacy portion of the preamble in wireless local-area networks
CN107736072A (zh) * 2015-07-01 2018-02-23 三星电子株式会社 使用ofdma使能局域网中的高效宽带操作的方法
KR20180091032A (ko) * 2016-01-07 2018-08-14 후아웨이 테크놀러지 컴퍼니 리미티드 확장 범위 모드에서의 전송 방법 및 장치
EP3229434A4 (en) * 2014-12-05 2018-08-15 LG Electronics Inc. Data transmission method in wireless communication system and device therefor
CN113992248A (zh) * 2015-05-05 2022-01-28 三星电子株式会社 识别/指示无线局域网中的调度信息的装置和方法
JP2022028937A (ja) * 2015-10-30 2022-02-16 パナソニックIpマネジメント株式会社 通信装置、通信方法および集積回路

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2911262C (en) 2013-05-07 2020-06-30 Lg Electronics Inc. Method and device for transmitting data unit
US9780919B2 (en) * 2013-07-05 2017-10-03 Quallcomm, Incorporated High efficiency WLAN preamble structure
JP6253784B2 (ja) * 2013-09-10 2017-12-27 マーベル ワールド トレード リミテッド 屋外wlanのための拡張ガードインターバル
US9991940B2 (en) 2013-09-10 2018-06-05 Qualcomm Incorporated Multi-user multiple-input multiple-output (MU-MIMO) feedback protocol
US9860893B2 (en) * 2013-11-19 2018-01-02 Intel IP Corporation Frame structure with reduced signal field and method for high-efficiency Wi-Fi (HEW) communication
US9717086B2 (en) 2013-11-27 2017-07-25 Marvell World Trade Ltd. Orthogonal frequency division multiple access for wireless local area network
HUE059474T2 (hu) 2014-01-28 2022-11-28 Huawei Tech Co Ltd Adatátviteli eljárás és kommunikációs készülék
US10044476B2 (en) * 2014-04-16 2018-08-07 Marvell World Trade Ltd. Signal field length indication in a high efficiency wireless local area network (WLAN)
US9860917B2 (en) * 2014-04-25 2018-01-02 Newracom, Inc. Method and apparatus for transmitting and receiving frame
US9716606B2 (en) * 2014-04-28 2017-07-25 Newracom, Inc. Method for transmitting frame and method for detecting transmission mode
US11855818B1 (en) * 2014-04-30 2023-12-26 Marvell Asia Pte Ltd Adaptive orthogonal frequency division multiplexing (OFDM) numerology in a wireless communication network
KR101909123B1 (ko) * 2014-06-09 2018-12-19 엘지전자 주식회사 복수의 서브밴드를 이용한 데이터 전송 방법 및 이를 이용한 기기
US20150365923A1 (en) * 2014-06-17 2015-12-17 Qualcomm Incorporated Methods and apparatus for signaling user allocations in mixed multi-user wireless communication networks
WO2015198158A2 (en) * 2014-06-27 2015-12-30 Techflux, Ltd. Operating in power save mode
EP3161990A4 (en) * 2014-06-27 2018-03-14 Techflux Ltd. Bandwidth signaling
WO2015198143A2 (en) * 2014-06-27 2015-12-30 Techflux. Ltd., Method and device for transmitting data
EP4297357A3 (en) * 2014-06-27 2024-04-03 Samsung Electronics Co., Ltd. Method and device for transmitting data
US9936492B2 (en) * 2014-07-11 2018-04-03 Qualcomm Incorporated Methods and systems for multi user uplink compatibility with legacy devices
KR20160019381A (ko) * 2014-08-11 2016-02-19 뉴라컴 인코포레이티드 고효율 무선랜의 물리계층 프로토콜 데이터 유닛을 위한 인터리버
US10340964B2 (en) * 2014-08-18 2019-07-02 Huawei Technologies Co., Ltd. System and method for orthogonal frequency division multiple access (OFDMA) transmission
US9882620B2 (en) * 2014-09-24 2018-01-30 Mediatek Inc. Synchronization in a beamforming system
US9698884B2 (en) 2014-09-24 2017-07-04 Mediatek Inc. Control signaling in a beamforming system
EP3591855B1 (en) 2014-09-25 2022-11-02 Huawei Technologies Co., Ltd. Data communication method and related apparatus
KR102144936B1 (ko) * 2014-09-30 2020-08-14 한국전자통신연구원 무선랜 시스템에서의 무선 통신 방법 및 무선 통신 장치
US20160105261A1 (en) * 2014-10-09 2016-04-14 Huawei Technologies Co., Ltd. System and Method for Space-Time Block Coded Communications
WO2016068670A2 (ko) * 2014-10-31 2016-05-06 주식회사 윌러스표준기술연구소 전력 절약을 위한 무선 통신 방법 및 이를 이용한 무선 통신 단말
US10749724B2 (en) * 2014-11-20 2020-08-18 Futurewei Technologies, Inc. System and method for setting cyclic prefix length
US10080191B2 (en) * 2015-03-26 2018-09-18 Intel IP Corporation Wireless device, method, and computer readable media for transmitting and receiving beacon frames on different sub-channels
US10111270B2 (en) * 2015-05-26 2018-10-23 Lg Electronics Inc. Method and apparatus for receiving signal by using resource units in a wireless local area system
KR20240073980A (ko) 2015-07-01 2024-05-27 파나소닉 아이피 매니지먼트 가부시키가이샤 자원 할당 정보의 전송 장치 및 전송 방법
US9948546B2 (en) 2015-08-28 2018-04-17 Apple Inc. Efficient auto detection for next generation WLAN
BR112018072666A2 (pt) 2016-05-04 2019-02-19 Huawei Tech Co Ltd método e aparelho de processamento de dados
EP3635926B1 (en) 2017-06-09 2024-03-27 Marvell World Trade Ltd. Packets with midambles having compressed ofdm symbols
US10715365B2 (en) 2017-09-22 2020-07-14 Nxp Usa, Inc. Determining number of midambles in a packet
CN111327400B (zh) * 2020-02-14 2022-02-01 中国电力科学研究院有限公司 基于ofdm的高速无线通信物理层发射信号产生方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035790A (ja) * 2009-08-04 2011-02-17 Toshiba Corp 伝送路応答推定器
JP2011217210A (ja) * 2010-04-01 2011-10-27 Hitachi Kokusai Electric Inc デジタル無線通信システム
KR101165629B1 (ko) * 2005-11-03 2012-07-17 엘지전자 주식회사 Ofdm 신호 생성/복원 방법 및 그 장치
KR20120095434A (ko) * 2010-02-12 2012-08-28 엘지전자 주식회사 무선랜 시스템에서 제어 정보 전송 방법 및 장치
US20130107912A1 (en) * 2010-07-09 2013-05-02 Vishakan Ponnampalam WLAN Device and Method Thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081131A1 (en) * 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US7558328B2 (en) * 2004-09-09 2009-07-07 Agere Systems Inc. Method and apparatus for increasing data throughput in a multiple antenna communication system using additional subcarriers
US7366250B2 (en) * 2004-09-09 2008-04-29 Agere Systems Inc. Method and apparatus for improved efficiency in an extended multiple antenna communication system
BRPI0515280A (pt) 2004-09-18 2008-07-15 Samsung Electronics Co Ltd aparelho e método para sincronização de freqüência em um sistema ofdm
US8031583B2 (en) * 2005-03-30 2011-10-04 Motorola Mobility, Inc. Method and apparatus for reducing round trip latency and overhead within a communication system
US7684473B2 (en) 2005-06-01 2010-03-23 Qualcomm Incorporated Receiver for wireless communication network with extended range
KR101208519B1 (ko) * 2005-08-23 2012-12-05 엘지전자 주식회사 다수의 반송파를 이용하여 데이터를 전송하는 장치 및 방법
US7711061B2 (en) * 2005-08-24 2010-05-04 Broadcom Corporation Preamble formats supporting high-throughput MIMO WLAN and auto-detection
US8369301B2 (en) 2007-10-17 2013-02-05 Zte (Usa) Inc. OFDM/OFDMA frame structure for communication systems
JP4666031B2 (ja) * 2008-09-09 2011-04-06 ソニー株式会社 同期回路並びに無線通信装置
US9924512B1 (en) * 2009-03-24 2018-03-20 Marvell International Ltd. OFDMA with block tone assignment for WLAN
US8599804B2 (en) * 2009-08-07 2013-12-03 Broadcom Corporation Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications
KR101412920B1 (ko) * 2009-08-26 2014-06-26 엘지전자 주식회사 Mu-mimo를 지원하는 다중 프레임 전송 방법 및 장치
KR101638917B1 (ko) * 2010-02-09 2016-07-13 엘지전자 주식회사 무선랜에서 ppdu 프레임 전송 방법 및 장치
WO2012003355A1 (en) * 2010-07-01 2012-01-05 Marvell World Trade Ltd. Modulation of signal field in a wlan frame header
US8743784B2 (en) * 2010-08-04 2014-06-03 Qualcomm Incorporated VHT-SIG-B field in null data packets (NDPs)
JP5936280B2 (ja) * 2011-01-28 2016-06-22 マーベル ワールド トレード リミテッド 長距離無線lanの物理層フレーム形式
CN103947134B (zh) * 2011-11-16 2017-10-24 马维尔国际贸易有限公司 用于在无线局域网(wlan)中使用的频率复制模式
US9178968B2 (en) * 2012-04-26 2015-11-03 Broadcom Corporation Frame formatting for communications within single user, multiple user, multiple access, and/or MIMO wireless communications
CA2911262C (en) 2013-05-07 2020-06-30 Lg Electronics Inc. Method and device for transmitting data unit
US9717086B2 (en) 2013-11-27 2017-07-25 Marvell World Trade Ltd. Orthogonal frequency division multiple access for wireless local area network
US9985814B2 (en) 2013-12-30 2018-05-29 Lg Electronics Inc. Method and device for transmitting data unit in WLAN
CN106664275B (zh) 2014-01-07 2020-08-18 马维尔亚洲私人有限公司 用于wlan的物理层帧格式

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101165629B1 (ko) * 2005-11-03 2012-07-17 엘지전자 주식회사 Ofdm 신호 생성/복원 방법 및 그 장치
JP2011035790A (ja) * 2009-08-04 2011-02-17 Toshiba Corp 伝送路応答推定器
KR20120095434A (ko) * 2010-02-12 2012-08-28 엘지전자 주식회사 무선랜 시스템에서 제어 정보 전송 방법 및 장치
JP2011217210A (ja) * 2010-04-01 2011-10-27 Hitachi Kokusai Electric Inc デジタル無線通信システム
US20130107912A1 (en) * 2010-07-09 2013-05-02 Vishakan Ponnampalam WLAN Device and Method Thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2996271A4 *

Cited By (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10958492B2 (en) 2014-06-11 2021-03-23 Nxp Usa, Inc. Compressed preamble for a wireless communication system
JP2017521924A (ja) * 2014-06-11 2017-08-03 マーベル ワールド トレード リミテッド 無線通信システム用圧縮プリアンブル
US10348460B2 (en) 2014-11-16 2019-07-09 Lg Electronics Inc. Method for transmitting frame in wireless LAN system
WO2016076511A1 (ko) * 2014-11-16 2016-05-19 엘지전자 주식회사 무선랜 시스템에서 프레임 전송 방법
US10405338B2 (en) 2014-12-05 2019-09-03 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
US10986660B2 (en) 2014-12-05 2021-04-20 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
EP3588888A1 (en) * 2014-12-05 2020-01-01 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
EP3229434A4 (en) * 2014-12-05 2018-08-15 LG Electronics Inc. Data transmission method in wireless communication system and device therefor
TWI625062B (zh) * 2014-12-15 2018-05-21 英特爾公司 動態的空閒頻道評估(cca)方案與傳統裝置共存之技術
US20170331714A1 (en) * 2014-12-15 2017-11-16 Intel Corporation Dynamic cca scheme with legacy device coexistance
CN107079313A (zh) * 2014-12-15 2017-08-18 英特尔公司 与传统设备兼容的动态cca方案
US10536937B2 (en) 2014-12-16 2020-01-14 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
CN107113833B (zh) * 2014-12-16 2021-06-04 Lg电子株式会社 无线通信系统中的数据发送方法及其装置
US11032811B2 (en) 2014-12-16 2021-06-08 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
WO2016099140A1 (ko) * 2014-12-16 2016-06-23 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
CN107113833A (zh) * 2014-12-16 2017-08-29 Lg电子株式会社 无线通信系统中的数据发送方法及其装置
CN107079441A (zh) * 2015-01-13 2017-08-18 华为技术有限公司 资源指示的方法、接入点和终端
US9806927B2 (en) 2015-01-21 2017-10-31 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency packet formats using a legacy portion of the preamble in wireless local-area networks
US9847896B2 (en) 2015-01-21 2017-12-19 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency packet formats using a legacy portion of the preamble in wireless local-area networks
US10122510B2 (en) 2015-01-21 2018-11-06 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency packet formats using a legacy portion of the preamble in wireless local-area networks
WO2016118237A1 (en) * 2015-01-21 2016-07-28 Intel IP Corporation Method, apparatus, and computer readable medium for signaling high efficiency packet formats using a legacy portion of the preamble in wireless local-area networks
WO2016140402A1 (ko) * 2015-02-08 2016-09-09 엘지전자(주) 무선 통신 시스템에서 데이터 송수신을 위한 방법 및 이를 위한 장치
US9955469B2 (en) 2015-02-27 2018-04-24 Intel Corporation Joint encoding of wireless communication allocation information
US10602501B2 (en) 2015-02-27 2020-03-24 Intel IP Corporation Joint encoding of wireless communication allocation information
WO2016137673A1 (en) * 2015-02-27 2016-09-01 Intel IP Corporation Joint encoding of wireless communication allocation information
WO2016143970A1 (ko) * 2015-03-06 2016-09-15 엘지전자(주) 무선 통신 시스템의 데이터 전송 방법 및 장치
US10277442B2 (en) 2015-03-06 2019-04-30 Lg Electronics Inc. Data transmission method and apparatus in wireless communication system
KR102493881B1 (ko) 2015-03-06 2023-01-31 엘지전자 주식회사 무선 통신 시스템의 데이터 전송 방법 및 장치
JP2018511982A (ja) * 2015-03-06 2018-04-26 エルジー エレクトロニクス インコーポレイティド 無線通信システムのデータ送信方法及び装置
KR20170126448A (ko) * 2015-03-06 2017-11-17 엘지전자 주식회사 무선 통신 시스템의 데이터 전송 방법 및 장치
US10630515B2 (en) 2015-03-06 2020-04-21 Lg Electronics Inc. Data transmission method and apparatus in wireless communication system
US11722277B2 (en) 2015-04-20 2023-08-08 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal using training signal
CN107534973A (zh) * 2015-04-20 2018-01-02 韦勒斯标准与技术协会公司 使用训练信号的无线通信方法和无线通信终端
US11283570B2 (en) 2015-04-20 2022-03-22 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal using training signal
US11290233B2 (en) 2015-04-20 2022-03-29 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal using training signal
WO2016171475A1 (ko) * 2015-04-20 2016-10-27 주식회사 윌러스표준기술연구소 트레이닝 신호를 이용하는 무선 통신 방법 및 무선 통신 단말
US10666405B2 (en) 2015-04-20 2020-05-26 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal using training signal
CN107534973B (zh) * 2015-04-20 2021-12-24 韦勒斯标准与技术协会公司 使用训练信号的无线通信方法和无线通信终端
EP3286979A4 (en) * 2015-04-24 2019-03-06 Intel IP Corporation APPARATUS, COMPUTER-READABLE MEDIUM, AND METHOD FOR MULTI-USER SENDING REQUEST FOR ACCESS TO A BROAD CHANNEL IN A HIGH-EFFICIENCY WIRELESS LOCAL NETWORK
KR102579710B1 (ko) 2015-04-24 2023-09-15 인텔 코포레이션 고효율 무선 근거리 네트워크에서의 와이드 채널 액세스를 위한 다중 사용자 송신 요구용 장치, 컴퓨터 판독 가능 매체 및 방법
KR20170139514A (ko) * 2015-04-24 2017-12-19 인텔 아이피 코포레이션 고효율 무선 근거리 네트워크에서의 와이드 채널 액세스를 위한 다중 사용자 송신 요구용 장치, 컴퓨터 판독 가능 매체 및 방법
WO2016175439A1 (ko) * 2015-04-27 2016-11-03 엘지전자(주) 무선 통신 시스템의 데이터 전송 방법 및 장치
WO2016178795A1 (en) * 2015-05-05 2016-11-10 Intel IP Corporation High-efficiency wireless preamble structures with efficient cyclic redundancy check
CN107820683A (zh) * 2015-05-05 2018-03-20 三星电子株式会社 用于在无线局域网系统中发信息的设备和方法
CN113992248B (zh) * 2015-05-05 2024-02-02 三星电子株式会社 识别/指示无线局域网中的调度信息的装置和方法
US11418633B2 (en) 2015-05-05 2022-08-16 Samsung Electronics Co., Ltd. Efficient signaling and addressing in wireless local area network systems
CN113992248A (zh) * 2015-05-05 2022-01-28 三星电子株式会社 识别/指示无线局域网中的调度信息的装置和方法
KR20160130944A (ko) * 2015-05-05 2016-11-15 삼성전자주식회사 무선 로컬 영역 네트워크 시스템에서 정보를 시그널링하기 위한 장치 및 방법
EP4164169A1 (en) * 2015-05-05 2023-04-12 Samsung Electronics Co., Ltd. Device and method for signaling information in wireless local area network system
CN107820683B (zh) * 2015-05-05 2021-10-01 三星电子株式会社 用于在无线局域网系统中发信息的设备和方法
KR102244034B1 (ko) * 2015-05-05 2021-04-23 삼성전자주식회사 무선 로컬 영역 네트워크 시스템에서 정보를 시그널링하기 위한 장치 및 방법
EP3293932A4 (en) * 2015-05-05 2018-05-09 Samsung Electronics Co., Ltd. Device and method for signaling information in wireless local area network system
US10582025B2 (en) 2015-05-05 2020-03-03 Samsung Electronics Co., Ltd. Efficient signaling and addressing in wireless local area network systems
EP3860032A1 (en) * 2015-05-05 2021-08-04 Samsung Electronics Co., Ltd. Device and method for signaling information in wireless local area network system
WO2016200020A1 (ko) * 2015-06-11 2016-12-15 엘지전자 주식회사 무선랜 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
US10469302B2 (en) 2015-06-11 2019-11-05 Lg Electronics Inc. Method for transmitting and receiving signal in wireless LAN and apparatus therefor
CN107736072B (zh) * 2015-07-01 2022-01-18 三星电子株式会社 使用ofdma使能局域网中的高效宽带操作的方法
CN107736072A (zh) * 2015-07-01 2018-02-23 三星电子株式会社 使用ofdma使能局域网中的高效宽带操作的方法
US11943810B2 (en) 2015-10-05 2024-03-26 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method
US10743346B2 (en) 2015-10-05 2020-08-11 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method
US11432327B2 (en) 2015-10-05 2022-08-30 Nippon Telegraph And Telephone Corporation Wireless communication system and wireless communication method
WO2017061492A1 (ja) * 2015-10-05 2017-04-13 日本電信電話株式会社 無線通信システムおよび無線通信方法
JP7285490B2 (ja) 2015-10-30 2023-06-02 パナソニックIpマネジメント株式会社 通信装置、通信方法および集積回路
JP2022028937A (ja) * 2015-10-30 2022-02-16 パナソニックIpマネジメント株式会社 通信装置、通信方法および集積回路
WO2017076021A1 (zh) * 2015-11-06 2017-05-11 华为技术有限公司 一种发送数据帧的方法及相关设备
US10819478B2 (en) 2016-01-07 2020-10-27 Huawei Technologies Co., Ltd. Extended range mode transmission method and apparatus
JP2019503143A (ja) * 2016-01-07 2019-01-31 華為技術有限公司Huawei Technologies Co.,Ltd. 拡張範囲モード送信方法および装置
KR20180091032A (ko) * 2016-01-07 2018-08-14 후아웨이 테크놀러지 컴퍼니 리미티드 확장 범위 모드에서의 전송 방법 및 장치
JP2020115643A (ja) * 2016-01-07 2020-07-30 華為技術有限公司Huawei Technologies Co.,Ltd. 拡張範囲モード送信方法および装置
JP7404473B2 (ja) 2016-01-07 2023-12-25 華為技術有限公司 拡張範囲モード送信方法および装置
JP7143357B2 (ja) 2016-01-07 2022-09-28 華為技術有限公司 拡張範囲モード送信方法および装置
KR102215932B1 (ko) * 2016-01-07 2021-02-16 후아웨이 테크놀러지 컴퍼니 리미티드 확장 범위 모드에서의 전송 방법 및 장치

Also Published As

Publication number Publication date
KR20160008538A (ko) 2016-01-22
EP3588817A1 (en) 2020-01-01
US9871683B2 (en) 2018-01-16
AU2014263335B2 (en) 2017-11-23
EP3588817B1 (en) 2020-12-09
JP2016522614A (ja) 2016-07-28
EP2996271A1 (en) 2016-03-16
KR101719093B1 (ko) 2017-03-22
EP2996271B1 (en) 2019-09-11
US10404513B2 (en) 2019-09-03
CA2911262A1 (en) 2014-11-13
AU2014263335A1 (en) 2015-11-26
JP6201037B2 (ja) 2017-09-20
EP2996271A4 (en) 2017-02-15
CN105229951B (zh) 2018-10-12
US20190363921A1 (en) 2019-11-28
US10999113B2 (en) 2021-05-04
CN105229951A (zh) 2016-01-06
CA2911262C (en) 2020-06-30
US20160072654A1 (en) 2016-03-10
US20180115451A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
US10999113B2 (en) Method and device for transmitting data unit
KR101759011B1 (ko) 시그널 필드를 송신하는 방법 및 장치
KR101884541B1 (ko) 데이터 단위를 수신하는 방법 및 장치
KR101686372B1 (ko) 무선 통신 시스템에서 하향링크 전송 방법 및 장치
JP6310081B2 (ja) 無線lanにおいて複数のstaにデータを送信する方法及び装置
KR101686374B1 (ko) 무선 통신 시스템에서 상향링크 전송 방법 및 장치
US8687583B2 (en) Method and apparatus for communication in a wireless LAN system
KR101686373B1 (ko) 멀티 bss에서 데이터 송신 및 수신 방법 및 장치
US9912514B2 (en) Method and device for transmitting data based on different pilot tone patterns in wireless LAN
US20180035461A1 (en) Medium protecting method and device for mu transmission in wireless lan

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480025506.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794287

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14785834

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016510630

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2911262

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20157032002

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014263335

Country of ref document: AU

Date of ref document: 20140507

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014794287

Country of ref document: EP