WO2017118151A1 - 实现ptn设备平台前向兼容mstp设备的方法及系统 - Google Patents

实现ptn设备平台前向兼容mstp设备的方法及系统 Download PDF

Info

Publication number
WO2017118151A1
WO2017118151A1 PCT/CN2016/102816 CN2016102816W WO2017118151A1 WO 2017118151 A1 WO2017118151 A1 WO 2017118151A1 CN 2016102816 W CN2016102816 W CN 2016102816W WO 2017118151 A1 WO2017118151 A1 WO 2017118151A1
Authority
WO
WIPO (PCT)
Prior art keywords
payload
cep
satop
pdh
frame
Prior art date
Application number
PCT/CN2016/102816
Other languages
English (en)
French (fr)
Inventor
周志强
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Priority to MYPI2018700368A priority Critical patent/MY186763A/en
Publication of WO2017118151A1 publication Critical patent/WO2017118151A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1623Plesiochronous digital hierarchy [PDH]
    • H04J3/1635Format conversion, e.g. CEPT/US
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1611Synchronous digital hierarchy [SDH] or SONET
    • H04J3/1617Synchronous digital hierarchy [SDH] or SONET carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1664Optical Transport Network [OTN] carrying hybrid payloads, e.g. different types of packets or carrying frames and packets in the paylaod
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for implementing a forward compatible MSTP device of a PTN device platform.
  • the data transmission platform is mostly a PTN device defined by the PTN (Packet Transport Network) standard, which is suitable for transmission and exchange of packet services (such as Ethernet and IP services), but does not have SDH (Synchronous Digital Hierarchy). , synchronous digital series) time slot switching and transmission capability of the device, which causes the PTN device to be backward compatible with the SDH network.
  • SDH Serial Digital Hierarchy
  • MSTP Multi-Service Transfer Platform, Multi-Service Transfer
  • the technical problem to be solved by the present invention is that the PTN device platform cannot be compatible with the MSTP device.
  • the technical solution adopted by the present invention is to provide a system for implementing a forward compatible MSTP device of a PTN device platform.
  • the signal decomposition module decomposes each PDH signal or SDH signal received by the PTN device platform to obtain a PDH signal payload E1/T1/E3/T3 or an SDH signal payload VC12/VC4, and sends it out;
  • the SAToP sending module cuts the continuous PDH signal payload E1/T1/E3/T3 into fixed-length PDH payload data slices according to the length required by the system, and adds a Fixed RTP frame header to each PDH payload data slice.
  • the SAToP control word obtains a SAToP frame with the PDH payload data slice as a payload;
  • the CEP sending module cuts the continuous SDH signal payload VC12/VC4 into fixed-length SDH payload data slices according to the length required by the system, and adds a Fixed RTP frame header and a CEP protocol frame header to each SDH payload data slice. Obtaining a CEP frame with the SDH payload data slice as a payload;
  • the Ethernet frame encapsulation module adds an MPLS/VLAN identifier to the SAToP frame or the CEP frame, and each MPLS/VLAN identifier corresponds to a payload E1/T1/E3/T3/VC4/VC12 channel, and is encapsulated into a SAToP or CEP Ethernet frame;
  • An Ethernet frame sending module sends the encapsulated Ethernet frame to the peer end through an Ethernet frame-based switching network
  • the Ethernet frame receiving module forwards the received SAToP or CEP Ethernet frames respectively;
  • the SAToP receiving module recovers the PDH payload data slice from the SAToP Ethernet frame, and reconstructs the PDH payload data slice to generate a continuous PDH signal payload E1/T1/E3/T3;
  • the CEP receiving module recovers the SDH payload PDH payload from the CEP Ethernet frame, and recombines the PDH payload to generate a continuous SDH signal payload VC12/VC-4;
  • the signal recombination module restores the recombined continuous PDH signal payload E1/T1/E3/T3 or the SDH signal payload VC12/VC-4 to a PDH signal or an SDH signal.
  • the SAToP Ethernet frame format is composed of a label switching path or a pseudowire label stack, a SAToP control word, a Fixed RTP frame header, and an E1/T/1/E3/T3 data slice.
  • the CEP Ethernet frame format is composed of a label switching path or a pseudowire marking stack, a CEP protocol frame header, a Fixed RTP frame header, and a VC12/VC4 data slice.
  • the format of the Fixed RTP frame header includes:
  • Version number V must be set to 2;
  • extension bit X the sender must be set to 0, the receiver must ignore this bit
  • the source count bit CC the sender must be set to 0, the receiver must ignore this bit;
  • the identification bit M must be set to 0 by the sender, and the receiver must ignore this bit;
  • the value of PT should be assigned by the range of PW dynamic values in each direction.
  • the same PT value can be used for different CEP PWs and directions;
  • the sequence number Sequence Number[0:15] is incremented every time a packet is sent from 0 to 0xFFFF.
  • the peer can detect whether the packet is lost and reorder the received packet.
  • the value is the same as the sequence number in the control word. ;
  • the synchronization source SSRC[0:31] can be used to detect incorrect connections.
  • the SAToP control word is composed of the following fields:
  • L bit is the alarm indication bit. If the L bit is set to "1", the TDM payload in the packet is invalid. When the peer receives the L bit 1 packet, it will send all "1" to the corresponding TDM port.
  • R bit which is the remote defect indication bit, and the R bit is set to 1 to indicate that the remote end reception is lost
  • RSV and FRG which are reserved and segmented bits, the sender must be set to 0, and the receiver must ignore this bit;
  • Length[0:5] is the length field. If it is not 0, it indicates the length of the SAToP frame header. If the RTP frame header is used, the length of the RTP frame header and the length of the payload are added, and if the length is the total value. When less than or equal to 64 bytes, the length field must be set to the actual value. Otherwise set to 0;
  • Sequence Number[0:15] is the sequence number of the packet. Each time a data slice is sent, it is incremented from 0 to 0xFFFF. The peer can detect whether the packet is lost and reorder the received packet.
  • the CEP Header consists of the following fields:
  • Lbit is the alarm indication bit. If Lbit is set to "1", the TDM payload in the data slice is invalid. When the peer receives the data slice with L bit 1, it will send all "1" to the corresponding TDM port.
  • Rbit which is the remote defect indication bit, and the R bit is set to "1" to indicate that the remote reception is lost;
  • N and P bits which are pointer negative adjustment and positive adjustment indicator bits, which are used to explicitly relay negative and positive pointer adjustment events through the PSN.
  • N and P bits are optional, if not used, N and P bits Must be set to 0;
  • FRG which is a segmentation bit, the sender must be set to 0, and the receiver must ignore this bit;
  • Sequence Number[0:15] is the sequence number of the packet.
  • the peer end can detect whether the packet is lost and reorder the received packet.
  • Structure Pointer[0:11] is the structure pointer value.
  • the structure pointer must contain the offset of the first byte of the SONET structure in the packet payload.
  • the structure pointer is located in the J1 byte of the CEP data slice.
  • VT simulation the structure pointer is located in the V5 byte of the data slice; the structure pointer value ranges from "0" to "0xFFE", the "0" represents the first byte followed by the CEP frame header, when the data slice does not carry J1 Or V5 word
  • the structure pointer must be set to 0xFFF;
  • Reserved is a reserved field, the sender must be set to 0, the receiver must ignore this bit.
  • the format of the SAToP or CEP Ethernet frame includes:
  • the TPID label protocol identifier value is expressed in hexadecimal as 0x8100;
  • the VLAN value corresponds to the channel number defined by the label switching path.
  • Ethernet frame type value is expressed in hexadecimal as 0x8847;
  • the label switched path values are expressed in hexadecimal, and each label switched path value corresponds to the E1/T1/E3/T3/VC12/VC4 signal channels.
  • the present invention also provides a method for implementing a forward compatible MSTP device of a PTN device platform, which is characterized in that it comprises the following steps:
  • Step A100 Decompose each PDH signal or SDH signal received by the PTN device platform into a continuous PDH signal payload E1/T1/E3/T3 or an SDH signal payload.
  • Step A200 Cut the continuous PDH signal payload E1/T1/E3/T3 or the SDH signal payload VC12/VC-4 according to the length required by the system, and cut into a fixed length PDH payload or SDH according to the SAToP protocol or the CEP protocol.
  • the data is sliced, and the SAToP frame or the CEP frame is formed by using the PDH payload or the SDH payload data slice as the payload respectively;
  • Step A300 Add an MPLS/VLAN identifier for the SAToP frame or the CEP frame, and each MPLS/VLAN identifier corresponds to a payload E1/T1/E3/T3/VC4/VC12 channel, and is encapsulated into a SAToP or CEP Ethernet frame.
  • Step A400 Send the encapsulated SAToP or CEP Ethernet frame to the peer end through the Ethernet frame-based switching network.
  • Step A500 The peer end distributes the received SAToP or CEP Ethernet frame to its corresponding SAToP receiving module or CEP receiving module, respectively recovers the continuous PDH signal payload or the SDH signal payload, and obtains the PDH signal or SDH through signal recombination.
  • Signal where different PDH signals or SDH signal channels are distinguished by MPLS/VLAN identification.
  • the PTN device can be used as a PTN device and a PTN device, and can also be used as a PTN network and an MSTP network.
  • the conversion node device expands the networking capabilities and scope of the PTN device and extends the life cycle of the device.
  • FIG. 1 is a structural block diagram of a system for implementing a forward compatible MSTP device of a PTN device platform according to the present invention
  • FIG. 2 is a flowchart of a method for implementing a forward compatible MSTP device of a PTN device platform according to the present invention.
  • the system for implementing a PTN device platform forward compatible with an MSTP device is provided by the present invention
  • the PTN device platform includes: a signal decomposition module 10, a SAToP (Structure-Agnostic TDM over Packet) transmission module 20, a CEP (Circuit Emulation over Packet) transmission module 30, and an Ethernet frame encapsulation module 40. And Ethernet frame sending module 50;
  • the signal decomposition module 10 decomposes each PDH (Plesiochronous Digital Hierarchy) signal or SDH signal received by the PTN device platform to obtain a PDH signal payload E1/T1/E3/T3 or an SDH signal payload VC12/VC4. And transmitting the PDH signal payload E1/T1/E3/T3 to the SAToP sending module 20, and transmitting the SDH signal payload VC12/VC4 to the CEP sending module 30;
  • PDH Physical Digital Hierarchy
  • the SAToP sending module 20 cuts the continuous PDH signal payload E1/T1/E3/T3 into fixed-length PDH payload data slices according to the length required by the system, and adds a PDH payload data slice for each channel. Fixed RTP frame header and SAToP control word, get a SAToP frame with the PDH payload data slice as the payload;
  • the CEP transmitting module 30 cuts the continuous SDH signal payload VC12/VC4 into fixed-length SDH payload data slices according to the length required by the system, and adds a Fixed RTP frame header and a CEP for each SDH payload data slice. Header (CEP protocol frame header), which obtains a CEP frame with the SDH payload data slice as the payload;
  • the Ethernet frame encapsulating module 40 adds an MPLS/VLAN identifier to the SAToP frame or the CEP frame, and each MPLS/VLAN identifier corresponds to a payload E1/T1/E3/T3/VC4/VC12 channel, and is encapsulated into a SAToP or CEP Ethernet frame.
  • the Ethernet frame sending module 50 will be packaged through an Ethernet frame based switching network.
  • the Ethernet frame is sent to the peer end;
  • the opposite end includes: an Ethernet frame receiving module 60, a SATOP receiving module 70, a CEP receiving module 80, and a signal recombining module 90;
  • the Ethernet frame receiving module 60 sends the received SAToP or CEP Ethernet frame to the corresponding SAToP receiving module or CEP receiving module respectively;
  • the SAToP receiving module 70 restores the PDH payload data slice from the SAToP Ethernet frame, and re-synthesizes the PDH payload data slice according to the restoration sequence to generate a continuous PDH signal payload E1/T1/E3/T3;
  • the CEP receiving module 80 restores the SDH payload data slice from the Ethernet frame of the CEP frame format, and re-synthesizes the SDH payload data slice according to the restoration sequence to generate a continuous SDH signal payload VC12/VC-4;
  • Signal recombination module 90 restores the reconstructed continuous PDH signal payload E1/T1/E3/T3 or SDH signal payload VC12/VC-4 to a PDH signal or an SDH signal.
  • the SAToP frame format is composed of LSP (MPLS)/PW (MPLS) Label Stack (label switched path/pseudo-line mark stack), SAToP control word, Fixed RTP frame header, and E1/T/1/E3/T3 data.
  • the slice composition is as follows:
  • the L bit is the alarm indication bit. If the L bit is set to "1", the TDM payload in the packet is invalid. When the peer receives the L bit 1 packet, it will send all "1" to the corresponding TDM port.
  • the R bit is the remote defect indication bit, and the R bit is set to 1 to indicate that the remote end reception is lost;
  • RSV and FRG are reserved and segmented bits, the sender must be set to 0, and the receiver must ignore this bit;
  • Length(LEN)[0:5] is the length field. If it is not 0, it indicates the length of the SAToP frame header. If the RTP frame header is used, the length of the RTP frame header and the length of the payload are added, and the length is always When the value is less than or equal to 64 bytes, the length field must be set to the actual value, otherwise set to 0;
  • Sequence Number[0:15] is the packet sequence number. Each time a data slice is sent from 0 to 0xFFFF, the peer can increment the packet and check whether the packet is reordered and reordered.
  • the Fixed RTP Header frame format is defined as:
  • V is the version number and must be set to 2;
  • P is the padding bit must be set to 0 by the sender, and the receiver must ignore this bit
  • X is a defined extension bit and must be set to 0 by the sender, and the receiver must ignore this bit;
  • CC is the source count bit and must be set to 0 by the sender, and the receiver must ignore this bit;
  • M is the identification bit and must be set to 0 by the sender, and the receiver must ignore this bit;
  • PT[0:6] is the Payload type.
  • the value of PT should be assigned by the PW dynamic range in each direction. The same PT value can be used for different CEP PWs and directions.
  • Sequence Number[0:15] is the packet sequence number. Each time a packet is sent from 0 to 0xFFFF, the peer can detect whether the packet is lost and reorder the received packet. The value and the sequence number in the control word. the same;
  • Timestamp[0:31] is a timestamp value used to carry timing information
  • SSRC[0:31] is a synchronization source that can be used to detect incorrect connections.
  • the CEP frame format is:
  • CEP Header The frame format of the CEP Header (CEP Header) is:
  • L bit is the alarm indication bit, and setting the L bit to "1" indicates that the TDM payload in the packet is invalid.
  • the peer receives a packet with an L bit of 1, it sends all "1"s to the corresponding TDM port.
  • the R bit is the remote defect indication bit, and the R bit is set to 1 to indicate that the remote reception is lost;
  • N and P bits pointer adjustment and positive adjustment indicator bits, these bits are used to explicitly relay negative and positive pointer adjustment events through the PSN.
  • the use of N and P bits is optional. If not used, the N and P bits must be used. Set to 0, N and P bit settings are described in Table 1.
  • FRG is a segmentation bit, which in the present invention must be set to zero and the receiver must ignore this bit.
  • Length[0:5] is the length field. If it is not 0, it indicates the length of the CEP header. If the RTP header is used, the length is added, plus the length of the payload. When the CEP header length is added to the payload length, In addition to the length of the RTP header, when the total value is less than or equal to 64 bytes, the length field must be set to the actual value, otherwise it must be set to 0;
  • Sequence Number[0:15] the sequence number of the packet, the increment of each packet sent from 0 to 0xFFFF, the peer can detect whether the packet is lost and reorder the received packet.
  • the structure pointer must contain the offset of the first byte of the SONET structure in the packet payload.
  • the structure pointer is located in the J1 byte within the CEP packet.
  • the structure pointer is located in the V5 byte of the packet; the structure pointer The value ranges from 0 to 0xFFE, where 0 represents the first byte followed by the CEP header.
  • the structure pointer When the data slice does not carry J1 or V5 bytes, the structure pointer must be set to 0xFFF; any pointer to the attached circuit changes (new data) Flag (NDF) events) change the SONET structure offset in the CEP package to change the value of the structure pointer;
  • Reserved is a reserved field, the sender must be set to 0, and the receiver must ignore this bit.
  • the method for implementing a forward-compatible MSTP device of a PTN device platform includes the following steps:
  • Step A100 Each PDH signal or SDH letter received by the PTN device platform The number is decomposed into continuous PDH signal payload E1/T1/E3/T3 or SDH signal payload VC12/VC-4;
  • Step A200 Cut the continuous PDH signal payload E1/T1/E3/T3 or the SDH signal payload VC12/VC-4 according to the length required by the system, and cut it into a fixed length according to the RFC4553 (SAToP) protocol or the RFC4842 (CEP) protocol.
  • PDH payload or SDH payload data slice and respectively form a SAToP frame or a CEP frame with a PDH payload or an SDH payload data slice as a payload;
  • Step A300 Add an MPLS/VLAN identifier for the SAToP frame or the CEP frame, and each MPLS/VLAN identifier corresponds to a payload E1/T1/E3/T3/VC4/VC12 channel, and is encapsulated into a SAToP or CEP Ethernet frame; with MPLS/ The format of the Ethernet frame identified by the VLAN is shown in Table 2. It includes:
  • Ethertype (Ethernet frame type);
  • the SAToP frame format or the CEP frame format (that is, the LSP (Label Switched Path) or the PW (Pseudo Wire), the SAToP Control Word corresponding to the E1/T1/E3/T3 service, or the CEP corresponding to the VC12/VC4 service.
  • FCS Frae Check Sequence
  • the TPID value is represented by hexadecimal notation 0x8100, and the VLAN value is in one-to-one correspondence with the channel number defined by the LSP/PW.
  • the Ethertype value of the Ethernet frame is represented by 0x8847 in hexadecimal notation, and the LSP/PW value is expressed in hexadecimal notation.
  • each LSP/PW value is in one-to-one correspondence with the E1/T1/E3/T3/VC12/VC4 signal channels.
  • Table 2 Format of SAToP or CEP Ethernet frames.
  • Step A400 Through the Ethernet frame-based switching network, the encapsulated SAToP or CEP Ethernet frame is arbitrarily exchanged in the Ethernet packet-based distributed switching architecture data device, and can be exchanged to any single disk/arbitrary within the device. The port is thus sent to the peer.
  • Step A500 The peer end forwards the received SAToP or CEP Ethernet frame to its corresponding SAToP receiving module or CEP receiving module, and the SAToP receiving module or the CEP receiving module recovers the continuous PDH signal payload or SDH through the Ethernet frame respectively.
  • the signal payload is obtained by the signal recombination module to obtain a PDH signal or an SDH signal, wherein different PDH signals or SDH signal channels are distinguished by an MPLS/VLAN identifier.
  • the forwarding mode of the SAToP or CEP Ethernet frame is unicast, multicast, and broadcast, and the selection of the forwarding mode of the SAToP or CEP Ethernet frame is determined by the destination address.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种实现PTN设备平台前向兼容MSTP设备的方法及系统,方法包括:PDH信号或者SDH信号分解为连续的PDH净荷E1/T1/E3/T3信号或者SDH净荷VC12/VC-4信号;根据系统要求的长度将连续的PDH净荷信号按照SAToP协议或者SDH净荷信号按照CEP协议切成固定长度的PDH或者SDH净荷数据切片,以该数据切片为净荷组成SAToP帧格式或CEP帧格式,并添加MPLS或者VLAN标识封装成以太网帧发送到对端;对端将接收的以太网帧分发到与其对应的SAToP接收模块或CEP接收模块,分别利用差分时钟模式恢复出连续的PDH净荷信号或SDH净荷信号,再经信号重组模块获得PDH信号或SDH信号。本发明使PTN设备的改造具有MSTP设备的功能从而扩大了PTN设备的组网能力和范围,延长该类设备的生命周期。

Description

实现PTN设备平台前向兼容MSTP设备的方法及系统 技术领域
本发明涉及通信领域,具体涉及实现PTN设备平台前向兼容MSTP设备的方法及系统。
背景技术
目前,数据传送平台大多是PTN(Packet Transport Network,分组传送网络)标准所定义的PTN设备,该设备适合分组业务(如以太网、IP业务)的传送和交换,但不具备SDH(Synchronous Digital Hierarchy,同步数字系列)设备的时隙交换和传送能力,这导致PTN设备不能前向兼容SDH网络,该缺陷导致PTN设备不能有效利用已有的基于SDH的MSTP(多业务传送平台,Multi-Service Transfer Platform)设备的投资,缩短了该类设备的生命周期,造成资源浪费;从市场成本角度分析,需要能够前向兼容MSTP设备的PTN设备平台。
发明内容
本发明所要解决的技术问题是PTN设备平台不能够前相兼容MSTP设备的问题。
为了解决上述技术问题,本发明所采用的技术方案是提供一种实现PTN设备平台前向兼容MSTP设备的系统,
在PTN设备平台端包括:
信号分解模块,将PTN设备平台接收的每路PDH信号或SDH信号进行分解,获得PDH信号净荷E1/T1/E3/T3或者SDH信号净荷VC12/VC4,并发送出去;
SAToP发送模块,根据系统要求的长度将连续的PDH信号净荷E1/T1/E3/T3切成固定长度的PDH净荷数据切片,并为每路PDH净荷数据切片加上Fixed RTP帧头和SAToP控制字,得到以PDH净荷数据切片为净荷的SAToP帧;
CEP发送模块,根据系统要求的长度将连续的SDH信号净荷VC12/VC4切成固定长度的SDH净荷数据切片,并为每路SDH净荷数据切片加上Fixed RTP帧头和CEP协议帧头,得到以SDH净荷数据切片为净荷的CEP帧;
以太网帧封装模块,为SAToP帧或CEP帧添加MPLS/VLAN标识,每一个MPLS/VLAN标识对应一个净荷E1/T1/E3/T3/VC4/VC12通道,封装成SAToP或者CEP以太网帧;
以太网帧发送模块,通过基于以太网帧的交换网络将封装好的以太网帧发送给对端;
在对端包括:
以太网帧接收模块,将接收到的SAToP或者CEP以太网帧分别进行相应转发;
SAToP接收模块,从SAToP以太网帧中还原出PDH净荷数据切片,并将PDH净荷数据切片重组生成连续的PDH信号净荷E1/T1/E3/T3;
CEP接收模块,从CEP以太网帧中还原出SDH净荷PDH净荷,并将PDH净荷重组生成连续的SDH信号净荷VC12/VC-4;
信号重组模块,将重组的连续的PDH信号净荷E1/T1/E3/T3或SDH信号净荷VC12/VC-4还原成PDH信号或SDH信号。
在上述方案中,所述SAToP以太网帧格式由标签交换路径或伪线标记堆栈、SAToP控制字、Fixed RTP帧头以及E1/T/1/E3/T3数据切片组成。
在上述方案中,所述CEP以太网帧格式由标签交换路径或伪线标记堆栈、CEP协议帧头、Fixed RTP帧头以及VC12/VC4数据切片组成。
在上述方案中,所述Fixed RTP帧头的格式包括:
版本号V,必须设置2;
填充比特P,发送者必须设为0,接收者必须忽略此比特;
定义扩展比特X,发送者必须设为0,接收者必须忽略此比特;
作用源计数比特CC,发送者必须设为0,接收者必须忽略此比特;
标识比特M,必须由发送者设为0,而接收者必须忽略此比特;
净荷类型PT[0:6],PT的值应当由每个方向的PW动态值范围分配,对于不同的CEP PW之间和方向可以使用同样的PT值;
包序号Sequence Number[0:15],每发送一个包从0到0xFFFF的循环递增,对端可依此检测是否丢包以及对收到的包重新排序,该值和控制字中的序号值相同;
时间戳值Timestamp[0:31],用于承载定时信息;
同步源SSRC[0:31],可用于检测错误连接。
在上述方案中,所述SAToP控制字由以下字段组成:
L bit,为告警指示比特,L bit置“1”表示包中的TDM净荷无效,对端收到L bit为1的包时,会向相应的TDM端口发送全“1”;
R bit,为远端缺陷指示比特,R bit置1表示远端收报丢失;
RSV and FRG,为预留和分段比特,发送者必须设为0,接收者必须忽略此比特;
Length[0:5],为长度字段,如果不是0,则指示了SAToP帧头的长度;如果使用了RTP帧头则再加上该RTP帧头长度和载荷的长度,且若该长度总值小于或等于64字节时,长度字段必须设为实际值, 否则设为0;
Sequence Number[0:15],为包序号,每发送一个数据切片从0到0xFFFF循环递增,对端可依此检测是否丢包以及对收到的包重新排序。
在上述方案中,CEP Header由以下字段组成:
Lbit,为告警指示比特,Lbit置“1”表示数据切片中的TDM净荷无效,对端收到L bit为1的数据切片时,会向相应的TDM端口发送全“1”;
Rbit,为远端缺陷指示比特,R bit置“1”表示远端收报丢失;
N and P bits,为指针负调整和正调整指示比特,该比特用来明确中继穿过PSN的负和正的指针调整事件,使用N和P比特是可选的,如果没有使用,N和P比特必须设为0;
FRG,为分段比特,发送者必须设为0,接收者必须忽略此比特;
Length[0:5],为长度字段,如果不是0,则指示了CEP帧头的长度;如果使用了RTP帧头则再加上该RTP帧头长度和载荷的长度,且若该长度的总值小于或等于64字节的时候,长度字段必须设为实际值,否则就必须设为0;
Sequence Number[0:15],为包序号,每发送一个数据切片从0到0xFFFF循环递增,对端可依此检测是否丢包以及对收到的包重新排序;
Structure Pointer[0:11],为结构指针值,结构指针必须包含包载荷中的SONET结构的第一个字节的偏置,对于SPE仿真,结构指针位于CEP数据切片内的J1字节,对于VT仿真,结构指针位于数据切片的V5字节;结构指针值范围从“0”到“0xFFE”,所述“0”代表第一个字节紧跟着CEP帧头,当数据切片没有携带J1或V5字 节的时候,结构指针必须设为0xFFF;
Reserved,为预留字段,发送者必须设为0,接收者必须忽略此比特。
在上述方案中,N and P bits的设置描述如下:
当N、P都设为0时,描述无指针调整;
当N、P都设为1时,描述指针丢失告警;
当N设为0,P,设为1时,描述正指针调整;
当N设为1,P,设为0时,描述负指针调整。
在上述方案中,所述SAToP或者CEP以太网帧的格式包括:
源地址;
目的地址;
TPID标签协议识别符+VLAN;
以太网帧类型;
SAToP帧格式或者CEP帧格式;
帧校验序列。
在上述方案中,
TPID标签协议识别符值用16进制表示为0x8100;
VLAN值和标签交换路径定义的通道号一一对应;
以太网帧类型值用16进制表示为0x8847;
标签交换路径值用16进制表示,并且每个标签交换路径值和E1/T1/E3/T3/VC12/VC4信号通道一一对应。
本发明还提供了一种实现PTN设备平台前向兼容MSTP设备的方法,其特征在于,包括以下步骤:
步骤A100、将PTN设备平台接收到的每路PDH信号或者SDH信号分解为连续的PDH信号净荷E1/T1/E3/T3或者SDH信号净荷 VC12/VC-4;
步骤A200、根据系统要求的长度将连续的PDH信号净荷E1/T1/E3/T3或者SDH信号净荷VC12/VC-4,按照SAToP协议或者CEP协议切成固定长度的PDH净荷或者SDH净荷数据切片,并分别以含PDH净荷或者SDH净荷数据切片为净荷组成SAToP帧或CEP帧;
步骤A300、为SAToP帧或CEP帧添加MPLS/VLAN标识,每一个MPLS/VLAN标识对应一个净荷E1/T1/E3/T3/VC4/VC12通道,封装成SAToP或者CEP以太网帧;
步骤A400、通过基于以太网帧的交换网络,将封装好的SAToP或者CEP以太网帧送到对端;
步骤A500、对端将接收的SAToP或者CEP以太网帧分发到与其对应的SAToP接收模块或CEP接收模块,分别恢复出连续PDH信号净荷或SDH信号净荷,并经信号重组获得PDH信号或SDH信号,其中,不同的PDH信号或SDH信号通道由MPLS/VLAN标识来区分。
本发明通过对PTN设备的改造,使其具有MSTP设备的功能,它既可以作为PTN设备与PTN设备组网,也可作为MSTP设备前向兼容MSTP设备组网,还可作为PTN网络和MSTP网络的转换节点设备,从而扩大了PTN设备的组网能力和范围,延长该类设备的生命周期。
附图说明
图1为本发明提供的实现PTN设备平台前向兼容MSTP设备的系统结构框图;
图2为本发明提供的实现PTN设备平台前向兼容MSTP设备的方法流程图。
具体实施方式
下面结合说明书附图和具体实施例对本发明做出详细的说明。
如图1所示,本发明提供的实现PTN设备平台前向兼容MSTP设备的系统,
在PTN设备平台端包括:信号分解模块10、SAToP(Structure-Agnostic TDM over Packet,非结构化仿真)发送模块20、CEP(Circuit Emulation over Packet,电路仿真)发送模块30、以太网帧封装模块40和以太网帧发送模块50;
信号分解模块10将PTN设备平台接收的每路PDH(Plesiochronous Digital Hierarchy,准同步数字系列)信号或SDH信号进行分解,获得PDH信号净荷E1/T1/E3/T3或者SDH信号净荷VC12/VC4,并将PDH信号净荷E1/T1/E3/T3发送给SAToP发送模块20,将SDH信号净荷VC12/VC4发送到CEP发送模块30;
SAToP发送模块20,根据系统要求的长度将连续的PDH信号净荷E1/T1/E3/T3按照SAToP协议切成固定长度的PDH净荷数据切片,并为每路的PDH净荷数据切片加上Fixed RTP帧头和SAToP控制字,得到以PDH净荷数据切片为净荷的SAToP帧;
CEP发送模块30根据系统要求的长度将连续的SDH信号净荷VC12/VC4按照CEP协议切成固定长度的SDH净荷数据切片,并为每路SDH净荷数据切片加上Fixed RTP帧头和CEP Header(CEP协议帧头),得到以SDH净荷数据切片为净荷的CEP帧;
以太网帧封装模块40为SAToP帧或CEP帧添加MPLS/VLAN标识,每一个MPLS/VLAN标识对应一个净荷E1/T1/E3/T3/VC4/VC12通道,封装成SAToP或者CEP以太网帧组成以太网帧;
以太网帧发送模块50通过基于以太网帧的交换网络将封装好的 以太网帧发送给对端;
在对端包括:以太网帧接收模块60、SAToP接收模块70、CEP接收模块80和信号重组模块90;
以太网帧接收模块60将接收的SAToP或CEP以太网帧分别发送给相应的SAToP接收模块或CEP接收模块;
SAToP接收模块70从SAToP以太网帧中还原出PDH净荷数据切片,并根据还原顺序将PDH净荷数据切片重新聚合生成连续的PDH信号净荷E1/T1/E3/T3;
CEP接收模块80从CEP帧格式的以太网帧中还原出SDH净荷数据切片,并根据还原顺序将SDH净荷数据切片重新聚合生成连续的SDH信号净荷VC12/VC-4;
信号重组模块90将重组的连续的PDH信号净荷E1/T1/E3/T3或SDH信号净荷VC12/VC-4还原成PDH信号或SDH信号。
在本发明中,SAToP帧格式由LSP(MPLS)/PW(MPLS)Label Stack(标记交换路径/伪线标记堆栈)、SAToP控制字、Fixed RTP帧头以及E1/T/1/E3/T3数据切片组成,具体如下:
Figure PCTCN2016102816-appb-000001
Figure PCTCN2016102816-appb-000002
其中,SAToP Control Word(SAToP控制字)的帧格式为:
Figure PCTCN2016102816-appb-000003
其中,
L bit为告警指示比特,L bit置“1”表示包中的TDM净荷无效,对端收到L bit为1的包时,会向相应的TDM端口发送全“1”;
R bit为远端缺陷指示比特,R bit置1表示远端收报丢失;
RSV and FRG为预留和分段比特,发送者必须设为0,接收者必须忽略此比特;
Length(LEN)[0:5]为长度字段,如果不是0,则指示了SAToP帧头的长度;如果使用了RTP帧头则再加上该RTP帧头长度和载荷的长度,且该长度总值小于或等于64字节时,长度字段必须设为实际值,否则设为0;
Sequence Number[0:15]为包序号,每发送一个数据切片从0到0xFFFF循环递增,对端可依此检测是否丢包以及对收到的包重新排序。
Fixed RTP Header(Fixed RTP帧头)帧格式定义为:
Figure PCTCN2016102816-appb-000004
其中:
V为版本号,必须设置2;
P为填充比特必须由发送者设为0,而接收者必须忽略此比特;
X为定义扩展比特,必须由发送者设为0,而接收者必须忽略此比特;
CC为作用源计数比特,必须由发送者设为0,而接收者必须忽略此比特;
M为标识比特,必须由发送者设为0,而接收者必须忽略此比特;
PT[0:6]为Payload type(净荷类型),PT的值应当由每个方向的PW动态值范围分配,对于不同的CEP PW之间和方向可以使用同样的PT值;
Sequence Number[0:15]为包序号,每发送一个包从0到0xFFFF的循环递增,对端可依此检测是否丢包以及对收到的包重新排序,该值和控制字中的序号值相同;
Timestamp[0:31]为时间戳值,用于承载定时信息;
SSRC[0:31]为同步源,可用于检测错误连接。
在本发明中,CEP帧格式为:
Figure PCTCN2016102816-appb-000005
Figure PCTCN2016102816-appb-000006
其中,CEP Header(CEP协议帧头)的帧格式为:
Figure PCTCN2016102816-appb-000007
其中,
L bit为告警指示比特,L比特置“1”表示包中的TDM净荷无效。对端收到L比特为1的包时,会向相应的TDM端口发送全“1”;
R bit为远端缺陷指示比特,R比特置1表示远端收报丢失;
N and P bits,指针付调整和正调整指示比特,这些比特用来明确中继穿过PSN的负和正的指针调整事件,使用N和P比特是可选的,如果没有使用,N和P比特必须设为0,N和P比特设置描述如表1所示。
表1:N和P比特设置描述。
N P 解释
0 0 无指针调整
0 1 正指针调整
1 0 负指针调整
1 1 指针丢失告警
FRG为分段比特,在本发明中发送者必须设为0,而接收者必须忽略此比特。
Length[0:5]为长度字段,如果不是0,则指示了CEP头的长度,如果使用了RTP头则再加上该长度,加上载荷的长度.当CEP头长度加上载荷长度,再加上RTP头长度,总值小于或等于64字节的时候,长度字段必须设为实际值,否则就必须设为0;
Sequence Number[0:15],包序号,每发送一个包从0到0xFFFF的循环递增,对端可依此检测是否丢包以及对收到的包重新排序;
Structure Pointer[0:11],结构指针值。结构指针必须包含包载荷中的SONET结构的第一个字节的偏置,对于SPE仿真,结构指针位于CEP包内的J1字节,对于VT仿真,结构指针位于包的V5字节;结构指针值范围从0到0xFFE,这里0代表第一个字节紧跟着CEP头,当数据切片没有携带J1或V5字节的时候,结构指针必须设为0xFFF;附属电路的任意指针改变(新数据标志(NDF)事件)会更改CEP包里的SONET结构偏置,从而更改结构指针的值;
Reserved为预留字段,发送者必须设为0,而接收者必须忽略此比特。
如图2所示,本发明提供的实现PTN设备平台前向兼容MSTP设备的方法,包括以下步骤:
步骤A100、将PTN设备平台接收到的每路PDH信号或者SDH信 号分解为连续的PDH信号净荷E1/T1/E3/T3或者SDH信号净荷VC12/VC-4;
步骤A200、根据系统要求的长度将连续的PDH信号净荷E1/T1/E3/T3或者SDH信号净荷VC12/VC-4,按照RFC4553(SAToP)协议或者RFC4842(CEP)协议切成固定长度的PDH净荷或者SDH净荷数据切片,并分别以PDH净荷或者SDH净荷数据切片为净荷组成SAToP帧或CEP帧;
步骤A300、为SAToP帧或CEP帧添加MPLS/VLAN标识,每一个MPLS/VLAN标识对应一个净荷E1/T1/E3/T3/VC4/VC12通道,封装成SAToP或者CEP以太网帧;带MPLS/VLAN标识的以太网帧的格式如表2所示,包括:
源地址;
目的地址;
TPID(Tag Protocal Identifier,标签协议识别符)+VLAN;
Ethertype(以太网帧类型);
SAToP帧格式或者CEP帧格式(即LSP(Label Switched Path,标签交换路径)或PW(Pseudo Wire,伪线)、对应E1/T1/E3/T3业务的SAToP Control Word或对应VC12/VC4业务的CEP Header、Fixed RTP Header以及对应SAToP协议的E1/T/1/E3/T3数据切片或对应CEP协议的VC12/VC4数据切片;
FCS(Frame Check Sequence,帧校验序列);
其中,TPID值用16进制表示为0x8100,VLAN值和LSP/PW定义的通道号一一对应,以太网帧的Ethertype值用16进制表示为0x8847,LSP/PW值用16进制表示,并且每个LSP/PW值和E1/T1/E3/T3/VC12/VC4信号通道一一对应。
表2:SAToP或者CEP以太网帧的格式。
Figure PCTCN2016102816-appb-000008
步骤A400、通过基于以太网帧的交换网络,封装好的SAToP或者CEP以太网帧在基于以太网包的分布式交换架构数据设备内实现任意交换,可以交换到该设备内的任意单盘/任意端口,从而发送到对端。
步骤A500、对端将接收到的SAToP或者CEP以太网帧转发到其对应的SAToP接收模块或CEP接收模块,分别由SAToP接收模块或CEP接收模块通过以太网帧恢复出连续PDH信号净荷或SDH信号净荷,再经信号重组模块获得PDH信号或SDH信号,其中,不同的PDH信号或SDH信号通道由MPLS/VLAN标识来区分。
在本发明中,SAToP或者CEP以太网帧的转发方式为单播、组播和广播,SAToP或者CEP以太网帧的转发方式的选择由目的地址决定。
说明书中未详细描述的内容为本领域技术人员公知的现有技术,本领域的技术人员可以对本发明实施例进行各种修改和变型,倘若这些修改和变型在本发明权利要求及其等同技术的范围之内,则这些修改和变型也在本发明的保护范围之内。

Claims (10)

  1. 一种实现PTN设备平台前向兼容MSTP设备的系统,其特征在于,
    在PTN设备平台端包括:
    信号分解模块,将PTN设备平台接收的每路PDH信号或SDH信号进行分解,获得PDH信号净荷E1/T1/E3/T3或者SDH信号净荷VC12/VC4,并发送出去;
    SAToP发送模块,根据系统要求的长度将连续的PDH信号净荷E1/T1/E3/T3切成固定长度的PDH净荷数据切片,并为每路PDH净荷数据切片加上Fixed RTP帧头和SAToP控制字,得到以PDH净荷数据切片为净荷的SAToP帧;
    CEP发送模块,根据系统要求的长度将连续的SDH信号净荷VC12/VC4切成固定长度的SDH净荷数据切片,并为每路SDH净荷数据切片加上Fixed RTP帧头和CEP协议帧头,得到以SDH净荷数据切片为净荷的CEP帧;
    以太网帧封装模块,为SAToP帧或CEP帧添加MPLS/VLAN标识,每一个MPLS/VLAN标识对应一个净荷E1/T1/E3/T3/VC4/VC12通道,封装成SAToP或者CEP以太网帧;
    以太网帧发送模块,通过基于以太网帧的交换网络将封装好的以太网帧发送给对端;
    在对端包括:
    以太网帧接收模块,将接收到的SAToP或者CEP以太网帧分别进行相应转发;
    SAToP接收模块,从SAToP以太网帧中还原出PDH净荷数据切片,并将PDH净荷数据切片重组生成连续的PDH信号净荷E1/T1/E3/T3;
    CEP接收模块,从CEP以太网帧中还原出SDH净荷PDH净荷,并将PDH净荷重组生成连续的SDH信号净荷VC12/VC-4;
    信号重组模块,将重组的连续的PDH信号净荷E1/T1/E3/T3或SDH信号净荷VC12/VC-4还原成PDH信号或SDH信号。
  2. 如权利要求1所述的实现PTN设备平台前向兼容MSTP设备的系统,其特征在于,所述SAToP以太网帧格式由标签交换路径或伪线标记堆栈、SAToP控制字、Fixed RTP帧头以及E1/T/1/E3/T3数据切片组成。
  3. 如权利要求1所述的实现PTN设备平台前向兼容MSTP设备的系统,其特征在于,所述CEP以太网帧格式由标签交换路径或伪线标记堆栈、CEP协议帧头、Fixed RTP帧头以及VC12/VC4数据切片组成。
  4. 如权利要求2或3所述的实现PTN设备平台前向兼容MSTP设备的系统,其特征在于,所述Fixed RTP帧头的格式包括:
    版本号V,必须设置2;
    填充比特P,发送者必须设为0,接收者必须忽略此比特;
    定义扩展比特X,发送者必须设为0,接收者必须忽略此比特;
    作用源计数比特CC,发送者必须设为0,接收者必须忽略此比特;
    标识比特M,必须由发送者设为0,而接收者必须忽略此比特;
    净荷类型PT[0:6],PT的值应当由每个方向的PW动态值范围分配,对于不同的CEP PW之间和方向可以使用同样的PT值;
    包序号Sequence Number[0:15],每发送一个包从0到0xFFFF的循环递增,对端可依此检测是否丢包以及对收到的包重新排序,该值和控制字中的序号值相同;
    时间戳值Timestamp[0:31],用于承载定时信息;
    同步源SSRC[0:31],可用于检测错误连接。
  5. 如权利要求2所述的实现PTN设备平台前向兼容MSTP设备的系统,其特征在于,所述SAToP控制字由以下字段组成:
    L bit,为告警指示比特,L bit置“1”表示包中的TDM净荷无效,对端收到L bit为1的包时,会向相应的TDM端口发送全“1”;
    R bit,为远端缺陷指示比特,R bit置1表示远端收报丢失;
    RSV and FRG,为预留和分段比特,发送者必须设为0,接收者必须忽略此比特;
    Length[0:5],为长度字段,如果不是0,则指示了SAToP帧头的长度;如果使用了RTP帧头则再加上该RTP帧头长度和载荷的长度,且若该长度总值小于或等于64字节时,长度字段必须设为实际值,否则设为0;
    Sequence Number[0:15],为包序号,每发送一个数据切片从0到0xFFFF循环递增,对端可依此检测是否丢包以及对收到的包重新排序。
  6. 如权利要求3所述的实现PTN设备平台前向兼容MSTP设备的系统,其特征在于,CEP Header由以下字段组成:
    Lbit,为告警指示比特,Lbit置“1”表示数据切片中的TDM净荷无效,对端收到L bit为1的数据切片时,会向相应的TDM端口发送全“1”;
    Rbit,为远端缺陷指示比特,R bit置“1”表示远端收报丢失;
    N and P bits,为指针负调整和正调整指示比特,该比特用来明确中继穿过PSN的负和正的指针调整事件,使用N和P比特是可选的,如果没有使用,N和P比特必须设为0;
    FRG,为分段比特,发送者必须设为0,接收者必须忽略此比特;
    Length[0:5],为长度字段,如果不是0,则指示了CEP帧头的长度;如果使用了RTP帧头则再加上该RTP帧头长度和载荷的长度,且若该长度的总值小于或等于64字节的时候,长度字段必须设为实际值,否则就必须设为0;
    Sequence Number[0:15],为包序号,每发送一个数据切片从0到0xFFFF循环递增,对端可依此检测是否丢包以及对收到的包重新排序;
    Structure Pointer[0:11],为结构指针值,结构指针必须包含包载荷中的SONET结构的第一个字节的偏置,对于SPE仿真,结构指针位于CEP数据切片内的J1字节,对于VT仿真,结构指针位于数据切片的V5字节;结构指针值范围从“0”到“0xFFE”,所述“0”代表第一个字节紧跟着CEP帧头,当数据切片没有携带J1或V5字节的时候,结构指针必须设为0xFFF;
    Reserved,为预留字段,发送者必须设为0,接收者必须忽略此比特。
  7. 如权利要求6所述的实现PTN设备平台前向兼容MSTP设备的系统,其特征在于,N and P bits的设置描述如下:
    当N、P都设为0时,描述无指针调整;
    当N、P都设为1时,描述指针丢失告警;
    当N设为0,P,设为1时,描述正指针调整;
    当N设为1,P,设为0时,描述负指针调整。
  8. 如权利要求2或3所述的实现PTN设备平台前向兼容MSTP设备的系统,其特征在于,所述SAToP或者CEP以太网帧的格式包括:
    源地址;
    目的地址;
    TPID标签协议识别符+VLAN;
    以太网帧类型;
    SAToP帧格式或者CEP帧格式;
    帧校验序列。
  9. 如权利要求8所述的实现PTN设备平台前向兼容MSTP设备的系统,其特征在于,
    TPID标签协议识别符值用16进制表示为0x8100;
    VLAN值和标签交换路径定义的通道号一一对应;
    以太网帧类型值用16进制表示为0x8847;
    标签交换路径值用16进制表示,并且每个标签交换路径值和E1/T1/E3/T3/VC12/VC4信号通道一一对应。
  10. 一种实现PTN设备平台前向兼容MSTP设备的方法,其特征在于,包括以下步骤:
    步骤A100、将PTN设备平台接收到的每路PDH信号或者SDH信号分解为连续的PDH信号净荷E1/T1/E3/T3或者SDH信号净荷VC12/VC-4;
    步骤A200、根据系统要求的长度将连续的PDH信号净荷E1/T1/E3/T3或者SDH信号净荷VC12/VC-4,按照SAToP协议或者CEP协议切成固定长度的PDH净荷或者SDH净荷数据切片,并分别以含PDH净荷或者SDH净荷数据切片为净荷组成SAToP帧或CEP帧;
    步骤A300、为SAToP帧或CEP帧添加MPLS/VLAN标识,每一个MPLS/VLAN标识对应一个净荷E1/T1/E3/T3/VC4/VC12通道,封装成SAToP或者CEP以太网帧;
    步骤A400、通过基于以太网帧的交换网络,将封装好的SAToP或者CEP以太网帧送到对端;
    步骤A500、对端将接收的SAToP或者CEP以太网帧分发到与其对应的SAToP接收模块或CEP接收模块,分别恢复出连续PDH信号净荷或SDH信号净荷,并经信号重组获得PDH信号或SDH信号,其中,不同的PDH信号或SDH信号通道由MPLS/VLAN标识来区分。
PCT/CN2016/102816 2016-01-07 2016-10-21 实现ptn设备平台前向兼容mstp设备的方法及系统 WO2017118151A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MYPI2018700368A MY186763A (en) 2016-01-07 2016-10-21 Method and system for implementing forward compatibility of ptn device platform to mstp device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610007721.4A CN105634647B (zh) 2016-01-07 2016-01-07 实现ptn设备平台前向兼容mstp设备的方法及系统
CN201610007721.4 2016-01-07

Publications (1)

Publication Number Publication Date
WO2017118151A1 true WO2017118151A1 (zh) 2017-07-13

Family

ID=56049236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102816 WO2017118151A1 (zh) 2016-01-07 2016-10-21 实现ptn设备平台前向兼容mstp设备的方法及系统

Country Status (3)

Country Link
CN (1) CN105634647B (zh)
MY (1) MY186763A (zh)
WO (1) WO2017118151A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112887117A (zh) * 2019-11-29 2021-06-01 中国移动通信有限公司研究院 一种接入、配置网络切片的方法、设备及介质
CN113949743A (zh) * 2021-11-22 2022-01-18 烽火通信科技股份有限公司 Odu净荷承载方法及系统
CN114070746A (zh) * 2021-10-28 2022-02-18 北京市天元网络技术股份有限公司 一种用于多类型传输网络的电路串接方法及系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105634647B (zh) * 2016-01-07 2018-01-02 烽火通信科技股份有限公司 实现ptn设备平台前向兼容mstp设备的方法及系统
CN106941448B (zh) * 2017-02-27 2019-11-12 烽火通信科技股份有限公司 一种在分组设备上传送cpri接口的系统及方法
CN107682181A (zh) * 2017-09-08 2018-02-09 北京国电通网络技术有限公司 一种面向配用电业务的ptn承载多形态无线组网方法
CN107948040A (zh) * 2017-11-20 2018-04-20 烽火通信科技股份有限公司 实现ilk接口业务和以太网接口业务互通的系统及方法
CN109039760B (zh) * 2018-08-24 2021-06-29 烽火通信科技股份有限公司 一种分层的仿真业务单盘应用软件设计方法及系统
CN115297073B (zh) * 2022-07-22 2024-01-26 烽火通信科技股份有限公司 E1业务传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729350A (zh) * 2009-12-11 2010-06-09 烽火通信科技股份有限公司 Ptn前向兼容mstp的环网业务通道保护实现方法
CN102801601A (zh) * 2011-05-24 2012-11-28 中兴通讯股份有限公司 PTN兼容MSTP网络EoS业务的实现方法及设备
EP2661015A1 (en) * 2010-12-29 2013-11-06 ZTE Corporation Method and system for detecting signal degrade (sd) alarm
CN105634647A (zh) * 2016-01-07 2016-06-01 烽火通信科技股份有限公司 实现ptn设备平台前向兼容mstp设备的方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924960B (zh) * 2009-06-12 2014-11-05 华为技术有限公司 业务传输系统、设备和方法
CN101815024B (zh) * 2010-03-24 2014-10-22 中兴通讯股份有限公司 以太业务互通方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729350A (zh) * 2009-12-11 2010-06-09 烽火通信科技股份有限公司 Ptn前向兼容mstp的环网业务通道保护实现方法
EP2661015A1 (en) * 2010-12-29 2013-11-06 ZTE Corporation Method and system for detecting signal degrade (sd) alarm
CN102801601A (zh) * 2011-05-24 2012-11-28 中兴通讯股份有限公司 PTN兼容MSTP网络EoS业务的实现方法及设备
CN105634647A (zh) * 2016-01-07 2016-06-01 烽火通信科技股份有限公司 实现ptn设备平台前向兼容mstp设备的方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"RTP: A Transport Protocol for Real-Time Applications", NETWORK WORKING GROUP REQUEST FOR COMMENTS, 31 July 2003 (2003-07-31), XP002395528 *
"Structure-Agnostic Time Division Multiplexing (TDM) over Packet (SAToP)", NETWORK WORKING GROUP REQUEST FOR COMMENTS, 30 June 2006 (2006-06-30), XP015046310 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112887117A (zh) * 2019-11-29 2021-06-01 中国移动通信有限公司研究院 一种接入、配置网络切片的方法、设备及介质
CN112887117B (zh) * 2019-11-29 2023-09-19 中国移动通信有限公司研究院 一种接入、配置网络切片的方法、设备及介质
CN114070746A (zh) * 2021-10-28 2022-02-18 北京市天元网络技术股份有限公司 一种用于多类型传输网络的电路串接方法及系统
CN114070746B (zh) * 2021-10-28 2024-01-05 北京市天元网络技术股份有限公司 一种用于多类型传输网络的电路串接方法及系统
CN113949743A (zh) * 2021-11-22 2022-01-18 烽火通信科技股份有限公司 Odu净荷承载方法及系统

Also Published As

Publication number Publication date
CN105634647B (zh) 2018-01-02
CN105634647A (zh) 2016-06-01
MY186763A (en) 2021-08-18

Similar Documents

Publication Publication Date Title
WO2017118151A1 (zh) 实现ptn设备平台前向兼容mstp设备的方法及系统
WO2015106577A1 (zh) 将otn信号转换为以太网净荷的方法及系统
US7515605B2 (en) Efficient transport of TDM services over packet networks
US11082199B2 (en) Data transmission method in optical network and optical network device
US20020176450A1 (en) System and methods for selectively transmitting ethernet traffic over SONET/SDH optical network
CN109391461B (zh) 透传业务频率的方法和设备
US8416770B2 (en) Universal service transport transitional encoding
US20030012188A1 (en) SONET circuit emulation with VT compression
US20190052562A1 (en) Method for processing data in ethernet, device, and system
US20060126662A1 (en) Methods for sending and receiving network management messages and/or control messages
WO2018153124A1 (zh) 一种在分组设备上传送cpri接口的系统及方法
US9210674B2 (en) Base station timing control using synchronous transport signals
US20050249247A1 (en) Methods and apparatus for multiplexing multiple signal sources over a single full duplex ETHERNET link
WO2023109424A1 (zh) 一种数据传输的方法以及相关装置
US20100329245A1 (en) Transparent Mapping of Cell Streams to Packet Services
CN108880733A (zh) 在统一承载设备上实现低速tdm业务传输的方法及装置
WO2008080263A1 (fr) Procédé de mesure de retard relatif de service de données dans un réseau de transmission optique
US6987766B2 (en) Transport of SONET signals over an optical communications network
US20140119389A1 (en) Interface for asynchronous virtual container channels and high data rate port
Hamad et al. SONET over Ethernet
Chen et al. Towards an Unified Multi-service Ethernet Transport Network (ETN)
CN102388582B (zh) 附加空闲位的传输方法、发送机和网络系统
CN113949743A (zh) Odu净荷承载方法及系统
Li et al. Encapsulation and rate adaptation for Ethernet over SDH
RANGE COMMANDERS COUNCIL WHITE SANDS MISSILE RANGE NM WHITE SANDS MISSILE RANGE United States Telemetry over Internet Protocol (TMoIP) Standard

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883279

Country of ref document: EP

Kind code of ref document: A1