WO2017118015A1 - 有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法 - Google Patents

有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法 Download PDF

Info

Publication number
WO2017118015A1
WO2017118015A1 PCT/CN2016/094129 CN2016094129W WO2017118015A1 WO 2017118015 A1 WO2017118015 A1 WO 2017118015A1 CN 2016094129 W CN2016094129 W CN 2016094129W WO 2017118015 A1 WO2017118015 A1 WO 2017118015A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
organic
layer
organic rare
earth solid
Prior art date
Application number
PCT/CN2016/094129
Other languages
English (en)
French (fr)
Inventor
唐建国
王蝶
沈文飞
王新芝
王瑶
黄林军
刘继宪
焦吉庆
王彦欣
王薇
宋燕
杨会会
徐兴勤
巴菲奥⋅劳伦斯⋅A.
Original Assignee
青岛大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛大学 filed Critical 青岛大学
Priority to US16/068,455 priority Critical patent/US10604699B2/en
Priority to EP16883148.5A priority patent/EP3401339B1/en
Publication of WO2017118015A1 publication Critical patent/WO2017118015A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the cross-cutting field of hybrid material technology and solar cell preparation technology, in particular to an organic rare earth solid micelle and a preparation method thereof, and a method for improving photoelectric conversion efficiency of a solar cell.
  • Rare earth luminescent materials are a new class of functional materials with promising future. Since the 20th century 60 After the high-purification of rare earth oxides, the rare earth luminescent materials have made major breakthroughs and are widely used in the three fields of lighting, display and inspection, and rapidly formed a huge industrial production and consumer market scale, and are now expanding into new fields. Among them, the function and application technology of organic rare earth solid micelles is The important research topic of chemistry and chemical industry in the 21st century, and luminescence is the most prominent function of organic rare earth solid micelles in light, electricity and magnetism. Therefore, the research and application of organic rare earth solid micelles is of special significance.
  • solar energy is an environmentally friendly green energy source. Converting solar energy into electrical energy is the focus of scientific research in various countries and the focus of development and promotion of the industry.
  • polymer solar cells Compared with inorganic solar cells, polymer solar cells have a simple manufacturing process, high operability, low cost, and light weight, and can be prepared into flexible devices. Therefore, polymer solar cells have broad development and application prospects and are the most important research directions in the energy field.
  • high efficiency polymer solar cells generally employ a bulk heterojunction structure, that is, the polymer donor material forms an interpenetrating network structure with the acceptor material.
  • the bulk heterojunction structure can increase the contact area between the donor and the acceptor, compensate for the short distance of the exciton diffusion distance, and improve the efficiency of exciton separation and the efficiency of solar energy conversion.
  • the mobility of free electrons is low, and the probability of electron-hole recombination is high.
  • the light conversion efficiency of polymer solar cells is still much lower than that of inorganic solar cells.
  • Organic rare earth solid micelles can absorb light energy, 4f Orbital electron transitions can produce strong fluorescence, have a wide UV absorption range, can absorb more light energy, and can increase light absorption without increasing the thickness of the photoactive layer of the polymer solar cell, thereby increasing polymer solar energy.
  • Photoelectric conversion efficiency of batteries At present, how to improve the photoelectric conversion efficiency of solar cells by utilizing the fluorescent properties of organic rare earth solid micelles has important research value, and has opened up new fields for the application of rare earth luminescent materials.
  • Chinese Patent No. 200910084684.7 discloses a method for treating a photoelectric active layer of a polymer solar cell, which exposes the photoactive layer to steam of chloroform and/or o-dichlorobenzene for 0.1-20 hours. Although the method can effectively improve the photoelectric conversion efficiency of the solar cell, improper operation can easily oxidize the photoactive layer, destroy the structure of the photoactive layer, and affect the electrical properties of the battery; Chinese Patent No. 200910085656.7 discloses a doped inorganic semiconductor nanocrystal.
  • a method for preparing a photoactive layer of a polymer solar cell mixing an inorganic salt solution of Pb, Cd or Zn with o-dichlorobenzene, and then spin coating to form a film, and placing the obtained film in an atmosphere of H 2 S or H 2 Se After processing for 10 to 120 minutes, the method introduces inorganic salts, increases cost, has poor stability, and easily destroys the network structure of the photoactive layer, and reduces photoelectric conversion efficiency;
  • 201410336868.9 discloses a high-efficiency polymer solar cell, the structure thereof Top to bottom are glass substrate, FTO anode layer, mesoporous titania nanolayer, polymer active layer, aluminum Electrode layer, the structure in the manufacturing process, with nanoparticles electron transport layer or a hole transport layer, can be restricted ionic surface effects, etc., affect the conversion efficiency of the photovoltaic cell. So far, there have been no reports and related patents on the use of organic rare earth solid micelles for solar cells, thereby improving the photoelectricity of polymer solar cells by using organic rare earth solid micelles without destroying the structure of the photoactive layer. Conversion efficiency is especially important.
  • Chinese patent 201210260336.2 also discloses a polymer - A method for preparing a rare earth ion luminescent micelle, but the prepared polymer-germanium ion micelle has a particle diameter of 100 nm or more, and the invention adopts a novel amphiphilic diblock polymer and an organic conjugated small molecule 2- Self-assembly of thiophene trifluoroacetone with rare earth ions to synthesize spheres, greatly reducing the size of organic rare earth solid micelles (10-20nm) ), broadening the application areas for its later applications, such as polymer solar cells.
  • the object of the present invention is to overcome the shortcomings of the prior art and to design a method for preparing a polymer solar cell having an organic luminescent material by spin-coating an organic rare earth solid micelle on a bulk heterojunction polymer solar cell ( On the ITO layer of HJPSC), the fluorescence emission characteristics of the organic rare earth solid micelles are used to increase the light absorption intensity of the solar cell and improve the photoelectric conversion efficiency of the battery.
  • the preparation process of the present invention comprises the following steps:
  • An organic conjugated small ligand is used as a first ligand, and an amphiphilic diblock polymer is used as a second ligand.
  • the two are mixed with a rare earth element chloride solution to self-assemble to form an organic rare earth solid micelle. .
  • the amphiphilic diblock polymer is polymethyl methacrylate-b-polyacrylic acid (PMMA-b-PAA) ).
  • the amphiphilic diblock polymer is polymethyl methacrylate-b-polyacrylic acid (PMMA-b-PAA)
  • the preparation method is as follows: (1) weigh a certain amount of reversible addition fragmentation chain transfer agent (RAFT) and an appropriate amount of initiator, dioxane as a solvent, and add a certain amount of methyl methacrylate MMA The monomer is subjected to an oil bath synthesis reaction in a nitrogen atmosphere at a temperature of 70 ° C for 8 hours, and the liquid obtained by the reaction is washed with petroleum ether, and the upper solid is obtained by suction filtration to obtain a first block polymer; (2) Weigh a certain amount of the product of step (1), add an appropriate amount of initiator, dioxane as a solvent, and when the polymethyl methacrylate is completely dissolved, add a certain amount of acrylic monomer, and in a nitrogen atmosphere 50 °C The synthesis reaction was carried out in an oil bath for 6 hours, and the prepared reaction solution was was was was
  • the rare earth element chloride solution includes barium chloride, barium chloride, barium chloride or barium chloride solution.
  • the organic conjugated small ligand is 2-thiophene trifluoroacetone TTA, 1,10-phenanthroline One of Phen, acetylacetone, salicylic acid or dibenzoylmethane DBM.
  • organic conjugated small ligand rare earth element chloride: amphiphilic diblock polymer molar ratio is 3:1:1 .
  • organic conjugated small ligand rare earth element chloride: amphiphilic diblock polymer at 50-70 ° C
  • the complexation reaction is carried out in an oil bath for 5-10 hours to obtain an organic rare earth solid micelle solution, and the organic rare earth solid micelle is a complex having a size of 10-20 nm.
  • the obtained organic rare earth solid micelles of any of the methods described having a size of 10-20 nm Between the spheres, it has a strong fluorescence intensity, and the UV absorption range is between 300-425 nm.
  • a method for improving photoelectric conversion efficiency of a solar cell wherein the organic rare earth solid micelle is spin-coated on a ITO of a solar cell Above the layer, a solar cell having organic rare earth solid micelles is prepared, thereby increasing the absorption of sunlight by the battery and improving the photoelectric conversion efficiency.
  • the method for improving the photoelectric conversion efficiency of a solar cell (1) will have an anode electrode ITO
  • the transparent substrate is sequentially ultrasonically cleaned with detergent, deionized water, acetone, deionized water, absolute ethanol and isopropanol, washed and dried with dry high-purity nitrogen or dried at a high temperature to form a clean conductive substrate; Transfer it to the plasma surface treatment instrument, at Plasma treatment of ITO conductive substrate under 25Pa air pressure, oxygen and nitrogen for 5-15 minutes, then cooled to room temperature;
  • the organic rare earth solid micelle solution is diluted with an organic polar solvent, and then sufficiently dispersed by ultrasound to obtain a uniformly dispersed organic rare earth solid micelle solution;
  • ITO treated by the step (1) plasma Forming a discontinuous island-shaped organic rare earth solid micelle layer on the anode electrode of the conductive substrate by spin coating;
  • step (3) a surface of the organic rare earth solid micelle layer obtained by spin coating to form a conductive substrate with a hole transport layer;
  • the material of the cathode electrode is subjected to vapor deposition in the step (5)
  • a cathode electrode is formed on the photoactive layer to obtain a polymer solar cell in which a solid rare earth solid micelle layer is spin-coated.
  • the organic rare earth solid micelle comprises a core-shell structure formed by coordination of the first ligand, the second ligand and the trivalent rare earth ion, and the average particle diameter is between 10-20 nm; the first ligand is 2- Thiophene trifluoroacetone; the second ligand is polymethyl methacrylate-b-polyacrylic acid.
  • the first ligand the trivalent rare earth ion: the first ligand has a molar ratio of 3:1:1.
  • the trivalent rare earth ion is Eu 3+ , Tb 3+ , Tm 3+ or Gd 3+ .
  • the anode electrode of the solar cell comprises An indium tin oxide layer is obtained by dispersing the above-mentioned organic rare earth solid micelles on the indium tin oxide layer.
  • the anode electrode is an indium tin oxide layer
  • the light absorbing layer comprises an organic rare earth solid micelle layer and a photoactive layer.
  • the hole conducting layer is a PEDOT:PSS polymer conductive polymer film.
  • the amphiphilic diblock polymer of the invention adopts the first segment to be easily polymerized in the presence of light, heat, ionizing radiation and a catalyst, and has high polymerization efficiency and small degree of polymerization;
  • the body is easy to polymerize in the presence of a catalyst, and has the simplest unsaturated carboxyl group, ester group or amide group to coordinately complex with the trivalent rare earth ion, and the degree of polymerization set is small, and it is easy to form a size.
  • Small solid micelles are examples of the degree of polymerization set.
  • the organic rare earth solid micelles of the invention have a core-shell structure and are relatively small in size, at 10-20 nm. Between them, it is spherical and has a narrow size distribution. It is easy to disperse uniformly in solar cells, and has strong fluorescence intensity.
  • the UV absorption range is wide, ranging from 300 to 425 nm.
  • the anode electrode of the present invention is a transparent conductive metal oxide or a doped metal oxide, including indium tin oxide (ITO), fluorine-doped tin oxide ( FTO) and tin oxide, the anode electrode is formed by vapor deposition, magnetron sputtering, and the material of the anode electrode has a high transmittance in the visible wavelength range.
  • ITO indium tin oxide
  • FTO fluorine-doped tin oxide
  • tin oxide tin oxide
  • the anode electrode is formed by vapor deposition, magnetron sputtering, and the material of the anode electrode has a high transmittance in the visible wavelength range.
  • the organic rare earth solid micelle layer of the invention is in ITO
  • the dispersion on the layer is relatively uniform and dotted, which can broaden and increase the absorption range and intensity of the solar cell, avoid damage to the structure of the photoactive layer, and have less influence on the conductivity of the current.
  • the hole transport layer of the present invention is a PEDOT:PSS polymer conductive polymer film (PEDOT is 3,4- The polymer of ethylene dioxythiophene monomer, PSS is polystyrene sulfonate), the material of the hole transport layer has conductivity and work function, and has transmittance in the visible wavelength range.
  • PEDOT is 3,4- The polymer of ethylene dioxythiophene monomer, PSS is polystyrene sulfonate
  • the material of the hole transport layer has conductivity and work function, and has transmittance in the visible wavelength range.
  • the photoactive layer of the present invention comprises a polymer donor material and an acceptor material, and the two materials are mixed to form an interpenetrating network structure; wherein the donor material absorbs light energy to generate excitons, and the donor material has a high LUMO energy level.
  • Receptor material LUMO The energy level, the exciton separates at the interface between the donor material and the acceptor material, forms electrons and holes, electrons are transported in the acceptor material, holes are transported in the donor material, and finally reach the cathode and the anode, respectively, thereby forming Current and voltage.
  • the polymer donor materials of the present invention include polythiophenes (such as P3HT, PEOPT, and P3OT, etc.), polyparaphenylene vinylene derivatives (such as MDMO-PPV and MEH-PPV, etc.) and DA-type narrow bandgap conjugates.
  • Polymeric materials such as PBDTTT-CT, PCPDTBT, PBDTTPD, PNDT-BT, PBDFDTBT, and PDTSTPD
  • the polymer donor material has a conjugated structure capable of absorbing light energy in visible light and undergoing electronic transition to form excitons;
  • the acceptor materials include fullerene derivatives such as PC 61 BM , PC 71 BM , ICBA and ICMA .
  • the acceptor material can form a nano-interpenetrating network structure with the polymer donor material in the photoactive layer material. The material absorbs different light absorption ranges.
  • the cathode material of the present invention comprises aluminum and calcium.
  • the cathode electrode of the battery has conductivity and low work function, and can form an internal electric field with an anode electrode having a high work function, which is favorable for the transfer of electrons and holes.
  • the invention directly spins organic rare earth solid micelles on ITO Form a separate layer above the layer to increase the light absorption range and efficiency of the cell; reduce the size of the solid micelles and improve the ITO
  • the dispersibility on the layer can effectively reduce its influence on current continuity; the low concentration of organic rare earth solid micelles will not damage the bulk heterojunction structure of the polymer solar cell, so that the battery maintains a relatively high filling factor;
  • the light conversion efficiency is high, the preparation process is simple, the cost is low, and the environment is friendly.
  • the present invention prepares an organic rare earth solid micelle having a core-shell structure
  • the photoelectric conversion efficiency of a solar cell is improved by doping in an active layer of a solar cell or spin coating on an ITO layer.
  • the organic rare earth solid micelle can be uniformly dispersed in the coating of the battery, is discontinuous, is dotted, has little influence on the conductivity of the current, and is small in size, is spherical between 10-20 nm, and The size distribution range is narrow, has a strong fluorescence intensity, and has a wide ultraviolet absorption range of between 300 and 425 nm.
  • the invention will
  • the organic rare earth solid micelle adopts an organic conjugated small molecule having the best energy level matching with the rare earth ion as the first ligand, and the block polymer which can be self-assembled into a micelle by coordination and complexion with the block polymer is Second ligand.
  • the organic conjugated small molecule is complexed with the rare earth ion, the absorbed energy is excited to a certain vibrational level of the singlet state, and then the molecule is rapidly transmitted through the internal energy and then transitions to the energy of the singlet excited state.
  • the vibrational energy level, the singlet excited state will be crossed to the triplet state in a non-radiative system, and the triplet non-radiative transition to an excited state of the rare earth ion, through this energy transfer-like indirect excitation, rare earth ion It will radiate to the 4f shell with a lower energy level and emit stronger fluorescence.
  • the hole transport layer is a PEDOT:PSS polymer conductive, polymer film or metal oxide film, including nickel oxide, vanadium oxide, molybdenum oxide and copper phthalocyanine.
  • the hole transport layer is made of conductivity and work function in visible light. Transmittance in the wavelength range.
  • Organic rare earth solid of the invention can absorb the ultraviolet spectrum in sunlight, on the one hand, reduce the irradiation of ultraviolet light on the photoactive layer, prolong the life of the photoactive layer, and improve the stability of the battery; on the other hand, the narrow band polymer in the photoactive layer Mixing of donor material and acceptor material can form Interpenetrating network Structure, the addition of organic rare earth solid micelles can increase the light absorption intensity of the battery, the polymer donor material absorbs a large amount of light energy to generate excitons, and the excitons are separated at the interface between the donor material and the acceptor material to form electrons and air. At the point where electrons are transported in the acceptor material, holes are transported in the donor material and eventually reach the cathode and anode, respectively, forming current and voltage.
  • Embodiment 1 is a schematic structural view of an organic rare earth solid micelle according to Embodiment 2 of the present invention, including 1-amphiphilic diblock polymer, 2- Trivalent europium ion, 3-2-thiophene trifluoroacetone.
  • FIG 3 is a schematic structural view of a solar cell according to Embodiment 4 of the present invention, including a 4-transparent glass substrate, 5- Anode electrode ITO layer, 6-organic rare earth solid micelle, 7-hole transport layer, 8-photoactive layer, 9-electron buffer layer, 10-cathode electrode.
  • Example 4 is a view showing the distribution state of organic rare earth solid micelles on the ITO layer in a solar cell according to Example 5 of the present invention.
  • Fig. 5 is a graph showing voltage and current density of a solar cell and a reference solar cell according to Embodiment 5 of the present invention.
  • first block polymer polymethyl methacrylate PMMA weigh a certain amount of reversible addition fragmentation chain transfer agent (RAFT) and an appropriate amount of initiator, dioxane as a solvent, adding a certain amount of methyl methacrylate MMA monomer, and performing oil bath synthesis reaction in a nitrogen atmosphere at 70 °C. In an hour, the liquid in which the reaction is completed is washed with petroleum ether, and the upper solid is obtained by suction filtration to obtain a first block polymer;
  • RAFT reversible addition fragmentation chain transfer agent
  • the chemical synthesis method of the organic rare earth solid micelles of the present embodiment is as follows: 0.02667 g of TTA is weighed and placed in a round bottom flask, and TTA is stirred and dissolved uniformly with 17 mL of o-dichlorobenzene, and then the concentration of 1 mL is 0.04 mol/
  • the amphiphilic diblock polymer solution of L (PMMA 20 -b-PAA 10 ) was dropped dropwise into a round bottom flask containing TTA, and finally 2 mL of a cerium chloride solution having a concentration of 0.02 mol/L was dropped.
  • the mixture was dropped into the round bottom flask, and the round bottom flask was placed in an oil bath at 60 ° C and stirred for 7 hours to obtain an organic rare earth solid micelle solution having a particle size of about 13 nm (Fig. 2).
  • the main structure of the solar cell prepared in this embodiment includes: a transparent glass substrate 4, an anode electrode ITO layer 5, an organic rare earth solid micelle layer 6, a hole transport layer 7, a photoactive layer 8, an electron buffer layer 9, and a cathode electrode 10.
  • the anode electrode ITO layer 2 has a thickness of 180 nm; the uniformly dispersed organic rare earth solid micelle layer 3 has a thickness of 30-50 nm; the hole transport layer 4 is a PEDOT:PSS polymer conductive film with a thickness of 30 nm; and the photoactive layer 5
  • the donor material is a BDT-based narrow band polymer PBDTTT-CT, the acceptor material is a fullerene derivative (PC 71 BM ), the photoactive layer has a thickness of 100 nm, the electron buffer layer is calcium, and the thickness is 10 nm; the cathode electrode It is aluminum and has a thickness of 100 nm.
  • the transparent substrate is sequentially ultrasonically cleaned with detergent, deionized water, acetone, deionized water, absolute ethanol and isopropanol, washed and dried with dry high-purity nitrogen or dried at a high temperature to form a clean conductive substrate; Transfer it to the plasma surface treatment instrument, at Plasma treatment of ITO conductive substrate under 25Pa air pressure, oxygen and nitrogen for 6 minutes, then cooled to room temperature;
  • the ITO conductive glass obtained in the step (1) is placed in a homomixer, and the spin coating step (2)
  • the treated organic rare earth solid micelles are rotated at 2000 rpm for 40 s to finally obtain an organic rare earth solid micelle light absorbing layer having a thickness of about 20 nm;
  • the polymer conductive film obtained in the step (4) is placed in a homogenizer, and the ortho-dichlorobenzene solution having a mass ratio of PBDTTT-CT and PC 71 BM of 1:1.5 and a total concentration of 25 mg/mL is spin-coated.
  • the speed is 800 rpm and the time is 60 s;
  • the glass substrate treated in the step (5) in a vacuum evaporation apparatus having a degree of vacuum greater than 5 ⁇ 10 ⁇ 4 Pa, and starting to vapor-deposit the electron buffer layer and the cathode electrode, wherein the electron buffer layer material is Ca, The evaporation rate is 0.01 nm/s and the thickness is 10 nm; the cathode electrode material is Al, the evaporation rate is 0.5 nm/s, the thickness is 100 nm, and the evaporation rate and thickness are monitored by the crystal film thickness meter mounted near the substrate by the probe. .
  • This embodiment differs from the step (2) of the embodiment 4 in that the ratio of the organic rare earth solid micelle solution to the o-dichlorobenzene solvent is 1:3.
  • the preparation method comprises the following steps: mixing the obtained organic rare earth solid micelle solution and o-dichlorobenzene solvent in a ratio of 1:3 to uniformly disperse the solid micelle, and then spin-coating the ITO layer to prepare a light absorbing layer ( Figure 4 ).
  • the energy conversion efficiency of the polymer solar cell coated with the organic rare earth solid micelle prepared in this example was 7.84% (Fig. 4) Compared with 7.25% of the photoelectric conversion efficiency of polymer solar cells without organic rare earth solid micelles, the increase is about 10% compared with Chinese patent 201410336868.9
  • the improved solar cell photoelectric conversion efficiency of 3.96% increased by 98%; the main performance of the energy conversion efficiency improvement is the increase of short-circuit current, and the open circuit voltage and fill factor change little.
  • This example differs from step (2) of Example 4 in that the ratio of the organic rare earth solid micelle solution to the o-dichlorobenzene solvent is 1:7.
  • the preparation method is as follows: the obtained organic rare earth solid micelle solution and the o-dichlorobenzene solvent are stirred at a ratio of 1:7 to uniformly disperse the solid micelle, and then spin-coated on the ITO layer to prepare a light absorbing layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法,有机共轭小配体作为第一配体,一种具有两亲性二嵌段聚合物作为第二配体,二者与稀土元素氯化物溶液混合掺杂进行自组装形成有机稀土固体胶束,以此来提高稀土元素的荧光发射强度和荧光效率。然后将制备好的有机稀土固体胶束旋涂在太阳能电池的ITO层之上,制备成具有有机稀土固体胶束的太阳能电池,由此可以加大电池对太阳光的吸收,提高光电转化效率。其制备工艺简单、成本低、光电转化效率高、对环境友好。

Description

[根据细则37.2由ISA制定的发明名称] 有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法
技术领域:
本发明涉及杂化材料技术和太阳能电池制备技术的交叉领域,特别涉及一种有机稀土固体胶束及其制备方法、和提高太阳能电池光电转化效率的方法。
背景技术:
稀土发光材料是一类很有发展前途的新型功能材料。自 20 世纪 60 年代稀土氧化物实现高纯化后,稀土发光材料有了重大突破,被广泛应用于照明、显示和检测三大领域,迅速形成了极大的工业生产和消费市场规模,目前正向着新型领域扩展。其中,有机稀土固体胶束的功能和应用技术是 21 世纪化学化工的重要研究课题,而发光是有机稀土固体胶束光、电、磁三大功能中最突出的功能,因此,有机稀土固体胶束的研究和应用具有格外重要的意义。
与此同时,太阳能是一种环保的绿色能源,将太阳能转化成电能是各国科学界研究的热点和产业界开发、推广的重点。与无机太阳能电池相比,聚合物太阳能电池制作工艺简单、可操作性强、成本低、重量轻、可制备成柔性器件。因此,聚合物太阳能电池具有广阔的发展和应用前景,是能源领域中最重要的研究方向。
在太阳能电池的众多种类中,高效率的聚合物太阳能电池通常采用体异质结结构,即聚合物给体材料与受体材料形成互穿网络结构。体异质结结构能够增加给体与受体的接触面积,弥补激子扩散距离较短的缺陷,提高激子分离的效率和太阳能转化的效率。同时由于聚合物太阳能电池光能利用率不高,自由电子的迁移率低,电子空穴复合概率高,聚合物太阳能电池的光转化效率仍然远低于无机太阳能电池的光转化效率。在传统的聚合物太阳能电池的结构中,增加聚合物太阳能电池光活性层的厚度可以增加光能的吸收,但由于其自由电荷迁移率很低,增加电池光活性层的厚度必然引起导出自由电荷的能力下降,增加的光能并不能高效率地转化为电能,因此,如何在不增加光活性层厚度的前提下提高光能的吸收是一个重要的研究课题。
有机稀土固体胶束可以吸收光能, 4f 轨道电子发生跃迁能够产生很强的荧光,其紫外吸收范围较宽,能够吸收更多的光能,可以在不增加聚合物太阳能电池光活性层厚度的情况下增加光吸收,从而增加聚合物太阳能电池的光电转化效率,目前,如何利用有机稀土固体胶束的荧光性能来提高太阳能电池的光电转化效率具有重要的研究价值,也为稀土发光材料的应用开拓了新领域。
现有技术发展中,中国专利 200910084684.7 号公开了一种聚合物太阳能电池光电活性层的处理方法,将光活性层暴露于氯仿和 / 或邻二氯苯的蒸汽中,保持 0.1-20 小时,该方法虽能有效提高太阳能电池的光电转化效率,但是操作不当极易将光活性层氧化,破坏光活性层的结构,影响电池的电学性能;中国专利 200910085656.7 号公开了一种掺杂无机半导体纳米晶体的聚合物太阳能电池光活性层的制备方法,将 Pb 、 Cd 或 Zn 的无机盐溶液与邻二氯苯进行混合,然后旋涂制膜,将所得薄膜置于 H2S 或 H2Se 气氛中处理 10-120 分钟,该法引入无机盐,增加成本,稳定性差,极易破坏光活性层的网络结构,降低光电转化效率;中国专利 201410336868.9 号公开了一种高效率聚合物太阳能电池,其结构自上而下依次是玻璃基板、 FTO 阳极层、介孔二氧化钛纳米层、聚合物活性层、铝阴极层,该结构在制备过程中,在电子传输层或空穴传输层中设有纳米颗粒,能够限制其表面等离子效应,影响电池的光电转化效率。目前为止,还没有关于将有机稀土固体胶束用于太阳能电池的相关报道及相关专利,由此,在不破坏光活性层结构的前提下,利用有机稀土固体胶束提高聚合物太阳能电池的光电转化效率变的尤为重要。
中国专利 201210260336.2 也公开了一种聚合物 - 稀土离子发光胶束的制备方法,但是其制备的聚合物 - 铕离子胶束粒径在 100nm 以上,本发明采用新型的两亲性二嵌段聚合物和有机共轭小分子 2- 噻吩甲酰三氟丙酮与稀土离子进行自组装络合成球,大大地减小了有机稀土固体胶束的尺寸( 10-20nm ),为其后期的应用拓宽了应用领域,如聚合物太阳能电池等。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计一种制备具有有机发光材料的聚合物太阳能电池的方法,将有机稀土固体胶束旋涂在体异质结结构聚合物太阳能电池( HJPSC )的 ITO 层之上,利用有机稀土固体胶束的荧光发射特性增大太阳能电池的光吸收强度,提高电池的光电转化效率。
为了实现上述目的,本发明的制备工艺包括下列步骤:
一种有机稀土固体 胶束 的制备方法, 将有机共轭小配体作为第一配体,一种具有两亲性二嵌段聚合物作为第二配体,二者与稀土元素氯化物溶液混合掺杂进行自组装形成有机稀土固体胶束。
所述的制备方法,所述 两亲性二嵌段聚合物为聚甲基丙烯酸甲酯 -b- 聚丙烯酸( PMMA-b-PAA )。
所述的制备方法,所述 两亲性二嵌段聚合物为聚甲基丙烯酸甲酯 -b- 聚丙烯酸( PMMA-b-PAA )的制备方法为:( 1 )称取一定量的可逆加成断裂链转移剂 (RAFT) 和适量的引发剂,二氧六环作为溶剂,加入一定量的甲基丙烯酸甲酯 MMA 单体,在氮气环境中和 70 ℃ 的温度下进行油浴合成反应 8 小时,将反应完成的液体用石油醚进行洗涤,抽滤得到上层固体进行干燥制得第一嵌段聚合物;( 2 )称取一定量的步骤( 1 )的产物,加入适量的引发剂,二氧六环作为溶剂,当聚甲基丙烯酸甲酯全部溶解后,加入一定量的丙烯酸单体,在氮气环境中和 50 ℃ 的油浴中进行合成反应 6 小时,用石油醚对所制备的反应液进行洗涤去除杂质和未反应的单体,倒去上层液体得到下层粘状固体,然后进行干燥制得两亲性二嵌段聚合物( PMMA-b-PAA )。
所述的制备方法,所述稀土元素 氯化物溶液包括氯化铕、氯化铽、氯化铥或氯化钆溶液。
所述的制备方法,所述 有机共轭小配体为 2- 噻吩甲酰三氟丙酮 TTA 、 1,10- 邻菲罗啉 Phen 、乙酰丙酮、水杨酸或二苯甲酰甲烷 DBM 之一。
所述的制备方法, 有机共轭小配体 : 稀土元素 氯化物:两亲性二嵌段聚合物的摩尔比为 3:1:1 。
所述的制备方法, 有机共轭小配体 : 稀土元素 氯化物:两亲性二嵌段聚合物在 50-70 ℃ 的油浴锅中进行络合反应 5-10 小时,得到有机稀土固体胶束溶液,有机稀土固体胶束是尺寸在 10-20nm 的络合物。
任一所述的方法制备获得的有机稀土固体胶束, 尺寸在 10-20nm 之间,呈球形,具有很强的荧光强度,紫外吸收范围处于300-425nm之间。
一种提高太阳能电池光电转化效率的方法,将所述的 有机稀土固体胶束旋涂在太阳能电池的 ITO 层之上,制备成具有有机稀土固体胶束的太阳能电池,由此可以加大电池对太阳光的吸收,提高光电转化效率。
所述提高太阳能电池光电转化效率的方法,(1) 将带有 阳极 电极 ITO 的透明基底依次用洗涤剂、去离子水、丙酮、去离子水、无水乙醇和异丙醇超声清洗,清洗后用干燥的高纯氮气吹干或高温烘干,形成洁净的导电基底;然后将其转入等离子体表面处理仪,在 25Pa 气压、氧气和氮气环境下对 ITO 导电基底等离子处理 5-15 分钟后冷却至室温;
( 2 )用有机极性溶剂对所述有机稀土固体胶束溶液进行稀释,然后经超声充分分散,得到分散均匀的有机稀土固体胶束溶液;
( 3 )在经步骤( 1 )等离子处理过的 ITO 导电基底的阳极电极上通过旋涂的方法形成不连续孤岛状的有机稀土固体胶束层;
( 4 )在步骤( 3 )中得到的有机稀土固体胶束层的表面通过旋涂方法形成带有一层空穴传输层的导电基底;
( 5 )将给体材料和受体材料通过匀胶机旋涂的方法在步骤( 4 )的空穴传输层上形成一层光活性层;
( 6 )将阴极电极的材质通过蒸镀的方法在步骤( 5 )的光活性层上形成阴极电极,得到旋涂有机稀土固体胶束层的聚合物太阳能电池。
本发明的一个优选的实施方式中, 有机稀土固体胶束包括第一配体、第二配体和三价稀土离子配位形成的核壳结构,平均粒径在10-20nm之间;所述第一配体为 2- 噻吩甲酰三氟丙酮;所述第二配体为聚甲基丙烯酸甲酯 -b- 聚丙烯酸。
优选地, 所述第一配体 :所述 三价稀土离子 : 所述第一配体 的摩尔比为 3:1:1 。
优选地 ,所述三价稀土离子为Eu3+、Tb3+、Tm3+或Gd3+
本发明的一个优选的实施方式中, 太阳能电池的阳极电极包括 氧化铟锡层,在所述氧化铟锡层上点缀状分散有前述的 有机稀土固体胶束。
优选地,所述阳极电极为 氧化铟锡层,光吸收层包括有机稀土固体胶束层和光活性层。
优选地 ,所述空穴传导层为 PEDOT:PSS 聚合物导电聚合物薄膜。
本发明所述的两亲性二嵌段聚合物,采用的第一链段在光、热、电离辐射和催化剂存在的条件下易于聚合,聚合效率高,聚合度较小;采用的第二链段单体在催化剂存在的条件下易于聚合,并且其具有最简单的不饱和羧基、酯基或酰胺基可以与三价稀土离子进行配位络合,所设定的聚合度较小,易于形成尺寸较小的固体胶束。
本发明所述的有机稀土固体胶束具有核壳结构,且尺寸比较小,在 10-20nm 之间,呈球形,并且尺寸分布范围较窄,在太阳能电池中易于分散均匀,并且具有很强的荧光强度,紫外吸收范围较宽,处于 300-425nm 之间。
本发明所述阳极电极为透明导电的金属氧化物或有掺杂的金属氧化物,包括氧化铟锡( ITO )、掺氟氧化锡( FTO )和氧化锡,阳极电极通过气相沉积、磁控溅射的方法形成,阳极电极的材质在可见光波长范围内有较高的透过率。
本发明所述的有机稀土固体胶束层在 ITO 层上分散比较均匀,呈点缀状,能够拓宽和增大太阳能电池对光的吸收范围和强度,避免对光活性层结构的破坏,并且对电流的导通性影响较小。
本发明所述的空穴传输层为 PEDOT:PSS 聚合物导电聚合物薄膜( PEDOT 是 3,4- 乙撑二氧噻吩单体的聚合物, PSS 是聚苯乙烯磺酸盐),空穴传输层的材质具有导电率和功函数,在可见光波长范围内有透过率。
本发明所述的光活性层包括聚合物给体材料和受体材料,这两种材料会混合形成互穿网络结构;其中给体材料吸收光能产生激子,给体材料的 LUMO 能级高于受体材料的 LUMO 能级,激子在给体材料与受体材料界面处产生分离,形成电子和空穴,电子在受体材料中传输,空穴在给体材料中传输,最终分别到达阴极和阳极,从而形成电流和电压。
本发明所述的聚合物给体材料包括聚噻吩类(如 P3HT 、 PEOPT 和 P3OT 等)、聚对苯亚乙烯衍生物 ( 如 MDMO-PPV 和 MEH-PPV 等 ) 和 D-A 型窄带隙共轭给体聚合物材料( 如 PBDTTT-C-T 、 PCPDTBT 、 PBDTTPD 、 PNDT-BT 、 PBDFDTBT 和 PDTSTPD ),聚合物给体材料具有共轭结构,能够吸收可见光中的光能并发生电子跃迁形成激子;所述的受体材料包括富勒烯衍生物,如 PC61BM 、 PC71BM 、 ICBA 和 ICMA ,受体材料能在光活性层材料中与聚合物给体材料形成纳米互穿网络结构,有着与聚合物给体材料不同的吸光范围。
本发明所述的阴极材质包括铝和钙,电池的阴极电极的材质有导电性,功函数低,能够和功函数高的阳极电极形成内电场,有利于电子和空穴的转移。
本发明与现有技术相比,直接将有机稀土固体胶束旋涂在 ITO 层之上形成单独一层,增加电池的光吸收范围和效率;减小固体胶束的尺寸和改善在 ITO 层上的分散性,可以有效降低其对电流导通性的影响;低浓度的有机稀土固体胶束不会破坏聚合物太阳能电池的体异质结结构,使电池保持相对较高的填充因子;光转化效率高、制备工艺简单、成本低、环境友好。
本发明 将所制备的具有核壳结构的有机稀土固体 胶束 用于太阳能电池中,通过掺杂于太阳能电池的活性层中或旋涂于ITO层之上的方法,来提高太阳能电池的光电转化效率。有机稀土固体胶束在电池的涂层中能够均匀分散,不连续,呈点缀状,对电流的导通性影响较小,另外,其尺寸比较小,在10-20nm之间,呈球形,并且尺寸分布范围较窄,具有很强的荧光强度,紫外吸收范围较宽,处于300-425nm之间。
本发明将 有机稀土固体胶束采用与稀土离子具有最佳能级匹配的有机共轭小分子作为第一配体,采用能与嵌段聚合物进行配位络合自组装成胶束的嵌段聚合物为第二配体。有机共轭小分子与稀土离子进行配位络合后,吸收能量被激发到单重态的某个振动能级,然后分子会通过内部能量快速传递进而跃迁到单重激发态的能量低一点的振动能级,单重激发态会以非辐射系间窜越的方式窜越到三重态,三重态非辐射跃迁到稀土离子的某个激发态,通过这种能量转移似的间接激发,稀土离子会辐射跃迁到能级低一点的4f壳层,同时发射出较强的荧光。
本发明的 空穴传输层为PEDOT:PSS聚合物导电、聚合物薄膜或金属氧化物薄膜,包括氧化镍、氧化钒、氧化钼和酞菁铜,空穴传输层的材质有导电率和功函数,在可见光波长范围内有透过率。
本发明的 有机稀土 固体 胶束能够吸收太阳光中的紫外光谱,一方面可以减少紫外光对光活性层的照射,延长光活性层的寿命,提高电池的稳定性;另一方面,光活性层中的窄带系聚合物给体材料和受体材料混合能够形成 互穿网络 结构,有机稀土固体胶束的加入能够增加电池的光吸收强度,聚合物给体材料吸收大量的光能产生激子,激子在给体材料与受体材料界面处产生分离,形成电子和空穴,电子在受体材料中传输,空穴在给体材料中传输,最终分别到达阴极和阳极,形成电流和电压。
附图说明:
图 1 为本发明实施例 2 所涉及的有机稀土固体胶束的结构示意图,包括 1- 两亲性二嵌段聚合物、 2- 三价铕离子、 3-2- 噻吩甲酰三氟丙酮。
图 2 为本发明实施例 3 所涉及的有机稀土固体胶束透射电镜图。
图 3 为本发明实施例 4 所涉及的太阳能电池的结构原理示意图,包括 4- 透明玻璃基底、 5- 阳极电极 ITO 层、 6- 有机稀土固体胶束、 7- 空穴传输层、 8- 光活性层、 9- 电子缓冲层、 10- 阴极电极。
图 4 为本发明实施例 5 所涉及的有机稀土固体胶束在太阳能电池中 ITO 层上的分布状态。
图 5 为本发明实施例 5 所涉及的太阳能电池与参比太阳能电池的电压与电流密度的曲线图。
具体实施方式:
下面结合具体实施例,对本发明进行详细说明。
实施例 1 :两亲性二嵌段聚合物(聚甲基丙烯酸甲酯 -b- 聚丙烯酸)( PMMA-b-PAA )的合成
( 1 )第一嵌段聚合物聚甲基丙烯酸甲酯 PMMA 的制备:称取一定量的可逆加成断裂链转移剂 (RAFT) 和适量的引发剂,二氧六环作为溶剂,加入一定量的甲基丙烯酸甲酯 MMA 单体,在氮气环境中和 70 ℃ 的温度下进行油浴合成反应 8 小时,将反应完成的液体用石油醚进行洗涤,抽滤得到上层固体进行干燥制得第一嵌段聚合物;
( 2 )两亲性二嵌段聚合物聚甲基丙烯酸甲酯 -b- 聚丙烯酸( PMMA-b-PAA )的合成:称取一定量的步骤( 1 )的产物,加入适量的引发剂,二氧六环作为溶剂,当聚甲基丙烯酸甲酯全部溶解后,加入一定量的丙烯酸单体,在氮气环境中和 50 ℃ 的油浴中进行合成反应 6 小时,用石油醚对所制备的反应液进行洗涤去除杂质和未反应的单体,倒去上层液体得到下层粘状固体,然后进行干燥制得两亲性二嵌段聚合物( PMMA-b-PAA );
实施例 2 :有机稀土固体胶束溶液的制备(图 1 )
( 1 )稀土离子溶液的制备:一定量的氧化铕与过量的盐酸水溶液在搅拌的条件下进行复分解反应 1 小时,将反应液在 70 ℃ 的油浴锅中进行溶剂蒸发,直至结晶,用四氢呋喃洗涤后再干燥得到 EuCl3·6H2O ,采用 N , N - 二甲基甲酰胺 DMF 作为溶剂,将干燥后得到的晶体 EuCl3·6H2O 溶解制备浓度为 0.02mol/L 的氯化铕溶液;
( 2 )两亲性二嵌段聚合物溶液的配制:将实施例 1 制备的两亲性二嵌段聚合物溶于 N , N - 二甲基甲酰胺 DMF 配成 0.04mol/L 的聚合物溶液;
( 3 )有机稀土固体胶束的制备:称取适量的有机共轭小配体 2- 噻吩甲酰三氟丙酮( TTA ,作为第一配体)和适量的步骤( 2 )得到的聚合物溶液(作为第二配体),与步骤( 2 )制备的氯化铕溶液以 3:1:1 ( TTA :氯化物:二嵌段聚合物)的摩尔比在 50 ℃ 的油浴锅中进行络合反应 5 小时,得到有机稀土固体胶束溶液,有机稀土固体胶束是尺寸在 10-20nm 的络合物。
实施例 3 :有机稀土固体胶束溶液的制备
本实施例的有机稀土固体胶束的化学合成方法为:称取 0.02667g 的 TTA 置于圆底烧瓶中,先用 17mL 的邻二氯苯将 TTA 搅拌溶解均匀,然后将 1mL 浓度为 0.04mol/L 的两亲性二嵌段聚合物溶液( PMMA20-b-PAA10 )逐滴地滴入装有 TTA 的圆底烧瓶中,最后将 2mL 浓度为 0.02mol/L 的氯化铕溶液逐滴地滴入上述圆底烧瓶中,然后将圆底烧瓶放入 60 ℃ 的油浴锅中加热搅拌反应 7 小时,最终得到有机稀土固体胶束溶液,其粒径大小约为 13nm (图 2 ) 。
实施例 4 :太阳能电池的制备(图 3 )
本实施例制备的太阳能电池的主体结构包括:透明玻璃基底 4 、阳极电极 ITO 层 5 、有机稀土固体胶束层 6 、空穴传输层 7 、光活性层 8 、电子缓冲层 9 、阴极电极 10 ,阳极电极 ITO 层 2 的厚度为 180nm ;分散均匀的有机稀土固体胶束层 3 厚度为 30-50nm ;空穴传输层 4 为 PEDOT:PSS 聚合物导电薄膜,厚度为 30nm ;光活性层 5 中给体材料为基于 BDT 的窄带系聚合物 PBDTTT-C-T ,受体材料为富勒烯衍生物( PC71BM ),光活性层的厚度为 100nm ;电子缓冲层为钙,厚度为 10nm ;阴极电极为铝,厚度为 100nm 。
本实施例的制备工艺包括下列步骤:
( 1 )将带有 ITO 的透明基底依次用洗涤剂、去离子水、丙酮、去离子水、无水乙醇和异丙醇超声清洗,清洗后用干燥的高纯氮气吹干或高温烘干,形成洁净的导电基底;然后将其转入等离子体表面处理仪,在 25Pa 气压、氧气和氮气环境下对 ITO 导电基底等离子处理 6 分钟后冷却至室温;
( 2 )用有邻二氯苯对实施例 3 合成的有机稀土固体胶束溶液进行 1:1 稀释,形成摩尔分数为 0.001mol/L 的溶液,然后经超声处理,得到分散均匀的混合溶剂溶液;
( 3 )将步骤( 1 )所得的 ITO 导电玻璃置于匀胶机中,旋涂步骤( 2 )处理过的有机稀土固体胶束,转速为 2000rpm ,时间为 40s ,最终得到厚度约为 20nm 的有机稀土固体胶束光吸收层;
( 4 )在经步骤( 3 )旋涂过的有机稀土固体胶束层的玻璃置于匀胶机中,旋涂聚电解质导电材料 PEDOT:PSS ,转速为 4000rpm ,时间为 40s ,最终得到厚度约为 30nm 的空穴传输层(聚合物导电薄膜),随后在 150 ℃ 下热处理 20 分钟;
( 5 )将步骤( 4 )所得的聚合物导电薄膜置于匀胶机中,旋涂 PBDTTT-C-T 与 PC71BM 质量比为 1:1.5 、总浓度为 25 mg/mL 的邻二氯苯溶液,转速为 800rpm ,时间为 60s ;
( 6 )将步骤( 5 )处理后的玻璃基片置于真空度大于 5×10-4 Pa 的真空蒸镀仪中,开始蒸镀电子缓冲层和阴极电极,其中电子缓冲层材料为 Ca ,蒸镀速率为 0.01nm/s ,厚度为 10nm ;阴极电极材料为 Al ,蒸镀速率为 0.5nm/s ,厚度为 100nm ,蒸镀速率及厚度由探头安装在基片附近的晶振膜厚仪监控。
实施例 5 :太阳能电池的制备
本实施例的制备工艺步骤与实施例 4 相同。
本实施例与实施例 4 的步骤( 2 )不同之处在于有机稀土固体胶束溶液与邻二氯苯溶剂的比例是 1:3 ,制备方法为:将所得的有机稀土固体胶束溶液与邻二氯苯溶剂以 1:3 的比例进行搅拌使固体胶束分散均匀,然后将其旋涂在 ITO 层之上制备光吸收层(图 4 )。
本实施例制备的旋涂有机稀土固体胶束的聚合物太阳能电池的能量转化效率为 7.84% (图 4 ) ,相比没有掺杂有机稀土固体胶束的聚合物太阳能电池光电转化效率的 7.25% 提高约 10% ,相比中国专利 201410336868.9 中提高的太阳能电池光电转化效率的 3.96% 提高了 98% ;其能量转化效率提高的主要表现是短路电流的提高,开路电压和填充因子变化不大。
实施例 6 :太阳能电池的制备
本实施例的制备工艺步骤与实施例 4 相同。
本实施例与实施例 4 的步骤( 2 )不同之处在于有机稀土固体胶束溶液与邻二氯苯溶剂的比例是 1:7 ,制备方法为:将所得的有机稀土固体胶束溶液与邻二氯苯溶剂以 1:7 的比例进行搅拌使固体胶束分散均匀,然后将其旋涂在 ITO 层之上制备光吸收层。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (16)

  1. 一种有机稀土固体胶束的制备方法,其特征在于,将有机共轭小配体作为第一配体,一种具有两亲性二嵌段聚合物作为第二配体,二者与稀土元素氯化物溶液混合掺杂进行自组装形成有机稀土固体胶束。
  2. 根据权利要求1所述的制备方法,其特征在于,所述两亲性二嵌段聚合物为聚甲基丙烯酸甲酯-b-聚丙烯酸(PMMA-b-PAA)。
  3. 根据权利要求2所述的制备方法,其特征在于,所述两亲性二嵌段聚合物为聚甲基丙烯酸甲酯-b-聚丙烯酸(PMMA-b-PAA)的制备方法为:(1)称取一定量的可逆加成断裂链转移剂(RAFT)和适量的引发剂,二氧六环作为溶剂,加入一定量的甲基丙烯酸甲酯MMA单体,在氮气环境中和70℃的温度下进行油浴合成反应8小时,将反应完成的液体用石油醚进行洗涤,抽滤得到上层固体进行干燥制得第一嵌段聚合物;(2)称取一定量的步骤(1)的产物,加入适量的引发剂,二氧六环作为溶剂,当聚甲基丙烯酸甲酯全部溶解后,加入一定量的丙烯酸单体,在氮气环境中和50℃的油浴中进行合成反应6小时,用石油醚对所制备的反应液进行洗涤去除杂质和未反应的单体,倒去上层液体得到下层粘状固体,然后进行干燥制得两亲性二嵌段聚合物(PMMA-b-PAA)。
  4. 根据权利要求1所述的制备方法,其特征在于,所述稀土元素氯化物溶液包括氯化铕、氯化铽、氯化铥或氯化钆溶液。
  5. 根据权利要求4所述的制备方法,其特征在于,所述有机共轭小配体为2-噻吩甲酰三氟丙酮、1,10-邻菲罗啉、乙酰丙酮、水杨酸或二苯甲酰甲烷之一。
  6. 根据权利要求1所述的制备方法,其特征在于,有机共轭小配体:稀土元素氯化物:两亲性二嵌段聚合物的摩尔比为3:1:1。
  7. 根据权利要求6所述的制备方法,其特征在于,有机共轭小配体:稀土元素氯化物:两亲性二嵌段聚合物在50-70℃的油浴锅中进行络合反应5-10小时,得到有机稀土固体胶束溶液,有机稀土固体胶束是尺寸在10-20nm的络合物。
  8. 根据权利要求1-7任一所述方法制备获得的有机稀土固体胶束,尺寸在10-20nm之间,呈球形,具有很强的荧光强度,紫外吸收范围处于300-425nm之间。
  9. 一种提高太阳能电池光电转化效率的方法,其特征在于,将权利要求8所述的有机稀土固体胶束旋涂在太阳能电池的ITO层之上,制备成具有有机稀土固体胶束的太阳能电池,由此可以加大电池对太阳光的吸收,提高光电转化效率。
  10. 根据权利要求9所述的方法,其特征在于,(1)将带有阳极电极ITO的透明基底依次用洗涤剂、去离子水、丙酮、去离子水、无水乙醇和异丙醇超声清洗,清洗后用干燥的高纯氮气吹干或高温烘干,形成洁净的导电基底;然后将其转入等离子体表面处理仪,在25Pa气压、氧气和氮气环境下对ITO导电基底等离子处理5-15分钟后冷却至室温;
    (2)用有机极性溶剂对所述有机稀土固体胶束溶液进行稀释,然后经超声充分分散,得到分散均匀的有机稀土固体胶束溶液;
    (3)在经步骤(1)等离子处理过的ITO导电基底的阳极电极上通过旋涂的方法形成不连续孤岛状的有机稀土固体胶束层;
    (4)在步骤(3)中得到的有机稀土固体胶束层的表面通过旋涂方法形成带有一层空穴传输层的导电基底;
    (5)将给体材料和受体材料通过匀胶机旋涂的方法在步骤(4)的空穴传输层上形成一层光活性层;
    (6)将阴极电极的材质通过蒸镀的方法在步骤(5)的光活性层上形成阴极电极,得到旋涂有机稀土固体胶束层的聚合物太阳能电池。
  11. 一种有机稀土固体胶束,其特征在于,所述有机稀土固体胶束包括第一配体、第二配体和三价稀土离子配位形成的核壳结构,平均粒径在10-20nm之间;所述第一配体为2-噻吩甲酰三氟丙酮;所述第二配体为聚甲基丙烯酸甲酯-b-聚丙烯酸。
  12. 根据权利要求11所述的有机稀土固体胶束,其特征在于,所述第一配体:所述三价稀土离子:所述第一配体的摩尔比为3:1:1 。
  13. 根据权利要求 12 所述的 有机稀土固体胶束,其特征在于,所述三价稀土离子为Eu3+、Tb3+、Tm3+或Gd3+
  14. 一种太阳能电池,其特征在于,所述太阳能电池的阳极电极包括氧化铟锡层,在所述氧化铟锡层上点缀状分散有如权利要求11-13所述的有机稀土固体胶束。
  15. 如权利要求14所述的太阳能电池,其特征在于,所述阳极电极为氧化铟锡层,光吸收层包括有机稀土固体胶束层和光活性层。
  16. 如权利要求15所述的太阳能电池,其特征在于,所述空穴传导层为PEDOT:PSS聚合物导电聚合物薄膜。
PCT/CN2016/094129 2016-01-06 2016-08-09 有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法 WO2017118015A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/068,455 US10604699B2 (en) 2016-01-06 2016-08-09 Organic rare earth solid micelle, preparation method therefor, and method for increasing photoelectric conversion efficiency of solar battery
EP16883148.5A EP3401339B1 (en) 2016-01-06 2016-08-09 Organic rare-earth solid micelle and preparation method therefor, and method for improving photoelectric conversion efficiency of solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610004793.3 2016-01-06
CN201610004793.3A CN105440230B (zh) 2016-01-06 2016-01-06 一种有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法

Publications (1)

Publication Number Publication Date
WO2017118015A1 true WO2017118015A1 (zh) 2017-07-13

Family

ID=55550906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/094129 WO2017118015A1 (zh) 2016-01-06 2016-08-09 有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法

Country Status (4)

Country Link
US (1) US10604699B2 (zh)
EP (1) EP3401339B1 (zh)
CN (1) CN105440230B (zh)
WO (1) WO2017118015A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105440230B (zh) 2016-01-06 2017-10-13 青岛大学 一种有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法
CN107946412B (zh) * 2017-12-25 2020-08-04 青岛大学 一种稀土络合物溶液和改性太阳能电池的制备方法
CN110473968A (zh) * 2019-07-31 2019-11-19 青岛大学 基于铕稀土络合物掺杂氧化锌电子传输层构建的柔性结构聚合物太阳能电池及其制备方法
CN111040356B (zh) * 2019-12-25 2023-05-16 青岛大学 一种三原色光致发光器件及其制备方法
CN112542546B (zh) * 2020-12-07 2022-04-15 苏州大学 基于紫外吸收剂添加的光活性层及三元有机太阳能电池
CN113929917A (zh) * 2021-08-30 2022-01-14 北京工业大学 一种mof材料的制作方法及其在有机太阳能电池电子收集层中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875750A (zh) * 2012-07-25 2013-01-16 青岛大学 一种聚合物-稀土离子发光胶束的制备方法
CN103560207A (zh) * 2013-11-20 2014-02-05 电子科技大学 一种有机薄膜太阳能电池及其制备方法
CN105440230A (zh) * 2016-01-06 2016-03-30 青岛大学 一种有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475182A (zh) * 2009-01-13 2009-07-08 东华大学 一种稀土掺杂荧光功能化介孔材料的制备方法
CN101901872B (zh) 2009-05-25 2012-11-07 中国科学院化学研究所 一种聚合物太阳能电池光电活性层的处理方法
CN101901873B (zh) 2009-05-27 2011-11-23 中国科学院化学研究所 聚合物太阳能电池光活性层的制备方法
CN102134253B (zh) * 2010-01-22 2013-12-11 北京大学 光致发光纳米粒子及其制备方法与应用
CN104064673B (zh) 2014-07-16 2018-05-01 河北大学 一种高效率聚合物太阳能电池板及其制备方法
FR3043330B1 (fr) * 2015-11-05 2019-06-21 Centre National De La Recherche Scientifique (Cnrs) Agents de constrate pour imagerie medicale

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875750A (zh) * 2012-07-25 2013-01-16 青岛大学 一种聚合物-稀土离子发光胶束的制备方法
CN103560207A (zh) * 2013-11-20 2014-02-05 电子科技大学 一种有机薄膜太阳能电池及其制备方法
CN105440230A (zh) * 2016-01-06 2016-03-30 青岛大学 一种有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, AIHUA ET AL.: "Synthesis of Amphiphilic Block Copolymer by RAFT Polymerization and It's Induced Self-Assembly", ENGINEERING PLASTICS APPLICATION, vol. 40, no. 5, 31 May 2012 (2012-05-31), pages 17 - 21, XP009507490 *
See also references of EP3401339A4 *

Also Published As

Publication number Publication date
EP3401339A1 (en) 2018-11-14
EP3401339B1 (en) 2020-03-25
EP3401339A4 (en) 2018-12-05
US20190010389A1 (en) 2019-01-10
CN105440230A (zh) 2016-03-30
CN105440230B (zh) 2017-10-13
US10604699B2 (en) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2017118015A1 (zh) 有机稀土固体胶束及其制备方法和提高太阳能电池光电转化效率的方法
Zhang et al. High-Efficiency Polymer Solar Cells Enabled by Environment-Friendly Single-Solvent Processing.
Guo et al. High efficiency polymer solar cells based on poly (3-hexylthiophene)/indene-C 70 bisadduct with solvent additive
Zeng et al. A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices
Xiong et al. Enhanced efficiency and stability of polymer solar cells with TiO2 nanoparticles buffer layer
Oey et al. Polymer–TiO2 solar cells: TiO2 interconnected network for improved cell performance
Huang et al. High performance as-cast semitransparent polymer solar cells
Naidu et al. Novel hybrid polymer photovoltaics made by generating silver nanoparticles in polymer: fullerene bulk-heterojunction structures
Li et al. Achieving efficient thick film all-polymer solar cells using a green solvent additive
Imran et al. High-performance solution-based CdS-conjugated hybrid polymer solar cells
Xu et al. A hydrophilic monodisperse conjugated starburst macromolecule with multidimensional topology as electron transport/injection layer for organic electronics
Duan et al. Inverted CH3NH3PbI3 perovskite solar cells based on solution-processed V2O5 film combined with P3CT salt as hole transport layer
Li et al. Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT: PSS layer
Zhang et al. Revealing photoinduced bulk polarization and spin-orbit coupling effects in high-efficiency 2D/3D Pb–Sn alloyed perovskite solar cells
Dai et al. Performance improvement of polymer solar cells with binary additives induced morphology optimization and interface modification simultaneously
Wang et al. Förster resonance energy transfer and morphology optimization for high-performance ternary organic photodetectors
WO2019127765A1 (zh) 稀土络合物掺杂二氧化硅微球溶液和改性太阳能电池的制备方法
Ge et al. Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells
WO2013053216A1 (zh) 一种倒置结构的聚合物本体异质结太阳电池及其制备方法
Wang et al. Efficient ternary organic photovoltaic cells with better trade-off photon harvesting and phase separation by doping DIB-SQ
WO2014047859A1 (zh) 一种聚合物太阳能电池及其制备方法
Gong et al. Investigation of the magnetic nickel nanoparticle on performance improvement of P3HT: PCBM solar cell
Wang et al. Influence of interface modification on the performance of polymer/Bi2S3 nanorods bulk heterojunction solar cells
Wang et al. Hybrid bulk heterojunction solar cells from a blend of poly (3-hexylthiophene) and TiO2 nanotubes
Li et al. The effect of thermal annealing on defect states, light intensity and photocurrent of organic solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016883148

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016883148

Country of ref document: EP

Effective date: 20180806