WO2017117998A1 - 一种液体参数检测方法及系统 - Google Patents

一种液体参数检测方法及系统 Download PDF

Info

Publication number
WO2017117998A1
WO2017117998A1 PCT/CN2016/093067 CN2016093067W WO2017117998A1 WO 2017117998 A1 WO2017117998 A1 WO 2017117998A1 CN 2016093067 W CN2016093067 W CN 2016093067W WO 2017117998 A1 WO2017117998 A1 WO 2017117998A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
bottle
gravity
density
volume
Prior art date
Application number
PCT/CN2016/093067
Other languages
English (en)
French (fr)
Inventor
卫创
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/503,800 priority Critical patent/US10307537B2/en
Publication of WO2017117998A1 publication Critical patent/WO2017117998A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M5/1684Monitoring, detecting, signalling or eliminating infusion flow anomalies by detecting the amount of infusate remaining, e.g. signalling end of infusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/1414Hanging-up devices
    • A61M5/1417Holders or handles for hanging up infusion containers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M5/1684Monitoring, detecting, signalling or eliminating infusion flow anomalies by detecting the amount of infusate remaining, e.g. signalling end of infusion
    • A61M5/16845Monitoring, detecting, signalling or eliminating infusion flow anomalies by detecting the amount of infusate remaining, e.g. signalling end of infusion by weight
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16886Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body for measuring fluid flow rate, i.e. flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/20Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of weight, e.g. to determine the level of stored liquefied gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/02Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume
    • G01N9/04Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by measuring weight of a known volume of fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3379Masses, volumes, levels of fluids in reservoirs, flow rates
    • A61M2205/3393Masses, volumes, levels of fluids in reservoirs, flow rates by weighing the reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3553Range remote, e.g. between patient's home and doctor's office
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3584Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth

Definitions

  • the present invention relates to the field of medical devices, and more particularly to a method and system for detecting liquid parameters.
  • the bottle is composed of a bottle body and a bottle cap.
  • the needle of the infusion tube is inserted into the liquid through the hanging bottle cap, and the hanging bottle is suspended upside down in a high position, so that the liquid passes through the gravitational potential energy from the hanging bottle to the patient through the infusion tube.
  • the liquid in the bottle for example, the liquid medicine
  • the density of the liquid in the bottle When determining the liquid volume and liquid level, it may be necessary to determine the density of the liquid in the bottle.
  • other liquids are usually injected into the original liquid of the bottle. For example, penicillin is injected into a 50% glucose bottle. This mixing of the liquid will cause a change in the density of the liquid in the bottle, and depending on the type and amount of the liquid to be injected, the density of the liquid in the bottle will vary to varying degrees. Therefore, in order to be able to accurately measure the parameters associated with the liquid in the bottle, the density of the liquid in the bottle must be accurately determined.
  • the existing liquid parameter detection system in the hanging bottle is complicated in design, and the purpose of detecting the liquid parameter needs to be achieved by modifying the entire hanging bottle.
  • Existing detection systems are costly, difficult to recycle, have low reusability, and are difficult to assemble and disassemble.
  • the existing liquid parameter detecting system needs to contact the detecting member with the liquid when detecting the liquid level in the hanging bottle, which inevitably causes contamination of the liquid.
  • liquid parameter detection system In order to reduce cost, ease of use and reusability, it is necessary to integrate the liquid parameter detection system into the slinger and the sling cap so that no modification of the sling is required. In addition, liquid parameters need to be determined in a non-contact manner in real-time measurement by weight and density to avoid contamination of the liquid.
  • the present invention can integrate a wireless transmission module in the detection system, transmit liquid parameters through the Internet, and display and set relevant parameters on the application of the terminal device.
  • the user can interact well with the bottle system and realize the humanized design.
  • a liquid detecting system for detecting a liquid level of a liquid in a bottle
  • the system includes:
  • a bottle holder unit for determining the overall gravity of the bottle
  • a capping unit for determining the density of the liquid in the bottle
  • a transfer unit for transmitting the overall gravity and liquid density of the bottle to the server
  • the server is configured to determine the gravity of the liquid in the bottle, and calculate the volume of the liquid in the bottle according to the liquid gravity and the liquid density, and determine the liquid level based on the liquid volume.
  • the hanging bottle cover unit comprises a hanging bottle gravity detecting module
  • the hanging bottle gravity detecting module uses a cantilever beam type weighing sensor to determine the overall gravity of the hanging bottle.
  • the bottle cap unit includes a liquid density detecting module that uses an ultrasonic density sensor to detect the density of the liquid in the bottle.
  • the ultrasonic density sensor comprises: an ultrasonic transmitter and an ultrasonic receiver, both of the ultrasonic transmitter and the ultrasonic receiver are located between the outside of the hanging bottle neck and the outside of the bottle cap, and are in the cross section of the bottle cap
  • the diameter direction is set at both ends, and the ultrasonic wave emitted from the ultrasonic transmitter passes through the end of the hanging bottle neck portion and reaches the other end of the hanging bottle neck portion in the diameter direction to be received by the ultrasonic receiver, and the liquid density is calculated according to the ultrasonic propagation parameter.
  • calculating the liquid density based on the ultrasonic propagation parameters is specifically:
  • c is the speed at which the ultrasonic wave propagates in the liquid
  • k is the compression factor
  • L is the cross-sectional diameter of the inner wall of the bottle
  • t is the time during which the ultrasonic wave propagates between the emitter and the receiver
  • t 0 is the ultrasonic wave at the wall of the bottle The time of transmission.
  • g is the acceleration of gravity
  • is the density of the liquid
  • G 1 is the overall gravity of the bottle
  • G is the gravity of the empty bottle of the bottle.
  • the bottle cap unit further includes a liquid gravity detecting module that detects a gravity G 2 of the liquid in the bottle using a micro load sensor.
  • g is the gravitational acceleration
  • is the liquid density
  • G 2 is the liquid gravity measured by the liquid gravity detection module.
  • the hanging cap unit comprises a liquid level detecting module, and the liquid level detecting module detects a tilt angle of a liquid level and a horizontal plane in the bottle using a three-axis acceleration sensor.
  • the liquid level of the liquid is determined based on the liquid volume and the bottle capacity.
  • the liquid flow rate is determined based on the amount of change in liquid volume within the vial over a period of time.
  • the liquid level, the liquid level, the liquid volume, the liquid gravity and/or the liquid flow rate are transmitted to the terminal device, the terminal device displaying the liquid level, the liquid level, the liquid volume, the liquid gravity and/or in real time.
  • the terminal device outputs the warning information according to a comparison result of the liquid volume, the liquid flow rate, and/or the liquid level angle with respective respective threshold values.
  • a liquid detecting method for detecting a liquid level position of a liquid in a bottle comprising:
  • the server is used to determine the gravity of the liquid in the bottle, and the volume of the liquid in the bottle is calculated based on the liquid gravity and the liquid density, and the liquid level is determined based on the liquid volume.
  • a cantilever beam load cell is used to determine the overall weight of the bottle.
  • an ultrasonic density sensor is used to detect the density of the liquid in the vial.
  • the ultrasonic density sensor comprises: an ultrasonic transmitter and an ultrasonic receiver, both of the ultrasonic transmitter and the ultrasonic receiver are located between the outside of the hanging bottle neck and the outside of the bottle cap, and are in the cross section of the bottle cap
  • the diameter direction is set at both ends, and the ultrasonic wave emitted from the ultrasonic transmitter passes through the end of the hanging bottle neck portion and reaches the other end of the hanging bottle neck portion in the diameter direction to be received by the ultrasonic receiver, and the liquid density is calculated according to the ultrasonic propagation parameter.
  • calculating the liquid density based on the ultrasonic propagation parameters is specifically:
  • c is the speed at which the ultrasonic wave propagates in the liquid
  • k is the compression factor
  • L is the cross-sectional diameter of the inner wall of the bottle
  • t is the time during which the ultrasonic wave propagates between the emitter and the receiver
  • t 0 is the ultrasonic wave at the wall of the bottle The time of transmission.
  • g is the acceleration of gravity
  • is the density of the liquid
  • G 1 is the overall gravity of the bottle
  • G is the gravity of the empty bottle of the bottle.
  • the method further comprises detecting the gravity G 2 of the liquid in the bottle using a micro load cell sensor.
  • g is the gravitational acceleration
  • is the liquid density
  • G 2 is the liquid gravity measured by the liquid gravity detection module.
  • the method further comprises detecting a tilt angle of the liquid level in the bottle and the horizontal plane using a triaxial acceleration sensor.
  • the liquid level of the liquid is determined based on the liquid volume and the bottle capacity.
  • the liquid flow rate is determined based on the amount of change in liquid volume within the vial over a period of time.
  • the method further comprises: a liquid level, a liquid level, a liquid volume, a liquid gravity, and/or a liquid
  • the body flow rate is sent to the terminal device, which displays the liquid level, the liquid level, the liquid volume, the liquid gravity and/or the liquid flow rate in real time, and the terminal device is based on the liquid volume, the liquid flow rate and/or the liquid level angle
  • the warning information is outputted by the comparison result of the respective thresholds.
  • the technical scheme of the invention is simple in design, convenient for disassembly and assembly, and recycling.
  • the detecting device does not need to make excessive contact with the chemical solution, and the parameters such as the volume of the liquid medicine are measured in real time by weight and density.
  • FIG. 1 shows a schematic structural view of a liquid detecting system 100 according to an exemplary embodiment of the present invention
  • FIG. 2 is a schematic structural view of a bottle cap unit 101 according to an exemplary embodiment of the present invention
  • FIG. 3 shows a schematic structural view of a capping unit 102 according to an exemplary embodiment of the present invention
  • FIG. 4 shows a detailed configuration diagram of a capping unit 101 according to an exemplary embodiment of the present invention
  • FIG. 5 illustrates an exemplary range and structural dimensions of a liquid gravity detection module 302 in accordance with an exemplary embodiment of the present invention
  • FIG. 6 illustrates a flow chart of a liquid detection method 600 in accordance with an exemplary embodiment of the present invention
  • FIG. 7 shows a schematic structural view of a liquid detection system 700 in accordance with another exemplary embodiment of the present invention.
  • FIG. 1 shows a schematic structural view of a liquid detecting system 100 according to an exemplary embodiment of the present invention.
  • the liquid detecting system 100 includes a bottle holder unit 101, a bottle cap unit 102, a transfer unit 103, a server 104, and a terminal device 105.
  • the liquid detection system 100 detects liquid parameters by a non-contact intelligent integration method.
  • the liquid detecting system 100 integrates the liquid-related parameter (for example, liquid level position) detecting component of the medical bottle in the bottle sleeve unit and the bottle cap unit, and detects the bottle cover unit and the bottle cap unit in real time.
  • the liquid related parameters in the bottle are stored, and the liquid related parameters are transmitted in real time (wired or wireless) to the server.
  • the server analyzes and calculates liquid-related parameters to obtain parameters such as liquid level, liquid level, liquid volume, liquid gravity, and/or liquid flow rate.
  • the server transmits parameters such as liquid level, liquid level, liquid volume, liquid gravity and/or liquid flow rate to the terminal device, so that the user can observe parameters such as the liquid level position through the terminal device.
  • the liquid detection system 100 can also set an early warning threshold such that when the parameters such as the liquid level, the liquid level, the liquid volume, the liquid gravity, and/or the liquid flow rate exceed the warning threshold, The end device performs an alarm.
  • the bottle sleeve unit 101 is used to determine the overall gravity of the bottle.
  • the overall gravity of the hanging bottle is the sum of the gravity of the empty bottle of the hanging bottle and the liquid (for example, the liquid medicine) in the hanging bottle.
  • the overall gravity of the bottle is an important parameter for determining the gravity of the liquid in the bottle.
  • the liquid detection system 100 predetermines and stores the specifications and gravity of the vial.
  • the size and gravity of the vial may be pre-stored in the server 104.
  • the bottle cap unit 102 is used to determine the density of the liquid in the bottle, the gravity of the liquid, and the liquid level of the liquid.
  • the density of the liquid in the bottle will vary to varying degrees.
  • the bottle cap unit 102 is capable of detecting the density of the liquid in the bottle in real time as an important parameter for calculating the volume of the liquid.
  • the capping unit 102 is also capable of determining the gravity of the liquid and the recoil angle of the liquid.
  • the gravity of the liquid refers to the gravity of the liquid itself in the bottle, and the liquid level of the liquid refers to the angle formed by the liquid level of the liquid in the bottle and the horizontal plane.
  • the transmission unit 103 is configured to transmit parameters such as a liquid level angle, a whole weight of the bottle, a liquid gravity, and the like to the server.
  • the transmission unit 103 can transmit parameters such as a liquid level angle, a whole weight of the bottle, a liquid gravity, and the like to the server using any wireless or wired method.
  • the single transmission unit 103 is taken as an example for demonstration, and the transmission unit for transmitting the relevant parameters may be located in the bottle sleeve unit 101 and the bottle cap unit 102, respectively.
  • the server 104 is configured to determine the gravity of the liquid in the bottle and calculate the volume of the liquid in the bottle based on the liquid gravity and the liquid density, and determine the level of the liquid based on the volume of the liquid. Among them, when the liquid level is higher than the bottleneck At the time of the setting, the liquid volume is calculated by the overall gravity of the bottle, the gravity of the bottle and the density of the liquid, and when the liquid level is lower than the bottleneck position, the liquid volume is calculated by the liquid gravity and the liquid density.
  • the basis for determining whether the liquid level is higher than the bottleneck position may be: determining that the liquid level is higher than the bottleneck when the liquid volume calculated by the overall gravity of the bottle, the gravity of the bottle, and the liquid density is greater than or equal to the preset volume value. Position, and when the liquid volume calculated by the overall gravity of the bottle, the gravity of the bottle, and the density of the liquid is less than the preset volume value, it is determined that the liquid level is lower than the bottleneck position.
  • the user can set the preset volume value to any reasonable value according to actual needs, for example, the liquid volume corresponding to the liquid level at the bottle neck position, or 1 cm corresponding to the liquid level above the bottle neck position. The volume of the liquid.
  • the server 104 determines the level of the liquid based on the volume of the liquid, typically determining the level of the liquid based on parameters such as liquid volume and bottle capacity, size, and the like. For example, a specific liquid volume corresponds to the liquid level position of the liquid without considering the liquid level angle. In the case of considering the liquid level inclination, the liquid level of the liquid is modified according to the liquid level angle.
  • the server 104 further includes an interface unit (not shown) for receiving parameters such as overall gravity of the bottle, liquid gravity, liquid inclination, and liquid density, and for transmitting the liquid volume, the liquid level, and the liquid flow rate. And parameters such as liquid inclination.
  • the server 104 also includes a storage unit (not shown) for storing various related data, such as specifications, dimensions, gravity, and the like of various bottles.
  • the terminal device 105 is configured to receive parameters such as a liquid level, a liquid level, a liquid volume, a liquid gravity, an infusion time, and/or a liquid flow rate.
  • the terminal device 105 displays the liquid level, the liquid level, the liquid volume, the liquid gravity, the infusion time, and/or the liquid flow rate in real time, and the terminal device compares the liquid volume, the liquid flow rate, and/or the liquid level angle with respective respective thresholds. The result is to output an alert message.
  • the user may input parameters such as specifications of the hanging bottle through the terminal device 105 before using the hanging bottle, and the terminal device 105 transmits the parameters to the server 104.
  • the bottle cap unit 102 can be used to detect parameters such as the specifications of the bottle and send it through the transmission unit.
  • the terminal device 105 can perform bidirectional transmission with the server 104, and the server 104 outputs the calculated liquid parameters (wired or wirelessly) to the terminal device 105.
  • the terminal device 105 can be a portable device such as a mobile phone or a PAD to facilitate the use of the accompanying staff; or it can be a mainframe to facilitate the control room personnel to simultaneously monitor the status of the plurality of infusion bottles.
  • FIG. 2 shows a schematic structural view of a bottle cap unit 101 according to an exemplary embodiment of the present invention.
  • the bottle holder unit 101 includes a bottle gravity detecting module 201, a transmission module 202, a control main circuit 203, and a power module 204.
  • the bottle gravity detecting module 201 detects the gravity of the entire bottle in real time using a cantilever beam load cell.
  • the gravity of the entire bottle includes the empty bottle of the bottle and the gravity of the gravity and the liquid in the bottle.
  • the transmission module 202 transmits the overall gravity of the bottle to the server by wire or wirelessly.
  • the vial unit 101 transfers the overall weight of the vial to the server via an external transfer module.
  • control main circuit 203 is configured to control various devices inside the bottle holder unit 101, for example, the control power module 204 supplies power to the bottle gravity detecting module 201 or the transmission module 202, and controls the bottle gravity detecting module 201 to perform gravity. Measurement and control of the transmission module for data transmission.
  • the power module 204 is configured to supply power to the bottle sleeve unit 101.
  • FIG. 3 shows a schematic structural view of a capping unit 102 according to an exemplary embodiment of the present invention.
  • the bottle cap unit 102 includes a liquid density detecting module 301, a liquid gravity detecting module 302, a liquid level detecting module 303, a transport module 304, a control main circuit 305, and a power module 306.
  • the liquid density detecting module 301 detects the density of the liquid in the bottle using an ultrasonic density sensor.
  • FIG. 4 shows a detailed configuration diagram of a capping unit 101 according to an exemplary embodiment of the present invention.
  • the ultrasonic density sensor includes an ultrasonic transmitter and an ultrasonic receiver.
  • the ultrasonic transmitter and the ultrasonic receiver are respectively located between the outside of the hanging bottle neck and the outside of the bottle cap, and are disposed at both ends in the diameter direction of the cross section of the bottle cap, and the ultrasonic wave emitted by the ultrasonic transmitter passes through the end of the bottle neck.
  • Diameter to reach the bottleneck The other end of the portion is received by the ultrasonic receiver, and the liquid density is calculated based on the ultrasonic propagation parameters. Since the penetration of the ultrasonic waves is strong, it is only necessary to place the ultrasonic transmitter and the ultrasonic receiver outside the bottle cap to avoid contamination of the liquid.
  • the ultrasonic transmitter and receiver are placed close to the outside of the bottle neck and form the outer plug of the bottle cap.
  • the ultrasonic transmitter emits ultrasonic waves through the wall of the bottle, through the liquid, and then through the wall of the bottle on the other side to the ultrasonic receiver.
  • the ultrasonic transmitter and the ultrasonic receiver may be composed of an ultrasonic transducer that generates ultrasonic waves by a piezoelectric effect.
  • the propagation speed of ultrasonic waves in a liquid is:
  • c is the velocity at which the ultrasonic wave propagates in the liquid
  • is the liquid density
  • k is the compression factor. Since the liquids are all aqueous solutions, the compression factor is substantially constant and is a constant.
  • the propagation speed of the ultrasonic wave in the liquid can be measured by the ultrasonic transmission time t in the fixed sound path L, namely:
  • L is a constant that is the diameter of the cross section of the hanging bottle neck.
  • the accuracy of t depends on the frequency of the clock circuit.
  • the clock frequency can reach more than 10MHz, so the minimum timing accuracy is at least
  • the minimum diameter of the hanging bottle neck is 0.02m, and the ultrasonic wave propagation speed in the liquid is less than 2000m/s, then the minimum time for the ultrasonic wave to propagate in the hanging bottle neck is Therefore, it is feasible to record the propagation time of the ultrasonic waves.
  • the time during which ultrasonic waves propagate in the wall of the bottle of various types or sizes can be stored in a storage unit (not shown) or server of the bottle cap unit. In the storage unit.
  • the time of propagation in the wall of the bottle is read from the storage unit of the bottle cap unit, or the time of propagation in the wall of the bottle is received from the server.
  • the liquid gravity detection module 302 detects the gravity G 2 of the liquid in the vial using a micro load cell sensor.
  • FIG. 5 shows an exemplary range and structural size schematic of a liquid gravity detection module 302 in accordance with an exemplary embodiment of the present invention.
  • the liquid gravity detecting module 302 can be placed inside the bottle cap unit to accurately monitor the pressure exerted by the liquid in the bottle neck on the cap, that is, gravity.
  • the gravity sensor has a maximum size of only 2 cm and can be placed inside the cap.
  • the liquid level detection module 303 detects the liquid level angle ⁇ using a three-axis acceleration sensor.
  • the liquid level of the liquid refers to the angle formed by the liquid level of the liquid in the bottle and the horizontal plane.
  • the angle of inclination can reflect the angle of inclination of the bottle. When the liquid level angle is greater than a predetermined threshold, it can be indicated that the tilt angle of the bottle is in a dangerous state.
  • the transmission module 304 transmits parameters such as liquid density, liquid gravity, and liquid level to the server by wire or wirelessly.
  • the capping unit 102 transmits parameters such as liquid density, liquid gravity, and sag angle to the server via an external transfer module.
  • transmission module 304 can receive liquid density, liquid gravity, and liquid level parameters from control main circuit 305.
  • control main circuit 305 is used to control various devices inside the bottle cap unit 102.
  • the control power module 306 is a liquid density detecting module 301, a liquid gravity detecting module 302, a liquid level tilt detecting module 303, and a transmission module.
  • the 304 power supply, the control liquid density detecting module 301 determines the liquid density in the bottle, the control liquid gravity detecting module 302 determines the gravity of the liquid in the bottle, and the control liquid level detecting module 303 determines the liquid level inclination of the liquid in the bottle.
  • the control main circuit 305 can also obtain the liquid density in the bottle from the liquid density detecting module 301, the gravity of the liquid in the bottle from the liquid gravity detecting module 302, and the liquid level angle of the liquid in the bottle from the liquid level detecting module 303. The control main circuit then transmits the relevant data to the server through the wireless transmission module. The control main circuit only transmits data to the server, and does not process the data excessively.
  • the power module 306 is used to supply power to the bottle cap unit 102.
  • the server 104 obtains parameters such as the overall gravity of the hanging bottle, the liquid density, the liquid gravity, the liquid inclination angle, and the like from the bottle sleeve unit and the bottle cap unit.
  • the server 104 further includes a storage unit (not shown) for storing various related data, such as specifications, dimensions, gravity, and the like of various hanging bottles.
  • the server 104 is configured to calculate the volume of the liquid in the bottle according to the overall gravity of the bottle, the liquid density, the liquid gravity, the weight of the bottle, and the like.
  • the server 104 processes the data transmitted from the bottle holder unit and the bottle cap unit.
  • the data received from the bottling unit and the sling cap unit includes: gravity G 1 of the entire sling, gravity G 2 of the liquid, liquid density ⁇ , and sag angle ⁇ . Additionally, the server 104 can retrieve the gravity G of the empty bottle from the database of storage units.
  • the server 104 determines the liquid by gravity gravity G of gravity G of the entire bottle and the empty bottle. 1. Therefore, the volume of the liquid is:
  • g is the acceleration of gravity
  • is the density of the liquid
  • G 1 is the overall gravity of the bottle
  • G is the gravity of the empty bottle of the bottle.
  • the liquid gravity G 2 determined by the liquid gravity detecting module is used. Calculate the liquid volume. Ie Where ⁇ G is the gravity threshold and G 2 is used to calculate the liquid volume, ie:
  • g is the gravitational acceleration
  • is the liquid density
  • G 2 is the liquid gravity G 2 determined by the liquid gravity detection module.
  • the server 104 can also record the corresponding infusion time T, i.e., from the start of the infusion to the current time value.
  • the server 104 can transmit the time value to the terminal device for display by the terminal device to the user.
  • the server 104 can also calculate the flow rate of the liquid according to the change of the liquid volume per unit time, namely:
  • ⁇ V is a liquid volume change amount within a certain time ⁇ T.
  • the server 104 can transmit the flow rate of the liquid to the terminal device for display by the terminal device to the user.
  • the terminal device 105 is configured to receive parameters such as a liquid level, a liquid level, a liquid volume, a liquid gravity, an infusion time, and/or a liquid flow rate.
  • the server 104 and the terminal device 105 can perform bidirectional transmission, and after obtaining relevant data from the bottle holder unit 101 or the bottle cap unit 102, the server performs corresponding measurement on the data, and then The data is output to the terminal device 105.
  • the terminal device 105 can be a wired or wireless terminal device, for example, a portable device such as a mobile phone or a PAD, so as to be convenient for the accompanying staff or a mainframe, so that the control room personnel can simultaneously monitor the status of the plurality of infusion bottles.
  • the terminal device 105 interacts well with other components of the liquid detection system 100 in real time.
  • the terminal device 105 can display various parameters of the liquid in the hanging bottle in real time, such as liquid density, volume, gravity, and the length of time of the infusion, etc., and can also set various parameters of the liquid detecting system in the wireless terminal, and then issue an early warning. .
  • the user can not only obtain the parameters, but also set the corresponding personalized warning threshold, that is, the liquid volume warning value V 0 , the liquid flow rate warning value ⁇ 0 , the liquid level inclination warning value ⁇ 0 , different users can be different Warning value. That is, when V ⁇ V 0 or v ⁇ v 0 or v ⁇ v 0 or
  • FIG. 6 shows a flow chart of a liquid detection method 600 in accordance with an exemplary embodiment of the present invention.
  • the liquid detecting method 600 detects the liquid parameters by a non-contact intelligent integration method.
  • the liquid detection method 600 is suitable for integrating a liquid-related parameter (eg, liquid level position) detecting component of a medical bottle in a system in a bottle cap unit and a bottle cap unit.
  • the liquid detecting method 600 detects the liquid related parameters in the hanging bottle in real time through the hanging bottle cover unit and the hanging bottle cap unit, and transmits the liquid related parameters in real time (wired mode or wireless mode) to the server.
  • a liquid-related parameter eg, liquid level position
  • the server analyzes and calculates liquid-related parameters to obtain parameters such as liquid level, liquid level, liquid volume, liquid gravity, and/or liquid flow rate.
  • the server transmits parameters such as liquid level, liquid level, liquid volume, liquid gravity and/or liquid flow rate to the terminal device, so that the user can observe parameters such as the liquid level position through the terminal device.
  • the overall gravity of the bottle is determined by the bottle holder unit.
  • the hanging bottle sleeve unit uses a cantilever beam type weighing sensor to determine the overall gravity of the hanging bottle.
  • the density of the liquid in the vial is determined by the capping unit.
  • the bottle cap unit uses an ultrasonic density sensor to detect the density of the liquid in the bottle.
  • the ultrasonic density sensor includes: an ultrasonic transmitter and an ultrasonic receiver, both of which are located between the outside of the hanging bottle neck and the outside of the bottle cap, and are disposed in a diameter direction of the cross section of the bottle cap At both ends, the ultrasonic wave emitted by the ultrasonic transmitter passes through the end of the hanging bottle neck portion and reaches the other end of the hanging bottle neck portion in the diameter direction to be received by the ultrasonic receiver, and the liquid density is calculated according to the ultrasonic propagation parameter.
  • calculating the liquid density based on the ultrasonic propagation parameters is specifically:
  • c is the speed at which the ultrasonic wave propagates in the liquid
  • k is the compression factor
  • L is the cross-sectional diameter of the inner wall of the bottle
  • t is the time during which the ultrasonic wave propagates between the emitter and the receiver
  • t 0 is the ultrasonic wave at the wall of the bottle The time of transmission.
  • the method further comprises measuring the liquid level by using a liquid level detecting module of the bottle cap unit.
  • the liquid level detection module uses a three-axis acceleration sensor to detect the inclination of the liquid level in the bottle and the horizontal plane.
  • step 603 the overall gravity and liquid density of the vial are transmitted to the server using the transport unit.
  • the transport unit can transmit the overall gravity and liquid density of the vial to the server using a wired/wireless approach.
  • the server is used to determine the gravity of the liquid in the vial, and the volume of liquid in the vial is calculated based on the liquid gravity and the liquid density, and the liquid level is determined based on the liquid volume.
  • g is the acceleration of gravity
  • is the density of the liquid
  • G 1 is the overall gravity of the bottle
  • G is the gravity of the empty bottle of the bottle.
  • the liquid level of the liquid is determined based on the liquid volume and the bottle capacity.
  • the liquid flow rate is determined based on the amount of change in volume of the liquid in the vial over a period of time.
  • step 605 the liquid level angle, the liquid level position, the liquid volume, the liquid gravity, and/or the liquid flow rate are sent to the terminal device, and the terminal device displays the liquid level, the liquid level, the liquid volume, and the liquid in real time.
  • Gravity and/or liquid flow rate, and the terminal device outputs warning information based on a comparison of the liquid volume, the liquid flow rate, and/or the liquid level angle with respective respective thresholds.
  • FIG. 7 shows a schematic structural view of a liquid detection system 700 in accordance with another exemplary embodiment of the present invention.
  • the liquid detecting system 700 includes a hanging bottle cover unit 701, a hanging bottle cap unit 702, a hanging bottle 703, a transfer unit 704, an Internet 705, a server 706, and a terminal device 707.
  • the liquid detection system 700 detects liquid parameters by a non-contact intelligent integration method.
  • the liquid detection system 700 integrates the liquid-related parameter (eg, liquid level position) detecting component of the medical bottle in the bottle sleeve unit and the bottle cap unit, and detects the bottle cover unit and the bottle cap unit in real time.
  • the liquid-related parameter eg, liquid level position
  • the liquid related parameters in the bottle are stored, and the liquid related parameters are transmitted in real time (wired or wireless) to the server.
  • the server analyzes and calculates liquid-related parameters to obtain parameters such as liquid level, liquid level, liquid volume, liquid gravity, and/or liquid flow rate.
  • Server will Parameters such as liquid level, liquid level, liquid volume, liquid gravity, and/or liquid flow rate are sent to the terminal device so that the user can observe parameters such as the liquid level position through the terminal device.
  • the liquid detection system 700 can also set an early warning threshold such that when the parameters such as the liquid level angle, the liquid level position, the liquid volume, the liquid gravity, and/or the liquid flow rate exceed the warning threshold, the terminal device performs an alarm.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

一种液体检测系统(100),用于检测吊瓶内液体的液面位置,所述系统(100)包括:吊瓶套单元(101),用于确定吊瓶整体重力;吊瓶盖单元(102),用于确定吊瓶内液体的密度;传输单元(103),用于将吊瓶整体重力和液体密度传输到服务器(104);服务器(104),用于确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积,基于液体体积确定液面位置。把医用吊瓶的液体检测系统(100)集成在吊瓶套以及吊瓶盖中,通过吊瓶套单元(101)以及吊瓶盖单元(102)实时检测吊瓶中液位的参数,并实时传输到无线终端设备(105),再把数据上传到互联网,使用者不仅能观测液位参数,还可以设置预警阈值,能够与吊瓶系统进行很好的实时互动。

Description

一种液体参数检测方法及系统 技术领域
本发明涉及医疗器械领域,并且更具体地涉及一种液体参数检测方法及系统。
背景技术
目前,在医疗器械领域中,吊瓶的使用范围十分广泛。通常,吊瓶由吊瓶体以及吊瓶盖组成。在使用吊瓶进行输液时,先将输液管的针头穿透吊瓶盖插入液体中,再把吊瓶倒置悬挂在高处,以使得液体通过重力势能从吊瓶经由输液管直达患者体内。然而,当吊瓶中的液体(例如,药液)即将用完时,如果没有陪护人员及时拔掉输液管,很容易造成回血现象。回血现象会导致医疗事故,并且严重时会使患者有生命危险。
随着医疗器械技术的蓬勃发展,适用于医疗器械的各类传感器以及配套技术也应运而生。现有技术中需要一种能实时确定吊瓶中液体密度、液体重力以及液面倾角等参数的装置,并且这种装置能及时将各种参数传送并显示给医护人员、患者及患者家属。通过对液体密度、液体重力以及液面倾角等参数的判断,能够确定液体液位并且在需要时发出适当的液位预警、流速预警或倾斜预警等信号,以防止在患者身边没有陪护人员时发生回血等因吊瓶问题而引发的医疗事故。
在确定液体体积和液体液位时,可能会需要确定吊瓶内液体的密度。而在使用吊瓶进行点滴注射时,通常会在吊瓶原有液体中注入其它药液。例如,在50%葡萄糖的吊瓶中注入青霉素。这种药液混合会引起吊瓶内液体密度的变化,并且根据注入药液的类型和数量的不同,吊瓶内液体密度会发生不同程度的变化。因此,为了能够准确测量与吊瓶内液体相关的参数,必须准确地确定吊瓶内液体的密度。
现有的吊瓶内液体参数检测系统设计复杂,需要通过改造整个吊瓶来达到检测液体参数的目的。现有的检测系统成本较高、难以循环使用、可重复使用率低并且拆装不易。
另一方面,现有的液体参数检测系统在检测吊瓶内液体液位时,需要将检测部件与液体接触,这样难免会对液体产生污染。
因此,现有技术中需要改进的对液体参数进行检测的方法及系统。
发明内容
为了降低成本、便于使用并且可以重复利用,需要把液体参数检测系统集成到吊瓶套和吊瓶盖中,使得无需对吊瓶进行改造。此外,需要通过非接触式方式以重量和密度实时测量方式来确定液体参数,以避免对液体产生污染。
为此,本发明可以在检测系统中集成无线传输模块,通过互联网传输液体参数,并且在终端设备的应用程序上显示并设置相关参数。使用者能够与吊瓶系统进行良好的互动,实现了人性化设计。
根据本发明的一个方面,提供一种液体检测系统,用于检测吊瓶内液体的液面位 置,所述系统包括:
吊瓶套单元,用于确定吊瓶整体重力;
吊瓶盖单元,用于确定吊瓶内液体的密度;
传输单元,用于将吊瓶整体重力和液体密度传输到服务器;
服务器,用于确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积,基于液体体积确定液面位置。
可选地,所述吊瓶套单元包括吊瓶重力检测模块,所述吊瓶重力检测模块使用悬臂梁式称重传感器确定吊瓶整体重力。
可选地,所述吊瓶盖单元包括液体密度检测模块,所述液体密度检测模块使用超声波密度传感器,检测吊瓶内液体的密度。
可选地,所述超声波密度传感器包括:超声波发射器和超声波接收器,所述超声波发射器和超声波接收器均位于吊瓶颈部外侧与吊瓶盖外侧之间,并且在吊瓶盖横截面的直径方向设置于两端,超声波发射器发出的超声波穿过吊瓶颈部一端沿直径方向到达吊瓶颈部的另一端以被超声波接收器接收,根据超声波传播参数来计算液体密度。
可选地,根据超声波传播参数来计算液体密度具体为:
液体密度
Figure PCTCN2016093067-appb-000001
其中,c为超声波在液体中传播的速度,k为压缩系数,L为吊瓶内壁横截面直径,t为超声波在发射器和接收器之间传播的时间,以及t0为超声波在吊瓶壁中传播的时 间。
可选地,所述确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积包括:将吊瓶内液体的重力确定为G1-G,通过V=(G1-G)/gρ计算液体体积,
其中g为重力加速度,ρ为液体密度,G1为吊瓶整体重力以及G为吊瓶空瓶重力。
可选地,所述吊瓶盖单元还包括液体重力检测模块,所述液体重力检测模块使用微型荷重传感器,检测吊瓶中液体的重力G2
可选地,所述确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积还包括:当通过V=(G1-G)/gρ计算的液体体积小于预设体积值,确定液体的液面位置低于吊瓶瓶颈位置时,将吊瓶内液体的重力确定为G2,通过V=G2/gρ计算液体体积,
其中g为重力加速度,ρ为液体密度以及G2为液体重力检测模块测量的液体重力。
可选地,所述吊瓶盖单元包括液面倾角检测模块,所述液面倾角检测模块使用三轴加速度传感器检测吊瓶内液体液面与水平面的倾角。
可选地,根据液体体积和吊瓶容量确定液体的液面位置。
可选地,根据一段时间内吊瓶内液体体积变化量确定液体流速。
可选地,将液面倾角、液面位置、液体体积、液体重力和/或液体流速发送给终端设备,所述终端设备实时显示液面倾角、液面位置、液体体积、液体重力和/或液体流 速,并且所述终端设备根据液体体积、液体流速和/或液面倾角与各自相应阈值的比较结果来输出预警信息。
根据本发明的另一方面,提供一种液体检测方法,用于检测吊瓶内液体的液面位置,所述方法包括:
确定吊瓶整体重力;
确定吊瓶内液体的密度;
将吊瓶整体重力和液体密度传输到服务器;
使用服务器确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积,基于液体体积确定液面位置。
可选地,使用悬臂梁式称重传感器确定吊瓶整体重力。
可选地,使用超声波密度传感器检测吊瓶内液体的密度。
可选地,所述超声波密度传感器包括:超声波发射器和超声波接收器,所述超声波发射器和超声波接收器均位于吊瓶颈部外侧与吊瓶盖外侧之间,并且在吊瓶盖横截面的直径方向设置于两端,超声波发射器发出的超声波穿过吊瓶颈部一端沿直径方向到达吊瓶颈部的另一端以被超声波接收器接收,根据超声波传播参数来计算液体密度。
可选地,根据超声波传播参数来计算液体密度具体为:
液体密度
Figure PCTCN2016093067-appb-000002
其中,c为超声波在液体中传播的速度,k为压缩系数,L为吊瓶内壁横截面直径,t为超声波在发射器和接收器之间传播的时间,以及t0为超声波在吊瓶壁中传播的时间。
可选地,所述确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积包括:将吊瓶内液体的重力确定为G1-G,通过V=(G1-G)/gρ计算液体体积,
其中g为重力加速度,ρ为液体密度,G1为吊瓶整体重力以及G为吊瓶空瓶重力。
可选地,所述方法还包括使用微型荷重传感器检测吊瓶中液体的重力G2
可选地,所述确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积还包括:当通过V=(G1-G)/gρ计算的液体体积小于预设体积值,确定液体的液面位置低于吊瓶瓶颈位置时,将吊瓶内液体的重力确定为G2,通过V=G2/gρ计算液体体积,
其中g为重力加速度,ρ为液体密度以及G2为液体重力检测模块测量的液体重力。
可选地,所述方法还包括使用三轴加速度传感器检测吊瓶内液体液面与水平面的倾角。
可选地,根据液体体积和吊瓶容量确定液体的液面位置。
可选地,根据一段时间内吊瓶内液体体积变化量确定液体流速。
可选地,所述方法还包括:将液面倾角、液面位置、液体体积、液体重力和/或液 体流速发送给终端设备,所述终端设备实时显示液面倾角、液面位置、液体体积、液体重力和/或液体流速,并且所述终端设备根据液体体积、液体流速和/或液面倾角与各自相应阈值的比较结果来输出预警信息。
本发明的技术方案设计简易,便于拆装,以及循环使用。此外,检测设备不需要与药液进行过多接触,通过重量以及密度实时测算药液体积等参数。
附图说明
通过参考下面的附图,可以更为完整地理解本发明的示例性实施方式:
图1示出了根据本发明示例性实施方式的液体检测系统100的结构示意图;
图2示出了根据本发明示例性实施方式的吊瓶套单元101的结构示意图;
图3示出了根据本发明示例性实施方式的吊瓶盖单元102的结构示意图;
图4示出了根据本发明示例性实施方式的吊瓶盖单元101的详细构造示意图;
图5示出了根据本发明示例性实施方式的液体重力检测模块302的示例性量程和结构尺寸示意图;
图6示出了根据本发明示例性实施方式的液体检测方法600的流程图;以及
图7示出了根据本发明另一示例性实施方式的液体检测系统700的结构示意图。
具体实施方式
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件通常使用相同或相似的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常理解的含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
图1示出了根据本发明示例性实施方式的液体检测系统100的结构示意图。如图1所示,液体检测系统100包括:吊瓶套单元101、吊瓶盖单元102、传输单元103、服务器104和终端设备105。液体检测系统100通过非接触方式的智能集成方式对液体参数进行检测。可选地,液体检测系统100将医用吊瓶的液体相关参数(例如,液面位置)检测部件集成在吊瓶套单元以及吊瓶盖单元中,通过吊瓶套单元以及吊瓶盖单元实时检测吊瓶中液体相关参数,并将液体相关参数实时传输(有线方式或无线方式)到服务器。服务器通过对液体相关参数进行分析和计算以获得液面倾角、液面位置、液体体积、液体重力和/或液体流速等参数。服务器将液面倾角、液面位置、液体体积、液体重力和/或液体流速等参数发送给终端设备,使得使用者能够通过终端设备观测液面位置等参数。可选地,液体检测系统100还可以设置预警阈值,使得当液面倾角、液面位置、液体体积、液体重力和/或液体流速等参数超过预警阈值时,通过终 端设备进行告警。此外,由于所有的检测电路集成在吊瓶套单元以及吊瓶盖单元中,只需要吊瓶套单元和吊瓶盖单元组合即可获取吊瓶中的液体相关参数,因此并不需要对吊瓶进行改造,可以容易地调试并循环使用吊瓶系统。
可选地,吊瓶套单元101用于确定吊瓶整体重力。其中,吊瓶整体重力为吊瓶空瓶和吊瓶内液体(例如,药液)的重力之和。吊瓶整体重力是用于确定吊瓶内液体重力的重要参数。此外,液体检测系统100会预先确定并且存储吊瓶的规格和重力。可选地,可以将吊瓶的规格和重力预先存储在服务器104中。
可选地,吊瓶盖单元102用于确定吊瓶内液体的密度、液体的重力和液体的液面倾角。通常,在使用吊瓶进行点滴注射时,通常会在吊瓶原有液体中注入其它药液。这种药液混合会引起吊瓶内液体密度的变化,并且根据注入药液的类型和数量的不同,吊瓶内液体密度会发生不同程度的变化。吊瓶盖单元102能够实时检测吊瓶内液体的密度,以作为计算液体体积的重要参数。可选地,吊瓶盖单元102还能够确定液体的重力和液体的液面倾角。其中液体的重力指吊瓶内液体自身的重力,而液体的液面倾角是指吊瓶内液体的液面与水平面所形成的角度。
可选地,传输单元103用于将液面倾角、吊瓶整体重力、液体重力等参数传输到服务器。传输单元103可以使用任意的无线或有线方式将液面倾角、吊瓶整体重力、液体重力等参数传输到服务器。应当了解的是,在本实施方式中,以单个传输单元103作为示例进行演示,而用于传输相关参数的传输单元可以分别位于吊瓶套单元101和吊瓶盖单元102中。
可选地,服务器104用于确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积,基于液体体积确定液面位置。其中,当液体液位高于瓶颈位 置时,通过吊瓶整体重力、吊瓶重力和液体密度计算液体体积,而当液体液位低于瓶颈位置时,通过液体重力和液体密度计算液体体积。可选地,判断液体液位是否高于瓶颈位置的依据可以是:当通过吊瓶整体重力、吊瓶重力和液体密度计算的液体体积大于等于预设体积值时,确定液体液位高于瓶颈位置,而当通过吊瓶整体重力、吊瓶重力和液体密度计算的液体体积小于预设体积值时,确定液体液位低于瓶颈位置。可选地,用户可以根据实际需要将预设体积值设置为任何合理值,例如与液体液面在吊瓶瓶颈位置相对应的液体体积、或与液体液面在吊瓶瓶颈位置以上1cm相对应的液体体积。通常,吊瓶在使用时是倒置使用,并且瓶颈位置以及吊瓶容量是固定的。可选地,服务器104基于液体体积确定液面位置通常是根据液体体积和吊瓶容量、尺寸等参数来确定液面位置。例如,在不考虑液面倾角的情况下,特定的液体体积与液体的液面位置一一对应。而在考虑液面倾角的情况下,将根据液面倾角对液体的液面位置进行修改。
可选地,服务器104还包括接口单元(图中未示出),用于接收吊瓶整体重力、液体重力、液体倾角和液体密度等参数,以及用于发送液体体积、液面位置、液体流速和液体倾角等参数。服务器104还包括存储单元(图中未示出)用于存储各种相关数据,例如各种吊瓶的规格、尺寸、重力等参数。
可选地,终端设备105用于接收液面倾角、液面位置、液体体积、液体重力、输液时间和/或液体流速等参数。终端设备105实时显示液面倾角、液面位置、液体体积、液体重力、输液时间和/或液体流速,并且所述终端设备根据液体体积、液体流速和/或液面倾角与各自相应阈值的比较结果来输出预警信息。可选地,使用者可以在使用吊瓶前通过终端设备105输入吊瓶的规格等参数,由终端设备105发送给服务器104。另一方面,可以使用吊瓶盖单元102检测吊瓶的规格等参数,并且通过传输单元发送 给服务器104。终端设备105可与服务器104进行双向传输,服务器104将通过计算得到的液体参数(有线或无线地)输出给终端设备105。终端设备105可以是手机、PAD等便携设备,以方便陪护人员使用;也可以是大型主机,以方便控制室人员同时监测多个输液吊瓶的状态。
图2示出了根据本发明示例性实施方式的吊瓶套单元101的结构示意图。如图2所示,吊瓶套单元101包括:吊瓶重力检测模块201、传输模块202、控制主电路203和电源模块204。可选地,吊瓶重力检测模块201使用悬臂梁式称重传感器实时检测整个吊瓶的重力。整个吊瓶的重力包括吊瓶空瓶和重力和吊瓶内液体的重力。可选地,传输模块202通过有线或无线方式将吊瓶整体重力传送到服务器。可替换地,吊瓶套单元101通过外部的传输模块将吊瓶整体重力传送到服务器。可选地,控制主电路203用于对吊瓶套单元101内部的各个器件进行控制,例如控制电源模块204为吊瓶重力检测模块201或传输模块202供电,控制吊瓶重力检测模块201进行重力测量以及控制传输模块进行数据传输。可选地,电源模块204用于对吊瓶套单元101进行供电。
图3示出了根据本发明示例性实施方式的吊瓶盖单元102的结构示意图。如图3所示,吊瓶盖单元102包括:液体密度检测模块301、液体重力检测模块302、液面倾角检测模块303、传输模块304、控制主电路305和电源模块306。
可选地,液体密度检测模块301使用超声波密度传感器,检测吊瓶内液体的密度。图4示出了根据本发明示例性实施方式的吊瓶盖单元101的详细构造示意图。如图4所示,超声波密度传感器包括:超声波发射器和超声波接收器。所述超声波发射器和超声波接收器均位于吊瓶颈部外侧与吊瓶盖外侧之间,并且在吊瓶盖横截面的直径方向设置于两端,超声波发射器发出的超声波穿过吊瓶颈部一端沿直径方向到达吊瓶颈 部的另一端以被超声波接收器接收,根据超声波传播参数来计算液体密度。由于超声波的穿透力较强,只需要把超声波发射器和超声波接收器放在瓶盖外部,以避免对液体产生污染。
超声波发射器以及接收器紧贴吊瓶瓶颈的外部,组成了吊瓶盖的外塞。超声波发射器发出超声波穿过吊瓶壁,通过液体,再穿过另一侧的吊瓶壁,到达超声波接收器。超声波发射器以及超声波接收器可由超声波换能器组成,其通过压电效应产生超声波。
超声波在液体中的传播速度为:
Figure PCTCN2016093067-appb-000003
其中,c为超声波在液体中传播的速度,ρ为液体密度,k为压缩系数。由于液体皆为水溶液,则压缩系数基本不变,为一个常数。
超声波在液体中的传播速度可以由超声波在固定声程L内传输时间t来测量,即:
Figure PCTCN2016093067-appb-000004
其中,L是一个的常数,为吊瓶颈部横截面的直径。
可选地,t的精度取决时钟电路的频率大小。目前,时钟频率可达10MHz以上,那么最小的计时精度至少可达
Figure PCTCN2016093067-appb-000005
吊瓶颈部的最小直径为0.02m,超声波在液体中传播速度小于2000m/s,那么超声波在吊瓶颈部中传播的最小时间为
Figure PCTCN2016093067-appb-000006
所以记录超声波的传播时间是可行的。
另外,在由液体密度检测模块301测量液体密度之前,还需要测量超声波在吊瓶 颈部的瓶壁中传播的时间。即,需要预先测量超声波在吊瓶颈部的瓶壁玻璃体中传播的时间。通常,可以通过把吊瓶正立,记录超声波通过吊瓶壁以及空气的传播时间t1。由于超声波在空气中的传播速度v是固定的,吊瓶内围的尺寸L也是确定的,则可以得到超声波在吊瓶内的传播时间
Figure PCTCN2016093067-appb-000007
其中,L为吊瓶颈部横截面内环的直径。因此,可以得到超声波在吊瓶壁中传播的时间t0=t1-t
由以上公式,可以得出液体密度为:
Figure PCTCN2016093067-appb-000008
可选地,根据本发明的示例性实施方式,可以将超声波在各种类型或尺寸吊瓶的吊瓶壁中传播的时间存储在吊瓶盖单元的存储单元(图中未示出)或服务器的存储单元中。当通过上面的公式计算液体密度时,从吊瓶盖单元的存储单元读取吊瓶壁中传播的时间,或从服务器接收吊瓶壁中传播的时间。
可选地,液体重力检测模块302使用微型荷重传感器,检测吊瓶中液体的重力G2。图5示出了根据本发明示例性实施方式的液体重力检测模块302的示例性量程和结构尺寸示意图。液体重力检测模块302可以置于吊瓶盖单元内部,可以准确监测瓶颈内液体对瓶盖施加的压力,即为重力。重力传感器最大尺寸仅为2cm,可以置于瓶盖内部。
可选地,液面倾角检测模块303使用三轴加速度传感器检测液面倾角α。可选地,液体的液面倾角是指吊瓶内液体的液面与水平面所形成的角度。通常,液面倾角可以反映吊瓶的倾斜角度。当液面倾角大于预定阈值时,可以表明吊瓶的倾斜角度处于危险状态。
可选地,传输模块304通过有线或无线方式将液体密度、液体重力和液面倾角等参数传送到服务器。可替换地,吊瓶盖单元102通过外部的传输模块将液体密度、液体重力和液面倾角等参数传送到服务器。可选地,传输模块304可以从控制主电路305接收液体密度、液体重力和液面倾角参数。
可选地,控制主电路305用于对吊瓶盖单元102内部的各个器件进行控制,例如控制电源模块306为液体密度检测模块301、液体重力检测模块302、液面倾角检测模块303、传输模块304供电,控制液体密度检测模块301确定吊瓶内液体密度、控制液体重力检测模块302确定吊瓶内液体的重力以及控制液面倾角检测模块303确定吊瓶内液体的液面倾角。控制主电路305还可以从液体密度检测模块301获取吊瓶内液体密度、从液体重力检测模块302获取吊瓶内液体的重力以及从液面倾角检测模块303获取吊瓶内液体的液面倾角。控制主电路再通过无线传输模块把相关数据传输服务器。控制主电路仅传输数据给服务器,不对数据进行过多的处理。可选地,电源模块306用于对吊瓶盖单元102进行供电。
可选地,服务器104从吊瓶套单元和吊瓶盖单元获取吊瓶整体重力、液体密度、液体重力、液体倾角等参数。可选地,服务器104还包括存储单元(图中未示出)用于存储各种相关数据,例如各种吊瓶的规格、尺寸、重力等参数。服务器104用于根据吊瓶整体重力、液体密度、液体重力、吊瓶重力等计算吊瓶内液体的体积。
具体地,服务器104对吊瓶套单元和吊瓶盖单元传输来的数据进行处理。从吊瓶套单元和吊瓶盖单元接收的数据包括:整个吊瓶的重力G1,液体的重力G2,液体密度ρ以及液面倾角α。另外,服务器104可以从存储单元的数据库中获取空瓶的重力G。
可选地,当液体的液位高于吊瓶的瓶颈时,服务器104通过整个吊瓶的重力G1和 空瓶的重力G确定液体重力。因此,液体的体积为:
Figure PCTCN2016093067-appb-000009
其中g为重力加速度,ρ为液体密度,G1为吊瓶整体重力以及G为吊瓶空瓶重力。
另外,由于当液体的液位低于瓶颈时,通过整个吊瓶的重力G2以及空瓶的重力G所得出的液体体积的误差较大,因此使用液体重力检测模块确定的液体重力G2来计算液体体积。即当
Figure PCTCN2016093067-appb-000010
时,其中,ΔG为重力阈值,使用G2来计算液体体积,即:
Figure PCTCN2016093067-appb-000011
其中g为重力加速度,ρ为液体密度,G2为液体重力检测模块确定的液体重力G2
可选地,服务器104还能记录相应的输液时间T,即从开始输液到当前的时间值。服务器104可以将时间值发送给终端设备,以由终端设备显示给用户。可选地,服务器104还可以根据单位时间内液体体积的变化来计算液体的流速,即:
Figure PCTCN2016093067-appb-000012
其中,ΔV为在一定时间ΔT内的液体体积变化量。
服务器104可以将液体的流速发送给终端设备,以由终端设备显示给用户。
可选地,终端设备105用于接收液面倾角、液面位置、液体体积、液体重力、输液时间和/或液体流速等参数。服务器104与终端设备105可以进行双向传输,服务器得到来自吊瓶套单元101或吊瓶盖单元102的相关数据后,对数据进行相应测算,再 输出数据到终端设备105。所述终端设备105可以是有线或者无线终端设备,例如可以是手机、PAD等便携设备,以方便陪护人员使用,也可是大型主机,以方便控制室人员同时监测多个输液吊瓶的状态。
终端设备105与液体检测系统100的其他部件可以很好地进行实时互动。终端设备105能够实时显示吊瓶中液体的各项参数,比如液体密度、体积、重力以及输液的时间长短等等数据,而且也可以在无线终端中设置液体检测系统的各项参数,而后发出预警。而使用者不仅能获取参数,而且还可以设置相应的个性化的预警阈值,即液体体积预警值V0,液体流速预警值υ0,液面倾角预警值α0,不同的使用者可以有不同的预警值。即:当V≤V0或v≥v0或v≤v0或|α|≥α0时,显示终端可以发出相应的预警。
图6示出了根据本发明示例性实施方式的液体检测方法600的流程图。如图6所示,液体检测方法600通过非接触方式的智能集成方式对液体参数进行检测。液体检测方法600适用于将医用吊瓶的液体相关参数(例如,液面位置)检测部件集成在吊瓶套单元以及吊瓶盖单元中的系统中。液体检测方法600通过吊瓶套单元以及吊瓶盖单元实时检测吊瓶中液体相关参数,并将液体相关参数实时传输(有线方式或无线方式)到服务器。服务器通过对液体相关参数进行分析和计算以获得液面倾角、液面位置、液体体积、液体重力和/或液体流速等参数。服务器将液面倾角、液面位置、液体体积、液体重力和/或液体流速等参数发送给终端设备,使得使用者能够通过终端设备观测液面位置等参数。
可选地,在步骤601,通过吊瓶套单元确定吊瓶整体重力。其中所述吊瓶套单元使用悬臂梁式称重传感器确定吊瓶整体重力。
可选地,在步骤602,通过吊瓶盖单元确定吊瓶内液体的密度。可选地,所述吊瓶盖单元使用超声波密度传感器,检测吊瓶内液体的密度。所述超声波密度传感器包括:超声波发射器和超声波接收器,所述超声波发射器和超声波接收器均位于吊瓶颈部外侧与吊瓶盖外侧之间,并且在吊瓶盖横截面的直径方向设置于两端,超声波发射器发出的超声波穿过吊瓶颈部一端沿直径方向到达吊瓶颈部的另一端以被超声波接收器接收,根据超声波传播参数来计算液体密度。
可选地,根据超声波传播参数来计算液体密度具体为:
液体密度
Figure PCTCN2016093067-appb-000013
其中,c为超声波在液体中传播的速度,k为压缩系数,L为吊瓶内壁横截面直径,t为超声波在发射器和接收器之间传播的时间,以及t0为超声波在吊瓶壁中传播的时间。
可选地,还包括利用吊瓶盖单元的液面倾角检测模块测量液面倾角。所述液面倾角检测模块使用三轴加速度传感器检测吊瓶内液体液面与水平面的倾角。
可选地,在步骤603,使用传输单元将吊瓶整体重力和液体密度传输到服务器。传输单元可以使用有线/无线方式将吊瓶整体重力和液体密度传输到服务器。
可选地,在步骤604,使用服务器确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积,基于液体体积确定液面位置。其中确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积包括:将吊瓶内液体的重力确定为G1-G,通过V=(G1-G)/gρ计算液体体积。其中g为重力加速度,ρ为液体密度,G1为吊瓶整体重力以及G为吊瓶空瓶重力。
可选地,所述吊瓶盖单元还包括液体重力检测模块,所述液体重力检测模块使用微型荷重传感器,检测吊瓶中液体的重力G2。并且所述确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积还包括:当通过V=(G1-G)/gρ计算的液体体积小于预设体积值,确定液体的液面位置低于吊瓶瓶颈位置时,将吊瓶内液体的重力确定为G2,通过V=G2/gρ计算液体体积。其中g为重力加速度,ρ为液体密度以及G2为液体重力检测模块测量的液体重力。可选地,根据液体体积和吊瓶容量确定液体的液面位置。
可选地,在能够实时确定液体时,根据一段时间内吊瓶内液体体积变化量确定液体流速。
可选地,在步骤605,将液面倾角、液面位置、液体体积、液体重力和/或液体流速发送给终端设备,所述终端设备实时显示液面倾角、液面位置、液体体积、液体重力和/或液体流速,并且所述终端设备根据液体体积、液体流速和/或液面倾角与各自相应阈值的比较结果来输出预警信息。
图7示出了根据本发明另一示例性实施方式的液体检测系统700的结构示意图。如图7所示,液体检测系统700包括:吊瓶套单元701、吊瓶盖单元702、吊瓶703、传输单元704、互联网705、服务器706和终端设备707。液体检测系统700通过非接触方式的智能集成方式对液体参数进行检测。可选地,液体检测系统700将医用吊瓶的液体相关参数(例如,液面位置)检测部件集成在吊瓶套单元以及吊瓶盖单元中,通过吊瓶套单元以及吊瓶盖单元实时检测吊瓶中液体相关参数,并将液体相关参数实时传输(有线方式或无线方式)到服务器。服务器通过对液体相关参数进行分析和计算以获得液面倾角、液面位置、液体体积、液体重力和/或液体流速等参数。服务器将 液面倾角、液面位置、液体体积、液体重力和/或液体流速等参数发送给终端设备,使得使用者能够通过终端设备观测液面位置等参数。可选地,液体检测系统700还可以设置预警阈值,使得当液面倾角、液面位置、液体体积、液体重力和/或液体流速等参数超过预警阈值时,通过终端设备进行告警。此外,由于所有的检测电路集成在吊瓶套单元以及吊瓶盖单元中,只需要吊瓶套单元和吊瓶盖单元组合即可获取吊瓶中的液体相关参数,因此并不需要对吊瓶进行改造,可以容易地调试并循环使用吊瓶系统。
已经通过参考少量实施方式描述了本发明。然而,本领域技术人员公知,正如附带的专利权利要求所限定的,除了本发明以上公开的其他的实施例等同地落在本发明的范围内。
通常地,在权利要求中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个/所述/该[装置、组件等]”都被开放地解释为所述装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。

Claims (24)

  1. 一种液体检测系统,用于检测吊瓶内液体的液面位置,所述系统包括:
    吊瓶套单元,用于确定吊瓶整体重力;
    吊瓶盖单元,用于确定吊瓶内液体的密度;
    传输单元,用于将吊瓶整体重力和液体密度传输到服务器;
    服务器,用于确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积,基于液体体积确定液面位置。
  2. 根据权利要求1所述的设备,其中所述吊瓶套单元包括吊瓶重力检测模块,所述吊瓶重力检测模块使用悬臂梁式称重传感器确定吊瓶整体重力。
  3. 根据权利要求1所述的设备,其中所述吊瓶盖单元包括液体密度检测模块,所述液体密度检测模块使用超声波密度传感器,检测吊瓶内液体的密度。
  4. 根据权利要求3所述的设备,其中所述超声波密度传感器包括:超声波发射器和超声波接收器,所述超声波发射器和超声波接收器均位于吊瓶颈部外侧与吊瓶盖外侧之间,并且在吊瓶盖横截面的直径方向设置于两端,超声波发射器发出的超声波穿过吊瓶颈部一端沿直径方向到达吊瓶颈部的另一端以被超声波接收器接收,根据超声波传播参数来计算液体密度。
  5. 根据权利要求4所述的设备,其中根据超声波传播参数来计算液体密度具体为:
    液体密度
    Figure PCTCN2016093067-appb-100001
    其中,c为超声波在液体中传播的速度,k为压缩系数,L为吊瓶内壁横截面直径,t为超声波在发射器和接收器之间传播的时间,以及t0为超声波在吊瓶壁中传播的时间。
  6. 根据权利要求1所述的设备,所述确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积包括:将吊瓶内液体的重力确定为G1-G,通过V=(G1-G)/gρ计算液体体积,
    其中g为重力加速度,ρ为液体密度,G1为吊瓶整体重力以及G为吊瓶空瓶重力。
  7. 根据权利要求6所述的设备,其中所述吊瓶盖单元包括液体重力检测模块,所述液体重力检测模块使用微型荷重传感器,检测吊瓶中液体的重力G2
  8. 根据权利要求7所述的设备,所述确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积还包括:当通过V=(G1-G)/gρ计算的液体体积小于预设体积值,确定液体的液面位置低于吊瓶瓶颈位置时,将吊瓶内液体的重力确定为G2,通过V=G2/gρ计算液体体积,
    其中g为重力加速度,ρ为液体密度以及G2为液体重力检测模块测量的液体重力。
  9. 根据权利要求1所述的设备,其中所述吊瓶盖单元包括液面倾角检测模块,所述液面倾角检测模块使用三轴加速度传感器检测吊瓶内液体液面与水平面的倾角。
  10. 根据权利要求1所述的设备,其中根据液体体积和吊瓶容量确定液体的液面位置。
  11. 根据权利要求1所述的设备,其中根据一段时间内吊瓶内液体体积变化量确定液体流速。
  12. 根据权利要求1-11中任意一项所述的设备,将液面倾角、液面位置、液体体积、液体重力和/或液体流速发送给终端设备,所述终端设备实时显示液面倾角、液面位置、液体体积、液体重力和/或液体流速,并且所述终端设备根据液体体积、液体流速和/或液面倾角与各自相应阈值的比较结果来输出预警信息。
  13. 一种液体检测方法,用于检测吊瓶内液体的液面位置,所述方法包括:
    确定吊瓶整体重力;
    确定吊瓶内液体的密度;
    将吊瓶整体重力和液体密度传输到服务器;
    使用服务器确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积,基于液体体积确定液面位置。
  14. 根据权利要求13所述的方法,其中使用悬臂梁式称重传感器确定吊瓶整体重力。
  15. 根据权利要求13所述的方法,其中使用超声波密度传感器检测吊瓶内液体的密度。
  16. 根据权利要求15所述的方法,其中所述超声波密度传感器包括:超声波发射器和超声波接收器,所述超声波发射器和超声波接收器均位于吊瓶颈部外侧与吊瓶盖 外侧之间,并且在吊瓶盖横截面的直径方向设置于两端,超声波发射器发出的超声波穿过吊瓶颈部一端沿直径方向到达吊瓶颈部的另一端以被超声波接收器接收,根据超声波传播参数来计算液体密度。
  17. 根据权利要求16所述的方法,其中根据超声波传播参数来计算液体密度具体为:
    液体密度
    Figure PCTCN2016093067-appb-100002
    其中,c为超声波在液体中传播的速度,k为压缩系数,L为吊瓶内壁横截面直径,t为超声波在发射器和接收器之间传播的时间,以及t0为超声波在吊瓶壁中传播的时间。
  18. 根据权利要求17所述的方法,所述确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积包括:将吊瓶内液体的重力确定为G1-G,通过V=(G1-G)/gρ计算液体体积,
    其中g为重力加速度,ρ为液体密度,G1为吊瓶整体重力以及G为吊瓶空瓶重力。
  19. 根据权利要求18所述的方法,还包括使用微型荷重传感器检测吊瓶中液体的重力G2
  20. 根据权利要求19所述的方法,所述确定吊瓶内液体的重力,并且根据液体重力和液体密度计算吊瓶内液体的体积还包括:当通过V=(G1-G)/gρ计算的液体体积小于预设体积值,确定液体的液面位置低于吊瓶瓶颈位置时,将吊瓶内液体的重力确定为G2,通过V=G2/gρ计算液体体积,
    其中g为重力加速度,ρ为液体密度以及G2为液体重力检测模块测量的液体重力。
  21. 根据权利要求13所述的方法,还包括使用三轴加速度传感器检测吊瓶内液体液面与水平面的倾角。
  22. 根据权利要求13所述的方法,其中根据液体体积和吊瓶容量确定液体的液面位置。
  23. 根据权利要求13所述的方法,其中根据一段时间内吊瓶内液体体积变化量确定液体流速。
  24. 根据权利要求13-23中任意一项所述的方法,还包括:将液面倾角、液面位置、液体体积、液体重力和/或液体流速发送给终端设备,所述终端设备实时显示液面倾角、液面位置、液体体积、液体重力和/或液体流速,并且所述终端设备根据液体体积、液体流速和/或液面倾角与各自相应阈值的比较结果来输出预警信息。
PCT/CN2016/093067 2016-01-04 2016-08-03 一种液体参数检测方法及系统 WO2017117998A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/503,800 US10307537B2 (en) 2016-01-04 2016-08-03 Liquid parameter detecting method and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610003602.1A CN105435337B (zh) 2016-01-04 2016-01-04 一种液体参数检测方法及系统
CN201610003602.1 2016-01-04

Publications (1)

Publication Number Publication Date
WO2017117998A1 true WO2017117998A1 (zh) 2017-07-13

Family

ID=55546251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093067 WO2017117998A1 (zh) 2016-01-04 2016-08-03 一种液体参数检测方法及系统

Country Status (3)

Country Link
US (1) US10307537B2 (zh)
CN (1) CN105435337B (zh)
WO (1) WO2017117998A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105435337B (zh) 2016-01-04 2016-10-26 京东方科技集团股份有限公司 一种液体参数检测方法及系统
CN107466230A (zh) * 2016-06-28 2017-12-12 深圳市柔宇科技有限公司 瓶塞、输液瓶、功能组件及输液瓶组件
CN107050570A (zh) * 2017-03-29 2017-08-18 昆明理工大学 一种压力感应式输液监控装置及方法
US10970773B2 (en) 2017-07-25 2021-04-06 Dollar Shave Club, Inc. Smart cap and/or handle
US10909611B2 (en) * 2017-07-25 2021-02-02 Dollar Shave Club, Inc. Smart cap product reordering
CN107478283A (zh) * 2017-08-21 2017-12-15 徐文斌 一种多功能油管流量检测装置
CN108744148B (zh) * 2018-04-09 2021-04-02 深圳市联新移动医疗科技有限公司 空载状态自动校准称量基础的监测方法以及装置
CN111380779A (zh) * 2018-12-29 2020-07-07 中国石油天然气股份有限公司 钻井液沉降稳定性测试的装置
CN110368552A (zh) * 2019-07-24 2019-10-25 江苏开放大学(江苏城市职业学院) 一种远程组合无人值守医用输液监测系统
CN113640176B (zh) * 2021-07-30 2024-02-20 深圳市中金岭南有色金属股份有限公司凡口铅锌矿 石灰乳比重测量方法、装置、系统及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955368A1 (de) * 1999-11-17 2001-05-23 Lre Technology Partner Gmbh Infusionsvorrichtung
CN102028990A (zh) * 2010-02-22 2011-04-27 缪学明 一种输液监测方法
CN103656792A (zh) * 2013-12-19 2014-03-26 杭州银江智慧医疗集团有限公司 输液剩余时间检测系统及检测方法
CN104122170A (zh) * 2013-04-25 2014-10-29 上海朝辉压力仪器有限公司 液体密度仪
CN105435337A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 一种液体参数检测方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280126A (en) * 1979-05-14 1981-07-21 Chemetron Corporation Liquid level detector
US20080027409A1 (en) * 2004-09-09 2008-01-31 Rudko Robert I Patient hydration/fluid administration system and method
CN103330984A (zh) * 2013-07-01 2013-10-02 中国人民解放军第三军医大学第一附属医院 挥发麻醉药药量监控系统及实现该系统的方法
CN204049662U (zh) * 2014-04-11 2014-12-31 李博 基于超声波的智能尿量测量装置
CN105194759A (zh) * 2014-06-11 2015-12-30 三峡大学 医疗吊瓶输液监测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19955368A1 (de) * 1999-11-17 2001-05-23 Lre Technology Partner Gmbh Infusionsvorrichtung
CN102028990A (zh) * 2010-02-22 2011-04-27 缪学明 一种输液监测方法
CN104122170A (zh) * 2013-04-25 2014-10-29 上海朝辉压力仪器有限公司 液体密度仪
CN103656792A (zh) * 2013-12-19 2014-03-26 杭州银江智慧医疗集团有限公司 输液剩余时间检测系统及检测方法
CN105435337A (zh) * 2016-01-04 2016-03-30 京东方科技集团股份有限公司 一种液体参数检测方法及系统

Also Published As

Publication number Publication date
US20190151538A9 (en) 2019-05-23
US10307537B2 (en) 2019-06-04
CN105435337B (zh) 2016-10-26
CN105435337A (zh) 2016-03-30
US20180207362A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
WO2017117998A1 (zh) 一种液体参数检测方法及系统
US9752913B2 (en) Method for determining the empty state of an IV bottle in an IV infusion monitoring device
US10753821B2 (en) System and method for monitoring and reporting liquid nitrogen container level
US9302826B2 (en) Spout apparatus, systems and methods
CN102066882A (zh) 用于检测管路中的气体体积的方法和设备
RU2017107745A (ru) Система и способ доставки лекарств
CN104764513B (zh) 一种身高体重测量仪
JP2019518510A (ja) 薬の容器に用いるスマートキャップ
TWI528318B (zh) Wisdom to remind the drug system, intelligent drug containers and drug monitoring software
US20220160962A1 (en) Multi-functional drip system with functions of detection and alert
CN104800930A (zh) 一种吊瓶输液系统的监测方法
KR20160059499A (ko) 링거수액 레벨 센싱 장치 및 그 운용방법
KR101835266B1 (ko) 소화 물질 상태 관리 장치
TWM624327U (zh) 點滴監測系統
KR101756530B1 (ko) 스마트 약병 홀더 및 이의 동작 방법
TWI693949B (zh) 針筒偵測警示裝置
WO2017063149A1 (zh) 多级输液报警系统及其探测端装置
CN100367922C (zh) 一种输液容器
KR200374301Y1 (ko) 로드셀를 이용한 링거액 잔량 감지 및 통보 장치
CN204072966U (zh) 医用输液液滴监测传感器
KR20200003346A (ko) 링거액 잔량 및 소요시간 표시장치
US20210063222A1 (en) Monitor for a Flowmeter
CN114949454B (zh) 输液报警器
US20230088594A1 (en) Drip monitoring system and method thereof
CN211912356U (zh) 一种输液设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15503800

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883131

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/06/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16883131

Country of ref document: EP

Kind code of ref document: A1