WO2017117771A1 - 一种生理指标检测装置及系统 - Google Patents

一种生理指标检测装置及系统 Download PDF

Info

Publication number
WO2017117771A1
WO2017117771A1 PCT/CN2016/070352 CN2016070352W WO2017117771A1 WO 2017117771 A1 WO2017117771 A1 WO 2017117771A1 CN 2016070352 W CN2016070352 W CN 2016070352W WO 2017117771 A1 WO2017117771 A1 WO 2017117771A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
battery
adhesive layer
conductive
physiological
Prior art date
Application number
PCT/CN2016/070352
Other languages
English (en)
French (fr)
Inventor
章海峰
孙红金
白飞飞
张永和
孔超
Original Assignee
深圳市洛书和科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市洛书和科技发展有限公司 filed Critical 深圳市洛书和科技发展有限公司
Priority to PCT/CN2016/070352 priority Critical patent/WO2017117771A1/zh
Publication of WO2017117771A1 publication Critical patent/WO2017117771A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition

Definitions

  • the present invention relates to the field of smart wear, and in particular to a physiological index detecting device.
  • the portable wearable intelligent monitoring device undoubtedly brings great convenience to users in need.
  • the user attaches the wearable intelligent monitoring device to the body surface, and detects the human physiological signal through the sensor. Thereby monitoring the physiological parameters of the human body. Due to the need to wear wearable smart monitoring devices between long turns, there is a requirement for the comfort of wearing such devices.
  • the present application provides a physiological index detecting device and system for improving the comfort of a physiological index detecting device attached to a surface of a living body to be tested.
  • an embodiment provides a physiological indicator detecting apparatus, including:
  • a flexible circuit module configured to detect and process a physiological signal of the measured organism, the flexible circuit module being located in a flexible housing, the flexible circuit module comprising at least one component module and at least one conductive connector
  • the component module includes an element module substrate and at least one electronic component fixed thereto, and the electronic component realizes electrical connection or external connection with other electronic components through a conductive connector, and the conductive connector is used for the conductive connector
  • the conductive connecting member can be elastically deformed in an external force direction by an external force when carrying one or more conductive lines separated from each other;
  • an adhesive layer the adhesive layer has a first surface and a second surface opposite to the first surface, and the adhesive layer is adhered to the outer surface of the flexible outer casing by the first surface, and the adhesive layer is The two sides are sticky and are used to stick to the body surface of the organism being tested.
  • an embodiment provides a physiological index detecting system, including:
  • the physiological index detecting device and the data processing device perform data transmission by wireless or wired.
  • the physiological index detecting device adopts a flexible outer casing and a flexible circuit module
  • the flexible outer casing and the flexible circuit module can be elastically deformed in the direction of the external force after being subjected to the force, and follow the attached biological organism.
  • the displacement of the body surface changes and deforms, and the reaction force of the body surface of the measured organism attached thereto is offset by the deformation, thereby reducing the involvement of the body surface of the measured organism and improving the wearing physiology of the measured organism.
  • the indicator detects the comfort of the device.
  • FIG. 1 is a schematic structural view of a physiological index detecting device in Embodiment 1;
  • FIG. 2 is a schematic structural view of a modular electronic circuit in accordance with the present invention.
  • FIG. 3 is a schematic plan view showing a first embodiment of a conductive connecting member
  • FIG. 4 is a schematic view showing the deformation of the conductive connecting member of FIG. 3;
  • FIG. 5 is a schematic plan view showing a second embodiment of a conductive connecting member
  • FIG. 6 is a schematic view showing the deformation of the connecting member of FIG. 5;
  • FIG. 7 is a plan view showing a planar structure of a third embodiment of a conductive connecting member
  • Figure 8 is a schematic view showing the deformation of the connecting member of Figure 7;
  • FIG. 9 is a schematic perspective view of a hollow three-dimensional structure of a fourth embodiment of a conductive connector
  • FIG. 10 is a schematic structural view of a physiological index detecting device in Embodiment 2;
  • 11 and 12 are schematic structural views of two physiological index detecting devices in Embodiment 3.
  • FIG. 13 is a schematic structural view of a physiological index detecting system.
  • the physiological index detecting device is configured to complete the collection and processing of the body surface physiological index data, and the physiological index detecting device is attached to the body surface of the measured organism (for example, human skin), in the embodiment of the present invention.
  • the physiological indicator detecting device adopts a flexible design to make the tested organism comfortable to wear and can be skinned The skin is kept in stable contact, so that the physiological indicators of body surface stability can be obtained.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the physiological index detecting device includes a flexible circuit module 10, a flexible outer casing 20, an adhesive layer 30, and a battery 40.
  • the flexible circuit module 10 and battery 40 are located within the flexible outer casing 20 with the adhesive layer 30 outside of the flexible outer casing.
  • the flexible circuit module 10 is configured to detect and process physiological signals of a measured organism, and the flexible circuit module includes at least one component module 110 and at least one conductive connector 120, and the component module includes the component module. a substrate and at least one electronic component affixed thereto.
  • the flexible circuit module further includes a biosensor for detecting a physiological signal of the measured organism, the biosensor is a blood glucose sensor, a blood vessel pulse pressure sensor, a blood oxygen sensor, a skin resistance sensor, a humidity sensor, a body fluid sensor, an electrocardiogram sensor, and an electromyogram At least one of a sensor, a body temperature sensor, and a brain wave sensor, the biosensor also electrically connects to the at least one electronic component through the conductive connector.
  • the component module can be regarded as a discretization unit that carries components in an electronic circuit, and the type and number of electronic components carried on each component module can be based on the circuit design required by the actual device and the degree of discretization required. to make sure.
  • the degree of discretization of the circuit can be determined according to the application needs of the device. Generally, the higher the requirements for flexibility and applicability, the higher the degree of discretization, so as to form the component module as small as possible. Make it easy to fit on the surface you wear.
  • the type of component module substrate can be selected according to the needs of the circuit design and application scenarios.
  • a rigid substrate such as a conventional hard printed circuit board, can be selected; for most other electronics
  • the components may be supported by a substrate made of a flexible material such as a flexible printed wiring board, a polymer gas permeable material, or the like to enhance the flexibility of the circuit.
  • the modular design employed in the present invention makes it possible to use different types of component module substrates in the same circuit, both to meet the stability requirements of some electronic components and to make the entire circuit have good flexibility.
  • the component modules can be electrically connected to each other and between the component modules and the external circuit through the conductive connector 120 of the present invention, and FIG. 2 is only an illustration of the connection relationship, which will be used in the subsequent embodiments. Give an example.
  • the conductive connecting member 120 is configured to carry one or more conductive lines separated from each other, and the conductive connecting member 120 The elastic deformation along the direction of the external force can be generated by an external force.
  • the conductive connector 120 includes a plurality of connecting units, each of which is a hollow structure having a shape such that it has at least one deformation direction, the deformation direction indicating a dimension of the hollow structure in the direction The change can be made under the action of an external force, and the connecting units are sequentially connected in at least one deformation direction, so that the size of the conductive connecting member 120 can be elongated or shortened under the action of an external force.
  • the size of the conductive connector 120 may be elongated or shortened in one dimension, or may be elongated or shortened in two or three dimensions.
  • FIG. 3 is a schematic structural view of a conductive connecting member, which includes a plurality of connecting units.
  • the connecting unit has a hollow rectangular shape, and a plurality of connecting units are sequentially connected along the width direction thereof. Connect the middle of the unit in the length direction.
  • the connecting unit and the hollow portion thereof are elongated and rectangular, and therefore, when the cymbal is pulled in the width direction from the central portion of the long side thereof, the connecting unit can generate a large deformation as shown in Fig. 4.
  • the connecting members are sequentially connected along the deformation direction to obtain a conductive connecting member having good elongation in the deformation direction.
  • the tensile force causing the deformation is at least broken into two, thereby also enhancing the strength of the joint.
  • the connecting unit may also take a different shape, such as a square, a hexagon, or an arc, as long as it is a hollow structure, and the shape of the hollow structure is such that it has at least one deformation direction.
  • deformation direction means that the size of the hollow structure in this direction can be changed under the action of an external force.
  • the shape of the connecting unit is a single-hole two-dimensional plane pattern
  • the corresponding connecting member is a porous two-dimensional plane pattern, as shown in FIG. 2 .
  • the advantage of this construction is that the required connection structure can be obtained by simple planar machining.
  • the desired conductive connector can be obtained by trimming directly on a single piece of planar material in accordance with the pattern shown in FIG.
  • a single-hole planar pattern of various shapes may be designed as a connecting unit as needed, and the desired porous planar pattern is obtained by combining these patterns as a conductive connecting member.
  • connection of the connecting unit in the deformation direction means that the shapes are connected to each other, and the separated connecting units can be connected to each other by an actual connecting operation (for example, welding, bonding, etc.), or can be set according to a shape. Directly form (eg, cut, sputter, deposit, 3D print, weave, etc.) the entire connector.
  • the connector of the structure of the embodiment has good elongation in the longitudinal direction and superior bending property.
  • the material for making the connector of the present invention can be any flexible conductive material, such as metal, graphene, especially Three-dimensional graphene or the like having a four-coordinated stable structure similar to diamond.
  • a connector can be used to carry one or more conductive lines. When only one line is carried, the strength of the line is enhanced. When carrying multiple lines, the lines need to be separated from each other. For example, the physical edges of the two sides of the connecting unit can each carry a line, and the connection is separated by an insulating material.
  • FIG. 5 Another embodiment of the conductive connector in accordance with the present invention can be seen in Figures 5 and 6.
  • the similarity is that the connecting unit also adopts a hollow rectangular shape, and the connecting member is also a flat two-dimensional structure.
  • the difference is that two sets of parallel connecting units are arranged in the same direction.
  • the conductive connecting members of the embodiment shown in FIG. 5 and FIG. 6 can be equivalently regarded as being formed by parallel joining of the connecting members in the two embodiments shown in FIGS. 3 and 4, and the connections in the upper row of connecting members.
  • the tail of the unit is connected to the head of the connecting unit in the connector of the next row.
  • FIG. 7 Another embodiment of the conductive connector in accordance with the present invention can be seen in Figures 7 and 8.
  • the connecting unit also adopts a hollow rectangular shape
  • the connecting member is also a planar two-dimensional structure and comprises two sets of connecting units.
  • the size of the connecting unit is not unique, and the connecting directions of the two connecting units are perpendicular to each other.
  • each of the four matching connecting units is connected end to end to form a layer of squares, and a plurality of different sizes of the boxes are nested with each other, and adjacent two layers of boxes are connected at the middle of each side thereof. .
  • the connecting member of this embodiment can be equivalently regarded as being vertically spliced by the connecting members in the two embodiments shown in Figs. 3 and 4, and thus has two connecting directions and is perpendicular to each other.
  • two different connection directions may also be designed as angles of other angles depending on the needs of the application scenario.
  • the embodiment shown in FIGS. 7 and 8 has two different extending directions, it has a strong anti-twisting capability, and is particularly suitable for connecting two component modules having a twist angle at opposite positions, or To connect two component modules that may produce relative torsion during motion.
  • the connecting members can be used in pairs, and the outer edges of the squares of the two connecting members are respectively fixed on the two component modules to be connected, and the vertices of the two connecting members are connected together. A connection line with excellent torsional performance between the two component modules is available.
  • the wiring module substrate is usually made of a flexible material such as an ultra-thin polymer material, a flexible material with permeable micropores, a high-strength flexible mesh cloth, and the like.
  • the wiring module substrate and the component module substrate may be independent of each other, for example, made of different materials; or may be integrally connected or formed of the same material and formed integrally. For example, different regions may be formed by hollowing out a single piece of substrate material to secure the electronic component or conductive connector.
  • the element module substrate may employ a composite substrate having at least two layers.
  • the top layer uses a hard or flexible printed circuit board to mount electronic components or wiring
  • the bottom layer uses a flexible substrate, such as an ultra-thin polymer material, a flexible material with permeable micropores, and a high-strength flexible mesh. Wait.
  • the bottom layer of such a composite substrate can be formed integrally with the wiring module substrate.
  • the battery of the battery 40 is electrically connected to at least one electronic component for supplying electric power to the flexible circuit module.
  • the battery 40 can be used with various batteries of suitable sizes, such as a button battery, a lithium ion battery, a polymer battery, etc.
  • the battery 40 can be a disposable battery or a plurality of rechargeable batteries.
  • the battery 40 is a flexible battery, for example, the battery is a bendable lithium ceramic battery, and the lithium ceramic battery material is soft and thin, and has the characteristics of resistance to "bending-hammering-metal cutting-piercing-high temperature". The force can be bent.
  • the battery may also be a flexible battery pack or the like which is formed by combining a plurality of high-capacity micro-batteries or capacitors through the above-described flexible circuit module.
  • the flexible outer casing 20 is used to cover the flexible circuit module 10 and the battery 40 to isolate the flexible circuit module 10 and the battery 40 from the outside.
  • the lithium ceramic battery is generally in the form of a sheet
  • a sheet-like lithium ceramic battery can be attached to the upper surface of the flexible circuit module, and the flexible outer casing 20 is coated on the outside of the flexible circuit module 10 and the battery 40.
  • the flexible outer casing 20 is made of a flexible polymer material which is breathable and waterproof. After the flexible circuit module 10 and the battery 40 are wrapped, the same polymer material can be injected into the outer casing to seal the outer casing and the circuit module.
  • the physiological indicator detecting device is worn on the human skin, when the human body is active, it may involve physiological
  • the index detecting device is configured to elongate, compress or bend. Since the circuit module, the battery and the outer casing are flexible parts, the physiological indicator detecting device is flexible as a whole, and can be elongated, compressed or bent according to the activity of the human body. Improve the comfort of wearing.
  • the adhesive layer 30 is in the form of a sheet having two sides, and the adhesive layer is adhered to the outer surface of one side of the flexible outer casing through the first surface, and the manner of attachment may be by sticking, thermocompression, or the like, and the second layer of the adhesive layer.
  • the surface is sticky and can be applied to human skin and can be removed from human skin.
  • the adhesive layer may be a soft adhesive adhesive sheet made of a single-sided or double-sided pressure-sensitive adhesive material
  • the pressure-sensitive adhesive material includes but is not limited to a pressure-sensitive adhesive of a fluorine-containing carbon compound or can
  • the pressure sensitive adhesive of the fluorocarbon compound easily absorbs sweat and oil on human skin; and the pressure of the fluorocarbon compound Sensitive gel has good chemical stability (strong acid and alkali resistance), thermal stability (42 °C decomposition), weather resistance (UV energy is less than F-C health), surface activity, transparency, moisture resistance And anti-corrosion and anti-corrosion, both hydrophobic and oleophobic, and have good cold and heat alternating characteristics and pressure-resistant alternating characteristics, no irritation to the skin, breathable moisturizing, non-drying, non-toxic and tasteless, pressure sensitive adhesive can be long Between (more than 36 hours), it maintains good contact with the skin without discomfort, so that the physiological indicator detecting device is comfortable to wear and can maintain stable contact with the skin long sputum, so that the body surface stable human physiological index detection data can be obtained, thereby Obtained monitoring results with good stability, high reliability, low drift and low noise.
  • the pressure-sensitive adhesive of the fluorine-containing silicon compound in addition to the advantages of the pressure-sensitive adhesive having the above-mentioned fluorine-containing carbon compound, can improve the binding ability to the silicone-containing skin care product coated on the skin, thereby solving the polycondensation.
  • the adhesive layer may be an insulating layer or a conductive layer.
  • the adhesive layer is an insulating layer
  • the adhesive layer has pores, and the biosensor contacts the body surface of the measured organism through the pore to sense physiological signals (including but not limited to optical Signal, etc.).
  • the adhesive layer is a conductive layer
  • the adhesive layer is electrically connected to at least one electronic component
  • the adhesive layer is used as an electrode sheet to induce a bioelectric signal (including but attached to the body surface of the living organism to be tested) Not limited to ECG, EEG, muscle electrical signals, etc.)
  • a bioelectric signal including but attached to the body surface of the living organism to be tested
  • the physiological indicator detecting device detects the ECG signal
  • the conductive adhesive layer can be used as an electrode
  • the adhesive layer is electrically connected to at least one electronic component, and is pasted to the The body surface of the living body is measured to induce a bioelectrical signal, and the bioelectrical signal is transmitted to the circuit module.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the physiological index detecting device includes a flexible circuit module 100, a flexible outer casing 200, an adhesive layer 300, and a battery 400.
  • the difference is that the battery 400 is disposed outside the flexible casing 200 as compared with the first embodiment.
  • the battery is disposed on the outer surface of the other side of the flexible casing opposite to the adhesive layer, and the battery is electrically connected to the flexible circuit module through the conductive material layer 500 disposed inside the flexible casing.
  • the conductive material layer 500 can be used to hold the battery in a replaceable double-sided tape manner, thereby making the battery replaceable.
  • the conductive material layer 500 may be made of materials sufficient to support the toughness and strength, including but not limited to: graphene, especially the four-connected graphene nanotubes are bonded by carbon-carbon covalent bonding to form a diamond-like four-coordinate three-dimensional stable structure.
  • the supplement of the piercing protector, therefore, the embodiment provides an additional protection scheme for the optional key parts of the human body in the provision of the battery.
  • a protective layer may be additionally added on the basis of the first embodiment and the second embodiment.
  • a protective layer 510 is attached to the portion of the outer casing corresponding to the battery, as shown in FIG. Show.
  • a protective layer 520 is attached directly to the battery, as shown in FIG.
  • the protective layer can be made of a more protective material, including but not limited to Kevlar.
  • the embodiment provides a physiological index detecting system.
  • the physiological index detecting system includes a physiological index detecting device 1 and a data processing device 2.
  • the physiological index detecting device 1 can adopt the physiological embodiment in the above embodiment.
  • the index detecting device, the data processing device 2 is configured to process the physiological index data of the measured organism outputted by the flexible circuit module, and the physiological index detecting device and the data processing device pass wireless or wired
  • the data processing device 2 may be a smart terminal, an intelligent terminal such as an IPAD.
  • the physiological index detecting device may have one or more, and the plurality of physiological index detecting devices are respectively responsible for detecting different parts, and each physiological index detecting device is connected by a wireless or wired signal, and the biosensor of each physiological index detecting device collects data. Transmitting data between the physiological indicator detecting devices by wireless or wired means, or transmitting data to the upper-level data processing device, thereby completing the exchange and summary of the human physiological index data between the physiological indicator detecting devices of different parts and processing with the superior data Device interaction.
  • data interaction and processing between different physiological indicator detecting devices and between the physiological index detecting device and the superior data processing device adopts a synchronous completion manner, including but not limited to: real synchronous input , real data exchange - comparison - summary, and synchronous data interaction with the superior data processing device.
  • the physiological index detecting device and the upper-level data processing device adopt a real synchronization algorithm, including but not limited to: satellite fixed synchronization, or a specific gap position through the wireless interface communication protocol by the upper-level data processing device.
  • the reference to the reference level of the above-mentioned first-level data processing platform of the independent detection platform and require different methods such as independent adjustment of the independent detection platform, and the synchronization mode-synchronization accuracy-synchronization interval satisfies the physiological indicators of the human body involved.
  • the accuracy and stability requirements of the acquisition for example: using the same-origin GPS air-to-air satellite grant, the negative accuracy of 10 is the negative 9 power; using the upper-level data processing platform through the wireless communication protocol synchronization interval of 100 milliseconds, typical synchronization Accuracy 50 microseconds
  • a background server 3 is further included, and the background server 3 is connected to the data processing device 2 by a wireless or wired method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Pulmonology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种生理指标检测装置及系统,该装置包括在外力作用下可产生沿外力方向的弹性形变的柔性外壳(20)、柔性电路模块(10)和粘贴层(30),该柔性电路模块(10)位于柔性外壳(20)内,包括至少一个元件模块(110)和至少一个导电连接件(120),元件模块(110)包括元件模块衬底以及固定于其上的至少一个电子元件,电子元件通过导电连接件(120)实现与其它电子元件之间的电性连接或与外部的连接,导电连接件(120)用于承载一路或两路以上彼此分隔的导电线路,导电连接件(120)在外力作用下可产生沿外力方向的弹性形变。由于柔性外壳(20)和柔性电路模块(10)在受力时可产生沿外力方向的弹性形变,通过形变抵消了对其贴附的被测生物体体表的反作用力,从而提高了被测生物体佩戴生理指标检测装置的舒适性。

Description

一种生理指标检测装置及系统
技术领域
[0001] 本发明涉及智能穿戴领域, 具体涉及一种生理指标检测装置。
[0002]
[0003] 背景技术
[0004] 对于院外或家庭监护而言, 便携可穿戴式智能监护设备无疑为有需求的用户带 来很大便利, 用户将穿戴式智能监护设备贴附在体表, 通过传感器检测人体生 理信号, 从而对人体生理参数进行监测。 由于需要长吋间佩戴穿戴式智能监护 设备, 因此对此类设备在佩戴吋的舒适性提出了要求。
[0005]
[0006] 发明内容
[0007] 本申请提供一种生理指标检测装置及系统, 提高生理指标检测装置粘贴在被测 生物体体表吋的舒适性。
[0008] 根据第一方面, 一种实施例中提供一种生理指标检测装置,包括:
[0009] 柔性外壳, 其在外力作用下可产生沿外力方向的弹性形变;
[0010] 柔性电路模块, 用于对被测生物体的生理信号进行检测和处理, 所述柔性电路 模块位于柔性外壳内, 所述柔性电路模块包括至少一个元件模块和至少一个导 电连接件, 所述元件模块包括元件模块衬底以及固定于其上的至少一个电子元 件, 所述电子元件通过导电连接件实现与其它电子元件之间的电性连接或与外 部的连接, 所述导电连接件用于承载一路或两路以上彼此分隔的导电线路, 所 述导电连接件在外力作用下可产生沿外力方向的弹性形变;
[0011] 粘贴层, 所述粘贴层具有第一面和与第一面相对的第二面, 所述粘贴层通过第 一面附着在柔性外壳一侧的外表面上, 所述粘贴层的第二面具有粘性, 用于粘 贴在被测生物体的体表。
[0012] 根据第二方面, 一种实施例中提供一种生理指标检测系统,包括:
[0013] 上述的生理指标检测装置; [0014] 数据处理设备, 用于对柔性电路模块输出的被测生物体的生理指标数据进行处 理;
[0015] 所述生理指标检测装置和数据处理设备通过无线或有线的方式进行数据传输。
[0016] 本发明实施例中, 由于生理指标检测装置采用柔性外壳和柔性电路模块, 而柔 性外壳和柔性电路模块在受力吋可产生沿外力方向的弹性形变, 跟随其贴附的 被测生物体体表的位移变化而变形, 通过形变抵消了对其贴附的被测生物体体 表的反作用力, 从而减少了对被测生物体体表的牵扯作用, 提高了被测生物体 佩戴生理指标检测装置的舒适性。
[0017]
[0018] 附图说明
[0019] 图 1是实施例 1中生理指标检测装置的结构示意图;
[0020] 图 2是依据本发明的模块化电子电路的一种结构示意图;
[0021] 图 3是导电连接件第一种实施例的平面结构示意图;
[0022] 图 4是图 3导电连接件的形变示意图;
[0023] 图 5是导电连接件第二种实施例的平面结构示意图;
[0024] 图 6是图 5中连接件的形变示意图;
[0025] 图 7是导电连接件第三种实施例的平面结构示意图;
[0026] 图 8是图 7中连接件的形变示意图;
[0027] 图 9是导电连接件第四种实施例的中空式立体结构示意图;
[0028] 图 10是实施例 2中生理指标检测装置的结构示意图;
[0029] 图 11、 12分别是实施例 3中两种生理指标检测装置的结构示意图;
[0030] 图 13是生理指标检测系统的结构示意图。
[0031]
[0032] 具体实施方式
[0033] 下面通过具体实施方式结合附图对本发明作进一步详细说明。
[0034] 生理指标检测装置用于完成体表人体生理指标数据的采集和处理, 通常情况下 生理指标检测装置贴附在被测生物体的体表 (例如人体皮肤上) , 本发明实施 例中, 生理指标检测装置采用柔性设计, 以使得被测生物体佩戴舒适且能与皮 肤长吋间保持稳定接触, 因而可以获得体表稳定的生理指标检测数据。
[0035] 实施例一:
[0036] 请参考图 1, 生理指标检测装置包括柔性电路模块 10、 柔性外壳 20、 粘贴层 30 和电池 40。 柔性电路模块 10和电池 40位于柔性外壳 20内, 粘贴层 30位于柔性外 壳外。
[0037] 如图 2所示, 柔性电路模块 10用于对被测生物体的生理信号进行检测和处理, 柔性电路模块包括至少一个元件模块 110和至少一个导电连接件 120, 元件模块 包括元件模块衬底以及固定于其上的至少一个电子元件。 柔性电路模块还包括 用于检测被测生物体的生理信号的生物传感器, 生物传感器为血糖传感器、 血 管脉搏压力传感器、 血氧传感器、 皮肤电阻传感器、 湿度传感器、 体液传感器 、 心电传感器、 肌电传感器、 体温传感器和脑电波传感器中的至少一种, 生物 传感器也通过导电连接件实现与至少一个电子元件之间的电性连接。
[0038] 元件模块可视为承载电子电路中的元器件的离散化单元, 每个元件模块上所承 载的电子元件的类型和数目可根据实际设备所需要的电路设计以及对离散化程 度的需求来确定。 例如, 电路的离散化程度可根据设备的应用需要来确定, 一 般而言, 对柔软性和贴服性的要求越高, 则离散化的程度越高, 以便于形成尽 可能小的元件模块, 使之容易贴合到所穿戴的表面。
[0039] 元件模块衬底的类型可以根据电路设计和应用场景的需要来选择。 在一些实施 方式中, 对于需要高稳定性支撑的电子元件, 例如无线射频模块、 吋钟晶振等 , 可以选择硬质的衬底, 例如传统的硬质印刷线路板; 而对于其他的大部分电 子元件则可采用可挠性材料制成的衬底来支撑, 例如柔性印刷线路板、 高分子 透气材料等, 以增强电路的柔软性。 本发明所采用的模块化设计, 使得在同一 个电路中, 使用不同类型的元件模块衬底成为可能, 既能够满足部分电子元件 对稳定性的要求, 又能够使得整个电路具有良好的柔软性。
[0040] 元件模块彼此之间以及元件模块与外部电路之间可通过本发明的导电连接件 12 0进行电性连接, 图 2中仅为连接关系的示意, 将在后续的实施例中对其进行举 例说明。
[0041] 导电连接件 120用于承载一路或两路以上彼此分隔的导电线路, 导电连接件 120 在外力作用下可产生沿外力方向的弹性形变。 在具体实施例中, 导电连接件 120 包括复数个连接单元, 每个连接单元为中空结构, 该中空结构的形状使得其具 有至少一个形变方向, 该形变方向指该中空结构在该方向上的尺寸能够在外力 作用下发生变化, 且连接单元沿至少一个形变方向顺次连接, 从而使得导电连 接件 120的尺寸在外力作用下可伸长或缩短。 在具体实施例中, 导电连接件 120 的尺寸可在一维方向上伸长或缩短, 也可以在二维或三维方向上伸长或缩短。
[0042] 如图 3所示为一种导电连接件的结构示意图, 其包括多个连接单元, 连接单元 的形状为中空的长方形, 复数个连接单元沿其宽度方向顺次连接, 连接的位置 位于连接单元的长度方向的中部。 本实施例中, 连接单元及其中空部分是细长 的长方形, 因此, 当从其长边的中部沿宽度方向拉动吋, 连接单元能够产生较 大的形变, 如图 4所示。 沿着该形变方向将连接单元顺次连接, 即可得到在该形 变方向上具有良好延伸性的导电连接件。 另外, 由于中空部分的形变始终由围 成该中空部分的两侧实体边缘予以承担, 使得导致形变的拉力将至少分解为两 路, 因此也增强了连接的强度。
[0043] 在其他实施方式中, 连接单元也可采用不同的形状, 例如方形、 六边形或弧形 等, 只要其为中空结构, 且中空结构的形状使得其具有至少一个形变方向即可 。 所称形变方向指中空结构在该方向上的尺寸能够在外力作用下发生变化。
[0044] 作为一种优选的实施方式, 本实施例中, 连接单元的形状为一种单孔二维平面 图形, 相应的连接件为一种多孔二维平面图形, 如图 2所示。 这种结构的优点在 于, 能够通过简单地平面加工获得所需要的连接结构。 例如, 可以直接在一整 片平面材料上, 按照图 3所示的图样, 通过裁剪获得所需要的导电连接件。
[0045] 在其他实施方式中, 可以根据需要设计出各种不同形状的单孔平面图形作为连 接单元, 并通过对这些图形进行组合来得到所需要的多孔平面图形, 以作为导 电连接件。 应当理解, 连接单元沿形变方向的"连接"是指形状上的彼此衔接, 既 可以通过实际的连接操作 (例如焊接、 粘接等) 使分离的连接单元彼此相连, 也可以按照设定的形状直接形成 (例如裁剪、 溅射、 沉积、 3D打印、 编织等) 整个连接件。
[0046] 本实施例结构的连接件由于具有长度方向上良好的延伸性, 以及优越的弯曲性 能 (显然, 几乎可以任意角度地弯曲) , 适于用作元件模块之间的直线连接线 路, 制作本发明连接件的材料可以是任意的可挠性导电材料, 例如金属、 石墨 烯, 尤其是具有类似于金刚石的四配位稳固结构的三维石墨烯等。 一个连接件 可用于承载一路或两路以上的导电线路。 当仅承载一路线路吋, 该线路的强度 得到了增强。 当承载多路线路吋, 线路之间需要彼此分隔, 例如, 可以令连接 单元的两侧实体边缘各自承载一条线路, 在连接处以绝缘材料进行分隔。
[0047] 依据本发明的导电连接件的另一种实施方式可参考图 5和图 6。 与图 3、 4所示的 实施例相比, 相似之处在于, 连接单元同样采用中空的长方形, 连接件也为平 面二维结构。 区别之处在于, 沿相同的方向布置了两组平行的连接单元。
[0048] 图 5和图 6所示实施例的导电连接件可以等效地看作由两个图 3、 4所示的实施例 中的连接件平行拼接而成, 上一行连接件中的连接单元的尾部与下一行连接件 中的连接单元的首部彼此连接。
[0049] 依据本发明的导电连接件的另一种实施方式可参考图 7和图 8。 与图 5和图 6所示 实施例相比, 相似之处在于, 连接单元同样采用中空的长方形, 连接件也为平 面二维结构且包含两组连接单元。 区别之处在于, 连接单元的尺寸并不唯一, 且两组连接单元的连接方向彼此垂直。 本实施例中, 每四个尺寸相匹配的连接 单元彼此首尾相连形成为一层方框, 不同尺寸的复数个方框彼此嵌套, 相邻的 两层方框在其每一边的中部处连接。 本实施例连接件可以等效地看作由两个图 3 、 4所示的实施例中的连接件在尺寸上变化后垂直拼接而成, 因此具有两个连接 方向, 且彼此垂直。 在其他实施例中, 根据应用场景的需要两个不同的连接方 向也可以被设计为其他角度的夹角。
[0050] 由于图 7和图 8所示的实施例连接件具有两个不同的延伸方向, 因此具有很强的 抗扭转能力, 特别适于连接两个相对位置具有扭转角度的元件模块, 或者用于 连接两个可能在运动中产生相对扭转的元件模块。 在一种实施方式中, 这种连 接件可以成对使用, 两个连接件的方框的外沿分别固定在两个需要连接的元件 模块上, 两个连接件的顶点连接在一起, 由此可获得两个元件模块之间具有优 秀扭转性能的连接线路。
[0051] 在一些实施方式中, 为提高导电连接件 (或称连线部分) 的强度, 也可进一步 设置连线模块衬底, 用于将导电连接件固定于其上。 连线模块衬底通常采用柔 性材料制作, 例如超薄的高分子材料、 带有透气微孔的可挠性材料、 高强度柔 性网布等。 连线模块衬底与元件模块衬底可以彼此独立, 例如采用不同的材料 制成; 也可以或连接为一体, 或者采用相同的材料制成并形成为一体。 例如, 可以在一张完整的衬底材料上通过镂空裁剪形成不同的区域以固定电子元件或 导电连接件。
[0052] 作为一种优选的实施方式, 元件模块衬底可采用具有至少两层的复合衬底。 例 如, 顶层采用硬质或柔性印刷线路板以安装电子元件或布线, 而在底层采用柔 性衬底, 例如超薄的高分子材料、 带有透气微孔的可挠性材料、 高强度柔性网 布等。 这种复合衬底的底层可以与连线模块衬底形成为一体。 这种结构的优势 在于, 一方面增强了元件模块与连线模块之间的连接的可靠性, 尤其是硬质元 件模块与柔性连线模块之间的连接, 避免了材质硬度不同导致容易发生折断的 问题; 另一方面也使得整体电路的制作工艺更加容易实现。
[0053] 电池 40电池与至少一个电子元件电性连接, 用于为柔性电路模块提供电能, 电 池 40可采用已有的尺寸合适的各种电池, 例如纽扣电池、 锂离子电池、 聚合物 电池等, 电池 40可以是一次性电池, 也可以是多次可充放电池。 本实施例中, 电池 40为柔性电池, 例如电池为可弯折的锂陶瓷电池, 锂陶瓷电池材料软薄, 具有耐 "弯折 -锤击 -金属剪裁-刺穿-高温"特性, 在受力吋可弯折。 通过采用锂陶 瓷电池, 解决了传统穿戴设备配套电池过大过硬的问题以及泄漏爆燃风险。 在 其它的实施例中, 电池也可采用由多个高容量微型电池或电容通过上述的柔性 电路模块组合而成的柔性电池组等。
[0054] 柔性外壳 20用于包覆柔性电路模块 10和电池 40, 以便将柔性电路模块 10和电池 40和外界隔离。 本实施例中, 由于锂陶瓷电池通常为片状, 因此可将片状的锂 陶瓷电池贴附在柔性电路模块的上面, 柔性外壳 20包覆在柔性电路模块 10和电 池 40的外面。 柔性外壳 20采用透气防水的柔性高分子材料, 将柔性电路模块 10 和电池 40包裹后, 还可在外壳内部注入相同的高分子材料, 从而将外壳与电路 模块进行密封。
[0055] 由于生理指标检测装置佩戴在人体皮肤上, 当人体活动吋, 就可能牵扯到生理 指标检测装置, 使其伸长、 压缩或弯折, 由于电路模块、 电池和外壳都是可挠 性部件, 使得生理指标检测装置整体为柔性, 可随人体的活动而伸长、 压缩或 弯折, 提高佩戴的舒适性。
[0056] 粘贴层 30为具有两个侧面的片状, 粘贴层通过第一面附着在柔性外壳一侧的外 表面上, 其附着方式可采用粘贴、 热压合等方式, 粘贴层的第二面具有粘性, 可粘贴在人体皮肤上并可从人体皮肤上取下。 在一种具体实施例中, 粘贴层可 以是采用单面或双面的压敏胶材料制成的柔软胶粘贴片, 压敏胶材料包括但不 限于含氟碳化合物的压敏胶或者能与聚硅氧烷亲近结合的含硅类组份的压敏胶 , 例如惨杂或不惨杂纳米碳管材料的氟碳或者氟硅材料。 由于氟碳化合物的生 物活性好, 脂溶性好, 易于提高它和有机物之间的吸收性, 因此含氟碳化合物 的压敏胶容易吸收人体皮肤上的汗液和油污; 另外含氟碳化合物的压敏胶具有 良好的化学稳定性 (耐强酸强碱)、 热稳定性 ( 4 2 0 °C分解)、 耐候性(紫外光能量 小于 F— C健健能)、 表面活性、 透明性、 耐湿性和防腐防蚀性, 既疏水又疏油, 以及具备良好的冷热交变特性和耐压力交变特性、 对皮肤无刺激、 透气保湿不 干燥和无毒无味等特点, 压敏胶能长吋间 (大于 36小吋) 与皮肤保持良好接触 而无不适现象, 从而使得生理指标检测装置佩戴舒适且能与皮肤长吋间保持稳 定接触, 因而可以获得体表稳定的人体生理指标检测数据, 从而得到稳定性好 、 可靠性高、 低漂移和低噪音的监测结果。 而含氟硅化合物的压敏胶, 除具备 上述含氟碳化合物的压敏胶的优点外, 可提高与涂覆在皮肤上的含聚硅氧烷的 护肤品的结合能力, 从而解决含聚硅氧烷的护肤品涂覆情况下的压敏胶的粘接 问题。
[0057] 在有的实施例中, 粘贴层可以为绝缘层或导电层,
[0058] 如所述粘贴层为绝缘层, 则所述粘贴层上幵有孔隙, 所述生物传感器透过所述 孔隙与被测生物体的体表接触, 感应生理信号 (包括但不限于光学信号等) 。
[0059] 如所述粘贴层为导电层, 所述粘贴层与至少一个电子元件电性连接, 所述粘贴 层在粘贴到被测生物体的体表吋作为电极片感应生物电信号 (包括但不限于心 电, 脑电, 肌肉电信号等) 例如当生理指标检测装置检测心电信号吋, 导电的 粘贴层可以作为电极使用, 粘贴层与至少一个电子元件电性连接, 在粘贴到被 测生物体的体表吋感应生物电信号, 并将生物电信号传输给电路模块。
[0060]
[0061] 实施例二:
[0062] 请参考图 10, 生理指标检测装置包括柔性电路模块 100、 柔性外壳 200、 粘贴层 300和电池 400。 与实施例一相比, 不同的是电池 400设置在柔性外壳 200的外部
, 例如将电池设置在与粘贴层相对的柔性外壳另一侧的外表面上, 电池通过置 于柔性外壳内部的导电材料层 500与柔性电路模块电性连接。 导电材料层 500可 采用可替换的双面胶方式固定电池, 从而使得电池可更换。 导电材料层 500可采 用韧性与强度足够支撑的材料, 包括但不限于: 石墨烯, 尤其是四连接的石墨 烯纳米管通过碳碳共价键键合, 形成类似金刚石的四配位三维稳固结构的三维 石墨烯材料等, 导电材料层 500的这种强度与韧性, 配合以柔性高分子包裹材料 的柔韧缓冲能力以及被包裹的较硬的柔性电路板设计, 形成一个软硬相间隔的 复合型防护结构, 这种结构可吸收部分的破片和穿刺的动能, 与普通材料相比 具有一定的防护与防刺穿能力, 加上其可贴身长期舒适佩戴的特点, 可以作为 特殊场景下的防弹防刺穿护具的补充, 因此, 本实施例在提供电池的同吋, 也 提供一种可选的人体关键部位的额外防护方案。
[0063]
[0064] 实施例三:
[0065] 本实施例可在实施例一和二的基础上再另外增加防护层, 例如在实施例一的基 础上, 在外壳上对应安装电池的部位贴附一防护层 510, 如图 11所示。 或在实施 例二的基础上, 直接在电池上贴附一防护层 520, 如图 12所示。 防护层可采用防 护能力更强的材料, 包括但不限于凯夫拉纤维。
[0066]
[0067] 实施例四:
[0068] 本实施例提供一种生理指标检测系统, 如图 11所示, 该生理指标检测系统包括 生理指标检测装置 1和数据处理设备 2, 生理指标检测装置 1可采用上述实施例中 的生理指标检测装置, 数据处理设备 2用于对柔性电路模块输出的被测生物体的 生理指标数据进行处理, 生理指标检测装置和数据处理设备通过无线或有线的 方式进行数据传输, 在具体实施例中, 数据处理设备 2可以是智能手机、 IPAD等 智能终端。 生理指标检测装置可以有一个或多个, 多个生理指标检测装置分别 负责不同部位的检测, 各个生理指标检测装置之间通过无线或有线的方式信号 连接, 各生理指标检测装置的生物传感器采集数据, 通过无线或有线的方式在 各生理指标检测装置之间进行数据传输, 或向上级数据处理设备传输数据, 从 而完成不同部位生理指标检测装置间的人体生理指标数据的交换汇总以及与上 级数据处理设备的交互。
[0069] 在改进的实施例中, 在不同生理指标检测装置之间和生理指标检测装置与上级 数据处理设备之间进行数据交互和处理采用同步完成的方式, 包括但不限于: 实吋同步输入, 实吋数据交换-比较-汇总, 以及与上级数据处理设备之间的同步 数据交互。 生理指标检测装置与上一级的数据处理设备相互之间采用实吋同步 算法, 包括但不限于: 卫星定吋同步, 或通过上一级数据处理设备主导通过无 线接口通信协议的特定吋隙位与系统其他参考信息, 通告独立检测平台以上一 级数据处理平台的参考吋间, 并要求个独立检测平台实吋调整等不同方式, 同 步方式 -同步精度-同步间隔满足按所涉及的人体生理指标采集的精度与稳定度要 求 (比如: 采用同源的 GPS空口卫星授吋, 定吋精度 10的负 9次方; 采用上一级 数据处理平台通过无线通信协议同步间隔 100毫秒, 典型的的同步精度 50微秒)
[0070] 在有的实施例中, 还包括后台服务器 3, 后台服务器 3与数据处理设备 2通过无 线或有线的方式信号连接。
[0071]
[0072] 以上应用了具体个例对本发明进行阐述, 只是用于帮助理解本发明, 并不用以 限制本发明。 对于本发明所属技术领域的技术人员, 依据本发明的思想, 还可 以做出若干简单推演、 变形或替换。
技术问题
问题的解决方案
发明的有益效果

Claims

权利要求书
一种生理指标检测装置,其特征在于包括:
柔性外壳, 其在外力作用下可产生沿外力方向的弹性形变; 柔性电路模块, 用于对被测生物体的生理信号进行检测和处理, 所述 柔性电路模块位于柔性外壳内, 所述柔性电路模块包括至少一个元件 模块和至少一个导电连接件, 所述元件模块包括元件模块衬底以及固 定于其上的至少一个电子元件, 所述电子元件通过导电连接件实现与 其它电子元件之间的电性连接或与外部的连接, 所述导电连接件用于 承载一路或两路以上彼此分隔的导电线路, 所述导电连接件在外力作 用下可产生沿外力方向的弹性形变;
粘贴层, 所述粘贴层具有第一面和与第一面相对的第二面, 所述粘贴 层通过第一面附着在柔性外壳一侧的外表面上, 所述粘贴层的第二面 具有粘性, 用于粘贴在被测生物体的体表。
如权利要求 1所述的装置, 其特征在于, 所述导电连接件包括复数个 连接单元, 每个连接单元为中空结构, 该中空结构的形状使得其具有 至少一个形变方向, 所述形变方向指该中空结构在该方向上的尺寸能 够在外力作用下发生变化, 所述连接单元沿至少一个形变方向顺次连 接。
如权利要求 1所述的装置, 其特征在于, 所述柔性外壳采用透气防水 的柔性高分子材料制成。
如权利要求 1-3中任一项所述的装置, 其特征在于, 所述粘贴层为单 面或双面采用疏油疏水的导电或绝缘压敏胶材料制成的柔软胶粘贴片 如权利要求 4所述的装置, 其特征在于, 柔性电路模块还包括用于检 测被测生物体的生理信号的生物传感器, 所述生物传感器通过导电连 接件实现与至少一个电子元件之间的电性连接。
如权利要求 4所述的装置, 所述粘贴层为绝缘层, 所述粘贴层上幵有 孔隙, 所述生物传感器透过所述孔隙与被测生物体的体表接触, 感应 生理信号; 或所述粘贴层为导电层, 所述粘贴层与至少一个电子元件 电性连接, 所述粘贴层在粘贴到被测生物体的体表吋作为电极片感应 生物电信号。
[权利要求 7] 如权利要求 1-6中任一项所述的装置, 其特征在于, 还包括为柔性电 路模块提供电能的电池, 所述电池为柔性电池, 所述电池与至少一个 电子元件电性连接。
[权利要求 8] 如权利要求 7所述的装置, 其特征在于, 所述电池为可弯折的锂陶瓷 电池。
[权利要求 9] 如权利要求 7所述的装置, 其特征在于, 所述电池设置在柔性外壳内
[权利要求 10] 如权利要求 9所述的装置, 其特征在于, 还包括防护层, 所述防护层 贴附在与粘贴层相对的柔性外壳另一侧的外表面上。
[权利要求 11] 如权利要求 7所述的装置, 其特征在于, 所述电池设置在与粘贴层相 对的柔性外壳另一侧的外表面上, 所述电池通过置于柔性外壳内部的 导电材料层与柔性电路模块电性连接。
[权利要求 12] 如权利要求 11所述的装置, 其特征在于, 还包括防护层, 所述防护层 贴附在电池的外表面上。
[权利要求 13] —种生理指标检测系统,其特征在于包括:
如权利要求 1-12中任一项所述的生理指标检测装置;
数据处理设备, 用于对柔性电路模块输出的被测生物体的生理指标数 据进行处理; 所述生理指标检测装置和数据处理设备通过无线或有线 的方式进行数据传输。
[权利要求 14] 如权利要求 13所述的系统, 其特征在于, 所述生理指标检测装置有多 个, 各个生理指标检测装置之间通过无线或有线的方式信号连接。
[权利要求 15] 如权利要求 13或 14所述的系统, 其特征在于, 还包括后台服务器, 所 述后台服务器与数据处理设备通过无线或有线的方式信号连接。
PCT/CN2016/070352 2016-01-07 2016-01-07 一种生理指标检测装置及系统 WO2017117771A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070352 WO2017117771A1 (zh) 2016-01-07 2016-01-07 一种生理指标检测装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070352 WO2017117771A1 (zh) 2016-01-07 2016-01-07 一种生理指标检测装置及系统

Publications (1)

Publication Number Publication Date
WO2017117771A1 true WO2017117771A1 (zh) 2017-07-13

Family

ID=59273349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070352 WO2017117771A1 (zh) 2016-01-07 2016-01-07 一种生理指标检测装置及系统

Country Status (1)

Country Link
WO (1) WO2017117771A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101129101A (zh) * 2005-02-28 2008-02-20 联邦科学和工业研究组织 柔性电子装置
CN101312688A (zh) * 2005-11-25 2008-11-26 皇家飞利浦电子股份有限公司 生物测定传感器
US20100330338A1 (en) * 2009-06-29 2010-12-30 Boyce Mary C Structured material substrates for flexible, stretchable electronics
CN103445763A (zh) * 2013-08-26 2013-12-18 华中科技大学 一种基于表皮电子的健康监测系统
CN203468594U (zh) * 2013-09-18 2014-03-12 浙江普可医疗科技有限公司 麻醉深度监测传感器
CN104257366A (zh) * 2014-09-16 2015-01-07 苏州能斯达电子科技有限公司 一种可穿戴生理体征检测传感器、制备方法及其监测系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101129101A (zh) * 2005-02-28 2008-02-20 联邦科学和工业研究组织 柔性电子装置
CN101312688A (zh) * 2005-11-25 2008-11-26 皇家飞利浦电子股份有限公司 生物测定传感器
US20100330338A1 (en) * 2009-06-29 2010-12-30 Boyce Mary C Structured material substrates for flexible, stretchable electronics
CN103445763A (zh) * 2013-08-26 2013-12-18 华中科技大学 一种基于表皮电子的健康监测系统
CN203468594U (zh) * 2013-09-18 2014-03-12 浙江普可医疗科技有限公司 麻醉深度监测传感器
CN104257366A (zh) * 2014-09-16 2015-01-07 苏州能斯达电子科技有限公司 一种可穿戴生理体征检测传感器、制备方法及其监测系统

Similar Documents

Publication Publication Date Title
US11950928B2 (en) Modular wearable sensor device
Gao et al. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability
Wang et al. Skin bioelectronics towards long-term, continuous health monitoring
Ha et al. Wearable and flexible sensors for user-interactive health-monitoring devices
Majumder et al. Wearable sensors for remote health monitoring
US8718742B2 (en) Integrated wireless patch for physiological monitoring
US6385473B1 (en) Physiological sensor device
EP2280638B1 (en) A substrate layer adapted to carry sensors, actuators or electrical components
Qiu et al. A bioinspired, durable, and nondisposable transparent graphene skin electrode for electrophysiological signal detection
Silva et al. Domiciliary hospitalization through wearable biomonitoring patches: Recent advances, technical challenges, and the relation to COVID-19
JP2018531642A5 (zh)
JP2015534495A (ja) 監視デバイス
KR20150065780A (ko) 개인용 생체센서 액세서리 부착
WO2012040401A2 (en) Systems for assessing and optimizing muscular performance
EP1959832A2 (en) Medical sensor having electrodes and a motion sensor
CN108344524B (zh) 一种用于测量温度及电信号的可穿戴贴片
CN105455805A (zh) 长时间心电量测记录装置
WO2017156716A1 (zh) 一种传感器组件
Takaya et al. Transformable electrocardiograph using robust liquid–solid heteroconnector
Hu et al. Smart electronics based on 2D materials for wireless healthcare monitoring
WO2013088747A1 (ja) 生体情報検知ユニット
CN205286343U (zh) 一种生理指标检测装置及系统
WO2017117771A1 (zh) 一种生理指标检测装置及系统
Lin et al. Silver nanowire based wearable sensors for multimodal sensing
Yeh et al. Smart tape for monitoring human joint motion and sweat with unique stiffness design of piezoelectric sensing mechanisim in stretching and bending motion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882916

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16882916

Country of ref document: EP

Kind code of ref document: A1