WO2017117698A1 - 能引用无功风的风力机 - Google Patents

能引用无功风的风力机 Download PDF

Info

Publication number
WO2017117698A1
WO2017117698A1 PCT/CN2016/000671 CN2016000671W WO2017117698A1 WO 2017117698 A1 WO2017117698 A1 WO 2017117698A1 CN 2016000671 W CN2016000671 W CN 2016000671W WO 2017117698 A1 WO2017117698 A1 WO 2017117698A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
wind turbine
bracket
blade
vertical axis
Prior art date
Application number
PCT/CN2016/000671
Other languages
English (en)
French (fr)
Inventor
阎波
Original Assignee
阎波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阎波 filed Critical 阎波
Priority to CN201680002666.8A priority Critical patent/CN109874297A/zh
Publication of WO2017117698A1 publication Critical patent/WO2017117698A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/04Wind motors with rotation axis substantially parallel to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • F05B2240/121Baffles or ribs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • the invention relates to a wind turbine capable of citing reactive wind. It is similar to the wind turbine function machine in the past and can be applied to wind power generation, water lifting, grinding and other fields. It is mainly composed of wind turbine bracket, air deflector, wind deflector, wind turbine shaft, wind blade, wind blade slide, vane arc, driven rolling arc wheel, power rolling wheel, electric drive device, starting device , speed control device, blade control device, anti-strong wind device, steering device and de-icing device.
  • Wind turbines are divided into horizontal axis wind turbines and vertical axis wind turbines. Its role is to convert wind energy into mechanical energy or electrical energy. At present, although the horizontal axis wind turbine is widely used in wind power generation, because of its slender blade, a large part of wind energy is leaked from the gap of the blade. This part of the wind energy that is missing is the reactive wind. Therefore, the horizontal axis wind turbine occupies a large space and is not efficient in wind. Vertical axis wind turbines are even more inferior to wind turbines than horizontal axis wind turbines because of their deficiencies.
  • a vertical axis wind turbine has only half of the blades on the rotating circumference to receive the wind energy, while the other half of the rotating blades not only does not accept the wind energy but also consumes the wind turbine because it is the top wind and the air outlet moves back.
  • the Applicant has invented such a wind turbine capable of citing reactive wind.
  • the invention is basically realized in the following three types of wind turbines: the first one is to install two vertical axis wind turbines which are mutually inverted on one bracket, referred to as a two-axis wind turbine for short; the second is wind The horizontal axis wind turbine with the axis facing the wind, referred to as the horizontal axis wind turbine; the third is the horizontal axis combined wind turbine with the above two wind turbines overlapping.
  • the three wind turbine production methods and their implementation functions are described as follows:
  • a two-axis wind turbine The production method and function are as follows: 1. Two wind turbine brackets can be installed on both sides, and two solid or hollow vertical shafts are installed on both sides of the bracket, and the two shafts are always symmetrical under the action of wind or artificial design. The windward sides of the bracket; 2. The slide rails on the upper and lower ends of the two vertical shafts enable the blades to move thereon, so that the blades can smoothly travel on both sides of the fan shaft; 3. In the wind turbine The air deflector and the wind deflector are installed on the power zone and the slideway, and the windshield of the reactive power zone is led to the active zone; 4.
  • Two oppositely facing vane arcs are installed on the bracket to change the rotation track of the wind blade, and can also cooperate Or use the power facility alone to drive the blades, so that the blades change their original rotation trajectory; 5. Make the blades suitable for moving on the width of the chutes at both ends of the wind shaft, and install the blades on both sides or on the two sides.
  • the side rollers are mounted on the slide rails at both ends; 6.
  • the driven rolling wheel or the power rolling arc wheel is installed at the contact points of the vane arcs at both ends of the vane, so that the vane can be intercepted by the vane arc Realize that it can travel straight on both sides of the wind shaft while rotating with the wind shaft Or no leaf arc strip bar, only electrical equipment to directly drive the fan to achieve the above object; 7, need to work from the ground wind turbine can be hung on a post or tower.
  • the horizontal axis wind turbine The production method and function are as follows: 1. Make a wind turbine bracket capable of supporting the horizontal axis, and horizontally frame the solid or hollow wind shaft to the bracket, so as to create basic conditions for the wind blade to smoothly cross both sides of the wind shaft; 2. In the horizontal wind shaft Install slides and slide windshields on the windshield to make the wind blades realize the crossing on both sides of the wind shaft; 3. Install the retaining blades behind the wind turbine brackets. The arc bar and/or the electric device enable the fan blade to shuttle back and forth on both sides of the wind shaft while rotating with the fan; 4. fabricate the blade and mount it on the slide track; 5.
  • the vertical wind can be installed on the ground according to the local wind conditions, and the wind turbine is installed on the column.
  • the vertical axis combined wind turbine The combination method and function are as follows: 1. A column of suitable height is erected for supporting the vertical axis wind turbine; 2. A vertical axis wind turbine is installed at the lower part of the column; 3. A horizontal axis is installed above the vertical axis of the column. Axle wind turbine; 4, under the two axes of the vertical axis wind turbine, each is mounted with a ground wheel that can move around the column. The combined wind turbine decomposes a certain scale of wind turbine into several small wind turbines under the same wind energy, thereby reducing the wind power of the wind turbine and making it advantageous for manufacturing and installation.
  • the invention Compared with the conventional wind turbine and the sliding door wind turbine invented by the applicant, the invention has the following advantages:
  • the invention can overcome the shortcomings of the previous vertical axis wind turbine to obtain wind energy in the wind, so that it can be used in large-scale wind power generation;
  • the horizontal axis wind turbine bracket can lift the wind blade nearly twice its height, so that it can obtain the high-altitude wind energy with the low-altitude bracket while realizing the reference reactive wind;
  • the wind power capacity of the wind turbine is significantly improved by the invention, so that low-altitude power generation and breeze power generation can be realized in the field of wind power generation.
  • the blades and air deflectors of the present invention can be used as billboards.
  • 1abc is a front view, a top view and a side view of the vertical axis wind turbine support of the first embodiment.
  • Fig. 2 is a front elevational view showing the slide rail mounted on the vertical shaft in the first embodiment.
  • Fig. 3 is a front elevational view showing the air deflector mounted to the bracket in the first embodiment.
  • the front pillar of the bracket 2, two air deflectors installed in the middle of the upper and lower inclined beams on both sides of the bracket, 3, the rear side and the right vertical axis of the right air deflector, 4, the right wind turbine upper slide, 5 , the right lower beam of the bracket, 6, the right front of the bracket.
  • FIGS. 4 and 5 are a front view and a plan view of a wind turbine bracket in which a vane strip is installed in the first embodiment.
  • Figure 6a is a front elevational view of the middle leaf of the first embodiment.
  • 1 wind blade, 2, rolling wheel, 3, pulley, 4, support wheel.
  • Figure 6b is a front elevational view of the first embodiment of the wind deflector mounted to the wind turbine.
  • the blade on the left wind turbine that has just touched the blade arc, 2 the roller of the right wind turbine that just rolled into the blade, 3, the pulley on the right wind turbine, 4, right wind Machine Support wheel, 5, retaining blade arc, 6, right air deflector, 7, left air deflector, 8, left wind turbine rotation direction, 9, right wind turbine rotation direction.
  • Figure 7 is a schematic view of the wind blade starting to drive the wind turbine to rotate under the roof of the vane arc.
  • wind blade 2, air deflector, 3, pulley shaft, 4, vertical axis, 5, support wheel, 6, bar blade arc.
  • Figure 8ab is a front view and a side view of the hollow shaft of the wind turbine of the second embodiment.
  • shaft gang 2, shaft clearance, 3, shaft end.
  • Figure 9abc is a front view, a side view and a plan view of a slide rail and a wind deflector mounted on a hollow shaft of a wind turbine of the second embodiment.
  • 1 wind turbine shaft, 2, slide, 3, windshield, 4, shaft end clamp steel, 5, shaft hole on the clamp steel.
  • Figure 10abc is a front, side and top plan view of the wind turbine support of the second embodiment.
  • Figure 11ab is a front elevational view and a side elevational view of the vertical shaft and slide of the wind turbine bracket of the second embodiment.
  • low vertical axis 2, upper glides on low vertical axis, 3, low vertical axis steel pad, 4, high vertical axis glides, 5, bracket distance frame.
  • Figure 11c is a top plan view of the vertical shaft and slide of the wind turbine bracket of the second embodiment.
  • chute windshield 2, low vertical axis upper slide, 3, high vertical axis upper slide, 4, bracket distance frame, 5, low vertical axis hole.
  • Figure 12abc is a front view, a side view and a plan view of the second embodiment of the wind turbine bracket with the air deflector and the wind deflector mounted.
  • 1 left air deflector, 2, right air deflector, 3, wind deflector on the right air deflector, 4, wind deflector on the left air deflector, 5, slide windshield, 6 , air guide bracket.
  • Figure 13 is a front elevational view of the wind turbine bracket of the second embodiment mounted with a vane arc bracket.
  • the rectangular frame of the bracket 2.
  • the arc ejector rod 3 mounted on both sides of the rear pillar, the rear crossbar mounted on the rear pillar and the ejector rod, 4.
  • the front crossbar installed at the front end of the ejector rod.
  • Figure 14abc is a front view, a side view and a plan view of the second embodiment of the blade.
  • Figure 15 is a front elevational view showing the installation of a vane arc and a vane on the wind turbine bracket of the second embodiment.
  • 1 left bar blade, 2, left blade, 3, blade pulley in the slide, 4, slide, 5, fan rotation direction, 6, wind direction.
  • Figure 16abc is a top plan view of three different rotations of the wind turbine after the wind turbine is installed with the ground wheel and the ground shaft in the second embodiment.
  • Figure 17 is a front elevational view of the wind turbine blade of the third embodiment.
  • the wind blade frame 1, the wind blade shed cloth, 3, the rack.
  • Figure 18a is a front elevational view of the embodiment of the third vane being mounted on a vertical axis slide.
  • Figure 18b is a front elevational view of the embodiment three blades having been mounted to the vertical axis slide and pushed to the other side of the vertical axis.
  • the motor line 2, the motor line terminal mounted on the top of the vertical axis (there is also a back of the vertical axis), 3.
  • the rack terminal that is engaged on the motor gear.
  • Figure 19 is a front elevational view of the wind turbine of the third embodiment.
  • 1 vertical axis, 2, fan, 3, rack, 4, low vertical axis slide, 5, low vertical axis glide, 6, motor, 7, motor gear with bite rack, 8, Motor line, 9, motor line terminal, 10, external power line from the ground shaft seat, 11, external power line leading to the front column, 12, external power line leading to the upper beam, 13, lead to the top of the vertical axis
  • Figure 20abc is a front, side and top plan view of the fourth embodiment wind turbine support.
  • 1 rectangular bottom frame, 2, triangular bracket, 3, stable rod.
  • Figure 21abc is a front view, a side view and a plan view of the fourth vertical axis of the embodiment and the slide and slide windshield thereon.
  • Figure 22ab is a front view, side view of the fourth vertical axis of the embodiment and the slide and slide windshield mounted thereon to the wind turbine bracket Figure.
  • 1 vertical axis, 2, slide, 3, slide windshield.
  • Figure 23ab is a front elevational view of the fourth embodiment of the wind turbine bracket wind deflector and windshield mounted to the bracket.
  • the bracket air deflector 2, the windshield, 3 the hinge of the installation of the wind deflector.
  • Figure 24 is a side elevational view of the fourth embodiment of the installation of the vane arc to the wind turbine support.
  • the pole, 2 the slanting rod, 3, the bar blade installed on the pole and the slanting bar.
  • Figure 25 is a front elevational view of the fourth embodiment of the wind blade mounted to the wind turbine bracket.
  • Figure 26 is a front elevational view showing the mounting of the grounding wheel and the ground shaft to the wind turbine in the fourth embodiment.
  • the ground wheel 2, the ground axis, 3, the ground.
  • Figure 27 is a higher double transverse axis wind turbine supported by a cylinder, with 1 being the struts. Such a wind turbine can be applied to an area where the terrain is uneven or has obstacles.
  • Figure 28 is a horizontal two vertical multi-layer wind turbine that can further save space and obtain more wind energy.
  • Figure 29 is a two-horizontal two-story multi-layer wind turbine with better wind gain.
  • Figure 30 is a four-stage multi-layer wind turbine whose structure is simpler than two horizontal and two vertical, but the column is higher.
  • Figure 31 is a strut type high-altitude horizontal-axis wind turbine with extremely strong wind-receiving capability.
  • Fig. 32 is a strut-type transverse-axis wind turbine without a wind-inducing device, which is suitable for an area where the terrain is uneven but the wind energy is rich.
  • Embodiment 1 Pillar type one-axis wind turbine
  • Leaf arc strip picking rod take two lengths of 40cm, 8*8cm square steel pipe, weld them to the two ends of the rod and make it perpendicular to the ground, take two 150mm thick 5mm high-strength wear-resistant slats, The two semicircular vane arcs with a diameter of 3.5 m are connected, and the horizontal ends of the hinges are respectively connected to the steel pipe below the pick rod, and the other end is connected to the air deflector on the vertical axis side. See Figure 4 and Figure 5.
  • the bracket Without the support of the column, the bracket can be directly landed, and the support of the ground wheel and the ground shaft can also be used, but it takes up some ground.
  • the prior art settings that are not relevant to the present invention are not included in the present embodiment.
  • windshield installed on both sides of the air deflector and on the slideway fan speed adjustment device, anti-strong wind device, steering device, deicing device and so on.
  • anti-strong wind device for example: windshield installed on both sides of the air deflector and on the slideway, fan speed adjustment device, anti-strong wind device, steering device, deicing device and so on.
  • accessory settings belonging to the prior art the design, fabrication and configuration methods are various and will not be exemplified herein.
  • Embodiment 2 A two-axis overlapping wind turbine
  • the circular holes of one of them are aligned with the lower round holes at one end of the upper beam of the bracket for welding, and the other and the lower beam are combined.
  • the round holes on one end are aligned and welded.
  • the two flat steels are used to make the slides on the vertical axis shift up and down to reduce the space of the support to reduce the occupation and save the raw materials.
  • the frame at this time is the wind turbine bracket in this embodiment. (See Figure 10abc);
  • the spring behind the bracket air deflector can automatically retract to the center of the bracket when the wind exceeds the limit, and increase the gap between the air deflector and the vertical shaft to allow excess wind energy to escape from the gap, or in the air deflector And other ways of ventilating the wind;
  • the frame frame of the stretcher is the blade of this embodiment.
  • the two blades are separately from the wind turbine bracket.
  • the side is mounted on the two vertical axes in the middle of the glide path, closing the slideway so that the blades cannot slide out of the slide (see Figure 15);
  • Embodiment 3 Motor-driven one-axis wind turbine
  • the basic support of the wind turbine of the present embodiment is the same as that of the second embodiment (see the description of the second, second, third, fourth, and fifth embodiments and the illustration thereof);
  • Embodiment 4 Horizontal axis wind turbine
  • the slideway protrudes 5.85 meters from the upper and lower ends of the vertical axis, and a rectangular frame of 8 meters wide and 2 meters wide is made with a 15*15cm angle frame, and the shed cloth is attached to the middle of the slide base. Make it a slide windshield, see Figure 21;
  • the one end of the windshield frame is placed on the two long sides of the air deflector frame, and the other end is supported.
  • the short side of the air guide frame is pushed up close to the vertical axis, and the two steel pipe contact points are welded, and the shed cloth is attached to the air deflector frame and the windshield frames on both sides thereof.
  • the wind deflector of the wind turbine and its wind deflector have been installed in front of the wind turbine bracket (see Figure 23ab);
  • the present invention utilizes the above-mentioned powerful measures, so that it can be widely applied to low-altitude power generation and breeze power generation fields in addition to being applicable to strong wind regions, and thus greatly Broaden the application area of wind power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

一种能引用无功风的风力机,风力机风叶在随风轴旋转的同时又能在风轴两侧做穿梭式移动,使风叶能够改变原来的旋转轨迹而让出风力机的无功区,在无功区内安装使无功区的风吹向有功区的引风装置。

Description

能引用无功风的风力机 技术领域
本发明涉及一种能引用无功风的风力机。其与以往风力机功能机同,可应用于风力发电,提水,磨面等领域。其主要由风力机支架、引风板、挡风板、风力机轴、风叶、风叶滑道、拦叶弧条、从动滚弧轮、动力滚弧轮、电力驱叶装置、启动装置、转速控制装置、风叶控制装置、防强风装置、调向装置和除冰雪装置等组成。
背景技术
风力机分为水平轴风力机和垂直轴风力机两种。其作用是将风能转化为机械能或电能。目前,水平轴风力机虽然被大量应用于风力发电,但因其风叶细长,使很大一部份风能从其风叶间隙漏掉了,这部份漏掉的风能即是无功风,所以水平轴风力机占据空间大,受风效率不高。而垂直轴风力机比水平轴风力机受风效率还要差,这是因为其存在着更多不足。例如:垂直轴风力机只有半个旋转周上的风叶接受风能,而另半个旋转周上的风叶不但不接受风能反而还因其是顶风向上风口回移而消耗掉了风力机的一大部份动能;垂直轴风力机的风叶作功时要随风后移,其回移的线速度越快受风效果越差;因风叶切风边线速度与风力机大小成正比,使大型垂直轴风力机很难提高转速。为此,垂直轴风力机应用范围较为狭窄。
为了克服风力机的上述不足,本申请人在此之前发明的《拉门式垂直轴风力发电机》(专利号:ZL2010 1 0185243.9)中的风力机部份,已经对现有风力机进行了革新,但是,这种新式风力机虽然克服了以往风力机的不足,但其自身还是存在着不完善的地方,例如:其没有在无功区安装引风装置,使无功区的风能白白流失了。另外,其只是局限于垂直轴风力机而使之在采风方式上受到了制约。再者,其在风轴转速控制、防强风设置和除冰雪设施上存在着空白,在风向调节方面也有不足的地方。
发明内容
为了解决风力机上述弊病,本申请人发明了这种能引用无功风的风力机。
本发明基本上是在下述三种形式风力机上来得以实现的:第一种是在一个支架上安装相互反转的两个垂直轴风力机,简称一架双轴风力机;第二种是风轴横着迎风的水平轴风力机,简称横轴风力机;第三种是将上述两种风力机重叠的横垂轴组合式风力机。现就三种风力机制作方法及其实现功能说明如下:
一、一架双轴风力机。制作方法及功能如下:1、制作两侧能安装垂直轴的风力机支架,在支架两侧安装两个实心或空心垂直轴,并且在风力或人为设计的作用下,使两轴总是对称于支架的迎风两侧;2、在两个垂直轴的上下端各安装能使风叶在其上移动的滑道,使风叶能够实现其直线穿梭于风机轴两侧;3、在风力机无功区和滑道上安装引风板和挡风板,将无功区的风挡引到有功区;4、在支架上安装两个方向相反的拦叶弧条使风叶改变旋转轨迹,也可以配合或单用电力设施来驱动风叶,使风叶改变其原来旋转轨迹;5、按风轴两端滑道空隙的宽度制作适合在其上移动的风叶,将风叶两侧或安装于两侧的滚轮镶入两端滑道上;6、在风叶两端与拦叶弧条接触部位安装从动滚弧轮或动力滚弧轮,使风叶能在拦叶弧条的拦引之下实现其在随风轴旋转的同时又能直线穿梭于风轴两侧,或者不用拦叶弧条,仅用电力设备直接驱动风叶来达到上述目的;7、需要风力机离地工作则可将其挂于立柱或塔架上。
二、横轴风力机。制作方法及功能如下:1、制作能够支撑横轴的风力机支架,将实心或空心风轴水平架到支架上,为风叶能够直线穿越风轴两侧创造基本条件;2、在水平风轴上安装滑道和滑道挡风板,使风叶实现在风轴两侧的穿越;3、在风力机支架后方安装拦叶 弧条和、或电力装置,使风叶在随风机旋转中又能够来回穿梭于风轴两侧;4、制作风叶并将其安装到滑道上;5、在支架上风口安装倒向风轴的引风板和挡风板,使风力机下方无功风流向上方有功区,6、如若需要可根据当地风况在地面设置合适高度的立柱,将风力机安装到立柱上。
三、横垂轴组合式风力机。组合方法及功能如下:1、竖起一根合适高度的立柱,用于支撑垂直轴风力机;2、在立柱下部安装垂直轴风力机;3、在立柱上部也就是垂直轴风力机上方安装横轴风力机;4、在垂直轴风力机两轴下方各安装一个能围绕立柱作圆周移动的支地轮。这种组合式风力机在获取相同风能的情况下,将一定规模的风力机分解成了几个小型风力机,从而减轻了风力机受风强度,使之有利于制造和安装。
四、在三种新式风力机上安装启动装置、转速调控装置,风叶控制装置,调向装置,强风防控和除冰雪装置。需要说明的是:这些装置属于现有技术而且多种多样,故未对这些现有技术做具体说明。到此,本发明主要内容已基本阐述完。
本发明与以往风力机以及与本申请人发明的拉门式风力机相比有如下优势:
1、在风力机上设置引风板和挡风板,使之既消除了无功风对风叶回旋上风口所产生的阻力,又使无功风流向了风力机的有功区,以此增大了风力机有功区间的风速和风力密度,提高了风能利用率;
2、由于人为提高了风力机作功区的风速和风力密度,使本发明能够克服以往垂直轴风力机顺风获取风能的不足,从而可使之大型化而应用于大型风力发电领域;
3、因横轴风力机支架能将风叶举起将近其一倍的高度,使之在实现引用无功风的同时又以低空支架获取了高空风能;
4、本发明中各个部件的加工、组装、维修和更换都极为方便,这一特点使本发明实现了风电工艺的传统化,降低了风力发电成本;
5、因本发明使风力机受风能力得到显著提高,使之在风力发电领域能够实现低空发电和微风发电。
6、本发明中的风叶和引风板可作广告牌使用。
附图说明
图1abc是实施例一垂直轴风力机支架的主视图、俯视图和侧视图。图中:1、左侧垂直轴,2、支架上端的左侧斜拉梁,3、支架下端的左侧斜拉梁4、上后梁,5、地柱左前方的贴杆,6、地柱,7、支架上端右拉杆,8、支架的后立杆,9、支架的前立杆,10、地柱顶端稳固支架的轴承,11、地柱下方承载支架的承重轴承,12、地面,13风向。
图2是实施例一中垂直轴上安装了滑道的主视图。图中:1、左侧垂直轴,2、左侧上滑道,3、左侧下滑道,4、地柱,5、地面。
图3是实施例一中引风板安装到支架上的主视图。图中:1、支架前立柱,2、安装在支架两侧上下斜梁中间的两个引风板,3、右引风板后侧边及右垂直轴,4、右风力机上滑道,5、支架右下直梁,6、支架右前方贴杆。
图4和图5是实施例一中安装了拦叶弧条的风力机支架主视图和俯视图。图中:1、拦叶弧条,2、弧条挑杆,3、滑道,4、支架上端右斜梁,5、支架上端左斜梁,6、右引风板,7、左引风板、8、风向。
图6a是实施例一中风叶的主视图。图中:1、风叶,2、滚弧轮,3、滑轮,4、支轮。
图6b是实施例一中风叶安装到风力机上的主视图。图中:1、刚接触到拦叶弧条的左风力机上的风叶,2、刚滚入拦叶弧条的右风力机的滚弧轮,3、右风力机上滑轮轴,4、右风力机 支轮,5、拦叶弧条,6、右引风板,7、左引风板,8、左风力机旋转方向,9、右风力机旋转方向。
图7是风叶在拦叶弧条的拦顶下开始带动风力机旋转的示意图。图中:1、风叶,2、引风板,3、滑轮轴,4、垂直轴,5、支轮,6、拦叶弧条。
图8ab是实施例二风力机空心轴的主视图和侧视图。图中:1、轴帮,2、轴空隙,3、轴端。
图9abc是实施例二风力机空心轴上安装了滑道和挡风板的主视图、侧视图和俯视图。图中:1、风力机轴,2、滑道,3、挡风板,4、轴端夹钢,5、夹钢上的轴孔。
图10abc是实施例二风力机支架的主视图、侧视图和俯视图。图中:1矩形框,2、上下横梁,3、垫轴扁钢和垂直轴安装孔。
图11ab是实施例二风力机支架安装上垂直轴和滑道的主视图和侧视图。图中;1、低垂直轴,2、低垂直轴上的上下滑道,3、低垂直轴钢垫,4、高垂直轴上下滑道,5、支架距形框。
图11c是实施例二风力机支架安装上垂直轴和滑道的俯视图。图中:1、滑道挡风板,2、低垂直轴上滑道,3、高垂直轴上滑道,4、支架距形框,5、低垂直轴孔。
图12abc是实施例二风力机支架安装了引风板和挡风板的主视图、侧视图和俯视图。图中:1、左引风板,2、右引风板,3、右引风板上的挡风板,4、左引风板上的挡风板,5、滑道挡风板,6、引风板支架。
图13是实施例二风力机支架安装了拦叶弧条支架的主视图。图中:1、支架矩形框,2、安装在后立柱两侧上的弧条顶杆3、安装在后立柱和顶杆上的后横杆,4、安装在顶杆前端的前横杆。
图14abc是实施例二拦叶弧条的主视图、侧视图和俯视图。
图15是实施例二风力机支架上安装了拦叶弧条和风叶的主视图。图中:1、左拦叶弧条,2、左风叶,3、滑道中的风叶滑轮,4、滑道,5、风机旋转方向,6、风向。
图16abc是实施例二风力机安装了支地轮和地轴以后风力机的三个不同旋转情况的俯视图。图中:1、支地轮,2、地轴,3、在拦叶弧条上滚动的滚弧轮,4、在滑道上移动的风叶,5、风力机旋转方向,6、风向。
图17是实施例三风力机风叶的主视图。图中:1、风叶框,2、风叶棚布,3、齿条。
图18a是实施例三风叶正在往垂直轴滑道上安装的主视图。图中:1、垂直轴,2、滑道,3、尚未安装到滑道中的风叶滑轮,4、齿条,5、驱动风叶的电机。
图18b是实施例三风叶已经安装到垂直轴滑道并且推到垂直轴另一侧的主视图。图中:1、电机线,2、安在垂直轴顶上的电机线终端(垂直轴背面还有一个),3、咬合在电机齿轮上的齿条终端。
图19是实施例三风力机的主视图。图中:1、垂直轴,2、风叶,3、齿条,4、低垂直轴上滑道,5、低垂直轴下滑道,6、电机,7、咬合齿条的电机齿轮,8、电机线,9、电机线终端,10、从地轴座引出的外部电源线,11、引到前立柱的外部电源线,12、引到上横梁的外部电源线,13、引到垂直轴顶端的外部电源线终端,14、引风板,15、地轴,16、支地轮,17、底横梁,18、地面。
图20abc是实施例四风力机支架的主视图、侧视图和俯视图。图中:1、矩形底框,2、三角形支架,3、稳固杆。
图21abc是实施例四垂直轴及其上的滑道和滑道挡风板主视图、侧视图和俯视图。图中:1、垂直轴,2、滑道,3、挡风板,4、轴端夹铁,5、垂直轴安装孔。
图22ab是实施例四垂直轴及其上的滑道和滑道挡风板安装到风力机支架上的主视图、侧视 图。图中:1、垂直轴,2、滑道,3、滑道挡风板。
图23ab是实施例四将风力机支架引风板、挡风板安装到支架上的主视图。图中:1、支架引风板,2、挡风板,3安装引风板的合页。
图24是实施例四将拦叶弧条安装到风力机支架上的侧视图。图中:1、立杆,2、斜杆,3、安装在立杆和斜杆上的拦叶弧条。
图25是实施例四将风叶安装到风力机支架上的主视图。图中:1、风叶,2、引风板,3、滑道挡风板,4、引风板上的挡风板,5、风叶滚弧轮,6、风叶后的拦叶弧条,7、在风叶和引风板空隙能看到的拦叶弧条,8、在风叶和引风板空隙能看到的尚在拦叶弧条底部的风叶滚弧轮,9、风叶滑轮轴。
图26是实施例四将支地轮和地轴安装到风力机上的主视图。图中:1、支地轮,2、地轴,3、地面。
图27是用柱体支撑的较高的双横轴风力机,图中1是支柱。此种风力机可应用于地势不平或有障碍物的地域。
图28是一横二纵多层式风力机,其能进一步节省空间和获取更多风能。
图29是二横二纵多层式风力机,其获风能力会更好一些。
图30是四纵多层式风力机,其结构比二横二纵简单,但立柱要高一些。
图31是支柱式高空横轴风力机,其获风能力极强。
图32是无引风装置的支柱式横连轴风力机,其适合于地势不平但高空风能丰富地域。图中:1、右风力机风叶,2、左风力机拦叶弧条挑杆,3、拦叶弧条,4、左机滑道,5、左机风叶,6、风机中心轴,7、挂在支柱上的风机支架,8、支架上轴承,9、支架下方承重轴承,10、支柱,11、地面。
具体实施方式
实施例一 支柱式一架双轴风力机
1、用150*150mm方钢管制作成如图1所示风力机支架一个。支架的规模为:斜梁长5m、前端至后立柱长3m、后梁长8m、高6m,由长8m直径0.5m立于地基之上的柱体支撑。见图1中2、3、4、5、6、7、8、9、10、11。
2、制作长5.6m、直径30cm、中间留有长5.4m宽16cm缝隙的垂直轴两根,将其分别安装到风力机支架后梁两端。如图1中1所示。
3、制作可以容纳直径15cm滚轮的长6.6m滑道四根,按图2所示将其安装到两风机轴上下端。
4、用100*100mm方钢管焊制成长5.2m,宽4m矩形框两个,将两框各一长边对顶在风力机支架前端立柱上,另一长边延伸到支架两边垂直轴旁边,并且使之上下两边与支架上下斜梁各留出25cm空隙,使滑道在旋转中能通过空隙,在两框上铺高强度轻质薄膜,此两框即是风力机引风板。见图3所示。
5、取长4m,150*150mm方钢管两根,将两钢管用紧固件固定到支架上方后梁两端,使之延支架上方两侧斜梁再长出3.5m,此两钢管即是拦叶弧条挑杆,取长40cm,8*8cm方钢管两根,将其分别焊接在挑杆两端并且使之垂直于地面,取宽150mm厚5mm高强度耐磨板条两条,将其煨成两个开口3.5m的半圆形拦叶弧条,将其用合页分别水平状一端连接在挑杆下方钢管上,另一端连接到垂直轴边的引风板上。见图4和图5所示。
6、取长3.3m,100*100cm高强度轻质金属方管四根,取长5.38m,3*3cm高强度轻质耐磨轴杆四根,将每个轴杆上距一端25cm处,各安装一个直径20cm的从动滚弧轮或电动滚弧轮后, 制作成5.2m*3.3m风叶框两个,并且使短边四个角各探出轴杆9cm,在每个探出的轴杆上各安装一个直径15cm滑轮,在风叶框的下框两端安装支顶轮后,用高强度薄膜覆盖风叶框使之成为能带动风力机转动的两个风叶。将两风叶分别镶入两个风力机上下滑道中间空隙中。至此,风力机最重要部件已安装完成,此时支架两侧的风力机已能随风旋转。见图6、图7所示。
不用柱体支撑,将支架直接落地,以支地轮和地轴支撑也可以,但要占用一些地面。
为了清晰反映本发明内容,对于与本发明无关的属于现有技术设置没有例入本实施例中。例如:安装于引风板两侧和滑道上的挡风板、风机转速调节装置,防强风装置,调向装置,除冰雪装置等等。对于上述属于现有技术的附属设置,其设计制作和配置方法则多种多样,在此不再做举例说明。
实施例二 一架双轴重叠式风力机
1、取16*8cm长5.88m扁钢管2根,取8*8cm长16cm方钢2块,将方钢分别夹到2根扁钢管的两端进行焊接,使扁钢管和方钢形成一个16*24cm长5.88m而且其中间又带有一个宽8cm长5.72m缝隙的组合钢条,此钢条即是本实施例中的中空垂直轴(见图8ab),按此方法再制作一个同样的中空垂直轴;
2、将垂直轴两端的夹铁中间各钻出一个3cm的圆孔并且咬出丝扣,取10*8cm长6m滑道4根,将4根滑道分别插入上述两个垂直轴的空隙中,并且将其底部的中间分别焊接到两个垂直轴缝隙的两端,此时,每个垂直轴上的两个滑道都从垂直轴缝隙的两端向两侧伸出2.92米,并且滑口相对,用6*6cm角架制成长5米宽1.2米框架,将其安装到滑道底面再用棚布蒙其上使之成为滑道上的挡风板,见图9abc。根据地区风力情况设置挡风板大小,强风地区可以不设挡风板);
3、用20*10cm长6m扁钢管制成长6m宽4.8m的矩形框,将两根长3.8m相同规格扁钢管中间部位与矩形框两个短边中间部位焊接,并且使之与矩形框两短边构成十字形,将此框架立起,使其一十字端贴于地面另一十字端则被举到6米高的框架顶部,而焊在矩形框上的两根扁钢管即是能安装垂直轴的上下横梁,取12*16cm长20cm中间带有3cm圆孔的扁钢两块,将其中一块的圆孔与支架上横梁一端的下面圆孔对齐进行焊接,将另一块与下横梁另一端上面圆孔对齐进行焊接,两块扁钢作用是使垂直轴上的滑道能上下错开以缩小支架空间来减少占地和节约原料,此时的框架即是本实施例中的风力机支架(见图10abc);
4、将两个内径3cm轴承安装到上方两个圆孔上,将两个承重轴承安装到下方两个圆孔上,用四个直径3cm罗栓将带滑道和挡风板的两个垂直轴安装到支架的上下横梁两端圆孔上(见图11abc);
5、用8*8cm方钢管焊接成两个5.3*3m矩形框,用同样大小的两块棚布绷紧固定到矩形框上,此蒙上棚布的矩形框即是本实施例的支架引风板,用四个20*8cm合页将两个引风板安装到风力机支架前立柱上,并且使上下留出与风力机滑道相应的空隙,在两个引风板上下边框上用弹簧相连,并且要使两个引风板后边框紧挨两垂直轴,在支架引风板上下边缘安装挡风板,以进一步挡引支架前方的风向支架两侧流动,见图12abc。另外,支架引风板背后安装弹簧可使其在风力超过限度时自动向支架中心回缩而加大引风板与垂直轴缝隙,使多余风能从该缝隙中泄出,也可以在引风板和风叶上设置其他方式的泄风机关;
6、取6*6cm长2m槽钢两根,将两者一端置于支架中心另一端焊到支架后立柱中间两侧,取6*6*12cm长2m槽钢一根,将其中间部位担到两根槽钢在支架中心一端之上进行焊接,取6*6*12cm长3m槽钢一根,将其中间部位与后柱和两槽钢连接处进行焊接,在后立柱上完成的上述槽钢的焊接即是拦叶弧条的支架(见图13);
7、取厚1.5cm宽20cm长4.5m钢板条两根,将二者煨成弧口长3m圆弧形,此两根弧形钢板条即是本实施例的拦叶弧条(见图14),
8、取直径2cm长4.5m铁管两根,将其煨成与拦叶弧条一样弧度的圆弧形铁管,将两铁管弧口朝外并且一头在垂直轴附近另一头在滑道外围焊接到两根3m长槽钢两端,将拦叶弧条点焊到弧形铁管上,至此,拦叶弧条已经安装到了支架上;用3*3*6cm角架制成2个长5.5m宽3m矩形框,用同样大小的2块轻质棚布绷到2个角架框上,此时蒙上绷布的角架框即是本实施例的风叶。在风叶与拦叶弧条接触部位安装滚弧轮,在每个风叶的上下边两端各安装一个滑轮,调整好滑轮与滑道端口接触点后将两个风叶分别从风力机支架侧面镶入两个垂直轴上下滑道中间,封闭滑道口使风叶不能滑出滑道(见图15);
9、在两个垂直轴的下方各安装一个支地轮,在两个支地轮的斜前方与支架下框的某一汇集点,安装一个地轴,此时两个支地轮在支架上风叶和拦叶弧条等带动下总是随风向围绕地轴移动,垂直轴则随两支地轮总是处在风力机支架的下风口,而拦叶弧条则又总是处在垂直轴的下风口,当有一定风力时,风叶就会受风后旋而将其侧边滚弧轮带入拦叶弧条中滚动,使其由下风口(垂直轴一侧)被顶到上风口(垂直轴另一侧),而当风叶又处于下风口时,则其另一滚弧轮又被带入拦叶弧条,使其又被顶回到上风口,如此反复不断,而使垂直轴不间断转动(见图16);
10、在两垂直轴上端或下端各安装一个锥型齿轮,在两垂直轴中间制作一个能与两个垂直轴上锥齿轮相咬合的连动杆,以使两垂直轴同步反向旋转。
至此本发明实施例已基本阐述完。为了清楚阐述实施例内容,稳固本风力机支架的现有技术未例入本说明中,本实施例中的某些现有技术也未作图示。
实施例三 电机驱动式一架双轴风力机
1、本实施例的风力机基本支架与实施例二相同(参见实施例二1、2、3、4、5说明及其图示);
2、用3*3*6cm丁字角架制成2个长5.5m宽3m矩形框,取长5.5m宽3m轻质棚布2块,将其绷紧固定到2个矩形框上,此时蒙上绷布的矩形框即是本实施例的风叶,取长3.1m轻质耐磨齿条两根,将其分别安装在每个风叶长框中间,并且将一端探出风叶10cm,见图17;
3、在每个风叶的上下边上各安装两个滑轮,调整好上下滑轮与上下滑道距离后,将上下两端滑轮分别从风力机支架侧面镶入两个垂直轴上下滑道中,封闭滑道口使风叶不能滑出滑道,在风叶上轻质齿条与垂直轴交汇处的垂直轴傍,安装一个500w前端齿轮与风叶齿条相咬合的电机,将电机输电线端延垂直轴向上至其顶端,并且分成方向相反的两个输电线路安装在其顶端两侧,(见图18ab);
4、在风力机底框前端安装地轴,在两个垂直轴前端安装支地轮,将外输入电线由地轴引到风力机支架前立柱(若用本发明发电则可直接从发电机上获取电能),并且延着支架框延伸到垂直轴上端,并且要使之实现当垂直轴上风叶旋转到下风口某一点时,其即与电机在垂直轴上一电路接通,使电机驱动齿条将风叶移动到上风口,而当风叶再次反回下风口时,则电机的另一个相反电路被接通,使电机反转而将风叶再次推回到上风口,电机如此不断的正反交替转动而使风叶不断的从垂直轴下风口移动到上风口而带动垂直轴不间断的转动,见图19。
到此,本实施例已经基本阐述完。为了清楚阐述发明内容,本实施例中的一些现有技术未例入说明中,有些现有技术说明也未作图示。
实施例四 横轴式风力机
1、用16*16cm方钢管制成一个长8米宽3米的横轴风力机矩形底框,用相同规格方钢管制作两个高6.5米开口宽3米的三角形框,将两框开口朝下分别垂直焊到矩形底框两端向内一米的边框上,使之成为高6.5米内空间宽度6米的横轴风力机支架,取相同规格3米长方钢管四根,将其分别一端顶在三角形框上另一端顶到底框短边上焊牢,以稳固风力机支架(见图20);
2、用长6米16*8cm扁钢管和16*14*8cm中间带有5cm丝扣孔的两块方钢制成一个30*16cm长6米中间带有5.84米长0.14米宽缝隙的风力机横轴,用16*8*8cm槽钢和6*8cm角钢制成两个长12米8*16cm的滑道,将两个滑道插入垂直轴缝隙并且将其底座中间焊到缝隙两端,此时,滑道从垂直轴上下两端各向两侧伸出5.85米,用15*15cm角架制成长8米宽2米矩形框,在其上蒙上棚布再安装到滑道底座中部使之成为滑道挡风板,见图21;
3、在两个三角形支架的顶尖上安装内径5cm轴承,用5cm螺栓将带有滑道的横轴安装到支架上(见图22);
4、用8*8cm方钢管制成一个长6.6米宽5.5米矩形框,将四根相同规格长1米方钢管分别垂直焊到矩形框的四个角上,取6.6米长相同规格方钢管两根,将两管分别焊到矩形框长边1米长垂直钢管上,此框架即是本实施例的引风板及其两侧挡风板框,用两个20*5cm合页将引风板框架短边与支架底矩形框前横边相连,取相同规格5米长的方钢管两根,用其一端支顶在引风板框的两个长边上,将其另一端支顶到支架底座的后框上,将引风板框短边顶起贴近垂直轴后焊接两个方钢管接触点,用棚布蒙到引风板框及其两侧挡风板框上,到此,风力机的引风板及其挡风板已经安装到了风力机支架前方(见图23ab);
5、取长5米10*10cm方钢管四根,将其中两根紧贴挡风板两个后支撑杆直立到支架底座后框上焊牢,将另两个方钢管一端顶到两个后支撑杆的中间并且与之呈90度角焊牢,再将两管与垂直的两管交叉处焊牢,使此两斜钢管和前述两垂直钢管成为两个拦叶弧条的支架,取厚2cm宽30cm长9米板条两条,将两条板两边各煨出5cm直角沿后,再将其煨弯成开口6米的拦叶弧条,将拦叶弧条开口朝上焊接到其支架上(见图24);
6、用5*5*10cm丁字角架和棚布制成长6米宽5.5米风叶,在风叶两个长边两侧,各安装三个直径13cm滑轮,将风叶两侧滑轮分别镶入风机轴上下滑道上,此时风叶已经被安装到了风轴一侧,将风叶一短边推过垂直轴后再在两短边框外沿与拦叶弧条中线相对的位置上各安装一个直径16cm滚弧轮(见图25)。另外,也可以在风力机支架后方中间位置安装一个拦叶弧条,在风叶前后两短边中间位置各安装滚弧轮,以单一拦叶弧条来使风机实现旋转。
7、在风力机底框的四个角上各安装一个支地轮,在底框的前框中间安装一个地轴,使四个支地轮能随风绕地轴移动而使风力机总是对着风向(见图26)。
因为发明内容中的横垂轴组合式风力机的组合和安装方式属于现有技述,而且又多种多样,故对此种风力机只做出了附图而未做实施例。
另外,为了便于理解本发明内函,在附图中还多例出了几个未做实施例的单个附图供审查部门参考,如图27、28、29、30、31和32等等。
还有很多利用现有技术来实现本发明的实施方式,例如:利用线性电机来驱动风叶;利用磁悬浮来驱动风叶;利用电控技术来启动风力机;利用电控技术来控制风叶移动速度;利用电控技术来控制风机转速;利用电控技术来调整迎风角度;利用电控技术来控制泄风机关等等。本发明精髓是利用可移动风叶的避让,将引风板深入到风力机中心而实现对无功风的利用。这一重要设计使已经挡满有功区而实现高效获取风能的本风力机风叶又额外得到了一 股风能,使之进一步提高了动力。而因为本发明借助上述有力措施,使之获风能力远远高于现在的所有风力机,使之除了能应用于强风地域以外,还可以广泛应用于低空发电和微风发电领域,进而极大的拓宽了风力发电应用区域。

Claims (1)

  1. 这种能引用无功风的风力机的特征是:风力机风叶在随风轴旋转的同时又能在风轴两侧做穿梭式移动,使风叶能够改变其原来的旋转轨迹而让出风力机的无功区,在无功区内安装使无功区的风吹向有功区的引风装置。
PCT/CN2016/000671 2016-01-05 2016-12-05 能引用无功风的风力机 WO2017117698A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680002666.8A CN109874297A (zh) 2016-01-05 2016-12-05 能引用无功风的风力机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610004200.3A CN106939874A (zh) 2016-01-05 2016-01-05 能引用无功风的风力机
CN201610004200.3 2016-01-05

Publications (1)

Publication Number Publication Date
WO2017117698A1 true WO2017117698A1 (zh) 2017-07-13

Family

ID=59273070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000671 WO2017117698A1 (zh) 2016-01-05 2016-12-05 能引用无功风的风力机

Country Status (2)

Country Link
CN (2) CN106939874A (zh)
WO (1) WO2017117698A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112128056A (zh) * 2020-08-27 2020-12-25 浙江德宝通讯科技股份有限公司 一种多功能通信塔

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509463A (zh) * 2008-03-30 2009-08-19 宁文礼 门框式水(风)轮机
US7633178B1 (en) * 2008-11-28 2009-12-15 Wayne Embree Fluid driven energy generator
CN101865086A (zh) * 2010-05-28 2010-10-20 阎波 拉门式垂直轴风力发电机
CN101871421A (zh) * 2008-02-29 2010-10-27 合和风电有限公司 用于风轮机的导风装置以及结合该导风装置的风轮机
CN102734070A (zh) * 2011-04-11 2012-10-17 阎波 一种新型旋转装置
CN202531352U (zh) * 2012-03-06 2012-11-14 中国农业大学 一种导流型垂直轴风力机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007017707U1 (de) * 2007-12-19 2008-04-30 Steinhauser, Georg Windkraft-Energieroller
CN102678469A (zh) * 2012-05-30 2012-09-19 中国农业大学 一种导流型垂直轴风力机
GB201307778D0 (en) * 2013-04-30 2013-06-12 Romax Technology Ltd Vertical wind turbine with constant speed

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871421A (zh) * 2008-02-29 2010-10-27 合和风电有限公司 用于风轮机的导风装置以及结合该导风装置的风轮机
CN101509463A (zh) * 2008-03-30 2009-08-19 宁文礼 门框式水(风)轮机
US7633178B1 (en) * 2008-11-28 2009-12-15 Wayne Embree Fluid driven energy generator
CN101865086A (zh) * 2010-05-28 2010-10-20 阎波 拉门式垂直轴风力发电机
CN102734070A (zh) * 2011-04-11 2012-10-17 阎波 一种新型旋转装置
CN202531352U (zh) * 2012-03-06 2012-11-14 中国农业大学 一种导流型垂直轴风力机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112128056A (zh) * 2020-08-27 2020-12-25 浙江德宝通讯科技股份有限公司 一种多功能通信塔
CN112128056B (zh) * 2020-08-27 2021-07-13 浙江德宝通讯科技股份有限公司 一种多功能通信塔

Also Published As

Publication number Publication date
CN106939874A (zh) 2017-07-11
CN109874297A (zh) 2019-06-11

Similar Documents

Publication Publication Date Title
CN203771647U (zh) 风管机及其导风结构
CN107302340A (zh) 一种双轴柔性光伏跟踪支架
WO2010030895A2 (en) Wind turbine
CN106452304A (zh) 一种应用于建筑屋顶的光伏板
CA2784490A1 (en) Energy generation system and related methods
WO2017117698A1 (zh) 能引用无功风的风力机
CN106921340A (zh) 能风力发电的光伏板阵
CN208088090U (zh) 一种园林绿化用石灰划线车
CN110360049A (zh) 一种水平轴风力发电机
CN101498279A (zh) 圆轨风力发电装置
CN212115219U (zh) 一种绿色建筑用太阳能板安装架
CN106593763A (zh) 垂直轴上下摆动风叶发电装置
DE102006032004A1 (de) Windrotor mit 3 Rotorblättern und vertikaler Rotorachse
WO2017020058A1 (de) Solarkraftwerk zur umwandlung von sonnenenergie in nutzbare energie
CN101865086B (zh) 拉门式垂直轴风力发电机
CN106351794A (zh) 高空风能综合利用工程构想
CN205638797U (zh) 一种风力发电装置
CN203745913U (zh) 一种屋顶单轴联动跟踪太阳能发电装置
CN205064187U (zh) 一种具有挡风机构的风力发电装置
CN206624119U (zh) 一种土木工程用管道放置架
CN104696164A (zh) 高效率风力发电机组
CN204493084U (zh) 拢风滚动式风力发电机
CN206072677U (zh) 太阳追踪器移动支架装置
CN210089445U (zh) 一种火电厂冷却塔挡风板结构
CN220954279U (zh) 一种仿古建筑的屋顶结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882845

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882845

Country of ref document: EP

Kind code of ref document: A1