WO2017115987A1 - Hard coating for cutting tool - Google Patents

Hard coating for cutting tool Download PDF

Info

Publication number
WO2017115987A1
WO2017115987A1 PCT/KR2016/011779 KR2016011779W WO2017115987A1 WO 2017115987 A1 WO2017115987 A1 WO 2017115987A1 KR 2016011779 W KR2016011779 W KR 2016011779W WO 2017115987 A1 WO2017115987 A1 WO 2017115987A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hkl
mpa
thickness
tic
Prior art date
Application number
PCT/KR2016/011779
Other languages
French (fr)
Korean (ko)
Inventor
이동열
안진우
강재훈
김정욱
조성우
이성구
Original Assignee
한국야금 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국야금 주식회사 filed Critical 한국야금 주식회사
Publication of WO2017115987A1 publication Critical patent/WO2017115987A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Abstract

The present invention relates to a hard coating, which is formed on a base material made of a cemented carbide for a cutting tool, comprises a TiCN layer and an α-Al2O3 thin film first grown in the (006) plane, and has excellent thin film peeling resistance against the impact occurring at the time of cutting processing, thereby greatly improving the lifetime of the cutting tool. The hard coating according to the present invention is formed with a thickness of 5-30 ㎛ on a base material comprising 7-15 wt% of Co, 0-5 wt% of a carbide or a carbonitride containing a Group 4, 5, or 6 element, and the balance WC and inevitable impurities. The hard coating comprises: a TiCxNyOz (x+y+z=1, x>0, y>0, z≥0) layer, which is formed on the base material, has a thickness of 2-15 ㎛ and a residual stress of 0-400 MPa, and is formed of columnar crystals; a Al1-aTiaCxNyOz (a≥0, x+y+z=1, x>0, y>0, z≥0) layer, which is formed on the TiCxNyOz (x+y+z=1, x>0, y>0, z≥0) layer and has a thickness of 1-2 ㎛; and an alpha-phase alumina layer, which is formed on the Al1-aTiaCxNyOz (a≥0, x+y+z=1, x>0, y>0, z≥0) layer and has a thickness of 1-10 ㎛ and a residual stress of -1,000 to -50 MPa, wherein the residual stress difference (ΔS) between the TiCxNyOz (x+y+z=1, x>0, y>0, z≥0) layer and the alpha-phase alumina layer is 500 MPa or less and the TC(006) of the alpha-phase alumina layer is greater than 1.4.

Description

절삭공구용 경질피막 Hard film for cutting tools
본 발명은 절삭공구용 모재 상에 형성되는 경질피막에 관한 것으로, 보다 구체적으로 초경합금으로 이루어진 절삭공구용 모재 상에 화학기상증착법(이하, 'CVD'라 함)으로 형성되며 TiCN층과 (006)면으로 우선성장시킨 α-Al2O3 박막을 포함하고, 절삭가공 시 발생하는 충격에 대한 박막의 내박리성이 우수하여 절삭공구의 수명을 크게 향상시킬 수 있는 경질피막에 관한 것이다.The present invention relates to a hard coating formed on a base material for cutting tools, and more particularly, is formed by a chemical vapor deposition method (hereinafter referred to as 'CVD') on the base material for cutting tools made of cemented carbide, and the TiCN layer (006). Α-Al 2 O 3 first grown with cotton The present invention relates to a hard coating including a thin film and excellent in peeling resistance of the thin film against impact generated during cutting, thereby greatly improving the life of the cutting tool.
일반적으로 절삭공구로 사용되는 초경합금은 마모 저항성을 높이기 위해 그 표면에 경질피막층을 형성한 후 사용되는데, 이 경질피막은 CVD법 또는 물리기상증착법(이하, 'PVD법'이라 함)을 통해 형성된다.In general, cemented carbide is used as a cutting tool after forming a hard coating layer on its surface to increase abrasion resistance. The hard coating is formed by a CVD method or a physical vapor deposition method (hereinafter referred to as a 'PVD method'). .
한편, 절삭공구의 인선은 고경도 재료의 고속가공 시, 약 1000℃의 고온환경에 노출되고, 가공물과의 접촉으로 인한 마찰과 산화로 마모가 발생할 뿐 아니라, 단속과 같은 기계적 충격도 받게 된다. 그러므로 절삭공구는 적절한 내산화성, 내마모성 및 내치핑성과 같은 특성이 요구된다.On the other hand, the cutting edge of the cutting tool is exposed to a high temperature environment of about 1000 ℃ during high-speed processing of hard materials, not only wear and tear due to friction and oxidation due to contact with the workpiece, but also subjected to mechanical shock such as interruption. Therefore, cutting tools require properties such as proper oxidation resistance, wear resistance and chipping resistance.
이를 위해, 절삭공구용 경질피막은 일반적으로 단층 또는 다층의 비산화물계 박막이나, 우수한 내산화성을 갖는 산화물계 박막 또는 이들의 혼합층으로 구성되며, 상기 비산화물계 박막의 예로는 TiN, TiC, TiCN 등과 같은 주기율표상 4족, 5족, 6족 금속원소의 탄화물, 질화물, 탄질화물이 있고, 산화물계 박막의 예로는 대표적으로 α-Al2O3가 있다.To this end, the hard film for cutting tools is generally composed of a single layer or a multi-layered non-oxide thin film, an oxide-based thin film having excellent oxidation resistance or a mixed layer thereof. Examples of the non-oxide thin film include TiN, TiC, TiCN. Carbide, nitride, carbonitride of Group 4, 5 and 6 metal elements on the periodic table such as, and the like is an example of the oxide-based thin film is α-Al 2 O 3 .
이중, α-Al2O3는 고온에서 안정한 상(Phase)이기 때문에 절삭가공 중에 상 변태가 발생하지 않고 우수한 내마모성을 발휘하기 때문에 절삭공구용 피막에 많이 사용되고 있는 물질이다.Of these, α-Al 2 O 3 is a material that is widely used in cutting tool coatings because it is a phase stable at high temperatures and thus does not generate phase transformation during cutting and exhibits excellent wear resistance.
이러한 α-Al2O3의 내마모성에 큰 영향을 끼치는 인자는 α-Al2O3 결정립의 크기와 α-Al2O3 결정립의 이방성(anisotropy)으로 알려져 있다. 그리고 α-Al2O3 결정립의 이방성(anisotropy)을 제어하는 것과 관련하여, (110)면, (012)면, (104)면, (006)면 등으로 우선성장시키는 방법이 알려져 있다.Factor influences the wear resistance of such α-Al 2 O 3 is known as anisotropy (anisotropy) of the α-Al 2 O 3 grain size and the α-Al 2 O 3 grains of. In connection with controlling the anisotropy of the α-Al 2 O 3 grains, a method of preferentially growing the (110) plane, the (012) plane, the (104) plane, the (006) plane, or the like is known.
이중, (006)면으로 우선성장시킨 α-Al2O3 박막의 경우, α-Al2O3의 연성파괴를 억제하고 내소성변형성을 향상시켜, 강(steel)의 절삭 가공 시 인서트의 상면 마모(crater wear, KT wear)가 줄어들고 공구수명이 대폭 향상될 수 있어, 최근 절삭공구에 널리 적용되고 있다.Of these, α-Al 2 O 3 preferentially grown to (006) plane. In the case of thin films, it suppresses the ductile breakdown of α-Al 2 O 3 and improves plastic resistance deformation, thereby reducing the insert wear and K T wear of the insert during cutting of steel and greatly improving the tool life. In recent years, it is widely applied to cutting tools.
그러나 경질피막이 형성되는 모재와 절삭공구의 용도 등에 따라 절삭공구용 경질피막을 구성하는 각 박막의 형태가 상이하게 되며, 이에 따라 (006)면으로 우선성장시킨 α-Al2O3 박막을 적용하더라도, 절삭공구의 수명을 향상시키기 위해서는 모재, 다른 박막과의 상태를 보다 적합화할 필요가 있다.However, the shape of each thin film constituting the hard coating film for the cutting tool differs depending on the base material and the cutting tool used for forming the hard coating, and thus, α-Al 2 O 3 preferentially grown to the (006) plane. Even if a thin film is applied, it is necessary to further adapt the state of the base material and other thin films in order to improve the life of the cutting tool.
이와 관련하여, 특허문헌 1(미국공개특허공보 제2011-0045283호)에는 블라스팅과 같은 후처리를 통해 경질피막에 압축 잔류응력을 부여함으로써, 절삭공구의 수명을 향상시키는 기술이 개시되어 있으나, 이 기술을 (006)면으로 우선성장시킨 α-Al2O3 박막을 포함하는 절삭공구용 경질피막에 그대로 적용할 경우, 수명향상의 개선이 충분하지 않은 측면이 있다.In this regard, Patent Document 1 (US Patent Publication No. 2011-0045283) discloses a technique for improving the life of a cutting tool by applying a compressive residual stress to a hard film through post-treatment such as blasting. Α-Al 2 O 3 First Grows Technology to (006) Plane When applied to a hard film for cutting tools including a thin film as it is, there is a side that the improvement in life improvement is not enough.
본 발명은 절삭가공 시 발생하는 충격에 대해 절삭공구에 형성된 경질피막의 박리를 억제함으로써, 종래에 비해 절삭공구의 수명을 향상시킬 수 있는 절삭공구용 경질피막을 제공하는 것을 해결하고자 하는 과제로 한다.The present invention aims to solve the problem of providing a hard film for a cutting tool that can improve the life of the cutting tool compared to the conventional one by suppressing the peeling of the hard film formed on the cutting tool against the impact generated during cutting. .
본 발명은 상기 과제를 해결하기 위한 것으로, Co 7~15중량%와, 4족, 5족 또는 6족의 원소를 포함하는 탄화물 또는 탄질화물 0~5중량%와, 나머지 WC 및 불가피한 불순물을 포함하는 모재 상에 형성되는 두께 5~30㎛의 경질피막으로, 상기 경질피막은, 상기 모재 위에 형성되며, 두께가 2~15㎛이고, 잔류응력이 0~400MPa이며, 주상정으로 형성된 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층과, 상기 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층 상에 형성되며, 두께가 1~2㎛인 Al1 -aTiaCxNyOz(a≥0, x+y+z=1, x>0, y>0, z≥0)층과, 상기 Al1 - aTiaCxNyOz(a≥0, x+y+z=1, x>0, y>0, z≥0)층 상에 형성되며, 두께가 1~10㎛이고, 잔류응력이 -1,000MPa ~ -50MPa인 알파상의 알루미나층을 포함하고, 상기 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층과 알파상의 알루미나층 간의 잔류응력차(ΔS)는 500MPa 이하이고, 상기 알파상의 알루미나는, 하기 [식 1]에 의해 산출되는 TC(006)이 1.4 초과인 것을 특징으로 하는, 절삭공구용 경질피막을 제공한다.The present invention is to solve the above problems, Co 7 ~ 15% by weight, Carbide or carbonitrides 0 to 5% by weight containing elements of Group 4, Group 5 or 6, and the remaining WC and inevitable impurities the hard coating having a thickness of 5 ~ 30㎛ formed on a base material, wherein the hard coating is formed on the base material, and a thickness of 2 ~ 15㎛, a residual stress is 0 ~ 400MPa, TiC x N formed in a columnar y O z (x + y + z = 1, x> 0, y> 0, z≥0) layer and the TiC x N y O z (x + y + z = 1, x> 0, y> 0 , z≥0) formed on the layer and having a thickness of 1 to 2 μm, Al 1 -a Ti a C x N y O z (a≥0, x + y + z = 1, x> 0, y> 0 , z≥0) and the Al 1 - a Ti a C x N y O z (a≥0, x + y + z = 1, x> 0, y> 0, z≥0) layer And an alpha phase alumina layer having a thickness of 1 to 10 µm and a residual stress of -1,000 MPa to -50 MPa, wherein TiC x N y O z (x + y + z = 1, x> 0, y> The residual stress difference (ΔS) between 0, z≥0) layer and alpha phase alumina layer is 500 MPa or less, Provides a hard coating film for the cutting tool, characterized in that TC (006) is greater than 1.4, calculated by the group on the alpha-alumina, the following [Expression 1].
[식 1][Equation 1]
TC(hkl) = I(hkl)/Io(hkl){1/n∑I(hkl)/Io(hkl)}-1 TC (hkl) = I (hkl ) / Io (hkl) {1 / nΣI (hkl) / Io (hkl)} -1
(여기서, I(hkl) = (hkl) 반사강도, Io(hkl) = JCPDS 카드 46-1212에 따른 표준 강도, n= 계산에 사용된 반사의 횟수, (hkl) 반사는 (012), (104), (110), (006), (113) 및 (116)을 사용하는 것)Where I (hkl) = (hkl) reflectivity, Io (hkl) = standard intensity according to JCPDS card 46-1212, n = number of reflections used in the calculation, (hkl) reflections are (012), (104 ), Using (110), (006), (113) and (116))
본 발명은 밀링 가공용 인써트 모재의 표면에 형성되는 경질피막 중, 알루미나층의 잔류응력이 압축응력 상태가 되도록 하고, 알루미나층과 TiCN층 간의 응력차가 500MPa 이하가 되도록 하며, 알루미나의 TC(006)이 1.4 초과가 되도록 함으로써, 종래의 절삭공구에 비해 절삭공구 수명을 현저하게 향상시키는 효과를 얻을 수 있다.In the present invention, in the hard coating formed on the surface of the insert base material for milling, the residual stress of the alumina layer is in the compressive stress state, the stress difference between the alumina layer and the TiCN layer is 500 MPa or less, and TC (006) of the alumina is By making it exceed 1.4, the effect which remarkably improves cutting tool life compared with the conventional cutting tool can be acquired.
이하, 첨부 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 그러나 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention illustrated below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
본 발명자들은 (006)면으로 우선성장된 알파상의 알루미나층을 포함하는 경질피막으로 밀링용 절삭가공 인써트에 적용되었을 때, 절삭가공 시 발생하는 충격에 대한 경질피막의 박리를 억제할 수 있는 것에 대해 연구한 결과, Co의 함량이 7~15중량% 포함되는 밀링용 초경합금 모재의 열팽창계수가 약 6.0~6.5×10-6/K이고, HCP 결정구조를 갖는 알루미나의 c축의 열팽창계수가 약 7.0×10-6/K 정도이며, TiN의 열팽창계수가 약 9.35×10-6/K이고, TiC의 열팽창계수가 약 7.4×10-6/K 정도인 점을 고려하여, 모재와 경질피막을 구성하는 각 박막간의 열팽창계수의 차이를 최소화하도록, 알루미나층은 (006) 방위로 우선성장한 것을 사용하고, 하부층으로 형성되는 TiCN층은 가능한 한 탄소가 리치(rich)한 층을 형성하며, 경질피막을 형성하는 (006)면으로 우선성장된 알파상의 알루미나층의 잔류응력 상태를 압축응력 상태로 유지하며 TiCN층과 알파상의 알루미나층 간의 응력차를 제어할 경우, 외부 충격에 의한 경질피막을 구성하는 박막 사이 또는 모재와 박막 사이의 박리를 줄이고 박막 내부에서의 파괴를 억제하여, 종래에 비해 향상된 수명을 얻을 수 있음을 밝혀내고 본 발명에 이르게 되었다.MEANS TO SOLVE THE PROBLEM The present inventors can suppress the peeling of a hard film with respect to the impact which arises at the time of cutting when it is applied to the cutting insert for milling with the hard film containing the alpha-phase alumina layer which was first grown to the (006) plane. As a result, the coefficient of thermal expansion of the cemented carbide base material for milling containing 7 to 15% by weight of Co is about 6.0 to 6.5 × 10 -6 / K, and the coefficient of thermal expansion of the c-axis of alumina having HCP crystal structure is about 7.0 × 10, and the -6 / degree K, and the thermal expansion coefficient of TiN about 9.35 × 10 -6 / K, and the thermal expansion coefficient of the TiC consider about 7.4 × 10 -6 / K around a point, constituting the base material and the hard coating In order to minimize the difference in coefficient of thermal expansion between the thin films, the alumina layer is grown first in the (006) orientation, and the TiCN layer formed as the lower layer forms a carbon-rich layer as much as possible, and forms a hard film. Alpha phase grown preferentially to (006) plane When the residual stress state of the alumina layer is maintained in the compressive stress state and the stress difference between the TiCN layer and the alpha phase alumina layer is controlled, the peeling between the thin films or the base material and the thin film constituting the hard coating by external impact is reduced, The present invention has been found to suppress the breakdown at and to obtain an improved service life compared to the prior art.
본 발명에 따른 경질피막은, Co 7~15중량%와, 4족, 5족 또는 6족의 원소를 포함하는 탄화물 또는 탄질화물 0~5중량%와, 나머지 WC 및 불가피한 불순물을 포함하는 모재 상에 형성되는 것으로 그 두께가 5~30㎛이고, 상기 모재 위에 형성되며, 두께가 2~15㎛이고, 잔류응력이 0~400MPa이며, 주상정으로 형성된 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층과, 상기 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층 상에 형성되며, 두께가 1~2㎛인 Al1 - aTiaCxNyOz(a≥0, x+y+z=1, x>0, y>0, z≥0)층과, 상기 Al1 - aTiaCxNyOz(a≥0, x+y+z=1, x>0, y>0, z≥0)층 상에 형성되며, 두께가 1~10㎛이고, 잔류응력이 -1,000MPa ~ -50MPa인 알파상의 알루미나층을 포함하고, 상기 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층과 알파상의 알루미나층 간의 잔류응력차(ΔS)는 500MPa 이하이고, 상기 알파상의 알루미나는, 하기 [식 1]에 의해 산출되는 TC(006)이 1.4 초과인 것을 특징으로 한다.The hard coating according to the present invention comprises a base material phase comprising Co 7 to 15 wt%, carbides or carbonitrides containing elements of Group 4, 5 or 6 and 0 to 5 wt%, and the remaining WC and unavoidable impurities. It is formed in the thickness of 5 ~ 30㎛, is formed on the base material, the thickness is 2 ~ 15㎛, the residual stress is 0 ~ 400MPa, TiC x N y O z (x + y + formed in columnar top in the z = 1, x> 0, y> 0, z≥0) layer and the TiC x N y O z (x + y + z = 1, x> 0, y> 0, z≥0) layer Formed, and having an Al 1 - a Ti a C x N y O z (a≥0, x + y + z = 1, x> 0, y> 0, z≥0) layer having a thickness of 1 to 2 µm, It is formed on the Al 1 - a Ti a C x N y O z (a≥0, x + y + z = 1, x> 0, y> 0, z≥0) layer, the thickness is 1 ~ 10㎛ And an alpha phase alumina layer having a residual stress of -1,000 MPa to -50 MPa, wherein the TiC x N y O z (x + y + z = 1, x> 0, y> 0, z≥0) layer and The residual stress difference (ΔS) between the alumina layers of the alpha phase is 500 MPa or less, and the alumina of the alpha phase is 1 characterized in that TC (006) is greater than 1.4, calculated by the.
[식 1][Equation 1]
TC(hkl) = I(hkl)/Io(hkl){1/n∑I(hkl)/Io(hkl)}-1 TC (hkl) = I (hkl ) / Io (hkl) {1 / nΣI (hkl) / Io (hkl)} -1
(여기서, I(hkl) = (hkl) 반사강도, Io(hkl) = JCPDS 카드 46-1212에 따른 표준 강도, n= 계산에 사용된 반사의 횟수, (hkl) 반사는 (012), (104), (110), (006), (113) 및 (116)을 사용하는 것)Where I (hkl) = (hkl) reflectivity, Io (hkl) = standard intensity according to JCPDS card 46-1212, n = number of reflections used in the calculation, (hkl) reflections are (012), (104 ), Using (110), (006), (113) and (116))
상기 모재는, Co의 함량이 7중량% 미만일 경우 취성이 증가하고, 15중량% 초과일 경우 내마모성이 감소하므로, 7~15중량% 범위로 첨가되는 것이 바람직하다.The base material is brittle increases when the content of Co is less than 7% by weight, wear resistance is reduced when the content of more than 15% by weight, it is preferable to add in the range of 7 to 15% by weight.
상기 4족, 5족 또는 6족의 원소를 포함하는 탄화물 또는 탄질화물은 그 함량이 5중량%를 초과할 경우 반복적인 열충격에 의한 열 크랙 발생이 증가하므로, 5중량% 이하로 첨가되는 것이 바람직하다.Carbide or carbonitride containing the elements of the Group 4, 5 or 6 group is more than 5% by weight since the occurrence of thermal cracks due to repeated thermal shock increases when the content exceeds 5% by weight, Do.
상기 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층과, 상기 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층은, 두께가 2㎛ 미만일 경우 기계적 마모 향상이 미미하고, 15㎛ 초과일 경우 박막의 취성이 증가하므로, 2~15㎛의 두께를 갖는 것이 바람직하고, 그 잔류응력은 압축응력이 바람직하나 압축응력 상태로 할 경우 상부에 위치하는 알루미나층 간의 잔류응력차가 500MPa 이하가 되도록 유지하기 어렵거나 알루미나층의 손상이 커지기 때문에 0MPa 이상이 바람직하고, 400MPa 초과의 인장응력 상태일 경우, 외부의 충격에 의해 쉽게 박막 손산이 발생하므로, 0~400MPa의 범위가 바람직하다.The TiC x N y O z (x + y + z = 1, x> 0, y> 0, z≥0) layer and the TiC x N y O z (x + y + z = 1, x> 0 , y > 0, z > 0) layer has a slight improvement in mechanical wear when the thickness is less than 2 mu m, and the brittleness of the thin film increases when the thickness is more than 15 mu m, so that the thickness is preferably 2 to 15 mu m. The residual stress is preferably a compressive stress, but when it is in a compressive stress state, it is difficult to maintain the residual stress difference between the alumina layers located above 500 MPa or less, or because the damage of the alumina layer becomes large, a tensile stress of more than 400 MPa is preferable. In the state, since the thin film loss easily occurs due to external impact, the range of 0 to 400 MPa is preferable.
또한, TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층에 있어서, x는 0.5 이하일 경우 모재와의 열팽창계수의 차이가 커져 바람직하지 않고, 0.9 초과일 경우 고온 산화분위기에서 쉽게 박막이 산화되므로, 0.5 초과 0.9 이하의 범위로 유지되는 것이 바람직하고, x는 0.6 이상인 것이 보다 바람직하다.Further, in the TiC x N y O z (x + y + z = 1, x> 0, y> 0, z≥0) layer, when x is 0.5 or less, the difference in thermal expansion coefficient with the base material becomes large, which is not preferable. , If it is more than 0.9, since the thin film is easily oxidized in a high temperature oxidation atmosphere, it is preferable to maintain the range of more than 0.5 and 0.9 or less, and x is more preferably 0.6 or more.
또한, 상기 Al1 - aTiaCxNyOz(a≥0, x+y+z=1, x>0, y>0, z≥0)층은, 그 두께가 1㎛ 미만일 경우 상부층과 하부층을 연결하는 기능을 못하고, 2㎛ 초과일 경우 취성이 강하여 쉽게 균열이 생성되므로, 1~2㎛ 범위가 바람직하다.The Al 1 - a Ti a C x N y O z (a≥0, x + y + z = 1, x> 0, y> 0, z≥0) layer has a thickness of less than 1 µm. If the upper layer and the lower layer does not function, and if it exceeds 2㎛ brittle strong and easily cracks, 1 ~ 2㎛ range is preferred.
또한, 알파상의 알루미나층은 그 두께가 1㎛ 미만일 경우 내마모, 내산화 기능을 발휘하지 못하고, 10㎛ 초과일 경우 취성이 강한 세라믹 층이 되어 쉽게 손상되기 때문에, 1~10㎛ 범위가 바람직하다.In addition, since the alpha phase alumina layer does not exhibit abrasion resistance and oxidation resistance when the thickness is less than 1 μm, and becomes brittle strong ceramic layer when it exceeds 10 μm, the range of 1 to 10 μm is preferable. .
또한, 알파상의 알루미나층의 잔류응력은 압축응력 상태로 그 절대값이 50MPa 미만일 경우 박막 인성 증가의 기능을 하지 못하고, 압축응력 상태로 그 절대값이 1000MPa 초과일 경우 모서리부의 응력집중으로 인해 박리가 발생할 가능성이 높으므로, -1,000MPa ~ -50MPa의 범위를 유지하는 것이 바람직하다.In addition, the residual stress of the alumina layer in the alpha phase is in a compressive stress state, and when the absolute value is less than 50 MPa, the thin film toughness does not function. Since it is highly likely to occur, it is preferable to maintain the range of -1,000 MPa to -50 MPa.
또한, 알파상의 알루미나층은 (006)면으로 우선성장시켜, 상기 식 1로 산출한 TC(006)이 1.4초과인 것이 바람직하고, 3.0 초과인 것이 보다 바람직하며, 4.0 초과인 것이 가장 바람직하다.In addition, it is preferable that the alpha phase alumina layer is preferentially grown to the (006) plane, and the TC (006) calculated by the above formula (1) is more than 1.4, more preferably more than 3.0, and most preferably more than 4.0.
또한, 상기 알파상의 알루미나층과 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층 간의 잔류응력차(ΔS)는 500MPa 초과일 경우 층간의 응력 불균일로 인해 박리 발생 가능성이 증가하여, 500MPa 이하로 유지하는 것이 바람직하고, 400MPa 이하인 것이 보다 바람직하다.In addition, the residual stress difference (ΔS) between the alumina layer of the alpha phase and the TiC x N y O z (x + y + z = 1, x> 0, y> 0, z≥0) layer is greater than 500 MPa. The possibility of peeling increases due to stress nonuniformity, and it is preferable to maintain it at 500 MPa or less, and more preferably 400 MPa or less.
[실시예]EXAMPLE
본 발명의 실시예로 하기 표 1에 나타낸 조성을 갖는 초경합금 모재 상에, 표 1에 나타낸 구조를 갖는 경질피막을 형성하였다. 또한, 본 발명의 실시예와의 비교를 위하여 비교예 1~비교예 4에 따른 경질피막을 형성하였다.As an example of the present invention, a hard coating having a structure shown in Table 1 was formed on a cemented carbide base material having the composition shown in Table 1 below. In addition, the hard film according to Comparative Example 1 to Comparative Example 4 was formed for comparison with the embodiment of the present invention.
구체적으로, 초경합금 모재는 Co 10중량%, 탄화물로 TaC 1.5중량%와 나머지 WC로 이루어진 분말을 SPCN1203EDR(한국야금 형번)로 형압하고 소결한 후 상, 하면 연삭과 인선부 호닝처리를 하여 제조한 인써트를 사용하였다.Specifically, the cemented carbide base material is an insert prepared by pressing and sintering a powder composed of 10 wt% Co and 1.5 wt% of carbide with TaC and the remaining WC with SPCN1203EDR (Korean metallurgy model number), and then grinding the upper and lower surfaces and honing the edges. Was used.
또한, 상기 인써트의 표면에는 먼저 공정분압 60~80 mbar, 공정온도 750~900℃에서 TiCl4가스와 CH3CN과 N2와 H2와 C2H4, C2H6 등의 탄화수소 가스와 HCl 가스를 이용하여 화학증착반응(CVD)으로 주상정의 티타늄탄질화물(TiCN)층을 형성하였다. 이때 티타늄탄질화물(TiCxN1-x)층의 탄소함량은 (x≥0.6)으로 질소함량에 비해 높게 하여 탄소 리치(rich)한 상을 형성하였다.In addition, the surface of the insert is a hydrocarbon gas such as TiCl 4 gas, CH 3 CN, N 2 , H 2 , C 2 H 4 , C 2 H 6 , at a process partial pressure of 60 to 80 mbar and a process temperature of 750 to 900 ° C. Chemical vapor deposition (CVD) using HCl gas to form a columnar titanium carbon nitride (TiCN) layer. At this time, the carbon content of the titanium carbon nitride (TiC x N 1-x ) layer ( x ≧ 0.6) was higher than the nitrogen content to form a carbon rich phase.
다음으로, 상기 티타늄탄질화물층의 상부에 계면층으로, 공정분압 100~150 mbar, 공정온도 900~1010℃에서 TiCl4와 CO나 CO2, CH4, N2, H2 등의 가스를 이용하여 화학증착반응(CVD)으로 티타늄탄질산화물(TiCxNyOz, x+y+z=1, x>0, y>0, z>0)층을 형성하였다.Next, as the interfacial layer on the titanium carbonitride layer, using a gas such as TiCl 4 and CO or CO 2 , CH 4 , N 2 , H 2 at a process partial pressure of 100 ~ 150 mbar, a process temperature of 900 ~ 1010 ℃ Titanium carbonaceous oxide (TiC x N y O z , x + y + z = 1, x> 0, y> 0, z> 0) layer was formed by chemical vapor deposition (CVD).
그리고 상기 티타늄탄질산화물층 상에는, 공정분압 50~80 mbar, 공정온도 1000~1050℃에서 AlCl3의 가스와 CO2나 CO, HCl, H2S, H2 등의 가스를 이용하여, TC(006)이 3 초과가 되도록 우선방위를 가진 α-Al2O3 층을 형성하였다. (006)의 우선방위를 가진 α-Al2O3 층은 100~600ml 범위의 H2S 가스의 유량과 1~3L 범위의 HCl 가스의 유량의 제어를 통해 형성하였다.And on the titanium carbon oxide layer, TC (006) by using a gas of AlCl 3 and gas such as CO 2 or CO, HCl, H 2 S, H 2 at a process partial pressure of 50 ~ 80 mbar, a process temperature of 1000 ~ 1050 ℃. Α-Al 2 O 3 with preferential orientation so that) A layer was formed. Α-Al 2 O 3 with a preferred orientation of (006) The layer was formed through the control of the flow rate of H 2 S gas in the range of 100 ~ 600ml and the flow rate of HCl gas in the range of 1-3L.
또한, α-Al2O3 층의 응력제어를 위하여, 블라스팅 처리를 수행하였다.In addition, for the stress control of the α-Al 2 O 3 layer, a blasting treatment was performed.
또한, 최외곽층으로, 공정분압 100~200 mbar, 공정온도 850~1000℃에서 TiCl4가스와 N2와 H2의 가스를 이용하여 화학증착반응(CVD)으로 티타늄질화물(TiN)층을 2㎛ 미만 증착시키는 방법으로 형성하였다.In addition, as the outermost layer, a titanium nitride (TiN) layer was formed by chemical vapor deposition (CVD) using TiCl 4 gas and N 2 and H 2 gas at a process partial pressure of 100 to 200 mbar and a process temperature of 850 to 1000 ° C. It was formed by a method of depositing less than 탆.
본 발명에 있어서 최외곽층인 TiN층은 마모식별을 목적으로 한 것으로, 선택적으로 형성될 수 있는 층이다.In the present invention, the outermost TiN layer is intended for wear identification and is a layer that can be selectively formed.
한편, 비교예 1 ~ 비교예 4에 따른 경질피막은 TiCN층, 계면층, TiN층의 형성은 본 발명의 실시예와 동일하고, 알파상의 알루미나 형성 시 상기 반응가스의 유량 조절을 통해 (006)면으로 우선성장이 되지 않도록 하거나, 후처리를 실시하지 않는 방법으로, 잔류응력을 제어하였다.On the other hand, in the hard film according to Comparative Examples 1 to 4, the formation of the TiCN layer, the interfacial layer, the TiN layer is the same as the embodiment of the present invention, and through the flow rate control of the reaction gas when forming the alumina of the alpha phase (006) Residual stresses were controlled in such a way that they did not preferentially grow into cotton or do not undergo post-treatment.
이상과 같이 형성한 본 발명의 실시예 및 비교예 1 ~ 비교예 4에 따른 경질피막의 구조는 아래 표 1과 같다.The structure of the hard film according to Examples and Comparative Examples 1 to 4 of the present invention formed as described above is shown in Table 1 below.
모재 조성(중량%)Base material composition (% by weight) 피막 두께(㎛)Film thickness (㎛)
CoCo TaCTaC WCWC MT-TiCN층MT-TiCN layer TiAlCNO층TiAlCNO layer 알파-알루미나층Alpha-alumina layer TiN층TiN layer
비교예 1Comparative Example 1 1010 1.51.5 bal.bal. 4.14.1 1.11.1 55 1One
비교예 2Comparative Example 2 1010 1.51.5 bal.bal. 4.54.5 1.11.1 5.15.1 1.21.2
비교예 3Comparative Example 3 1010 1.51.5 bal.bal. 55 1One 4.74.7 1.31.3
비교예 4Comparative Example 4 1010 1.51.5 bal.bal. 4.34.3 1.51.5 4.84.8 1.21.2
실시예Example 1010 1.51.5 bal.bal. 4.74.7 1.21.2 4.54.5 1One
상기 표 1에 나타난 바와 같이, 실시예와 비교예 1 ~ 비교예 4에 따른 경질피막이 형성된 모재의 조성을 동일하며, MT-TiCN층, TiAlCNO층, 알파상 알루미나층 및 TiN층의 두께를 거의 유사하게 형성하였다.As shown in Table 1, the composition of the hard base material according to the Examples and Comparative Examples 1 to 4 is the same, and the thickness of the MT-TiCN layer, TiAlCNO layer, alpha-phase alumina layer and TiN layer is almost similar. Formed.
그러나 아래 표 2에 나타낸 바와 같이, 알파상 알루미나층의 우선성장방향과, 후처리를 통한 잔류응력이 상이하게 조절하였다.However, as shown in Table 2 below, the preferred growth direction of the alpha-phase alumina layer and the residual stress through the post-treatment were adjusted differently.
이와 같이 준비된 절삭공구 인써트를 다음과 같이 절삭수명에 대한 평가를 수행하였다.The cutting tool insert thus prepared was evaluated for cutting life as follows.
- 가공형태 : 숄더링 가공-Processing type: Shouldering processing
- 피삭재 : SKD11(치수 100mm×200×300mm)-Workpiece: SKD11 (Dimension 100mm × 200 × 300mm)
- Vc(절삭속도) : 250mm/min-Vc (cutting speed): 250mm / min
- fz : 0.2mm/minfz: 0.2mm / min
- ap(절입깊이) : 2mm-ap (depth of cut): 2mm
- ae : 10mm, 습식(wet)ae: 10mm, wet
상기 조건으로 절삭수명을 평가한 결과를 아래 표 2에 나타내었다.The results of evaluating the cutting life under the above conditions are shown in Table 2 below.
TC(006)TC (006) 잔류 응력 (MPa)Residual stress (MPa) 응력차(ΔS)(MPa)Stress difference (ΔS) (MPa) 수명life span
TiCN층TiCN layer 알루미나층Alumina layer
비교예 1Comparative Example 1 00 323323 450450 120120 701701
비교예 2Comparative Example 2 00 247247 -315-315 562562 813813
비교예 3Comparative Example 3 3.43.4 213213 -451-451 664664 961961
비교예 4Comparative Example 4 4.84.8 342342 421421 7979 892892
실시예Example 5.15.1 270270 -97-97 367367 11531153
상기 표 2에서, TC(006)은 알파상 알루미나의 (006)면으로의 우선성장 경향을 나타낸 것이고, 잔류 응력에 있어서 '-'는 압축응력을 의미하고, '-'가 없는 경우 인장응력을 의미하며, 응력차(ΔS)는 TiCN층과 알루미나층 간의 응력차의 절대값을 의미하고, 수명은 단위 분(min)당 단위 면적(㎠)당 칩 제거량을 의미한다.In Table 2, TC (006) shows the preferential growth tendency toward the (006) plane of the alpha phase alumina, '-' in the residual stress means a compressive stress, the tensile stress in the absence of '-' The stress difference ΔS means an absolute value of the stress difference between the TiCN layer and the alumina layer, and the lifespan means the amount of chip removal per unit area (cm 2) per unit minute (min).
상기 표 2의 결과에서, 비교예 1과 비교예 2를 대비하면, 알파상 알루미나층의 응력을 압축응력 상태로 할 경우, 인장응력 상태인 것에 비해 절삭공구의 수명이 개선되는 것을 알 수 있다.In the results of Table 2, in comparison with Comparative Example 1 and Comparative Example 2, it can be seen that when the stress of the alpha-phase alumina layer in the compressive stress state, the life of the cutting tool is improved compared to the tensile stress state.
또한, 비교예 2와 비교예 3을 대비하면, 알파상 알루미나층의 응력을 압축응력으로 하면서, TC(006)이 3 초과가 되도록 우선성장시킬 경우, 비교예 2에 비해 절삭공구의 수명이 현저하게 증가함을 알 수 있다.In comparison with Comparative Example 2 and Comparative Example 3, when the stress of the alpha-phase alumina layer is a compressive stress and the TC (006) is preferentially grown to be greater than 3, the life of the cutting tool is remarkable compared to Comparative Example 2. It can be seen that increases.
또한, 비교예 3과 비교예 4를 대비하면, 비교예 4의 알파상 알루미나층의 TC(006)이 4.8로 비교예 3의 알파상 알루미나층의 TC(006)의 3.4에 비해 (006)면의 우선성장 경향이 더 좋음에도 불구하고, 알파상 알루미나층의 응력상태가 인장응력 상태로 되어 있어, 절삭공구의 수명은 비교예 3에 비해 낮은 결과를 나타내었다.In addition, in comparison with Comparative Example 3 and Comparative Example 4, the TC (006) of the alpha phase alumina layer of Comparative Example 4 is 4.8, compared with 3.4 of the TC (006) of the alpha phase alumina layer of Comparative Example 3 Although the preferential growth tendency of was higher, the stress state of the alpha-phase alumina layer was in the tensile stress state, and the life of the cutting tool was lower than in Comparative Example 3.
또한, 실시예와 비교예 3을 대비하면, 두 경질피막 모두 알파상 알루미나층의 TC(006)이 3 초과가 되고, 알루미나가 압축응력 상태이나, 알루미나와 TiCN층 간의 응력차에 있어서, 비교예 3은 500MPa을 초과하나, 실시예는 500MPa 이하인 차이가 있으며, 알파상 알루미나층의 잔류응력 측면에서는 비교예 3이 더 높은 압축 잔류응력이 존재하는 차이가 있는데, 실시예가 비교예 3에 비해 현저하게 향상된 절삭공구의 수명을 나타내었다.In addition, in comparison with Example 3 and Comparative Example 3, both hard coatings had a TC (006) of more than 3 alpha-alumina layers, and the alumina had a compressive stress state or a comparative stress in the stress difference between the alumina and TiCN layers. 3 exceeds 500 MPa, but the embodiment has a difference of 500 MPa or less, and in the residual stress of the alpha-phase alumina layer, there is a difference in that the comparative compressive stress is present in Comparative Example 3, which is significantly higher than that of Comparative Example 3. Improved cutting tool life.
즉, 알파상 알루미나층의 잔류응력이 압축응력 상태로 있는 것, 알파상 알루미나층과 TiCN층 간의 잔류응력차가 500MPa 이하인 것, 알파상 알루미나층의 TC(006)이 3 초과인 것의 조건이 모두 충족되어야만, 본 발명의 실시예와 같은 우수한 절삭공구 수명의 향상 효과를 얻을 수 있음을 알 수 있다.That is, the conditions that the residual stress of the alpha-phase alumina layer is in a compressive stress state, the residual stress difference between the alpha-phase alumina layer and the TiCN layer is 500 MPa or less, and the TC (006) of the alpha-phase alumina layer are more than 3 are all satisfied. Only then, it can be seen that an excellent effect of improving the life of a cutting tool as in the embodiment of the present invention can be obtained.
상기 알루미나층과 TiCN층 간의 잔류응력의 차이는 500MPa 이하가 바람직하고, 400MPa 이하가 보다 바람직하다.The difference in residual stress between the alumina layer and the TiCN layer is preferably 500 MPa or less, and more preferably 400 MPa or less.

Claims (4)

  1. Co 7~15중량%와, 4족, 5족 또는 6족의 원소를 포함하는 탄화물 또는 탄질화물 0~5중량%와, 나머지 WC 및 불가피한 불순물을 포함하는 모재 상에 형성되는 두께 5~30㎛의 경질피막으로,5-15 micrometers in thickness formed on the base material containing 7-15 weight% of Co, 0-5 weight% of carbides or carbonitrides containing the elements of group 4, 5, or 6, and the remaining WC and unavoidable impurities As a hard coating of,
    상기 경질피막은, 상기 모재 위에 형성되며, 두께가 2~15㎛이고, 잔류응력이 0~400MPa이며, 주상정으로 형성된 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층과,The hard coating is formed on the base material, the thickness is 2 ~ 15㎛, the residual stress is 0 ~ 400MPa, formed in columnar top TiC x N y O z (x + y + z = 1, x> 0, y> 0, z≥0) layer,
    상기 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층 상에 형성되며, 두께가 1~2㎛인 Al1-aTiaCxNyOz(a≥0, x+y+z=1, x>0, y>0, z≥0)층과,The TiC x N y O z (x + y + z = 1, x> 0, y> 0, z≥0) is formed on the layer, the Al 1-a Ti a C x N having a thickness of 1 ~ 2㎛ a y O z (a≥0, x + y + z = 1, x> 0, y> 0, z≥0) layer,
    상기 Al1 - aTiaCxNyOz(a≥0, x+y+z=1, x>0, y>0, z≥0)층 상에 형성되며, 두께가 1~10㎛이고, 잔류응력이 -1,000MPa ~ -50MPa인 알파상의 알루미나층을 포함하고,It is formed on the Al 1 - a Ti a C x N y O z (a≥0, x + y + z = 1, x> 0, y> 0, z≥0) layer, the thickness is 1 ~ 10㎛ It comprises an alpha phase alumina layer having a residual stress of -1,000 MPa to -50 MPa,
    상기 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층과 알파상의 알루미나층 간의 잔류응력차(ΔS)는 500MPa 이하이고,The residual stress difference ΔS between the TiC x N y O z (x + y + z = 1, x> 0, y> 0, z≥0) layer and the alumina layer of the alpha phase is 500 MPa or less,
    상기 알파상의 알루미나층은, 하기 [식 1]에 의해 산출되는 TC(006)이 1.4 초과인 것을 특징으로 하는, 절삭공구용 경질피막.The alumina layer of the alpha phase is a hard film for a cutting tool, characterized in that the TC (006) calculated by the following [Formula 1] is more than 1.4.
    [식 1][Equation 1]
    TC(hkl) = I(hkl)/Io(hkl){1/n∑I(hkl)/Io(hkl)}-1 TC (hkl) = I (hkl ) / Io (hkl) {1 / nΣI (hkl) / Io (hkl)} -1
    (여기서, I(hkl) = (hkl) 반사강도, Io(hkl) = JCPDS 카드 46-1212에 따른 표준 강도, n= 계산에 사용된 반사의 횟수, (hkl) 반사는 (012), (104), (110), (006), (113) 및 (116)을 사용하는 것)Where I (hkl) = (hkl) reflectivity, Io (hkl) = standard intensity according to JCPDS card 46-1212, n = number of reflections used in the calculation, (hkl) reflections are (012), (104 ), Using (110), (006), (113) and (116))
  2. 제1항에 있어서,The method of claim 1,
    상기 잔류응력차(ΔS)는 400MPa 이하인, 절삭공구용 경질피막.The residual stress difference (ΔS) is 400MPa or less, hard film for cutting tools.
  3. 제1항에 있어서,The method of claim 1,
    상기 알파상의 알루미나층의 TC(006)은 3 초과인, 절삭공구용 경질피막.TC (006) of the alumina layer of the alpha phase is more than 3, hard coating for cutting tools.
  4. 제1항에 있어서,The method of claim 1,
    상기 TiCxNyOz(x+y+z=1, x>0, y>0, z≥0)층에 있어서, x는 0.5 초과 0.9 이하인, 절삭공구용 경질피막.Hard film for a cutting tool, in the TiC x N y O z (x + y + z = 1, x> 0, y> 0, z ≧ 0) layer, wherein x is greater than 0.5 and 0.9 or less.
PCT/KR2016/011779 2015-12-29 2016-10-20 Hard coating for cutting tool WO2017115987A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0188079 2015-12-29
KR1020150188079A KR101737709B1 (en) 2015-12-29 2015-12-29 Hard coated layer for cutting tools

Publications (1)

Publication Number Publication Date
WO2017115987A1 true WO2017115987A1 (en) 2017-07-06

Family

ID=59049138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011779 WO2017115987A1 (en) 2015-12-29 2016-10-20 Hard coating for cutting tool

Country Status (2)

Country Link
KR (1) KR101737709B1 (en)
WO (1) WO2017115987A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893457A (en) * 2020-08-14 2020-11-06 株洲钻石切削刀具股份有限公司 Coated cutting tool and preparation method thereof
US11311946B2 (en) * 2018-03-20 2022-04-26 Kyocera Corporation Coated tool and cutting tool including the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102055320B1 (en) 2019-05-29 2019-12-13 한국생산기술연구원 Target for physical deposition, nitride hard coating using thereof and methods of fabricating the same
KR102265210B1 (en) * 2019-12-24 2021-06-15 한국야금 주식회사 Cutting tools having improved toughness
KR102450430B1 (en) 2020-08-21 2022-10-04 한국야금 주식회사 Cemented carbide for cutting tools

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089201A (en) * 2008-10-07 2010-04-22 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
KR20120073322A (en) * 2009-11-06 2012-07-04 가부시키가이샤 탕가로이 Coated tool
KR20140001694A (en) * 2012-06-28 2014-01-07 대구텍 유한회사 Cutting insert
JP2014166657A (en) * 2013-02-28 2014-09-11 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
KR20140109857A (en) * 2011-12-26 2014-09-16 미쓰비시 마테리알 가부시키가이샤 Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089201A (en) * 2008-10-07 2010-04-22 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
KR20120073322A (en) * 2009-11-06 2012-07-04 가부시키가이샤 탕가로이 Coated tool
KR20140109857A (en) * 2011-12-26 2014-09-16 미쓰비시 마테리알 가부시키가이샤 Surface-coated cutting tool with hard coating that exhibits excellent chipping resistance and abrasion resistance
KR20140001694A (en) * 2012-06-28 2014-01-07 대구텍 유한회사 Cutting insert
JP2014166657A (en) * 2013-02-28 2014-09-11 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11311946B2 (en) * 2018-03-20 2022-04-26 Kyocera Corporation Coated tool and cutting tool including the same
CN111893457A (en) * 2020-08-14 2020-11-06 株洲钻石切削刀具股份有限公司 Coated cutting tool and preparation method thereof

Also Published As

Publication number Publication date
KR101737709B1 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
WO2017115987A1 (en) Hard coating for cutting tool
KR101297298B1 (en) Coated layer for cutting tools
EP0162656B1 (en) Multilayer coated cemented carbides
KR101260694B1 (en) Oxide coated cutting tool
KR100614961B1 (en) PVD Al2 O3 COATED CUTTING TOOL
KR100576321B1 (en) Cutting tool/an abrasion resistance tool with high toughness
EP2497590A1 (en) Coated tool
EP2262924B1 (en) Thermally stabilized (ti, si)n layer for cutting tool insert
WO2018016732A1 (en) Hard coating film for cutting tool
WO2003061885A1 (en) Surface-coated cutting tool
KR101666284B1 (en) Hard coated layer for cutting tools
US7326461B2 (en) Composite material
KR101208838B1 (en) Cutting tool and manufacturing method for the same having multi coating layers with improved oxidation resistance and high hardness
JP3671623B2 (en) Coated cemented carbide
WO2016108421A1 (en) Cemented carbide with improved toughness
EP2700460A1 (en) Coated cutting tool
KR101179255B1 (en) Surface coating layer for cutting tools
KR100832868B1 (en) Coating materials for a cutting tool/an abrasion resistance tool
WO2016104943A1 (en) Cutting tool
WO2015105274A1 (en) Hard coating for cutting tool
KR100600573B1 (en) Coating materials for a cutting tool/an abrasion resistance tool
KR101528790B1 (en) Cutting tools coated with hard films
WO2020111657A1 (en) Hard coating for cutting tool
KR20100068818A (en) Hardened multi-layer to cutting tool
KR101560507B1 (en) Coated Layer for Cutting Tools

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881940

Country of ref document: EP

Kind code of ref document: A1