WO2017115824A1 - Polyimide film layered body - Google Patents

Polyimide film layered body Download PDF

Info

Publication number
WO2017115824A1
WO2017115824A1 PCT/JP2016/088993 JP2016088993W WO2017115824A1 WO 2017115824 A1 WO2017115824 A1 WO 2017115824A1 JP 2016088993 W JP2016088993 W JP 2016088993W WO 2017115824 A1 WO2017115824 A1 WO 2017115824A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
polyimide film
acrylate
polyol
group
Prior art date
Application number
PCT/JP2016/088993
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 岡
幸徳 小濱
美晴 中川
久野 信治
毅 ▲高▼橋
暁良 金子
山田 健史
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2017115824A1 publication Critical patent/WO2017115824A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings

Definitions

  • the present invention relates to a polyimide film laminate having excellent surface adhesion.
  • Polyimide films have been widely used in the fields of electric / electronic devices and semiconductors because they are excellent in heat resistance, chemical resistance, mechanical strength, electrical properties, dimensional stability, and the like.
  • optical materials such as a liquid crystal alignment film and a protective film for a color filter in the display device field, such as an optical fiber and an optical waveguide in the optical communication field.
  • a plastic substrate that is lightweight and excellent in flexibility as a substitute for a glass substrate has been studied, and a display that can be bent and rolled has been actively developed. For this reason, there is a demand for higher performance optical materials that can be used for such applications.
  • Aromatic polyimide is essentially yellowish brown due to intramolecular conjugation and the formation of charge transfer complexes. For this reason, as a means to suppress coloration, for example, introduction of fluorine atoms into the molecule, imparting flexibility to the main chain, introduction of bulky groups as side chains, etc. inhibits intramolecular conjugation and charge transfer complex formation. And the method of expressing transparency is proposed (for example, patent document 1).
  • Patent Documents 2 to 5 a method for expressing transparency by using a semi-alicyclic or fully alicyclic polyimide that does not form a charge transfer complex in principle has been proposed (for example, Patent Documents 2 to 5).
  • Polyimide is excellent in heat resistance and chemical resistance, but often has insufficient adhesion and adhesion to other layers. For this reason, the layer which has a specific function may not be provided in the polyimide film surface, but it will become a problem when aiming at the use expansion of a polyimide film.
  • Patent Document 6 International Publication No. 2014/092422; published Japanese Patent Application No. 2016-501144
  • the polyimide film contains acrylate groups and has 2 to 5 isocyanate groups per molecule.
  • a transparent polyimide substrate comprising a cured layer of a polyisocyanate is disclosed.
  • the polyimide substrate described in Patent Document 6 is characterized in that the cured layer of polyisocyanate has scratch resistance, and is not an invention that improves the adhesion and adhesion between the polyimide film and other layers.
  • the polyisocyanate is different from the present invention described below in that it has an acrylate group and an isocyanate group in the molecule.
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2015-58595 describes a composite film having a support and a surface coating layer containing a polymer of urethane (meth) acrylate monomer.
  • cured material of the composition containing the urethane resin different from a urethane (meth) acrylate monomer or its polymer and a (meth) acrylate compound is not described.
  • polyimide is mentioned as an example of a support body, there is no Example which used the polyimide as a support body, and properties, such as adhesiveness, are not proven.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a polyimide film laminate having improved adhesion with other functional layers while taking advantage of the conventional characteristics of polyimide films. To do.
  • the present invention relates to the following items.
  • Polyimide film A polyimide film laminate having a coating layer formed of a cured product of a coating composition containing a polyurethane resin and a (meth) acrylate compound on the surface of the polyimide film (however, the polyurethane resin is , Urethane (meth) acrylate monomer and polymer thereof are not included.)
  • the polyimide which comprises the said polyimide film contains the repeating unit represented by following General formula (1),
  • X 1 is a tetravalent group having an aromatic ring or alicyclic structure
  • Y 1 is a divalent group having an aromatic ring or alicyclic structure.
  • the content of the repeating unit represented by the chemical formula (1) in which X 1 is a tetravalent group having an alicyclic structure and Y 1 is a divalent group having an alicyclic structure is based on the total repeating units.
  • Item 7 The polyimide according to any one of Items 1 to 6, wherein the content of the (meth) acrylate compound is 5 to 50% by weight based on the solid content based on the resin component in the coating composition. Film laminate.
  • Item 8 The polyimide film laminate according to any one of Items 1 to 7, wherein the polyurethane resin includes a structure in which a polycarbonate polyol and a polyisocyanate compound are reacted.
  • Item 9 The polyimide film laminate according to any one of Items 1 to 8, wherein the coating layer has a thickness of 10 nm or more and less than 5 ⁇ m.
  • the thickness of the coating layer is 10 nm or more and less than 5 ⁇ m, further has a surface layer on the surface of the coating layer, and the pencil hardness of the surface layer is 2H or more,
  • Item 12 The polyimide film laminate according to Item 10 or 11, wherein the surface layer is formed of a cured product of a curable resin composition containing at least a curable resin component and an inorganic filler.
  • a polyimide film laminate having improved adhesion to other functional layers while taking advantage of conventional characteristics of polyimide film such as chemical resistance, mechanical strength, electrical characteristics, and dimensional stability. can be provided.
  • the yellowness (YI) of the polyimide film laminate can also be improved.
  • the polyimide film laminate of the present invention has a polyimide film and a coating layer formed on the surface thereof.
  • the polyimide film laminate of the present invention has, for example, products such as electronic products, optical products, display products, etc., in addition to forms (forms distributed as film products) as polyimide films having a coating layer formed on the surface. (Including parts, semi-finished products being manufactured, etc.). Accordingly, it includes a form after another layer is formed or laminated on the coating layer.
  • the polyimide film laminate of the present invention was produced by manufacturing a semi-finished product using a polyimide film, and then forming or laminating another layer on the coating layer, in which a coating layer was formed on the polyimide film surface. Including things.
  • the coating layer may be formed only on one side of the polyimide film or may be formed on both sides depending on the application. Further, it may be formed on the entire surface of one side or both sides of the film, or may be formed only on a part of the surface.
  • the polyimide film used in the present invention is not particularly limited, and the tetracarboxylic acid component and the diamine component are appropriately composed of a polyimide selected from an aromatic compound and an alicyclic compound.
  • a wholly aromatic polyimide, a semi-alicyclic polyimide, and a wholly alicyclic polyimide may be mentioned.
  • the polyimide used in the present invention contains a repeating unit represented by the following general formula (1).
  • X 1 is a tetravalent group having an aromatic ring or alicyclic structure
  • Y 1 is a divalent group having an aromatic ring or alicyclic structure.
  • X 1 in the general formula (1) is a tetravalent group having an aromatic ring
  • Y 1 is 2 having an aromatic ring. It is preferably a valent group.
  • X 1 is a tetravalent group having an alicyclic structure
  • Y 1 is a divalent group having an aromatic ring.
  • X 1 is a tetravalent group having an aromatic ring
  • Y 1 is a divalent group having an alicyclic structure. preferable.
  • X 1 is a tetravalent group having an alicyclic structure
  • Y 1 is a divalent group having an alicyclic structure.
  • the content of the repeating unit represented by the formula (1) is preferably 50 mol% or less, more preferably 30 mol% or less or less than 30 mol%, more preferably 10 mol%, based on all repeating units. The following is preferable.
  • X 1 is a tetravalent group having an aromatic ring
  • Y 1 is a divalent group having an aromatic ring.
  • the total is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 100 mol%, based on all repeating units. Preferably there is.
  • the polyimide when a highly transparent polyimide is particularly required, the polyimide preferably contains a fluorine atom.
  • the polyimide is a divalent group in which X 1 is a tetravalent group having an aromatic ring containing a fluorine atom and / or Y 1 has an aromatic ring containing a fluorine atom. It is preferable that 1 type or more of the repeating unit of the said Chemical formula (1) which is group of is included.
  • the polyimide is one or more repeating units of the above chemical formula (1), wherein X 1 is a tetravalent group having an alicyclic structure and Y 1 is a divalent group having an aromatic ring.
  • the total content is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 100 mol, based on all repeating units. It is preferable that it is mol%.
  • the polyimide is one or more repeating units of the above formula (1), wherein X 1 is a tetravalent group having an aromatic ring and Y 1 is a divalent group having an alicyclic structure.
  • the total content is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 100 mol, based on all repeating units. It is preferable that it is mol%.
  • the tetravalent group having an aromatic ring of X 1 is preferably a tetravalent group having an aromatic ring having 6 to 40 carbon atoms.
  • Examples of the tetravalent group having an aromatic ring include the following.
  • Z 1 is a direct bond or the following divalent group:
  • Z 2 is a divalent organic group
  • Z 3 and Z 4 are each independently an amide bond, an ester bond and a carbonyl bond
  • Z 5 is an organic group containing an aromatic ring.
  • Z 2 include an aliphatic hydrocarbon group having 2 to 24 carbon atoms and an aromatic hydrocarbon group having 6 to 24 carbon atoms.
  • Z 5 include aromatic hydrocarbon groups having 6 to 24 carbon atoms.
  • the tetravalent group having an aromatic ring since the high heat resistance and high transparency of the obtained polyimide can be compatible, the following are particularly preferable.
  • Z 1 is a direct bond or a hexafluoroisopropylidene bond.
  • Z 1 is more preferably a direct bond
  • the resulting polyimide has high heat resistance and a low linear thermal expansion coefficient.
  • the diamine-derived structure is an alicyclic structure
  • high transparency is also obtained. Can be compatible.
  • Examples of the tetracarboxylic acid component that gives a repeating unit of the chemical formula (1) in which X 1 is a tetravalent group having an aromatic ring include 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid, pyromellitic acid, 3,3 ′, 4,4′-benzophenonetetra Carboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 4,4′-oxydiphthalic acid, bis (3,4-dicarboxyphenyl) ) Sulfone, m-terphenyl-3,4,3 ′, 4′-tetracarboxylic acid, p
  • Examples of the tetracarboxylic acid component that gives a repeating unit of the chemical formula (1) in which X 1 is a tetravalent group having an aromatic ring containing a fluorine atom include 2,2-bis (3,4-dicarboxyphenyl).
  • Derivatives such as hexafluoropropane, tetracarboxylic dianhydrides, tetracarboxylic acid silyl esters, tetracarboxylic acid esters, and tetracarboxylic acid chlorides thereof.
  • a tetracarboxylic acid component may be used independently and can also be used in combination of multiple types.
  • the tetravalent group having an alicyclic structure of X 1 is preferably a tetravalent group having an alicyclic structure having 4 to 40 carbon atoms, more preferably at least one aliphatic 4- to 12-membered ring, more preferably an aliphatic group. More preferably, it has a 4-membered ring or an aliphatic 6-membered ring. The following are mentioned as a tetravalent group which has a preferable aliphatic 4-membered ring or an aliphatic 6-membered ring.
  • R 31 to R 38 are each independently a direct bond or a divalent organic group.
  • R 41 to R 47 are each independently represented by the formula: —CH 2 —, —CH ⁇ CH—, This represents one selected from the group consisting of groups represented by —CH 2 CH 2 —, —O—, and —S—, wherein R 48 is an organic group containing an aromatic ring or alicyclic structure.
  • R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 are specifically a direct bond, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, or Examples include an oxygen atom (—O—), a sulfur atom (—S—), a carbonyl bond, an ester bond, and an amide bond.
  • Examples of the organic group containing an aromatic ring as R 48 include the following.
  • W 1 is a direct bond or a divalent organic group
  • n 11 to n 13 each independently represents an integer of 0 to 4
  • R 51 , R 52 and R 53 are each independently And an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group.
  • W 1 examples include a direct bond, a divalent group represented by the following formula (5), and a divalent group represented by the following formula (6).
  • R 61 to R 68 in the formula (6) each independently represent a direct bond or a divalent group represented by the formula (5).
  • the polyimide obtained can have both high heat resistance, high transparency, and a low linear thermal expansion coefficient.
  • Examples of the tetracarboxylic acid component that gives the repeating unit of the formula (1) in which X 1 is a tetravalent group having an alicyclic structure include 1,2,3,4-cyclobutanetetracarboxylic acid, isopropylidenediphenoxybis Phthalic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, [1,1'-bi (cyclohexane)]-3,3 ', 4,4'-tetracarboxylic acid, [1,1'-bi (Cyclohexane)]-2,3,3 ′, 4′-tetracarboxylic acid, [1,1′-bi (cyclohexane)]-2,2 ′, 3,3′-tetracarboxylic acid, 4,4′- Methylenebis (cyclohexane-1,2-dicarboxylic acid), 4,4 '-(propane-2,2-diyl) bis (cyclohexane
  • the divalent group having an aromatic ring of Y 1 is preferably a divalent group having an aromatic ring having 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms.
  • Examples of the divalent group having an aromatic ring include the following.
  • W 1 is a direct bond or a divalent organic group
  • n 11 to n 13 each independently represents an integer of 0 to 4
  • R 51 , R 52 and R 53 are each independently And an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group.
  • W 1 examples include a direct bond, a divalent group represented by the following formula (5), and a divalent group represented by the following formula (6).
  • R 61 to R 68 in the formula (6) each independently represent a direct bond or a divalent group represented by the formula (5).
  • W 1 is a direct bond, or a formula: —NHCO—, —CONH—, —COO—, —OCO—. It is especially preferable that it is 1 type selected from the group which consists of group represented by these.
  • W 1 is a group in which R 61 to R 68 are a direct bond, or one selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO—. It is also particularly preferable that it is any of the divalent groups represented by the formula (6).
  • Examples of the diamine component that gives a repeating unit of the chemical formula (1) in which Y 1 is a divalent group having an aromatic ring include p-phenylenediamine, m-phenylenediamine, benzidine, and 3,3′-diamino-biphenyl.
  • Examples of the diamine component that gives the repeating unit of the chemical formula (1) in which Y 1 is a divalent group having an aromatic ring containing a fluorine atom include 2,2′-bis (trifluoromethyl) benzidine, 3, 3′-bis (trifluoromethyl) benzidine, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2 ′ -Bis (3-amino-4-hydroxyphenyl) hexafluoropropane.
  • a diamine component may be used independently and can also be used in combination of multiple types.
  • the divalent group having an alicyclic structure of Y 1 is preferably a divalent group having an alicyclic structure having 4 to 40 carbon atoms, more preferably at least one aliphatic 4- to 12-membered ring, more preferably an aliphatic group. More preferably, it has a 6-membered ring.
  • divalent group having an alicyclic structure examples include the following.
  • V 1 and V 2 are each independently a direct bond or a divalent organic group
  • n 21 to n 26 each independently represents an integer of 0 to 4
  • R 81 to R 86 Are each independently an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group
  • R 91 , R 92 , and R 93 are each independently represented by the formula: —CH 2 —, (This is one selected from the group consisting of groups represented by —CH ⁇ CH—, —CH 2 CH 2 —, —O—, and —S—.)
  • V 1 and V 2 include a direct bond and a divalent group represented by the above formula (5).
  • the divalent group having an alicyclic structure the following are particularly preferable because the polyimide obtained can have both high heat resistance and low linear thermal expansion coefficient.
  • divalent groups having an alicyclic structure the following are preferable.
  • Examples of the diamine component that gives the repeating unit of the chemical formula (1) in which Y 1 is a divalent group having an alicyclic structure include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propylcyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1, 4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 1,2-diaminocyclohexane, 1,3-diaminocyclobutane 1,4-bis (
  • the polyimide containing at least one repeating unit represented by the chemical formula (1) can contain other repeating units other than the repeating unit represented by the chemical formula (1).
  • the tetracarboxylic acid component and diamine component that give other repeating units are not particularly limited, and any other known aliphatic tetracarboxylic acids or known aliphatic diamines can be used.
  • Other tetracarboxylic acid components may be used alone or in combination of two or more.
  • Other diamine components may be used alone or in combination of two or more.
  • the content of other repeating units other than the repeating unit represented by the formula (1) is preferably 30 mol% or less or less than 30 mol%, more preferably 20 mol% or less, based on all repeating units. More preferably, it is 10 mol% or less.
  • a polyimide precursor solution or a polyimide precursor solution composition in which an imidization catalyst, a dehydrating agent, a release aid, inorganic fine particles, etc. are selected and added to a polyimide precursor solution as needed is supported in a film form.
  • a cyclization catalyst and a dehydrating agent are added to the polyimide precursor solution, and further, a polyimide precursor solution composition added by selecting inorganic fine particles as necessary is cast on a support in the form of a film.
  • Polyimide precursors are: 1) polyamic acid (also called polyamic acid), 2) polyamic acid ester (at least a part of H of the carboxyl group of the polyamic acid is an alkyl group), 3) polyamic acid silyl ester (of polyamic acid At least a part of H of the carboxyl group can be classified as an alkylsilyl group.
  • polyimide precursors can be produced from a tetracarboxylic acid component and a diamine component that give the polyimide structure described above.
  • a polyimide precursor composition is cast on a substrate, and the polyimide precursor composition on the substrate is, for example, 100 to 500 ° C., preferably 200 to 500 ° C.
  • a method of imidizing the polyimide precursor while removing the solvent by heating at a temperature of about 250 to 450 ° C. is more preferable.
  • a heating profile is not specifically limited, It can select suitably.
  • the polyimide precursor composition is cast on a substrate, and preferably dried in a temperature range of 180 ° C. or less to form a polyimide precursor composition film on the substrate, and the resulting polyimide precursor is obtained.
  • a temperature range of 180 ° C. or less for example, 100 to 500 ° C., preferably 200 to 500 ° C., more preferably in a state where the film of the composition is peeled off from the substrate and the edge of the film is fixed or without fixing the edge of the film.
  • the polyimide film can be suitably produced also by heat treatment at a temperature of about 250 to 450 ° C. to imidize the polyimide precursor.
  • a polyimide solution composition containing polyimide is cast on a substrate, and is heat-treated at a temperature of, for example, about 80 to 500 ° C., preferably 100 to 500 ° C., more preferably about 150 to 450 ° C. By removing, a polyimide film can be suitably produced.
  • the heating profile is not particularly limited and can be selected as appropriate.
  • the polyimide film is not particularly limited, but the linear thermal expansion coefficient from 100 ° C. to 250 ° C. is preferably 60 ppm / K or less, more preferably 50 ppm / K or less.
  • the polyimide film is not particularly limited, but the total light transmittance (average light transmittance at a wavelength of 380 nm to 780 nm) is preferably 68% or more, more preferably 70% or more, more preferably 75% or more, and particularly preferably 80%. % Or more.
  • the total light transmittance is low, it is necessary to strengthen the light source, which may cause a problem that energy is applied.
  • the 5% weight loss temperature that is an index of heat resistance of the polyimide film is not particularly limited, but is preferably 400 ° C. or higher, more preferably 430 ° C. or higher, and further preferably 450 ° C. or higher.
  • the thickness of the polyimide film is preferably 0.1 ⁇ m to 250 ⁇ m, more preferably 1 ⁇ m to 150 ⁇ m, still more preferably 3 ⁇ m to 120 ⁇ m, and particularly preferably 5 ⁇ m to 100 ⁇ m, although it depends on the application.
  • the polyimide film is used for light transmission, if the polyimide film is too thick, the light transmittance may be lowered.
  • the polyimide film is not particularly limited, but preferably has high solvent resistance.
  • the solvent resistance is low, when the organic solvent is contained in the coating liquid, the polyimide film surface may melt and whiten, or the film surface may lose its smoothness.
  • the coating layer in this invention is a layer formed with the hardened
  • (meth) acrylate refers to both acrylate and methacrylate
  • urethane acrylate refers to both “urethane acrylate” and “urethane methacrylate” according to common usage.
  • urethane acrylate (urethane (meth) acrylate) is classified as a (meth) acrylate compound.
  • polyurethane resin does not include urethane acrylate (monomer) and a polymer thereof.
  • Coating composition containing polyurethane resin and (meth) acrylate compound ⁇ Coating composition containing polyurethane resin and (meth) acrylate compound> The material contained in the coating composition containing a polyurethane resin and a (meth) acrylate compound for forming the coating layer will be described below.
  • Polyurethane resin A polyurethane resin is produced by a reaction between a polyol and an isocyanate compound, and a structure derived from a polyol and a structure derived from an isocyanate compound are bonded via a urethane structure.
  • the polyol include polycarbonate polyol, polyester polyol, polyether polyol, polyolefin polyol, acrylic polyol, polydiene polyol, and the like, and preferably selected from polycarbonate polyol, polyester polyol, and polyether polyol. Polyols may be used alone or in combination.
  • those containing polycarbonate polyol are preferred from the viewpoints of heat resistance, hydrolysis resistance, stain resistance, chemical resistance, and weather resistance.
  • a polyol having a specific functional group may be used in combination in order to provide a desired function.
  • polyurethane resin using a polyol component mainly composed of polycarbonate polyol will be described.
  • Other polyurethane resins usable in the present invention will be described as, for example, “other polyol (c)”. It can be obtained by reacting a compound with a polyisocyanate.
  • polyurethane resin based on polycarbonate polyol is: At least polycarbonate polyol (a); If necessary, acidic group-containing polyol (b), If necessary, other polyol (c), Reacting with polyisocyanate (d), In some cases, it is a polyurethane resin obtained by further reacting with a chain extender (B).
  • the acidic group-containing polyol (b) is preferably used when the polyurethane resin is an aqueous dispersion type (aqueous polyurethane resin dispersion), and is stable even if the composition does not contain a protective colloid, an emulsifier, or a surfactant. Water dispersion can be obtained.
  • the water-dispersed polyurethane resin containing the acidic group-containing polyol (b) (sometimes referred to as an aqueous polyurethane resin dispersion) will be mainly described. b) may not be used. Moreover, even if it is a water dispersion type, it is not necessary to use an acidic group containing polyol (b).
  • an emulsifier, a surfactant or the like may be added.
  • the acidic group based on the acidic group-containing polyol (b) may be neutralized with an amine compound or the like.
  • the structural unit contained in a polyurethane resin is mainly demonstrated based on the raw material.
  • polycarbonate polyol (a) The polycarbonate polyol (a) used in the present invention is not particularly limited, and is obtained by carbonate bonding of polyol and polyol, and may contain an ester bond or the like in the molecule.
  • the number average molecular weight of the polycarbonate polyol (a) is not particularly limited, and the number average molecular weight is preferably 400 to 8000. When the number average molecular weight is within this range, an appropriate viscosity and good handleability can be easily obtained.
  • the polycarbonate polyol (a) has a number average molecular weight of 400 to 4000.
  • the number average molecular weight is the number average molecular weight calculated based on the hydroxyl value measured according to JIS K 1577. Specifically, the hydroxyl value is measured, and is calculated by (56.1 ⁇ 1000 ⁇ valence) / hydroxyl value (mgKOH / g) by a terminal group quantification method.
  • the valence is the number of hydroxyl groups in one molecule.
  • the polycarbonate polyol is polycarbonate diol
  • the valence is 2.
  • the polycarbonate polyol (a) can be obtained, for example, by reacting one or more polyols with carbonate ester or phosgene.
  • a polycarbonate polyol obtained by reacting one or more polyols with a carbonic acid ester is preferred because it is easy to produce and there is no byproduct of terminal chlorinated products.
  • the polyol is not particularly limited, and examples thereof include an aliphatic polyol, a polyol having an alicyclic structure, an aromatic polyol, a polyester polyol, and a polyether polyol.
  • the alicyclic structure includes those having a hetero atom such as an oxygen atom or a nitrogen atom in the ring.
  • the aliphatic polyol is not particularly limited, and examples thereof include aliphatic polyols having 3 to 12 carbon atoms. Specifically, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9 A linear aliphatic diol such as nonanediol; 2-methyl-1,3-propanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-1 Branched aliphatic diols such as 1,9-nonanediol; polyfunctional alcohols having three or more functional groups such as 1,1,1-trimethylolpropane and pentaerythritol.
  • the polyol having the alicyclic structure is not particularly limited, and examples thereof include a polyol having an alicyclic group having 5 to 12 carbon atoms in the main chain.
  • the aromatic polyol is not particularly limited, and for example, 1,4-benzenedimethanol, 1,3-benzenedimethanol, 1,2-benzenedimethanol, 4,4′-naphthalenediethanol, 3,4 ′ -Naphthalene diethanol and the like.
  • the polyester polyol is not particularly limited.
  • a polyester polyol of hydroxycarboxylic acid and diol such as a polyester polyol of 6-hydroxycaproic acid and hexanediol, a dicarboxylic acid such as polyester polyol of adipic acid and hexanediol, and the like.
  • polyester polyols with diols include polyester polyols with diols.
  • the polyether polyol is not particularly limited, and examples thereof include polyethylene glycol (for example, diethylene glycol, triethylene glycol, tetraethylene glycol, etc.), polyalkylene glycol such as polypropylene glycol, polytetramethylene glycol, and the like.
  • polyethylene glycol for example, diethylene glycol, triethylene glycol, tetraethylene glycol, etc.
  • polyalkylene glycol such as polypropylene glycol, polytetramethylene glycol, and the like.
  • the carbonate ester is not particularly limited, and examples thereof include aliphatic carbonate esters such as dimethyl carbonate and diethyl carbonate, aromatic carbonate esters such as diphenyl carbonate, and cyclic carbonate esters such as ethylene carbonate.
  • aliphatic carbonate esters such as dimethyl carbonate and diethyl carbonate
  • aromatic carbonate esters such as diphenyl carbonate
  • cyclic carbonate esters such as ethylene carbonate.
  • phosgene or the like capable of producing a polycarbonate polyol can be used. Of these, aliphatic carbonates are preferred and dimethyl carbonate is particularly preferred because of the ease of production of the polycarbonate polyol.
  • a carbonate ester and a polyol having an excess number of moles relative to the number of moles of the carbonate ester are added to a reactor, and the temperature is 160 to 200 ° C.
  • An example is a method of reacting at a pressure of about 50 mmHg for 5 to 6 hours and further reacting at 200 to 220 ° C. for several hours at a pressure of several mmHg or less.
  • a catalyst such as titanium tetrabutoxide may be used.
  • polycarbonate polyol (a) examples include a polycarbonate polyol obtained by reacting one kind of polyol and a carbonate ester, a copolymer polycarbonate polyol obtained by reacting a plurality of kinds of polyol and a carbonate ester, and the like.
  • a polycarbonate polyol for example, a polycarbonate polyol obtained by reacting 1,6-hexanediol and a carbonate, a mixture of 1,6-hexanediol and 1,5-pentanediol, and a carbonate is used.
  • Examples thereof include polycarbonate diol obtained by reacting a mixture of polycarbonate diol, 1,6-hexanediol and 1,4-cyclohexanedimethanol obtained by reaction with carbonate ester.
  • the polycarbonate polyol (a1) (hereinafter referred to as “polycarbonate polyol (a1)”) having an alicyclic structure in the main chain as the polycarbonate polyol (a). It is preferable to use Moreover, it has the advantage that a coating film excellent in solvent resistance can be obtained.
  • the polycarbonate polyol (a1) having an alicyclic structure in the main chain preferably has a number average molecular weight of 400 to 5000, more preferably 400 to 3000, and particularly preferably 500 to 2000.
  • the polycarbonate polyol (a1) having an alicyclic structure in the main chain is, for example, a polycarbonate polyol obtained by reacting a polyol having a alicyclic structure in the main chain with a carbonic ester, or a polyol having an alicyclic structure in the main chain. And other polyols (polyols having no alicyclic structure in the main chain) and carbonated polycarbonates obtained by reacting carbonates. From the viewpoint of dispersibility of the aqueous dispersion, a copolymerized polycarbonate polyol using another polyol in combination is preferable.
  • polystyrene resin As other polyols, aliphatic polyols, aromatic polyols, polyester polyols, and polyether polyols can be used, and the above specific examples are applied. Among them, a combination of a polyol having an alicyclic structure in the main chain and an aliphatic polyol is preferable, and a copolymer polycarbonate polyol obtained by using 1,4-cyclohexanedimethanol and 1,6-hexanediol in combination is particularly preferable. .
  • the alicyclic structure content in the polycarbonate polyol (a) is preferably 65% by weight or less. Within this range, the presence of the alicyclic structure makes it easy to obtain a coating film with excellent hardness, while the content of the alicyclic structure becomes too large, and a prepolymer used in the production of an aqueous polyurethane resin dispersion. It is easy to avoid a situation where the viscosity of the resin becomes high and handling becomes difficult.
  • the alicyclic structure content is more preferably 10 to 55% by weight.
  • the alicyclic structure content refers to the weight ratio of the alicyclic group in the polycarbonate polyol (a).
  • cycloalkane residues such as cyclohexane residues (in the case of 1,4-hexanedimethanol, a portion obtained by removing two hydrogen atoms from cyclohexane) and unsaturated heterocyclic residues such as tetrahydrofuran residues (tetrahydrofuran In the case of dimethanol, it means a value calculated based on the portion obtained by removing two hydrogen atoms from tetrahydrofuran.
  • Polycarbonate polyol (a) may be used alone or in combination of two or more. For example, only the polycarbonate polyol (a1) having an alicyclic structure in the main chain may be used, or the polycarbonate polyol (a1) having an alicyclic structure in the main chain and another polycarbonate polyol may be used in combination.
  • polycarbonate polyols that can be used in combination with the polycarbonate polyol (a1) having an alicyclic structure in the main chain are not particularly limited, and specifically include polytetramethylene carbonate diol, polypentamethylene carbonate diol, and polytetramethylene carbonate.
  • Aliphatic polycarbonate diols such as xamethylene carbonate diol; Aromatic polycarbonate diols such as poly 1,4-xylylene carbonate diol; Polycarbonate diol which is a reaction product of a plurality of types of aliphatic diols and carbonates; Polycarbonates such as polycarbonate diol, which is a reaction product of aromatic diol and carbonate, polycarbonate diol, which is a reaction product of aliphatic diol, dimer diol and carbonate Diol, and the like.
  • a polycarbonate polyol (a1) having an alicyclic structure in the main chain and an aliphatic polycarbonate polyol can be mentioned.
  • Acid group-containing polyol (b) The acidic group-containing polyol (b) is not particularly limited as long as it contains two or more hydroxyl groups and one or more acidic groups in one molecule.
  • the acidic group include a carboxy group, a sulfonic acid group, a phosphoric acid group, and a phenolic hydroxyl group.
  • the acidic group-containing polyol (b) is preferably one containing a compound having two hydroxyl groups and one carboxy group in one molecule.
  • the acidic group-containing polyol (b) may be used alone or in combination of two or more.
  • acidic group-containing polyol (b) include dialkanol alkanoic acids including dimethylol alkanoic acids such as 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid; N-bishydroxyethylglycine, N, N-bishydroxyethylalanine, 3,4-dihydroxybutanesulfonic acid, 3,6-dihydroxy-2-toluenesulfonic acid, acidic group-containing polyether polyol, acidic group-containing polyester polyol, etc. Is mentioned.
  • dialkanol alkanoic acids including dimethylol alkanoic acids such as 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid; N-bishydroxyethylglycine, N, N-bishydroxyethylalanine, 3,4-dihydroxybutanesulfonic acid, 3,6-dihydroxy-2-toluenesulfonic acid, acidic group-containing
  • dialkanol alkanoic acid containing two alkanol groups is preferable from the viewpoint of easy availability, and alkanoic acid having 4 to 12 carbon atoms (dimethylol alkanoic acid) containing two methylol groups is more preferable, and dimethylol.
  • alkanoic acids 2,2-dimethylolpropionic acid is particularly preferred.
  • polys (c) In addition to the polycarbonate polyol (a) and the acidic group-containing polyol (b), other polyols (c) (hereinafter also referred to as “other polyols (c)”) may be used.
  • other polyols (c) include high molecular polyols such as polymer polyols and low molecular polyols.
  • the polymer polyol include those having a number average molecular weight of 400 to 4000.
  • the polyol may be a diol or a trihydric or higher polyhydric alcohol.
  • Other polyols may be used alone or in combination of two or more. From the viewpoint that the hardness of the coating film becomes high, a low molecular polyol is preferable, and a low molecular diol is particularly preferable.
  • the polymer polyol is not particularly limited, and polyester polyol, polyether polyol, acrylic polyol, and polydiene polyol can be suitably used.
  • the polyester polyol is not particularly limited, and for example, polyethylene adipate polyol, polybutylene adipate polyol, polyethylene butylene adipate polyol, polyhexamethylene isophthalate adipate polyol, polyethylene succinate polyol, polybutylene succinate polyol, polyethylene sebacate polyol And polybutylene sebacate polyol, poly- ⁇ -caprolactone polyol, poly (3-methyl-1,5-pentylene adipate) polyol, polycondensate of 1,6-hexanediol and dimer acid, and the like.
  • the polyether polyol is not particularly limited, and examples thereof include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, a random copolymer or a block copolymer of ethylene oxide and propylene oxide, ethylene oxide and butylene oxide, and the like. . Furthermore, a polyether polyester polyol having an ether bond and an ester bond can also be used.
  • the polydiene polyol is not particularly limited, and examples thereof include polydiene polyols containing units derived from butadiene, isoprene, 1,3-pentadiene, chloroprene, cyclopentadiene, and the like.
  • Specific examples of the polydiene polyol include, for example, hydroxyl-terminated liquid polybutadiene (“Poly bd” manufactured by Idemitsu Kosan Co., Ltd.), bifunctional hydroxyl-terminated liquid polybutadiene (“KRASOL” manufactured by Idemitsu Kosan Co., Ltd.), and hydroxyl-terminated liquid polyisoprene. (“Poly ip” manufactured by Idemitsu Kosan Co., Ltd.), hydroxyl-terminated liquid polyolefin (“Epol” manufactured by Idemitsu Kosan Co., Ltd.), and the like.
  • the polyacryl polyol is not particularly limited, and examples thereof include acrylic acid esters having active hydrogen such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and 2-hydroxybutyl acrylate, or acrylic acid of glycerin.
  • Acrylic acid esters such as 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 3-hydroxypropyl methacrylate, methacrylate
  • Methacrylic acid ester with active hydrogen such as 4-hydroxybutyl phosphate, or methyl methacrylate, ethyl methacrylate, isopropyl methacrylate,
  • the ratio of the other polyol (c) to the polycarbonate polyol (a) is preferably 40% by weight or less. If it is this range, it will be easy to avoid that the hardness of the coating film obtained falls or manufacture of a polyurethane resin water dispersion becomes difficult.
  • the ratio of the other polyol (c) is more preferably 20% by weight or less.
  • the total number of hydroxyl equivalents of the polycarbonate polyol (a), the acidic group-containing polyol (b), and any other polyol (c) is preferably 100 to 500. If the number of hydroxyl equivalents is within this range, it is easy to produce an aqueous polyurethane resin dispersion, and a coating film excellent in storage stability and hardness of an excellent aqueous polyurethane resin dispersion is easily obtained. From the viewpoint of the hardness of the coating film, it is preferably 150 to 400, more preferably 180 to 300, and particularly preferably 200 to 270.
  • the number of hydroxyl equivalents can be calculated by the following formulas (1) and (2).
  • M represents [[number of hydroxyl group equivalents of polycarbonate polyol (a) ⁇ number of moles of polycarbonate polyol (a)] + [number of hydroxyl group equivalents of acidic group-containing polyol (b) ⁇ acidic group-containing polyol ( b) Number of moles] + [number of hydroxyl equivalents of other polyol (c) ⁇ number of moles of other polyol (c)]].
  • the polyisocyanate (d) is not particularly limited, and examples thereof include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
  • aromatic polyisocyanate examples include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate, 4,4′-.
  • Diphenylmethane diisocyanate (MDI), 2,4-diphenylmethane diisocyanate, 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4 Examples include '-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate, 4,4', 4 ''-triphenylmethane triisocyanate, m-isocyanatophenylsulfonyl isocyanate, p-isocyanatophenylsulfonyl isocyanate.
  • aliphatic polyisocyanate examples include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate. Lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexano Eate.
  • alicyclic polyisocyanate examples include isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI), bis (2 -Isocyanatoethyl) -4-dichlorohexene-1,2-dicarboxylate, 2,5-norbornane diisocyanate, 2,6-norbornane diisocyanate, dimer acid diisocyanate and the like.
  • IPDI isophorone diisocyanate
  • MDI 4,4′-dicyclohexylmethane diisocyanate
  • TDI methylcyclohexylene diisocyanate
  • bis (2 -Isocyanatoethyl) -4-dichlorohexene-1,2-dicarboxylate 2,5-
  • These polyisocyanates may be used alone or in combination of two or more.
  • the number of isocyanate groups per molecule of the polyisocyanate is usually two, a polyisocyanate having three or more isocyanato groups such as triphenylmethane triisocyanate is also used as long as the polyurethane resin in the present invention does not gel. can do.
  • polyisocyanates 4,4′-diphenylenemethane diisocyanate (MDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogen) from the viewpoints of control of reactivity, high hardness, imparting strength and the like. Addition MDI) is preferred.
  • the polyurethane resin in this embodiment is a polyurethane resin obtained by reacting at least a polycarbonate polyol (a), an optional acidic group-containing polyol (b), and a polyisocyanate (d), or a polycarbonate polyol (a). And an optional acidic group-containing polyol (b) and a polyisocyanate (d) to obtain a polyurethane prepolymer (A), which is further reacted with a chain extender (B) to obtain a polyurethane Resin.
  • the polyurethane resin or polyurethane prepolymer (A) is obtained by reacting a polycarbonate polyol (a), an optional acidic group-containing polyol (b), an optional other polyol (c), and a polyisocyanate (d).
  • a polyurethane prepolymer obtained by reacting a polycarbonate polyol (a), an optional acidic group-containing polyol (b), an optional other polyol (c), and the polyisocyanate (d). It may be a polyurethane resin obtained by obtaining (A) and further reacting it with a chain extender (B).
  • the reaction temperature between the polyurethane prepolymer (A) and the chain extender (B) is: For example, it is 0 to 80 ° C., preferably 0 to 60 ° C.
  • any acidic group-containing polyol (b) and any other polyol (c) is 100 parts by weight.
  • the ratio of the polycarbonate polyol (a) is preferably 50 to 95 parts by weight, more preferably 70 to 92 parts by weight, particularly preferably 80 to 90 parts by weight
  • the ratio of the acidic group-containing polyol (b) is preferably Is 5 to 25 parts by weight, more preferably 10 to 20 parts by weight, particularly preferably 12 to 18 parts by weight
  • the proportion of the other polyol (c) is preferably 0 to 40 parts by weight, more preferably 0 to 30 parts by weight, particularly preferably 0 to 20 parts by weight.
  • the ratio of the said polycarbonate polyol (a) is said range, it will be suppressed that the hardness of a coating film becomes low and favorable film forming property will be easy to be obtained.
  • the ratio of the acidic group-containing polyol (b) is in the above range, the resulting aqueous polyurethane resin has good dispersibility in an aqueous medium, and sufficient water resistance of the coating film is easily obtained.
  • the proportion of the other polyol (c) is within the above range, the proportion of the polycarbonate polyol (a) in the total polyol component is relatively too small, or the proportion of the acidic group-containing polyol compound (b). Therefore, it is easy to obtain good hardness of the coating film and dispersibility of the aqueous polyurethane resin.
  • a polyol component comprising the polycarbonate polyol (a) and the acidic group-containing polyol (b), or the polycarbonate polyol (a) and the acidic group.
  • the ratio of the number of moles of isocyanate groups of the polyisocyanate (d) to the number of moles of all hydroxyl groups in the polyol component consisting of the polyol (b) and other polyols (c) is 1.01 to 2.5. preferable.
  • the ratio of the number of moles of isocyanate groups of the polyisocyanate (d) to the number of moles of all hydroxyl groups in the polyol component is preferably 1.2 to 2.2, particularly preferably 1.2 to 2.0.
  • a polyol component comprising the polycarbonate polyol (a), the acidic group-containing polyol (b), and, if necessary, other polyol (c)
  • a polyisocyanate (d) In the reaction with the polyisocyanate (d), (a), (b) and (c) may be reacted with (d) in any order, or a plurality of types may be mixed and reacted with (d).
  • the acid value of the polyurethane resin or polyurethane prepolymer (A) is preferably 10 to 55 mgKOH / g. If it is this range, it will be easy to ensure the dispersibility to an aqueous medium and the water resistance of a coating film.
  • the acid value is more preferably 14 to 42 mgKOH / g, still more preferably 18 to 35 mgKOH / g acid value.
  • Chain extender (B) The chain extender (B) in the present invention has reactivity with the isocyanate group of the polyurethane prepolymer (A).
  • chain extenders include ethylenediamine, 1,4-tetramethylenediamine, 2-methyl-1,5-pentanediamine, 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-hexamethylene.
  • Examples include amine compounds such as triethylenetetramine, diol compounds such as ethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol, polyalkylene glycols typified by polyethylene glycol, water and the like.
  • primary diamine compound may be used alone or in combination of two or more.
  • the addition amount of the chain extender (B) is preferably equal to or less than the equivalent of the isocyanate group serving as a chain extension starting point in the polyurethane prepolymer (A) to be obtained, and more preferably 0.7 to 0.99 of the isocyanate group. Is equivalent.
  • the chain extender (B) is added in excess of the equivalent of the isocyanato group, the molecular weight of the chain-extended polyurethane polymer (A) is lowered, and the obtained aqueous polyurethane resin dispersion is applied. The strength of the coated film decreases.
  • the chain extender (B) may be added after the dispersion of the polyurethane prepolymer in water, or may be added during the dispersion. Chain extension can also be carried out with water. In this case, water as a dispersion medium also serves as a chain extender.
  • (Meth) acrylate compounds that can be used in the present invention include (meth) acrylate compounds of monomers, polyurethane (meth) acrylate compounds, polyester (meth) acrylate compounds, polyalkylene (meth) acrylate compounds Compounds and the like.
  • (meth) acrylate refers to acrylate or / and methacrylate.
  • Examples of the monomer (meth) acrylate compound include mono (meth) acrylate, di (meth) acrylate, tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, and hexa (meth) acrylate.
  • (Meth) acrylate and poly (meth) acrylate can be used.
  • Examples of the mono (meth) acrylate include acryloylmorpholine, 2-ethylhexyl (meth) acrylate, styrene, methyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dodecyl (meth) acrylate, cyclohexyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, N-vinyl-2-pyrrolidone, 2-methacryloyl Oxyethyl isocyanate, methacryloyl isocyanate, 3-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, 3-isocyanatopropyl
  • di (meth) acrylate examples include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, Alkylene glycol di (meth) acrylates such as 6-hexanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, bisphenol A di (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di ( Polyether di (meth) acrylate such as meth) acrylate; bisphenol A ethylene oxide modified di (meth) acrylate, bisphenol A propylene oxide modified di (meth) acrylate Alkylene oxide modified di (meth) acrylates such as neopentyl glycol ethylene oxide modified di (meth) acrylate and neopentyl
  • tri (meth) acrylate examples include trimethylolpropane triacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, and pentaerythritol tri (meth) acrylate. Can be mentioned.
  • tetra (meth) acrylate examples include pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
  • Examples of the penta (meth) acrylate include dipentaerythritol penta (meth) acrylate.
  • hexa (meth) acrylate examples include dipentaerythritol hexa (meth) acrylate.
  • poly (poly (meth) acrylate such as di (meth) acrylate, tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, hexa (meth) acrylate, etc.
  • (Meth) acrylate is preferred. This is because by having a plurality of (meth) acryloyl groups in the molecule, it is easier to increase the molecular weight than in the case of mono (meth) acrylates.
  • known polymers can be used as the (meth) acrylate compound.
  • a compound having a polyalkylene glycol structure in the molecule is preferable, and a compound having a polyalkylene glycol structure represented by the following general formula (1) in the molecule is particularly preferable. Since the (meth) acrylate compound of the polymers has a polyalkylene glycol structure in the molecule, it becomes easier to disperse in an aqueous medium, and the storage stability of the resulting aqueous polyurethane dispersion is improved.
  • the polyalkylene glycol structure is a structure represented by the following general formula (1), since the storage stability of the (meth) acrylate compound itself of the polymers is high and the dispersibility in an aqueous medium is also high, preferable.
  • R represents a linear or branched alkyl group having 2 to 5 carbon atoms which may have a substituent, and n represents an integer of 1 to 10.
  • Examples of the (meth) acrylate compound of the polymer that is a compound having a polyalkylene glycol structure in the molecule include di (meth) acrylate, tri (meth) acrylate, tetra (meth) acrylate in addition to mono (meth) acrylate. And poly (meth) acrylates such as acrylate.
  • a urethane acrylate compound can also be mentioned as a (meth) acrylate compound of polymers.
  • the urethane acrylate compound is a compound having a urethane skeleton and at least one (meth) acryloyl group in the molecule. That is, it has a structure in which a (meth) acryloyl group is bonded to a terminal (including a side chain) of a urethane polymer (including an oligomer).
  • the number of (meth) acryloyl groups is preferably 2-8.
  • the (meth) acryloyl group is a group represented by CH 2 ⁇ C (R 01 ) C ( ⁇ O) — (where R 01 is H or CH 3 ).
  • the urethane skeleton part has the same structure as that of the above-described polyurethane resin, that is, a structure obtained by a reaction between a polyol and a polyisocyanate compound.
  • the (meth) acryloyl group is generally introduced by reacting a hydroxyl group-containing (meth) acrylic compound with an isocyanate group. After reacting a polyol and an isocyanate compound, it can be produced by further reacting a hydroxyl group-containing (meth) acrylic compound, or reacting a polyol, an isocyanate compound and a hydroxyl group-containing (meth) acrylic compound simultaneously.
  • polystyrene resin examples include polycarbonate polyol, polyester polyol, polyether polyol, polyolefin polyol, acrylic polyol, and polydiene polyol. These compounds may be used alone or in combination. In addition, a polyol having a specific functional group may be used in combination in order to provide a desired function.
  • Preferred polyols are polycarbonate polyols, polyester polyols, polyether polyols, and combinations thereof, with polycarbonate polyols being particularly preferred. Among these, those described in the section of polycarbonate polyol (a) are preferable. The polyester polyol and polyether polyol have been described in the section of other polyol (c).
  • polyisocyanate compound as a raw material of the urethane acrylate compound, those described in the section of polyisocyanate (d) can be used.
  • hydroxyl group-containing (meth) acrylic compound a hydroxyl group-containing (meth) acrylate is preferable.
  • a hydroxyl group-containing (meth) acrylate is preferable.
  • the urethane acrylate compound is composed of molecules based on the above raw material compounds.
  • Examples of the mono (meth) acrylate include polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol-polypropylene glycol mono (meth) acrylate, and poly (ethylene glycol-tetramethylene glycol) mono (meth).
  • poly (meth) acrylate examples include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol-polypropylene glycol di (meth) acrylate, and poly (ethylene glycol-tetramethylene glycol) di (meth).
  • the (meth) acrylate compound a commercially available product may be used as it is.
  • a commercial item each grade of the Blemmer series by Nippon Oil & Fats, Lamarer (registered trademark) by BASF, etc. are mentioned, for example.
  • the (meth) acrylate of the polymer other than the compound having the polyalkylene glycol structure for example, an acrylic polymer having a polymerizable unsaturated bond at the molecular end can be used.
  • acrylic polymer having a polymerizable unsaturated bond at the molecular end examples include, for example, polybutyl acrylate having a polymerizable double bond at the molecular end (“Act Flow BGV-100T” manufactured by Soken Chemical Co., Ltd.) Examples thereof include polybutyl acrylate having a polymerizable double bond at the terminal (“Act Flow” manufactured by Soken Chemical Co., Ltd.)
  • (Meth) acrylate compounds may be used alone or in combination of two or more.
  • the proportion of the (meth) acrylate compound is, for example, 2% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more, out of 100% by weight of the solid content (solid content based on the resin component) in the coating composition. More preferably, it is 10% by weight or more, and usually 80% by weight or less, for example 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less, even more preferably 40% by weight or less, Preferably it is 30 weight% or less. If the proportion of the (meth) acrylate compound is too small, the solvent resistance decreases, and if it is too large, the adhesion with the polyimide film decreases.
  • the (meth) acrylic equivalent of the (meth) acrylate compound is preferably 90 to 300. If it is this range, the storage stability of a water-based polyurethane resin dispersion is favorable, and the light resistance and hardness of a coating film are easy to be obtained.
  • the (meth) acrylic equivalent of the (meth) acrylate compound is more preferably 90 to 150. When a plurality of (meth) acrylate compounds are used in combination, the sum of (meth) acrylic equivalents of each (meth) acrylate compound multiplied by the ratio of each (meth) acrylate compound in all (meth) acrylate compounds is The (meth) acrylic equivalent of the (meth) acrylate compound.
  • (meth) acryl equivalent means a methacryl equivalent and an acrylic equivalent, and is represented by a following formula.
  • (Meth) acrylic equivalent (molecular weight of (meth) acrylate compound) / (number of (meth) acryloyl groups in one molecule)
  • a bifunctional (meth) acrylate compound (C1) and a trifunctional or higher functional (meth) acrylate compound (C2) as the (meth) acrylate compound.
  • the “bifunctional (meth) acrylate compound” represents a compound having two (meth) acryloyl groups in one molecule
  • the “trifunctional or more (meth) acrylate compound” represents one molecule.
  • a compound having three or more (meth) acryloyl groups is represented.
  • the bifunctional (meth) acrylate compound (C1) is not particularly limited, and for example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, Alkylene glycol di (meth) acrylates such as 4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, bisphenol A di (meth) acrylate; Polyether di (meth) acrylates such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; bisphenol A ethylene oxide modified di (meth) acrylate, bisphenol A propylene Alkylene oxide modified di (meth) acrylates such as oxide modified di (meth)
  • bifunctional (meth) acrylate compounds alkylene glycol di (meth) acrylate and polyether diene are easily available, have a high consumption ratio of acryloyl groups by light irradiation, and are excellent in light resistance of the resulting coating film.
  • (Meth) acrylate is preferred, polyether di (meth) acrylate is more preferred, and polypropylene glycol di (meth) acrylate is particularly preferred.
  • These bifunctional (meth) acrylate compounds may be used alone or in combination.
  • polypropylene glycol di (meth) acrylate examples include dipropylene glycol diacrylate (number average molecular weight 242; for example, APG-100 manufactured by Shin-Nakamura Chemical Co., Ltd., DPGDA manufactured by Daicel Ornex Co., Ltd.), tripropylene glycol diacrylate (number Average molecular weight 300, for example, Aronix M-220 manufactured by Toagosei Co., Ltd., APG-200 manufactured by Shin-Nakamura Chemical Co., Ltd., TPGDA manufactured by Daicel Ornex Co., Ltd., etc. M-225, Shin-Nakamura Chemical Co., Ltd.
  • dipropylene glycol diacrylate number average molecular weight 242; for example, APG-100 manufactured by Shin-Nakamura Chemical Co., Ltd., DPGDA manufactured by Daicel Ornex Co., Ltd.
  • tripropylene glycol diacrylate number Average molecular weight 300, for example, Aronix
  • the number average molecular weight of the polypropylene glycol di (meth) acrylate is not particularly limited, but is preferably 500 or less from the viewpoint of obtaining a hard coating film.
  • dipropylene glycol diacrylate and tripropylene glycol diacrylate are preferable from the viewpoint of stability of the polyurethane resin aqueous dispersion, and tripropylene glycol diacrylate is more preferable from the viewpoint of skin irritation of the polyurethane resin aqueous dispersion.
  • Trifunctional or higher (meth) acrylate compound (C2) examples include trimethylolpropane triacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, and pentaerythritol.
  • Tri (meth) acrylate compounds such as tri (meth) acrylate and tris (acryloyloxyethyl) isocyanurate; Tetra (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate; Dipentaerythritol penta (meth) acrylate and the like Penta (meth) acrylate compounds; hexa (meth) acrylate compounds such as dipentaerythritol hexa (meth) acrylate and the like.
  • tri- or higher functional (meth) acrylates trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are preferable from the viewpoint of stability of the polyurethane resin aqueous dispersion. From the viewpoint of consumption of acryloyl groups during ultraviolet irradiation, trimethylolpropane triacrylate, pentaerythritol triacrylate, and pentaerythritol tetraacrylate are more preferable.
  • These trifunctional or higher functional (meth) acrylate compounds may be used alone or in combination of two or more. For example, combined use of a tri (meth) acrylate compound and a tetra (meth) acrylate compound can be mentioned.
  • the tri- or higher functional (meth) acrylate compound (C2) is tri-functional or higher without an average of two or more ether bonds in the molecule because of its availability and high hardness of the resulting coating film.
  • (Meth) acrylate compound is preferable, trifunctional (meth) acrylate compound having no ether bond in the molecule and / or tetrafunctional (meth) acrylate compound having no ether bond in the molecule is more preferable, Tri (meth) acrylate having no ether bond in the molecule is particularly preferred.
  • Tri (meth) acrylate having no ether bond in the molecule is particularly preferred.
  • the triol triacrylates trimethylolpropane triacrylate and / or trimethylolpropane trimethacrylate is preferable because of its availability.
  • the respective ratios are preferably 5:95 to 95: 5. If it is this range, the coating film excellent in hardness and light resistance will be easy to be obtained.
  • Each ratio is more preferably 90:10 to 20:80, and still more preferably 80:20 to 40:60.
  • the coating composition containing the polyurethane resin and the (meth) acrylate compound may include a dispersion medium and / or a solvent.
  • examples of the dispersion medium include water and a mixed solvent of water and a hydrophilic organic solvent.
  • hydrophilic organic solvents examples include lower monohydric alcohols such as methanol, ethanol and propanol; polyhydric alcohols such as ethylene glycol and glycerin; Hydrophilic organic solvents and the like.
  • the amount of the hydrophilic organic solvent in the aqueous medium is preferably 0 to 20% by weight.
  • the polyurethane resin is a solvent type
  • an aromatic solvent such as toluene or xylene
  • an ester solvent such as ethyl acetate
  • a petroleum solvent such as mineral spirit, or the like
  • a polymerization initiator may be added to the coating composition.
  • a thermal polymerization initiator or a photopolymerization initiator can be added.
  • a photopolymerization initiator it depends on the application, it is preferable to add a photopolymerization initiator to form a photo-curing type because a cured coating layer can be obtained at a relatively low temperature.
  • the thermosetting type which does not need to contain a thermal polymerization initiator is particularly preferable because it has an effect of lowering the yellowness.
  • thermal polymerization initiators can be used, such as diacyl peroxides, ketone peroxides, hydroperoxides, dialkyl peroxides, peroxyesters, azo compounds, persulfates, etc. Can be mentioned. These may be used alone or in combination of two or more.
  • photopolymerization initiator those generally used can be used, for example, photocleavage type and / or hydrogen abstraction type that can be easily cleaved to form two radicals by ultraviolet irradiation, or a mixture thereof. can do.
  • these compounds include acetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, benzophenone, 2-chlorobenzophenone, p, p′-bisdiethylaminobenzophenone, benzoin ethyl ether, benzoin n-propyl ether, Benzoin isopropyl ether, benzoin isobutyl ether, benzoin n-butyl ether, benzoin dimethyl ketal, thioxanthone, p-isopropyl- ⁇ -hydroxyisobutylphenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ket
  • additives such as thickeners, photosensitizers, curing catalysts, ultraviolet absorbers, light stabilizers, antifoaming agents, plasticizers, surface conditioners, anti-settling agents may be added. It can.
  • the said additive may be used independently and may use multiple types together.
  • substantially no protective colloid, emulsifier, or surfactant is contained from the viewpoint of the hardness and chemical resistance of the resulting coating film.
  • resins can also be added to the coating composition of the present invention.
  • other resins include polyester resins, acrylic resins, polyether resins, polycarbonate resins, polyurethane resins, epoxy resins, alkyd resins, and polyolefin resins. These may be used alone or in combination of two or more.
  • the other resin preferably has one or more hydrophilic groups. Examples of the hydrophilic group include a hydroxyl group, a carboxy group, a sulfonic acid group, and a polyethylene glycol group. When other resins are added, they are preferably used in an amount of 10% by weight or less (including 0% by weight) of the total resin components.
  • Polyurethane resin based on polycarbonate polyol, or method for producing coating composition containing polyurethane resin and (meth) acrylate compound Polyurethane resin based on polycarbonate polyol, or production of coating composition containing polyurethane resin and (meth) acrylate compound For example, it can manufacture according to the method described in WO2011 / 010719.
  • Examples of the acidic group neutralizing agent that can be used in the step ( ⁇ ) of neutralizing the acidic group of the polyurethane prepolymer (A) include trimethylamine, triethylamine, triisopropylamine, tributylamine, triethanolamine, N-methyldiethanolamine, N -Organic amines such as phenyldiethanolamine, dimethylethanolamine, diethylethanolamine, N-methylmorpholine, pyridine and the like can be used.
  • Manufacture of the polyimide film laminated body of this invention can be implemented by apply
  • the coating method is not particularly limited, and known methods such as die coating, screen printing, and spin coating can be used.
  • the thickness of the coating layer after curing is not particularly limited, but is usually about 5 nm to 20 ⁇ m. Particularly preferably, it is 10 ⁇ m or less, more preferably 5 ⁇ m or less, further preferably less than 5 ⁇ m, still more preferably 4 ⁇ m or less, and most preferably 3 ⁇ m or less. Moreover, 10 nm or more is more preferable. Therefore, the coating thickness of the coating liquid is determined so that the thickness becomes such after curing. In particular, as shown in the examples, when the thickness of the coating layer is increased, the surface hardness may be insufficient when a hard coat layer is formed thereon as a surface layer.
  • the polyimide film laminated body of this invention can be manufactured by forming a coating layer on a polyimide film.
  • a surface layer can be formed by applying a solvent-containing material thereon.
  • a hard coat layer is formed by applying a hard coat material, the scratch resistance of the polyimide surface can be improved.
  • the hardness of the surface layer is preferably 2H or more in terms of pencil hardness.
  • one embodiment of the present invention relates to a laminate (with a surface layer) comprising a polyimide film, a coating layer, and a surface layer.
  • a surface layer as described above, a hard coat layer capable of improving the scratch resistance of the polyimide surface is preferable.
  • a laminate (with a surface layer) having a hard coat layer has a surface hardness of 2H or more in pencil hardness.
  • the hard coat layer can be formed of an organic material (cured resin), an inorganic material, an organic-inorganic hybrid type material (such as a cured resin containing an inorganic material), or the like.
  • the formation method can be selected according to each material. From the viewpoint of applicability to mass production and cost, for example, it is preferably formed by a coating method using a curable resin composition described below.
  • the curable resin composition contains at least a curable resin component and is cured by light or heat to become a cured product (polymerized product, crosslinked product).
  • the curable resin composition contains a curing agent (crosslinking agent, light or thermal polymerization initiator, co-reactant) as necessary. It is also preferable that the curable resin composition contains an inorganic filler.
  • a solvent-drying resin may be included. If necessary, a solvent may be included.
  • the curable resin composition is a liquid composition in which each component is mixed, a liquid film form that has been applied, a film form in which the solvent has been removed but has not been finally cured, etc. Includes items that have not been processed.
  • the curable resin having photocurability examples include those having at least one photopolymerizable functional group.
  • the “photopolymerizable functional group” is a functional group capable of undergoing a polymerization reaction by light irradiation.
  • the photopolymerizable functional group include ethylenic double bonds such as a (meth) acryloyl group, a vinyl group, and an allyl group.
  • Specific examples of the photocurable resin component include polyfunctional (meth) acrylate monomers, (meth) acrylate prepolymers, and photocurable polymers. The polyfunctional (meth) acrylate monomer and the (meth) acrylate prepolymer may be used alone or in combination.
  • the light irradiated when the curable resin composition (in the case of photocuring) is cured includes visible light and ionizing radiation such as ultraviolet rays, X-rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays. Is mentioned.
  • thermosetting resin having thermosetting property has at least one thermosetting functional group.
  • usable thermosetting resins include epoxy resins, polyimide resins, phenol resins, silicone resins, cyanate resins, bismaleimide triazine resins, and allylation. Examples include polyphenylene ether resin (thermosetting PPE), formaldehyde resin, unsaturated polyester, and copolymers thereof.
  • inorganic fillers examples include powders such as silica, alumina, boehmite, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride, and zirconium oxide, beads formed by spheroidizing these, single crystal fibers, and glass fibers. These can be used alone or in admixture of two or more. Among these, silica, alumina, boehmite, titanium oxide, zirconium oxide and the like are preferable, and silica, titanium oxide and zirconium oxide are more preferable.
  • the inorganic filler is preferably surface-modified. An example of such a particularly preferred inorganic filler is reactive silica.
  • “reactive silica” is silica fine particles whose surface is modified with an organic compound having a photocurable unsaturated group.
  • the silica fine particles (reactive silica) surface-modified with the organic compound having a photocurable unsaturated group are usually silica fine particles having an average particle size of about 0.5 to 500 nm, preferably an average particle size of 1 to 200 nm. It can be obtained by reacting a silanol group on the surface with a photocurable unsaturated group-containing organic compound having a functional group capable of reacting with the silanol group and a (meth) acryloyl group.
  • the average particle size of the inorganic filler used in the present embodiment is preferably 1 to 200 nm, particularly preferably 10 to 200 nm, and further preferably 20 to 200 nm.
  • the average particle size of the inorganic filler is 1 nm or more, the hard coat layer obtained by curing the curable resin composition has higher surface hardness. Further, when the average particle size of the inorganic filler is 200 nm or less, light scattering hardly occurs in the obtained hard coat layer, and the transparency of the hard coat layer becomes high.
  • the content of the inorganic filler in the hard coat layer of the present embodiment is preferably 10 to 85% by volume, particularly preferably 20 to 80% by volume, and 40 to 70% by volume with respect to the hard coat layer. More preferably, it is most preferably 45 to 65% by volume.
  • the content of the inorganic filler is 10% by volume or more, the surface hardness imparted to the hard coat layer becomes higher.
  • formation of a hard-coat layer becomes easy because content of an inorganic filler is 85 volume% or less.
  • the curable resin composition may contain various additives in addition to the components described above.
  • the various additives include ultraviolet absorbers, antioxidants, light stabilizers, antistatic agents, silane coupling agents, anti-aging agents, thermal polymerization inhibitors, colorants, surfactants, storage stabilizers, plasticizers.
  • a curable resin composition is applied on the coating layer of the polyimide film / coating layer laminate, and if necessary, the solvent is dried. Then, the hard coat layer formed of a cured product is obtained by light irradiation or heating.
  • the thickness of the hard coat layer is, for example, 1 to 50 ⁇ m, preferably 5 to 40 ⁇ m.
  • the thickness of the hard coat layer is 1 ⁇ m or more, sufficient surface hardness is imparted to the hard coat laminate according to this embodiment.
  • the thickness of the hard coat layer is 50 ⁇ m or less, the hard coat laminate is excellent in bending resistance and easy to handle, and the hard coat laminate becomes unnecessarily thick and the manufacturing cost increases. Can be prevented.
  • Total light transmittance Using a UV-visible spectrophotometer / V-650DS (manufactured by JASCO), the light transmittance at the total light transmittance (average transmittance from 380 nm to 780 nm) of the polyimide film was measured.
  • Linear thermal expansion coefficient (CTE) A polyimide film is cut into a strip of 4 mm in width to make a test piece, and TMA / SS6100 (manufactured by SII Nano Technology Co., Ltd.) is used. The temperature rose. The linear thermal expansion coefficient from 100 ° C. to 250 ° C. was determined from the obtained TMA curve.
  • Evaluation criteria Evaluation was performed according to ASTM D3359-02.
  • PI film 1 In a reaction vessel substituted with nitrogen gas, 1.14 g (10 mmol) of tra-DACH was added, and DMAc was added in an amount of 29.95 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 12% by mass. And stirred at room temperature for 1 hour. To this solution, 2.87 g (9.75 mmol) of s-BPDA and 0.07 g (0.25 mmol) of a-BPDA were gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated as it is on the substrate at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and finally 350 ° C. And imidized thermally to obtain a colorless and transparent polyimide film / glass laminate. Subsequently, the obtained polyimide film / glass laminate was immersed in water and then peeled and dried to obtain a polyimide film (PI film 1) having a film thickness of 8 ⁇ m.
  • Iupilex-75S manufactured by Ube Industries, “Iupirex” is a registered trademark
  • Iupirex is a registered trademark
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere as it is from room temperature to 310 ° C. to thermally imidize, and a colorless transparent polyimide film / glass A laminate was obtained. Subsequently, the obtained polyimide film / glass laminate was immersed in water and then peeled and dried to obtain a polyimide film (PI film 4) having a film thickness of 80 ⁇ m.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere as it is from room temperature to 350 ° C., and thermally imidized to form a colorless transparent polyimide film / glass.
  • a laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water, peeled and dried to obtain a polyimide film (PI film 5) having a film thickness of 54 ⁇ m.
  • TFMB 3.20 g (10 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was added in an amount of 28.78 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour. To this solution, 3.11 g (7 mmol) of 6FDA and 0.88 g (3 mmol) of s-BPDA were gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
  • a polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere as it is from room temperature to 350 ° C., and thermally imidized to form a colorless transparent polyimide film / glass.
  • a laminate was obtained.
  • the obtained polyimide film / glass laminate was immersed in water and then peeled and dried to obtain a polyimide film (PI film 6) having a film thickness of 38 ⁇ m.
  • a polyimide precursor solution was produced in the same manner as [PI film 4].
  • the polyimide precursor solution is filtered through a PTFE membrane filter, applied onto Ube Industries' polyimide film, Upilex (registered trademark) -125S, and heated from room temperature to 280 ° C on a glass substrate in a nitrogen atmosphere.
  • Thermal imidization was performed to obtain a colorless and transparent polyimide film / Upilex (registered trademark) -125S laminate (laminate 1).
  • the polyimide film was peeled from the obtained polyimide film / Upilex (registered trademark) -125S laminate. It should be noted that the peeling could be easily performed without being immersed in water or the like.
  • a polyimide film (PI film 7) having a film thickness of 80 ⁇ m was obtained.
  • the acrylic equivalent of the (meth) acrylate compound (mixture of TMPTA and TPGDA) of this aqueous polyurethane resin dispersion is 119. 0.15 g of BYK-345 (manufactured by ALTANA) as a surfactant was added to 100 g of this aqueous polyurethane resin dispersion, and the mixture was stirred at room temperature to obtain a coating composition 1.
  • a coating composition 2 was obtained by adding 1.5 g of a photopolymerization initiator (Irgacure 500, manufactured by BASF) to 100 g of the coating composition 1 and stirring well.
  • a photopolymerization initiator Irgacure 500, manufactured by BASF
  • ETERRNACOLL registered trademark
  • UH200 manufactured by Ube Industries; number average molecular weight 2007; hydroxyl value 55.9 mgKOH / g
  • polyol component reacts 1,6-hexanediol with carbonate ester in a reactor equipped with a stirrer and a heater.
  • Polycarbonate diol 190 grams
  • 2,2-dimethylolpropionic acid 20.4 grams
  • 3-methoxy-N, N-dimethylpropane The reaction was carried out in amide (90.0 grams) by heating at 80-90 ° C.
  • the acrylic equivalent of the (meth) acrylate compound (PE (EO) TTA) of this aqueous polyurethane resin dispersion is 143.
  • 0.15 g of BYK-345 (manufactured by ALTANA) as a surfactant was added and stirred at room temperature to obtain coating composition 3.
  • acrylate compound a mixture of trimethylolpropane triacrylate (TMPTA) and tripropylene glycol diacrylate (TPGDA) (weight ratio 1: 1, 113 grams) was mixed with the reaction mixture, and the water was mixed under strong stirring. (800 grams), except that the aqueous polyurethane resin dispersion having a solid content of 29.6% and an acrylic content of 27.9% in the solid content was the same as the production of the coating composition 1 described above. Obtained. Thereafter, the coating composition 4 was obtained in the same manner.
  • TMPTA trimethylolpropane triacrylate
  • TPGDA tripropylene glycol diacrylate
  • Coating composition 5 As the acrylate compound, except that a mixture of trimethylolpropane triacrylate (TMPTA) and tripropylene glycol diacrylate (TPGDA) (weight ratio 1: 1, 16 grams) was used, the same as in the production of the coating composition 4, An aqueous polyurethane resin dispersion having a solid content of 29.6% and an acrylic content in the solid content of 5% was obtained. Thereafter, the coating composition 5 was obtained in the same manner.
  • TMPTA trimethylolpropane triacrylate
  • TPGDA tripropylene glycol diacrylate
  • Comparative coating composition 1 was obtained in the same manner as coating composition 1 except that the acrylate compound was not added.
  • Hard coat a STR-SiA manufactured by Taisei Fine Chemical Co., Ltd. was used. STR-SiA To 100 g, 3 g of IRUGACURE (registered trademark) 184 was added as a photoinitiator and stirred at room temperature to obtain a hard coat solution (hard coat a).
  • Hard coat b FUJIHARD (registered trademark) HO3313U-8 manufactured by Fujikura Kasei
  • Example 1 On the PI film 1, the coating composition 1 was uniformly applied so that the film thickness after drying was 3 ⁇ m. Subsequently, it was made to dry and harden
  • Example 2 and 3 The coating composition 1 was uniformly applied on the PI films 2 and 3 (corresponding to Examples 2 and 3 respectively) so that the film thickness after drying was 2 ⁇ m. Subsequently, it was dried and cured at 80 ° C. for 30 minutes and 150 ° C. for 30 minutes, and a coating layer was formed on the polyimide film to obtain a polyimide film laminate.
  • Examples 4 and 5 On the PI film 4, coating compositions 1 and 3 (corresponding to Examples 4 and 5 respectively) were uniformly applied so that the film thickness after drying was 2 ⁇ m. Subsequently, it was made to dry and harden
  • Example 6 and 7 On the PI film 4, the coating composition 1 was uniformly applied so that the film thickness after drying was 4 ⁇ m and 0.5 ⁇ m (corresponding to Examples 6 and 7, respectively). Subsequently, it was made to dry and harden
  • Example 8 On the PI film 4, the coating composition 2 was uniformly applied so that the film thickness after drying was 2 ⁇ m. Subsequently, the coating film (before ultraviolet irradiation) was obtained by drying at 80 degreeC for 30 minutes. A polyimide film laminate was obtained by passing under an 80 W metal halide lamp (single irradiation, ultraviolet irradiation amount 1000 mJ / cm 2) to form a coating layer on the polyimide film.
  • 80 W metal halide lamp single irradiation, ultraviolet irradiation amount 1000 mJ / cm 2
  • Example 9 and 10 On the PI films 5 and 6 (corresponding to Examples 9 and 10 respectively), the coating composition 1 was uniformly applied so that the film thickness after drying was 2 ⁇ m. Subsequently, it was dried and cured at 80 ° C. for 30 minutes and 150 ° C. for 30 minutes, and a coating layer was formed on the polyimide film to obtain a polyimide film laminate.
  • Comparative Examples 2 and 5 On the PI films 2 and 4 (corresponding to Comparative Examples 2 and 5 respectively), the comparative coating composition 1 was uniformly applied so that the film thickness after drying was 2 ⁇ m. Subsequently, it was dried and cured at 80 ° C. for 30 minutes and 150 ° C. for 30 minutes, and a coating layer was formed on the polyimide film to obtain a polyimide film laminate.
  • Example 11 On the PI film 7, the coating composition 4 (Example 11) and the coating composition 5 (Example 12) were uniformly applied so that the film thickness after drying was 2 ⁇ m. Subsequently, it was made to dry and harden
  • Example 13 to 15 The coating composition 1 is uniformly applied on the PI film 7 using a spin coater so that the film thickness after drying is 500 nm (Example 13), 100 nm (Example 14), and 30 nm (Example 15), respectively. It was applied to. Subsequently, it was dried and cured at 80 ° C. for 5 minutes and 150 ° C. for 5 minutes, and a coating layer was formed on the polyimide film to obtain polyimide film laminates (laminates 4 to 6).
  • the coating composition 1 was uniformly applied so that the film thickness after drying was 5 ⁇ m. Subsequently, it was made to dry and harden
  • Example 16 to 18 The hard coat a is applied on the coating layers of the obtained laminates 4 to 6 with a bar coater so that the thickness of the hard coat layer after drying is about 10 ⁇ m, dried at 80 ° C. for 10 minutes, and high pressure mercury The lamp was used to irradiate with ultraviolet rays so that the integrated light amount was 1000 mJ / cm 2. Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide / coating layer / hard-coat laminated body.
  • Example 19 A hard coat b is applied on the coating layer of the obtained laminate 4 with a bar coater so that the thickness of the hard coat layer after drying is about 10 ⁇ m, and dried at 80 ° C. for 10 minutes. It was used to irradiate with ultraviolet rays so that the accumulated light amount was 1000 mJ / cm 2 . Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide / coating layer / hard-coat laminated body.
  • the hard coat b is coated with a bar coater so that the thickness of the hard coat layer after drying is about 10 ⁇ m, and dried at 80 ° C. for 10 minutes. Ultraviolet rays were irradiated so as to be 1000 mJ / cm 2. Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide / coating layer / hard-coat laminated body.
  • Example 20 and 21 Coating with a bar coater so that the thickness of the hard coat layer after drying the hard coat b on the coating layer of the obtained laminate 2 (Example 20) and laminate 3 (Example 21) is about 10 ⁇ m. Then, it was dried at 80 ° C. for 10 minutes, and irradiated with ultraviolet rays using a high-pressure mercury lamp so that the integrated light amount became 1000 mJ / cm 2. Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide / coating layer / hard-coat laminated body.
  • Example 22 On the PI film 7 of the laminate 1 (PI film 7 / UPILEX (registered trademark) -125S laminate), the coating composition 1 is applied using a spin coater so that the film thickness after drying becomes 0.5 ⁇ m. It was applied evenly. Subsequently, it was made to dry and harden
  • a bar coater so that the thickness of the hard coat layer after drying is about 10 ⁇ m, dried at 80 ° C. for 10 minutes, and integrated using a high-pressure mercury lamp.
  • Ultraviolet rays were irradiated so that the amount of light was 1000 mJ / cm 2 . Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide (Upilex (trademark) -125S) / polyimide (PI film 7) / coating layer / hard coat laminated body. Thereafter, the polyimide (PI film 7) / coating layer / hard coat laminate was peeled from Upilex (registered trademark) -125S. It should be noted that the peeling could be easily performed without being immersed in water or the like.
  • a polyimide film laminate having improved adhesion to other functional layers while taking advantage of conventional characteristics of polyimide film such as chemical resistance, mechanical strength, electrical characteristics, and dimensional stability.
  • it can be suitably used as a substrate for a display, a touch panel, a solar cell, a protective film, or the like.

Abstract

Provided is a polyimide film layered body having enhanced adhesion to another functional layer while making use of the characteristics of a conventional polyimide film. This polyimide film layered body has a polyimide film, and a coating layer formed from a cured material of a coating composition containing a polyurethane resin and a (meth)acrylate compound on the surface of the polyimide film.

Description

ポリイミドフィルム積層体Polyimide film laminate
 本発明は、表面の接着性に優れたポリイミドフィルム積層体に関する。 The present invention relates to a polyimide film laminate having excellent surface adhesion.
 ポリイミドフィルムは、耐熱性、耐薬品性、機械的強度、電気特性、寸法安定性などに優れていることから、電気・電子デバイス分野、半導体分野などの分野で広く使用されてきた。一方、近年、高度情報化社会の到来に伴い、光通信分野の光ファイバーや光導波路等、表示装置分野の液晶配向膜やカラーフィルター用保護膜等の光学材料の開発が進んでいる。特に表示装置分野で、ガラス基板の代替として軽量でフレキシブル性に優れたプラスチック基板の検討や、曲げたり丸めたりすることが可能なディスプレイの開発が盛んに行われている。このため、その様な用途に用いることができる、より高性能の光学材料が求められている。 Polyimide films have been widely used in the fields of electric / electronic devices and semiconductors because they are excellent in heat resistance, chemical resistance, mechanical strength, electrical properties, dimensional stability, and the like. On the other hand, in recent years, with the arrival of an advanced information society, development of optical materials such as a liquid crystal alignment film and a protective film for a color filter in the display device field, such as an optical fiber and an optical waveguide in the optical communication field, is progressing. In particular, in the field of display devices, a plastic substrate that is lightweight and excellent in flexibility as a substitute for a glass substrate has been studied, and a display that can be bent and rolled has been actively developed. For this reason, there is a demand for higher performance optical materials that can be used for such applications.
 芳香族ポリイミドは、分子内共役や電荷移動錯体の形成により、本質的に黄褐色に着色する。このため着色を抑制する手段として、例えば分子内へのフッ素原子の導入、主鎖への屈曲性の付与、側鎖として嵩高い基の導入などによって、分子内共役や電荷移動錯体の形成を阻害して、透明性を発現させる方法が提案されている(例えば、特許文献1)。 Aromatic polyimide is essentially yellowish brown due to intramolecular conjugation and the formation of charge transfer complexes. For this reason, as a means to suppress coloration, for example, introduction of fluorine atoms into the molecule, imparting flexibility to the main chain, introduction of bulky groups as side chains, etc. inhibits intramolecular conjugation and charge transfer complex formation. And the method of expressing transparency is proposed (for example, patent document 1).
 また、原理的に電荷移動錯体を形成しない半脂環式または全脂環式ポリイミドを用いることにより透明性を発現させる方法も提案されている(例えば、特許文献2~5)。 In addition, a method for expressing transparency by using a semi-alicyclic or fully alicyclic polyimide that does not form a charge transfer complex in principle has been proposed (for example, Patent Documents 2 to 5).
特表2010-538103号公報Special table 2010-538103 gazette 特開2012-41529号公報JP 2012-41529 A 国際公開第2014/046064号International Publication No. 2014/046064 特開2009-286706号公報JP 2009-286706 A 特開2014-92775号公報JP 2014-92775 A 国際公開2014/092422号公報International Publication No. 2014/092422 特開2015-58595号公報JP2015-58595A
 ポリイミドは、耐熱性および耐薬品性に優れている一方、他の層との密着性・接着性が不十分である場合が多い。このため、ポリイミドフィルム表面に特定の機能を有する層を設けることができない場合があり、ポリイミドフィルムの用途拡大を図る上で問題となる。 Polyimide is excellent in heat resistance and chemical resistance, but often has insufficient adhesion and adhesion to other layers. For this reason, the layer which has a specific function may not be provided in the polyimide film surface, but it will become a problem when aiming at the use expansion of a polyimide film.
 特許文献6(国際公開2014/092422号公報;対応日本出願公開は特表2016-501144号公報)には、ポリイミドフィルム上に、アクリレート基を含み且つ1分子当たりイソシアネート基の数が2~5個のポリイソシアネートの硬化層を含む透明ポリイミド基板が開示されている。しかし、特許文献6に記載されたポリイミド基板では、ポリイソシアネートの硬化層が引っかき抵抗性を有する点に特徴があり、ポリイミドフィルムと他の層との密着性・接着性を向上させる発明ではない。また、ポリイソシアネートが、分子中にアクリレート基とイソシアネート基を有する点で、以下に説明する本発明とは異なる。 In Patent Document 6 (International Publication No. 2014/092422; published Japanese Patent Application No. 2016-501144), the polyimide film contains acrylate groups and has 2 to 5 isocyanate groups per molecule. A transparent polyimide substrate comprising a cured layer of a polyisocyanate is disclosed. However, the polyimide substrate described in Patent Document 6 is characterized in that the cured layer of polyisocyanate has scratch resistance, and is not an invention that improves the adhesion and adhesion between the polyimide film and other layers. The polyisocyanate is different from the present invention described below in that it has an acrylate group and an isocyanate group in the molecule.
 特許文献7(特開2015-58595号公報)には、支持体とウレタン(メタ)アクリレートモノマーの重合体を含有する表面被覆層を有する複合フィルムが記載されている。しかし、ウレタン(メタ)アクリレートモノマーまたはその重合体とは異なるウレタン樹脂と、(メタ)アクリレート化合物とを含有する組成物の硬化物により形成された被覆層は記載されていない。また支持体の一例としてポリイミドが挙げられているが、ポリイミドを支持体として用いた実施例はなく、密着性等の性質については実証されていない。 Patent Document 7 (Japanese Patent Application Laid-Open No. 2015-58595) describes a composite film having a support and a surface coating layer containing a polymer of urethane (meth) acrylate monomer. However, the coating layer formed of the hardened | cured material of the composition containing the urethane resin different from a urethane (meth) acrylate monomer or its polymer and a (meth) acrylate compound is not described. Moreover, although polyimide is mentioned as an example of a support body, there is no Example which used the polyimide as a support body, and properties, such as adhesiveness, are not proven.
 本発明は、前記問題点に鑑みてなされたものであり、ポリイミドフィルムの従来からの特徴を生かしながら、他の機能層との密着性を向上させたポリイミドフィルム積層体を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a polyimide film laminate having improved adhesion with other functional layers while taking advantage of the conventional characteristics of polyimide films. To do.
 本発明は、以下の各項に関する。 The present invention relates to the following items.
 1. ポリイミドフィルムと、
 このポリイミドフィルムの表面に、ポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物の硬化物で形成されているコーティング層と
を有することを特徴とするポリイミドフィルム積層体(但し、前記ポリウレタン樹脂は、ウレタン(メタ)アクリレートモノマーおよびその重合体を含まない。)。
1. Polyimide film,
A polyimide film laminate having a coating layer formed of a cured product of a coating composition containing a polyurethane resin and a (meth) acrylate compound on the surface of the polyimide film (however, the polyurethane resin is , Urethane (meth) acrylate monomer and polymer thereof are not included.)
 2. 前記ポリイミドフィルムを構成するポリイミドが、下記一般式(1)で表される繰り返し単位を含むことを特徴とする上記項1に記載のポリイミドフィルム積層体。 2. The polyimide which comprises the said polyimide film contains the repeating unit represented by following General formula (1), The polyimide film laminated body of said claim | item 1 characterized by the above-mentioned.
Figure JPOXMLDOC01-appb-C000002
(式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。)
 3. Xが脂環構造を有する4価の基であり、Yが脂環構造を有する2価の基である化学式(1)で表される繰り返し単位の含有量が、全繰り返し単位に対して、50モル%以下であることを特徴とする上記項2に記載のポリイミドフィルム積層体。
Figure JPOXMLDOC01-appb-C000002
(In the formula, X 1 is a tetravalent group having an aromatic ring or alicyclic structure, and Y 1 is a divalent group having an aromatic ring or alicyclic structure.)
3. The content of the repeating unit represented by the chemical formula (1) in which X 1 is a tetravalent group having an alicyclic structure and Y 1 is a divalent group having an alicyclic structure is based on the total repeating units. The polyimide film laminate according to Item 2, wherein the polyimide film laminate is 50 mol% or less.
 4. 化学式(1)中のXが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基であることを特徴とする上記項2に記載のポリイミドフィルム積層体。 4). 3. The polyimide film laminate according to item 2, wherein X 1 in chemical formula (1) is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an aromatic ring. .
 5. 化学式(1)中のXが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基であることを特徴とする上記項2に記載のポリイミドフィルム積層体。 5). 3. The polyimide film laminate according to item 2, wherein X 1 in chemical formula (1) is a tetravalent group having an alicyclic structure, and Y 1 is a divalent group having an aromatic ring. .
 6. 化学式(1)中のXが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基であることを特徴とする上記項2に記載のポリイミドフィルム積層体。 6). 3. The polyimide film laminate according to item 2, wherein X 1 in chemical formula (1) is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an alicyclic structure. .
 7. 前記(メタ)アクリレート化合物の含有量が、前記コーティング組成物中の樹脂成分に基づく固形分の5~50重量%であることを特徴とする上記項1~6のいずれか1項に記載のポリイミドフィルム積層体。 7. Item 7. The polyimide according to any one of Items 1 to 6, wherein the content of the (meth) acrylate compound is 5 to 50% by weight based on the solid content based on the resin component in the coating composition. Film laminate.
 8. 前記ポリウレタン樹脂が、ポリカーボネートポリオールとポリイソシアネート化合物とが反応した構造を含むことを特徴とする上記項1~7のいずれか1項に記載のポリイミドフィルム積層体。 8. Item 8. The polyimide film laminate according to any one of Items 1 to 7, wherein the polyurethane resin includes a structure in which a polycarbonate polyol and a polyisocyanate compound are reacted.
 9. 前記コーティング層の厚さが、10nm以上5μm未満であることを特徴とする上記項1~8のいずれか1項に記載のポリイミドフィルム積層体。 9. Item 9. The polyimide film laminate according to any one of Items 1 to 8, wherein the coating layer has a thickness of 10 nm or more and less than 5 μm.
 10. 前記コーティング層の表面にさらに表面層を有し、表面の鉛筆硬度が2H以上であることを特徴とする上記項1~9のいずれか1項に記載のポリイミドフィルム積層体。 10. 10. The polyimide film laminate according to any one of items 1 to 9, further comprising a surface layer on the surface of the coating layer, wherein the surface has a pencil hardness of 2H or more.
 11. 前記コーティング層の厚さが、10nm以上5μm未満であり、前記コーティング層の表面にさらに表面層を有し、前記表面層の鉛筆硬度が2H以上であることを特徴とする上記項1~8のいずれか1項に記載のポリイミドフィルム積層体。 11. The thickness of the coating layer is 10 nm or more and less than 5 μm, further has a surface layer on the surface of the coating layer, and the pencil hardness of the surface layer is 2H or more, The polyimide film laminated body of any one of Claims 1.
 12. 前記表面層が、少なくとも硬化性樹脂成分と無機フィラーを含む硬化性樹脂組成物の硬化物で形成されていることを特徴とする上記項10または11に記載のポリイミドフィルム積層体。 12. Item 12. The polyimide film laminate according to Item 10 or 11, wherein the surface layer is formed of a cured product of a curable resin composition containing at least a curable resin component and an inorganic filler.
 13. ポリイミドフィルムの表面に、ポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物を塗布する工程と、
 前記コーティング組成物の塗膜を硬化して、コーティング層を形成する工程と
を有することを特徴とするポリイミドフィルム積層体の製造方法(但し、前記ポリウレタン樹脂は、ウレタン(メタ)アクリレートモノマーおよびその重合体を含まない。)。
13. Applying a coating composition containing a polyurethane resin and a (meth) acrylate compound to the surface of the polyimide film;
A method of producing a polyimide film laminate, wherein the coating film of the coating composition is cured to form a coating layer (wherein the polyurethane resin comprises a urethane (meth) acrylate monomer and its weight). Does not include coalescence.)
 14. 上記項1~9のいずれか1項に記載のポリイミドフィルム積層体のコーティング層の表面に、さらに、少なくとも硬化性樹脂成分と無機フィラーを含む硬化性樹脂組成物を塗布する工程と、
 前記硬化性樹脂組成物の塗膜を硬化して、表面層を形成する工程と
を有することを特徴とするポリイミドフィルム積層体の製造方法。
14 Applying a curable resin composition containing at least a curable resin component and an inorganic filler to the surface of the coating layer of the polyimide film laminate according to any one of Items 1 to 9,
And a step of curing the coating film of the curable resin composition to form a surface layer.
 本発明によれば、耐薬品性、機械的強度、電気特性、寸法安定性等のポリイミドフィルムの従来からの特徴を生かしながら、他の機能層との密着性を向上させたポリイミドフィルム積層体を提供することができる。 According to the present invention, a polyimide film laminate having improved adhesion to other functional layers while taking advantage of conventional characteristics of polyimide film such as chemical resistance, mechanical strength, electrical characteristics, and dimensional stability. Can be provided.
 特に、透明性の高いポリイミドを用いた場合、透明性を損なうことなく、特性の優れたポリイミドフィルムに良好な密着性を付与することができる。これにより、ポリイミドフィルムに更なる層を形成することが可能になり、ポリイミドフィルムの用途を格段に広げることができる。 In particular, when a highly transparent polyimide is used, good adhesion can be imparted to a polyimide film having excellent characteristics without impairing transparency. Thereby, it becomes possible to form a further layer in a polyimide film, and the use of a polyimide film can be extended greatly.
 また、本発明の一態様によれば、ポリイミドフィルム積層体の黄色度(YI)を改善することもできる。 Moreover, according to one aspect of the present invention, the yellowness (YI) of the polyimide film laminate can also be improved.
 本発明のポリイミドフィルム積層体は、ポリイミドフィルムと、その表面に形成されているコーティング層とを有する。ここで、本発明のポリイミドフィルム積層体は、表面にコーティング層が形成されたポリイミドフィルムとしての形態(フィルム製品として流通する形態)に加えて、例えば電子製品、光学製品、ディスプレイ製品などの製品(部品、製造途中の半完成品等を含む)の中に存在する形態等も含む。従って、コーティング層上に他の層が形成または積層された後の形態も含む。また、本発明のポリイミドフィルム積層体は、ポリイミドフィルムを用いて半完成品を製造した後に、そのポリイミドフィルム表面にコーティング層を形成したもの、さらにそのコーティング層上に他の層を形成または積層したものも含む。また、コーティング層は、用途によって、ポリイミドフィルムの片面のみに形成されていても、または両面に形成されていてもよい。さらに、フィルムの片側または両側の全表面に形成されていても、表面の一部にのみ形成されていてもよい。 The polyimide film laminate of the present invention has a polyimide film and a coating layer formed on the surface thereof. Here, the polyimide film laminate of the present invention has, for example, products such as electronic products, optical products, display products, etc., in addition to forms (forms distributed as film products) as polyimide films having a coating layer formed on the surface. (Including parts, semi-finished products being manufactured, etc.). Accordingly, it includes a form after another layer is formed or laminated on the coating layer. In addition, the polyimide film laminate of the present invention was produced by manufacturing a semi-finished product using a polyimide film, and then forming or laminating another layer on the coating layer, in which a coating layer was formed on the polyimide film surface. Including things. Moreover, the coating layer may be formed only on one side of the polyimide film or may be formed on both sides depending on the application. Further, it may be formed on the entire surface of one side or both sides of the film, or may be formed only on a part of the surface.
 <<ポリイミドフィルム>>
 本発明に使用されるポリイミドフィルムは、特に限定されず、テトラカルボン酸成分およびジアミン成分が、適宜、芳香族化合物および脂環式化合物から選ばれるポリイミドで構成される。例えば、全芳香族ポリイミド、半脂環式ポリイミド、全脂環式ポリイミドが挙げられる。
<< Polyimide film >>
The polyimide film used in the present invention is not particularly limited, and the tetracarboxylic acid component and the diamine component are appropriately composed of a polyimide selected from an aromatic compound and an alicyclic compound. For example, a wholly aromatic polyimide, a semi-alicyclic polyimide, and a wholly alicyclic polyimide may be mentioned.
 即ち、本発明において使用されるポリイミドは、下記一般式(1)で示される繰り返し単位を含有する。 That is, the polyimide used in the present invention contains a repeating unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。)
Figure JPOXMLDOC01-appb-C000003
(In the formula, X 1 is a tetravalent group having an aromatic ring or alicyclic structure, and Y 1 is a divalent group having an aromatic ring or alicyclic structure.)
 特に限定されるわけではないが、得られるポリイミドが耐熱性に優れるため、一般式(1)中のXが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基であることが好ましい。また、得られるポリイミドが耐熱性に優れると同時に透明性に優れるため、Xが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基であることが好ましい。また、得られるポリイミドが耐熱性に優れると同時に寸法安定性に優れるため、Xが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基であることが好ましい。 Although not particularly limited, since the obtained polyimide is excellent in heat resistance, X 1 in the general formula (1) is a tetravalent group having an aromatic ring, and Y 1 is 2 having an aromatic ring. It is preferably a valent group. Moreover, since the polyimide obtained is excellent in heat resistance and excellent in transparency, it is preferable that X 1 is a tetravalent group having an alicyclic structure and Y 1 is a divalent group having an aromatic ring. . Moreover, since the polyimide obtained is excellent in heat resistance and dimensional stability, X 1 is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an alicyclic structure. preferable.
 得られるポリイミドの特性、例えば、透明性、機械的特性、または耐熱性等の点から、Xが脂環構造を有する4価の基であり、Yが脂環構造を有する2価の基である式(1)で表される繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは50モル%以下、より好ましくは30モル%以下または30モル%未満、より好ましくは10モル%以下であることが好ましい。 From the viewpoint of the properties of the resulting polyimide, such as transparency, mechanical properties, and heat resistance, X 1 is a tetravalent group having an alicyclic structure, and Y 1 is a divalent group having an alicyclic structure. The content of the repeating unit represented by the formula (1) is preferably 50 mol% or less, more preferably 30 mol% or less or less than 30 mol%, more preferably 10 mol%, based on all repeating units. The following is preferable.
 ある実施態様においては、Xが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基である前記式(1)の繰り返し単位の1種以上の含有量が、合計で、全繰り返し単位に対して、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。この実施態様において、特に高透明性のポリイミドが求められる場合は、ポリイミドはフッ素原子を含有することが好ましい。すなわち、ポリイミドが、Xがフッ素原子を含有する芳香族環を有する4価の基である前記化学式(1)の繰り返し単位および/またはYがフッ素原子を含有する芳香族環を有する2価の基である前記化学式(1)の繰り返し単位の1種以上を含むことが好ましい。 In one embodiment, X 1 is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an aromatic ring. However, the total is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 100 mol%, based on all repeating units. Preferably there is. In this embodiment, when a highly transparent polyimide is particularly required, the polyimide preferably contains a fluorine atom. That is, the polyimide is a divalent group in which X 1 is a tetravalent group having an aromatic ring containing a fluorine atom and / or Y 1 has an aromatic ring containing a fluorine atom. It is preferable that 1 type or more of the repeating unit of the said Chemical formula (1) which is group of is included.
 ある実施態様においては、ポリイミドは、Xが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基である前記化学式(1)の繰り返し単位の1種以上の含有量が、合計で、全繰り返し単位に対して、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。 In one embodiment, the polyimide is one or more repeating units of the above chemical formula (1), wherein X 1 is a tetravalent group having an alicyclic structure and Y 1 is a divalent group having an aromatic ring. The total content is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 100 mol, based on all repeating units. It is preferable that it is mol%.
 ある実施態様においては、ポリイミドは、Xが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基である前記式(1)の繰り返し単位の1種以上の含有量が、合計で、全繰り返し単位に対して、好ましくは50モル%以上、より好ましくは70モル%以上、より好ましくは80モル%以上、さらに好ましくは90モル%以上、特に好ましくは100モル%であることが好ましい。 In one embodiment, the polyimide is one or more repeating units of the above formula (1), wherein X 1 is a tetravalent group having an aromatic ring and Y 1 is a divalent group having an alicyclic structure. The total content is preferably 50 mol% or more, more preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, particularly preferably 100 mol, based on all repeating units. It is preferable that it is mol%.
 Xの芳香族環を有する4価の基としては、炭素数が6~40の芳香族環を有する4価の基が好ましい。 The tetravalent group having an aromatic ring of X 1 is preferably a tetravalent group having an aromatic ring having 6 to 40 carbon atoms.
 芳香族環を有する4価の基としては、例えば、下記のものが挙げられる。 Examples of the tetravalent group having an aromatic ring include the following.
Figure JPOXMLDOC01-appb-C000004
(式中、Zは直接結合、または、下記の2価の基:
Figure JPOXMLDOC01-appb-C000004
(In the formula, Z 1 is a direct bond or the following divalent group:
Figure JPOXMLDOC01-appb-C000005
のいずれかである。ただし、式中のZは、2価の有機基、Z3、はでそれぞれ独立にアミド結合、エステル結合、カルボニル結合であり、Zは芳香環を含む有機基である。)
Figure JPOXMLDOC01-appb-C000005
One of them. In the formula, Z 2 is a divalent organic group, Z 3 and Z 4 are each independently an amide bond, an ester bond and a carbonyl bond, and Z 5 is an organic group containing an aromatic ring. )
 Zとしては、具体的には、炭素数2~24の脂肪族炭化水素基、炭素数6~24の芳香族炭化水素基が挙げられる。 Specific examples of Z 2 include an aliphatic hydrocarbon group having 2 to 24 carbon atoms and an aromatic hydrocarbon group having 6 to 24 carbon atoms.
 Zとしては、具体的には、炭素数6~24の芳香族炭化水素基が挙げられる。 Specific examples of Z 5 include aromatic hydrocarbon groups having 6 to 24 carbon atoms.
 芳香族環を有する4価の基としては、得られるポリイミドの高耐熱性と高透明性を両立できるので、下記のものが特に好ましい。 As the tetravalent group having an aromatic ring, since the high heat resistance and high transparency of the obtained polyimide can be compatible, the following are particularly preferable.
Figure JPOXMLDOC01-appb-C000006
(式中、Zは直接結合、または、へキサフルオロイソプロピリデン結合である。)
Figure JPOXMLDOC01-appb-C000006
(In the formula, Z 1 is a direct bond or a hexafluoroisopropylidene bond.)
 ここで、Zは直接結合であることがより好ましく、得られるポリイミドは高耐熱性、低線熱膨張係数であり、また特にジアミン由来構造が、脂環構造である場合は、高透明性も両立できる。 Here, Z 1 is more preferably a direct bond, and the resulting polyimide has high heat resistance and a low linear thermal expansion coefficient. In particular, when the diamine-derived structure is an alicyclic structure, high transparency is also obtained. Can be compatible.
 Xが芳香族環を有する4価の基である化学式(1)の繰り返し単位を与えるテトラカルボン酸成分としては、例えば、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、ピロメリット酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、4,4’-オキシジフタル酸、ビス(3,4-ジカルボキシフェニル)スルホン、m-ターフェニル-3,4,3’,4’-テトラカルボン酸、p-ターフェニル-3,4,3’,4’-テトラカルボン酸、ビスカルボキシフェニルジメチルシラン、ビスジカルボキシフェノキシジフェニルスルフィド、スルホニルジフタル酸や、これらのテトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等の誘導体が挙げられる。Xがフッ素原子を含有する芳香族環を有する4価の基である化学式(1)の繰り返し単位を与えるテトラカルボン酸成分としては、例えば、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンや、これのテトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等の誘導体が挙げられる。テトラカルボン酸成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。 Examples of the tetracarboxylic acid component that gives a repeating unit of the chemical formula (1) in which X 1 is a tetravalent group having an aromatic ring include 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic acid, pyromellitic acid, 3,3 ′, 4,4′-benzophenonetetra Carboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4′-biphenyltetracarboxylic acid, 4,4′-oxydiphthalic acid, bis (3,4-dicarboxyphenyl) ) Sulfone, m-terphenyl-3,4,3 ′, 4′-tetracarboxylic acid, p-terphenyl-3,4,3 ′, 4′-tetracarboxylic acid, biscarboxyphenyldimethylsilane, Streaks carboxyphenoxy diphenyl sulfide, or sulfonyl di phthalate, these tetracarboxylic dianhydrides, tetracarboxylic acid silyl ester, tetracarboxylic acid esters, derivatives of such tetracarboxylic acid chloride. Examples of the tetracarboxylic acid component that gives a repeating unit of the chemical formula (1) in which X 1 is a tetravalent group having an aromatic ring containing a fluorine atom include 2,2-bis (3,4-dicarboxyphenyl). ) Derivatives such as hexafluoropropane, tetracarboxylic dianhydrides, tetracarboxylic acid silyl esters, tetracarboxylic acid esters, and tetracarboxylic acid chlorides thereof. A tetracarboxylic acid component may be used independently and can also be used in combination of multiple types.
 Xの脂環構造を有する4価の基としては、炭素数が4~40の脂環構造を有する4価の基が好ましく、少なくとも一つの脂肪族4~12員環、より好ましくは脂肪族4員環または脂肪族6員環を有することがより好ましい。好ましい脂肪族4員環または脂肪族6員環を有する4価の基としては、下記のものが挙げられる。 The tetravalent group having an alicyclic structure of X 1 is preferably a tetravalent group having an alicyclic structure having 4 to 40 carbon atoms, more preferably at least one aliphatic 4- to 12-membered ring, more preferably an aliphatic group. More preferably, it has a 4-membered ring or an aliphatic 6-membered ring. The following are mentioned as a tetravalent group which has a preferable aliphatic 4-membered ring or an aliphatic 6-membered ring.
Figure JPOXMLDOC01-appb-C000007
(式中、R31~R38は、それぞれ独立に直接結合、または、2価の有機基である。R41~R47は、それぞれ独立に 式:-CH-、-CH=CH-、-CHCH-、-O-、-S-で表される基よりなる群から選択される1種を示す。R48、は芳香環もしくは脂環構造を含む有機基である。)
Figure JPOXMLDOC01-appb-C000007
(Wherein R 31 to R 38 are each independently a direct bond or a divalent organic group. R 41 to R 47 are each independently represented by the formula: —CH 2 —, —CH═CH—, This represents one selected from the group consisting of groups represented by —CH 2 CH 2 —, —O—, and —S—, wherein R 48 is an organic group containing an aromatic ring or alicyclic structure.
 R31、R32、R33、R34、R35、R36、R37、R38としては、具体的には、直接結合、または、炭素数1~6の脂肪族炭化水素基、または、酸素原子(-O-)、硫黄原子(-S-)、カルボニル結合、エステル結合、アミド結合が挙げられる。 R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , R 37 , R 38 are specifically a direct bond, an aliphatic hydrocarbon group having 1 to 6 carbon atoms, or Examples include an oxygen atom (—O—), a sulfur atom (—S—), a carbonyl bond, an ester bond, and an amide bond.
 R48として芳香環を含む有機基としては、例えば、下記のものが挙げられる。 Examples of the organic group containing an aromatic ring as R 48 include the following.
Figure JPOXMLDOC01-appb-C000008
(式中、Wは直接結合、または、2価の有機基であり、n11~n13は、それぞれ独立に0~4の整数を表し、R51、R52、R53は、それぞれ独立に炭素数1~6のアルキル基、ハロゲン基、水酸基、カルボキシル基、またはトリフルオロメチル基である。)
Figure JPOXMLDOC01-appb-C000008
(Wherein W 1 is a direct bond or a divalent organic group, n 11 to n 13 each independently represents an integer of 0 to 4, and R 51 , R 52 and R 53 are each independently And an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group.)
 Wとしては、具体的には、直接結合、下記の式(5)で表される2価の基、下記の式(6)で表される2価の基が挙げられる。 Specific examples of W 1 include a direct bond, a divalent group represented by the following formula (5), and a divalent group represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000009
(式(6)中のR61~R68は、それぞれ独立に直接結合または前記式(5)で表される2価の基のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000009
(R 61 to R 68 in the formula (6) each independently represent a direct bond or a divalent group represented by the formula (5).)
 脂環構造を有する4価の基としては、得られるポリイミドの高耐熱性、高透明性、低線熱膨張係数を両立できるので、下記のものが特に好ましい。 As the tetravalent group having an alicyclic structure, the following are particularly preferable because the polyimide obtained can have both high heat resistance, high transparency, and a low linear thermal expansion coefficient.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 Xが脂環構造を有する4価の基である式(1)の繰り返し単位を与えるテトラカルボン酸成分としては、例えば、1,2,3,4-シクロブタンテトラカルボン酸、イソプロピリデンジフェノキシビスフタル酸、シクロヘキサン-1,2,4,5-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-3,3’,4,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,3,3’,4’-テトラカルボン酸、[1,1’-ビ(シクロヘキサン)]-2,2’,3,3’-テトラカルボン酸、4,4’-メチレンビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(プロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-オキシビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-チオビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-スルホニルビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(ジメチルシランジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、4,4’-(テトラフルオロプロパン-2,2-ジイル)ビス(シクロヘキサン-1,2-ジカルボン酸)、オクタヒドロペンタレン-1,3,4,6-テトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸、6-(カルボキシメチル)ビシクロ[2.2.1]ヘプタン-2,3,5-トリカルボン酸、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸、ビシクロ[2.2.2]オクタ-5-エン-2,3,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカン-3,4,7,8-テトラカルボン酸、トリシクロ[4.2.2.02,5]デカ-7-エン-3,4,9,10-テトラカルボン酸、9-オキサトリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン5,5’’,6,6’’-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2c,3c,6c,7c-テトラカルボン酸、(4arH,8acH)-デカヒドロ-1t,4t:5c,8c-ジメタノナフタレン-2t,3t,6c,7c-テトラカルボン酸や、これらのテトラカルボン酸二無水物、テトラカルボン酸シリルエステル、テトラカルボン酸エステル、テトラカルボン酸クロライド等の誘導体が挙げられる。テトラカルボン酸成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。 Examples of the tetracarboxylic acid component that gives the repeating unit of the formula (1) in which X 1 is a tetravalent group having an alicyclic structure include 1,2,3,4-cyclobutanetetracarboxylic acid, isopropylidenediphenoxybis Phthalic acid, cyclohexane-1,2,4,5-tetracarboxylic acid, [1,1'-bi (cyclohexane)]-3,3 ', 4,4'-tetracarboxylic acid, [1,1'-bi (Cyclohexane)]-2,3,3 ′, 4′-tetracarboxylic acid, [1,1′-bi (cyclohexane)]-2,2 ′, 3,3′-tetracarboxylic acid, 4,4′- Methylenebis (cyclohexane-1,2-dicarboxylic acid), 4,4 '-(propane-2,2-diyl) bis (cyclohexane-1,2-dicarboxylic acid), 4,4'-oxybis (cyclohexane-1,2) -Dicarboxylic acid), 4,4 ' Thiobis (cyclohexane-1,2-dicarboxylic acid), 4,4'-sulfonylbis (cyclohexane-1,2-dicarboxylic acid), 4,4 '-(dimethylsilanediyl) bis (cyclohexane-1,2-dicarboxylic acid) ), 4,4 ′-(tetrafluoropropane-2,2-diyl) bis (cyclohexane-1,2-dicarboxylic acid), octahydropentalene-1,3,4,6-tetracarboxylic acid, bicyclo [2 2.1] heptane-2,3,5,6-tetracarboxylic acid, 6- (carboxymethyl) bicyclo [2.2.1] heptane-2,3,5-tricarboxylic acid, bicyclo [2.2. 2] Octane-2,3,5,6-tetracarboxylic acid, bicyclo [2.2.2] oct-5-ene-2,3,7,8-tetracarboxylic acid, tricyclo [4.2.2. 02 , 5] decane-3,4,7,8-tetracarboxylic acid, tricyclo [4.2.2.02,5] dec-7-ene-3,4,9,10-tetracarboxylic acid, 9-oxa Tricyclo [4.2.1.02,5] nonane-3,4,7,8-tetracarboxylic acid, norbornane-2-spiro-α-cyclopentanone-α′-spiro-2 ″ -norbornane 5 , 5 ″, 6,6 ″ -tetracarboxylic acid, (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethananaphthalene-2c, 3c, 6c, 7c-tetracarboxylic acid, (4arH, 8acH) -decahydro-1t, 4t: 5c, 8c-dimethanonaphthalene-2t, 3t, 6c, 7c-tetracarboxylic acid, tetracarboxylic dianhydrides, tetracarboxylic silyl esters, tetracarboxylic acid es Le, include derivatives such as tetracarboxylic acid chloride. A tetracarboxylic acid component may be used independently and can also be used in combination of multiple types.
 Yの芳香族環を有する2価の基としては、炭素数が6~40、更に好ましくは炭素数が6~20の芳香族環を有する2価の基が好ましい。 The divalent group having an aromatic ring of Y 1 is preferably a divalent group having an aromatic ring having 6 to 40 carbon atoms, more preferably 6 to 20 carbon atoms.
 芳香族環を有する2価の基としては、例えば、下記のものが挙げられる。 Examples of the divalent group having an aromatic ring include the following.
Figure JPOXMLDOC01-appb-C000011
(式中、Wは直接結合、または、2価の有機基であり、n11~n13は、それぞれ独立に0~4の整数を表し、R51、R52、R53は、それぞれ独立に炭素数1~6のアルキル基、ハロゲン基、水酸基、カルボキシル基、またはトリフルオロメチル基である。)
Figure JPOXMLDOC01-appb-C000011
(Wherein W 1 is a direct bond or a divalent organic group, n 11 to n 13 each independently represents an integer of 0 to 4, and R 51 , R 52 and R 53 are each independently And an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group.)
 Wとしては、具体的には、直接結合、下記の式(5)で表される2価の基、下記の式(6)で表される2価の基が挙げられる。 Specific examples of W 1 include a direct bond, a divalent group represented by the following formula (5), and a divalent group represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000012
(式(6)中のR61~R68は、それぞれ独立に直接結合または前記式(5)で表される2価の基のいずれかを表す。)
Figure JPOXMLDOC01-appb-C000012
(R 61 to R 68 in the formula (6) each independently represent a direct bond or a divalent group represented by the formula (5).)
 ここで、得られるポリイミドの高耐熱性、高透明性、低線熱膨張係数を両立できるので、Wは、直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種であることが特に好ましい。また、Wが、R61~R68が直接結合、または 式:-NHCO-、-CONH-、-COO-、-OCO-で表される基よりなる群から選択される1種である前記式(6)で表される2価の基のいずれかであることも特に好ましい。 Here, since the polyimide obtained can have both high heat resistance, high transparency, and a low coefficient of linear thermal expansion, W 1 is a direct bond, or a formula: —NHCO—, —CONH—, —COO—, —OCO—. It is especially preferable that it is 1 type selected from the group which consists of group represented by these. W 1 is a group in which R 61 to R 68 are a direct bond, or one selected from the group consisting of groups represented by the formula: —NHCO—, —CONH—, —COO—, —OCO—. It is also particularly preferable that it is any of the divalent groups represented by the formula (6).
 Yが芳香族環を有する2価の基である化学式(1)の繰り返し単位を与えるジアミン成分としては、例えば、p-フェニレンジアミン、m-フェニレンジアミン、ベンジジン、3,3’-ジアミノ-ビフェニル、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、m-トリジン、4,4’-ジアミノベンズアニリド、3,4’-ジアミノベンズアニリド、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-p-フェニレンビス(p-アミノベンズアミド)、4-アミノフェノキシ-4-ジアミノベンゾエート、ビス(4-アミノフェニル)テレフタレート、ビフェニル-4,4’-ジカルボン酸ビス(4-アミノフェニル)エステル、p-フェニレンビス(p-アミノベンゾエート)、ビス(4-アミノフェニル)-[1,1’-ビフェニル]-4,4’-ジカルボキシレート、[1,1’-ビフェニル]-4,4’-ジイル ビス(4-アミノベンゾエート)、4,4’-オキシジアニリン、3,4’-オキシジアニリン、3,3’-オキシジアニリン、p-メチレンビス(フェニレンジアミン)、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、ビス(4-アミノフェニル)スルホン、3,3’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス((アミノフェノキシ)フェニル)プロパン、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)ジフェニル)スルホン、ビス(4-(3-アミノフェノキシ)ジフェニル)スルホン、オクタフルオロベンジジン、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジクロロ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、2,4-ビス(4-アミノアニリノ)-6-アミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-メチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-エチルアミノ-1,3,5-トリアジン、2,4-ビス(4-アミノアニリノ)-6-アニリノ-1,3,5-トリアジンが挙げられる。Yがフッ素原子を含有する芳香族環を有する2価の基である化学式(1)の繰り返し単位を与えるジアミン成分としては、例えば、2,2’-ビス(トリフルオロメチル)ベンジジン、3,3’-ビス(トリフルオロメチル)ベンジジン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンが挙げられる。ジアミン成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。 Examples of the diamine component that gives a repeating unit of the chemical formula (1) in which Y 1 is a divalent group having an aromatic ring include p-phenylenediamine, m-phenylenediamine, benzidine, and 3,3′-diamino-biphenyl. 2,2'-bis (trifluoromethyl) benzidine, 3,3'-bis (trifluoromethyl) benzidine, m-tolidine, 4,4'-diaminobenzanilide, 3,4'-diaminobenzanilide, N , N′-bis (4-aminophenyl) terephthalamide, N, N′-p-phenylenebis (p-aminobenzamide), 4-aminophenoxy-4-diaminobenzoate, bis (4-aminophenyl) terephthalate, biphenyl -4,4'-dicarboxylic acid bis (4-aminophenyl) ester, p-phenylenebis (p-aminobenzo) ), Bis (4-aminophenyl)-[1,1′-biphenyl] -4,4′-dicarboxylate, [1,1′-biphenyl] -4,4′-diyl bis (4-amino) Benzoate), 4,4'-oxydianiline, 3,4'-oxydianiline, 3,3'-oxydianiline, p-methylenebis (phenylenediamine), 1,3-bis (4-aminophenoxy) benzene 1,3-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3- Aminophenoxy) biphenyl, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, bis (4-amino) Phenyl) sulfone, 3,3′-bis (trifluoromethyl) benzidine, 3,3′-bis ((aminophenoxy) phenyl) propane, 2,2′-bis (3-amino-4-hydroxyphenyl) hexafluoro Propane, bis (4- (4-aminophenoxy) diphenyl) sulfone, bis (4- (3-aminophenoxy) diphenyl) sulfone, octafluorobenzidine, 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3 , 3'-dichloro-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 2,4-bis (4-aminoanilino) -6-amino-1,3,5- Triazine, 2,4-bis (4-aminoanilino) -6-methylamino-1,3,5-triazine, 2,4-bis (4-aminoanilino) 6-ethyl-1,3,5-triazine, 2,4-bis (4-aminoanilino) -6-anilino-1,3,5-triazine. Examples of the diamine component that gives the repeating unit of the chemical formula (1) in which Y 1 is a divalent group having an aromatic ring containing a fluorine atom include 2,2′-bis (trifluoromethyl) benzidine, 3, 3′-bis (trifluoromethyl) benzidine, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 2,2-bis (4-aminophenyl) hexafluoropropane, 2,2 ′ -Bis (3-amino-4-hydroxyphenyl) hexafluoropropane. A diamine component may be used independently and can also be used in combination of multiple types.
 Yの脂環構造を有する2価の基としては、炭素数が4~40の脂環構造を有する2価の基が好ましく、少なくとも一つの脂肪族4~12員環、より好ましくは脂肪族6員環を有することが更に好ましい。 The divalent group having an alicyclic structure of Y 1 is preferably a divalent group having an alicyclic structure having 4 to 40 carbon atoms, more preferably at least one aliphatic 4- to 12-membered ring, more preferably an aliphatic group. More preferably, it has a 6-membered ring.
 脂環構造を有する2価の基としては、例えば、下記のものが挙げられる。 Examples of the divalent group having an alicyclic structure include the following.
Figure JPOXMLDOC01-appb-C000013
(式中、V、Vは、それぞれ独立に直接結合、または、2価の有機基であり、n21~n26は、それぞれ独立に0~4の整数を表し、R81~R86は、それぞれ独立に炭素数1~6のアルキル基、ハロゲン基、水酸基、カルボキシル基、またはトリフルオロメチル基であり、R91、R92、R93は、それぞれ独立に 式:-CH-、-CH=CH-、-CHCH-、-O-、-S-で表される基よりなる群から選択される1種である。)
Figure JPOXMLDOC01-appb-C000013
(Wherein V 1 and V 2 are each independently a direct bond or a divalent organic group, n 21 to n 26 each independently represents an integer of 0 to 4, R 81 to R 86 Are each independently an alkyl group having 1 to 6 carbon atoms, a halogen group, a hydroxyl group, a carboxyl group, or a trifluoromethyl group, and R 91 , R 92 , and R 93 are each independently represented by the formula: —CH 2 —, (This is one selected from the group consisting of groups represented by —CH═CH—, —CH 2 CH 2 —, —O—, and —S—.)
 V、Vとしては、具体的には、直接結合および前記の式(5)で表される2価の基が挙げられる。 Specific examples of V 1 and V 2 include a direct bond and a divalent group represented by the above formula (5).
 脂環構造を有する2価の基としては、得られるポリイミドの高耐熱性、低線熱膨張係数を両立できるので、下記のものが特に好ましい。 As the divalent group having an alicyclic structure, the following are particularly preferable because the polyimide obtained can have both high heat resistance and low linear thermal expansion coefficient.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 脂環構造を有する2価の基としては、中でも、下記のものが好ましい。 Among the divalent groups having an alicyclic structure, the following are preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 Yが脂環構造を有する2価の基である化学式(1)の繰り返し単位を与えるジアミン成分としては、例えば、1,4-ジアミノシクロへキサン、1,4-ジアミノ-2-メチルシクロヘキサン、1,4-ジアミノ-2-エチルシクロヘキサン、1,4-ジアミノ-2-n-プロピルシクロヘキサン、1,4-ジアミノ-2-イソプロピルシクロヘキサン、1,4-ジアミノ-2-n-ブチルシクロヘキサン、1,4-ジアミノ-2-イソブチルシクロヘキサン、1,4-ジアミノ-2-sec-ブチルシクロヘキサン、1,4-ジアミノ-2-tert-ブチルシクロヘキサン、1,2-ジアミノシクロへキサン、1,3-ジアミノシクロブタン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、ジアミノビシクロヘプタン、ジアミノメチルビシクロヘプタン、ジアミノオキシビシクロヘプタン、ジアミノメチルオキシビシクロヘプタン、イソホロンジアミン、ジアミノトリシクロデカン、ジアミノメチルトリシクロデカン、ビス(アミノシクロへキシル)メタン、ビス(アミノシクロヘキシル)イソプロピリデン、6,6’-ビス(3-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダン、6,6’-ビス(4-アミノフェノキシ)-3,3,3’,3’-テトラメチル-1,1’-スピロビインダンが挙げられる。ジアミン成分は、単独で使用してもよく、また複数種を組み合わせて使用することもできる。 Examples of the diamine component that gives the repeating unit of the chemical formula (1) in which Y 1 is a divalent group having an alicyclic structure include 1,4-diaminocyclohexane, 1,4-diamino-2-methylcyclohexane, 1,4-diamino-2-ethylcyclohexane, 1,4-diamino-2-n-propylcyclohexane, 1,4-diamino-2-isopropylcyclohexane, 1,4-diamino-2-n-butylcyclohexane, 1, 4-diamino-2-isobutylcyclohexane, 1,4-diamino-2-sec-butylcyclohexane, 1,4-diamino-2-tert-butylcyclohexane, 1,2-diaminocyclohexane, 1,3-diaminocyclobutane 1,4-bis (aminomethyl) cyclohexane, 1,3-bis (aminomethyl) cyclohexane Sun, diaminobicycloheptane, diaminomethylbicycloheptane, diaminooxybicycloheptane, diaminomethyloxybicycloheptane, isophoronediamine, diaminotricyclodecane, diaminomethyltricyclodecane, bis (aminocyclohexyl) methane, bis (aminocyclohexyl) Isopropylidene, 6,6′-bis (3-aminophenoxy) -3,3,3 ′, 3′-tetramethyl-1,1′-spirobiindane, 6,6′-bis (4-aminophenoxy) -3 3,3 ′, 3′-tetramethyl-1,1′-spirobiindane. A diamine component may be used independently and can also be used in combination of multiple types.
 前記化学式(1)で表される繰り返し単位の少なくとも1種を含むポリイミドは、前記化学式(1)で表される繰り返し単位以外の、他の繰り返し単位を含むことができる。 The polyimide containing at least one repeating unit represented by the chemical formula (1) can contain other repeating units other than the repeating unit represented by the chemical formula (1).
 他の繰り返し単位を与えるテトラカルボン酸成分およびジアミン成分としては、特に限定されず、他の公知の脂肪族テトラカルボン酸類、公知の脂肪族ジアミン類いずれも使用することができる。他のテトラカルボン酸成分も、単独で使用してもよく、また複数種を組み合わせて使用することもできる。他のジアミン成分も、単独で使用してもよく、また複数種を組み合わせて使用することもできる。 The tetracarboxylic acid component and diamine component that give other repeating units are not particularly limited, and any other known aliphatic tetracarboxylic acids or known aliphatic diamines can be used. Other tetracarboxylic acid components may be used alone or in combination of two or more. Other diamine components may be used alone or in combination of two or more.
 前記式(1)で表される繰り返し単位以外の、他の繰り返し単位の含有量は、全繰り返し単位に対して、好ましくは30モル%以下または30モル%未満、より好ましくは20モル%以下、さらに好ましくは10モル%以下であることが好ましい。 The content of other repeating units other than the repeating unit represented by the formula (1) is preferably 30 mol% or less or less than 30 mol%, more preferably 20 mol% or less, based on all repeating units. More preferably, it is 10 mol% or less.
 ポリイミドフィルムの製造方法の例を概略的に示すと、
(1)ポリイミド前駆体溶液、またはポリイミド前駆体溶液に必要に応じてイミド化触媒、脱水剤、離型助剤、無機微粒子などを選択して加えたポリイミド前駆体溶液組成物をフィルム状に支持体上に流延し、加熱乾燥して自己支持性フィルムを得た後、加熱により脱水環化、脱溶媒することによりポリイミドフィルムを得る方法;
(2)ポリイミド前駆体溶液に環化触媒および脱水剤を加え、さらに必要に応じて無機微粒子などを選択して加えたポリイミド前駆体溶液組成物をフィルム状に支持体上に流延し、化学的に脱水環化させて、必要に応じて加熱乾燥して自己支持性フィルムを得た後、これを加熱により脱溶媒、イミド化することによりポリイミドフィルムを得る方法;
(3)ポリイミドが有機溶媒に可溶の場合、離型助剤、無機微粒子などを選択して加えたポリイミド溶液組成物をフィルム状に支持体上に流延し、加熱乾燥などにより一部または全部の溶媒を除去した後、最高加熱温度に加熱することによりポリイミドフィルムを得る方法;
(4)ポリイミドが有機溶媒に可溶の場合、離型助剤、無機微粒子などを選択して加えたポリイミド溶液組成物をフィルム状に支持体上に流延し、加熱により溶媒を除去しながら最高加熱温度に加熱することによりポリイミドフィルムを得る方法、
が挙げられる。
When schematically showing an example of a method for producing a polyimide film,
(1) A polyimide precursor solution or a polyimide precursor solution composition in which an imidization catalyst, a dehydrating agent, a release aid, inorganic fine particles, etc. are selected and added to a polyimide precursor solution as needed is supported in a film form. A method of obtaining a polyimide film by casting on a body and drying by heating to obtain a self-supporting film, followed by dehydration and desolvation by heating;
(2) A cyclization catalyst and a dehydrating agent are added to the polyimide precursor solution, and further, a polyimide precursor solution composition added by selecting inorganic fine particles as necessary is cast on a support in the form of a film. A method of obtaining a polyimide film by dehydrating and cyclizing and obtaining a self-supporting film by heating and drying as necessary, and then removing the solvent and imidizing it by heating;
(3) When the polyimide is soluble in an organic solvent, a polyimide solution composition added by selecting a mold release aid, inorganic fine particles, etc. is cast on a support in a film form, and partially or by heating and drying A method of obtaining a polyimide film by removing all the solvent and then heating to the maximum heating temperature;
(4) When the polyimide is soluble in an organic solvent, a polyimide solution composition added by selecting a mold release aid, inorganic fine particles and the like is cast on a support in the form of a film, and the solvent is removed by heating. A method of obtaining a polyimide film by heating to the highest heating temperature,
Is mentioned.
 ポリイミド前駆体は、1)ポリアミド酸(または、ポリアミック酸とも呼ばれる)、2)ポリアミド酸エステル(ポリアミド酸のカルボキシル基のHの少なくとも一部がアルキル基)、3)ポリアミド酸シリルエステル(ポリアミド酸のカルボキシル基のHの少なくとも一部がアルキルシリル基)に分類することができる。 Polyimide precursors are: 1) polyamic acid (also called polyamic acid), 2) polyamic acid ester (at least a part of H of the carboxyl group of the polyamic acid is an alkyl group), 3) polyamic acid silyl ester (of polyamic acid At least a part of H of the carboxyl group can be classified as an alkylsilyl group.
 これらのポリイミド前駆体は、前述のポリイミド構造を与えるテトラカルボン酸成分およびジアミン成分から製造することができる。 These polyimide precursors can be produced from a tetracarboxylic acid component and a diamine component that give the polyimide structure described above.
 ポリイミドフィルムの製造方法の例として、例えば、ポリイミド前駆体組成物を基材上に流延し、この基材上のポリイミド前駆体組成物を、例えば100~500℃、好ましくは200~500℃、より好ましくは250~450℃程度の温度で加熱処理して、溶媒を除去しながら、ポリイミド前駆体をイミド化する方法を挙げることができる。なお、加熱プロファイルは特に限定されず、適宜選択することができる。 As an example of a method for producing a polyimide film, for example, a polyimide precursor composition is cast on a substrate, and the polyimide precursor composition on the substrate is, for example, 100 to 500 ° C., preferably 200 to 500 ° C., A method of imidizing the polyimide precursor while removing the solvent by heating at a temperature of about 250 to 450 ° C. is more preferable. In addition, a heating profile is not specifically limited, It can select suitably.
 また、ポリイミド前駆体組成物を基材上に流延し、好ましくは180℃以下の温度範囲で乾燥して、基材上にポリイミド前駆体組成物の膜を形成し、得られたポリイミド前駆体組成物の膜を基材上から剥離して、その膜の端部を固定した状態で、あるいは膜の端部を固定せずに、例えば100~500℃、好ましくは200~500℃、より好ましくは250~450℃程度の温度で加熱処理して、ポリイミド前駆体をイミド化することによっても、ポリイミドフィルムを好適に製造することができる。 Also, the polyimide precursor composition is cast on a substrate, and preferably dried in a temperature range of 180 ° C. or less to form a polyimide precursor composition film on the substrate, and the resulting polyimide precursor is obtained. For example, 100 to 500 ° C., preferably 200 to 500 ° C., more preferably in a state where the film of the composition is peeled off from the substrate and the edge of the film is fixed or without fixing the edge of the film. The polyimide film can be suitably produced also by heat treatment at a temperature of about 250 to 450 ° C. to imidize the polyimide precursor.
 また、例えば、ポリイミドを含むポリイミド溶液組成物を基材上に流延し、例えば80~500℃、好ましくは100~500℃、より好ましくは150~450℃程度の温度で加熱処理して、溶媒を除去することにより、ポリイミドフィルムを好適に製造することができる。なお、この場合も、加熱プロファイルは特に限定されず、適宜選択することができる。 Further, for example, a polyimide solution composition containing polyimide is cast on a substrate, and is heat-treated at a temperature of, for example, about 80 to 500 ° C., preferably 100 to 500 ° C., more preferably about 150 to 450 ° C. By removing, a polyimide film can be suitably produced. In this case, the heating profile is not particularly limited and can be selected as appropriate.
 ポリイミドフィルムは、特に限定されないが、100℃から250℃までの線熱膨張係数が、好ましくは60ppm/K以下、より好ましくは50ppm/K以下であることができる。 The polyimide film is not particularly limited, but the linear thermal expansion coefficient from 100 ° C. to 250 ° C. is preferably 60 ppm / K or less, more preferably 50 ppm / K or less.
 ポリイミドフィルムは、特に限定されないが、全光透過率(波長380nm~780nmの平均光透過率)が、好ましくは68%以上、より好ましくは70%以上、より好ましくは75%以上、特に好ましくは80%以上であることができる。ディスプレイ用途等で使用する場合、全光透過率が低いと光源を強くする必要があり、エネルギーがかかるといった問題等を生じることがある。 The polyimide film is not particularly limited, but the total light transmittance (average light transmittance at a wavelength of 380 nm to 780 nm) is preferably 68% or more, more preferably 70% or more, more preferably 75% or more, and particularly preferably 80%. % Or more. When used for a display application or the like, if the total light transmittance is low, it is necessary to strengthen the light source, which may cause a problem that energy is applied.
 ポリイミドフィルムの耐熱性の指標である5%重量減少温度は、特に限定されないが、好ましくは400℃以上、より好ましくは430℃以上、さらに好ましくは450℃以上であることができる。 The 5% weight loss temperature that is an index of heat resistance of the polyimide film is not particularly limited, but is preferably 400 ° C. or higher, more preferably 430 ° C. or higher, and further preferably 450 ° C. or higher.
 ポリイミドフィルムの厚さは、用途にもよるが、好ましくは0.1μm~250μm、より好ましくは1μm~150μm、さらに好ましくは3μm~120μm、特に好ましくは5μm~100μmである。ポリイミドフィルムを光が透過する用途に使用する場合、ポリイミドフィルムが厚すぎると光透過率が低くなる恐れがある。 The thickness of the polyimide film is preferably 0.1 μm to 250 μm, more preferably 1 μm to 150 μm, still more preferably 3 μm to 120 μm, and particularly preferably 5 μm to 100 μm, although it depends on the application. When the polyimide film is used for light transmission, if the polyimide film is too thick, the light transmittance may be lowered.
 ポリイミドフィルムは、特に限定されないが耐溶剤性が高いことが好ましい。耐溶剤性が低いとコーティング液に有機溶剤が含まれる場合に、ポリイミドフィルム表面が溶けて白化したり、膨潤してフィルム表面の平滑性が失われたりすることがある。 The polyimide film is not particularly limited, but preferably has high solvent resistance. When the solvent resistance is low, when the organic solvent is contained in the coating liquid, the polyimide film surface may melt and whiten, or the film surface may lose its smoothness.
 <<コーティング層>>
 本発明におけるコーティング層は、ポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物の硬化物で形成された層である。
<< Coating layer >>
The coating layer in this invention is a layer formed with the hardened | cured material of the coating composition containing a polyurethane resin and a (meth) acrylate compound.
 本出願において、用語「(メタ)アクリレート」は、アクリレートおよびメタクリレートの両方を表し、「ウレタンアクリレート」は、慣用に従って「ウレタンアクリレート」と「ウレタンメタクリレート」の両方を表す。本出願において、「ウレタンアクリレート(ウレタン(メタ)アクリレート)」は、(メタ)アクリレート化合物に分類される。本出願において、「ポリウレタン樹脂」は、ウレタンアクリレート(モノマー)およびその重合体を含まない。 In this application, the term “(meth) acrylate” refers to both acrylate and methacrylate, and “urethane acrylate” refers to both “urethane acrylate” and “urethane methacrylate” according to common usage. In the present application, “urethane acrylate (urethane (meth) acrylate)” is classified as a (meth) acrylate compound. In the present application, the “polyurethane resin” does not include urethane acrylate (monomer) and a polymer thereof.
 まず、硬化物層を与えるポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物を説明する。 First, a coating composition containing a polyurethane resin that gives a cured product layer and a (meth) acrylate compound will be described.
<ポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物>
 コーティング層を形成するための、ポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物に含有される材料について、以下に説明する。
<Coating composition containing polyurethane resin and (meth) acrylate compound>
The material contained in the coating composition containing a polyurethane resin and a (meth) acrylate compound for forming the coating layer will be described below.
 a-1.ポリウレタン樹脂
 ポリウレタン樹脂は、ポリオールとイソシアネート化合物との反応により製造され、ウレタン構造を介してポリオールに由来する構造とイソシアネート化合物に由来する構造が結合している。ポリオールとしては、ポリカーボネートポリオール、ポリエステルポリオール、ポリエーテルポリオール、ポリオレフィンポリオール、アクリルポリオール、ポリジエンポリオール等が挙げられ、好ましくは、ポリカーボネートポリオール、ポリエステルポリオールおよびポリエーテルポリオールから選ばれる。ポリオール類は、単独で用いても、複数種用いてもよい。特に、ポリカーボネートポリオールを含むものは、耐熱性・耐加水分解性、耐汚染性、耐薬品性、耐候性の観点より好ましい。また、目的の機能を与えるために特定の官能基を有するポリオールを併用してもよい。
a-1. Polyurethane resin A polyurethane resin is produced by a reaction between a polyol and an isocyanate compound, and a structure derived from a polyol and a structure derived from an isocyanate compound are bonded via a urethane structure. Examples of the polyol include polycarbonate polyol, polyester polyol, polyether polyol, polyolefin polyol, acrylic polyol, polydiene polyol, and the like, and preferably selected from polycarbonate polyol, polyester polyol, and polyether polyol. Polyols may be used alone or in combination. In particular, those containing polycarbonate polyol are preferred from the viewpoints of heat resistance, hydrolysis resistance, stain resistance, chemical resistance, and weather resistance. In addition, a polyol having a specific functional group may be used in combination in order to provide a desired function.
 次に、最も好ましい例として、ポリカーボネートポリオールを主体とするポリオール成分を用いたポリウレタン樹脂を説明するが、本発明において使用可能なその他のポリウレタン樹脂は、例えば「その他のポリオール(c)」として説明する化合物とポリイソシアネートとを反応させて得ることができる。 Next, as a most preferable example, a polyurethane resin using a polyol component mainly composed of polycarbonate polyol will be described. Other polyurethane resins usable in the present invention will be described as, for example, “other polyol (c)”. It can be obtained by reacting a compound with a polyisocyanate.
 a-2. ポリカーボネートポリオールに基づくポリウレタン樹脂
 本発明において、好ましいポリウレタン樹脂は、
 少なくとも、ポリカーボネートポリオール(a)と、
 必要により酸性基含有ポリオール(b)と、
 必要によりその他のポリオール(c)と、
 ポリイソシアネート(d)とを反応させ、
 場合により鎖延長剤(B)をさらに反応させて得られたポリウレタン樹脂である。
a-2. Polyurethane resin based on polycarbonate polyol In the present invention, preferred polyurethane resin is:
At least polycarbonate polyol (a);
If necessary, acidic group-containing polyol (b),
If necessary, other polyol (c),
Reacting with polyisocyanate (d),
In some cases, it is a polyurethane resin obtained by further reacting with a chain extender (B).
 酸性基含有ポリオール(b)は、ポリウレタン樹脂が水分散型である場合(水性ポリウレタン樹脂分散体)に使用することが好ましく、組成物中に保護コロイド、乳化剤、界面活性剤を含まなくても安定した水分散体を得ることができる。以下の説明では、酸性基含有ポリオール(b)を含む水分散型ポリウレタン樹脂(水性ポリウレタン樹脂分散体という場合がある)について主として説明するが、水分散型としない場合においては、酸性基含有ポリオール(b)は用いて無くてもよい。また、水分散型であっても酸性基含有ポリオール(b)を使用しなくてもよい。この場合、例えば乳化剤、界面活性剤等を添加してもよい。組成物中において、酸性基含有ポリオール(b)に基づく酸性基は、アミン化合物等で中和されていてもよい。以下に、ポリウレタン樹脂に含まれる構造単位を、主としてその原料に基づいて説明する。 The acidic group-containing polyol (b) is preferably used when the polyurethane resin is an aqueous dispersion type (aqueous polyurethane resin dispersion), and is stable even if the composition does not contain a protective colloid, an emulsifier, or a surfactant. Water dispersion can be obtained. In the following description, the water-dispersed polyurethane resin containing the acidic group-containing polyol (b) (sometimes referred to as an aqueous polyurethane resin dispersion) will be mainly described. b) may not be used. Moreover, even if it is a water dispersion type, it is not necessary to use an acidic group containing polyol (b). In this case, for example, an emulsifier, a surfactant or the like may be added. In the composition, the acidic group based on the acidic group-containing polyol (b) may be neutralized with an amine compound or the like. Below, the structural unit contained in a polyurethane resin is mainly demonstrated based on the raw material.
I.ポリカーボネートポリオール(a)
 本発明で使用するポリカーボネートポリオール(a)は、特に制限されず、ポリオールとポリオールとをカーボネート結合させて得られるものであり、分子中にエステル結合等を含有していてもよい。ポリカーボネートポリオール(a)の数平均分子量は、特に制限されず、数平均分子量が400~8000であることが好ましい。数平均分子量が、この範囲であると、適切な粘度及び良好な取り扱い性が容易に得られる。また、ソフトセグメントとしての性能の確保が容易であり、得られた水性ポリウレタン樹脂分散体を用いて塗膜を形成した場合に割れの発生を抑制し易く、さらに、イソシアネート化合物(c)との反応性が充分で、ウレタンプレポリマーの製造を効率的に行うことができる。ポリカーボネートポリオール(a)は、数平均分子量が400~4000であることがより好ましい。
I. Polycarbonate polyol (a)
The polycarbonate polyol (a) used in the present invention is not particularly limited, and is obtained by carbonate bonding of polyol and polyol, and may contain an ester bond or the like in the molecule. The number average molecular weight of the polycarbonate polyol (a) is not particularly limited, and the number average molecular weight is preferably 400 to 8000. When the number average molecular weight is within this range, an appropriate viscosity and good handleability can be easily obtained. Moreover, it is easy to ensure the performance as a soft segment, it is easy to suppress the occurrence of cracks when a coating film is formed using the obtained aqueous polyurethane resin dispersion, and further, the reaction with the isocyanate compound (c) And the urethane prepolymer can be produced efficiently. More preferably, the polycarbonate polyol (a) has a number average molecular weight of 400 to 4000.
 数平均分子量は、JIS K 1577に準拠して測定した水酸基価に基づいて算出した数平均分子量とする。具体的には、水酸基価を測定し、末端基定量法により、(56.1×1000×価数)/水酸基価(mgKOH/g)で算出する。前記式中において、価数は1分子中の水酸基の数であり、ポリカーボネートポリオールがポリカーボネートジオールの場合は価数が2となる。 The number average molecular weight is the number average molecular weight calculated based on the hydroxyl value measured according to JIS K 1577. Specifically, the hydroxyl value is measured, and is calculated by (56.1 × 1000 × valence) / hydroxyl value (mgKOH / g) by a terminal group quantification method. In the above formula, the valence is the number of hydroxyl groups in one molecule. When the polycarbonate polyol is polycarbonate diol, the valence is 2.
 前記ポリカーボネートポリオール(a)は、例えば、1種以上のポリオールと、炭酸エステルやホスゲンとを反応させることにより得ることができる。製造が容易な点及び末端塩素化物の副生成がない点から、1種以上のポリオールと、炭酸エステルとを反応させて得られるポリカーボネートポリオールが好ましい。 The polycarbonate polyol (a) can be obtained, for example, by reacting one or more polyols with carbonate ester or phosgene. A polycarbonate polyol obtained by reacting one or more polyols with a carbonic acid ester is preferred because it is easy to produce and there is no byproduct of terminal chlorinated products.
 前記ポリオールは、特に制限されず、例えば、脂肪族ポリオール、脂環構造を有するポリオール、芳香族ポリオール、ポリエステルポリオール、ポリエーテルポリオール等が挙げられる。本明細書において、脂環構造には、環内に酸素原子や窒素原子等のヘテロ原子を有するものも含む。 The polyol is not particularly limited, and examples thereof include an aliphatic polyol, a polyol having an alicyclic structure, an aromatic polyol, a polyester polyol, and a polyether polyol. In the present specification, the alicyclic structure includes those having a hetero atom such as an oxygen atom or a nitrogen atom in the ring.
 前記脂肪族ポリオールは、特に制限されず、例えば、炭素数3~12の脂肪族ポリオール等が挙げられる。具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール等の直鎖状脂肪族ジオール;2-メチル-1,3-プロパンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-1,9-ノナンジオール等の分岐鎖状脂肪族ジオール;1,1,1-トリメチロールプロパン、ペンタエリスリトール等の3官能以上の多価アルコール等が挙げられる。 The aliphatic polyol is not particularly limited, and examples thereof include aliphatic polyols having 3 to 12 carbon atoms. Specifically, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9 A linear aliphatic diol such as nonanediol; 2-methyl-1,3-propanediol, 2-methyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2-methyl-1 Branched aliphatic diols such as 1,9-nonanediol; polyfunctional alcohols having three or more functional groups such as 1,1,1-trimethylolpropane and pentaerythritol.
 前記脂環構造を有するポリオールは、特に制限されず、例えば、主鎖に炭素数5~12の脂環式基を有するポリオール等が挙げられる。具体的には、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、1,3-シクロペンタンジオール、1,4-シクロヘプタンジオール、2,5-ビス(ヒドロキシメチル)-1,4-ジオキサン、2,7-ノルボルナンジオール、テトラヒドロフランジメタノール、1,4-ビス(ヒドロキシエトキシ)シクロヘキサン、トリシクロ[5.2.1.02,6]デカンジメタノールに代表されるトリシクロデカンジメタノールの各構造異性体又はその混合物等の主鎖に脂環構造を有するジオール等が挙げられる。中でも、入手の容易さから1,4-シクロヘキサンジメタノールが好ましい。 The polyol having the alicyclic structure is not particularly limited, and examples thereof include a polyol having an alicyclic group having 5 to 12 carbon atoms in the main chain. Specifically, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanediol, 1,3-cyclopentanediol, 1,4-cycloheptanediol, 2,5-bis ( Representative examples are hydroxymethyl) -1,4-dioxane, 2,7-norbornanediol, tetrahydrofuran dimethanol, 1,4-bis (hydroxyethoxy) cyclohexane, tricyclo [5.2.1.0 2,6 ] decanedimethanol Examples include diols having an alicyclic structure in the main chain, such as each structural isomer of tricyclodecane dimethanol or a mixture thereof. Of these, 1,4-cyclohexanedimethanol is preferred because of its availability.
 前記芳香族ポリオールは、特に制限されず、例えば、1,4-ベンゼンジメタノール、1,3-ベンゼンジメタノール、1,2-ベンゼンジメタノール、4,4’-ナフタレンジメタノール、3,4’-ナフタレンジメタノール等が挙げられる。 The aromatic polyol is not particularly limited, and for example, 1,4-benzenedimethanol, 1,3-benzenedimethanol, 1,2-benzenedimethanol, 4,4′-naphthalenediethanol, 3,4 ′ -Naphthalene diethanol and the like.
 前記ポリエステルポリオールは、特に制限されず、例えば、6-ヒドロキシカプロン酸とヘキサンジオールとのポリエステルポリオール等のヒドロキシカルボン酸とジオールとのポリエステルポリオール、アジピン酸とヘキサンジオールとのポリエステルポリオール等のジカルボン酸とジオールとのポリエステルポリオール等が挙げられる。 The polyester polyol is not particularly limited. For example, a polyester polyol of hydroxycarboxylic acid and diol such as a polyester polyol of 6-hydroxycaproic acid and hexanediol, a dicarboxylic acid such as polyester polyol of adipic acid and hexanediol, and the like. Examples thereof include polyester polyols with diols.
 前記ポリエーテルポリオールは、特に制限されず、例えば、ポリエチレングリコール(例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール等)やポリプロピレングリコールやポリテトラメチレングリコール等のポリアルキレングリコール等が挙げられる。 The polyether polyol is not particularly limited, and examples thereof include polyethylene glycol (for example, diethylene glycol, triethylene glycol, tetraethylene glycol, etc.), polyalkylene glycol such as polypropylene glycol, polytetramethylene glycol, and the like.
 前記炭酸エステルは、特に制限されず、例えば、ジメチルカーボネート、ジエチルカーボネート等の脂肪族炭酸エステル、ジフェニルカーボネート等の芳香族炭酸エステル、エチレンカーボネート等の環状炭酸エステル等が挙げられる。その他に、ポリカーボネートポリオールを生成することができるホスゲン等も使用できる。中でも、前記ポリカーボネートポリオールの製造のし易さから、脂肪族炭酸エステルが好ましく、ジメチルカーボネートが特に好ましい。 The carbonate ester is not particularly limited, and examples thereof include aliphatic carbonate esters such as dimethyl carbonate and diethyl carbonate, aromatic carbonate esters such as diphenyl carbonate, and cyclic carbonate esters such as ethylene carbonate. In addition, phosgene or the like capable of producing a polycarbonate polyol can be used. Of these, aliphatic carbonates are preferred and dimethyl carbonate is particularly preferred because of the ease of production of the polycarbonate polyol.
 前記ポリオール及び炭酸エステルからポリカーボネートポリオールを製造する方法としては、例えば、反応器中に炭酸エステルと、この炭酸エステルのモル数に対して過剰のモル数のポリオールとを加え、温度160~200℃、圧力50mmHg程度で5~6時間反応させた後、更に数mmHg以下の圧力において200~220℃で数時間反応させる方法が挙げられる。前記反応においては副生するアルコールを系外に抜き出しながら反応させることが好ましい。その際、炭酸エステルが副生するアルコールと共沸することにより系外へ抜け出る場合には、過剰量の炭酸エステルを加えてもよい。また、前記反応において、チタニウムテトラブトキシド等の触媒を使用してもよい。 As a method for producing a polycarbonate polyol from the polyol and the carbonate ester, for example, a carbonate ester and a polyol having an excess number of moles relative to the number of moles of the carbonate ester are added to a reactor, and the temperature is 160 to 200 ° C. An example is a method of reacting at a pressure of about 50 mmHg for 5 to 6 hours and further reacting at 200 to 220 ° C. for several hours at a pressure of several mmHg or less. In the reaction, it is preferable to carry out the reaction while extracting by-produced alcohol out of the system. At that time, if the carbonate ester escapes from the system by azeotroping with the by-produced alcohol, an excessive amount of carbonate ester may be added. In the reaction, a catalyst such as titanium tetrabutoxide may be used.
 ポリカーボネートポリオール(a)は、1種のポリオールと炭酸エステルとを反応させて得られるポリカーボネートポリオールや、複数種のポリオールと炭酸エステルとを反応させて得られる共重合ポリカーボネートポリオール等が挙げられる。このようなポリカーボネートポリオールとしては、例えば、1,6-ヘキサンジオールと炭酸エステルとを反応させて得られたポリカーボネートポリオール、1,6-ヘキサンジオール及び1,5-ペンタンジオールの混合物と炭酸エステルとを反応させて得られたポリカーボネートポリオール、1,6-ヘキサンジオール及び1,4-ブタンジオールの混合物と炭酸エステルとを反応させて得られたポリカーボネートポリオール、1,4-シクロヘキサンジメタノールと炭酸エステルとを反応させて得られたポリカーボネートジオール、1,6-ヘキサンジオール及び1,4-シクロヘキサンジメタノールの混合物と炭酸エステルとを反応させて得られたポリカーボネートジオール等が挙げられる。 Examples of the polycarbonate polyol (a) include a polycarbonate polyol obtained by reacting one kind of polyol and a carbonate ester, a copolymer polycarbonate polyol obtained by reacting a plurality of kinds of polyol and a carbonate ester, and the like. As such a polycarbonate polyol, for example, a polycarbonate polyol obtained by reacting 1,6-hexanediol and a carbonate, a mixture of 1,6-hexanediol and 1,5-pentanediol, and a carbonate is used. A polycarbonate polyol obtained by reacting a mixture of a polycarbonate polyol obtained by the reaction, 1,6-hexanediol and 1,4-butanediol with a carbonate, 1,4-cyclohexanedimethanol and a carbonate. Examples thereof include polycarbonate diol obtained by reacting a mixture of polycarbonate diol, 1,6-hexanediol and 1,4-cyclohexanedimethanol obtained by reaction with carbonate ester.
 乾燥性に優れ、高い硬度を持つ塗膜が得られる点から、ポリカーボネートポリオール(a)として、主鎖に脂環構造を有するポリカーボネートポリオール(a1)(以下、「ポリカーボネートポリオール(a1)」ということもある。)を用いることが好ましい。また耐溶剤性により優れた塗膜が得られるという利点も有する。中でも、主鎖に脂環構造を有するポリカーボネートポリオール(a1)は、数平均分子量が400~5000であるものが好ましく、400~3000であるものがより好ましく、500~2000であるものが特に好ましい。 From the point that a coating film having excellent drying properties and high hardness is obtained, the polycarbonate polyol (a1) (hereinafter referred to as “polycarbonate polyol (a1)”) having an alicyclic structure in the main chain as the polycarbonate polyol (a). It is preferable to use Moreover, it has the advantage that a coating film excellent in solvent resistance can be obtained. Among them, the polycarbonate polyol (a1) having an alicyclic structure in the main chain preferably has a number average molecular weight of 400 to 5000, more preferably 400 to 3000, and particularly preferably 500 to 2000.
 前記主鎖に脂環構造を有するポリカーボネートポリオール(a1)は、例えば、主鎖に脂環構造を有するポリオールと炭酸エステルとを反応させて得られるポリカーボネートポリオールや、主鎖に脂環構造を有するポリオールと他のポリオール(主鎖に脂環構造を有しないポリオール)と炭酸エステルとを反応させて得られる共重合ポリカーボネートポリオール等が挙げられる。水性分散体の分散性の観点から、他のポリオールを併用した共重合ポリカーボネートポリオールが好ましい。他のポリオールとしては、脂肪族ポリオール、芳香族ポリオール、ポリエステルポリオール、ポリエーテルポリオールを使用することができ、前記の具体例が適用される。中でも、主鎖に脂環構造を有するポリオールと脂肪族ポリオールの組み合わせが好ましく、特に、1,4-シクロへキサンジメタノールと1,6-ヘキサンジオールを併用して得られる共重合ポリカーボネートポリオールが好ましい。 The polycarbonate polyol (a1) having an alicyclic structure in the main chain is, for example, a polycarbonate polyol obtained by reacting a polyol having a alicyclic structure in the main chain with a carbonic ester, or a polyol having an alicyclic structure in the main chain. And other polyols (polyols having no alicyclic structure in the main chain) and carbonated polycarbonates obtained by reacting carbonates. From the viewpoint of dispersibility of the aqueous dispersion, a copolymerized polycarbonate polyol using another polyol in combination is preferable. As other polyols, aliphatic polyols, aromatic polyols, polyester polyols, and polyether polyols can be used, and the above specific examples are applied. Among them, a combination of a polyol having an alicyclic structure in the main chain and an aliphatic polyol is preferable, and a copolymer polycarbonate polyol obtained by using 1,4-cyclohexanedimethanol and 1,6-hexanediol in combination is particularly preferable. .
 前記主鎖に脂環構造を有するポリカーボネートポリオール(a1)を用いた場合、ポリカーボネートポリオール(a)における脂環構造含有率は、65重量%以下であることが好ましい。この範囲であれば、脂環構造の存在により、硬度に優れた塗膜が得られ易く、その一方で、脂環構造の含有率が大きくなりすぎて、水性ポリウレタン樹脂分散体製造時のプレポリマーの粘度が高くなり取り扱いが困難となるといった事態を回避しやすい。脂環構造含有率は、10~55重量%であることがより好ましい。 When the polycarbonate polyol (a1) having an alicyclic structure in the main chain is used, the alicyclic structure content in the polycarbonate polyol (a) is preferably 65% by weight or less. Within this range, the presence of the alicyclic structure makes it easy to obtain a coating film with excellent hardness, while the content of the alicyclic structure becomes too large, and a prepolymer used in the production of an aqueous polyurethane resin dispersion. It is easy to avoid a situation where the viscosity of the resin becomes high and handling becomes difficult. The alicyclic structure content is more preferably 10 to 55% by weight.
 ここで、脂環構造含有率は、ポリカーボネートポリオール(a)に占める、脂環式基の重量割合をいうこととする。例えば、シクロヘキサン残基等のシクロアルカン残基(1,4-ヘキサンジメタノールの場合は、シクロヘキサンから2つの水素原子を除いた部分)や、テトラヒドロフラン残基等の不飽和へテロ環残基(テトラヒドロフランジメタノールの場合は、テトラヒドロフランから2つの水素原子を除いた部分)に基づき、算出した値をいう。 Here, the alicyclic structure content refers to the weight ratio of the alicyclic group in the polycarbonate polyol (a). For example, cycloalkane residues such as cyclohexane residues (in the case of 1,4-hexanedimethanol, a portion obtained by removing two hydrogen atoms from cyclohexane) and unsaturated heterocyclic residues such as tetrahydrofuran residues (tetrahydrofuran In the case of dimethanol, it means a value calculated based on the portion obtained by removing two hydrogen atoms from tetrahydrofuran.
 ポリカーボネートポリオール(a)は、単独で用いてもよいし、複数種を併用してもよい。例えば、主鎖に脂環構造を有するポリカーボネートポリオール(a1)のみを用いてもよいし、主鎖に脂環構造を有するポリカーボネートポリオール(a1)とそれ以外のポリカーボネートポリオールを併用してもよい。 Polycarbonate polyol (a) may be used alone or in combination of two or more. For example, only the polycarbonate polyol (a1) having an alicyclic structure in the main chain may be used, or the polycarbonate polyol (a1) having an alicyclic structure in the main chain and another polycarbonate polyol may be used in combination.
 主鎖に脂環構造を有するポリカーボネートポリオール(a1)と併用することができる、それ以外のポリカーボネートポリオールは、特に制限されず、具体的にはポリテトラメチレンカーボネートジオール、ポリペンタメチレンカーボネートジオール、ポリへキサメチレンカーボネートジオール等の脂肪族ポリカーボネートジオール;ポリ1,4-キシリレンカーボネートジオール等の芳香族ポリカーボネートジオール;複数種の脂肪族ジオールと炭酸エステルとの反応生成物であるポリカーボネートジオール;脂肪族ジオールと芳香族ジオールと炭酸エステルとの反応生成物であるポリカーボネートジオール、脂肪族ジオールとダイマージオールと炭酸エステルとの反応生成物であるポリカーボネートジオール等の共重合ポリカーボネートジオール等が挙げられる。例えば、主鎖に脂環構造を有するポリカーボネートポリオール(a1)と脂肪族ポリカーボネートポリオールとの併用が挙げられる。 Other polycarbonate polyols that can be used in combination with the polycarbonate polyol (a1) having an alicyclic structure in the main chain are not particularly limited, and specifically include polytetramethylene carbonate diol, polypentamethylene carbonate diol, and polytetramethylene carbonate. Aliphatic polycarbonate diols such as xamethylene carbonate diol; Aromatic polycarbonate diols such as poly 1,4-xylylene carbonate diol; Polycarbonate diol which is a reaction product of a plurality of types of aliphatic diols and carbonates; Polycarbonates such as polycarbonate diol, which is a reaction product of aromatic diol and carbonate, polycarbonate diol, which is a reaction product of aliphatic diol, dimer diol and carbonate Diol, and the like. For example, the combined use of a polycarbonate polyol (a1) having an alicyclic structure in the main chain and an aliphatic polycarbonate polyol can be mentioned.
II.酸性基含有ポリオール(b)
 酸性基含有ポリオール(b)は、一分子中に2個以上の水酸基と、1個以上の酸性基を含有するものであれば、特に制限はない。酸性基としては、カルボキシ基、スルホン酸基、リン酸基、フェノール性水酸基等が挙げられる。特に前記酸性基含有ポリオール(b)として、一分子中に2個の水酸基と1個のカルボキシ基を有する化合物を含有するものが好ましい。前記酸性基含有ポリオール(b)は、単独で用いてもよいし、複数種を併用してもよい。
II. Acid group-containing polyol (b)
The acidic group-containing polyol (b) is not particularly limited as long as it contains two or more hydroxyl groups and one or more acidic groups in one molecule. Examples of the acidic group include a carboxy group, a sulfonic acid group, a phosphoric acid group, and a phenolic hydroxyl group. In particular, the acidic group-containing polyol (b) is preferably one containing a compound having two hydroxyl groups and one carboxy group in one molecule. The acidic group-containing polyol (b) may be used alone or in combination of two or more.
 前記酸性基含有ポリオール(b)としては、具体的には、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸等のジメチロールアルカン酸をはじめとするジアルカノールアルカン酸;N,N-ビスヒドロキシエチルグリシン、N,N-ビスヒドロキシエチルアラニン、3,4-ジヒドロキシブタンスルホン酸、3,6-ジヒドロキシ-2-トルエンスルホン酸、酸性基含有ポリエーテルポリオール、酸性基含有ポリエステルポリオール等が挙げられる。中でも入手の容易さの観点から、2個のアルカノール基を含むジアルカノールアルカン酸が好ましく、2個のメチロール基を含む炭素数4~12のアルカン酸(ジメチロールアルカン酸)がより好ましく、ジメチロールアルカン酸の中でも、2,2-ジメチロールプロピオン酸が特に好ましい。 Specific examples of the acidic group-containing polyol (b) include dialkanol alkanoic acids including dimethylol alkanoic acids such as 2,2-dimethylolpropionic acid and 2,2-dimethylolbutanoic acid; N-bishydroxyethylglycine, N, N-bishydroxyethylalanine, 3,4-dihydroxybutanesulfonic acid, 3,6-dihydroxy-2-toluenesulfonic acid, acidic group-containing polyether polyol, acidic group-containing polyester polyol, etc. Is mentioned. Of these, dialkanol alkanoic acid containing two alkanol groups is preferable from the viewpoint of easy availability, and alkanoic acid having 4 to 12 carbon atoms (dimethylol alkanoic acid) containing two methylol groups is more preferable, and dimethylol. Of the alkanoic acids, 2,2-dimethylolpropionic acid is particularly preferred.
III.その他のポリオール(c)
 前記ポリカーボネートポリオール(a)及び前記酸性基含有ポリオール(b)以外に、その他のポリオール(c)(以下、「その他のポリオール(c)」ということもある。)を用いることができる。その他のポリオール(c)としては、ポリマーポリオール等の高分子ポリオールや低分子ポリオールが挙げられる。高分子ポリオールとしては、数平均分子量が400~4000のものが挙げられる。ポリオールは、ジオールであっても、3価以上の多価アルコールであってもよい。その他のポリオールは、単独で用いてもよいし、複数種を併用してもよい。塗膜の硬度が高くなるという点から、低分子ポリオールが好ましく、中でも低分子ジオールが好ましい。
III. Other polyols (c)
In addition to the polycarbonate polyol (a) and the acidic group-containing polyol (b), other polyols (c) (hereinafter also referred to as “other polyols (c)”) may be used. Examples of the other polyol (c) include high molecular polyols such as polymer polyols and low molecular polyols. Examples of the polymer polyol include those having a number average molecular weight of 400 to 4000. The polyol may be a diol or a trihydric or higher polyhydric alcohol. Other polyols may be used alone or in combination of two or more. From the viewpoint that the hardness of the coating film becomes high, a low molecular polyol is preferable, and a low molecular diol is particularly preferable.
 前記ポリマーポリオールは、特に制限されず、ポリエステルポリオール、ポリエーテルポリオール、アクリルポリオール、ポリジエンポリオールを好適に用いることができる。 The polymer polyol is not particularly limited, and polyester polyol, polyether polyol, acrylic polyol, and polydiene polyol can be suitably used.
 前記ポリエステルポリオールは、特に制限されず、例えば、ポリエチレンアジペートポリオール、ポリブチレンアジペートポリオール、ポリエチレンブチレンアジペートポリオール、ポリへキサメチレンイソフタレートアジペートポリオール、ポリエチレンサクシネートポリオール、ポリブチレンサクシネートポリオール、ポリエチレンセバケートポリオール、ポリブチレンセバケートポリオール、ポリ-ε-カプロラクトンポリオール、ポリ(3-メチル-1,5-ペンチレンアジペート)ポリオール、1,6-ヘキサンジオールとダイマー酸の重縮合物等を挙げることができる。 The polyester polyol is not particularly limited, and for example, polyethylene adipate polyol, polybutylene adipate polyol, polyethylene butylene adipate polyol, polyhexamethylene isophthalate adipate polyol, polyethylene succinate polyol, polybutylene succinate polyol, polyethylene sebacate polyol And polybutylene sebacate polyol, poly-ε-caprolactone polyol, poly (3-methyl-1,5-pentylene adipate) polyol, polycondensate of 1,6-hexanediol and dimer acid, and the like.
 前記ポリエーテルポリオールは、特に制限されず、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレンオキシドとプロピレンオキシド、エチレンオキシドとブチレンオキシドとのランダム共重合体やブロック共重合体等を挙げることができる。さらに、エーテル結合とエステル結合とを有するポリエーテルポリエステルポリオール等を用いることもできる。 The polyether polyol is not particularly limited, and examples thereof include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, a random copolymer or a block copolymer of ethylene oxide and propylene oxide, ethylene oxide and butylene oxide, and the like. . Furthermore, a polyether polyester polyol having an ether bond and an ester bond can also be used.
 前記ポリジエンポリオールは、特に制限されず、ブタジエン、イソプレン、1,3-ペンタジエン、クロロプレン、シクロペンタジエン等から誘導される単位を含むポリジエンポリオール等を挙げることができる。前記ポリジエンポリオールの具体的例としては、例えば、水酸基末端液状ポリブタジエン(出光興産社製「Poly bd」)や二官能性水酸基末端液状ポリブタジエン(出光興産社製「KRASOL」)、水酸基末端液状ポリイソプレン(出光興産社製「Poly ip」)、水酸基末端液状ポリオレフィン(出光興産社製「エポール」)等が挙げられる。 The polydiene polyol is not particularly limited, and examples thereof include polydiene polyols containing units derived from butadiene, isoprene, 1,3-pentadiene, chloroprene, cyclopentadiene, and the like. Specific examples of the polydiene polyol include, for example, hydroxyl-terminated liquid polybutadiene (“Poly bd” manufactured by Idemitsu Kosan Co., Ltd.), bifunctional hydroxyl-terminated liquid polybutadiene (“KRASOL” manufactured by Idemitsu Kosan Co., Ltd.), and hydroxyl-terminated liquid polyisoprene. ("Poly ip" manufactured by Idemitsu Kosan Co., Ltd.), hydroxyl-terminated liquid polyolefin ("Epol" manufactured by Idemitsu Kosan Co., Ltd.), and the like.
 ポリアクリルポリオールは、特に制限されず、例えば、アクリル酸-2-ヒドロキシエチル、アクリル酸-2-ヒドロキシプロピル、アクリル酸-2-ヒドロキシブチル等の活性水素を持つアクリル酸エステル、又はグリセリンのアクリル酸モノエステルあるいはメタクリル酸モノエステル、トリメチロールプロパンのアクリル酸モノエステルあるいはメタクリル酸モノエステルの群から選ばれた単独又は混合物とアクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸-2-エチルヘキシル等のアクリル酸エステル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-2-ヒドロキシプロピル、メタクリル酸-2-ヒドロキシブチル、メタクリル酸-3-ヒドロキシプロピル、メタクリル酸-4-ヒドロキシブチル等の活性水素を持つメタクリル酸エステル、又はメタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-n-ヘキシル、メタクリル酸ラウリル等のメタクリル酸エステルの群から選ばれた単独又は混合物を用い、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等の不飽和カルボン酸、アクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド等の不飽和アミド、及びメタクリル酸グリシジル、スチレン、ビニルトルエン、酢酸ビニル、アクリロニトリル、フマル酸ジブチル等のその他の重合性モノマーの群から選ばれた単独又は混合物の存在下、或いは非存在下において重合させて得られるポリアクリルポリオールが挙げられる。その重合方法としては、乳化重合、懸濁重合、分散重合、溶液重合等が挙げられる。乳化重合では段階的に重合することもできる。 The polyacryl polyol is not particularly limited, and examples thereof include acrylic acid esters having active hydrogen such as 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, and 2-hydroxybutyl acrylate, or acrylic acid of glycerin. Monoester or methacrylic acid monoester, trimethylolpropane acrylic acid monoester or methacrylic acid monoester alone or in mixture and methyl acrylate, ethyl acrylate, isopropyl acrylate, n-butyl acrylate, Acrylic acid esters such as 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 3-hydroxypropyl methacrylate, methacrylate Methacrylic acid ester with active hydrogen, such as 4-hydroxybutyl phosphate, or methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, methacrylate-n-butyl, isobutyl methacrylate, methacrylate-n-hexyl, methacrylic acid Unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, acrylamide, N-methylol acrylamide, diacetone acrylamide, etc., using a single or mixture selected from the group of methacrylic acid esters such as lauryl It is obtained by polymerizing in the presence or absence of amide and other polymerizable monomers selected from the group of glycidyl methacrylate, styrene, vinyl toluene, vinyl acetate, acrylonitrile, dibutyl fumarate and the like. Poly Acrylic polyols. Examples of the polymerization method include emulsion polymerization, suspension polymerization, dispersion polymerization, solution polymerization and the like. In emulsion polymerization, it can also be polymerized stepwise.
 ポリカーボネートポリオール(a)に対するその他のポリオール(c)の割合は、40重量%以下であることが好ましい。この範囲であれば、得られる塗膜の硬度が低下したり、ポリウレタン樹脂水分散体の製造が困難になったりすることを回避し易い。その他のポリオール(c)の割合は、より好ましくは、20重量%以下である。 The ratio of the other polyol (c) to the polycarbonate polyol (a) is preferably 40% by weight or less. If it is this range, it will be easy to avoid that the hardness of the coating film obtained falls or manufacture of a polyurethane resin water dispersion becomes difficult. The ratio of the other polyol (c) is more preferably 20% by weight or less.
IV.ポリオール成分の水酸基当量
 本発明においては、ポリカーボネートポリオール(a)、酸性基含有ポリオール(b)、及び任意のその他のポリオール(c)の合計の水酸基当量数は100~500であることが好ましい。水酸基当量数が、この範囲であれば、水性ポリウレタン樹脂分散体の製造が容易であり、良好な水性ポリウレタン樹脂分散体の貯蔵安定性及び硬度に優れた塗膜が得られ易い。塗膜の硬度の観点から、好ましくは150~400、より好ましくは180~300、特に好ましくは200~270である。
IV. In the present invention, the total number of hydroxyl equivalents of the polycarbonate polyol (a), the acidic group-containing polyol (b), and any other polyol (c) is preferably 100 to 500. If the number of hydroxyl equivalents is within this range, it is easy to produce an aqueous polyurethane resin dispersion, and a coating film excellent in storage stability and hardness of an excellent aqueous polyurethane resin dispersion is easily obtained. From the viewpoint of the hardness of the coating film, it is preferably 150 to 400, more preferably 180 to 300, and particularly preferably 200 to 270.
 水酸基当量数は、以下の式(1)及び(2)で算出することができる。 The number of hydroxyl equivalents can be calculated by the following formulas (1) and (2).
 各ポリオールの水酸基当量数=各ポリオールの分子量/各ポリオールの水酸基の数・・・(1)
 ポリオールの合計の水酸基当量数=M/ポリオールの合計モル数・・・(2)
 前記式(2)において、Mは、[〔ポリカーボネートポリオール(a)の水酸基当量数×ポリカーボネートポリオール(a)のモル数〕+〔酸性基含有ポリオール(b)の水酸基当量数×酸性基含有ポリオール(b)のモル数〕+〔その他のポリオール(c)の水酸基当量数×その他のポリオール(c)のモル数〕]を示す。
Number of hydroxyl equivalents of each polyol = molecular weight of each polyol / number of hydroxyl groups of each polyol (1)
Total number of hydroxyl equivalents of polyol = M / total number of moles of polyol (2)
In the above formula (2), M represents [[number of hydroxyl group equivalents of polycarbonate polyol (a) × number of moles of polycarbonate polyol (a)] + [number of hydroxyl group equivalents of acidic group-containing polyol (b) × acidic group-containing polyol ( b) Number of moles] + [number of hydroxyl equivalents of other polyol (c) × number of moles of other polyol (c)]].
V.ポリイソシアネート(d)
 ポリイソシアネート(d)は、特に制限されず、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられる。
V. Polyisocyanate (d)
The polyisocyanate (d) is not particularly limited, and examples thereof include aromatic polyisocyanates, aliphatic polyisocyanates, and alicyclic polyisocyanates.
 芳香族ポリイソシアネートとしては、具体的には、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート(TDI)、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-ジフェニルメタンジイソシアネート、4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトビフェニル、3,3’-ジメチル-4,4’-ジイソシアナトジフェニルメタン、1,5-ナフチレンジイソシアネート、4,4’,4’’-トリフェニルメタントリイソシアネート、m-イソシアナトフェニルスルホニルイソシアネート、p-イソシアナトフェニルスルホニルイソシアネート等が挙げられる。 Specific examples of the aromatic polyisocyanate include 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate, 4,4′-. Diphenylmethane diisocyanate (MDI), 2,4-diphenylmethane diisocyanate, 4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4'-diisocyanatobiphenyl, 3,3'-dimethyl-4,4 Examples include '-diisocyanatodiphenylmethane, 1,5-naphthylene diisocyanate, 4,4', 4 ''-triphenylmethane triisocyanate, m-isocyanatophenylsulfonyl isocyanate, p-isocyanatophenylsulfonyl isocyanate.
 脂肪族ポリイソシアネートとしては、具体的には、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11-ウンデカントリイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6-ジイソシアナトメチルカプロエート、ビス(2-イソシアナトエチル)フマレート、ビス(2-イソシアナトエチル)カーボネート、2-イソシアナトエチル-2,6-ジイソシアナトヘキサノエート等が挙げられる。 Specific examples of the aliphatic polyisocyanate include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, and 2,2,4-trimethylhexamethylene diisocyanate. Lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2,6-diisocyanatohexano Eate.
 脂環式ポリイソシアネートとしては、具体的には、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水素添加TDI)、ビス(2-イソシアナトエチル)-4-ジクロヘキセン-1,2-ジカルボキシレート、2,5-ノルボルナンジイソシアネート、2,6-ノルボルナンジイソシアネーネート、ダイマー酸ジイソシアネート等が挙げられる。 Specific examples of the alicyclic polyisocyanate include isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI), bis (2 -Isocyanatoethyl) -4-dichlorohexene-1,2-dicarboxylate, 2,5-norbornane diisocyanate, 2,6-norbornane diisocyanate, dimer acid diisocyanate and the like.
 これらのポリイソシアネートは、単独で用いてもよいし、複数種を併用してもよい。 These polyisocyanates may be used alone or in combination of two or more.
 前記ポリイソシアネートの1分子当たりのイソシアナト基は通常2個であるが、本発明におけるポリウレタン樹脂がゲル化をしない範囲で、トリフェニルメタントリイソシアネートのようなイソシアナト基を3個以上有するポリイソシアネートも使用することができる。 Although the number of isocyanate groups per molecule of the polyisocyanate is usually two, a polyisocyanate having three or more isocyanato groups such as triphenylmethane triisocyanate is also used as long as the polyurethane resin in the present invention does not gel. can do.
 前記ポリイソシアネートの中でも、反応性の制御、高い硬度、強度付与等の観点から、4,4’-ジフェニレンメタンジイソシアネート(MDI)、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート(水素添加MDI)が好ましい。 Among the polyisocyanates, 4,4′-diphenylenemethane diisocyanate (MDI), isophorone diisocyanate (IPDI), 4,4′-dicyclohexylmethane diisocyanate (hydrogen) from the viewpoints of control of reactivity, high hardness, imparting strength and the like. Addition MDI) is preferred.
VI.ポリウレタン樹脂又はポリウレタンプレポリマー(A)
 この態様におけるポリウレタン樹脂は、少なくとも、ポリカーボネートポリオール(a)と、任意の酸性基含有ポリオール(b)と、ポリイソシアネート(d)とを反応させて得られるポリウレタン樹脂であるか、ポリカーボネートポリオール(a)と、任意の酸性基含有ポリオール(b)と、ポリイソシアネート(d)とを反応させてポリウレタンプレポリマー(A)を得て、これをさらに鎖延長剤(B)と反応させて得られたポリウレタン樹脂である。前記ポリウレタン樹脂又はポリウレタンプレポリマー(A)は、ポリカーボネートポリオール(a)と、任意の酸性基含有ポリオール(b)と、任意のその他のポリオール(c)と、ポリイソシアネート(d)とを反応させて得られるポリウレタン樹脂であるか、ポリカーボネートポリオール(a)と、任意の酸性基含有ポリオール(b)と、任意のその他のポリオール(c)と、前記ポリイソシアネート(d)とを反応させてポリウレタンプレポリマー(A)を得て、これをさらに鎖延長剤(B)と反応させて得られたポリウレタン樹脂であってもよい。前記ポリウレタンプレポリマー(A)と前記鎖延長剤(B)とを反応させてポリウレタン樹脂を得る場合には、前記ポリウレタンプレポリマー(A)と前記鎖延長剤(B)との反応の温度は、例えば0~80℃、好ましくは0~60℃である。
VI. Polyurethane resin or polyurethane prepolymer (A)
The polyurethane resin in this embodiment is a polyurethane resin obtained by reacting at least a polycarbonate polyol (a), an optional acidic group-containing polyol (b), and a polyisocyanate (d), or a polycarbonate polyol (a). And an optional acidic group-containing polyol (b) and a polyisocyanate (d) to obtain a polyurethane prepolymer (A), which is further reacted with a chain extender (B) to obtain a polyurethane Resin. The polyurethane resin or polyurethane prepolymer (A) is obtained by reacting a polycarbonate polyol (a), an optional acidic group-containing polyol (b), an optional other polyol (c), and a polyisocyanate (d). A polyurethane prepolymer obtained by reacting a polycarbonate polyol (a), an optional acidic group-containing polyol (b), an optional other polyol (c), and the polyisocyanate (d). It may be a polyurethane resin obtained by obtaining (A) and further reacting it with a chain extender (B). When the polyurethane prepolymer (A) and the chain extender (B) are reacted to obtain a polyurethane resin, the reaction temperature between the polyurethane prepolymer (A) and the chain extender (B) is: For example, it is 0 to 80 ° C., preferably 0 to 60 ° C.
 前記ポリウレタン樹脂又はポリウレタンプレポリマー(A)を得る場合において、前記ポリカーボネートポリオール(a)と任意の酸性基含有ポリオール(b)と任意のその他のポリオール(c)の全量を100重量部とした場合に、前記ポリカーボネートポリオール(a)の割合は好ましくは50~95量部、より好ましくは70~92重量部、特に好ましくは80~90重量部であり、前記酸性基含有ポリオール(b)の割合は好ましくは5~25重量部、より好ましくは10~20重量部、特に好ましくは12~18重量部であり、前記その他のポリオール(c)の割合は好ましくは0~40重量部、より好ましくは0~30重量部、特に好ましくは0~20重量部である。前記ポリカーボネートポリオール(a)の割合が上記の範囲であれば、塗膜の硬度が低くなることが抑制され、かつ良好な製膜性も得られ易い。前記酸性基含有ポリオール(b)の割合が上記の範囲であれば、得られる水性ポリウレタン樹脂の水系媒体中への分散性が良好で、かつ充分な塗膜の耐水性も得られ易い。前記その他のポリオール(c)の割合が上記の範囲であれば、相対的に全ポリオール成分中の前記ポリカーボネートポリオール(a)の割合が少なくなりすぎたり、前記酸性基含有ポリオール化合物(b)の割合が少なくなりすぎたりすることもなく、良好な塗膜の硬度及び水性ポリウレタン樹脂の分散性が得られ易い。 When obtaining the polyurethane resin or polyurethane prepolymer (A), when the total amount of the polycarbonate polyol (a), any acidic group-containing polyol (b) and any other polyol (c) is 100 parts by weight. The ratio of the polycarbonate polyol (a) is preferably 50 to 95 parts by weight, more preferably 70 to 92 parts by weight, particularly preferably 80 to 90 parts by weight, and the ratio of the acidic group-containing polyol (b) is preferably Is 5 to 25 parts by weight, more preferably 10 to 20 parts by weight, particularly preferably 12 to 18 parts by weight, and the proportion of the other polyol (c) is preferably 0 to 40 parts by weight, more preferably 0 to 30 parts by weight, particularly preferably 0 to 20 parts by weight. If the ratio of the said polycarbonate polyol (a) is said range, it will be suppressed that the hardness of a coating film becomes low and favorable film forming property will be easy to be obtained. When the ratio of the acidic group-containing polyol (b) is in the above range, the resulting aqueous polyurethane resin has good dispersibility in an aqueous medium, and sufficient water resistance of the coating film is easily obtained. If the proportion of the other polyol (c) is within the above range, the proportion of the polycarbonate polyol (a) in the total polyol component is relatively too small, or the proportion of the acidic group-containing polyol compound (b). Therefore, it is easy to obtain good hardness of the coating film and dispersibility of the aqueous polyurethane resin.
 前記ポリウレタン樹脂又はポリウレタンプレポリマー(A)を得る場合において、前記ポリカーボネートポリオール(a)と、前記酸性基含有ポリオール(b)とからなるポリオール成分、又は、前記ポリカーボネートポリオール(a)と、前記酸性基含有ポリオール(b)と、その他のポリオール(c)とからなるポリオール成分の全水酸基のモル数に対する、前記ポリイソシアネート(d)のイソシアナト基のモル数の比は、1.01~2.5が好ましい。この範囲であれば、前記ポリオール成分の水酸基のモル数が多すぎることによって、分子末端にイソシアナト基を有しないポリウレタンプレポリマー(A)が多くなり、鎖延長剤(B)と反応しない分子が多くなって、水性ポリウレタン樹脂分散体を塗布して得られる塗膜の強度が低下するという問題を回避し易く、また、ポリオール成分の水酸基のモル数が少なすぎることによって、未反応の前記ポリイソシアネート(d)が多量に反応系内に残り、前記鎖延長剤と反応したり、水と反応して分子伸長を起こして、水性ポリウレタン樹脂分散体を塗布して得られる塗膜に凹凸が生じるという問題も回避し易い。ポリオール成分の全水酸基のモル数に対する、前記ポリイソシアネート(d)のイソシアナト基のモル数の比は、好ましくは1.2~2.2、特に好ましくは1.2~2.0である。 When obtaining the polyurethane resin or polyurethane prepolymer (A), a polyol component comprising the polycarbonate polyol (a) and the acidic group-containing polyol (b), or the polycarbonate polyol (a) and the acidic group. The ratio of the number of moles of isocyanate groups of the polyisocyanate (d) to the number of moles of all hydroxyl groups in the polyol component consisting of the polyol (b) and other polyols (c) is 1.01 to 2.5. preferable. If it is in this range, the number of moles of hydroxyl groups of the polyol component is too large, so that the polyurethane prepolymer (A) having no isocyanate group at the molecular end increases and there are many molecules that do not react with the chain extender (B). Thus, it is easy to avoid the problem that the strength of the coating film obtained by applying the aqueous polyurethane resin dispersion is reduced, and the number of hydroxyl groups of the polyol component is too small. d) Remains in the reaction system in a large amount and reacts with the chain extender or reacts with water to cause molecular elongation, resulting in unevenness in the coating film obtained by applying the aqueous polyurethane resin dispersion. Is easy to avoid. The ratio of the number of moles of isocyanate groups of the polyisocyanate (d) to the number of moles of all hydroxyl groups in the polyol component is preferably 1.2 to 2.2, particularly preferably 1.2 to 2.0.
 前記ポリウレタン樹脂又はポリウレタンプレポリマー(A)を得る場合において、前記ポリカーボネートポリオール(a)、前記酸性基含有ポリオール(b)、及び必要に応じてその他のポリオール(c)とからなるポリオール成分と、前記ポリイソシアネート(d)との反応は、(a)、(b)、(c)を順不同で(d)と反応させてもよく、複数種を混合して(d)と反応させてもよい。 In the case of obtaining the polyurethane resin or polyurethane prepolymer (A), a polyol component comprising the polycarbonate polyol (a), the acidic group-containing polyol (b), and, if necessary, other polyol (c), In the reaction with the polyisocyanate (d), (a), (b) and (c) may be reacted with (d) in any order, or a plurality of types may be mixed and reacted with (d).
 本発明において、前記ポリウレタン樹脂又はポリウレタンプレポリマー(A)の酸価は、10~55mgKOH/gが好ましい。この範囲であれば、良好な水系媒体への分散性及び塗膜の耐水性を確保し易い。酸価は、より好ましくは、14~42mgKOH/gであり、さらに好ましくは、18~35mgKOH/g酸価がさらに好ましい。 In the present invention, the acid value of the polyurethane resin or polyurethane prepolymer (A) is preferably 10 to 55 mgKOH / g. If it is this range, it will be easy to ensure the dispersibility to an aqueous medium and the water resistance of a coating film. The acid value is more preferably 14 to 42 mgKOH / g, still more preferably 18 to 35 mgKOH / g acid value.
VII.鎖延長剤(B)
 本発明における鎖延長剤(B)は、ポリウレタンプレポリマー(A)のイソシアナト基と反応性を有する。鎖延長剤としては、例えば、エチレンジアミン、1,4-テトラメチレンジアミン、2-メチル-1,5-ペンタンジアミン、1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン、1,4-ヘキサメチレンジアミン、3-アミノメチル-3,5,5-トリメチルシクロヘキシルアミン、1,3-ビス(アミノメチル)シクロヘキサン、キシリレンジアミン、ピペラジン、2,5-ジメチルピペラジン、ヒドラジン、アジポイルジヒドラジド、ジエチレントリアミン、トリエチレンテトラミン等のアミン化合物、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール等のジオール化合物、ポリエチレングリコールに代表されるポリアルキレングリコール類、水等が挙げられ、中でも好ましくは1級ジアミン化合物が挙げられる。これらは、単独で用いてもよいし、複数種を併用してもよい。
VII. Chain extender (B)
The chain extender (B) in the present invention has reactivity with the isocyanate group of the polyurethane prepolymer (A). Examples of chain extenders include ethylenediamine, 1,4-tetramethylenediamine, 2-methyl-1,5-pentanediamine, 1,4-butanediamine, 1,6-hexamethylenediamine, 1,4-hexamethylene. Diamine, 3-aminomethyl-3,5,5-trimethylcyclohexylamine, 1,3-bis (aminomethyl) cyclohexane, xylylenediamine, piperazine, 2,5-dimethylpiperazine, hydrazine, adipoyl dihydrazide, diethylenetriamine, Examples include amine compounds such as triethylenetetramine, diol compounds such as ethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol, polyalkylene glycols typified by polyethylene glycol, water and the like. Like It can be mentioned primary diamine compound. These may be used alone or in combination of two or more.
 鎖延長剤(B)の添加量は、得られるポリウレタンプレポリマー(A)中の鎖延長起点となるイソシアナト基の当量以下であることが好ましく、より好ましくはイソシアナト基の0.7~0.99当量である。イソシアナト基の当量を超えて鎖延長剤(B)を添加した場合には、鎖延長されたポリウレタンポリマー(A)の分子量が低下してしまい、得られた水性ポリウレタン樹脂分散体を塗布して得た塗膜の強度が低下する。鎖延長剤(B)は、ポリウレタンプレポリマーの水への分散後に添加してもよく、分散中に添加してもよい。鎖延長は水によっても行うことができる。この場合は分散媒としての水が鎖延長剤を兼ねることになる。 The addition amount of the chain extender (B) is preferably equal to or less than the equivalent of the isocyanate group serving as a chain extension starting point in the polyurethane prepolymer (A) to be obtained, and more preferably 0.7 to 0.99 of the isocyanate group. Is equivalent. When the chain extender (B) is added in excess of the equivalent of the isocyanato group, the molecular weight of the chain-extended polyurethane polymer (A) is lowered, and the obtained aqueous polyurethane resin dispersion is applied. The strength of the coated film decreases. The chain extender (B) may be added after the dispersion of the polyurethane prepolymer in water, or may be added during the dispersion. Chain extension can also be carried out with water. In this case, water as a dispersion medium also serves as a chain extender.
 a-3. (メタ)アクリレート化合物
 本発明において使用できる(メタ)アクリレート化合物としては、モノマー類の(メタ)アクリレート化合物や、ポリウレタン(メタ)アクリレート化合物、ポリエステル(メタ)アクリレート系化合物、ポリアルキレン(メタ)アクリレート系化合物等が挙げられる。本明細書において、(メタ)アクリレートとは、アクリレート又は/及びメタクリレートを示す。
a-3. (Meth) acrylate compounds (Meth) acrylate compounds that can be used in the present invention include (meth) acrylate compounds of monomers, polyurethane (meth) acrylate compounds, polyester (meth) acrylate compounds, polyalkylene (meth) acrylate compounds Compounds and the like. In this specification, (meth) acrylate refers to acrylate or / and methacrylate.
 前記モノマー類の(メタ)アクリレート化合物としては、モノ(メタ)アクリレートやジ(メタ)アクリレート、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、ヘキサ(メタ)アクリレート等のモノ(メタ)アクリレートやポリ(メタ)アクリレートが使用可能である。 Examples of the monomer (meth) acrylate compound include mono (meth) acrylate, di (meth) acrylate, tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, and hexa (meth) acrylate. (Meth) acrylate and poly (meth) acrylate can be used.
 前記モノ(メタ)アクリレートとしては、例えば、アクリロイルモルホリン、2-エチルヘキシル(メタ)アクリレート、スチレン、メチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ドデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、N-ビニル-2-ピロリドン、2-メタクリロイルオキシエチルイソシアネート、メタクリロイルイソシアネート、イソシアン酸3-イソプロペニル-α,α-ジメチルベンジル、3-イソシアナトプロピルトリメトキシシラン、p-トルエンスルホニルイソシアネート等が挙げられる。 Examples of the mono (meth) acrylate include acryloylmorpholine, 2-ethylhexyl (meth) acrylate, styrene, methyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dodecyl (meth) acrylate, cyclohexyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate, N-vinyl-2-pyrrolidone, 2-methacryloyl Oxyethyl isocyanate, methacryloyl isocyanate, 3-isopropenyl-α, α-dimethylbenzyl isocyanate, 3-isocyanatopropyltrimethoxysilane , P-toluenesulfonyl isocyanate and the like.
 前記ジ(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリエーテルジ(メタ)アクリレート;ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド変性ジ(メタ)アクリレート、ネオペンチルグリコールエチレンオキサイド変性ジ(メタ)アクリレート、ネオペンチルグリコールプロピレンオキサイド変性ジ(メタ)アクリレート等のアルキレンオキサイド変性ジ(メタ)アクリレート;1,6-ヘキサンジオールエポキシジ(メタ)アクリレート、ネオペンチルグリコールエポキシジ(メタ)アクリレート、ビスフェノールAエポキシジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド変性エポキシジ(メタ)アクリレート、フタル酸エポキシジ(メタ)アクリレート、ポリエチレングリコールエポキシジ(メタ)アクリレート、ポリプロピレングリコールエポキシジ(メタ)アクリレートなどのエポキシジ(メタ)アクリレートなどが挙げられる。 Examples of the di (meth) acrylate include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1, Alkylene glycol di (meth) acrylates such as 6-hexanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, bisphenol A di (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di ( Polyether di (meth) acrylate such as meth) acrylate; bisphenol A ethylene oxide modified di (meth) acrylate, bisphenol A propylene oxide modified di (meth) acrylate Alkylene oxide modified di (meth) acrylates such as neopentyl glycol ethylene oxide modified di (meth) acrylate and neopentyl glycol propylene oxide modified di (meth) acrylate; 1,6-hexanediol epoxy di (meth) acrylate, neopentyl glycol Epoxy di (meth) acrylate, bisphenol A epoxy di (meth) acrylate, bisphenol A propylene oxide modified epoxy di (meth) acrylate, phthalic acid epoxy di (meth) acrylate, polyethylene glycol epoxy di (meth) acrylate, polypropylene glycol epoxy di (meth) And epoxy di (meth) acrylates such as acrylate.
 前記トリ(メタ)アクリレートとしては、例えば、トリメチロールプロパントリアクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。 Examples of the tri (meth) acrylate include trimethylolpropane triacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, and pentaerythritol tri (meth) acrylate. Can be mentioned.
 前記テトラ(メタ)アクリレートとしては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等が挙げられる。 Examples of the tetra (meth) acrylate include pentaerythritol tetra (meth) acrylate and ditrimethylolpropane tetra (meth) acrylate.
 前記ペンタ(メタ)アクリレートとしては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。 Examples of the penta (meth) acrylate include dipentaerythritol penta (meth) acrylate.
 前記ヘキサ(メタ)アクリレートとしては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Examples of the hexa (meth) acrylate include dipentaerythritol hexa (meth) acrylate.
 これらのモノマー類の(メタ)アクリレート化合物の中でも、硬度の点から、ジ(メタ)アクリレート、トリ(メタ)アクリレート、テトラ(メタ)アクリレート、ペンタ(メタ)アクリレート、ヘキサ(メタ)アクリレートといったポリ(メタ)アクリレートが好ましい。これは、分子内に複数の(メタ)アクリロイル基を有することによって、モノ(メタ)アクリレート同士の場合よりも、より高分子量化し易いためである。 Among these (meth) acrylate compounds of these monomers, from the viewpoint of hardness, poly (poly (meth) acrylate such as di (meth) acrylate, tri (meth) acrylate, tetra (meth) acrylate, penta (meth) acrylate, hexa (meth) acrylate, etc. (Meth) acrylate is preferred. This is because by having a plurality of (meth) acryloyl groups in the molecule, it is easier to increase the molecular weight than in the case of mono (meth) acrylates.
 また、ポリマー類の(メタ)アクリレート化合物としては、公知のものを用いることができる。特に分子内にポリアルキレングリコール構造を有している化合物が好ましく、分子内に下記一般式(1)で表されるポリアルキレングリコール構造を有している化合物が特に好ましい。ポリマー類の(メタ)アクリレート化合物は、分子内にポリアルキレングリコール構造を有することによって、より水系媒体に分散しやすくなり、得られる水性ポリウレタン分散体の保存安定性が向上する。また、ポリアルキレングリコール構造が、下記一般式(1)で表される構造である場合、ポリマー類の(メタ)アクリレート化合物自体の保存安定性が高く、水系媒体への分散性も高いため、特に好ましい。 Also, known polymers can be used as the (meth) acrylate compound. In particular, a compound having a polyalkylene glycol structure in the molecule is preferable, and a compound having a polyalkylene glycol structure represented by the following general formula (1) in the molecule is particularly preferable. Since the (meth) acrylate compound of the polymers has a polyalkylene glycol structure in the molecule, it becomes easier to disperse in an aqueous medium, and the storage stability of the resulting aqueous polyurethane dispersion is improved. In addition, when the polyalkylene glycol structure is a structure represented by the following general formula (1), since the storage stability of the (meth) acrylate compound itself of the polymers is high and the dispersibility in an aqueous medium is also high, preferable.
Figure JPOXMLDOC01-appb-C000016
(式中、Rは、置換基を有していてもよい炭素数2~5の直鎖又は分岐鎖アルキル基を示し、nは1~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, R represents a linear or branched alkyl group having 2 to 5 carbon atoms which may have a substituent, and n represents an integer of 1 to 10.)
 前記分子内にポリアルキレングリコール構造を有している化合物であるポリマー類の(メタ)アクリレート化合物としては、モノ(メタ)アクリレートの他、ジ(メタ)アクリレート、トリ(メタ)アクリレート、テトラ(メタ)アクリレート等のポリ(メタ)アクリレートが挙げられる。 Examples of the (meth) acrylate compound of the polymer that is a compound having a polyalkylene glycol structure in the molecule include di (meth) acrylate, tri (meth) acrylate, tetra (meth) acrylate in addition to mono (meth) acrylate. And poly (meth) acrylates such as acrylate.
 また、ポリマー類の(メタ)アクリレート化合物として、ウレタンアクリレート化合物も挙げることができる。ウレタンアクリレート化合物は、分子中にウレタン骨格と少なくとも1つの(メタ)アクリロイル基を有する化合物である。即ち、ウレタンポリマー(オリゴマーを含む)の末端(側鎖を含む)に(メタ)アクリロイル基が結合した構造を有する。(メタ)アクリロイル基の個数は、好ましくは2~8である。(メタ)アクリロイル基は、CH=C(R01)C(=O)-(但し、R01はHまたはCHである)で表される基である。 Moreover, a urethane acrylate compound can also be mentioned as a (meth) acrylate compound of polymers. The urethane acrylate compound is a compound having a urethane skeleton and at least one (meth) acryloyl group in the molecule. That is, it has a structure in which a (meth) acryloyl group is bonded to a terminal (including a side chain) of a urethane polymer (including an oligomer). The number of (meth) acryloyl groups is preferably 2-8. The (meth) acryloyl group is a group represented by CH 2 ═C (R 01 ) C (═O) — (where R 01 is H or CH 3 ).
 ウレタン骨格部分は、前述のポリウレタン樹脂と同様の構造、即ちポリオールとポリイソシアネート化合物との反応により得られる構造である。そして、(メタ)アクリロイル基は、一般に、ヒドロキシル基含有(メタ)アクリル化合物をイソシアネート基と反応させることにより導入される。ポリオールとイソシアネート化合物を反応させた後、さらにヒドロキシル基含有(メタ)アクリル化合物を反応させるか、ポリオール、イソシアネート化合物およびヒドロキシル基含有(メタ)アクリル化合物を同時に反応させることで製造することができる。 The urethane skeleton part has the same structure as that of the above-described polyurethane resin, that is, a structure obtained by a reaction between a polyol and a polyisocyanate compound. The (meth) acryloyl group is generally introduced by reacting a hydroxyl group-containing (meth) acrylic compound with an isocyanate group. After reacting a polyol and an isocyanate compound, it can be produced by further reacting a hydroxyl group-containing (meth) acrylic compound, or reacting a polyol, an isocyanate compound and a hydroxyl group-containing (meth) acrylic compound simultaneously.
 ウレタンアクリレート化合物の原料としてのポリオールとしては、ポリカーボネートポリオール、ポリエステルポリオール、ポリエーテルポリオール、ポリオレフィンポリオール、アクリルポリオール、ポリジエンポリオール等が挙げられる。これらの化合物は、単独で用いても、複数種用いてもよい。また、目的の機能を与えるために特定の官能基を有するポリオールを併用してもよい。 Examples of the polyol as a raw material for the urethane acrylate compound include polycarbonate polyol, polyester polyol, polyether polyol, polyolefin polyol, acrylic polyol, and polydiene polyol. These compounds may be used alone or in combination. In addition, a polyol having a specific functional group may be used in combination in order to provide a desired function.
 好ましいポリオールは、ポリカーボネートポリオール、ポリエステルポリオール、ポリエーテルポリオール、およびこれらの組み合わせであり、特にポリカーボネートポリオールが好ましい。中でも、ポリカーボネートポリオール(a)の項で説明したものが好ましい。またポリエステルポリオール、ポリエーテルポリオールについては、その他のポリオール(c)の項において説明した。 Preferred polyols are polycarbonate polyols, polyester polyols, polyether polyols, and combinations thereof, with polycarbonate polyols being particularly preferred. Among these, those described in the section of polycarbonate polyol (a) are preferable. The polyester polyol and polyether polyol have been described in the section of other polyol (c).
 また、ウレタンアクリレート化合物の原料としてのポリイソシアネート化合物についても、ポリイソシアネート(d)の項で説明したとおりものを使用することができる。 Further, as the polyisocyanate compound as a raw material of the urethane acrylate compound, those described in the section of polyisocyanate (d) can be used.
 ヒドロキシル基含有(メタ)アクリル化合物としては、ヒドロキル基含有(メタ)アクリレートが好ましく、具体的には、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌル酸のジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等が挙げられる。ウレタンアクリレート化合物は、以上のような原料化合物に基づいて分子が構成される。 As the hydroxyl group-containing (meth) acrylic compound, a hydroxyl group-containing (meth) acrylate is preferable. Specifically, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxybutyl (Meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, di (meth) acrylate of tris (hydroxyethyl) isocyanuric acid, pentaerythritol tri (meth) acrylate and the like. The urethane acrylate compound is composed of molecules based on the above raw material compounds.
 前記モノ(メタ)アクリレートとしては、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)モノ(メタ)アクリレート、ポリ(プロピレングリコールーテトラメチレングリコール)モノ(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート、ラウロキシポリエチレングリコールモノ(メタ)アクリレート、ステアロキシポリエチレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリエチレングリコールモノ(メタ)アクリレート、ノニルフェノキシポリプロピレングリコールポリエチレングリコールモノ(メタ)アクリレートなどが挙げられる。 Examples of the mono (meth) acrylate include polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol-polypropylene glycol mono (meth) acrylate, and poly (ethylene glycol-tetramethylene glycol) mono (meth). ) Acrylate, poly (propylene glycol-tetramethylene glycol) mono (meth) acrylate, methoxy polyethylene glycol mono (meth) acrylate, octoxy polyethylene glycol-polypropylene glycol mono (meth) acrylate, lauroxy polyethylene glycol mono (meth) acrylate, Stearoxy polyethylene glycol mono (meth) acrylate, nonylphenoxy polyethylene group Call mono (meth) acrylate, nonylphenoxy polypropylene glycol polyethylene glycol mono (meth) acrylate.
 前記ポリ(メタ)アクリレートとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコールジ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコールーテトラメチレングリコール)ジ(メタ)アクリレート、メトキシポリエチレングリコールジ(メタ)アクリレート、オクトキシポリエチレングリコール-ポリプロピレングリコールジ(メタ)アクリレート、ラウロキシポリエチレングリコールジ(メタ)アクリレート、ステアロキシポリエチレングリコールジ(メタ)アクリレート、ノニルフェノキシポリエチレングリコールジ(メタ)アクリレート、ウレタンジ(メタ)アクリレート、ノニルフェノキシポリプロピレングリコールポリエチレングリコールジ(メタ)アクリレート、エチレンオキサイド(6モル)変性トリメチロールプロパントリアクリレート(BASF社製Laromer(登録商標) LR8863)等のアルキレンオキサイド変性トリメチロールプロパントリアクリレート(BASF社製Laromer(登録商標) PO33F)、エチレンオキサイド(3モル)変性ペンタエリスリトールテトラ(メタ)アクリレートなどが挙げられる。 Examples of the poly (meth) acrylate include polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, polyethylene glycol-polypropylene glycol di (meth) acrylate, and poly (ethylene glycol-tetramethylene glycol) di (meth). ) Acrylate, poly (propylene glycol-tetramethylene glycol) di (meth) acrylate, methoxypolyethylene glycol di (meth) acrylate, octoxypolyethylene glycol-polypropylene glycol di (meth) acrylate, lauroxy polyethylene glycol di (meth) acrylate, Stearoxy polyethylene glycol di (meth) acrylate, nonylphenoxy polyethylene glycol di (meth) Alkylene oxide modified trimethylol such as acrylate, urethane di (meth) acrylate, nonylphenoxy polypropylene glycol polyethylene glycol di (meth) acrylate, ethylene oxide (6 mol) modified trimethylolpropane triacrylate (Laromar (registered trademark) LR8863 manufactured by BASF) Examples include propane triacrylate (Laromer (registered trademark) PO33F manufactured by BASF), ethylene oxide (3 mol) -modified pentaerythritol tetra (meth) acrylate, and the like.
 また、(メタ)アクリレート化合物としては、市販のものをそのまま用いても良い。市販品としては、例えば、日本油脂社製ブレンマーシリーズ、BASF社製Laromer(登録商標)の各グレードなどが挙げられる。 Further, as the (meth) acrylate compound, a commercially available product may be used as it is. As a commercial item, each grade of the Blemmer series by Nippon Oil & Fats, Lamarer (registered trademark) by BASF, etc. are mentioned, for example.
 前記ポリアルキレングリコール構造を有している化合物以外のポリマー類の(メタ)アクリレートとしては、例えば、分子末端に重合性不飽和結合を有するアクリル系ポリマーなどが使用できる。 As the (meth) acrylate of the polymer other than the compound having the polyalkylene glycol structure, for example, an acrylic polymer having a polymerizable unsaturated bond at the molecular end can be used.
 前記分子末端に重合性不飽和結合を有するアクリル系ポリマーとしては、例えば、分子片末端に重合性二重結合を有するポリブチルアクリレート(綜研化学社製「アクトフローBGV-100T」)や、分子両末端に重合性二重結合を有するポリブチルアクリレート(綜研化学社製「アクトフロー」などが挙げられる。 Examples of the acrylic polymer having a polymerizable unsaturated bond at the molecular end include, for example, polybutyl acrylate having a polymerizable double bond at the molecular end (“Act Flow BGV-100T” manufactured by Soken Chemical Co., Ltd.) Examples thereof include polybutyl acrylate having a polymerizable double bond at the terminal (“Act Flow” manufactured by Soken Chemical Co., Ltd.)
 (メタ)アクリレート化合物は、単独で用いてもよいし、複数種を併用してもよい。 (Meth) acrylate compounds may be used alone or in combination of two or more.
 (メタ)アクリレート化合物の割合は、コーティング組成物中の固形分(樹脂成分に基づく固形分)100重量%のうち、例えば2重量%以上、好ましくは3重量%以上、より好ましくは5重量%以上、さらにより好ましくは10重量%以上であり、また通常80重量%以下、例えば70重量%以下、好ましくは60重量%以下、より好ましくは50重量%以下、さらにより好ましくは40重量%以下、最も好ましくは30重量%以下である。(メタ)アクリレート化合物の割合が少なすぎると耐溶剤が低下し、多すぎるとポリイミドフィルムとの密着性が低下する。この範囲であれば、塗膜の乾燥性に優れ、かつ高い塗膜の硬度が得られ易く、さらに、水性ポリウレタン樹脂分散体の場合、貯蔵安定性も良好とし易い。 The proportion of the (meth) acrylate compound is, for example, 2% by weight or more, preferably 3% by weight or more, more preferably 5% by weight or more, out of 100% by weight of the solid content (solid content based on the resin component) in the coating composition. More preferably, it is 10% by weight or more, and usually 80% by weight or less, for example 70% by weight or less, preferably 60% by weight or less, more preferably 50% by weight or less, even more preferably 40% by weight or less, Preferably it is 30 weight% or less. If the proportion of the (meth) acrylate compound is too small, the solvent resistance decreases, and if it is too large, the adhesion with the polyimide film decreases. If it is this range, it will be excellent in the drying property of a coating film, and the hardness of a high coating film will be easy to be obtained, and also in the case of an aqueous polyurethane resin dispersion, it is easy to make storage stability favorable.
 (メタ)アクリレート化合物の(メタ)アクリル当量は、90~300が好ましい。この範囲であれば、水性ポリウレタン樹脂分散体の貯蔵安定性が良好で、塗膜の耐光性及び硬度が良好なものが得られ易い。(メタ)アクリレート化合物の(メタ)アクリル当量は、90~150がより好ましい。(メタ)アクリレート化合物を複数種併用する場合には、各(メタ)アクリレート化合物の(メタ)アクリル当量に、全(メタ)アクリレート化合物中の各(メタ)アクリレート化合物の割合を乗じたものの和が、(メタ)アクリレート化合物の(メタ)アクリル当量となる。また、本明細書において、(メタ)アクリル当量とは、メタクリル当量及びアクリル当量のことを指し、下記式で表される。
(メタ)アクリル当量=((メタ)アクリレート化合物の分子量)/(1分子中の(メタ)アクリロイル基数)
The (meth) acrylic equivalent of the (meth) acrylate compound is preferably 90 to 300. If it is this range, the storage stability of a water-based polyurethane resin dispersion is favorable, and the light resistance and hardness of a coating film are easy to be obtained. The (meth) acrylic equivalent of the (meth) acrylate compound is more preferably 90 to 150. When a plurality of (meth) acrylate compounds are used in combination, the sum of (meth) acrylic equivalents of each (meth) acrylate compound multiplied by the ratio of each (meth) acrylate compound in all (meth) acrylate compounds is The (meth) acrylic equivalent of the (meth) acrylate compound. Moreover, in this specification, (meth) acryl equivalent means a methacryl equivalent and an acrylic equivalent, and is represented by a following formula.
(Meth) acrylic equivalent = (molecular weight of (meth) acrylate compound) / (number of (meth) acryloyl groups in one molecule)
 本発明において、(メタ)アクリレート化合物として、2官能(メタ)アクリレート化合物(C1)及び3官能以上の(メタ)アクリレート化合物(C2)を併用することが好ましい。ここで、「2官能(メタ)アクリレート化合物」とは、1分子内に(メタ)アクリロイル基を2つ有する化合物を表し、「3官能以上の(メタ)アクリレート化合物」とは、1分子内に(メタ)アクリロイル基を3つ以上有する化合物を表す。 In the present invention, it is preferable to use a bifunctional (meth) acrylate compound (C1) and a trifunctional or higher functional (meth) acrylate compound (C2) as the (meth) acrylate compound. Here, the “bifunctional (meth) acrylate compound” represents a compound having two (meth) acryloyl groups in one molecule, and the “trifunctional or more (meth) acrylate compound” represents one molecule. A compound having three or more (meth) acryloyl groups is represented.
(2官能(メタ)アクリレート化合物(C1))
 本発明において、2官能(メタ)アクリレート化合物(C1)は、特に制限されず、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリエーテルジ(メタ)アクリレート;ビスフェノールAエチレンオキサイド変性ジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド変性ジ(メタ)アクリレート、ネオペンチルグリコールエチレンオキサイド変性ジ(メタ)アクリレート、ネオペンチルグリコールプロピレンオキサイド変性ジ(メタ)アクリレート等のアルキレンオキサイド変性ジ(メタ)アクリレート;1,6-ヘキサンジオールエポキシジ(メタ)アクリレート、ネオペンチルグリコールエポキシジ(メタ)アクリレート、ビスフェノールAエポキシジ(メタ)アクリレート、ビスフェノールAプロピレンオキサイド変性エポキシジ(メタ)アクリレート、フタル酸エポキシジ(メタ)アクリレート、ポリエチレングリコールエポキシジ(メタ)アクリレート、ポリプロピレングリコールエポキシジ(メタ)アクリレート等のエポキシジ(メタ)アクリレート、ウレタンジ(メタ)アクリレート等が挙げられる。前記2官能(メタ)アクリレート化合物の中でも、入手の容易さ、光照射によるアクリロイル基の消費割合が高く、得られる塗膜の耐光性に優れる点から、アルキレングリコールジ(メタ)アクリレート、及び、ポリエーテルジ(メタ)アクリレートが好ましく、より好ましくは、ポリエーテルジ(メタ)アクリレートであり、ポリプロピレングリコールジ(メタ)アクリレートが特に好ましい。これらの2官能(メタ)アクリレート化合物は、単独で用いてもよいし、複数種を併用してもよい。
(Bifunctional (meth) acrylate compound (C1))
In the present invention, the bifunctional (meth) acrylate compound (C1) is not particularly limited, and for example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, Alkylene glycol di (meth) acrylates such as 4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, bisphenol A di (meth) acrylate; Polyether di (meth) acrylates such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; bisphenol A ethylene oxide modified di (meth) acrylate, bisphenol A propylene Alkylene oxide modified di (meth) acrylates such as oxide modified di (meth) acrylate, neopentyl glycol ethylene oxide modified di (meth) acrylate, neopentyl glycol propylene oxide modified di (meth) acrylate; 1,6-hexanediol epoxy di (Meth) acrylate, neopentyl glycol epoxy di (meth) acrylate, bisphenol A epoxy di (meth) acrylate, bisphenol A propylene oxide modified epoxy di (meth) acrylate, phthalic acid epoxy di (meth) acrylate, polyethylene glycol epoxy di (meth) acrylate , Epoxy di (meth) acrylates such as polypropylene glycol epoxy di (meth) acrylate, urethane di (meth) acrylate Over doors and the like. Among the bifunctional (meth) acrylate compounds, alkylene glycol di (meth) acrylate and polyether diene are easily available, have a high consumption ratio of acryloyl groups by light irradiation, and are excellent in light resistance of the resulting coating film. (Meth) acrylate is preferred, polyether di (meth) acrylate is more preferred, and polypropylene glycol di (meth) acrylate is particularly preferred. These bifunctional (meth) acrylate compounds may be used alone or in combination.
 前記ポリプロピレングリコールジ(メタ)アクリレートとしては、例えば、ジプロピレングリコールジアクリレート(数平均分子量242、例えば新中村化学工業社製APG-100、ダイセルオルネクス社製DPGDA)、トリプロピレングリコールジアクリレート(数平均分子量300、例えば東亞合成社製アロニックスM-220、新中村化学工業社製APG-200、ダイセルオルネクス社製TPGDA等)、ヘプタプロピレングリコールジアクリレート(数平均分子量536、例えば東亞合成社製アロニックスM-225、新中村化学工業社製APG-400等、日立化成工業製FA-P240A)、ウンデカプロピレングリコールジアクリレート(数平均分子量808、例えば東亞合成社製アロニックスM-270、新中村化学工業社製APG-700、日立化成工業製FA-P270A等)等が挙げられる。前記ポリプロピレングリコールジ(メタ)アクリレートの数平均分子量としては、特に制限はないが、硬い塗膜が得られる点から500以下であることが好ましい。 Examples of the polypropylene glycol di (meth) acrylate include dipropylene glycol diacrylate (number average molecular weight 242; for example, APG-100 manufactured by Shin-Nakamura Chemical Co., Ltd., DPGDA manufactured by Daicel Ornex Co., Ltd.), tripropylene glycol diacrylate (number Average molecular weight 300, for example, Aronix M-220 manufactured by Toagosei Co., Ltd., APG-200 manufactured by Shin-Nakamura Chemical Co., Ltd., TPGDA manufactured by Daicel Ornex Co., Ltd., etc. M-225, Shin-Nakamura Chemical Co., Ltd. APG-400, etc., Hitachi Chemical Industries FA-P240A), undecapropylene glycol diacrylate (number-average molecular weight 808, for example, Aronix M-270 manufactured by Toagosei Co., Ltd., Shin-Nakamura Chemical) APG-700 manufactured by Kogyo Co., Ltd., FA-P270A manufactured by Hitachi Chemical Co., Ltd.) and the like. The number average molecular weight of the polypropylene glycol di (meth) acrylate is not particularly limited, but is preferably 500 or less from the viewpoint of obtaining a hard coating film.
 中でもポリウレタン樹脂水分散体の安定性の点からジプロピレングリコールジアクリレートやトリプロピレングリコールジアクリレートが好ましく、ポリウレタン樹脂水分散体の皮膚刺激性の点からトリプロピレングリコールジアクリレートがより好ましい。 Among them, dipropylene glycol diacrylate and tripropylene glycol diacrylate are preferable from the viewpoint of stability of the polyurethane resin aqueous dispersion, and tripropylene glycol diacrylate is more preferable from the viewpoint of skin irritation of the polyurethane resin aqueous dispersion.
(3官能以上の(メタ)アクリレート化合物(C2))
 前記3官能以上の(メタ)アクリレート化合物(C2)としては、例えば、トリメチロールプロパントリアクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(アクロイルオキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;ジペンタエリスリトールペンタ(メタ)アクリレート等のペンタ(メタ)アクリレート化合物;ジペンタエリスリトールヘキサ(メタ)アクリレート等のヘキサ(メタ)アクリレート化合物等が挙げられる。前記3官能以上の(メタ)アクリレートの中でも、ポリウレタン樹脂水分散体の安定性の観点からトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートが好ましく、紫外線照射時のアクリロイル基の消費量の観点から、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートがより好ましい。これらの3官能以上の(メタ)アクリレート化合物は、単独で用いてもよいし、複数種を併用してもよい。例えば、トリ(メタ)アクリレート化合物及びテトラ(メタ)アクリレート化合物の併用が挙げられる。
(Trifunctional or higher (meth) acrylate compound (C2))
Examples of the tri- or higher functional (meth) acrylate compound (C2) include trimethylolpropane triacrylate, ethylene oxide modified trimethylolpropane tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, and pentaerythritol. Tri (meth) acrylate compounds such as tri (meth) acrylate and tris (acryloyloxyethyl) isocyanurate; Tetra (meth) acrylate compounds such as pentaerythritol tetra (meth) acrylate; Dipentaerythritol penta (meth) acrylate and the like Penta (meth) acrylate compounds; hexa (meth) acrylate compounds such as dipentaerythritol hexa (meth) acrylate and the like. Among the tri- or higher functional (meth) acrylates, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are preferable from the viewpoint of stability of the polyurethane resin aqueous dispersion. From the viewpoint of consumption of acryloyl groups during ultraviolet irradiation, trimethylolpropane triacrylate, pentaerythritol triacrylate, and pentaerythritol tetraacrylate are more preferable. These trifunctional or higher functional (meth) acrylate compounds may be used alone or in combination of two or more. For example, combined use of a tri (meth) acrylate compound and a tetra (meth) acrylate compound can be mentioned.
 前記3官能以上の(メタ)アクリレート化合物(C2)としては、入手の容易さと得られる塗膜の硬度が高い点から、分子内に平均して2個以上のエーテル結合を有さない3官能以上の(メタ)アクリレート化合物が好ましく、分子内にエーテル結合を有さない3官能の(メタ)アクリレート化合物及び/又は分子内にエーテル結合を有さない4官能の(メタ)アクリレート化合物がより好ましく、分子内にエーテル結合を有さないトリ(メタ)アクリレートが特に好ましい。前記トリオールトリアクリレートの中でも、入手容易性からトリメチロールプロパントリアクリレート及び/又はトリメチロールプロパントリメタクリレートが好ましい。 The tri- or higher functional (meth) acrylate compound (C2) is tri-functional or higher without an average of two or more ether bonds in the molecule because of its availability and high hardness of the resulting coating film. (Meth) acrylate compound is preferable, trifunctional (meth) acrylate compound having no ether bond in the molecule and / or tetrafunctional (meth) acrylate compound having no ether bond in the molecule is more preferable, Tri (meth) acrylate having no ether bond in the molecule is particularly preferred. Among the triol triacrylates, trimethylolpropane triacrylate and / or trimethylolpropane trimethacrylate is preferable because of its availability.
 2官能(メタ)アクリレート化合物(C1)と、3官能以上の(メタ)アクリレート化合物(C2)を併用する場合には、それぞれの割合は、重量比で、5:95~95:5が好ましい。この範囲であれば、硬度、耐光性に優れた塗膜が得られやすい。それぞれの割合は、より好ましくは、90:10~20:80であり、さらに好ましくは、80:20~40:60である。 When the bifunctional (meth) acrylate compound (C1) and the trifunctional or higher (meth) acrylate compound (C2) are used in combination, the respective ratios are preferably 5:95 to 95: 5. If it is this range, the coating film excellent in hardness and light resistance will be easy to be obtained. Each ratio is more preferably 90:10 to 20:80, and still more preferably 80:20 to 40:60.
 a-4. コーティング組成物に含まれるその他の成分
 ポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物は、分散媒体および/または溶剤を含むことができる。ポリウレタン樹脂が水分散型の場合、分散媒体としては水、および水と親水性有機溶媒との混合溶媒が挙げられる。
a-4. Other components included in the coating composition The coating composition containing the polyurethane resin and the (meth) acrylate compound may include a dispersion medium and / or a solvent. When the polyurethane resin is a water dispersion type, examples of the dispersion medium include water and a mixed solvent of water and a hydrophilic organic solvent.
 親水性有機溶媒としては、メタノール、エタノール、プロパノール等の低級1価アルコール;エチレングリコール、グリセリン等の多価アルコール;N-メチルモルホリン、ジメチルスルホキサイド、ジメチルホルムアミド、N-メチルピロリドン等の非プロトン性の親水性有機溶媒等が挙げられる。水系媒体中の親水性有機溶媒の量としては、0~20重量%が好ましい。 Examples of hydrophilic organic solvents include lower monohydric alcohols such as methanol, ethanol and propanol; polyhydric alcohols such as ethylene glycol and glycerin; Hydrophilic organic solvents and the like. The amount of the hydrophilic organic solvent in the aqueous medium is preferably 0 to 20% by weight.
 ポリウレタン樹脂が溶剤型の場合、溶剤としてはトルエン、キシレン等の芳香族溶剤、酢酸エチル等のエステル系溶剤、ミネラルスピリットなどの石油系溶剤等を用いることができる。 When the polyurethane resin is a solvent type, an aromatic solvent such as toluene or xylene, an ester solvent such as ethyl acetate, a petroleum solvent such as mineral spirit, or the like can be used as the solvent.
 さらに、コーティング組成物には重合開始剤を添加してもよい。例えば、熱重合開始剤や光重合開始剤を添加することができる。用途にもよるが、光重合開始剤を添加して、光硬化型とすると、比較的低温で硬化コーティング層を得ることができるので好ましい。また、コーティング層の形成によってポリイミドフィルムの黄色度を改善できる場合があるが、特に熱硬化型(熱重合開始剤を含有しなくてもよい)は、黄色度の低下に効果があるので好ましい。 Furthermore, a polymerization initiator may be added to the coating composition. For example, a thermal polymerization initiator or a photopolymerization initiator can be added. Although it depends on the application, it is preferable to add a photopolymerization initiator to form a photo-curing type because a cured coating layer can be obtained at a relatively low temperature. Moreover, although the yellowness of a polyimide film may be able to be improved by formation of a coating layer, the thermosetting type (which does not need to contain a thermal polymerization initiator) is particularly preferable because it has an effect of lowering the yellowness.
 熱重合開始剤としては、一般に使用されるものが使用でき、ジアシルパーオキサイド類、ケトンパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシエステル類、アゾ系化合物、過硫酸塩などが挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Commonly used thermal polymerization initiators can be used, such as diacyl peroxides, ketone peroxides, hydroperoxides, dialkyl peroxides, peroxyesters, azo compounds, persulfates, etc. Can be mentioned. These may be used alone or in combination of two or more.
 光重合開始剤としては、一般に使用されるものが使用でき、例えば、紫外線照射によって、容易に開裂して2個のラジカルができる光開裂型及び/又は水素引き抜き型、あるいはこれらを混合して使用することができる。これらの化合物としては、例えば、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアミノアセトフェノン、ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ビスジエチルアミノベンゾフェノン、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾインn-ブチルエーテル、ベンゾインジメチルケタール、チオキサントン、p-イソプロピル-α-ヒドロキシイソブチルフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロシクロヘキシルフェニルケトン、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2,4,6,-トリメチルベンゾフェノン、4-メチルベンゾフェノン、2,2-ジメトキシ-1、2-ジフェニルエタノン等が挙げられる。好ましくは、ヒドロキシシクロヘキシルフェニルケトンが挙げられる。 As the photopolymerization initiator, those generally used can be used, for example, photocleavage type and / or hydrogen abstraction type that can be easily cleaved to form two radicals by ultraviolet irradiation, or a mixture thereof. can do. Examples of these compounds include acetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, benzophenone, 2-chlorobenzophenone, p, p′-bisdiethylaminobenzophenone, benzoin ethyl ether, benzoin n-propyl ether, Benzoin isopropyl ether, benzoin isobutyl ether, benzoin n-butyl ether, benzoin dimethyl ketal, thioxanthone, p-isopropyl-α-hydroxyisobutylphenone, 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2- Methyl-1 [4- (methylthio) phenyl] -2-morpholinopropan-1-one, 2-hydroxy-2-methyl-1-phenyl Propan-1-one, 2,4,6, - trimethyl benzophenone, 4-methylbenzophenone, 2,2-dimethoxy-1,2-diphenyl-ethanone, and the like. Preferably, hydroxycyclohexyl phenyl ketone is used.
 また、必要に応じて、増粘剤、光増感剤、硬化触媒、紫外線吸収剤、光安定剤、消泡剤、可塑剤、表面調整剤、沈降防止剤等の添加剤を添加することもできる。前記添加剤は、単独で用いてもよく、複数種を併用してもよい。水分散型組成物の場合、得られる塗膜の硬度、耐薬品性の点から、実質的に、保護コロイド、乳化剤、界面活性剤を含まないことが好ましい。 If necessary, additives such as thickeners, photosensitizers, curing catalysts, ultraviolet absorbers, light stabilizers, antifoaming agents, plasticizers, surface conditioners, anti-settling agents may be added. it can. The said additive may be used independently and may use multiple types together. In the case of a water-dispersed composition, it is preferable that substantially no protective colloid, emulsifier, or surfactant is contained from the viewpoint of the hardness and chemical resistance of the resulting coating film.
 本発明のコーティング組成物には、他の樹脂を添加することもできる。他の樹脂としては、ポリエステル樹脂、アクリル樹脂、ポリエーテル樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、エポキシ樹脂、アルキド樹脂、ポリオレフィン樹脂等が挙げられる。これらは単独で用いてもよいし、複数種を併用してもよい。水分散型組成物の場合は、前記他の樹脂が、1種以上の親水性基を有することも好ましい。前記親水性基としては、水酸基、カルボキシ基、スルホン酸基、ポリエチレングリコール基等が挙げられる。他の樹脂を添加する場合、好ましくは全樹脂成分の10重量%以下(0重量%を含む)の量で使用される。 Other resins can also be added to the coating composition of the present invention. Examples of other resins include polyester resins, acrylic resins, polyether resins, polycarbonate resins, polyurethane resins, epoxy resins, alkyd resins, and polyolefin resins. These may be used alone or in combination of two or more. In the case of the water-dispersed composition, the other resin preferably has one or more hydrophilic groups. Examples of the hydrophilic group include a hydroxyl group, a carboxy group, a sulfonic acid group, and a polyethylene glycol group. When other resins are added, they are preferably used in an amount of 10% by weight or less (including 0% by weight) of the total resin components.
 a-5. ポリカーボネートポリオールに基づくポリウレタン樹脂、またはポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物の製造方法
 ポリカーボネートポリオールに基づくポリウレタン樹脂、またはポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物の製造は、例えばWO2011/010719に記載された方法に従って製造することができる。
a-5. Polyurethane resin based on polycarbonate polyol, or method for producing coating composition containing polyurethane resin and (meth) acrylate compound Polyurethane resin based on polycarbonate polyol, or production of coating composition containing polyurethane resin and (meth) acrylate compound For example, it can manufacture according to the method described in WO2011 / 010719.
 例えば、ポリカーボネートポリオール(a)と、必要により酸性基含有ポリオール(b)と、必要によりその他のポリオール(c)と、ポリイソシアネート(d)とを反応させてポリウレタンプレポリマー(A)を得る工程と、
 前記ポリウレタンプレポリマー(A)の酸性基を中和する工程(β)と、
 前記ポリウレタンプレポリマー(A)と(メタ)アクリレート化合物とを水系媒体中に分散させる工程(γ)と、
 前記ポリウレタンプレポリマー(A)と、前記ポリウレタンプレポリマー(A)のイソシアナト基と反応性を有する鎖延長剤(B)とを反応させて水性ポリウレタン樹脂を得る工程(δ)とを含む方法により製造することができる。
For example, a step of obtaining a polyurethane prepolymer (A) by reacting a polycarbonate polyol (a), an acidic group-containing polyol (b) if necessary, another polyol (c) if necessary, and a polyisocyanate (d); ,
A step (β) of neutralizing acidic groups of the polyurethane prepolymer (A);
A step (γ) of dispersing the polyurethane prepolymer (A) and the (meth) acrylate compound in an aqueous medium;
Produced by reacting the polyurethane prepolymer (A) with a chain extender (B) having reactivity with the isocyanate group of the polyurethane prepolymer (A) to obtain an aqueous polyurethane resin (δ). can do.
 前記ポリウレタンプレポリマー(A)の酸性基を中和する工程(β)において使用できる酸性基中和剤としては、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、トリブチルアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-フェニルジエタノールアミン、ジメチルエタノールアミン、ジエチルエタノールアミン、N-メチルモルホリン、ピリジン等の有機アミン類その他を使用することができる。 Examples of the acidic group neutralizing agent that can be used in the step (β) of neutralizing the acidic group of the polyurethane prepolymer (A) include trimethylamine, triethylamine, triisopropylamine, tributylamine, triethanolamine, N-methyldiethanolamine, N -Organic amines such as phenyldiethanolamine, dimethylethanolamine, diethylethanolamine, N-methylmorpholine, pyridine and the like can be used.
 <<コーティング層の形成>>
 本発明のポリイミドフィルム積層体の製造は、前述のポリイミドフィルムに、前述のポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物を塗布し、硬化させることにより実施することができる。
<< Formation of coating layer >>
Manufacture of the polyimide film laminated body of this invention can be implemented by apply | coating the coating composition containing the above-mentioned polyurethane resin and the (meth) acrylate compound to the above-mentioned polyimide film, and making it harden | cure.
 コーティング方法としては、特に限定されず、ダイコーティング、スクリーン印刷、スピンコーティング等の公知の方法を使用できる。 The coating method is not particularly limited, and known methods such as die coating, screen printing, and spin coating can be used.
 硬化後のコーティング層の厚さは、特に限定されないが、通常5nm~20μm程度である。特に好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは5μm未満であり、さらに好ましくは4μm以下であり、最も好ましくは3μm以下である。また、10nm以上がより好ましい。従って、硬化後にこのような厚さになるように、コーティング液の塗布厚が定められる。特に、実施例で示すように、コーティング層の厚さが厚くなると、その上に表面層としてハードコート層を形成した場合に表面の硬度が不足する場合がある。 The thickness of the coating layer after curing is not particularly limited, but is usually about 5 nm to 20 μm. Particularly preferably, it is 10 μm or less, more preferably 5 μm or less, further preferably less than 5 μm, still more preferably 4 μm or less, and most preferably 3 μm or less. Moreover, 10 nm or more is more preferable. Therefore, the coating thickness of the coating liquid is determined so that the thickness becomes such after curing. In particular, as shown in the examples, when the thickness of the coating layer is increased, the surface hardness may be insufficient when a hard coat layer is formed thereon as a surface layer.
 塗布後、必要により乾燥し、コーティング組成物膜を硬化する。硬化は、加熱処理や光照射によって行われる。 After application, if necessary, dry to cure the coating composition film. Curing is performed by heat treatment or light irradiation.
<<ポリイミドフィルム積層体>>
 以上のように、ポリイミドフィルムの上にコーティング層を形成することで、本発明のポリイミドフィルム積層体を製造することができる。
<< Polyimide film laminate >>
As mentioned above, the polyimide film laminated body of this invention can be manufactured by forming a coating layer on a polyimide film.
 本発明の好ましい実施形態では、コーティング層は密着性とともに耐溶剤性に優れるため、その上に溶剤を含有する材料を塗布し、表面層を形成することができる。例えば、ハードコート材料を塗布してハードコート層を形成すると、ポリイミド表面の耐擦傷性を向上することができる。表面層の硬度は、鉛筆硬度で2H以上が好ましい。 In a preferred embodiment of the present invention, since the coating layer is excellent in adhesion and solvent resistance, a surface layer can be formed by applying a solvent-containing material thereon. For example, when a hard coat layer is formed by applying a hard coat material, the scratch resistance of the polyimide surface can be improved. The hardness of the surface layer is preferably 2H or more in terms of pencil hardness.
 従って、本発明の1態様は、ポリイミドフィルム、コーティング層および表面層を備える積層体(表面層付き)に関する。表面層としては、上記のとおり、ポリイミド表面の耐擦傷性を向上することができるハードコート層が好ましい。ハードコート層を有する積層体(表面層付き)は、鉛筆硬度で2H以上の表面硬度を有する。 Therefore, one embodiment of the present invention relates to a laminate (with a surface layer) comprising a polyimide film, a coating layer, and a surface layer. As the surface layer, as described above, a hard coat layer capable of improving the scratch resistance of the polyimide surface is preferable. A laminate (with a surface layer) having a hard coat layer has a surface hardness of 2H or more in pencil hardness.
 ハードコート層は、有機材料(硬化樹脂)、無機材料、有機-無機ハイブリッド型材料(無機材料を含む硬化樹脂等)等で形成することができる。形成方法はそれぞれの材料に合わせて選択することができる。大量生産への適用性やコストの点で、例えば次に説明する硬化性樹脂組成物を用いて塗工法により形成されることが好ましい。 The hard coat layer can be formed of an organic material (cured resin), an inorganic material, an organic-inorganic hybrid type material (such as a cured resin containing an inorganic material), or the like. The formation method can be selected according to each material. From the viewpoint of applicability to mass production and cost, for example, it is preferably formed by a coating method using a curable resin composition described below.
 硬化性樹脂組成物は、少なくとも硬化性樹脂成分を含有し、光や熱によって硬化して硬化物(重合物、架橋物)となるものである。硬化性樹脂組成物は、必要により硬化剤(架橋剤、光または熱重合開始剤、共反応剤)を含有する。硬化性樹脂組成物は、無機フィラーを含むことも好ましい。硬化性樹脂の他、溶剤乾燥型樹脂を含んでいてもよい。必要により溶媒を含んでいてもよい。本明細書において、硬化性樹脂組成物は、各成分が混合された液状のもの、塗布された液膜状のもの、溶媒が除去されたが最終硬化されていない膜状のもの等、最終硬化処理を受けていないものを含む。 The curable resin composition contains at least a curable resin component and is cured by light or heat to become a cured product (polymerized product, crosslinked product). The curable resin composition contains a curing agent (crosslinking agent, light or thermal polymerization initiator, co-reactant) as necessary. It is also preferable that the curable resin composition contains an inorganic filler. In addition to the curable resin, a solvent-drying resin may be included. If necessary, a solvent may be included. In the present specification, the curable resin composition is a liquid composition in which each component is mixed, a liquid film form that has been applied, a film form in which the solvent has been removed but has not been finally cured, etc. Includes items that have not been processed.
 光硬化性を有する硬化性樹脂は、光重合性官能基を少なくとも1つ有するものが挙げられる。本明細書における、「光重合性官能基」とは、光照射により重合反応し得る官能基である。光重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性二重結合が挙げられる。具体的な光硬化性樹脂成分としては、多官能性(メタ)アクリレート系モノマー、(メタ)アクリレート系プレポリマー、光硬化性を有するポリマー等が挙げられる。多官能性(メタ)アクリレート系モノマーおよび(メタ)アクリレート系プレポリマーは、それぞれ単独で使用してもよいし、両者を併用してもよい。硬化性樹脂組成物(光硬化性の場合)を硬化させる際に照射される光としては、可視光線、並びに紫外線、X線、電子線、α線、β線、およびγ線のような電離放射線が挙げられる。 Examples of the curable resin having photocurability include those having at least one photopolymerizable functional group. In the present specification, the “photopolymerizable functional group” is a functional group capable of undergoing a polymerization reaction by light irradiation. Examples of the photopolymerizable functional group include ethylenic double bonds such as a (meth) acryloyl group, a vinyl group, and an allyl group. Specific examples of the photocurable resin component include polyfunctional (meth) acrylate monomers, (meth) acrylate prepolymers, and photocurable polymers. The polyfunctional (meth) acrylate monomer and the (meth) acrylate prepolymer may be used alone or in combination. The light irradiated when the curable resin composition (in the case of photocuring) is cured includes visible light and ionizing radiation such as ultraviolet rays, X-rays, electron beams, α rays, β rays, and γ rays. Is mentioned.
 熱硬化性を有する熱硬化性樹脂は、熱硬化性官能基を少なくとも1つ有するものである。硬化性樹脂成分として熱硬化性樹脂を用いる場合、使用し得る熱硬化性樹脂としては、エポキシ系樹脂、ポリイミド系樹脂、フェノール系樹脂、シリコーン系樹脂、シアネート系樹脂、ビスマレイミドトリアジン樹脂、アリル化ポリフェニレンエーテル樹脂(熱硬化性PPE)、ホルムアルデヒド系樹脂、不飽和ポリエステルまたはこれらの共重合体等が挙げられる。 The thermosetting resin having thermosetting property has at least one thermosetting functional group. When a thermosetting resin is used as the curable resin component, usable thermosetting resins include epoxy resins, polyimide resins, phenol resins, silicone resins, cyanate resins, bismaleimide triazine resins, and allylation. Examples include polyphenylene ether resin (thermosetting PPE), formaldehyde resin, unsaturated polyester, and copolymers thereof.
 無機フィラーとしては、シリカ、アルミナ、ベーマイト、タルク、炭酸カルシウム、酸化チタン、酸化鉄、炭化珪素、窒化ホウ素、酸化ジルコニウム等の粉末、これらを球形化したビーズ、単結晶繊維およびガラス繊維等が挙げられ、これらを単独でまたは2種以上を混合して使用することができる。これらの中でも、シリカ、アルミナ、ベーマイト、酸化チタン、酸化ジルコニウム等が好ましく、シリカ、酸化チタンおよび酸化ジルコニウムがさらに好ましい。また、無機フィラーは、表面修飾されていることが好ましい。このような特に好ましい無機フィラーとして、反応性シリカを例示することができる。 Examples of inorganic fillers include powders such as silica, alumina, boehmite, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride, and zirconium oxide, beads formed by spheroidizing these, single crystal fibers, and glass fibers. These can be used alone or in admixture of two or more. Among these, silica, alumina, boehmite, titanium oxide, zirconium oxide and the like are preferable, and silica, titanium oxide and zirconium oxide are more preferable. The inorganic filler is preferably surface-modified. An example of such a particularly preferred inorganic filler is reactive silica.
 本明細書において「反応性シリカ」とは、光硬化性不飽和基を有する有機化合物で表面修飾されたシリカ微粒子である。上記光硬化性不飽和基を有する有機化合物で表面修飾されたシリカ微粒子(反応性シリカ)は、例えば、通常、平均粒径0.5~500nm程度、好ましくは平均粒径1~200nmのシリカ微粒子表面のシラノール基に、当該シラノール基と反応し得る官能基および(メタ)アクリロイル基を有する光硬化性不飽和基含有有機化合物を反応させることにより、得ることができる。 In this specification, “reactive silica” is silica fine particles whose surface is modified with an organic compound having a photocurable unsaturated group. The silica fine particles (reactive silica) surface-modified with the organic compound having a photocurable unsaturated group are usually silica fine particles having an average particle size of about 0.5 to 500 nm, preferably an average particle size of 1 to 200 nm. It can be obtained by reacting a silanol group on the surface with a photocurable unsaturated group-containing organic compound having a functional group capable of reacting with the silanol group and a (meth) acryloyl group.
 本実施形態において用いる無機フィラーは、平均粒径が1~200nmであることが好ましく、10~200nmであることが特に好ましく、20~200nmであることがさらに好ましい。無機フィラーの平均粒径が1nm以上であることで、硬化性樹脂組成物を硬化させたハードコート層が、より高い表面硬度を有するものとなる。また、無機フィラーの平均粒径が200nm以下であると、得られるハードコート層において光の散乱が発生しにくくなり、ハードコート層の透明性が高くなる。 The average particle size of the inorganic filler used in the present embodiment is preferably 1 to 200 nm, particularly preferably 10 to 200 nm, and further preferably 20 to 200 nm. When the average particle size of the inorganic filler is 1 nm or more, the hard coat layer obtained by curing the curable resin composition has higher surface hardness. Further, when the average particle size of the inorganic filler is 200 nm or less, light scattering hardly occurs in the obtained hard coat layer, and the transparency of the hard coat layer becomes high.
 本実施形態のハードコート層における無機フィラーの含有量は、ハードコート層に対して10~85体積%であることが好ましく、20~80体積%であることが特に好ましく、40~70体積%であることがさらに好ましく、45~65体積%であることが最も好ましい。無機フィラーの含有量が10体積%以上であることで、ハードコート層に付与される表面硬度がより高いものとなる。一方、無機フィラーの含有量が85体積%以下であることで、ハードコート層の形成が容易になる。 The content of the inorganic filler in the hard coat layer of the present embodiment is preferably 10 to 85% by volume, particularly preferably 20 to 80% by volume, and 40 to 70% by volume with respect to the hard coat layer. More preferably, it is most preferably 45 to 65% by volume. When the content of the inorganic filler is 10% by volume or more, the surface hardness imparted to the hard coat layer becomes higher. On the other hand, formation of a hard-coat layer becomes easy because content of an inorganic filler is 85 volume% or less.
 硬化性樹脂組成物は、前述した成分以外に、各種添加剤を含有してもよい。各種添加剤としては、例えば、紫外線吸収剤、酸化防止剤、光安定剤、帯電防止剤、シランカップリング剤、老化防止剤、熱重合禁止剤、着色剤、界面活性剤、保存安定剤、可塑剤、滑剤、消泡剤、有機系充填材、濡れ性改良剤、塗面改良剤等が挙げられる。 The curable resin composition may contain various additives in addition to the components described above. Examples of the various additives include ultraviolet absorbers, antioxidants, light stabilizers, antistatic agents, silane coupling agents, anti-aging agents, thermal polymerization inhibitors, colorants, surfactants, storage stabilizers, plasticizers. Agents, lubricants, antifoaming agents, organic fillers, wettability improvers, coating surface improvers and the like.
 ポリイミドフィルム、コーティング層および表面層を備える積層体(表面層付き)を製造するには、硬化性樹脂組成物を、ポリイミドフィルム/コーティング層積層体のコーティング層上に塗布し、必要により溶媒を乾燥して除去し、光照射または加熱することで、硬化物で形成されたハードコート層を得る。 In order to produce a laminate comprising a polyimide film, a coating layer and a surface layer (with a surface layer), a curable resin composition is applied on the coating layer of the polyimide film / coating layer laminate, and if necessary, the solvent is dried. Then, the hard coat layer formed of a cured product is obtained by light irradiation or heating.
 ハードコート層の厚さは、例えば1~50μmであり、好ましくは5~40μmである。ハードコート層の厚さが1μm以上であることで、本実施形態に係るハードコート積層体に十分な表面硬度が付与される。一方、ハードコート層の厚さが50μm以下であることで、ハードコート積層体が耐屈曲性に優れ取り扱いが容易になるほか、ハードコート積層体が不要に厚くなったり、製造コストが増加したりするのを防止することができる。 The thickness of the hard coat layer is, for example, 1 to 50 μm, preferably 5 to 40 μm. When the thickness of the hard coat layer is 1 μm or more, sufficient surface hardness is imparted to the hard coat laminate according to this embodiment. On the other hand, when the thickness of the hard coat layer is 50 μm or less, the hard coat laminate is excellent in bending resistance and easy to handle, and the hard coat laminate becomes unnecessarily thick and the manufacturing cost increases. Can be prevented.
 以下、実施例及び比較例によって本発明を更に説明する。尚、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be further described with reference to examples and comparative examples. In addition, this invention is not limited to a following example.
 以下の各例において評価は次の方法で行った。 In the following examples, evaluation was performed by the following method.
<ポリイミドフィルムの評価> <Evaluation of polyimide film>
[全光線透過率]
 紫外可視分光光度計/V-650DS(日本分光製)を用いて、ポリイミドフィルムの全光透過率(380nm~780nmにおける平均透過率)における光透過率を測定した。
[Total light transmittance]
Using a UV-visible spectrophotometer / V-650DS (manufactured by JASCO), the light transmittance at the total light transmittance (average transmittance from 380 nm to 780 nm) of the polyimide film was measured.
[YI(黄色度)]
 ASTM E313に準じて、測定を行った。
[YI (yellowness)]
Measurements were performed according to ASTM E313.
 [引張弾性率、破断点伸度]
 ポリイミドフィルムをIEC-540(S)規格のダンベル形状に打ち抜いて試験片(幅:4mm)とし、ORIENTEC社製TENSILONを用いて、チャック間長30mm、引張速度2mm/分で、初期の引張弾性率、破断点伸度を測定した。
[Tensile modulus, elongation at break]
The polyimide film is punched into IEC-540 (S) standard dumbbell shape to make a test piece (width: 4 mm), and the initial tensile elastic modulus is 30 mm between chucks with a tensile speed of 2 mm / min using TENILON manufactured by ORIENTEC. The elongation at break was measured.
 [線熱膨張係数(CTE)]
 ポリイミドフィルムを幅4mmの短冊状に切り取って試験片とし、TMA/SS6100 (エスアイアイ・ナノテクノロジー株式会社製)を用い、チャック間長15mm、荷重2g、昇温速度20℃/分で500℃まで昇温した。得られたTMA曲線から、100℃から250℃までの線熱膨張係数を求めた。
[Linear thermal expansion coefficient (CTE)]
A polyimide film is cut into a strip of 4 mm in width to make a test piece, and TMA / SS6100 (manufactured by SII Nano Technology Co., Ltd.) is used. The temperature rose. The linear thermal expansion coefficient from 100 ° C. to 250 ° C. was determined from the obtained TMA curve.
 [5%重量減少温度]
 ポリイミドフィルムを試験片とし、TAインスツルメント社製 熱重量測定装置(Q5000IR)を用い、窒素気流中、昇温速度10℃/分で25℃から600℃まで昇温した。得られた重量曲線から、5%重量減少温度を求めた。
[5% weight loss temperature]
Using a polyimide film as a test piece, the temperature was increased from 25 ° C. to 600 ° C. at a temperature increase rate of 10 ° C./min in a nitrogen stream using a thermogravimetry apparatus (Q5000IR) manufactured by TA Instruments. From the obtained weight curve, a 5% weight loss temperature was determined.
 [耐溶剤性試験]
 約3cm角のポリイミドフィルムをメチルエチルケトンに1時間浸漬し、取り出してキムワイプで拭いた後に、目視で変化を確認した。変化がない場合を○、白化やフィルム表面の乱れ、膨潤などの変化が見られた場合を×とした。
[Solvent resistance test]
About 3 cm square polyimide film was immersed in methyl ethyl ketone for 1 hour, taken out and wiped with Kimwipe, and then the change was visually confirmed. The case where there was no change was evaluated as ◯, and the case where changes such as whitening, film surface disturbance, and swelling were observed was evaluated as x.
 以下の各例で使用した原材料の略称、純度等は、次のとおりである。 The abbreviations, purity, etc. of the raw materials used in the following examples are as follows.
[ジアミン成分]
m-TD: 2,2’-ジメチル-4,4’-ジアミノビフェニル〔純度:99.85%(GC分析)〕
tra-DACH: トランス-1,4-ジアミノシクロヘキサン
TFMB: 2,2’-ビス(トリフルオロメチル)ベンジジン〔純度:99.83%(GC分析)〕
4,4’-ODA: 4,4’-オキシジアニリン〔純度:99.9%(GC分析)〕
[テトラカルボン酸成分]
CpODA: ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物
CBDA: 1,2,3,4-シクロブタンテトラカルボン酸二無水物〔純度:99.9%(GC分析)〕
s-BPDA:3,3’,4,4’-ビフェニルテトラカルボン酸二無水物〔純度99.9%(H-NMR分析)〕
a-BPDA:2,3’,3,4’-ビフェニルテトラカルボン酸二無水物〔純度99.9%(H-NMR分析)〕
6FDA:4,4’-(2,2-ヘキサフルオロイソプロピレン)ジフタル酸二無水物〔純度 99.77%(H-NMR分析)〕
PMDA-HS: 1R,2S,4S,5R-シクロヘキサンテトラカルボン酸二無水物〔純度:99.9%(GC分析)〕
 [溶媒]
DMAc: N、N-ジメチルアセトアミド
水: 純水
[Diamine component]
m-TD: 2,2′-dimethyl-4,4′-diaminobiphenyl [purity: 99.85% (GC analysis)]
tra-DACH: trans-1,4-diaminocyclohexane TFMB: 2,2′-bis (trifluoromethyl) benzidine [Purity: 99.83% (GC analysis)]
4,4′-ODA: 4,4′-oxydianiline [Purity: 99.9% (GC analysis)]
[Tetracarboxylic acid component]
CpODA: norbornane-2-spiro-α-cyclopentanone-α′-spiro-2 ″ -norbornane-5,5 ″, 6,6 ″ -tetracarboxylic dianhydride CBDA: 1,2,3 , 4-Cyclobutanetetracarboxylic dianhydride [Purity: 99.9% (GC analysis)]
s-BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride [purity 99.9% (H-NMR analysis)]
a-BPDA: 2,3 ′, 3,4′-biphenyltetracarboxylic dianhydride [purity 99.9% (H-NMR analysis)]
6FDA: 4,4 ′-(2,2-hexafluoroisopropylene) diphthalic dianhydride [purity 99.77% (H-NMR analysis)]
PMDA-HS: 1R, 2S, 4S, 5R-cyclohexanetetracarboxylic dianhydride [purity: 99.9% (GC analysis)]
[solvent]
DMAc: N, N-dimethylacetamide water: pure water
 テトラカルボン酸成分およびジアミン成分の構造式を下に示す。 The structural formulas of the tetracarboxylic acid component and the diamine component are shown below.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<ポリイミドフィルム積層体の評価>
 (クロスカット試験_ASTM D3359-02)
 コーティング層を貫通してポリイミドフィルム面に達する切り傷を、碁盤目状(1mm間隔、100マス)に設け、粘着テープを貼り付けた後、粘着テープを引き剥がして、剥離を評価した。
<Evaluation of polyimide film laminate>
(Cross cut test_ASTM D3359-02)
Cuts that penetrated the coating layer and reached the polyimide film surface were provided in a grid pattern (1 mm interval, 100 squares), and after the adhesive tape was attached, the adhesive tape was peeled off to evaluate the peeling.
 評価基準:
 ASTM D3359-02に準じて評価を行った。
Evaluation criteria:
Evaluation was performed according to ASTM D3359-02.
 (耐溶剤試験)
 コーティング層にメチルエチルケトンを約1ml滴下し、白化等の変化があるかどうかを目視で確認した。
変化なし:○  白化等の変化あり:×
(Solvent resistance test)
About 1 ml of methyl ethyl ketone was dropped on the coating layer, and it was visually confirmed whether there was a change such as whitening.
No change: ○ Whitening and other changes: ×
 [YI(黄色度)]
 ASTM E313に準じて、測定を行った。
[YI (yellowness)]
Measurements were performed according to ASTM E313.
 [鉛筆硬度]
 JIS K5600-5-4に準じて測定を試験を行った。荷重は750gとした。
[Pencil hardness]
The measurement was tested according to JIS K5600-5-4. The load was 750 g.
 〔PIフィルム1〕
窒素ガスで置換した反応容器中にtra-DACH 1.14g(10ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が12質量%となる量の29.95gを加え、室温で1時間攪拌した。この溶液にs-BPDA 2.87g(9.75ミリモル)とa-BPDA 0.07g(0.25ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
[PI film 1]
In a reaction vessel substituted with nitrogen gas, 1.14 g (10 mmol) of tra-DACH was added, and DMAc was added in an amount of 29.95 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 12% by mass. And stirred at room temperature for 1 hour. To this solution, 2.87 g (9.75 mmol) of s-BPDA and 0.07 g (0.25 mmol) of a-BPDA were gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、そのまま基板上で、120℃で1時間、150℃で30分、200℃で30分、次いで最終的に350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が8μmのポリイミドフィルム(PIフィルム1)を得た。 A polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, and heated as it is on the substrate at 120 ° C. for 1 hour, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and finally 350 ° C. And imidized thermally to obtain a colorless and transparent polyimide film / glass laminate. Subsequently, the obtained polyimide film / glass laminate was immersed in water and then peeled and dried to obtain a polyimide film (PI film 1) having a film thickness of 8 μm.
 〔ポリイミドフィルムの評価〕
 ポリイミドフィルムの評価結果を表1に示す。また表3中に、比較例1として、PIフィルム1のYIを記載した。
[Evaluation of polyimide film]
The evaluation results of the polyimide film are shown in Table 1. In Table 3, as Comparative Example 1, YI of PI film 1 is described.
 〔PIフィルム2〕
 膜厚が25μmのポリイミドフィルムである、ユーピレックス-25S(宇部興産製、「ユーピレックス」は登録商標)を準備した。
[PI film 2]
Upirex-25S (manufactured by Ube Industries, “Upilex” is a registered trademark), which is a polyimide film with a film thickness of 25 μm, was prepared.
 〔ポリイミドフィルムの評価〕
 ポリイミドフィルムの評価結果を表1に示す。また表3中に、比較例3として、PIフィルム2のYIを記載した。
[Evaluation of polyimide film]
The evaluation results of the polyimide film are shown in Table 1. In Table 3, YI of PI film 2 is described as Comparative Example 3.
 〔PIフィルム3〕
 膜厚が75μmのポリイミドフィルムである、ユーピレックス-75S(宇部興産製、「ユーピレックス」は登録商標)を準備した。
[PI film 3]
Iupilex-75S (manufactured by Ube Industries, “Iupirex” is a registered trademark), which is a polyimide film having a thickness of 75 μm, was prepared.
 〔ポリイミドフィルムの評価〕
 ポリイミドフィルムの評価結果を表1に示す。また表3中に、比較例4として、PIフィルム3のYIを記載した。
[Evaluation of polyimide film]
The evaluation results of the polyimide film are shown in Table 1. In Table 3, as Comparative Example 4, YI of PI film 3 is described.
 〔PIフィルム4〕
 窒素ガスで置換した反応容器中にm-TD 2.12g(10ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が12質量%となる量の31.33gを加え、室温で1時間攪拌した。この溶液にCBDA 1.76g(9ミリモル)とCpODA 0.38g(1ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。得られた溶液に1,2-ジメチルイミダゾール 0.096gとDMAc 0.096gの混合溶液を加え、室温で1時間攪拌し均一で粘稠なポリイミド前駆体溶液を得た。
[PI film 4]
In a reaction vessel substituted with nitrogen gas, 2.12 g (10 mmol) of m-TD was placed, and DMAc was added in an amount of 31.33 g in such an amount that the charged monomer total mass (total of diamine component and carboxylic acid component) was 12 mass%. And stirred at room temperature for 1 hour. To this solution, 1.76 g (9 mmol) of CBDA and 0.38 g (1 mmol) of CpODA were gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution. A mixed solution of 0.096 g of 1,2-dimethylimidazole and 0.096 g of DMAc was added to the resulting solution, and stirred at room temperature for 1 hour to obtain a uniform and viscous polyimide precursor solution.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下、そのままガラス基板上で室温から310℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が80μmのポリイミドフィルム(PIフィルム4)を得た。 A polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere as it is from room temperature to 310 ° C. to thermally imidize, and a colorless transparent polyimide film / glass A laminate was obtained. Subsequently, the obtained polyimide film / glass laminate was immersed in water and then peeled and dried to obtain a polyimide film (PI film 4) having a film thickness of 80 μm.
 〔ポリイミドフィルムの評価〕
 ポリイミドフィルムの評価結果を表1に示す。また表3中に、比較例6として、PIフィルム4のYIを記載した。
[Evaluation of polyimide film]
The evaluation results of the polyimide film are shown in Table 1. In Table 3, as Comparative Example 6, YI of PI film 4 is described.
 〔PIフィルム5〕
 窒素ガスで置換した反応容器中に4,4’-ODA 2.00g(10ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 18質量%となる量の19.33gを加え、室温で1時間攪拌した。この溶液にPMDA-HS 2.24g(10ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
[PI film 5]
In a reaction vessel substituted with nitrogen gas, 2.00 g (10 mmol) of 4,4′-ODA was placed, and DMAc was added in such an amount that the total monomer weight (total of diamine component and carboxylic acid component) was 18% by mass 19.33 g was added and stirred at room temperature for 1 hour. To this solution, 2.24 g (10 mmol) of PMDA-HS was gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が54μmのポリイミドフィルム(PIフィルム5)を得た。 A polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere as it is from room temperature to 350 ° C., and thermally imidized to form a colorless transparent polyimide film / glass. A laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water, peeled and dried to obtain a polyimide film (PI film 5) having a film thickness of 54 μm.
 〔ポリイミドフィルムの評価〕
 ポリイミドフィルムの評価結果を表1に示す。また表3中に、比較例7として、PIフィルム5のYIを記載した。
[Evaluation of polyimide film]
The evaluation results of the polyimide film are shown in Table 1. In Table 3, as Comparative Example 7, YI of PI film 5 is described.
 〔PIフィルム6〕
 窒素ガスで置換した反応容器中にTFMB 3.20g(10ミリモル)を入れ、DMAcを、仕込みモノマー総質量(ジアミン成分とカルボン酸成分の総和)が 20質量%となる量の28.78gを加え、室温で1時間攪拌した。この溶液に6FDA 3.11g(7ミリモル)とs-BPDA 0.88g(3ミリモル)を徐々に加えた。室温で12時間撹拌し、均一で粘稠なポリイミド前駆体溶液を得た。
[PI film 6]
TFMB 3.20 g (10 mmol) was placed in a reaction vessel substituted with nitrogen gas, and DMAc was added in an amount of 28.78 g so that the total monomer weight (total of diamine component and carboxylic acid component) was 20% by mass. And stirred at room temperature for 1 hour. To this solution, 3.11 g (7 mmol) of 6FDA and 0.88 g (3 mmol) of s-BPDA were gradually added. The mixture was stirred at room temperature for 12 hours to obtain a uniform and viscous polyimide precursor solution.
 PTFE製メンブレンフィルターでろ過したポリイミド前駆体溶液をガラス基板に塗布し、窒素雰囲気下、そのままガラス基板上で室温から350℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ガラス積層体を得た。次いで、得られたポリイミドフィルム/ガラス積層体を水に浸漬した後剥離し、乾燥して、膜厚が38μmのポリイミドフィルム(PIフィルム6)を得た。 A polyimide precursor solution filtered through a PTFE membrane filter is applied to a glass substrate, heated in a nitrogen atmosphere as it is from room temperature to 350 ° C., and thermally imidized to form a colorless transparent polyimide film / glass. A laminate was obtained. Next, the obtained polyimide film / glass laminate was immersed in water and then peeled and dried to obtain a polyimide film (PI film 6) having a film thickness of 38 μm.
 〔ポリイミドフィルムの評価〕
 ポリイミドフィルムの評価結果を表1に示す。また表3中に、比較例8として、PIフィルム6のYIを記載した。
[Evaluation of polyimide film]
The evaluation results of the polyimide film are shown in Table 1. In Table 3, as Comparative Example 8, YI of PI film 6 is described.
 〔PIフィルム7〕
 ポリイミド前駆体溶液を、〔PIフィルム4〕と同様に製造した。ポリイミド前駆体溶液をPTFE製メンブレンフィルターでろ過し、宇部興産株式会社製のポリイミドフィルム、ユーピレックス(登録商標)-125S上に塗布し、窒素雰囲気下、そのままガラス基板上で室温から280℃まで加熱して熱的にイミド化を行い、無色透明なポリイミドフィルム/ユーピレックス(登録商標)-125S積層体(積層体1)を得た。次いで、得られたポリイミドフィルム/ユーピレックス(登録商標)-125S積層体からポリイミドフィルム剥離した。なお、剥離は水等に浸漬しなくても、容易に剥離可能であった。膜厚が80μmのポリイミドフィルム(PIフィルム7)を得た。
[PI film 7]
A polyimide precursor solution was produced in the same manner as [PI film 4]. The polyimide precursor solution is filtered through a PTFE membrane filter, applied onto Ube Industries' polyimide film, Upilex (registered trademark) -125S, and heated from room temperature to 280 ° C on a glass substrate in a nitrogen atmosphere. Thermal imidization was performed to obtain a colorless and transparent polyimide film / Upilex (registered trademark) -125S laminate (laminate 1). Subsequently, the polyimide film was peeled from the obtained polyimide film / Upilex (registered trademark) -125S laminate. It should be noted that the peeling could be easily performed without being immersed in water or the like. A polyimide film (PI film 7) having a film thickness of 80 μm was obtained.
 〔ポリイミドフィルムの評価〕
 ポリイミドフィルムの評価結果を表1に示す。また表4中に、比較例9として、PIフィルム4のYIを記載した。
[Evaluation of polyimide film]
The evaluation results of the polyimide film are shown in Table 1. In Table 4, as Comparative Example 9, YI of PI film 4 was described.
 〔コーティング組成物1〕
 攪拌機及び加熱器を備えた反応装置で、ETERNACOLL(登録商標) UM90(3/1)(宇部興産製;数平均分子量916;水酸基価122mgKOH/g;ポリオール成分が1,4-シクロヘキサンジメタノール:1,6-ヘキサンジオール=3:1のモル比のポリオール混合物と炭酸エステルとを反応させて得られたポリカーボネートジオール、125グラム)と、2,2-ジメチロールプロピオン酸(22.4グラム)と、イソホロンジイソシアネート(120グラム)とを、N-エチルピロリドン(100グラム)中、ジブチル錫ジラウリレート(0.2グラム)存在下、窒素雰囲気下で、80-90℃で3.5時間加熱した。反応混合物を80℃まで冷却し、これにトリエチルアミン(17.0グラム)を添加・混合した。反応混合物とトリメチロールプロパントリアクリレート(TMPTA)とトリプロピレングリコールジアクリレート(TPGDA)の混合物(重量比1:1、55.6グラム)を更に混合し、強攪拌下のもと水(672グラム)の中に加えた。ついで、35重量%の2-メチル-1,5-ペンタンジアミン水溶液(69.4グラム)を加えて、固形分29.4%、固形分中のアクリル含有量16.0%の水性ポリウレタン樹脂分散体を得た。ここでいう固形分は水性ポリウレタン樹脂分散体中の樹脂成分含量を示す。
[Coating composition 1]
In a reactor equipped with a stirrer and a heater, ETERNACOLL (registered trademark) UM90 (3/1) (manufactured by Ube Industries; number average molecular weight 916; hydroxyl value 122 mgKOH / g; polyol component 1,4-cyclohexanedimethanol: 1 , 6-hexanediol = 3: 1 polycarbonate diol obtained by reacting a polyol mixture with carbonate ester, 125 grams), 2,2-dimethylolpropionic acid (22.4 grams), Isophorone diisocyanate (120 grams) was heated in N-ethylpyrrolidone (100 grams) in the presence of dibutyltin dilaurate (0.2 grams) at 80-90 ° C. for 3.5 hours. The reaction mixture was cooled to 80 ° C., and triethylamine (17.0 grams) was added and mixed thereto. The reaction mixture is further mixed with a mixture of trimethylolpropane triacrylate (TMPTA) and tripropylene glycol diacrylate (TPGDA) (weight ratio 1: 1, 55.6 grams), and water (672 grams) under strong stirring. Added to the inside. Subsequently, 35% by weight of 2-methyl-1,5-pentanediamine aqueous solution (69.4 grams) was added to disperse the aqueous polyurethane resin having a solid content of 29.4% and an acrylic content of 16.0% in the solid content. Got the body. Solid content here shows the resin component content in an aqueous polyurethane resin dispersion.
 この水性ポリウレタン樹脂分散体の(メタ)アクリレート化合物(TMPTAとTPGDAの混合物)のアクリル当量は、119である。この水性ポリウレタン樹脂分散体 100gに対して、界面活性剤である、BYK-345(ALTANA製)を0.15g添加し、室温で攪拌することで、コーティング組成物1を得た。 The acrylic equivalent of the (meth) acrylate compound (mixture of TMPTA and TPGDA) of this aqueous polyurethane resin dispersion is 119. 0.15 g of BYK-345 (manufactured by ALTANA) as a surfactant was added to 100 g of this aqueous polyurethane resin dispersion, and the mixture was stirred at room temperature to obtain a coating composition 1.
〔コーティング組成物2〕
 コーティング組成物1 100gに対して、光重合開始剤(Irgacure500、BASF社製)を1.5g添加し、よく撹拌してコーティング組成物2を得た。
[Coating composition 2]
A coating composition 2 was obtained by adding 1.5 g of a photopolymerization initiator (Irgacure 500, manufactured by BASF) to 100 g of the coating composition 1 and stirring well.
 〔コーティング組成物3〕
 攪拌機および加熱器を備えた反応装置で、ETERNACOLL(登録商標)UH200(宇部興産製;数平均分子量2007;水酸基価55.9mgKOH/g;ポリオール成分が1,6-ヘキサンジオールと炭酸エステルとを反応させて得られたポリカーボネートジオール、190グラム)と、2,2-ジメチロールプロピオン酸(20.4グラム)と、イソホロンジイソシアネート(77.0グラム)とを、3-メトキシ-N,N-ジメチルプロパンアミド(90.0グラム)中、ジブチル錫ジラウリレート(0.2グラム)存在下、窒素雰囲気下で、80-90℃で5時間加熱し、反応させた。反応混合物を80℃まで冷却し、これにトリエチルアミン(15.0グラム)を添加・混合した。反応混合物とエチレンオキサイド変性ペンタエリスリトールテトラアクリレート(PE(EO)TTA、47.6グラム)を更に混合し、強攪拌下、水(724グラム)の中に加えた。ついで、35重量%の2-メチル-1,5-ペンタンジアミン水溶液(29.5グラム)を加えて、固形分28.9%、固形分中のアクリル含有量13.8%の水性ポリウレタン樹脂分散体を得た。ここでいう固形分は水性ポリウレタン樹脂分散体中の樹脂成分含量を示す。
[Coating composition 3]
ETERRNACOLL (registered trademark) UH200 (manufactured by Ube Industries; number average molecular weight 2007; hydroxyl value 55.9 mgKOH / g; polyol component reacts 1,6-hexanediol with carbonate ester in a reactor equipped with a stirrer and a heater. Polycarbonate diol, 190 grams), 2,2-dimethylolpropionic acid (20.4 grams), isophorone diisocyanate (77.0 grams), and 3-methoxy-N, N-dimethylpropane. The reaction was carried out in amide (90.0 grams) by heating at 80-90 ° C. for 5 hours in the presence of dibutyltin dilaurate (0.2 grams) in a nitrogen atmosphere. The reaction mixture was cooled to 80 ° C., and triethylamine (15.0 grams) was added and mixed thereto. The reaction mixture and ethylene oxide modified pentaerythritol tetraacrylate (PE (EO) TTA, 47.6 grams) were further mixed and added into water (724 grams) with vigorous stirring. Subsequently, 35% by weight of 2-methyl-1,5-pentanediamine aqueous solution (29.5 grams) was added to disperse the aqueous polyurethane resin having a solid content of 28.9% and an acrylic content of 13.8% in the solid content. Got the body. Solid content here shows the resin component content in an aqueous polyurethane resin dispersion.
 この水性ポリウレタン樹脂分散体の(メタ)アクリレート化合物(PE(EO)TTA)のアクリル当量は、143である。この水性ポリウレタン樹脂分散体100gに対して、界面活性剤である、BYK-345(ALTANA製)を0.15g添加し、室温で攪拌することで、コーティング組成物3を得た。 The acrylic equivalent of the (meth) acrylate compound (PE (EO) TTA) of this aqueous polyurethane resin dispersion is 143. To 100 g of this aqueous polyurethane resin dispersion, 0.15 g of BYK-345 (manufactured by ALTANA) as a surfactant was added and stirred at room temperature to obtain coating composition 3.
 〔コーティング組成物4〕
 アクリレート化合物として、トリメチロールプロパントリアクリレート(TMPTA)とトリプロピレングリコールジアクリレート(TPGDA)の混合物(重量比1:1、113グラム)を使用し、反応混合物と混合し、強攪拌下のもと水(800グラム)の中に加えた以外は、前述のコーティング組成物1の製造と同様にして、固形分29.6%、固形分中のアクリル含有量27.9%の水性ポリウレタン樹脂分散体を得た。その後も同様にして、コーティング組成物4を得た。
[Coating composition 4]
As the acrylate compound, a mixture of trimethylolpropane triacrylate (TMPTA) and tripropylene glycol diacrylate (TPGDA) (weight ratio 1: 1, 113 grams) was mixed with the reaction mixture, and the water was mixed under strong stirring. (800 grams), except that the aqueous polyurethane resin dispersion having a solid content of 29.6% and an acrylic content of 27.9% in the solid content was the same as the production of the coating composition 1 described above. Obtained. Thereafter, the coating composition 4 was obtained in the same manner.
 〔コーティング組成物5〕
 アクリレート化合物として、トリメチロールプロパントリアクリレート(TMPTA)とトリプロピレングリコールジアクリレート(TPGDA)の混合物(重量比1:1、16グラム)を使用した以外は、コーティング組成物4の製造と同様にして、固形分29.6%、固形分中のアクリル含有量5%の水性ポリウレタン樹脂分散体を得た。その後も同様にして、コーティング組成物5を得た。
[Coating composition 5]
As the acrylate compound, except that a mixture of trimethylolpropane triacrylate (TMPTA) and tripropylene glycol diacrylate (TPGDA) (weight ratio 1: 1, 16 grams) was used, the same as in the production of the coating composition 4, An aqueous polyurethane resin dispersion having a solid content of 29.6% and an acrylic content in the solid content of 5% was obtained. Thereafter, the coating composition 5 was obtained in the same manner.
 〔比較コーティング組成物1〕
 アクリレート化合物を添加しなかったことを除いて、コーティング組成物1と同様にして、比較コーティング組成物1を得た。
[Comparative coating composition 1]
Comparative coating composition 1 was obtained in the same manner as coating composition 1 except that the acrylate compound was not added.
[ハードコート]
ハードコートa:大成ファインケミカル社製のSTR-SiAを用いた。STR-SiA
100gに対して、光開始剤としてIRUGACURE(登録商標)184 3g添加し、室温で攪拌しハードコート用溶液(ハードコートa)を得た。
ハードコートb:藤倉化成製FUJIHARD(登録商標) HO3313U-8
[Hard coat]
Hard coat a: STR-SiA manufactured by Taisei Fine Chemical Co., Ltd. was used. STR-SiA
To 100 g, 3 g of IRUGACURE (registered trademark) 184 was added as a photoinitiator and stirred at room temperature to obtain a hard coat solution (hard coat a).
Hard coat b: FUJIHARD (registered trademark) HO3313U-8 manufactured by Fujikura Kasei
 〔実施例1〕
PIフィルム1の上に、コーティング組成物1を、乾燥後の膜厚が3μmになるように均一に塗布した。次いで、80℃にて30分、150℃で30分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体を得た。
[Example 1]
On the PI film 1, the coating composition 1 was uniformly applied so that the film thickness after drying was 3 μm. Subsequently, it was made to dry and harden | cure at 80 degreeC for 30 minutes and 150 degreeC for 30 minutes, the coating layer was formed on the polyimide film, and the polyimide film laminated body was obtained.
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表2に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 2.
 〔実施例2、3〕
PIフィルム2、3(それぞれ実施例2、3に対応)の上に、コーティング組成物1を、乾燥後の膜厚が2μmになるように均一に塗布した。次いで、80℃にて30分、150℃で30分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体を得た。
[Examples 2 and 3]
The coating composition 1 was uniformly applied on the PI films 2 and 3 (corresponding to Examples 2 and 3 respectively) so that the film thickness after drying was 2 μm. Subsequently, it was dried and cured at 80 ° C. for 30 minutes and 150 ° C. for 30 minutes, and a coating layer was formed on the polyimide film to obtain a polyimide film laminate.
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表2に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 2.
 〔実施例4、5〕
 PIフィルム4の上に、コーティング組成物1、3(それぞれ実施例4、5に対応)を、乾燥後の膜厚が2μmになるように均一に塗布した。次いで、80℃にて30分、150℃で30分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体を得た。
[Examples 4 and 5]
On the PI film 4, coating compositions 1 and 3 (corresponding to Examples 4 and 5 respectively) were uniformly applied so that the film thickness after drying was 2 μm. Subsequently, it was made to dry and harden | cure at 80 degreeC for 30 minutes and 150 degreeC for 30 minutes, the coating layer was formed on the polyimide film, and the polyimide film laminated body was obtained.
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表2に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 2.
 〔実施例6、7〕
 PIフィルム4の上に、コーティング組成物1を、乾燥後の膜厚が4μm,0.5μm(それぞれ実施例6、7に対応)になるように均一に塗布した。次いで、80℃にて30分、150℃で30分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体を得た。
[Examples 6 and 7]
On the PI film 4, the coating composition 1 was uniformly applied so that the film thickness after drying was 4 μm and 0.5 μm (corresponding to Examples 6 and 7, respectively). Subsequently, it was made to dry and harden | cure at 80 degreeC for 30 minutes and 150 degreeC for 30 minutes, the coating layer was formed on the polyimide film, and the polyimide film laminated body was obtained.
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表2に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 2.
 〔実施例8〕
 PIフィルム4の上に、コーティング組成物2を、乾燥後の膜厚が2μmになるように均一に塗布した。次いで、80℃にて30分乾燥することで、塗膜(紫外線照射前)を得た。80Wメタルハライドランプの下に通過させ(1回照射、紫外線照射量1000mJ/cm2)、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体を得た。
Example 8
On the PI film 4, the coating composition 2 was uniformly applied so that the film thickness after drying was 2 μm. Subsequently, the coating film (before ultraviolet irradiation) was obtained by drying at 80 degreeC for 30 minutes. A polyimide film laminate was obtained by passing under an 80 W metal halide lamp (single irradiation, ultraviolet irradiation amount 1000 mJ / cm 2) to form a coating layer on the polyimide film.
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表2に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 2.
 〔実施例9、10〕
 PIフィルム5、6(それぞれ実施例9、10に対応)の上に、コーティング組成物1を、乾燥後の膜厚が2μmになるように均一に塗布した。次いで、80℃にて30分、150℃で30分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体を得た。
[Examples 9 and 10]
On the PI films 5 and 6 (corresponding to Examples 9 and 10 respectively), the coating composition 1 was uniformly applied so that the film thickness after drying was 2 μm. Subsequently, it was dried and cured at 80 ° C. for 30 minutes and 150 ° C. for 30 minutes, and a coating layer was formed on the polyimide film to obtain a polyimide film laminate.
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表2に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 2.
〔比較例2,5〕
 PIフィルム2,4(それぞれ比較例2,5に対応)の上に、比較コーティング組成物1を、乾燥後の膜厚が2μmになるように均一に塗布した。次いで、80℃にて30分、150℃で30分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体を得た。
[Comparative Examples 2 and 5]
On the PI films 2 and 4 (corresponding to Comparative Examples 2 and 5 respectively), the comparative coating composition 1 was uniformly applied so that the film thickness after drying was 2 μm. Subsequently, it was dried and cured at 80 ° C. for 30 minutes and 150 ° C. for 30 minutes, and a coating layer was formed on the polyimide film to obtain a polyimide film laminate.
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表3に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 3.
〔実施例11、12〕
 PIフィルム7の上に、コーティング組成物4(実施例11)とコーティング組成物5(実施例12)を、乾燥後の膜厚が2μmになるように均一に塗布した。次いで、80℃にて5分、150℃で5分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体(積層体2,3)を得た。
[Examples 11 and 12]
On the PI film 7, the coating composition 4 (Example 11) and the coating composition 5 (Example 12) were uniformly applied so that the film thickness after drying was 2 μm. Subsequently, it was made to dry and harden | cure at 80 degreeC for 5 minutes and 150 degreeC for 5 minutes, the coating layer was formed on the polyimide film, and the polyimide film laminated body (laminated body 2, 3) was obtained.
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表4に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 4.
 〔実施例13~15〕
 PIフィルム7の上に、コーティング組成物1を、それぞれ乾燥後の膜厚が500nm(実施例13)、100nm(実施例14)、30nm(実施例15)になるようにスピンコーターを用いて均一に塗布した。次いで、80℃にて5分、150℃で5分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体(積層体4~6)を得た。
[Examples 13 to 15]
The coating composition 1 is uniformly applied on the PI film 7 using a spin coater so that the film thickness after drying is 500 nm (Example 13), 100 nm (Example 14), and 30 nm (Example 15), respectively. It was applied to. Subsequently, it was dried and cured at 80 ° C. for 5 minutes and 150 ° C. for 5 minutes, and a coating layer was formed on the polyimide film to obtain polyimide film laminates (laminates 4 to 6).
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表4に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 4.
 〔比較例10〕
 PIフィルム7の上に、コーティング組成物1を、それぞれ乾燥後の膜厚が5μmになるように均一に塗布した。次いで、80℃にて5分、150℃で5分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体(積層体7)を得た。
[Comparative Example 10]
On the PI film 7, the coating composition 1 was uniformly applied so that the film thickness after drying was 5 μm. Subsequently, it was made to dry and harden | cure at 80 degreeC for 5 minutes and 150 degreeC for 5 minutes, the coating layer was formed on the polyimide film, and the polyimide film laminated body (laminated body 7) was obtained.
 〔ポリイミドフィルム積層体の評価〕
 ポリイミドフィルムとコーティング層の密着性をクロスカット試験により評価した。また、メチルエチルケトンを用いて耐溶剤性とYIを評価した。結果を表4に示す。
[Evaluation of polyimide film laminate]
The adhesion between the polyimide film and the coating layer was evaluated by a cross-cut test. Moreover, solvent resistance and YI were evaluated using methyl ethyl ketone. The results are shown in Table 4.
 〔実施例16~18〕
 得られた積層体4~6のコーティング層上にハードコートaを乾燥後のハードコート層の膜厚が約10μmになるようにバーコーターで塗工し、80℃で10分乾燥させ、高圧水銀ランプを用いて積算光量が1000mJ/cm2になるように紫外線を照射した。その後、150℃で10分間加熱し、ポリイミド/コーティング層/ハードコート積層体を得た。
[Examples 16 to 18]
The hard coat a is applied on the coating layers of the obtained laminates 4 to 6 with a bar coater so that the thickness of the hard coat layer after drying is about 10 μm, dried at 80 ° C. for 10 minutes, and high pressure mercury The lamp was used to irradiate with ultraviolet rays so that the integrated light amount was 1000 mJ / cm 2. Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide / coating layer / hard-coat laminated body.
 〔ポリイミドフィルム積層体の評価〕
 評価結果を表5に示す。
[Evaluation of polyimide film laminate]
The evaluation results are shown in Table 5.
 〔実施例19〕
 得られた積層体4のコーティング層上にハードコートbを乾燥後のハードコート層の膜厚が約10μmになるようにバーコーターで塗工し、80℃で10分乾燥させ、高圧水銀ランプを用いて積算光量が1000mJ/cmになるように紫外線を照射した。その後、150℃で10分間加熱し、ポリイミド/コーティング層/ハードコート積層体を得た。
Example 19
A hard coat b is applied on the coating layer of the obtained laminate 4 with a bar coater so that the thickness of the hard coat layer after drying is about 10 μm, and dried at 80 ° C. for 10 minutes. It was used to irradiate with ultraviolet rays so that the accumulated light amount was 1000 mJ / cm 2 . Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide / coating layer / hard-coat laminated body.
 〔比較例11、12〕
PIフィルム7(比較例11)と比較例10で得られた積層体7(比較例12)上にそれぞれ、ハードコートaを乾燥後のハードコート層の膜厚が約10μmになるようにバーコーターで塗工し、80℃で10分乾燥させ、高圧水銀ランプを用いて積算光量が1000mJ/cmになるように紫外線を照射した。その後、150℃で10分間加熱し、ポリイミド/コーティング層/ハードコート積層体を得た。
[Comparative Examples 11 and 12]
Bar coater so that the thickness of the hard coat layer after drying the hard coat a on the laminate 7 (Comparative Example 12) obtained in the PI film 7 (Comparative Example 11) and Comparative Example 10 is about 10 μm. The film was dried at 80 ° C. for 10 minutes, and irradiated with ultraviolet rays using a high-pressure mercury lamp so that the integrated light amount became 1000 mJ / cm 2 . Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide / coating layer / hard-coat laminated body.
 〔ポリイミドフィルム積層体の評価〕
 評価結果を表5に示す。
[Evaluation of polyimide film laminate]
The evaluation results are shown in Table 5.
 〔比較例13〕
 PIフィルム7上に、ハードコートbを乾燥後のハードコート層の膜厚が約10μmになるようにバーコーターで塗工し、80℃で10分乾燥させ、高圧水銀ランプを用いて積算光量が1000mJ/cm2になるように紫外線を照射した。その後、150℃で10分間加熱し、ポリイミド/コーティング層/ハードコート積層体を得た。
[Comparative Example 13]
On the PI film 7, the hard coat b is coated with a bar coater so that the thickness of the hard coat layer after drying is about 10 μm, and dried at 80 ° C. for 10 minutes. Ultraviolet rays were irradiated so as to be 1000 mJ / cm 2. Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide / coating layer / hard-coat laminated body.
 〔ポリイミドフィルム積層体の評価〕
 評価結果を表5に示す。
[Evaluation of polyimide film laminate]
The evaluation results are shown in Table 5.
 〔実施例20、21〕
 得られた積層体2(実施例20)、積層体3(実施例21)のコーティング層上にハードコートbを乾燥後のハードコート層の膜厚が約10μmになるようにバーコーターで塗工し、80℃で10分乾燥させ、高圧水銀ランプを用いて積算光量が1000mJ/cm2になるように紫外線を照射した。その後、150℃で10分間加熱し、ポリイミド/コーティング層/ハードコート積層体を得た。
[Examples 20 and 21]
Coating with a bar coater so that the thickness of the hard coat layer after drying the hard coat b on the coating layer of the obtained laminate 2 (Example 20) and laminate 3 (Example 21) is about 10 μm. Then, it was dried at 80 ° C. for 10 minutes, and irradiated with ultraviolet rays using a high-pressure mercury lamp so that the integrated light amount became 1000 mJ / cm 2. Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide / coating layer / hard-coat laminated body.
 〔ポリイミドフィルム積層体の評価〕
 評価結果を表5に示す。
[Evaluation of polyimide film laminate]
The evaluation results are shown in Table 5.
 〔実施例22〕
 積層体1(PIフィルム7/ユーピレックス(登録商標)-125S積層体)のPIフィルム7の上に、コーティング組成物1を、乾燥後の膜厚が0.5μmになるようにスピンコーターを用いて均一に塗布した。次いで、80℃にて5分、150℃で5分乾燥、硬化させ、ポリイミドフィルム上にコーティング層を形成してポリイミドフィルム積層体を得た。この積層体のコーティング層上にハードコートaを乾燥後のハードコート層の膜厚が約10μmになるようにバーコーターで塗工し、80℃で10分乾燥させ、高圧水銀ランプを用いて積算光量が1000mJ/cmになるように紫外線を照射した。その後、150℃で10分間加熱し、ポリイミド(ユーピレックス(登録商標)-125S)/ポリイミド(PIフィルム7)/コーティング層/ハードコート積層体を得た。その後、ユーピレックス(登録商標)-125Sからポリイミド(PIフィルム7)/コーティング層/ハードコート積層体を剥離した。なお、剥離は水等に浸漬しなくても、容易に剥離可能であった。
[Example 22]
On the PI film 7 of the laminate 1 (PI film 7 / UPILEX (registered trademark) -125S laminate), the coating composition 1 is applied using a spin coater so that the film thickness after drying becomes 0.5 μm. It was applied evenly. Subsequently, it was made to dry and harden | cure at 80 degreeC for 5 minutes and 150 degreeC for 5 minutes, the coating layer was formed on the polyimide film, and the polyimide film laminated body was obtained. On the coating layer of this laminate, the hard coat a is coated with a bar coater so that the thickness of the hard coat layer after drying is about 10 μm, dried at 80 ° C. for 10 minutes, and integrated using a high-pressure mercury lamp. Ultraviolet rays were irradiated so that the amount of light was 1000 mJ / cm 2 . Then, it heated at 150 degreeC for 10 minute (s), and obtained the polyimide (Upilex (trademark) -125S) / polyimide (PI film 7) / coating layer / hard coat laminated body. Thereafter, the polyimide (PI film 7) / coating layer / hard coat laminate was peeled from Upilex (registered trademark) -125S. It should be noted that the peeling could be easily performed without being immersed in water or the like.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 本発明によれば、耐薬品性、機械的強度、電気特性、寸法安定性等のポリイミドフィルムの従来からの特徴を生かしながら、他の機能層との密着性を向上させたポリイミドフィルム積層体を提供することができる。特にディスプレイ用、タッチパネル用、太陽電池用などの基板、保護フィルム等として好適に用いることができる。 According to the present invention, a polyimide film laminate having improved adhesion to other functional layers while taking advantage of conventional characteristics of polyimide film such as chemical resistance, mechanical strength, electrical characteristics, and dimensional stability. Can be provided. In particular, it can be suitably used as a substrate for a display, a touch panel, a solar cell, a protective film, or the like.

Claims (14)

  1.  ポリイミドフィルムと、
     このポリイミドフィルムの表面に、ポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物の硬化物で形成されているコーティング層と
    を有することを特徴とするポリイミドフィルム積層体(但し、前記ポリウレタン樹脂は、ウレタン(メタ)アクリレートモノマーおよびその重合体を含まない。)。
    Polyimide film,
    A polyimide film laminate having a coating layer formed of a cured product of a coating composition containing a polyurethane resin and a (meth) acrylate compound on the surface of the polyimide film (however, the polyurethane resin is , Urethane (meth) acrylate monomer and polymer thereof are not included.)
  2.  前記ポリイミドフィルムを構成するポリイミドが、下記一般式(1)で表される繰り返し単位を含むことを特徴とする請求項1に記載のポリイミドフィルム積層体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Xは芳香族環または脂環構造を有する4価の基であり、Yは芳香族環または脂環構造を有する2価の基である。)
    The polyimide which comprises the said polyimide film contains the repeating unit represented by following General formula (1), The polyimide film laminated body of Claim 1 characterized by the above-mentioned.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, X 1 is a tetravalent group having an aromatic ring or alicyclic structure, and Y 1 is a divalent group having an aromatic ring or alicyclic structure.)
  3.  Xが脂環構造を有する4価の基であり、Yが脂環構造を有する2価の基である化学式(1)で表される繰り返し単位の含有量が、全繰り返し単位に対して、50モル%以下であることを特徴とする請求項2に記載のポリイミドフィルム積層体。 The content of the repeating unit represented by the chemical formula (1) in which X 1 is a tetravalent group having an alicyclic structure and Y 1 is a divalent group having an alicyclic structure is based on the total repeating units. The polyimide film laminate according to claim 2, wherein the polyimide film laminate is 50 mol% or less.
  4.  化学式(1)中のXが芳香族環を有する4価の基であり、Yが芳香族環を有する2価の基であることを特徴とする請求項2に記載のポリイミドフィルム積層体。 The polyimide film laminate according to claim 2, wherein X 1 in the chemical formula (1) is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an aromatic ring. .
  5.  化学式(1)中のXが脂環構造を有する4価の基であり、Yが芳香族環を有する2価の基であることを特徴とする請求項2に記載のポリイミドフィルム積層体。 The polyimide film laminate according to claim 2, wherein X 1 in the chemical formula (1) is a tetravalent group having an alicyclic structure, and Y 1 is a divalent group having an aromatic ring. .
  6.  化学式(1)中のXが芳香族環を有する4価の基であり、Yが脂環構造を有する2価の基であることを特徴とする請求項2に記載のポリイミドフィルム積層体。 The polyimide film laminate according to claim 2, wherein X 1 in the chemical formula (1) is a tetravalent group having an aromatic ring, and Y 1 is a divalent group having an alicyclic structure. .
  7.  前記(メタ)アクリレート化合物の含有量が、前記コーティング組成物中の樹脂成分に基づく固形分の5~50重量%であることを特徴とする請求項1~6のいずれか1項に記載のポリイミドフィルム積層体。 The polyimide according to any one of claims 1 to 6, wherein the content of the (meth) acrylate compound is 5 to 50% by weight of a solid content based on a resin component in the coating composition. Film laminate.
  8.  前記ポリウレタン樹脂が、ポリカーボネートポリオールとポリイソシアネート化合物とが反応した構造を含むことを特徴とする請求項1~7のいずれか1項に記載のポリイミドフィルム積層体。 The polyimide film laminate according to any one of claims 1 to 7, wherein the polyurethane resin includes a structure in which a polycarbonate polyol and a polyisocyanate compound are reacted.
  9.  前記コーティング層の厚さが、10nm以上5μm未満であることを特徴とする請求項1~8のいずれか1項に記載のポリイミドフィルム積層体。 The polyimide film laminate according to any one of claims 1 to 8, wherein the coating layer has a thickness of 10 nm or more and less than 5 µm.
  10.  前記コーティング層の表面にさらに表面層を有し、表面の鉛筆硬度が2H以上であることを特徴とする請求項1~8のいずれか1項に記載のポリイミドフィルム積層体。 The polyimide film laminate according to any one of claims 1 to 8, further comprising a surface layer on the surface of the coating layer, wherein the surface has a pencil hardness of 2H or more.
  11.  前記コーティング層の厚さが、10nm以上5μm未満であり、前記コーティング層の表面にさらに表面層を有し、前記表面層の鉛筆硬度が2H以上であることを特徴とする請求項1~8のいずれか1項に記載のポリイミドフィルム積層体。 The thickness of the coating layer is 10 nm or more and less than 5 μm, further has a surface layer on the surface of the coating layer, and the pencil hardness of the surface layer is 2H or more. The polyimide film laminated body of any one of Claims 1.
  12.  前記表面層が、少なくとも硬化性樹脂成分と無機フィラーを含む硬化性樹脂組成物の硬化物で形成されていることを特徴とする請求項10または11に記載のポリイミドフィルム積層体。 The polyimide film laminate according to claim 10 or 11, wherein the surface layer is formed of a cured product of a curable resin composition containing at least a curable resin component and an inorganic filler.
  13.  ポリイミドフィルムの表面に、ポリウレタン樹脂および(メタ)アクリレート化合物を含有するコーティング組成物を塗布する工程と、
     前記コーティング組成物の塗膜を硬化して、コーティング層を形成する工程と
    を有することを特徴とするポリイミドフィルム積層体の製造方法(但し、前記ポリウレタン樹脂は、ウレタン(メタ)アクリレートモノマーおよびその重合体を含まない。)。
    Applying a coating composition containing a polyurethane resin and a (meth) acrylate compound to the surface of the polyimide film;
    A method of producing a polyimide film laminate, wherein the coating film of the coating composition is cured to form a coating layer (wherein the polyurethane resin comprises a urethane (meth) acrylate monomer and its weight). Does not include coalescence.)
  14.  請求項1~9のいずれか1項に記載のポリイミドフィルム積層体のコーティング層の表面に、さらに、少なくとも硬化性樹脂成分と無機フィラーを含む硬化性樹脂組成物を塗布する工程と、
     前記硬化性樹脂組成物の塗膜を硬化して、表面層を形成する工程と
    を有することを特徴とするポリイミドフィルム積層体の製造方法。
    Applying a curable resin composition containing at least a curable resin component and an inorganic filler to the surface of the coating layer of the polyimide film laminate according to any one of claims 1 to 9,
    And a step of curing the coating film of the curable resin composition to form a surface layer.
PCT/JP2016/088993 2015-12-28 2016-12-27 Polyimide film layered body WO2017115824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255821 2015-12-28
JP2015-255821 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115824A1 true WO2017115824A1 (en) 2017-07-06

Family

ID=58666588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088993 WO2017115824A1 (en) 2015-12-28 2016-12-27 Polyimide film layered body

Country Status (3)

Country Link
JP (1) JP6119910B1 (en)
TW (1) TW201736138A (en)
WO (1) WO2017115824A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178269A (en) * 2018-03-30 2019-10-17 日鉄ケミカル&マテリアル株式会社 Polyimide film, method for manufacturing the same, and flexible device
CN114479578A (en) * 2022-02-23 2022-05-13 东莞市航达电子有限公司 Protective coating of lithium battery heating film

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018088543A1 (en) * 2016-11-11 2019-10-10 宇部興産株式会社 Laminated body including polyimide film and hard coat layer
JP6878948B2 (en) * 2017-02-22 2021-06-02 三菱瓦斯化学株式会社 Polyimide film laminate
JP7155533B2 (en) * 2017-06-16 2022-10-19 大日本印刷株式会社 Method for producing polyimide precursor solution, method for producing polyimide film, method for producing laminate, and method for producing display surface material
KR102015769B1 (en) * 2018-01-12 2019-08-29 경희대학교 산학협력단 Polyamic acid copolymer, a high heat resistant transparent polyimide film prepared by using the same, and method for preparing the same
JP7242358B2 (en) * 2019-03-15 2023-03-20 東レ株式会社 Composite materials, laminates and protective articles using them
KR102147265B1 (en) 2019-09-30 2020-08-24 에스케이이노베이션 주식회사 Polyimide film and flexible display panel including the same
JP2022156876A (en) * 2021-03-31 2022-10-14 Tdk株式会社 Resin composite laminate, production method of resin composite laminate and stretchable device
CN113122128B (en) * 2021-04-12 2022-05-17 中国科学技术大学 Heat-resistant bio-based lithium battery diaphragm and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023597A (en) * 2011-07-21 2013-02-04 Ube Industries Ltd Polyimide precursor varnish, and method for producing polyimide varnish
JP2013147599A (en) * 2012-01-20 2013-08-01 Ube Industries Ltd Polyimide precursor and polyimide
JP2013166929A (en) * 2012-01-20 2013-08-29 Ube Industries Ltd Polyimide precursor and polyimide
JP2015508345A (en) * 2011-12-26 2015-03-19 コーロン インダストリーズ インク Plastic substrate
JP2015058595A (en) * 2013-09-17 2015-03-30 富士フイルム株式会社 Composite film and sunlight reflecting film mirror

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023597A (en) * 2011-07-21 2013-02-04 Ube Industries Ltd Polyimide precursor varnish, and method for producing polyimide varnish
JP2015508345A (en) * 2011-12-26 2015-03-19 コーロン インダストリーズ インク Plastic substrate
JP2013147599A (en) * 2012-01-20 2013-08-01 Ube Industries Ltd Polyimide precursor and polyimide
JP2013166929A (en) * 2012-01-20 2013-08-29 Ube Industries Ltd Polyimide precursor and polyimide
JP2015058595A (en) * 2013-09-17 2015-03-30 富士フイルム株式会社 Composite film and sunlight reflecting film mirror

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178269A (en) * 2018-03-30 2019-10-17 日鉄ケミカル&マテリアル株式会社 Polyimide film, method for manufacturing the same, and flexible device
JP7102191B2 (en) 2018-03-30 2022-07-19 日鉄ケミカル&マテリアル株式会社 Method of manufacturing polyimide film
CN114479578A (en) * 2022-02-23 2022-05-13 东莞市航达电子有限公司 Protective coating of lithium battery heating film

Also Published As

Publication number Publication date
JP2017119421A (en) 2017-07-06
TW201736138A (en) 2017-10-16
JP6119910B1 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6119910B1 (en) Polyimide film laminate
US20120238659A1 (en) Aqueous polyurethane resin dispersion and preparation process for the same
JP4857758B2 (en) Liquid crystal display panel structure, manufacturing method thereof, and display device
JP5733175B2 (en) Active energy ray-curable adhesive composition
JP2008248199A (en) Impact-resistive adhesive layer, impact-resistive adhesive laminate, and display device
JP6458339B2 (en) Curable resin composition, cured product and laminate
JP6878948B2 (en) Polyimide film laminate
TW201350325A (en) Surface protective sheet, electronic device, and method for manufacturing electronic device component
JP6520301B2 (en) Curable composition
JP2014196430A (en) Active energy ray-curable resin composition, cured film obtained from the composition, and laminate having the cured film
JP7447484B2 (en) Resin composition and laminate
KR20180110154A (en) Urethane resin composition, coating agent and article
JP2022133387A (en) Urethane (meth)acrylate polymer
JP5592120B2 (en) Optical sheet and manufacturing method thereof
JP2012184291A (en) Flexible optical sheet
JP4952337B2 (en) Impact-resistant adhesive laminate and display device
WO2014033932A1 (en) Optical sheet
JP7369558B2 (en) Laminated film for decorating 3D molded products
JP2018016782A (en) Urethane (meth) acrylate oligomer
JP6565337B2 (en) Composite resin aqueous dispersion and use thereof
JP6623744B2 (en) Aqueous resin composition, laminate and article using the same
JP6816790B2 (en) Urethane (meth) acrylate oligomer
JP7060071B2 (en) Urethane (meth) acrylate oligomer
JP2012245668A (en) Multilayer film-like product and multilayer molded article
JP2024004123A (en) optical laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP