WO2017114486A1 - 预制泵站单元及配水单元 - Google Patents

预制泵站单元及配水单元 Download PDF

Info

Publication number
WO2017114486A1
WO2017114486A1 PCT/CN2016/113472 CN2016113472W WO2017114486A1 WO 2017114486 A1 WO2017114486 A1 WO 2017114486A1 CN 2016113472 W CN2016113472 W CN 2016113472W WO 2017114486 A1 WO2017114486 A1 WO 2017114486A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump station
prefabricated
station unit
unit according
pump
Prior art date
Application number
PCT/CN2016/113472
Other languages
English (en)
French (fr)
Inventor
杨志勇
乔诚
曹杨华
徐风
邵腾
Original Assignee
格兰富控股联合股份公司
格兰富(中国)投资有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201511032408.8A external-priority patent/CN106930398B/zh
Priority claimed from CN201521140558.6U external-priority patent/CN205475666U/zh
Priority claimed from CN201620486698.7U external-priority patent/CN205742511U/zh
Priority claimed from CN201620486697.2U external-priority patent/CN205742510U/zh
Priority claimed from CN201610353914.5A external-priority patent/CN107435371B/zh
Application filed by 格兰富控股联合股份公司, 格兰富(中国)投资有限公司 filed Critical 格兰富控股联合股份公司
Priority to KR1020187022142A priority Critical patent/KR102061685B1/ko
Priority to EP16881275.8A priority patent/EP3404154B1/en
Publication of WO2017114486A1 publication Critical patent/WO2017114486A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/22Adaptations of pumping plants for lifting sewage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/16Pumping installations or systems with storage reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/026Selection of particular materials especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/628Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/70Suction grids; Strainers; Dust separation; Cleaning
    • F04D29/708Suction grids; Strainers; Dust separation; Cleaning specially for liquid pumps

Definitions

  • the present invention generally relates to a pump station for transporting liquids, and more particularly to a prefabricated pump station unit and water distribution unit.
  • US Patent Application Publication No. US 20080011372 discloses a prefabricated pump station unit comprising a floor, a wall secured to the floor, and a plurality of submersible pumps mounted within the wall.
  • the wall has a liquid inlet and a liquid outlet.
  • the fluid enters the prefabricated pump station unit from the inlet port and flows out of the outlet port under the power provided by the submersible pump. Due to heavy rain and other reasons, the amount of fluid flowing into the prefabricated pumping station unit is sometimes very large, and the flow rate is very fast. At this time, the fluid is accompanied by a large amount of energy.
  • a baffle device is disposed adjacent to the liquid inlet in the wall of the prefabricated pumping station unit, and a plurality of liquid discharging ports are disposed at the bottom of the baffle device, and the plurality of liquid discharging ports respectively correspond to the plurality of submersible pumps.
  • the fluid flowing into the wall from the inlet port is divided into a plurality of sections by the baffle device, and each section flows to the suction port of the corresponding submersible pump through the corresponding fluid outlet, and is then sent out by the submersible pump.
  • An object of the present invention is to overcome the above-mentioned deficiencies of the prior art and to provide a prefabricated pump station unit having a good diversion function, so that the fluid flow state entering the liquid suction port of the submersible pump is uniform, and a good water inlet condition is created for the submersible pump. Improve the stability of the submersible pump operation.
  • the present invention adopts the following technical solutions:
  • a prefabricated pump station unit includes a prefabricated hollow-shaped pump station body, a liquid inlet and a liquid outlet connected to the pump station body, and is disposed on the pump station body. Inside the wellbore. Wherein the circumference of the cross section of the upper end portion of the pump station body is greater than the circumference of the cross section of the lower end portion thereof.
  • the pump station body comprises a hollow-shaped pump station body, and the circumference of the cross section of the upper end portion of the pump station body is larger than the circumference of the cross section of the lower end portion thereof, that is, the pump station The body is large and small.
  • the fluid When the fluid flows into the pumping station body from the liquid inlet, the fluid gradually gathers toward the center of the pumping station body along the inner wall of the pumping station.
  • the fluid energy When the fluid energy is consumed, the fluid flow state is uniformly homogenized. Effectively avoid or reduce the influence of the fluid flow state of the inlet port on the operation of the submersible pump, so that the fluid flow into the suction port of the submersible pump is uniform, creating a good water inlet condition for the submersible pump and improving the operation of the submersible pump. stability.
  • the prefabricated pump station unit of the present invention is a prefabricated structure, the on-site construction period can be greatly reduced, and it is light and convenient to transport, and has a simple structure and low cost.
  • the pump station body includes a first cylindrical portion and a tapered portion connecting the lower end portion of the first cylindrical portion, the tapered portion having a cross-sectional dimension along a top-to-bottom direction Gradually decreasing, the liquid inlet is provided in the first cylindrical portion.
  • the center line of the first cylindrical portion and the tapered portion coincide.
  • the first cylindrical portion is a cylinder
  • the tapered portion is a conical cylinder
  • the cone angle of the cone is in the range of 15° to 50°.
  • the bottom edge of the liquid inlet is adjacent to the tapered portion or flush with the top edge of the tapered portion.
  • the prefabricated pump station unit further includes a first grating device, the first grating device being mounted at a lower end portion of the first cylindrical portion; or being mounted at a middle or upper portion of the tapered portion Or installed at the end of the liquid inlet.
  • the prefabricated pump station unit further comprises a submersible pump disposed in the wellbore, the submersible pump being an axial flow pump, a mixed flow pump or a cross flow pump.
  • the prefabricated pump station unit further includes a pump base installed in the pump station body and located below the wellbore; or the pump base is installed in the wellbore
  • the submersible pump is mounted on the pump base.
  • the pump base includes a bottom plate, a flow guiding portion fixed at a central position of the bottom plate, and at least two diverting portions fixed to the bottom plate and the flow guiding portion, the at least two diverting portions
  • the flow guiding portion is evenly distributed in the circumferential direction.
  • the pump base further includes at least two support portions fixed to the bottom plate, the support portion having a height higher than the flow guiding portion and the diverting portion, the at least two supporting portions
  • the top is fixed with a flange.
  • the wellbore is disposed coaxially with the pump station body in the pump station body.
  • the pump station body further includes a second cylindrical portion having a cross-sectional dimension smaller than the first cylindrical portion, the second cylindrical portion being connected to the tapered portion The lower end of the department.
  • the first tubular portion and the second tubular portion are both cylinders, and the tapered portion is a cone.
  • the centerlines of the three coincide.
  • At least one fixing plate is provided between the wellbore and the tapered portion and/or the second tubular portion.
  • the present invention provides a water distribution unit comprising a water tank having a liquid inlet.
  • the water distribution unit further comprises at least one prefabricated pump station unit, each of the prefabricated pump station units including a taper, a wellbore, a submersible pump and a liquid outlet, the tapered portion being fixed to an outer bottom of the water tank.
  • the cross-sectional dimension of the tapered portion gradually decreases in a direction from top to bottom, the wellbore is disposed in the tapered portion and extends upward into the water tank, the liquid outlet is connected to the wellbore, and The water tank is extended and the submersible pump is disposed in the wellbore.
  • the prefabricated pump station unit further includes a second cylinder coupled to the tapered portion.
  • the water tank is a prefabricated water tank or a civil structure; and/or the water tank is a tank having a rectangular, circular, elliptical cross-sectional shape; and/or the water tank is disposed laterally.
  • the pump station body includes an outer cylinder and an inner cylinder
  • the outer cylinder includes an outer cylinder bottom and an outer peripheral wall disposed on the outer cylinder bottom
  • the inner cylinder includes an inner peripheral wall
  • the top end of the inner cylinder is open, the upper end of the inner cylinder is disposed in the outer cylinder bottom of the outer cylinder and is located in the outer cylinder, and the remaining portion of the inner cylinder is located outside the outer cylinder, part of the inner cylinder
  • the peripheral wall, a portion of the outer peripheral wall, and the outer cylinder bottom together form a circulation space, and the liquid inlet is disposed on the outer peripheral wall.
  • the inner cylinder further includes an inner cylinder bottom integrally formed at a bottom end portion of the inner peripheral wall or sealed and fixed to a bottom end portion of the inner peripheral wall.
  • the centerlines of the outer and inner cylinders coincide.
  • the inner cylinder and the outer cylinder are both cylindrical, and the inner cylinder has a cross-sectional dimension smaller than a cross-sectional dimension of the outer cylinder.
  • the inner cylinder has a conical cylindrical shape with a large diameter end and a small diameter end, and a large diameter end of the inner cylinder is located inside the outer cylinder.
  • the portion of the inner cylinder that is located inside the outer cylinder has a cone shape.
  • the bottom edge of the liquid inlet is not higher than the top edge of the inner peripheral wall.
  • the bottom edge of the liquid inlet is adjacent to or flush with the outer cylinder bottom of the outer cylinder.
  • a portion of the inner peripheral wall located in the outer cylinder is provided with a grille hole communicating the inside of the inner cylinder and the circulation space.
  • the grille aperture is disposed adjacent to the outer cylinder bottom location.
  • the grille hole is disposed at other positions of the inner peripheral wall away from the inner peripheral wall portion facing the liquid inlet.
  • the prefabricated pump station unit further includes a grill device installed at an end of the liquid inlet; or the grill device is mounted on an inner peripheral wall of the inner cylinder Upper end.
  • the inner cylinder comprises a plurality of sub-internal cylinders connected in series, and/or the outer cylinder package A plurality of sub-tubes connected in series are included.
  • the wellbore is disposed coaxially with the pump station body in the pump station body.
  • the prefabricated pump station unit further includes a submersible pump disposed in the wellbore.
  • the submersible pump is an axial flow pump or a mixed flow pump.
  • the prefabricated pump station unit further includes a pump base installed in the pump station body and located below the wellbore, and the submersible pump is mounted on the pump base.
  • the pump base includes a bottom plate, a flow guiding portion fixed at a central position of the bottom plate, and at least two diverting portions fixed to the bottom plate and the flow guiding portion, the at least two diverting portions
  • the flow guiding portion is evenly distributed in the circumferential direction.
  • the pump base further includes at least two support portions fixed to the bottom plate, the support portion having a height higher than the flow guiding portion and the diverting portion, the at least two supporting portions
  • the top is fixed with a flange.
  • a water distribution unit includes a water tank having a liquid inlet, the water distribution unit further including at least one prefabricated pump station subunit, each of the prefabricated pump station subunits including an inner cylinder, a wellbore, and a liquid outlet, the inner cylinder is fixed to a bottom of the water tank, a top end portion of the inner cylinder is open and protrudes into the water tank, the well barrel is disposed on the inner cylinder and extends upwardly from a top end of the inner cylinder Opening, the liquid outlet communicates with the wellbore and extends out of the water tank.
  • the water distribution unit further includes a submersible pump disposed in the wellbore.
  • the water tank is a prefabricated water tank or a civil structure; and/or the water tank is a tank having a rectangular, circular, elliptical cross-sectional shape; and/or the water tank is disposed laterally.
  • the wellbore is a split structure including a lower tubular portion and an upper tubular portion connected to the lower tubular portion, wherein the liquid discharge pipe is in communication with the upper tubular portion;
  • the prefabricated pump station unit further includes at least two fixing plates uniformly disposed in the circumferential direction, and the lower cylindrical portion is fixed to the pump station body by at least two of the fixing plates. Since the wellbore is a split structure composed of the lower tubular portion and the upper tubular portion connected to each other, firstly, the weight of the separate lower tubular portion or the upper tubular portion is greatly reduced compared to the overall wellbore, and the handling is convenient, and the installation operation is convenient and flexible.
  • the lower tube portion and the upper tube portion can be separately installed, so that the lower tube body is easily aligned with the pump base, and the liquid outlet tube of the upper tube portion is easily aligned with the liquid outlet on the pump station body, so the present invention Prefabricated pump station unit assembly is very convenient.
  • the lower cylinder portion is fixed to the pump station body by at least two fixing plates, and the fixing is relatively firm on the one hand, and the fixing plate separates the circulation space between the lower cylinder portion and the pumping station body by a plurality of fixing plates.
  • the flow channel and the guiding flow flow along each flow channel which is beneficial to eliminate turbulent flow, homogenize the fluid flow state, and the impact of the fluid on the fixed plate can also eliminate a large amount of kinetic energy, and provide a uniform fluid for the suction port of the submersible pump. It is beneficial to reduce the vibration and noise of the submersible pump.
  • the upper tubular portion is detachably coupled to the lower tubular portion.
  • the upper cylinder can be removed to increase the working space in the pumping station; in addition, when replacement is required, only one of the upper and lower cylinders can be replaced, while the other is still damaged. Continue to use, which is conducive to cost savings.
  • the liquid discharge pipe is integrally formed with or fixedly connected to the upper tubular portion. Tube.
  • At least two outer sides of the fixing plate are fixed to the pump station body, and a bottom end is flush with a bottom end surface of the pump station body or fixed on a bottom plate of the pump station body.
  • the lower tubular portion is fixed to the inner side of the at least two of the fixing plates.
  • the pump base is disposed below the lower tubular portion and is fixed to an inner side of at least two of the fixing plates.
  • a gap is provided between the fixing plate and the pump seat, so that at least two of the fixing plates connect the lower tube portion and the pump station body
  • the space is divided into at least two independent flow paths that are isolated from each other, and the pump base is provided with a water passing hole corresponding to each of the independent flow paths. Since the gap between the fixed plate and the pump seat is sealed by the sealing member, when the fluid passes, the debris such as the rope head, the tape, and the like are prevented from being wound around the pump seat when passing through the slit.
  • the pump station body further includes a first cylindrical portion having a larger diameter, a tapered portion connected to the first cylindrical portion and having a gradually smaller diameter, and a diameter connected to the tapered portion.
  • a flexible joint is disposed between the liquid outlet and the liquid outlet tube.
  • the flexible joint not only makes the connection of the liquid outlet pipe of the upper cylinder part and the liquid outlet of the pumping station body very convenient, but also reduces the difficulty of alignment of the liquid outlet pipe of the upper cylinder part and the liquid outlet of the pumping station body. Even if there is a slight deviation between the two positions, the connection can be achieved.
  • Figure 1 is a perspective view showing the first embodiment of the prefabricated pump station unit of the present invention
  • Figure 2 is a longitudinal cross-sectional view of Figure 1;
  • Figure 3 is a plan view of Figure 1;
  • Figure 4 is a schematic view showing the structure of a first grating device in the prefabricated pump station unit of Figure 1;
  • Figure 5 is a schematic structural view of a pump base in a first embodiment of a prefabricated pump station unit of the present invention
  • Figure 6 is a plan view of Figure 5;
  • Figure 7 is a partial cross-sectional perspective view showing the second embodiment of the prefabricated pump station unit of the present invention.
  • Figure 8 is a left side view of Figure 7;
  • Figure 9 is a plan view of Figure 7;
  • Figure 10 is a perspective view showing the first embodiment of the water distribution unit of the present invention.
  • Figure 11 is a front view showing the structure of the water distribution unit shown in Figure 10;
  • Figure 12 is a partial cross-sectional structural view showing a third embodiment of the prefabricated pump station unit of the present invention.
  • Figure 13 is a right side view of Figure 12;
  • Figure 14 is a plan view of Figure 12;
  • Figure 15 is a perspective view showing the structure of the prefabricated pump station unit of Figure 12, in which only a part of the outer cylinder and the liquid inlet structure are shown for clarity of the internal structure;
  • Figure 16 is a partial cross-sectional perspective view showing the fourth embodiment of the prefabricated pump station unit of the present invention.
  • Figure 17 is a partial cross-sectional perspective view showing the fifth embodiment of the prefabricated pump station unit of the present invention.
  • Figure 18 is a perspective view showing the second embodiment of the water distribution unit of the present invention, in which only a part of the box structure is shown for the sake of clarity of the internal structure;
  • Figure 19 is a partial cross-sectional front view of Figure 18;
  • Figure 20 is a top plan view of Figure 18;
  • Figure 21 is a right side view of Figure 18;
  • Figure 22 is a perspective view showing the third embodiment of the water distribution unit of the present invention, in which only a part of the box structure is shown for the sake of clarity of the internal structure;
  • Figure 23 is a partial cross-sectional front view of Figure 22;
  • Figure 24 is a schematic view showing the simulated flow state of the water flow in the precirculating pump station unit in the circulation space;
  • Figure 25 is a schematic view showing the simulated flow state of the water flow in the prefabricated pump station unit of the present invention at the inlet of the submersible pump;
  • 26A is a perspective exploded view of a sixth embodiment of a prefabricated pump station unit of the present invention.
  • Figure 26B is an assembled perspective view of the prefabricated pump station unit shown in Figure 26A, wherein the top cover is not shown;
  • Figure 26C is an enlarged view of a portion M of Figure 26B;
  • Figure 26D is a cross-sectional view taken along line A-A of Figure 26B;
  • Figure 27A is an exploded perspective view showing the top cover and the pump station body sealed by a seal ring in the prefabricated pump station unit shown in Figure 26A;
  • Figure 27B is an assembled view showing the top cover and the pump station body sealed by a seal ring in the prefabricated pump station unit shown in Figure 26A;
  • Figure 27C is an enlarged view of a portion P of Figure 27A;
  • 28A is a schematic perspective view showing the gate valve in the prefabricated pump station unit shown in FIG. 26A;
  • Figure 28B is a front elevational view showing the gate valve of Figure 28A;
  • Figure 28C shows a right side view of Figure 28B
  • Figure 28D shows a bottom view of Figure 28B
  • Figure 28E shows a top view of Figure 28B
  • Figure 29A is a perspective view showing the structure of the blue-grid in the prefabricated pump station unit shown in Figure 26A;
  • Figure 29B is a front elevational view showing the blue grid shown in Figure 29A;
  • Figure 29C shows a right side view of Figure 29B
  • Figure 29D shows a bottom view of Figure 29B
  • Figure 29E shows a top view of Figure 29B.
  • the main component symbols are as follows: 1. the pump station body; 10, the liquid inlet port; 11, the first tube portion; 12, the tapered portion; 13, the second tube portion; 2, the wellbore; 20, the liquid outlet; 3, submersible pump; 23, fixed plate; 5', first grid device; 6, pump seat; 61, flow guiding portion; 60, bottom plate; 62, diverting portion; 63, support portion; 64, flange; 641, outside Circle; 642, inner ring; 100, water tank; 200, liquid inlet; 300, tapered portion; 400, wellbore; 500, second cylinder; 14, outer cylinder; 140, circulation space; 141, outer cylinder bottom; 142, outer peripheral wall; 15, inner cylinder; 151, inner cylinder bottom; 152, inner peripheral wall; 1521, grille hole; 23, fixed plate; 5", second grid device; 6, pump seat; 61, diversion 60; bottom plate; 62, diversion portion; 63, support portion; 600, inner cylinder; 16, support rod; 19, guide rail; 17, bottom plate; 18, independent flow
  • the inventive concept of the prefabricated pump station unit of the invention consists in that, by improving the shape of the pump station body, for example, the circumference of the cross section of the upper end of the pump station body is greater than the circumference of the cross section of the lower end thereof, that is to say the pumping station
  • the body is large and small, thereby improving the fluid flow state at the inlet of the submersible pump, so that the fluid flow at the inlet of the submersible pump is stable and uniform, creating a good water inlet condition for the submersible pump, and improving the stability of the submersible pump operation.
  • FIG. 1 is a perspective view of a first embodiment of a prefabricated pumping station unit of the present invention
  • FIG. 2 is a longitudinal cross-sectional view of FIG. 1
  • FIG. 1 an embodiment of the prefabricated pump station unit of the present invention mainly comprises a pump station body 1, a wellbore 2 and a submersible pump 3 in a hollow shape.
  • a pump inlet 10 is mounted on the pump body 1 through which fluid enters the pump station body 1.
  • the wellbore 2 is mounted in the pumping station body 1.
  • the wellbore 2 is mounted coaxially with the pumping station body 1 in the pumping station body 1, and the wellbore 2 is provided with a liquid outlet 20.
  • the submersible pump 3 is installed in the lower portion of the wellbore 2, and the submersible pump 3 may be an axial flow pump, but is not limited thereto, and other types of pumps such as a centrifugal pump, a mixed flow pump, or a cross flow pump may be applied to the present invention.
  • the fluid entering the pump station body 1 is discharged from the pump station body 1 by the liquid outlet 20.
  • the pump station body 1 includes a first tubular portion 11 and a tapered portion 12.
  • the first cylindrical portion 11 may be a cylinder, but the present invention is not limited thereto, and the first cylindrical portion 11 may also be a cylinder having an elliptical or polygonal cross section, etc., even in order to meet the needs of special occasions, the first cylindrical portion 11 It is also feasible to design a cylindrical shape having an irregular closed annular shape.
  • the cross-sectional dimension of the tapered portion 12 gradually decreases in a direction from top to bottom, and the tapered portion 12 is, for example, It may be a conical cylinder, and the larger diameter end is fixedly connected to the bottom end portion of the first cylindrical portion 11, and the cone angle ⁇ of the conical cylinder is 25°.
  • the taper angle ⁇ is not limited to 25°, according to the pump body 1
  • the size of the fluid flow rate of the inlet port 10 and the like can be appropriately adjusted to the size of the taper angle ⁇ .
  • the taper angle ⁇ ranges from 15° to 50°, preferably from 20° to 40°.
  • the tapered portion 12 is not limited to the cone, and may be a cone having any other shape in cross section, as long as it is a cone structure in which the cross-sectional dimension is gradually changed from the upper end to the lower end. invention.
  • each fixing plate 23 is uniformly disposed between the wellbore 2 and the tapered portion 12 in the circumferential direction.
  • One side of the fixing plate 23 is fixed to the outer wall of the wellbore 2, and the other side is fixed to the tapered portion.
  • the portion 12 thereby secures the wellbore 2 and the tapered portion 12 in one piece.
  • the number of fixing plates 23 is not limited to four blocks, and the size of the pumping station body 1 and the overall design of the system are appropriately increased or decreased.
  • the fixing plate 23 functions on the one hand to fix the wellbore 2 and the tapered portion 12; on the other hand, the fixing plate 23 has a function of uniformly distributing the fluid, and the fluid in the first tubular portion 1 can be more evenly divided to the tapered portion.
  • the fixing plate 23 can also prevent the fluid rushing into the first cylindrical portion 11 from the liquid inlet 10 from vortexing during the downward flow, that is, also contributing to the homogenization fluid flow state.
  • the pump station body 1 is composed of a combination of a cylindrical first cylindrical portion 11 and a conical tubular tapered portion 12. It should be understood by those skilled in the art that the present invention is not limited thereto, and the pumping station body 1 formed by the first cylindrical portion 11 of any shape and the tapered portion 12 of any shape can be freely combined and sealed. this invention.
  • the center line of the cylindrical first cylindrical portion 11 and the conical tubular tapered portion 12 overlap, and in other embodiments, the center lines of the two may not overlap and have a certain bias. The amount of displacement can be adapted to certain special occasions where space is limited.
  • the fluid with a certain kinetic energy enters the first cylindrical portion 11 from the liquid inlet 10, impinges on the inner wall of the first cylindrical portion 11 and the liquid in the cylinder or flows along the inner wall of the first cylindrical portion 11 to dissipate a part of kinetic energy, and at the same time, the fluid
  • the flow state is adjusted to a certain degree to become uniform; then the fluid flows down the inner wall of the tapered portion 12, since the inner wall of the tapered portion 12 faces the center thereof Tilting and rectifying and raising the flow rate, so as to maximize the fluid flow state.
  • the fluid reaches the bottom of the tapered portion 12, the fluid flow state in the circumferential direction is very uniform and stable, so that the diving is at the center position.
  • the pump 3 suction port provides a smooth, uniform, and stable fluid.
  • the position of the liquid inlet 10 on the first cylindrical portion 11 may be as close as possible to the tapered portion 12, for example, the bottom edge of the liquid inlet 10 may be adjacent to the tapered portion 12 or the top edge of the tapered portion 12. Flush, this helps to reduce the potential energy of the fluid as it falls to the bottom of the pumping station body 1.
  • the prefabricated pump station unit of the present invention further includes a first grid means 5'.
  • the first grating device 5' can be installed at the end of the liquid inlet 10, in particular, detachably mounted at the end of the liquid inlet 10, so that the first grating device 5 can be conveniently arranged. 'Cleaning from the top end opening of the first tubular portion 11 for cleaning.
  • the first grating device 5' may also be mounted with the middle portion or the upper portion of the tapered portion 12; in addition, the first grating device 5' may be attached to the lower end portion of the first cylindrical portion 11 or may be attached to the first portion.
  • the first grid means 5' can be a horizontal porous disk or a mesh disk.
  • the function of the first grating device 5' is to intercept the flow of large pollutants such as branches, braids, cables, etc. in the fluid into the tapered portion 12 on the one hand, and to dissipate the fluid energy and homogenize the fluid flow on the other hand. The state also has a certain positive effect.
  • the prefabricated pump station unit of the present invention further includes a pump base 6 installed in the pump station body 1 and located below the wellbore 2, and the submersible pump 3 is mounted on the pump base. 6 on.
  • the present invention does not necessarily include a pump base 6.
  • the pump base 6 can be omitted.
  • the pump base 6 in addition to the function of supporting the submersible pump 3, the pump base 6 has a flow guiding action to further homogenize the fluid flow regime.
  • the detailed structure of the pump base 6 will be exemplified below.
  • FIG. 5 is a schematic structural view of the pump base 6 in an embodiment of the prefabricated pump station unit of the present invention
  • FIG. 6 is a plan view of FIG.
  • the pump base 6 includes a bottom plate 60, a flow guiding portion 61, at least two split portions 62, and at least two support portions 63.
  • the bottom plate 60 may have a circular flat shape, which is fixed in the tapered portion 12 and located directly below the wellbore 2;
  • the flow guiding portion 61 may be a frustum, preferably a truncated cone having a top plane and a bottom The plane and the conical surface connecting the top plane and the bottom plane, the bottom plane of the flow guiding portion 61 is fixed to the bottom plate 60, and the top plane faces the suction port of the submersible pump 3.
  • the flow dividing portion 62 may be, for example, a flow dividing plate, and the bottom side of the flow dividing plate is fixed to the bottom plate 60, and one side thereof is fixed to the flow guiding portion 61.
  • Four shunt plates are shown in Fig.
  • the number of the diverting portions 62 is not limited to four, and may be appropriately increased or decreased according to actual needs.
  • the impeller of the submersible pump 3 tends to cause the fluid to generate a vortex that rotates in a single direction during the rotation, and the function of the diverting portion 62 is to block these possible vortices and further homogenize the fluid flow state.
  • the fluid flows down the tapered portion 12, it can flow up to the top plane along the conical surface of the flow guiding portion 61 of the flow guiding portion 61, and then flow to the suction port of the submersible pump 3.
  • the support portion 63 may be a support riser that is fixed to the bottom plate 60. As shown in FIG. 6 , it shows four supporting vertical plates, which respectively correspond to four splitting plates, respectively. Of course, the number of supporting vertical plates in the present invention is not limited to four, and the dividing plate is The positional relationship between the two is not necessarily one-to-one correspondence, and may be arranged in a staggered manner.
  • the height of the support riser is higher than the flow guide 61 and the splitter plate, and the top of the four support risers is fixed with a flange 64 having an outer ring 641 and an inner ring 642.
  • the bottom end portion of the wellbore 2 may be further fixedly coupled to the outer ring 641 of the flange 64; the pump body of the submersible pump 3 may be fixedly coupled to the inner ring 642 of the flange 64 to prevent the pump body from rotating.
  • the submersible pump 3 when the submersible pump 3 is light in weight, it can be directly mounted, for example, on the wellbore 2, and the pump base 6 can be a component having only a diversion function and a vortex prevention function.
  • the pump station body 1 includes a first cylindrical portion 11 and a tapered portion 12, and the tapered portion 12 is located at a lower portion of the pumping station body 1, and the cross-sectional dimension of the tapered portion 12 is along from top to bottom.
  • the direction of the gradual decrease gradually decreases when the fluid flows into the first cylindrical portion 11 from the liquid inlet 10, and the flow state is uniformly homogenized; the fluid flows further downward along the inner wall of the tapered portion 12, and the fluid flow After the state is sufficiently homogenized, reaching the suction port of the submersible pump 3 can effectively avoid or reduce the influence of the fluid flow state unevenness of the inlet port 10 on the operation of the submersible pump 3, so that the fluid entering the liquid suction port of the submersible pump 3
  • the flow state is uniform, which creates a good water inlet condition for the submersible pump 3 and improves the stability of the operation of the submersible pump 3.
  • the prefabricated pumping station unit is a prefabricated structure, the on-site construction period can be greatly reduced, and it is light and convenient to transport, simple in structure and low in cost.
  • FIG. 7 is a perspective structural view of another embodiment of the prefabricated pump station unit of the present invention
  • FIG. 8 is a longitudinal cross-sectional view of FIG. 7,
  • FIG. 8 is a plan view of FIG.
  • the main difference between the second embodiment of the prefabricated pump station unit of the present invention and the first embodiment shown in Figures 1, 2 and 3 is that:
  • the pump station body 1 includes a first cylindrical portion 11, a tapered portion 12, and a second cylindrical portion 13 that are sealingly connected in order from top to bottom, wherein the second cylindrical portion 13 has a smaller cross-sectional dimension than the first cylindrical portion 11.
  • the first tubular portion 11 and the second tubular portion 13 may both be cylindrical or may be other shaped cylinders; the tapered portion 12 may be a cone or other shaped cylinder.
  • the center lines of the first tubular portion 11, the tapered portion 12, and the second tubular portion 13 may overlap each other or may be shifted from each other.
  • a fixing device disposed between the pumping station body 1 and the wellbore 2, for example at least one fixing plate 23, may be separately fixed between the wellbore 2 and the tapered portion 12, or separately fixed between the wellbore 2 and the second tubular portion 13. Or at the same time fixed between the wellbore 2 and the tapered portion 12 and the second tubular portion 13.
  • the pump base 6 is disposed directly below the second cylindrical portion 13.
  • the other structure of the second embodiment of the prefabricated pumping station unit is substantially the same as that of the first embodiment, and details are not described herein again.
  • FIG. 10 is a perspective view of a first embodiment of a water distribution unit of the present invention.
  • Fig. 11 is a front view showing the structure of the water distribution unit shown in Fig. 10.
  • an embodiment of the water distribution unit of the present invention includes a water tank 100 having a liquid inlet 200 and at least one prefabricated pump station unit. Three prefabricated pump station units are shown in Figs. 10 and 11, and the present invention is not limited thereto, and the number of prefabricated pump station units may be appropriately increased or decreased according to actual conditions.
  • the water tank 100 may be a large volume tank that may be rectangular, circular, elliptical or other shape in cross-sectional shape.
  • the water tank 100 can be a prefabricated water tank or a built-in civil structure.
  • the water tank 100 is disposed laterally, that is, the installed water tank 100 has a height less than its length.
  • the prefabricated pump station unit is mounted to the bottom surface of the water tank 100.
  • Each of the prefabricated pumping station units includes a tapered portion 300, a wellbore 400, a submersible pump, and a liquid outlet (not shown); the tapered portion 300 is fixed to the outer bottom of the water tank 100, and the cross-sectional dimension of the tapered portion 300 is along The direction from top to bottom is gradually reduced.
  • the wellbore 400 is disposed in the tapered portion 300 and extends upward into the water tank 100.
  • the liquid outlet communicates with the wellbore 400 and extends out of the water tank 100; the submersible pump is disposed in the wellbore 400.
  • the prefabricated pump station unit further includes a second barrel 500 coupled to the tapered portion 300.
  • the prefabricated pumping station unit in the water distribution unit of the present invention can be regarded as that at least one of the prefabricated pumping station units of the present invention shares a large first cylinder and shares a liquid inlet, so that the foregoing
  • the structure of the prefabricated pump station unit such as a pump base, a first grid device, and the like.
  • the water distribution unit of the invention cooperates with a plurality of pumping station units through a large-capacity water tank, can realize the uniform water distribution function quickly and conveniently, and solves the demand for large-flow water distribution; and at the same time, based on the specific structure of the pump station unit of the invention, the submersible pump inhales
  • the fluid flow state at the mouth is uniform, so that the water distribution unit of the invention has small vibration noise, long service life and low maintenance cost.
  • FIG. 12 is a partial cross-sectional structural view showing a third embodiment of the prefabricated pump station unit of the present invention
  • FIGS. 13 and 14 are respectively a right side view and a top view view of FIG. 12
  • a schematic perspective view of the prefabricated pump station unit of Fig. 12 is shown, with only a portion of the outer cylinder and the inlet opening structure shown for clarity of the internal structure.
  • the third embodiment of the prefabricated pump station unit of the present invention mainly comprises a pump station body 1 and a wellbore 2, and further, a submersible pump.
  • a pump inlet 10 is mounted on the pump body 1 through which fluid enters the pump station body 1.
  • the wellbore 2 is mounted in the pump station body 1.
  • the wellbore 2 is mounted coaxially with the pump station body 1 in the pump station body 1, and the wellbore 2 is provided with a liquid outlet 20.
  • the submersible pump is installed in the lower portion of the wellbore 2, and the submersible pump may be an axial flow pump, but is not limited thereto, and other types of pumps such as a centrifugal pump or a mixed flow pump may be applied to the present invention.
  • the fluid entering the pumping station body 1 is discharged from the pumping station body 1 by the liquid outlet 20.
  • the pump station body 1 comprises an outer cylinder 14 and an inner cylinder 15.
  • the outer cylinder 14 includes an outer cylinder bottom 141 and an outer peripheral wall 142 provided on the outer cylinder bottom 141.
  • the outer cylinder bottom 141 and the outer peripheral wall 142 may be integrally formed, or may be fixedly connected to each other by welding or the like.
  • the outer peripheral wall 142 may be a cylindrical shape, but the invention is not limited thereto, and the outer peripheral wall 142 may also be a cylinder having an elliptical or polygonal cross section, etc., and the outer peripheral wall 142 is designed to have a cross section even in order to meet the needs of special occasions. It is also feasible to have a closed annular cylinder.
  • the inner cylinder 15 includes an inner cylinder bottom 151 and an inner peripheral wall 152 disposed on the inner cylinder bottom 151.
  • the inner cylinder bottom 151 and the inner circumferential wall 152 may be integrally formed, or may be fixedly connected to each other by welding or the like.
  • the inner peripheral wall 152 may have a cylindrical shape or a non-cylindrical shape.
  • the top end of the inner cylinder 15 is open, and the upper end portion of the inner cylinder 15 is bored in the outer cylinder bottom 141 of the outer cylinder 14 and located in the outer cylinder 14, and the remaining portion of the inner cylinder 15 is located outside the outer cylinder 14.
  • a part of the inner peripheral wall 152, a part of the outer peripheral wall 142 and the outer cylinder bottom 141 together form a circulation space 140, and the liquid inlet 10 is provided on the outer peripheral wall 142.
  • the inner cylinder 15 may also include only an inner peripheral wall 152, and does not include the inner cylinder bottom 151.
  • the bottom end portion of the inner peripheral wall 152 can be hermetically fixed to a structure such as a base or a bottom plate, and the fluid can be prevented from leaking from the bottom of the inner cylinder 15 by the base or the bottom plate.
  • each fixing plate 23 is uniformly disposed between the wellbore 2 and the inner cylinder 15 in the circumferential direction.
  • One side of the fixing plate 23 is fixed to the outer wall of the wellbore 2, and the other side is fixed to the inner cylinder 15.
  • the number of fixing plates 23 is not limited to four blocks, and the size of the pumping station body 1 and the overall design of the prefabricated pumping station unit are appropriately increased or decreased.
  • the fixing plate 23 functions on the one hand to fix the wellbore 2 and the inner cylinder 15; on the other hand, the fixing plate 23 also has the function of uniformly distributing the fluid, and the fluid in the outer cylinder 141 can be more evenly divided into the inner cylinder 15; In addition, the fixing plate 23 can also prevent the fluid rushing into the outer cylinder 14 from the liquid inlet 10 from vortexing during the downward flow, that is, also contributing to the homogenization fluid flow state.
  • the pumping station body 1 is composed of a cylindrical outer cylinder 14 and a cylindrical inner cylinder 15. It will be understood by those skilled in the art that the present invention is not limited thereto, and the pumping station body 1 formed by any combination of the outer cylinder 14 of any shape and the inner cylinder 15 of any shape can be freely combined and sealed.
  • Figure 14 shows In the example, the center line of the cylindrical outer tube 14 and the conical inner tube 15 coincide. In other embodiments, the center lines of the two may not overlap and have a certain offset, so that it can be adapted to some Special space limited occasions.
  • the inner peripheral wall 152 of the inner cylinder 15 is struck to dissipate a part of the kinetic energy, and at the same time, the flow state is obtained to a certain extent.
  • the adjustment becomes uniform; then the fluid overflows from the opening at the top end of the inner peripheral wall 152 into the inner cylinder 15, the fluid kinetic energy is further consumed, and the fluid flow state is further homogenized, and the fluid flow when the fluid reaches the bottom of the inner cylinder 15
  • the state is very uniform and stable, providing a gentle, uniform, and stable fluid to the submersible pump suction port at the center.
  • the position of the liquid inlet 10 on the outer cylinder 14 can be as close as possible to the outer cylinder bottom 141.
  • the bottom edge of the liquid inlet 10 can be adjacent to the outer cylinder bottom 141 or flush with the outer cylinder bottom 141.
  • the fluid is dissipated as the fluid enters the circulation space 140 and impinges on the inner peripheral wall 152 of the inner cylinder 15.
  • the prefabricated pump station unit of the present invention further includes a second grilling device 5".
  • the second grilling device 5" can be mounted to the end of the liquid inlet 10, particularly Removably mounted to the end of the liquid inlet 10, so that the second grating device 5" can be easily lifted from the opening of the top end of the outer cylinder 14.
  • the second grating device 5" can be attached to the top end of the inner cylinder 15.
  • the porous disk at the opening is either a mesh disk.
  • the function of the second grid device 5" is to intercept the flow of large pollutants such as branches, braids, cables, etc. in the fluid into the inner cylinder 15 on the one hand; and to dissipate the fluid energy and to homogenize the fluid flow state on the other hand; It also has a certain positive effect.
  • the second grid means 5" may also be replaced by, in detail, a plurality of grid holes 1521 formed in the inner peripheral wall 152 of the inner cylinder 15 located in the outer cylinder 14.
  • the grid hole 1521 communicates with the inside of the inner cylinder 15 and the circulation space 140.
  • the position of the grid hole 1521 is adjacent to the outer cylinder bottom 141, so that the circulation space 140 can be avoided.
  • the grille hole 1521 is disposed at other positions of the inner peripheral wall 152 while avoiding the portion of the inner peripheral wall 152 that the inlet port 10 faces, That is, the grille hole 1521 is not provided on the portion of the inner peripheral wall 152 that faces the liquid inlet port 10, so that the fluid impacting force of the inner peripheral wall 152 can be enhanced during the fluid entering the circulation space 140 to consume more energy.
  • the prefabricated pump station unit of the present invention further includes a pump base 6, and the structure of the pump base 6 is the same as that of the first embodiment described above, and details are not described herein again.
  • the pump station body 1 includes an outer cylinder 14 and an inner cylinder 15, and the inner cylinder 15 extends into the outer cylinder 14 to form a circulating space 140 therebetween.
  • the fluid enters the prefabricated pump station unit from the liquid inlet 10, it does not directly enter the inner cylinder 15, but enters the circulation space 140.
  • the fluid hits the side wall of the inner cylinder 15 to consume a part of the energy while the fluid
  • the flow state is uniformly homogenized; then the fluid is again overflowed from the circulation space 140 to the inner cylinder 15, during which the fluid flow state is further homogenized, and therefore, the prefabricated pump station unit of the present invention can effectively avoid or reduce the
  • the fluid flow state of the liquid port 10 is uneven and the influence on the operation of the submersible pump 3 makes the fluid flow state of the liquid suction port entering the submersible pump 3 uniform, creating a good water inlet condition for the submersible pump and improving the stability of the submersible pump operation.
  • the prefabricated pump station unit is a prefabricated structure, which can greatly reduce the on-site construction period, and is light and convenient to transport, simple in structure and low in cost.
  • Prefabricated pump station units can be fitted with high flow axial or mixed flow pumps.
  • the outer cylinder 14 and the inner cylinder 15 partially overlap in space, thereby forming a circulation space 140.
  • the fluid kinetic energy is fully consumed, and the fluid flow state is fully obtained. Homogenization. Therefore, the use of the prefabricated pump station unit of the present invention eliminates the need to provide a plurality of reservoirs to homogenize the fluid and eliminate energy as in the prior art, thereby effectively saving floor space and being flexible for use in more places.
  • Figure 16 is a perspective view of a fourth embodiment of a prefabricated pump station unit of the present invention.
  • the main difference between the fourth embodiment of the prefabricated pump station unit of the present invention and the third embodiment shown in Figures 12 to 15 is:
  • the inner cylinder 15 has a tapered cylindrical shape as a whole, and has a large diameter large end and a small diameter small end, wherein the larger diameter end is located in the outer cylinder 14.
  • the fluid flow state is further homogenized.
  • the other structure of the fourth embodiment of the prefabricated pump station unit is substantially the same as that of the third embodiment, and details are not described herein again.
  • Figure 17 is a perspective view showing the third embodiment of the prefabricated pump station unit of the present invention.
  • the main difference between the fourth embodiment of the prefabricated pump station unit of the present invention and the third embodiment shown in Figures 12 to 15 is:
  • the portion of the inner cylinder 15 outside the outer cylinder 14 has a cylindrical shape, and the portion of the inner cylinder 15 located inside the outer cylinder 14 has a cone shape, and has a large diameter large end and a small diameter small end, wherein the diameter is relatively large.
  • the large end is located inside the outer cylinder 14.
  • the tapered cylindrical portion of the inner cylinder 15 further homogenizes the flow regime of the fluid.
  • the other structure of the fifth embodiment of the prefabricated pump station unit is substantially the same as that of the third embodiment, and details are not described herein again.
  • FIG. 18 is a perspective structural view of a second embodiment of the water distribution unit of the present invention, in which only a part of the box structure is shown for clearly showing the internal structure;
  • FIGS. 19, 20, and 21 are respectively FIG. Schematic diagram of the front view, top view and right view of the water distribution unit shown.
  • a second embodiment of the water distribution unit of the present invention includes a water tank 100 having a liquid inlet 200 and at least one prefabricated pump station subunit.
  • the figure shows three prefabricated pump station subunits, and the invention is not limited thereto, and the number of prefabricated pump station subunits may be appropriately increased or decreased according to actual conditions.
  • the water tank 100 may be a large volume tank that may be rectangular, circular, elliptical or other shape in cross-sectional shape.
  • the water tank 100 can be a prefabricated water tank or a built-in civil structure.
  • the water tank 100 is disposed laterally, that is, the installed water tank 100 has a height less than its length.
  • the prefabricated pump station subunit is mounted to the bottom of the water tank 100.
  • Each prefabricated pump station subunit includes a 600 inner cylinder 600, a wellbore 400, a submersible pump, and a liquid outlet (not shown); the 600 inner cylinder 600 is fixed to the bottom of the water tank 100 and extends into the inner water tank 100, and the wellbore 400 is disposed at The top end opening of the 600 inner cylinder 600 extends upwardly from the inner cylinder 600, and the liquid outlet is connected to the wellbore 400 and extends out of the water tank 100; the submersible pump is disposed in the wellbore 400.
  • the water unit may also not include a submersible pump, but a submersible pump is additionally installed when the site is installed.
  • FIG. 22 is a perspective view showing a third embodiment of the water distribution unit of the present invention
  • FIG. 23 is a partial cross-sectional front view of FIG.
  • the main difference between the third embodiment of the water distribution unit of the present invention and the second embodiment is that the water tank 100 has a cylindrical shape.
  • the other structure of the third embodiment of the water distribution unit is basically the same as that of the second embodiment, and details are not described herein again.
  • the water distribution unit of the present invention can be regarded as that at least one of the prefabricated pump station units of the present invention shares a large outer cylinder (water tank) and shares a liquid inlet, so that the water distribution unit of the present invention can borrow the aforementioned
  • the structure of the prefabricated pump station unit such as the pump base, the grille device, and the like.
  • the water distribution unit of the invention cooperates with a plurality of prefabricated pump station subunits through a large volume water tank, can realize the uniform water distribution function quickly and conveniently, and solves the large flow water distribution requirement; and at the same time, based on the specific structure of the prefabricated pump station unit according to the present invention, The fluid flow state at the suction port of the submersible pump is uniform, so that the water distribution unit of the invention has small vibration noise, long service life and low maintenance cost.
  • the prefabricated pump station unit and the water distribution unit of the invention are not only suitable for the field of sewage transportation, the field of rainwater transportation, the raw water transportation fields such as lake water, river water, surface water and groundwater, but also applicable to other fields requiring fluid transportation.
  • FIG. 24 is a schematic diagram of the simulated flow state of the water flow in the precirculating pump station unit of the present invention in the circulation space, and the water flow enters the circulation space 140 from the liquid inlet 10 Then, part of the water flow flows into the inner cylinder 15 through the second grating device 5".
  • the second grating device 5" can uniformize the inflow velocity when the submersible pump 3 is working, and improve the inlet condition of the inlet;
  • the top end of the cylinder 15 overflows into the inner cylinder 15, and the inner cylinder 15 dissipates the energy of the inflow, and in the case of a high water level, the water can freely overflow into the inner cylinder 15 to avoid affecting the submersible pump while dissipating energy.
  • the pumping capacity of 3 is beneficial to reduce the pump pit area and enable the high-flow low-lift submersible pump to operate normally.
  • Fig. 25 is a schematic diagram showing the simulated flow state of the water flow in the prefabricated pump station unit of the present invention at the inlet of the submersible pump.
  • the flow line near the suction port of the submersible pump 3 is relatively uniform, and no obvious water flow vortex is observed.
  • the definitions of the orientations "up” and “down” are as follows: when the prefabricated pump station unit of the present invention is in normal operation, the direction away from the ground is “up”, and the opposite is close to the ground. The direction is “lower”; specifically to the prefabricated pump station unit, referring to Figs. 26A and 26B, one side of the pumping station body 1 on which the top cover 4 is disposed is the upper side, and one side of the pumping seat 6 is provided below. In other embodiments, the orientations "upper” and “lower” may be referred to.
  • Figure 26A is a perspective exploded view of a sixth embodiment of a prefabricated pump station unit of the present invention
  • Figure 26B is an assembled perspective view of the prefabricated pump station unit illustrated in Figure 26A.
  • the prefabricated pump station unit of the present invention comprises a prefabricated pump station body 1, a wellbore 2, a liquid inlet 10, a liquid outlet 20, a top cover 4, a pump base 6,
  • the submersible pump 3, the submersible pump 3 may be an axial flow pump, a mixed flow pump or a cross flow pump.
  • the pump station body 1 includes a first cylindrical portion 11, a second cylindrical portion 13, and a tapered portion 12.
  • the tapered portion 12 is connected between the first cylindrical portion 11 and the second cylindrical portion 13.
  • the diameter of the first cylindrical portion 11 is larger than that of the second cylindrical portion 13.
  • an auxiliary support member 24 such as a support plate, a reinforcing rib, or the like is fixed to the outside of the tapered portion 12.
  • the liquid inlet 10 is provided at a position close to the tapered portion 12 of the first tubular portion 11.
  • the liquid inlet 10 may be integrally formed with the first tubular portion 11, or may be fixed to the first tubular portion 11 by welding or the like.
  • a liquid outlet 20 is provided at an upper end portion of the second cylindrical portion 13, that is, near the top cover 4.
  • the liquid outlet 20 is not necessarily provided at the upper end portion of the second cylindrical portion 13, and is not necessarily provided on the second cylindrical portion 13.
  • the liquid outlet 20 may be provided on the first tubular portion 11.
  • the liquid outlet 20 may be integrally formed with the second tubular portion 13 or the first tubular portion 11, or may be fixed thereto by welding or the like.
  • the pumping station body 1 of the present invention is not limited to the above specific structure, and other structures such as a straight cylindrical pumping station body and a stepped pumping station body can be applied to the present invention.
  • the wellbore 2 is disposed coaxially with the pumping station body 1 in the pumping station body 1.
  • the wellbore 2 is of a split structure, including a lower tubular portion 21 and an upper tubular portion 22 that are connected to each other.
  • the lower tubular portion 21 and the upper tubular portion 22 are detachably coupled together by bolting or the like.
  • An outlet pipe 25 is connected to the upper tubular portion 22, and the outlet pipe 25 can be integrally formed with or fixed to the upper tubular portion 22.
  • the outlet tube 25 may also be in communication with the lower barrel portion 21.
  • the outlet pipe 25 and the liquid outlet 20 are connected by a flexible joint 30.
  • Fig. 27A shows an exploded view of the top cover 4 and the pump station body 1 sealed by a sealing ring in the prefabricated pump station unit shown in Fig. 26A;
  • Fig. 27B shows Fig. 26A.
  • FIG. 27C shows an enlarged view of a portion P in FIG. 27A.
  • the top cover 4 is covered at the top end opening of the pump station body 1.
  • a manhole 40 may be disposed on the top cover 4 to facilitate an operator or maintenance personnel to enter the pumping station body 1 through the manhole 40.
  • the pumping station body 1 is provided with a ladder for entering or exiting a person (not shown) or An operating platform that is convenient for people to work (not shown).
  • the top cover 4 may be in the shape of a disk, and a joint portion 41 is formed on the circumference of the top cover 4, and the joint portion 41 is interposed between the joint portion 41 and the side wall of the pump station body 1.
  • the sealing ring may be a rubber sealing ring 7.
  • the rubber sealing ring 7 comprises an annular body 71, and an annular convex portion 72 is provided on the outer side surface of the annular body 71.
  • the annular convex portion 72 can enhance the sealing performance, further Preferably, the raised portion 72 of the rubber sealing ring 7 has an inverted tooth shape.
  • the joint portion 41 of the top cover 4, the side wall of the pump station body 1, and the rubber seal ring 7 can be further fixed by bolts (not shown).
  • the prefabricated pump station unit further includes four fixing plates 23 uniformly disposed in the circumferential direction, and the lower cylindrical portion 21 is fixed to the pump station body 1 by four fixing plates 23.
  • the outer side of the four fixing plates 23 is fixed to the side wall of the pump station body 1, and the four fixing plates 23 are fixed to the bottom plate 17 of the pump station body 1 (in the case where the prefabricated pump station unit has the bottom plate 17)
  • the bottom end of the four fixing plates 23 may be flush with the bottom end surface of the pump station body 1, or further fixed to a base for mounting the prefabricated pump station unit.
  • the lower tube portion 21 is fixed to the inner side of the 4 fixing plate 23, so that the lower tube portion 21 is fixed to the pump station body 1 by the four fixing plates 23.
  • the number of the fixing plates 23 is not limited to four, and may be appropriately increased or decreased according to the diameter of the prefabricated pumping station unit.
  • the pump base 6 is disposed within the pump station body 1 and below the wellbore 2, and in other embodiments, the pump base 6 can also be disposed within the wellbore 2.
  • the pump base 6 can be further fixed to the inner side of the fixing plate 23.
  • a gap between the fixing plate 23 and the pump base 6 is provided with a sealing member such as a sealing strip or a separator made of a material such as glass fiber reinforced plastic, so that the block fixing plate 23 connects the lower cylindrical portion 21 and the pumping station body 1 The space between them is separated into separate flow paths 18 that are isolated from each other (see Fig. 26D).
  • a water passage 65 see FIG.
  • the submersible pump 3 can be mounted on the pump base 6, which can be an axial or mixed flow pump.
  • FIGS. 29A-29E illustrate various schematic views of the blue grid 5 in a prefabricated pump station unit.
  • an embodiment of the prefabricated pump station unit of the present invention further includes a blue grille 5 and a gate valve 8 mounted to the blue grille 5.
  • the blue grille 5 is slidably mounted in the pump body 1 , for example, a support rod 16 is fixed on the upper portion of the pump body 1 (see FIGS. 29D and 29E ), and two parallel rods are fixed on the support rod 16 .
  • the guide rail 19 and the blue grille 5 are slidably mounted on the guide rail 19.
  • the blue grille 5 can slide along the guide rail 19, and the top can reach the top opening of the prefabricated pumping station unit, and the bottom can reach the grille support seat (not shown) to facilitate the treatment of the dirt collected by the blue grille 5.
  • the blue grid 5 has a box shape or a blue shape, and has a larger size grid inlet 51 and a plurality of smaller grid outlets 52. During the flow of fluid from the grill inlet 51 and from the plurality of grill outlets 52, larger sizes of debris such as stones, branches, etc. in the fluid are intercepted in the blue grid 5.
  • Figures 28A through 28E show various schematic views of the gate valve 8 in the prefabricated pump station unit shown in Figure 26A.
  • the gate valve 8 includes a backing plate 81, a panel 82 of the parallel backing plate 81, a side wall 86, and a shutter 84.
  • the middle portion of the back plate 81 and the panel 82 is provided with a gate 83.
  • the side wall 86 connects the left and right sides and the bottom side of the back plate 81 and the panel 82, and an opening is formed between the back plate 81 and the top side of the panel 82 for the shutter.
  • 84 is inserted from the opening into the back plate 81 and the face plate 82 to block the gate 83.
  • the bottom end portion of the shutter 84 has a guide angle on both sides.
  • the gate valve 8 further includes a connecting cylinder 85 disposed around the gate 83.
  • One end of the connecting cylinder 85 is fixed to the panel 82, and the other end is fixed to the blue grille 5, and the gate 83 corresponds to the grill water inlet 51.
  • the grill water inlet 51 of the blue grille 5 can be opened or closed by inserting or pulling out the shutter 84.
  • the gate valve 8 can also be sealingly connected to the liquid inlet 10 at the same time.
  • the gate valve 8 is connected to the liquid inlet 10 through a flange, a gasket or through a flexible joint.
  • the gate valve 8 also has an opening. Or cut off the effect of water.
  • the gate valve 8 may be sealed only to the liquid inlet 10 without being connected to the blue grid 5.
  • the prefabricated pump station unit and the water distribution unit of the invention are not only suitable for the field of sewage transportation, the field of rainwater transportation, the raw water transportation fields such as lake water, river water, surface water and groundwater, but also applicable to other fields requiring fluid transportation.

Abstract

一种预制泵站单元,包括预制的中空形状的泵站本体(1),连接于泵站本体(1)的进液口(10)和出液口(20),设置于泵站本体(1)内的井筒(2),泵站本体(1)的上端部的横截面的周长大于其下端部的横截面的周长。还提供了一种包括预制泵站单元的配水单元。

Description

预制泵站单元及配水单元 技术领域
本发明总体来说涉及一种用于输送液体的泵站,具体而言,涉及一种预制泵站单元及配水单元。
背景技术
随着城市建设的发展,市政雨水,污水的量越来越多,因此出现了各种各样的污水处理设备,泵站便是其中之一。
公开号为US 20080011372的美国专利申请公开了一种预制泵站单元,包括地板、固定于地板的围墙以及安装于围墙内的多个潜水泵。围墙上设有进液口和出液口。流体由进液口进入预制泵站单元,在潜水泵提供的动力作用下由出液口流出。由于暴雨等原因,流入预制泵站单元的流体量有时会非常巨大,流速也非常快,这时流体伴随着大量的能量,如果这些能量直接冲击潜水泵,特别是冲击潜水泵的吸液口,很容易形成对潜水泵不利的运行环境,例如:吸液口附近产生旋涡,或者空气被带入吸液口,从而产生气蚀或振动,造成潜水泵性能下降。针对此问题,预制泵站单元的围墙内邻近进液口设置了挡板装置,挡板装置底部设有多个流液口,多个流液口分别对应于多个潜水泵。由进液口流入围墙内的流体被挡板装置分成多个部分,每一部分经相应的流液口流到相应潜水泵的吸液口,再由潜水泵输送出去。
该美国专利申请中的技术方案较为复杂,虽然通过挡板装置能在一定程度上消耗流体动力,但是,流体在经过挡板装置的多个流液口后,流态变得非常不均匀,存在大量的紊流,因此,该美国专利申请在改善流体流态方面尚存在不足。
在所述背景技术部分公开的上述信息仅用于加强对本发明的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本发明的一个目的在于克服上述现有技术的不足,提供一种具有良好导流功能的预制泵站单元,使得进入潜水泵吸液口的流体流态均匀,为潜水泵创造良好的进水条件,提升潜水泵运行的稳定性。
本发明的又一目的在于提供一种能轻便,且方便运输的预制泵站单元。
本发明的又一目的在于提供一种占地面积小的预制泵站单元。
本发明的又一个目的在于提供一种可安装大流量轴流泵或混流泵的预制泵站单元。
本发明的又一个目的在于提供一种组装方便的预制泵站单元。
本发明的再一个目的在于提供一种安装有本发明预制泵站单元的配水单元。
为实现上述目的,本发明采用如下技术方案:
根据本发明的一个方面,本发明提供一种预制泵站单元,包括预制的中空形状的泵站本体、连接于所述泵站本体的进液口和出液口、设置于所述泵站本体内的井筒。其中,所述泵站本体的上端部的横截面的周长大于其下端部的横截面的周长。本发明的预制泵站单元中,泵站本体包括中空形状的泵站本体,并且泵站本体的上端部的横截面的周长大于其下端部的横截面的周长,也就是说,泵站本体上大下小,当流体由进液口流入泵站本体时,流体沿着泵站本体内壁逐渐向泵站本体中心方向聚拢,流体能量被消耗的同时,流体流态得到一定均化,能有效避免或减小因进液口流体流态不均匀而对潜水泵运行的影响,使得进入潜水泵吸液口的流体流态均匀,为潜水泵创造良好的进水条件,提升潜水泵运行的稳定性。同时,由于本发明的预制泵站单元为预制结构,能大量减少现场施工周期,并且轻便,方便运输,结构简单,成本低。
根据本发明的一实施方式,所述泵站本体包括第一筒部以及连接所述第一筒部下端部的渐缩部,所述渐缩部的横截面尺寸沿着由上至下的方向逐渐减小,所述进液口设置于所述第一筒部。
根据本发明的一实施方式,所述第一筒部和所述渐缩部的中心线重合。
根据本发明的一实施方式,所述第一筒部为圆筒,所述渐缩部为圆锥筒。
根据本发明的一实施方式,所述圆锥筒的锥角的范围为15°~50°。
根据本发明的一实施方式,所述进液口的底缘邻近所述渐缩部或者与渐缩部顶缘平齐。
根据本发明的一实施方式,所述预制泵站单元还包括第一格栅装置,所述第一格栅装置安装于第一筒部内下端部;或者安装于所述渐缩部的中部或上部;或者安装于所述进液口端部。
根据本发明的一实施方式,所述的预制泵站单元还包括设置于所述井筒内的潜水泵,所述潜水泵是轴流泵、混流泵或贯流泵。
根据本发明的一实施方式,所述预制泵站单元还包括泵座,所述泵座安装于所述泵站本体内并位于所述井筒下方;或者,所述泵座安装于所述井筒内,所述潜水泵安装于所述泵座上。
根据本发明的一实施方式,所述泵座包括底板、固定于所述底板中央位置的导流部以及固定于所述底板和导流部的至少两个分流部,所述至少两个分流部在所述导流部周向均匀分布。
根据本发明的一实施方式,所述泵座还包括固定于所述底板的至少两个支撑部,所述支撑部的高度高于所述导流部和分流部,所述至少两个支撑部顶部固定有法兰盘。
根据本发明的一实施方式,所述井筒与所述泵站本体同轴地设置于所述泵站本体内。
根据本发明的一实施方式,所述泵站本体还包括第二筒部,所述第二筒部的横截面尺寸小于所述第一筒部,所述第二筒部连接于所述渐缩部的下端部。
根据本发明的一实施方式,所述第一筒部、第二筒部均为圆筒,所述渐缩部为锥筒, 三者的中心线重合。
根据本发明的一实施方式,所述井筒与所述渐缩部和/或第二筒部之间设有至少一块固定板。
根据本发明的另一个方面,本发明提供一种配水单元,包括具有进液口的水箱。其中所述配水单元还包括至少一个预制泵站单元,每个所述预制泵站单元包括渐缩部、井筒、潜水泵和出液口,所述渐缩部固定于所述水箱的外面底部,所述渐缩部的横截面尺寸沿着由上至下的方向逐渐减小,所述井筒设置于所述渐缩部并向上延伸至的述水箱内,所述出液口连通于井筒,并伸出所述水箱,所述潜水泵设置于所述井筒。
根据本发明的一实施方式,所述预制泵站单元还包括连接于所述渐缩部的第二筒体。
根据本发明的一实施方式,所述水箱为预制水箱或土建结构;和/或所述水箱为横截面形状为矩形、圆形、椭圆形的罐体;和/或所述水箱横向设置。
根据本发明的一实施方式,所述泵站本体包括外筒和内筒,所述外筒包括外筒底和设于所述外筒底的外周壁;所述内筒包括内周壁,所述内筒的顶端开口,所述内筒的上端部穿设于所述外筒的外筒底并位于所述外筒内,所述内筒的其余部分位于所述外筒以外,部分所述内周壁、部分所述外周壁以及外筒底共同形成一环流空间,所述进液口设置于所述外周壁上。
根据本发明的一实施方式,所述内筒还包括内筒底,内筒底一体形成于所述内周壁底端部,或者密封固定于所述内周壁底端部。
根据本发明的一实施方式,所述外筒和内筒的中心线重合。
根据本发明的一实施方式,所述内筒和外筒均为圆筒形,且所述内筒的横截面尺寸小于外筒的横截面尺寸。
根据本发明的一实施方式,所述内筒为圆锥筒形,具有大直径端和小直径端,所述内筒的大直径端位于所述外筒内。
根据本发明的一实施方式,所述内筒的位于所述外筒内的部分呈锥筒形。
根据本发明的一实施方式,所述进液口的底缘不高于所述内周壁的顶缘。
根据本发明的一实施方式,所述进液口的底缘邻近所述外筒的外筒底或者与外筒底平齐。
根据本发明的一实施方式,所述内周壁的位于所述外筒内的部分设有连通所述内筒内部与所述环流空间的格栅孔。
根据本发明的一实施方式,所述格栅孔设置于邻近所述外筒底位置。
根据本发明的一实施方式,所述格栅孔避开所述进液口面对的内周壁部分而设置于内周壁的其他位置。
根据本发明的一实施方式,所述预制泵站单元还包括格栅装置,所述格栅装置安装于所述进液口端部;或者所述格栅装置安装于所述内筒的内周壁上端部。
根据本发明的一实施方式,所述内筒包括多个串接连接的子内筒,和/或所述外筒包 括多个串接连接的子外筒。
根据本发明的一实施方式,所述井筒与所述泵站本体同轴地设置于所述泵站本体内。
根据本发明的一实施方式,所述内筒的位于所述外筒以外的部分的高度H1与所述井筒的直径D的关系满足:H1=(2~5)D。
根据本发明的一实施方式,所述的预制泵站单元还包括设置于所述井筒内的潜水泵。
根据本发明的一实施方式,所述潜水泵是轴流泵或混流泵。
根据本发明的一实施方式,所述预制泵站单元还包括泵座,所述泵座安装于所述泵站本体内并位于所述井筒下方,所述潜水泵安装于所述泵座上。
根据本发明的一实施方式,所述泵座包括底板、固定于所述底板中央位置的导流部以及固定于所述底板和导流部的至少两个分流部,所述至少两个分流部在所述导流部周向均匀分布。
根据本发明的一实施方式,所述泵座还包括固定于所述底板的至少两个支撑部,所述支撑部的高度高于所述导流部和分流部,所述至少两个支撑部顶部固定有法兰盘。
根据本发明的另一个方面,一种配水单元,包括具有进液口的水箱,所述配水单元还包括至少一个预制泵站子单元,每个所述预制泵站子单元包括内筒、井筒和出液口,所述内筒固定于所述水箱底部,所述内筒的顶端部开口并伸入所述水箱内,所述井筒设置于所述内筒并向上延伸出所述内筒的顶端部开口,所述出液口连通于井筒,并伸出所述水箱。
根据本发明的一实施方式,所述的配水单元还包括设于所述井筒内的潜水泵。
根据本发明的一实施方式,所述水箱为预制水箱或土建结构;和/或所述水箱为横截面形状为矩形、圆形、椭圆形的罐体;和/或所述水箱横向设置。
根据本发明的一实施方式,所述井筒为分体式结构,其包括下筒部和连接于所述下筒部的上筒部,其中所述出液管连通于所述上筒部;所述预制泵站单元还包括沿圆周方向均匀设置的至少两块固定板,所述下筒部通过至少两块所述固定板固定于所述泵站本体上。由于井筒是由相互连接的下筒部和上筒部组成的分体式结构,首先由于单独的下筒部或者上筒部相比于整体的井筒重量大为减轻,搬运方便,安装操作方便、灵活,可以分别安装下筒部和上筒部,这样使得下筒体很容易与泵座对准,同时上筒部的出液管很容易对准泵站本体上的出液口,故本发明的预制泵站单元组装非常方便。另外,本发明中,通过至少两块固定板将下筒部固定于泵站本体,一方面固定比较牢固,另一方面,固定板将下筒部和泵站本体之间的环流空间分隔出若干流道,引导流沿着各流道流动,有利于消除紊流,均化流体流态,而且流体在固定板上的撞击也能消除大量的动能,为潜水泵吸液口提供均态的流体,有利于减轻潜水泵的震动和噪声。
根据本发明的一实施方式,所述上筒部可拆卸地连接于所述下筒部。当需要维修时,可以拆下上筒部,增大泵站本体内的作业空间;此外需要更换时,可以仅更换上筒部和下筒部其中之一,而另一个未损坏的仍可保留继续使用,有利于节约成本。
根据本发明的一实施方式,所述出液管与所述上筒部一体成型或者固定连接于所述上 筒部。
根据本发明的一实施方式,至少两块所述固定板的外侧固定于所述泵站本体,底端与所述泵站本体底端面平齐或者固定于所述泵站本体的底板上,所述下筒部固定于所述至少两块所述固定板的内侧。
根据本发明的一实施方式,所述泵座设置于所述下筒部下方,并固定于至少两块所述固定板的内侧。
根据本发明的一实施方式,在所述固定板与所述泵座之间的缝隙设有密封件,从而至少两块所述固定板将所述下筒部与所述泵站本体之间的空间分隔成至少两个相互隔绝的独立流道,所述泵座上对应于每一个所述独立流道设有过水孔。由于固定板与泵座之间的缝隙被密封件密封,当流体通过时,避免了其中的杂物如绳头、布带等在通过缝隙时缠绕到泵座上。
根据本发明的一实施方式,所述泵站本体还包括直径较大的第一筒部、连接于该第一筒部且直径逐渐变小的渐缩部以及连接于该渐缩部的直径较小的第二筒部,所述渐缩部固定有辅助支撑件。
根据本发明的一实施方式,所述出液口和所述出液管之间设有柔性接头。柔性接头不但使得上筒部的出液管和泵站本体上的出液口的连接操作非常方便;同时也降低了上筒部的出液管和泵站本体上的出液口的对准难度,即使二者位置存在少许偏差仍可实现连接。
通过以下参照附图对优选实施例的说明,本发明的上述以及其它目的、特征和优点将更加明显。
附图说明
图1是本发明预制泵站单元第一实施方式的立体结构示意图;
图2是图1的纵向剖视图;
图3是图1的俯视图;
图4示出图1的预制泵站单元中设置第一格栅装置结构的示意图;
图5是本发明预制泵站单元第一实施方式中的泵座的结构示意图;
图6是图5的俯视图;
图7是本发明预制泵站单元第二实施方式的局部剖视立体结构示意图;
图8是图7的左视图;
图9是图7的俯视图;
图10是本发明配水单元第一实施方式的立体结构示意图;
图11是图10所示的配水单元的主视结构示意图;
图12是本发明预制泵站单元第三实施方式的局部剖视结构示意图;
图13是图12的右视图;
图14是图12的俯视图;
图15示出图12的预制泵站单元的立体结构示意图,其中为了清楚显示内部结构,仅示出部分外筒和进液口结构;
图16是本发明预制泵站单元第四实施方式的局部剖视立体结构示意图;
图17是本发明预制泵站单元第五实施方式的局部剖视立体结构示意图;
图18是本发明配水单元第二实施方式的立体结构示意图,其中为了清楚显示内部结构,仅示出部分箱体结构;
图19是图18的局部剖视主视图;
图20是图18的俯视结构示意图;
图21是图18的右视结构示意图;
图22是本发明配水单元第三实施方式的立体结构示意图,其中为了清楚显示内部结构,仅示出部分箱体结构;
图23是图22的局部剖视主视图;
图24是本发明预制泵站单元中的水流在环流空间内的模拟流态示意图;
图25是本发明预制泵站单元中的水流在潜水泵入口处的模拟流态示意图;
图26A是本发明预制泵站单元第六实施方式的立体分解示意图;
图26B是图26A所示的预制泵站单元的组装立体图,其中未示出顶盖;
图26C是图26B中M部分放大图;
图26D是图26B中A-A剖视图;
图27A示出图26A所示的预制泵站单元中顶盖与泵站本体通过密封圈密封的分解示图;
图27B示出图26A所示的预制泵站单元中顶盖与泵站本体通过密封圈密封的组装图;
图27C示出图27A中P部分放大图;
图28A示出图26A所示的预制泵站单元中的闸阀的立体结构示意图;
图28B示出图28A所示闸阀的主视图;
图28C示出图28B的右视图;
图28D示出图28B的仰视图;
图28E示出图28B的俯视图;
图29A示出图26A所示的预制泵站单元中的提蓝格栅的立体结构示意图;
图29B示出图29A所示提蓝格栅的主视图;
图29C示出图29B的右视图;
图29D示出图29B的仰视图;
图29E示出图29B的俯视图。
其中,主要元件符号说明如下:1、泵站本体;10、进液口;11、第一筒部;12、渐缩部;13、第二筒部;2、井筒;20、出液口;3、潜水泵;23、固定板;5′、第一格栅装置;6、泵座;61、导流部;60、底板;62、分流部;63、支撑部;64、法兰盘;641、外 圈;642、内圈;100、水箱;200、进液口;300、渐缩部;400、井筒;500、第二筒体;14、外筒;140、环流空间;141、外筒底;142、外周壁;15、内筒;151、内筒底;152、内周壁;1521、格栅孔;23、固定板;5″、第二格栅装置;6、泵座;61、导流部;60、底板;62、分流部;63、支撑部;600、内筒;16、支撑杆;19、导轨;17、底板;18、独立流道;19、支撑杆;2、井筒;21、下筒部;22、上筒部;25、出液管;30、柔性接头;4、顶盖;40、人孔;41、结合部;5、提蓝格栅;51、格栅进水口;52、格栅出水口;6、泵座;65、过水孔;7、橡胶密封圈;71、环形本体;72、凸起部;8、闸阀;81、背板;82、面板;83、闸口;84、闸板;85、连接筒;86、侧墙。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
下面将详细描述本发明的具体实施例。应当注意,这里描述的实施例只用于举例说明,并不用于限制本发明。
本发明预制泵站单元的发明构思在于,通过对泵站本体形状的改进,例如使泵站本体的上端部的横截面的周长大于其下端部的横截面的周长,也就是使泵站本体上大下小,借此来改善潜水泵入口处的流体的流态,使潜水泵入口处的流体流态稳定、均匀,为潜水泵创造良好的进水条件,提升潜水泵运行的稳定性。
预制泵站单元实施方式1
参见图1、图2和图3,图1是本发明预制泵站单元一实施方式的立体结构示意图,图2是图1的纵向剖视图图3是图1的俯视图。如图1、图2和图3所示,本发明预制泵站单元一实施方式主要包括中空形状的泵站本体1、井筒2以及潜水泵3。泵站本体1上安装有进液口10,流体通过该进液口10进入泵站本体1。井筒2安装于泵站本体1内,优选地,井筒2与泵站本体1同轴地安装于泵站本体1内,井筒2上安装有出液口20。潜水泵3安装于井筒2内的下部,潜水泵3可以是轴流泵,但不限于此,其他类型的泵如离心泵、混流泵或贯流泵等也能应用于本发明。在潜水泵3的循环动力作用下,进入泵站本体1内的流体由出液口20排出泵站本体1。
在该预制泵站单元第一实施方式中,泵站本体1包括第一筒部11和渐缩部12。第一筒部11可以是一圆筒,但本发明不限于此,第一筒部11还可以是截面呈椭圆形或多边形的筒等,甚至为了适应特殊场合的需要,将第一筒部11设计成截面呈不规则封闭环形的筒状也是可行的。渐缩部12的横截面尺寸沿着由上至下的方向逐渐减小,渐缩部12例如 可以是一圆锥筒,直径较大的一端固定连接于第一筒部11的底端部,圆锥筒的锥角α为25°,当然该锥角α不限于25°,根据泵站本体1的大小、进液口10的流体流速等因素可以适当调整锥角α的大小,通常情况下锥角α的范围为15°~50°,优选范围为20°~40°。同样道理,渐缩部12并不限于圆锥筒,其也可是横截面呈其他任意形状的锥筒,只要是横截面尺寸由上端部至下端部方向依次变小的锥筒结构均可适用于本发明。
如图1和图3所示,在井筒2与渐缩部12之间沿圆周方向均匀设置有4块固定板23,固定板23的一侧固定于井筒2外壁,另一侧固定于渐缩部12,从而将井筒2与渐缩部12固定为一体。固定板23的数目不以4块为限制,可视泵站本体1的大小以及系统的整体设计适当增加或减少。固定板23一方面起到固定井筒2与渐缩部12的作用;另一方面,固定板23还具有均匀分配流体的功能,可以将第一筒部1中的流体较均匀地分流至渐缩部12中;此外,固定板23也能够防止由进液口10冲进第一筒部11内的流体在向下流的过程中产生涡旋,即也对均化流体流态作出一定贡献。
图3所示的示例中,泵站本体1由圆筒状的第一筒部11和圆锥筒状的渐缩部12组合而成。本领域的技术人员应该理解,本发明并不限于此,任何形状的第一筒部11与任意形状的渐缩部12可以两两自由组合经密封连接后所形成的泵站本体1均适用于本发明。图3所示的示例中,圆筒状的第一筒部11和圆锥筒状的渐缩部12的中心线重合,在其他实施方式中,二者的中心线也可不重合而具有一定的偏移量,这样可以适应某些特殊的空间有限的场合。
带有一定动能的流体由进液口10进入第一筒部11,撞击第一筒部11的内壁及筒内液体或者沿着第一筒部11的内壁流动而耗散一部分动能,同时,流体在沿着第一筒部11的内壁流动过程中,流态得到一定程度的调整而变得均匀;接下来流体沿着渐缩部12的内壁流下,由于渐缩部12的内壁朝向其中心方向倾斜并能整流、提升流速,从而能最大程度地均化流体流态,当流体到达渐缩部12底部,圆周方向各处的流体流态已非常均匀、稳定,从而为处于中心位置处的潜水泵3吸入口提供了平缓、均匀、稳定的流体。
在一实施方式中,进液口10在第一筒部11上的位置可以尽量靠近渐缩部12,例如,进液口10的底缘可以邻近渐缩部12或者与渐缩部12顶缘平齐,这样有助于减小流体下落至泵站本体1底部时的势能。
在一实施方式中,本发明预制泵站单元还包括第一格栅装置5′。如图1和图3所示,第一格栅装置5′可以安装于进液口10端部,特别是可拆卸地安装于进液口10端部,这样可以方便将第一格栅装置5′从第一筒部11顶端部开口提出来进行清理。如图4所示,第一格栅装置5′也可以安装渐缩部12的中部或者上部;此外,第一格栅装置5′也可以安装于第一筒部11内下端部或者安装于第一筒部11与渐缩部12的连接处,覆盖渐缩部12。这两种情况下,第一格栅装置5′可以是一水平的多孔盘或者是一网状盘。第一格栅装置5′的作用在于:一方面可以拦截流体中的大型污染物如树枝、编织物、线缆等流进入渐缩部12;另一方面,对于消散流体能量和均化流体流态也有一定积极作用。
如图1、图2所示,在一实施方式中,本发明预制泵站单元还包括泵座6,泵座6安装于泵站本体1内并位于井筒2下方,潜水泵3安装于泵座6上。需要说明的是,本发明并非必然包含一泵座6,在某些结构设计中,泵座6是可以省略的,例如在潜水泵3的重量比较轻时,可以将潜水泵3直接安装于渐缩部12或第一筒部11,此时可以省略泵座6,以节约成本。在该实施方式中,泵座6除了具有支撑潜水泵3的作用之外,还具有导流作用,以进一步均化流体流态。下面举例说明泵座6的详细结构。
参照图5和图6,图5是本发明预制泵站单元一实施方式中的泵座6的结构示意图;图6是图5的俯视图。如图5、图6所示,在一实施方式中,泵座6包括底板60、导流部61、至少两个分流部62和至少两个支撑部63。底板60可以呈圆形平板状,其固定于渐缩部12内,并位于井筒2的正下方;导流部61可以是一锥台,优选地,可以是圆锥台,具有一顶平面和底平面以及连接顶平面和底平面的圆锥面,导流部61的底平面固定于底板60,顶平面正对着潜水泵3的吸入口。分流部62例如可以是分流板,分流板的底边固定于底板60,一侧边固定于导流部61。图6中示出4块分流板,沿着导流部61的圆周方向均匀分布,当然分流部62的数目不限于4个,可以根据实际需要适当增加或减少。潜水泵3的叶轮在旋转过程中容易使流体产生单一方向旋转的旋涡,分流部62的作用在于阻断这些可能产生的旋涡,使流体的流态进一步均匀化。当流体沿着渐缩部12流下来后,可以沿着导流部61的导流部61的圆锥面向上流到顶平面,再顺势流向潜水泵3的吸入口。
支撑部63可以是一支撑立板,其固定于底板60。如图6所示,其示出4块支撑立板,这4块支撑立板分别与4块分流板一一对应,当然本发明中支撑立板的数目不限于4块,其与分流板之间的位置关系也不必然是一一对应,也可以相互错开布置。支撑立板的高度高于导流部61和分流板,4块支撑立板的顶部固定有法兰盘64,法兰盘64具有外圈641和内圈642。井筒2的底端部可以进一步固定连接于法兰盘64的外圈641上;潜水泵3的泵体可以固定连接于法兰盘64的内圈642,以防止泵体自旋转。
需要说明的是,当潜水泵3的重量较轻,可以直接安装于例如悬空挂在井筒2上,此时泵座6则可以成为一个仅具有导流功能和防止涡流产生功能的部件。
该第一实施方式中,泵站本体1包括第一筒部11和渐缩部12,且渐缩部12位于泵站本体1的下部,渐缩部12的横截面尺寸沿着由上至下的方向逐渐减小,当流体由进液口10流入第一筒部11时能量被消耗一部分,流态得到一定均化;流体进一步沿着渐缩部12的内壁向下流动过程中,流体流态得到充分的均化后到达潜水泵3的吸入口,能有效避免或减小因进液口10流体流态不均匀而对潜水泵3运行的影响,使得进入潜水泵3吸液口的流体流态均匀,为潜水泵3创造良好的进水条件,提升潜水泵3运行的稳定性。同时,由于预制泵站单元为预制结构,能大量减少现场施工周期,并且轻便,方便运输,结构简单,成本低。
预制泵站单元实施方式2
参见图7、图8和图9,图7是本发明预制泵站单元另一实施方式的立体结构示意图,图8是图7的纵向剖视图,图8是图7的俯视图。本发明预制泵站单元第二实施方式与图1、图2和图3所示的第一实施方式的主要区别在于:
泵站本体1包括由上至下依次密封连接的第一筒部11、渐缩部12和第二筒部13,其中第二筒部13的横截面尺寸小于第一筒部11。第一筒部11、第二筒部13可以均为圆筒,也可以各自是其他形状筒;渐缩部12可以为锥筒或其他形状筒。第一筒部11、渐缩部12和第二筒部13三者的中心线重合,也可以相互错开。
设置于泵站本体1与井筒2之间的固定装置,例如至少一块固定板23,可以单独固定于井筒2与渐缩部12之间,或者单独固定于井筒2与第二筒部13之间,或者同时固定于井筒2与渐缩部12、第二筒部13之间。
泵座6设置于第二筒部13的正下方。
该预制泵站单元第二实施方式的其他结构与第一实施方式基本相同,这里不再赘述。
配水单元1
参见图10和图11,图10是本发明配水单元第一实施方式的立体结构示意图。图11是图10所示的配水单元的主视结构示意图。如图10和图11所示,本发明配水单元一实施方式包括具有进液口200的水箱100和至少一个预制泵站单元。图10、11中示出3个预制泵站单元,本发明不限于此,预制泵站单元数目可根据实际情况适当增减。
水箱100可以是一大容积的罐体,罐体为横截面形状可以是矩形、圆形、椭圆形或者其他形状。水箱100可以是一预制水箱,也可以是现场建造的土建结构。水箱100横向设置,即安装完成的水箱100,其高度小于其长度。
预制泵站单元安装于水箱100的底面。每个预制泵站单元包括渐缩部300、井筒400、潜水泵和出液口(图未示);渐缩部300固定于水箱100的外面底部,渐缩部300的横截面尺寸沿着由上至下的方向逐渐减小,井筒400设置于渐缩部300并向上延伸至的述水箱100内,出液口连通于井筒400,并伸出水箱100;潜水泵设置于井筒400内。在一实施方式中,预制泵站单元还包括连接于渐缩部300的第二筒体500。
本发明配水单元中的预制泵站单元,可以看作是至少一个本发明前述的预制泵站单元共用一个大型的第一筒体并共用一个进液口而形成的,因此可借用本发明前述的预制泵站单元的结构,例如泵座、第一格栅装置等。
本发明配水单元,通过一个大容积水箱配合多个泵站单元共同工作,能快速、方便地实现均匀配水功能,解决了大流量配水需求;同时基于本发明泵站单元的特定结构,潜水泵吸入口处的流体流态均匀,从而本发明配水单元运行震动噪音小,使用寿命长,维护成本低。
预制泵站单元实施方式3
参见图12、图13、图14和图15,图12是本发明预制泵站单元第三实施方式的局部剖视结构示意图;图13和图14分别是图12的右视图和俯视图;图15示出图12的预制泵站单元的立体结构示意图,其中为了清楚显示内部结构,仅示出部分外筒和进液口结构。
如图12、图13和图14所示,本发明预制泵站单元第三实施方式主要包括泵站本体1和井筒2,进一步地,还可包括一潜水泵。
泵站本体1上安装有进液口10,流体通过该进液口10进入泵站本体1。井筒2安装于泵站本体1内。优选地,井筒2与泵站本体1同轴地安装于泵站本体1内,井筒2上安装有出液口20。潜水泵安装于井筒2内的下部,潜水泵可以是轴流泵,但不限于此,其他类型的泵如离心泵或混流泵等也能应用于本发明。在潜水泵的循环动力作用下,进入泵站本体1内的流体由出液口20排出泵站本体1。
在该预制泵站单元第三实施方式中,泵站本体1包括外筒14和内筒15。
外筒14包括外筒底141和设于外筒底141的外周壁142,外筒底141和外周壁142可以一体成型,也可以是各自独立的结构经焊接等方式固定连接在一起。外周壁142可以是一圆筒形,但本发明不限于此,外周壁142还可以是截面呈椭圆形或多边形的筒等,甚至为了适应特殊场合的需要,将外周壁142设计成截面呈不规则封闭环形的筒状也是可行的。
内筒15包括内筒底151和设于内筒底151的内周壁152,内筒底151和内周壁152可以一体成型,也可以是各自独立的结构经焊接等方式固定连接在一起。同样,内周壁152也可以呈一圆筒形或非圆筒形。
内筒15的顶端开口,内筒15的上端部穿设于外筒14的外筒底141并位于外筒14内,内筒15的其余部分位于外筒14以外。从而一部分内周壁152、一部分外周壁142以及外筒底141共同形成一环流空间140,进液口10设置于外周壁142上。
在其他一些实施方式中,内筒15也可以只包括一内周壁152,而不包括内筒底151。这种情况下,在现场安装本发明预制泵站单元时,可以将内周壁152的底端部密封固定于一基底或底板等结构,借助基底或底板防止流体从内筒15底部泄漏即可。
如图12和图14所示,在井筒2与内筒15之间沿圆周方向均匀设置有4块固定板23,固定板23的一侧固定于井筒2外壁,另一侧固定于内筒15,从而将井筒2与内筒15固定为一体。固定板23的数目不以4块为限制,可视泵站本体1的大小以及预制泵站单元的整体设计适当增加或减少。固定板23一方面起到固定井筒2与内筒15的作用;另一方面,固定板23还具有均匀分配流体的功能,可以将外筒141中的流体较均匀地分流至内筒15中;此外,固定板23也能够防止由进液口10冲进外筒14内的流体在向下流的过程中产生涡旋,即也对均化流体流态作出一定贡献。
图14所示的示例中,泵站本体1由圆筒状的外筒14和圆筒状的内筒15组合而成。本领域的技术人员应该理解,本发明并不限于此,任何形状的外筒14与任意形状的内筒15可以两两自由组合经密封连接后所形成的泵站本体1均适用于本发明。图14所示的示 例中,圆筒状的外筒14和圆锥筒状的内筒15的中心线重合,在其他实施方式中,二者的中心线也可不重合而具有一定的偏移量,这样可以适应某些特殊的空间有限的场合。
带有一定动能的流体由进液口10进入外筒14与内筒15之间的环流空间140过程中,撞击内筒15的内周壁152而耗散一部分动能,同时,流态得到一定程度的调整而变得均匀;接下来流体由内周壁152顶端的开口溢流进入内筒15过程中,流体动能进一步被消耗,且流体流态进一步得到均化,当流体到达内筒15底部时流体流态已非常均匀、稳定,从而为处于中心位置处的潜水泵吸入口提供了平缓、均匀、稳定的流体。
在一实施方式中,进液口10在外筒14上的位置可以尽量靠近外筒底141,例如,进液口10的底缘可以邻近外筒底141或者与外筒底141平齐,这样有助于流体在进入环流空间140撞击到内筒15的内周壁152时而耗散能量。
在一实施方式中,本发明预制泵站单元还包括第二格栅装置5″。如图12和图14所示,第二格栅装置5″可以安装于进液口10端部,特别是可拆卸地安装于进液口10端部,这样可以方便将第二格栅装置5″从外筒14顶端部开口提出来进行清理。第二格栅装置5″可以安装于内筒15顶端部开口处的多孔盘或者是一网状盘。第二格栅装置5″的作用在于:一方面可以拦截流体中的大型污染物如树枝、编织物、线缆等流进入内筒15;另一方面,对于消散流体能量和均化流体流态也有一定积极作用。
如图12和图15所示,第二格栅装置5″也可以由代替,详细来说,在位于外筒14内的内筒15的内周壁152上形成有若干格栅孔1521,这些格栅孔1521连通内筒15内部与环流空间140。在一实施方式中,在沿着内周壁152的上下方向上,格栅孔1521的位置在邻近外筒底141位置,这样可以避免环流空间140内积水;在另一实施方式中,在沿着内周壁152的圆周方向上,格栅孔1521避开进液口10面对的内周壁152部分而设置于内周壁152的其他位置,也就是说,在内周壁152上面对进液口10的部分上不设置格栅孔1521,这样在流体进入环流空间140过程中可以增强内周壁152对流体的撞击能力而消耗更多的能量。
在第三实施方式中,本发明预制泵站单元还包括泵座6,泵座6的结构与前述第一实施方式相同,这里不再赘述。
本发明的预制泵站单元第三实施方式中,泵站本体1包括外筒14和内筒15,内筒15伸入外筒14内,并在二者之间形成环流空间140。流体由进液口10进入预制泵站单元时,并非直接冲入到内筒15,而是进入环流空间140,在此过程中,首先流体撞击内筒15侧壁而消耗掉一部分能量,同时流体流态得到一定均化;然后流体再由环流空间140溢流至内筒15,在此过程中流体流态进一步得到均化,因此,本发明的预制泵站单元能有效避免或减小因进液口10流体流态不均匀而对潜水泵3运行的影响,使得进入潜水泵3的吸液口的流体流态均匀,为潜水泵创造良好的进水条件,提升潜水泵运行的稳定性。
预制泵站单元为预制结构,能大量减少现场施工周期,并且轻便,方便运输,结构简单,成本低。
预制泵站单元可安装大流量轴流泵或混流泵。
预制泵站单元中,外筒14与内筒15在空间上有部分重叠,从而形成环流空间140,流体经该环流空间140进入内筒15过程中,流体动能被充分消耗,流体流态得到充分的均化。因此,使用本发明的预制泵站单元无需像现有技术那样设置多个储水池来均化流体,消除能量,故能有效节省占地面积,能灵活应用于更多的场所。
预制泵站单元实施方式4
参见图16,图16是本发明预制泵站单元第四实施方式的立体结构示意图。参见图16,本发明预制泵站单元第四实施方式与图12至图15所示的第三实施方式的主要区别在于:
内筒15整体呈锥筒形,具有直径较大的大端和直径较小的小端,其中直径较大的一端位于外筒14内。当流体沿着锥筒形内筒15内壁向下流动时,流体的流态会进一步得到均化。
该预制泵站单元第四实施方式的其他结构与第三实施方式基本相同,这里不再赘述。
预制泵站单元实施方式5
参见图17,图17是本发明预制泵站单元第五实施方式的立体结构示意图。参见图17,本发明预制泵站单元第四实施方式与图12至图15所示的第三实施方式的主要区别在于:
内筒15的位于外筒14外的部分呈圆筒形,内筒15的位于外筒14内的部分呈锥筒形,具有直径较大的大端和直径较小的小端,其中直径较大的一端位于外筒14内。内筒15的锥筒形部分会进一步均化流体的流态。
该预制泵站单元第五实施方式的其他结构与第三实施方式基本相同,这里不再赘述。
配水单元实施方式2
参见图18至图21,图18是本发明配水单元第二实施方式的立体结构示意图,其中为了清楚显示内部结构,仅示出部分箱体结构;图19、图20、图21分别是图18所示的配水单元的主视、俯视和右视结构示意图。如图18至图21所示,本发明配水单元第二实施方式包括具有进液口200的水箱100和至少一个预制泵站子单元。图中示出3个预制泵站子单元,本发明不限于此,预制泵站子单元数目可根据实际情况适当增减。
水箱100可以是一大容积的罐体,罐体为横截面形状可以是矩形、圆形、椭圆形或者其他形状。水箱100可以是一预制水箱,也可以是现场建造的土建结构。水箱100横向设置,即安装完成的水箱100,其高度小于其长度。
预制泵站子单元安装于水箱100的底部。每个预制泵站子单元包括600内筒600、井筒400、潜水泵和出液口(图未示);600内筒600固定于水箱100的底部并伸入到内水箱100,井筒400设置于600内筒600内并向上延伸出600内筒600的顶端部开口,出液口连通于井筒400,并伸出水箱100;潜水泵设置于井筒400内。在其他实施方式中,配 水单元也可以不包括潜水泵,而在现场安装时另行组配潜水泵。
配水单元实施方式3
参见图22和图23,图22是本发明配水单元第三实施方式的立体结构示意图,图23是图22的局部剖视主视图。本发明配水单元第三实施方式与第二实施方式的主要区别在于:水箱100为圆筒形。
该配水单元第三实施方式的其他结构与第二实施方式基本相同,这里不再赘述。
本发明的配水单元,可以看作是至少一个本发明前述的预制泵站单元共用一个大型的外筒(水箱)并共用一个进液口而形成的,因此本发明的配水单元可借用本发明前述的预制泵站单元的结构,例如泵座、格栅装置等。
本发明配水单元,通过一个大容积水箱配合多个预制泵站子单元共同工作,能快速、方便地实现均匀配水功能,解决了大流量配水需求;同时基于本发明预制泵站单元的特定结构,潜水泵吸入口处的流体流态均匀,从而本发明配水单元运行震动噪音小,使用寿命长,维护成本低。
本发明预制泵站单元及配水单元不仅仅适用于污水输送领域,雨水输送领域,湖水、河水、地表水、地下水等原水输送领域,还可适用于其它需要输送流体的领域。
根据本发明,无论是预制泵站单元还是配水单元,水流的流态均会得到明显改善。以预制泵站为例,如图25所示,并配合图12,图24是本发明预制泵站单元中的水流在环流空间内的模拟流态示意图,水流由进液口10进入环流空间140,然后部分水流通过第二格栅装置5″流入内筒15,第二格栅装置5″可以在潜水泵3工作时均匀化进水流速,改善进液口入口条件;另有部分水流由内筒15顶端部溢流进入内筒15,则内筒15耗散了入流的能量,而且在高水位的情况下水会自由地溢流到内筒15中,避免在耗散能量的同时影响潜水泵3的抽水量,从而有利于减小泵坑占地面积,并使高流量低扬程的潜水泵正常运行。
如图25所示,并配合图12,图25是本发明预制泵站单元中的水流在潜水泵入口处的模拟流态示意图。由图25可见,本发明的预制泵站单元中,潜水泵3吸入口附近流线相对比较均匀,未见明显水流漩涡。
预制泵站单元实施方式6
本发明预制泵站单元第六实施方式中,关于方位“上”、“下”的定义:本发明预制泵站单元在正常工作时,远离地面的方向为“上”,与之相反的靠近地面的方向为“下”;具体到预制泵站单元中,参见图26A和图26B,泵站本体1的设置顶盖4的一面为上面,设置泵座6的一面为下面。其他实施方式中关于方位“上”、“下”可作参照。
参见图26A和图26B,图26A是本发明预制泵站单元第六实施方式的立体分解示意图;图26B是图26A所示的预制泵站单元的组装立体图。如图26A和图26B所示,本发明预制泵站单元包括预制的泵站本体1、井筒2、进液口10、出液口20、顶盖4、泵座6、 潜水泵3,潜水泵3可以是轴流泵、混流泵或贯流泵。
在该第六实施方式中,泵站本体1包括第一筒部11、第二筒部13和渐缩部12。其中渐缩部12连接于第一筒部11和第二筒部13之间。第一筒部11的直径大于第二筒部13。进一步地,渐缩部12外面固定有辅助支撑件24,例如支撑板、加强筋等。
在第一筒部11的靠近渐缩部12位置设有进液口10,该进液口10可以与第一筒部11一体成型,也可以是经焊接等方式固定于第一筒部11。在第二筒部13上端部,即靠近顶盖4位置设有出液口20,当然出液口20并非必然设于第二筒部13上端部,甚至并非必然设于第二筒部13上,例如在第二筒部13的长度相对较小,而第一筒部11的长度相对较大情况下,出液口20也可以设于第一筒部11上。出液口20可以与第二筒部13或第一筒部11一体成型,也可以是通过焊接等方式固定于其上。
本发明中泵站本体1并不限于上述具体结构,例如直筒形泵站体、阶梯形泵站本体等其他结构均可适用于本发明。
如图26A所示,井筒2与所述泵站本体1同轴地设置于泵站本体1内,井筒2为分体式结构,包括相互连接的下筒部21和上筒部22,在一实施方式中,下筒部21和上筒部22为通过螺栓连接等可拆卸地连接在一起。上筒部22上连通有出液管25,出液管25可以与上筒部22一体成型或者固定于上筒部22。在其他一些实施方式中,出液管25也可以连通于下筒部21。出液管25与出液口20之间通过柔性接头30连接。
参见图26A和图27A、图27B和图27C,图27A示出图26A所示的预制泵站单元中顶盖4与泵站本体1通过密封圈密封的分解示图;图27B示出图26A所示的预制泵站单元中顶盖4与泵站本体1通过密封圈密封的组装图;图27C示出图27A中P部分放大图。
如图26A所示,顶盖4盖设于泵站本体1顶端开口。顶盖4上可以设置一人孔40,以方便操作人员或维修人员通过人孔40进入泵站本体1,一些实施方式中,泵站本体1内设有供人员进出的爬梯(图未示)或方便人员作业的操作平台(图未示)。
如图27A、图27B和图27C所示,顶盖4可以是圆盘形,在顶盖4圆周边沿弯折形成有结合部41,在结合部41与泵站本体1侧壁之间夹设有密封圈,密封圈用于密封顶盖4与泵站本体1。密封圈可以是一橡胶密封圈7,优选地,该橡胶密封圈7包括环形本体71,在环形本体71的外侧面上设有环形凸起部72,环形凸起部72可以增强密封性能,进一步优选地,橡胶密封圈7的凸起部72呈倒齿形。
顶盖4的结合部41、泵站本体1侧壁及橡胶密封圈7可以通过螺栓(图中未示出)进一步固定。
如图26A所示,在一实施方式中,预制泵站单元还包括沿圆周方向均匀设置的4块固定板23,下筒部21通过4块固定板23固定于泵站本体1上。详细来说,4块固定板23的外侧固定于泵站本体1的侧壁上,4块固定板23的固定于泵站本体1的底板17(在预制泵站单元具有底板17情况下)上,在预制泵站单元不设置底板17情况下,4块固定板23的底端可以与泵站本体1底端面平齐,或者进一步固定于用于安装预制泵站单元的一基 板上;下筒部21固定于4固定板23的内侧,这样,下筒部21就通过4块固定板23固定于泵站本体1上。固定板23的数量,不限于4块,可以根据预制泵站单元的直径大小适当增减。
如图26A、图26B、图26C和图26D所示,泵座6设置于泵站本体1内,并位于井筒2下方,在其他一些实施方式中,泵座6也可以设置于井筒2内。在预制泵站单元设置了固定板23的情况下,泵座6可以进一步固定于固定板23的内侧。进一步地,在固定板23与泵座6之间的缝隙设有密封件,例如密封条或者玻璃钢纤维等材料制成的隔板等,从而块固定板23将下筒部21与泵站本体1之间的空间分隔成个相互隔绝的独立流道18(见图26D)。泵座6上对应于每一个独立流道18设有过水孔65(见图26A),以使得流体能通过该过水孔65进入泵座6内而到达潜水泵3的吸液口。潜水泵3可以安装于泵座6上,潜水泵3可以是轴流泵或混流泵。
参见图29A至图29E,图29A至图29E示出预制泵站单元中的提蓝格栅5的各个示意图。如图29A至图29E所示,本发明预制泵站单元一实施方式还包括提蓝格栅5和安装于提蓝格栅5的闸阀8。提蓝格栅5可上下滑动地安装于泵站本体1内,举例来说,泵站本体1内上部固定有支撑杆16(见图29D、图29E),支撑杆16上固定有两根平行的导轨19,提蓝格栅5可滑动地安装于所述导轨19上。提蓝格栅5则可沿导轨19滑动,上方可到达预制泵站单元的顶部开口,下方可到达格栅支撑座(图未示),以方便处理提蓝格栅5收集的污物。
提蓝格栅5呈一箱体形状或呈一蓝子形状,其具有尺寸较大的格栅进水口51和若干尺寸较小的格栅出水口52。流体由格栅进水口51进入再由若干格栅出水口52流出的过程中,流体中尺寸较大的杂物如石头、枝条等被拦截在提蓝格栅5。
参见图28A至图28E,图28A至图28E示出图26A所示的预制泵站单元中的闸阀8的各个示意图。如图28A至图28E所示,闸阀8包括背板81、平行背板81的面板82、侧墙86以及闸板84。背板81和面板82的中部开设有闸口83,侧墙86连接背板81和面板82的左右两侧以及底侧,背板81和面板82的顶侧之间形成有开口,以供闸板84从该开口插入背板81和面板82之间挡住闸口83,进一步地,为了方便闸板84的插入和拔出,闸板84底端部两侧具有导角。
在该实施方式中,闸阀8还包括围绕闸口83设置的连接筒85,连接筒85的一端固定于面板82,另一端固定于提蓝格栅5,闸口83与格栅进水口51相对应,通过插入或拔出闸板84能打开或关闭提蓝格栅5的格栅进水口51。
在另外一些实施方式中,闸阀8还可以同时密封连接于进液口10,例如闸阀8通过法兰、密封垫或者通过柔性接头连接于进液口10,该种情况下,闸阀8还具有打开或切断进水的作用。此外,闸阀8也可以只密封连接于进液口10,而不连接提蓝格栅5。
本发明预制泵站单元及配水单元不仅仅适用于污水输送领域,雨水输送领域,湖水、河水、地表水、地下水等原水输送领域,还可适用于其它需要输送流体的领域。
以上实施方式中可能使用相对性的用语,例如“上”或“下”,以描述图标的一个组件对于另一组件的相对关系。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“下”的组件将会成为在“上”的组件。用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等。术语“包含”、“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的组成部分之外还可存在另外的组成部分等。此外,权利要求书中的术语“第一”、“第二”等仅作为标记使用,不是对其对象的数字限制。
应可理解的是,本发明不将其应用限制到本文提出的部件的详细结构和布置方式。本发明能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本发明的范围内。应可理解的是,本文公开和限定的本发明延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本发明的多个可替代方面。本文所述的实施方式说明了已知用于实现本发明的最佳方式,并且将使本领域技术人员能够利用本发明。

Claims (39)

  1. 一种预制泵站单元,包括预制的中空形状的泵站本体(1)、连接于所述泵站本体(1)的进液口(10)和出液口(20)、设置于所述泵站本体(1)内的井筒(2),其特征在于,所述泵站本体(1)的上端部的横截面的周长大于其下端部的横截面的周长。
  2. 如权利要求1所述的预制泵站单元,其特征在于,所述泵站本体(1)包括第一筒部(11)以及连接所述第一筒部(11)下端部的渐缩部(12),所述渐缩部(12)的横截面尺寸沿着由上至下的方向逐渐减小,所述进液口(10)设置于所述第一筒部(11)。
  3. 如权利要求2所述的预制泵站单元,其特征在于,所述第一筒部(11)和所述渐缩部(12)的中心线重合;所述第一筒部(11)为圆筒,所述渐缩部(12)为圆锥筒;所述圆锥筒的锥角(α)的范围为15°~50°。
  4. 如权利要求2所述的预制泵站单元,其特征在于,所述进液口(10)的底缘邻近所述渐缩部(12)或者与渐缩部(12)顶缘平齐。
  5. 如权利要求2所述的预制泵站单元,其特征在于,所述预制泵站单元还包括第一格栅装置(5′),所述第一格栅装置(5′)安装于第一筒部(11)内;或者安装于所述进液口(10)端部。
  6. 如权利要求2所述的预制泵站单元,其特征在于,所述井筒(2)与所述泵站本体(1)同轴地设置于所述泵站本体(1)内。
  7. 如权利要求2-6任一项所述的预制泵站单元,其特征在于,所述泵站本体(1)还包括第二筒部(13),所述第二筒部(13)的横截面尺寸小于所述第一筒部(11),所述第二筒部(13)连接于所述渐缩部(12)的下端部。
  8. 如权利要求7所述的预制泵站单元,其特征在于,所述第一筒部(11)、第二筒部(13)均为圆筒,所述渐缩部(12)为锥筒,三者的中心线重合。
  9. 如权利要求7所述的预制泵站单元,其特征在于,所述井筒(2)与所述渐缩部(12)和/或第二筒部(13)之间设有至少一块固定板(23)。
  10. 如权利要求1所述的预制泵站单元,其特征在于,所述泵站本体(1)包括外筒(14)和内筒(15),所述外筒(14)包括外筒底(141)和设于所述外筒底(141)的外周壁(142);所述内筒(15)包括内周壁(152),所述内筒(15)的顶端开口,所述内筒(15)的上端部穿设于所述外筒(14)的外筒底(141)并位于所述外筒(14)内,所述内筒(15)的其余部分位于所述外筒(14)以外,部分所述内周壁(152)、部分所述外周壁(142)以及外筒底(141)共同形成一环流空间(140),所述进液口(10)设置于所述外周壁(142)上。
  11. 如权利要求10所述的预制泵站单元,其特征在于,所述内筒(15)还包括:
    内筒底(151),其一体形成于所述内周壁(152)底端部,或者密封固定于所述内周壁(152)底端部。
  12. 如权利要求10所述的预制泵站单元,其特征在于,所述外筒(14)和内筒(15)的中心线重合。
  13. 如权利要求10所述的预制泵站单元,其特征在于,所述内筒(15)和外筒(14)均为圆筒形,且所述内筒(15)的横截面尺寸小于外筒(14)的横截面尺寸。
  14. 如权利要求10所述的预制泵站单元,其特征在于,所述内筒(15)为圆锥筒形,具有大直径端和小直径端,所述内筒(15)的大直径端位于所述外筒(14)内。
  15. 如权利要求10所述的预制泵站单元,其特征在于,所述内筒(15)的位于所述外筒(14)内的部分呈锥筒形。
  16. 如权利要求10所述的预制泵站单元,其特征在于,所述进液口(10)的底缘不高于所述内周壁(152)的顶缘。
  17. 如权利要求10所述的预制泵站单元,其特征在于,所述进液口(10)的底缘邻近所述外筒(14)的外筒底(141)或者与外筒底(141)平齐。
  18. 如权利要求10所述的预制泵站单元,其特征在于,所述内周壁(152)的位于所述外筒(14)内的部分设有连通所述内筒(15)内部与所述环流空间(140)的格栅孔(1521)。
  19. 如权利要求10所述的预制泵站单元,其特征在于,所述预制泵站单元还包括第二格栅装置(5″),所述第二格栅装置(5″)安装于所述进液口(10)端部;或者所述第二格栅装置(5″)安装于所述内筒(12)的内周壁(152)上端部。
  20. 如权利要求10所述的预制泵站单元,其特征在于,所述内筒(15)的位于所述外筒(14)以外的部分的高度H1与所述井筒(2)的直径D的关系满足:H1=(2~5)D。
  21. 如权利要求2-20任一项所述的预制泵站单元,其特征在于,所述的预制泵站单元还包括潜水泵(3),所述潜水泵(3)设置于所述井筒(2)内或者设置于所述泵站本体(1)内并位于所述井筒(2)的下方,所述潜水泵(3)是轴流泵、混流泵或贯流泵。
  22. 如权利要求21所述的预制泵站单元,其特征在于,所述预制泵站单元还包括泵座(6),所述泵座(6)安装于所述泵站本体(1)内并位于所述井筒(2)下方;或者,所述泵座(6)安装于所述井筒(2)内,所述潜水泵(3)安装于所述泵座(6)上。
  23. 如权利要求22所述的预制泵站单元,其特征在于,所述泵座(6)包括底板(60)、 固定于所述底板(60)中央位置的导流部(61)以及固定于所述底板(60)和导流部(61)的至少两个分流部(62),所述至少两个分流部(62)在所述导流部(61)周向均匀分布。
  24. 如权利要求23所述的预制泵站单元,其特征在于,所述泵座(6)还包括固定于所述底板(60)的至少两个支撑部(63),所述支撑部(63)的高度高于所述导流部(61)和分流部(62),所述至少两个支撑部(63)顶部固定有法兰盘(64)。
  25. 如权利要求1所述的预制泵站单元单元,其特征在于,所述井筒(2)和所述出液口(20)之间连通有出液管(25),所述井筒(2)为分体式结构,其包括下筒部(21)和连接于所述下筒部(21)的上筒部(22),其中所述出液管(25)连通于所述上筒部(22);所述预制泵站单元还包括沿圆周方向均匀设置的至少两块固定板(23),所述下筒部(21)通过至少两块所述固定板(23)固定于所述泵站本体(1)上。
  26. 如权利要求25所述的预制泵站单元,其特征在于,所述上筒部(22)可拆卸地连接于所述下筒部(21)。
  27. 如权利要求25所述的预制泵站单元,其特征在于,所述泵站还包括设置于所述井筒(2)下方或所述井筒(2)内的泵座(6)。
  28. 如权利要求25所述的预制泵站单元,其特征在于,至少两块所述固定板(23)的外侧固定于所述泵站本体(1),底端与所述泵站本体(1)底端面平齐或者固定于所述泵站本体(1)的底板(17)上,所述下筒部(21)固定于所述至少两块所述固定板(23)的内侧。
  29. 如权利要求27所述的预制泵站单元,其特征在于,所述泵座(6)设置于所述下筒部(21)下方,并固定于至少两块所述固定板(23)的内侧。
  30. 如权利要求29所述的预制泵站单元,其特征在于,在所述固定板(23)与所述泵座(6)之间的缝隙设有密封件,从而至少两块所述固定板(23)将所述下筒部(21)与所述泵站本体(1)之间的空间分隔成至少两个相互隔绝的独立流道(18),所述泵座(6)上对应于每一个所述独立流道(18)设有过水孔(65)。
  31. 如权利要求25所述的预制泵站单元,其特征在于,所述泵站本体(1)还包括直径较大的第一筒部(11)、连接于该第一筒部(11)且直径逐渐变小的渐缩部(12)以及连接于该渐缩部(12)的直径较小的第二筒部(13),所述渐缩部(12)固定有辅助支撑件(24)。
  32. 如权利要求27、29或30所述的预制泵站单元,其特征在于,所述预制泵站单元还包括安装于所述泵座(6)的潜水泵(3)。
  33. 一种配水单元,包括具有进液口(200)的水箱(100),其特征在于,所述配水单元还包括至少一个预制泵站单元,每个所述预制泵站单元包括渐缩部(300)、井筒(400)和出 液口,所述渐缩部(300)固定于所述水箱(100)的外面底部,所述渐缩部(300)的横截面尺寸沿着由上至下的方向逐渐减小,所述井筒(400)设置于所述渐缩部(300)并向上延伸至的述水箱(100)内,所述出液口连通于井筒(400),并伸出所述水箱(100)。
  34. 如权利要求33所述的配水单元,其特征在于,所述预制泵站单元还包括连接于所述渐缩部(300)的第二筒体(500)。
  35. 如权利要求33所述的配水单元,其特征在于,所述的配水单元还包括设于所述井筒(400)内的潜水泵。
  36. 如权利要求33所述的配水单元,其特征在于,所述水箱(100)为预制水箱或土建结构;和/或所述水箱(100)为横截面形状为矩形、圆形、椭圆形的罐体;和/或所述水箱(100)横向设置。
  37. 一种配水单元,包括具有进液口(200)的水箱(100),其特征在于,所述配水单元还包括至少一个预制泵站子单元,每个所述预制泵站子单元包括内筒(600)、井筒(400)和出液口,所述内筒(600)固定于所述水箱(100)底部,所述内筒(600)的顶端部开口并伸入所述水箱(100)内,所述井筒(400)设置于所述内筒(600)并向上延伸出所述内筒(600)的顶端部开口,所述出液口连通于井筒(400),并伸出所述水箱(100)。
  38. 如权利要求37所述的配水单元,其特征在于,所述的配水单元还包括设于所述井筒(400)内的潜水泵。
  39. 如权利要求37或38所述的配水单元,其特征在于,所述水箱(100)为预制水箱或土建结构;和/或所述水箱(100)为横截面形状为矩形、圆形、椭圆形的罐体;和/或所述水箱(100)横向设置。
PCT/CN2016/113472 2015-12-31 2016-12-30 预制泵站单元及配水单元 WO2017114486A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187022142A KR102061685B1 (ko) 2015-12-31 2016-12-30 조립식 펌프 스테이션 유닛 및 물 분배 유닛
EP16881275.8A EP3404154B1 (en) 2015-12-31 2016-12-30 Prefabricated pump station unit

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201511032408.8 2015-12-31
CN201521140558.6 2015-12-31
CN201511032408.8A CN106930398B (zh) 2015-12-31 2015-12-31 预制泵站单元及配水单元
CN201521140558.6U CN205475666U (zh) 2015-12-31 2015-12-31 预制泵站单元及配水单元
CN201620486698.7U CN205742511U (zh) 2016-05-25 2016-05-25 预制泵站单元及配水单元
CN201620486698.7 2016-05-25
CN201620486697.2 2016-05-25
CN201620486697.2U CN205742510U (zh) 2016-05-25 2016-05-25 预制泵站单元及配水单元
CN201610353914.5 2016-05-25
CN201610353914.5A CN107435371B (zh) 2016-05-25 2016-05-25 预制泵站单元及配水单元

Publications (1)

Publication Number Publication Date
WO2017114486A1 true WO2017114486A1 (zh) 2017-07-06

Family

ID=59224550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/113472 WO2017114486A1 (zh) 2015-12-31 2016-12-30 预制泵站单元及配水单元

Country Status (3)

Country Link
EP (1) EP3404154B1 (zh)
KR (1) KR102061685B1 (zh)
WO (1) WO2017114486A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372081A (zh) * 2018-12-04 2019-02-22 中冶京诚工程技术有限公司 一种分布式污水预处理系统
CN111877520A (zh) * 2019-07-04 2020-11-03 山东良成环保科技股份有限公司 一种应用于预制泵站的格栅装置的使用方法
CN114031223A (zh) * 2021-12-16 2022-02-11 徐思杰 一种市政直饮水系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220033831A (ko) 2020-09-10 2022-03-17 코웨이 주식회사 냉수 생성 장치 및 이를 포함하는 정수기
CN113638483B (zh) * 2021-09-04 2022-11-29 浙江艮威水利建设有限公司 一种排水泵站及其施工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640510A1 (de) * 2004-09-24 2006-03-29 Grundfos a/s Brunnen
US20080011372A1 (en) * 2004-09-28 2008-01-17 Zbigniew Czarnota Pump Station, and Device to be Used in Same
CN201943392U (zh) * 2011-01-17 2011-08-24 苏州市建筑设计研究院有限责任公司 组合式排水泵站泵房
CN203498998U (zh) * 2013-07-04 2014-03-26 格兰富控股联合股份公司 预制泵站
CN204662649U (zh) * 2015-05-26 2015-09-23 四川长河环保工程有限公司 一种一体化智能泵站
CN205475666U (zh) * 2015-12-31 2016-08-17 格兰富控股联合股份公司 预制泵站单元及配水单元
CN205742511U (zh) * 2016-05-25 2016-11-30 格兰富控股联合股份公司 预制泵站单元及配水单元
CN205742510U (zh) * 2016-05-25 2016-11-30 格兰富控股联合股份公司 预制泵站单元及配水单元

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3869573B2 (ja) * 1998-05-06 2007-01-17 積水化学工業株式会社 真空式下水システム
KR101573017B1 (ko) * 2015-06-18 2015-12-01 이은희 상수 가압 펌프유닛

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640510A1 (de) * 2004-09-24 2006-03-29 Grundfos a/s Brunnen
US20080011372A1 (en) * 2004-09-28 2008-01-17 Zbigniew Czarnota Pump Station, and Device to be Used in Same
CN201943392U (zh) * 2011-01-17 2011-08-24 苏州市建筑设计研究院有限责任公司 组合式排水泵站泵房
CN203498998U (zh) * 2013-07-04 2014-03-26 格兰富控股联合股份公司 预制泵站
CN204662649U (zh) * 2015-05-26 2015-09-23 四川长河环保工程有限公司 一种一体化智能泵站
CN205475666U (zh) * 2015-12-31 2016-08-17 格兰富控股联合股份公司 预制泵站单元及配水单元
CN205742511U (zh) * 2016-05-25 2016-11-30 格兰富控股联合股份公司 预制泵站单元及配水单元
CN205742510U (zh) * 2016-05-25 2016-11-30 格兰富控股联合股份公司 预制泵站单元及配水单元

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109372081A (zh) * 2018-12-04 2019-02-22 中冶京诚工程技术有限公司 一种分布式污水预处理系统
CN109372081B (zh) * 2018-12-04 2024-02-06 中冶京诚工程技术有限公司 一种分布式污水预处理系统
CN111877520A (zh) * 2019-07-04 2020-11-03 山东良成环保科技股份有限公司 一种应用于预制泵站的格栅装置的使用方法
CN114031223A (zh) * 2021-12-16 2022-02-11 徐思杰 一种市政直饮水系统

Also Published As

Publication number Publication date
KR20180099854A (ko) 2018-09-05
EP3404154A1 (en) 2018-11-21
EP3404154B1 (en) 2023-06-07
KR102061685B1 (ko) 2020-01-02
EP3404154A4 (en) 2020-03-25
EP3404154C0 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2017114486A1 (zh) 预制泵站单元及配水单元
CN205742510U (zh) 预制泵站单元及配水单元
US7549442B2 (en) Intake for vertical wet pit pump
CN205475666U (zh) 预制泵站单元及配水单元
CN208844706U (zh) 一种压力管道带自动耦合装置的消能井
CN108130948B (zh) 一种适用于深层地下排水提升泵站的压力流进水流道系统
CN208951356U (zh) 管道排气阀及冷却回路
CN205742511U (zh) 预制泵站单元及配水单元
CN206641120U (zh) 一种压力补偿式滴头
CN113668673B (zh) 一种排水跌水井
CN107449721A (zh) 用于鞘流后池清洗装置的隔离池
CN107761927A (zh) 一种螺旋虹吸式大排量地漏
CN107435371B (zh) 预制泵站单元及配水单元
CN201128979Y (zh) 虹吸雨水斗
CN104452815B (zh) 塑料降压检查井
JP5486707B2 (ja) 立軸ポンプ
CN106930398B (zh) 预制泵站单元及配水单元
CN206706959U (zh) 一种一体化预制阀门井
CN206668531U (zh) 泵站
US20230131955A1 (en) Outlet aperture arrangements
TWM460527U (zh) 蛋白除沫器擾流渦輪結構改良
CN107677589A (zh) 用于鞘流阻抗计数装置的隔离池
CN109468996B (zh) 一体化泵闸装置及闸门泵站系统
JP2012117492A (ja) 立軸ポンプ
CN206635643U (zh) 建筑桥梁排水结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187022142

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016881275

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881275

Country of ref document: EP

Effective date: 20180731