WO2017114369A1 - 一种监测偏振模色散的方法及装置 - Google Patents

一种监测偏振模色散的方法及装置 Download PDF

Info

Publication number
WO2017114369A1
WO2017114369A1 PCT/CN2016/112197 CN2016112197W WO2017114369A1 WO 2017114369 A1 WO2017114369 A1 WO 2017114369A1 CN 2016112197 W CN2016112197 W CN 2016112197W WO 2017114369 A1 WO2017114369 A1 WO 2017114369A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
electrical signal
signal
stokes
digital electrical
Prior art date
Application number
PCT/CN2016/112197
Other languages
English (en)
French (fr)
Inventor
李朝晖
隋琪
王大伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017114369A1 publication Critical patent/WO2017114369A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07951Monitoring or measuring chromatic dispersion or PMD

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and apparatus for monitoring polarization mode dispersion.
  • PMD Polarization Mode Dispersion
  • Polarization mode dispersion refers to the polarization dispersion in a fiber.
  • the optical pulse input from the fiber can be split into two perpendicular polarization output pulses, the same.
  • the propagation speed is transmitted and reaches the fiber output at the same time.
  • the two pulses are superimposed to reproduce the polarization state at the fiber input.
  • the optical fiber is inevitably subjected to external effects, such as temperature and pressure changes or disturbances, the two modes are coupled and their propagation speeds are not the same, resulting in optical pulse broadening.
  • the amount of expansion is also uncertain, which is equivalent to random dispersion, causing signal distortion.
  • the PMD is provided by the partial soliton method.
  • the schematic diagram of the method is as shown in FIG. 1:
  • the partial soliton method uses soliton (Soliton, also known as solitary wave, is a special form of ultrashort pulse, or a pulsed traveling wave whose shape, amplitude and velocity remain unchanged during propagation.)
  • soliton also known as solitary wave
  • solitary wave is a special form of ultrashort pulse, or a pulsed traveling wave whose shape, amplitude and velocity remain unchanged during propagation.
  • DDD differential group delay
  • the soliton passes through the polarization beam splitter, it splits into two solitons whose polarization states are orthogonal to each other, and a group delay difference occurs between the two.
  • the polarization controller PC
  • the fast and slow axis entering the fiber under test is parallel to the polarization direction of the two orthogonal solitons.
  • the solitons of the current plane are parallel to the fast axis, and the subsequent solitons are parallel to the slow axis.
  • the total group delay difference is increased to ⁇ max .
  • the solitons of the face are parallel to the slow axis, the latter solitons are parallel to the fast axis, and the total group delay difference is reduced to ⁇ min .
  • the polarization mode dispersion of the fiber under test is ⁇ :
  • the polarization mode dispersion can be accurately measured by the above method, but the method is costly and the measurement algorithm is complicated and difficult to implement in engineering.
  • the invention provides a method and a device for monitoring polarization mode dispersion, and the method and device provided by the invention solve the problem that the existing method for monitoring polarization mode dispersion is complicated and inconvenient.
  • a method of monitoring polarization mode dispersion comprising:
  • a first analog electrical signal obtained by coherently mixing the optical signal to be measured with the first optical signal; coherently mixing the optical signal to be measured with the second optical signal to obtain a second analog electrical signal; wherein a center frequency of an optical signal and the second optical signal is on both sides of a center frequency of the optical signal to be measured, and a center frequency difference between the first optical signal and the second optical signal is equal to a baud rate;
  • converting the first digital electrical signal into the first Stokes vector, and converting the second digital electrical signal into the second Stokes vector comprises:
  • calculating an average rotation angle of the first Stokes vector and the second Stokes vector in the spherical coordinate system includes:
  • the calculating, by the average rotation angle, the polarization mode dispersion generated during the transmission of the optical signal to be tested includes:
  • an apparatus for monitoring polarization mode dispersion comprising:
  • An optical signal source configured to generate a first optical signal and a second optical signal; wherein a center frequency of the first optical signal and the second optical signal is on both sides of a center frequency of the optical signal to be measured, and the first The center frequency difference between the optical signal and the second optical signal is equal to the baud rate;
  • the first coherent receiver is connected to the optical signal source, and configured to coherently mix the first optical signal with the optical signal to be tested to obtain a first analog electrical signal;
  • the second coherent receiver is connected to the optical signal source, and configured to coherently mix the optical signal to be measured and the second optical signal to obtain a second analog electrical signal;
  • the signal processor being coupled to the first coherent receiver and the second coherent receiver for converting a first analog electrical signal into a first digital electrical signal and a second analog electrical signal Converting to a second digital electrical signal; wherein the first digital electrical signal comprises two orthogonal polarization information, the second digital electrical signal comprising two orthogonal polarization information; converting the first digital electrical signal into a first Stowe a vector, converting the second digital electrical signal into a second Stokes vector; calculating an average rotation angle of the first Stokes vector and the second Stokes vector in a spherical coordinate system; The rotation angle calculates the polarization mode dispersion generated during the transmission of the optical signal to be measured.
  • the optical signal source includes:
  • the optical signal source includes:
  • a laser source for generating an optical signal
  • An optoelectronic modulator and a microwave signal source the two inputs of the optoelectronic modulator being respectively coupled to the laser source and the output of the microwave signal source for utilizing a signal generated by the microwave signal source
  • the optical signal is subjected to carrier suppression modulation to generate the first optical signal and the second optical signal.
  • an apparatus for monitoring dispersion of an optical communication network comprising:
  • a coherent receiving module configured to perform a first analog electrical signal obtained by coherently mixing the optical signal to be measured with the first optical signal; coherently mixing the optical signal to be measured with the second optical signal to obtain a second analog electrical signal
  • the center frequencies of the first optical signal and the second optical signal are on both sides of a center frequency of the optical signal to be measured, and a center frequency difference between the first optical signal and the second optical signal is equal to Baud rate
  • An analog to digital conversion module configured to convert the first analog electrical signal into a first digital electrical signal, and convert the second analog electrical signal into a second digital electrical signal; wherein the first digital electrical signal includes two orthogonal polarizations Information, the second digital electrical signal comprising two orthogonal polarization information;
  • An arithmetic module configured to convert the first digital electrical signal into a first Stokes vector, convert the second digital electrical signal into a second Stokes vector, and calculate the first Stokes vector and the second The average rotation angle of the Tox vector in the spherical coordinate system; and the polarization mode dispersion generated during the transmission of the optical signal to be measured is calculated according to the average rotation angle.
  • the operation module is specifically configured to:
  • the operation module is specifically configured to:
  • the operation module is specifically configured to:
  • is a polarization mode dispersion generated by the PMD and the ⁇ is a real number
  • T is a symbol period
  • Tr(M PMD ) is the normalized The trace of the Stokes space rotation matrix.
  • the solution provided by the embodiment of the invention can accurately and effectively realize the PMD monitoring of the optical network, and provides a reliable information source for the management of the optical network, so that the optical network monitoring management and operation are more convenient.
  • FIG. 1 is a schematic structural diagram of a PMD of a fiber-splitting method for measuring a fiber by a partial soliton method according to the prior art
  • 2a and 2b are schematic diagrams of a transmission signal m1(t) in the prior art
  • 3a and 3b are schematic views of a signal m2(t) in the prior art
  • Figure 5 is a schematic diagram of loading m1(f) and m2(f) onto a light wave
  • FIG. 6 is a schematic flowchart diagram of a method for monitoring polarization mode dispersion according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of processing for determining a PMD between two signals by a Stokes vector calculation corresponding to an upper and lower sideband signal according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of an apparatus for monitoring polarization mode dispersion according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical signal source according to an embodiment of the present disclosure.
  • FIG. 10 is another apparatus for monitoring chromatic dispersion of an optical communication network according to an embodiment of the present invention.
  • the time domain form of the optical signal transmitted from the transmitter can be expressed as:
  • E S (t) ⁇ [ ⁇ n s n ⁇ (t-nT)]*p(t) ⁇ c(t) (where s n is signal bit data, ⁇ (t) is a pulse function, p(t ) is a pulse waveform, c(t) is the optical carrier, * is the convolution operation, and T is the symbol period of the signal.
  • m 1 (t) is the baseband form of the transmitted signal, which is represented by a pulse function of period T (as shown in Figure 2a), its frequency domain form is shown in Figure 2b, and m 1 (f) is a period of 1/ The periodic signal of T.
  • p(t) is a pulse waveform. If p(t) takes a non-return-to-zero rectangular wave, then m 2 (t) is as shown in Figure 3a: m 2 (t) corresponds to the frequency domain form m 2 (f) As shown in 3b, m 2 (t) is a band-limited signal with a bandwidth of 1/T of the main lobe;
  • m 3 (t) is an optical carrier, and since the optical carrier is a single carrier with a frequency of f 1 , it can be expressed as a pulse signal in the frequency domain (as shown in FIG. 4 );
  • the signal is transmitted by superimposing the transmitted signal on the optical carrier signal during transmission, it is:
  • E S (t) [ m 1 (t) * m 2 (t)] ⁇ m 3 (t)
  • m 1 (f) is a periodic signal with a period of 1/T
  • m 2 (f) is a symmetric band-limited signal with a bandwidth of 1/T of the main lobe.
  • the two are multiplied and then loaded onto the center frequency f 1 of the optical wave (eg Figure 5), within a finite bandwidth (f 1 -1/T to f 1 +1/T), according to Figure 5, only f 1 -1/2T and f 1 +1/2T can be exactly the same
  • the cycle repeats the signal.
  • the embodiment of the present invention provides a method for monitoring polarization mode dispersion, and the method specifically includes:
  • an upper sideband signal ie, a first analog electrical signal
  • a lower sideband signal ie, a second analog electrical signal
  • the polarization mode dispersion can be obtained through the related mathematical operation (the specific implementation principle is shown in FIG. 7).
  • Step 601 The first analog electrical signal obtained by coherently mixing the optical signal to be measured with the first optical signal, and coherently mixing the optical signal to be measured with the second optical signal to obtain a second analog electrical signal.
  • a center frequency of the first optical signal and the second optical signal is on both sides of a center frequency of the optical signal to be measured, and a center frequency difference between the first optical signal and the second optical signal is equal to a baud rate ;
  • the measurement of polarization mode dispersion can be achieved by the first optical signal and the second optical signal in the vicinity of the center frequency of the optical signal to be measured plus or minus 1/2 baud rate.
  • the preferred embodiment of the first optical signal and the second optical signal is that the center frequency of the first optical signal is 1/2 baud rate of the center frequency of the optical signal to be measured, and the center frequency of the second optical signal is The center frequency of the optical signal to be measured is reduced by 1/2 baud rate.
  • a two-dimensional complex number can be used to represent the optical signal that needs to be processed.
  • Step 602 Convert the first analog electrical signal into a first digital electrical signal, and convert the second analog electrical signal into a second digital electrical signal; wherein the first digital electrical signal includes two orthogonal polarization information, and second The digital electrical signal contains two orthogonal polarization information;
  • Step 603 converting the first digital electrical signal into a first Stokes vector, and converting the second digital electrical signal into a second Stokes vector;
  • Step 604 calculating an average rotation angle of the first Stokes vector and the second Stokes vector in a spherical coordinate system
  • Step 605 Calculate a polarization mode dispersion generated during the transmission of the optical signal to be measured according to the average rotation angle.
  • the first analog electrical signal and the second analog electrical signal obtained through step 601 should be the same without dispersion, but because of the existence of polarization mode dispersion, the first analog electrical signal and the second There are differences in analog electrical signals. Because the first analog electrical signal and the second analog electrical signal obtained in the embodiment obtain the first digital electrical signal and the second digital electrical signal after analog-to-digital conversion, the first data electrical signal and the second data telecommunications Included two orthogonal polarizations The information reflects the different polarization states of the optical signal to be measured, and then the first Stokes vector and the second Stokes vector are obtained by the Stokes transform. Further, polarization mode dispersion during fiber transmission can be obtained using the angle of rotation between the first and second Stokes vectors.
  • the specific implementation can be:
  • A converting the first digital electrical signal and the second digital electrical signal into a Stokes vector
  • the first digital electrical signal can be expressed in the form of a first Jones vector group after Fourier transform, ie
  • N is a positive integer
  • k represents information of the first digital electrical signal at different frequencies
  • Ex, Ey respectively represent two orthogonal polarization information contained in the first digital electrical signal
  • the second digital electrical signal can be represented by the second Jones vector group after Fourier transform, ie
  • N is a positive integer
  • k represents information of the second digital electrical signal at different frequencies
  • Fx, Fy respectively represent two orthogonal polarization information contained by the second digital electrical signal.
  • the three components of the Stokes vector can be calculated separately by the following formula:
  • Ex and Ey are two polarization state signals of the optical signal to be measured represented by the Jones space vector.
  • the first Stokes vector group And the second Stokes vector group Can be linked through the PMD matrix, specific:
  • the PMD matrix M PMD can be obtained by the above formula:
  • a matrix can be obtained according to the above formulas 1 to 3. Each element in it.
  • an embodiment of the present invention provides a device for monitoring polarization mode dispersion, and the device specifically includes:
  • the optical signal source 801 is configured to generate a first optical signal and a second optical signal, where a center frequency of the first optical signal and the second optical signal is on both sides of a center frequency of the optical signal to be measured, and the The center frequency difference between an optical signal and the second optical signal is equal to a baud rate;
  • a coupler can also be connected between the optical signal source and the coherent receiver, and the coupler functions mainly to combine several beams of light.
  • the first coherent receiver is connected to the optical signal source, and configured to coherently mix the first optical signal with the optical signal to be tested to obtain a first analog electrical signal;
  • the second coherent receiver is connected to the optical signal source, and configured to coherently mix the optical signal to be measured and the second optical signal to obtain a second analog electrical signal;
  • each coherent receiver includes at least one mixer and one photoelectric detector (PD).
  • the photodetector can select a low bandwidth photodetector.
  • two coherent receivers process two signals separately, one for each coherent receiver.
  • a signal processor 804 the signal processor being coupled to the first coherent receiver and the second coherent receiver for converting the first analog electrical signal into a first digital electrical signal and converting the second analog electrical signal into a second digital electrical signal; wherein the first digital electrical signal comprises two orthogonal polarization information, the second digital electrical signal comprising two orthogonal polarization information; converting the first digital electrical signal into a first Stokes a vector, converting the second digital electrical signal into a second Stokes vector; calculating an average rotation angle of the first Stokes vector and the second Stokes vector in a spherical coordinate system; according to the average rotation angle Calculating a polarization mode dispersion generated during transmission of the optical signal to be measured.
  • the signal processor can include an analog to digital conversion module and a calculator.
  • the implementation of the optical signal source 801 includes multiple, and the following provides two Optimized implementation:
  • the optical signal source 801 includes two lasers, and the two lasers are respectively used to generate a first optical signal and a second optical signal. Specifically:
  • the optical signal source includes a laser source, an electro-optic modulator and a microwave signal source (the specific structure is as shown in FIG. 9), specifically:
  • a laser source for generating an optical signal
  • the two input ends of the photoelectric modulator are respectively connected to the laser source and the output end of the microwave signal source, for performing carrier suppression modulation on the optical signal by using a signal generated by the microwave signal source to generate the first The optical signal and the second optical signal.
  • the optimization may be implemented by: a center frequency of the first optical signal is a center frequency of the optical signal to be measured plus a 1/2 baud rate; a center frequency of the second optical signal The center frequency of the optical signal to be measured is reduced by 1/2 baud rate.
  • an embodiment of the present invention further provides an apparatus for monitoring chromatic dispersion of an optical communication network, where the apparatus specifically includes:
  • the coherent receiving module 1001 is configured to perform a first analog electrical signal obtained by coherently mixing the optical signal to be measured with the first optical signal, and coherently mixing the optical signal to be measured with the second optical signal to obtain a second analog electrical a signal; wherein a center frequency of the first optical signal and the second optical signal is on both sides of a center frequency of the optical signal to be measured, and a center frequency difference between the first optical signal and the second optical signal Equal to the baud rate;
  • the analog-to-digital conversion module 1002 is configured to convert the first analog electrical signal into a first digital electrical signal, and convert the second analog electrical signal into a second digital electrical signal; wherein the first digital electrical signal includes two Orthogonal polarization information, the second digital electrical signal comprising two orthogonal polarization information;
  • the operation module 1003 is configured to convert the first digital electrical signal into a first Stokes vector, convert the second digital electrical signal into a second Stokes vector, and calculate the first Stokes vector and the second The average rotation angle of the Stokes vector in the spherical coordinate system; and the polarization mode dispersion generated during the transmission of the optical signal to be measured is calculated according to the average rotation angle.
  • the specific implementation of the computing module converting the digital signal into the Stokes vector group can be:
  • the operation module calculates an average rotation angle of the first Stokes vector and the second Stokes vector in a spherical coordinate system; and calculates the optical signal to be measured during the transmission according to the average rotation angle
  • the specific implementation of the resulting polarization mode dispersion can be:
  • the first Stokes vector and the first are calculated using the trace of the Stokes space rotation matrix M PMD and the known symbol period T The average rotation angle of the two Stokes vectors in the spherical coordinate system.
  • the specific implementation of the operation module determining the polarization mode dispersion according to the rotation angle may be:
  • is a polarization mode dispersion generated by the PMD and the ⁇ is a real number
  • T is a symbol period
  • Tr(M PMD ) is the normalized The trace of the Stokes space rotation matrix.
  • the specific implementation of measuring the polarization mode dispersion is independent of the modulation rate and the modulation pattern, so that the solution provided by the embodiment of the present invention is not limited by the pattern and has a wider application range; It can accurately and effectively realize optical network PMD monitoring, and provide a reliable source of information for optical network management, making optical network monitoring management and operation more convenient;
  • the algorithm used in the embodiment of the present invention is simple, and the algorithm complexity is low, which is convenient to implement;
  • the low bandwidth PD is selected for coherent detection, which can effectively reduce the cost of the system.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种监测偏振模色散的方法及装置,该方法包括:将待测光信号与第一光信号和第二光信号进行相干混频得到的第一模拟电信号和第二模拟电信号;所述第一光信号和所述第二光信号的中心频率差等于波特率;将第一模拟电信号和第二模拟电信号转换为第一数字电信号第二数字电信号;其中,所述第一数字电信号和第二数字信号都包含两个正交偏振信息;将第一数字电信号和第二数字电信号转换成第一斯托克斯向量和第二斯托克斯向量;计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;根据该平均旋转角度计算所述待测光信号的偏振模色散。本发明公开的方法及装置解决现有监测偏振模色散的方法算法复杂不便实现的问题。

Description

一种监测偏振模色散的方法及装置
本申请要求在2015年12月28日提交中国专利局、申请号为201511000186.1、申请名称为“一种监测偏振模色散的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种监测偏振模色散的方法及装置。
背景技术
随着人们对数据业务需求的不断增大,大容量高速光纤传输网络逐渐成为了信息传输的主要方向。为了能更好实现对光网络进行管理和监测,在众多的监测参数中,偏振模色散(Polarization Mode Dispersion,PMD)是可反应光网络运行状态好坏的重要参量。
偏振模色散指光纤中偏振色散,一个信号脉冲沿着理想的对称圆形单模光纤在不受外界干扰情况下传输时,光纤输入的光脉冲可分成两个垂直的偏振输出脉冲,以相同的传播速度进行传输,并同时到达光纤输出端,这两个脉冲叠加在一起会重现出在光纤输入端时的偏振状态。但是由于实际上沿光纤传播过程中,由于光纤难免受到外部的作用,如温度和压力等因素变化或扰动,使得两个模式发生耦合,并且它们的传播速度也不尽相同,从而导致光脉冲展宽,展宽量也不确定,便相当于随机的色散,引起信号失真。
为了测量PMD现有技术中提供了偏分孤子法测量光纤的PMD,具体实现该方法的示意图如图1所示:
偏分孤子法是利用孤子(Soliton,又称孤立波,是一种特殊形式的超短脉冲,或者说是一种在传播过程中形状、幅度和速度都维持不变的脉冲状行波。)抗偏振模色散的性质,即使是通过长距离传输,孤子脉宽变化很小。因此,它特别适合于差分群时延差((Different Group Delay,DGD)的测量,尤其是长光纤的PMD的测量。
当孤子通过偏振分束器后,分裂成两个偏振态互相正交的孤子,两者之间产生群时延差,进入待测光纤后,调整偏振控制器(Polarization controller,PC),使光进入被测光纤的快慢轴与两个正交孤子相对的偏振方向平行,当前面的孤子与快轴平行,后面的孤子与慢轴平行,这时总的群时延差增加为τmax,当前面的孤子与慢轴平行,后面的孤子与快轴平行,总的群时延差减少为τmin。,被测光纤的偏振模色散为Δτ:
Figure PCTCN2016112197-appb-000001
通过上述方法可以精确的测量偏振模色散,但是该方法成本较高,测量算法较为复杂,难以在工程中实现。
发明内容
本发明提供一种监测偏振模色散的方法及装置,本发明所提供的方法及装置解决现有监测偏振模色散的方法算法复杂不便实现的问题。
第一方面,提供一种监测偏振模色散的方法,该方法包括:
将待测光信号与第一光信号进行相干混频得到的第一模拟电信号;将所述待测光信号与第二光信号进行相干混频得到第二模拟电信号;其中,所述第一光信号和所述第二光信号的中心频率在所述待测光信号的中心频率两边,且所述第一光信号和所述第二光信号的中心频率差等于波特率;
将第一模拟电信号转换为第一数字电信号,将第二模拟电信号转换为第二数字电信号;其中,所述第一数字电信号包含两个正交偏振信息,第二数字电信号包含两个正交偏振信息;
将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量;
计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;
根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散。
结合第一方面,在第一种可能的实现方式中,将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量包括:
将所述第一数字电信号转换成频域的第一琼斯向量组Ei=[Ex,i Ey,i]T,i=1,2,...,N,N为正整数;Ex,Ey分别代表所述第一数字电信号包含的两个正交偏振信息;
将所述第二数字电信号转换成频域的第二琼斯向量组Fi=[Fx,i Fy,i]T,i=1,2,...,N,N为正整数;Fx,Fy分别代表所述第二数字电信号包含的两个正交偏振信息;
将所述第一琼斯向量组根据斯托克斯变换S1=Ex^2-Ey^2;S2=Ex·Ey*+Ex*·Ey;S3=j(Ex·Ey*-Ex*·Ey)转换成第一斯托克斯向量组
Figure PCTCN2016112197-appb-000002
将所述第二琼斯向量组根据斯托克斯变换S1=Fx^2-Fy^2;S2=Fx·Fy*+Fx*·Fy;S3=j(Fx·Fy*-Fx*·Fy)转换成第二斯托克斯向量组
Figure PCTCN2016112197-appb-000003
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度包括:
利用关系式
Figure PCTCN2016112197-appb-000004
计算斯托克斯空间旋转矩阵MPMD
将所述斯托克斯空间旋转矩阵进行归一化处理后,利用所述斯托克斯空间旋转矩阵MPMD的迹和已知的符号周期T计算所述第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散包括:
利用公式
Figure PCTCN2016112197-appb-000005
得到所述待测光信号传输过程中产生的偏振模色散;其中,Δτ是PMD产生的偏振模色散且该Δτ是实数,T是符号周期,Tr(MPMD)是所述归一化后的斯托克斯空间旋转矩阵的迹。
第二方面,提供一种监测偏振模色散的装置,该装置包括:
光信号源,用于产生第一光信号和第二光信号;其中,所述第一光信号和所述第二光信号的中心频率在待测光信号的中心频率两边,且所述第一光信号和所述第二光信号的中心频率差等于波特率;
第一相干接收机,所述第一相干接收机与所述光信号源相连,用于将所述第一光信号与所述待测光信号进行相干混频得到第一模拟电信号;
第二相干接收机,所述第二相干接收机与所述光信号源相连,用于将所述待测光信号与所述第二光信号进行相干混频得到第二模拟电信号;
信号处理器,所述信号处理器与所述第一相干接收机和所述第二相干接收机相连,用于将将第一模拟电信号转换为第一数字电信号,将第二模拟电信号转换为第二数字电信号;其中,所述第一数字电信号包含两个正交偏振信息,第二数字电信号包含两个正交偏振信息;将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量;计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散。
结合第二方面,在第一种可能的实现方式中,所述光信号源包括:
第一激光器,用于产生所述第一光信号;
第二激光器,用于产生所述第二光信号。
结合第二方面,在第二种可能的实现方式中,所述光信号源包括:
一个激光源,用于产生光信号;
一个光电调制器和一个微波信号源,所述光电调制器的两个输入端分别连接所述激光源和所述微波信号源的输出端,用于利用所述微波信号源产生的信号对所述光信号进行载波抑制调制产生所述第一光信号和第二光信号。
第三方面,提供一种监测光通信网络色散的装置,该装置包括:
相干接收模块,用于将待测光信号与第一光信号进行相干混频得到的第一模拟电信号;将所述待测光信号与第二光信号进行相干混频得到第二模拟电信号;其中,所述第一光信号和所述第二光信号的中心频率在所述待测光信号的中心频率两边,且所述第一光信号和所述第二光信号的中心频率差等于波特率;
模数转换模块,用于将第一模拟电信号转换为第一数字电信号,将第二模拟电信号转换为第二数字电信号;其中,所述第一数字电信号包含两个正交偏振信息,第二数字电信号包含两个正交偏振信息;
运算模块,用于将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量;并计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散。
结合第三方面,在第一种可能的实现方式中,所述运算模块具体用于:
将所述第一数字电信号转换成频域的第一琼斯向量组Ei=[Ex,i Ey,i]T,i=1,2,...,N,N是一个正整数;Ex,Ey分别代表所述第一数字电信号包含的两个正交偏振信息;
将所述第二数字电信号转换成频域的第二琼斯向量组Fi=[Fx,i Fy,i]T,i=1,2,...,N,N为正整数;Fx,Fy分别代表所述第二数字电信号包含的两个正交偏振信息;
将所述第一琼斯向量组根据斯托克斯变换S1=Ex^2-Ey^2;S2=Ex·Ey*+Ex*·Ey;S3=j(Ex·Ey*-Ex*·Ey)转换成第一斯托克斯向量组
Figure PCTCN2016112197-appb-000006
将所述第二琼斯向量组根据斯托克斯变换S1=Fx^2-Fy^2;S2=Fx·Fy*+Fx*·Fy;S3=j(Fx·Fy*-Fx*·Fy)转换成第二斯托克斯向量组
Figure PCTCN2016112197-appb-000007
结合第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述运算模块具体用于:
利用关系式
Figure PCTCN2016112197-appb-000008
计算斯托克斯空间旋转矩阵MPMD
将所述斯托克斯空间旋转矩阵进行归一化处理后,利用所述斯托克斯空间旋转矩阵MPMD的迹和已知的符号周期T计算所述第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,所述运算模块具体用于:
利用公式
Figure PCTCN2016112197-appb-000009
得到所述待测光信号传输过程中产生的偏振模色散;其中,Δτ是PMD产生的偏振模色散且该Δτ是实数,T是符号周期,Tr(MPMD)是所述归一化后的斯托克斯空间旋转矩阵的迹。
上述技术方案中的一个或两个,至少具有如下技术效果:
本发明实施例所提供的方案,能精确有效实现光网络PMD监测,为光网络的管理提供一个可靠信息来源,使光网络监控管理和运行更便捷。
附图说明
图1为现有技术提供的偏分孤子法测量光纤的PMD的结构示意图;
图2a和图2b为现有技术中发射信号m1(t)的示意图;
图3a和图3b为现有技术中信号m2(t)的示意图;
图4为现有技术中信号m3(t)的示意图;
图5为m1(f)和m2(f)加载到光波上的示意图;
图6为本发明实施例提供的一种监测偏振模色散的方法的流程示意图;
图7为本发明实施例中通过上下边带信号对应的斯托克斯矢量计算确定两个信号之间的PMD的处理示意图;
图8为本发明实施例提供的一种监测偏振模色散的装置结构示意图;
图9为本发明实施例提供的一种光信号源的结构示意图;
图10为本发明实施例提供的另外一种监测光通信网络色散的装置。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了方便理解本发明实施例所提供的方法,以下结合附图对本发明实施例所提供方法的实现原理进行说明,具体包括:
从发射机发射出来的光信号的时域形式可表示为:
ES(t)={[Σnsnδ(t-nT)]*p(t)}c(t)(其中,sn为信号比特数据,δ(t)为脉冲函数,p(t)为脉冲波形,c(t)为光载波,*代表卷积运算),T是信号的符号周期。令:
m1(t)=Σnsnδ(t-nT)
m2(t)=p(t)
m3(t)=c(t);
其中,m1(t)为发射信号的基带形式,表现为周期为T的脉冲函数(如图2a所示),其频域形式如图2b所示,m1(f)是周期为1/T的周期信号。
p(t)为脉冲波形,若p(t)取非归零矩形波,则m2(t)如图3a所示的:m2(t)对应的频域形式m2(f)为图3b所示,m2(t)为主瓣带宽1/T的带限信号;
m3(t)为光载波,由于光载波为频率为f1的单载波,在频域上可表达为一个脉冲信号(如图4所示);
因为信号在传输过程中是将发射信号叠加在光载波信号上发送的,所以:
发射的时域光信号:ES(t)=[m1(t)*m2(t)]·m3(t)
在频域上可表达为:ES(f)=[m1(f)·m2(f)]*m3(f)
m1(f)为周期为1/T的周期信号,m2(f)为主瓣带宽1/T的对称的带限信号,两者相乘,再加载到光波中心频率f1上(如图5所示),则在有限带宽内(f1-1/T到f1+1/T),根据图5可知只有f1-1/2T和f1+1/2T处可以得到完全相同的周期重复的信号。
由于在f1-1/2T和f1+1/2T处的两个窄带信号,相距1/T,满足m1(f)的最小周期1/T,并且在m2(f)脉冲波形的带宽内关于中心波长轴对称,所以如果没有加入偏振模色散,在两个相干接收机分别得到的f1-1/2T和f1+1/2T处的两个窄带信号应该是完全相同的。所以通过比较f1-1/2T和f1+1/2T处的两个窄带信号的差异可以检测出信号传输过程中的偏振模色散。
偏振模色散测量的原理在于加入偏振模色散后,接收得到的本应完全相同的f1-1/2T和f1+1/2T处的两个窄带信号,在偏振模色散影响下两个信号会出现错位。并且偏振模色散值与PMD矩阵有余弦关系,即有周期性,当Δτ=0.5T时,为一个周期。故当偏振模色散大于的一半码元宽度,0.5T时会成周期性变化。所以测量的偏振模色散值应控制在半个码元1/2T宽度以内。
实施例
如图6所示,本发明实施例提供一种监测偏振模色散的方法,该方法具体包括:
在该实施例中,待测光信号与第一信号和第二信号进行混频之后,得到上边带信号(即第一模拟电信号)和下边带信号(即第二模拟电信号);将上 边带信号和下边带信号进行转换之后,通过相关的数学运算可以得到偏振模色散(具体实现原理如图7所示)。
步骤601,将待测光信号与第一光信号进行相干混频得到的第一模拟电信号;将所述待测光信号与第二光信号进行相干混频得到第二模拟电信号;其中,所述第一光信号和所述第二光信号的中心频率在所述待测光信号的中心频率两边,且所述第一光信号和所述第二光信号的中心频率差等于波特率;
在该实施例中,第一光信号和第二光信号在待测光信号中心频率加减1/2波特率处的附近则可以实现偏振模色散的测量。但第一光信号和第二光信号的最优实施例是:第一光信号的中心频率为所述待测光信号的中心频率加1/2波特率,第二光信号的中心频率为所述待测光信号的中心频率减1/2波特率。
另外,因为本方案是借助分析待测信号的两个正交偏振态的信息实现偏振模色散测量的,所以为了体现待测光信号中两个正交偏振态信号的状态,本发明实施例中可以采用了二维复数的方式表示需要进行处理的光信号。
步骤602,将第一模拟电信号转换为第一数字电信号,将第二模拟电信号转换为第二数字电信号;其中,所述第一数字电信号包含两个正交偏振信息,第二数字电信号包含两个正交偏振信息;
步骤603,将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量;
步骤604,计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;
步骤605,根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散。
基于前述的光信号传输原理可知,通过步骤601获得的第一模拟电信号和第二模拟电信号在没有色散的情况下应该相同,但是因为偏振模色散的存在,第一模拟电信号和第二模拟电信号存在差异。因为本实施例中得到的第一模拟电信号和第二模拟电信号通过模数转换后得到第一数字电信号和第二数字电信号后,第一数据电信号和第二数据电信后中所包含的两个正交偏振 信息体现了待测光信号的不同偏振态,然后通过斯托克斯变换得到第一斯托克斯向量和第二斯托克斯向量。进而,使用第一和第二斯托克斯向量之间的旋转角度可以得到光纤传输过程中的偏振模色散。具体实现方式可以是:
A,将第一数字电信号和第二数字电信号转换为斯托克斯向量;
第一数字电信号在进行傅里叶变换后可以用第一琼斯向量组的形式来表示,即
Figure PCTCN2016112197-appb-000010
其中,N为正整数,k代表了第一数字电信号在不同频率处的信息,Ex,Ey分别代表所述第一数字电信号包含的两个正交偏振信息;
同理,第二数字电信号在进行傅里叶变换后可以用第二琼斯向量组的形式来表示,即
Figure PCTCN2016112197-appb-000011
其中,N为正整数,k代表了第二数字电信号在不同频率处的信息,Fx,Fy分别代表所述第二数字电信号包含的两个正交偏振信息。
将所述第一琼斯向量组转换成第一斯托克斯向量组
Figure PCTCN2016112197-appb-000012
将所述第二琼斯向量组转换成第二斯托克斯向量组
Figure PCTCN2016112197-appb-000013
斯托克斯向量的三个分量可以通过以下公式分别计算得到:
S1=Ex^2-Ey^2……(公式1)
S2=Ex·Ey*+Ex*·Ey……(公式2);
S3=j(Ex·Ey*-Ex*·Ey)……(公式3),
其中,Ex和Ey是使用琼斯空间向量表示的待测光信号的两个偏振态信号。
B,计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋 转角度;根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散。
B1,利用关系式
Figure PCTCN2016112197-appb-000014
计算斯托克斯空间旋转矩阵MPMD
B2,将所述斯托克斯空间旋转矩阵进行归一化处理后,利用所述斯托克斯空间旋转矩阵MPMD的迹和已知的符号周期T计算所述第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度
具体的,可以利用公式
Figure PCTCN2016112197-appb-000015
得到所述待测光信号传输过程中产生的偏振模色散;其中,Δτ是PMD产生的偏振模色散且该Δτ是实数,T是符号周期,Tr(MPMD)是所述斯托克斯空间旋转矩阵的迹。
在实际的使用中,第一斯托克斯向量组
Figure PCTCN2016112197-appb-000016
和第二斯托克斯向量组
Figure PCTCN2016112197-appb-000017
可通过PMD矩阵联系,具体的:
Figure PCTCN2016112197-appb-000018
Figure PCTCN2016112197-appb-000019
通过上式可求得PMD矩阵MPMD
Figure PCTCN2016112197-appb-000020
根据前述公式1~3可以得到矩阵
Figure PCTCN2016112197-appb-000021
中每个元素。
进一步,由于PMD矩阵的迹与偏振状态无关,可有:
Figure PCTCN2016112197-appb-000022
实施例
如图8所示,本发明实施例提供一种监测偏振模色散的装置,该装置具体包括:
光信号源801,用于产生第一光信号和第二光信号;其中,所述第一光信号和所述第二光信号的中心频率在待测光信号的中心频率两边,且所述第一光信号和所述第二光信号的中心频率差等于波特率;
在该实施例中,光信号源和相干接收机之间还可以连接一个耦合器(Coupler),耦合器作用主要是把几束光合在一起。
第一相干接收机802,所述第一相干接收机与所述光信号源相连,用于将所述第一光信号与所述待测光信号进行相干混频得到第一模拟电信号;
第二相干接收机803,所述第二相干接收机与所述光信号源相连,用于将所述待测光信号与所述第二光信号进行相干混频得到第二模拟电信号;
在具体的实现环境中,每个相干接收机中至少包括一个混频器、一个光电探测器(Photoelectric detector,PD)。在本发明实施例中为了提高本发明方案的可实用度,该光电探测器可以选用低带宽的光电探测器。另外,两个相干接收机是分别对两个信号进行处理,每个相干接收机对应一个信号。
信号处理器804,所述信号处理器与所述第一相干接收机和第二相干接收机相连,用于将第一模拟电信号转换为第一数字电信号,将第二模拟电信号转换为第二数字电信号;其中,所述第一数字电信号包含两个正交偏振信息,第二数字电信号包含两个正交偏振信息;将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量;计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散。
在具体应用环境中,该信号处理器可以包括模数转换模块和计算器。
在具体的使用环境中,光信号源801的实现方式包括多种,以下提供两 种最优化的实现方式:
方式一
该光信号源801中包括两个激光器,两个激光器分别用于产生第一光信号和第二光信号。具体为:
第一激光器,用于产生所述第一光信号;
第二激光器,用于产生所述第二光信号。
方式二
该光信号源中包括一个激光源、一个光电调制器和一个微波信号源(具体结构如图9所示),具体的:
激光源,用于产生光信号;
该光电调制器的两个输入端分别连接所述激光源和所述微波信号源的输出端,用于利用所述微波信号源产生的信号对所述光信号进行载波抑制调制产生所述第一光信号和第二光信号。
在该实施例中,最优化的实现方式可以是:所述第一光信号的中心频率为所述待测光信号的中心频率加1/2波特率;所述第二光信号的中心频率为所述待测光信号的中心频率减1/2波特率。
实施例
如图10所示,本发明实施例还提供另外一种监测光通信网络色散的装置,该装置具体包括:
相干接收模块1001,用于将待测光信号与第一光信号进行相干混频得到的第一模拟电信号;将所述待测光信号与第二光信号进行相干混频得到第二模拟电信号;其中,所述第一光信号和所述第二光信号的中心频率在所述待测光信号的中心频率两边,且所述第一光信号和所述第二光信号的中心频率差等于波特率;
模数转换模块1002,用于将第一模拟电信号转换为第一数字电信号,将第二模拟电信号转换为第二数字电信号;其中,所述第一数字电信号包含两 个正交偏振信息,第二数字电信号包含两个正交偏振信息;
运算模块1003,用于将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量;并计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散。
其中,运算模块将数字信号转换为斯托克斯向量组的具体实现可以是:
将所述第一数字电信号转换成频域的第一琼斯向量组Ei=[Ex,i Ey,i]T,i=1,2,...,N,N是一个正整数;Ex,Ey分别代表所述第一数字电信号包含的两个正交偏振信息;
将所述第二数字电信号转换成频域的第二琼斯向量组Fi=[Fx,i Fy,i]T,i=1,2,...,N,N为正整数;Fx,Fy分别代表所述第二数字电信号包含的两个正交偏振信息;
将所述第一琼斯向量组根据斯托克斯变换S1=Ex^2-Ey^2;S2=Ex·Ey*+Ex*·Ey;S3=j(Ex·Ey*-Ex*·Ey)转换成第一斯托克斯向量组
Figure PCTCN2016112197-appb-000023
将所述第二琼斯向量组根据斯托克斯变换S1=Fx^2-Fy^2;S2=Fx·Fy*+Fx*·Fy;S3=j(Fx·Fy*-Fx*·Fy)转换成第二斯托克斯向量组
Figure PCTCN2016112197-appb-000024
可选的,该运算模块,计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散的具体实现可以是:
利用关系式
Figure PCTCN2016112197-appb-000025
计算斯托克斯空间旋转矩阵MPMD
将所述斯托克斯空间旋转矩阵进行归一化处理后,利用所述斯托克斯空 间旋转矩阵MPMD的迹和已知的符号周期T计算所述第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度。
可选的,运算模块根据旋转角度确定偏振模色散的具体实现可以是:
利用公式
Figure PCTCN2016112197-appb-000026
得到所述待测光信号传输过程中产生的偏振模色散;其中,Δτ是PMD产生的偏振模色散且该Δτ是实数,T是符号周期,Tr(MPMD)是所述归一化后的斯托克斯空间旋转矩阵的迹。
本申请实施例中的上述一个或多个技术方案,至少具有如下的技术效果:
在本发明实施例所提供的方法和装置,测量偏振模色散的具体实现与调制速率和调制码型无关,使得本发明实施例所提供的方案不受码型限制,具有更广的适用范围;并能精确有效实现光网络PMD监测,为光网络的管理提供一个可靠信息来源,使光网络监控管理和运行更便捷;
而且本发明实施例所使用的算法简单,算法复杂度低便于实现;
另外,本发明实施例所提供的检测装置中选用低带宽的PD进行相干检测,能有效降低系统的成本。
本发明所述的方法并不限于具体实施方式中所述的实施例,本领域技术人员根据本发明的技术方案得出其它的实施方式,同样属于本发明的技术创新范围。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (11)

  1. 一种监测偏振模色散的方法,其特征在于,该方法包括:
    将待测光信号与第一光信号进行相干混频得到的第一模拟电信号;将所述待测光信号与第二光信号进行相干混频得到第二模拟电信号;其中,所述第一光信号和所述第二光信号的中心频率在所述待测光信号的中心频率两边,且所述第一光信号和所述第二光信号的中心频率差等于波特率;
    将第一模拟电信号转换为第一数字电信号,将第二模拟电信号转换为第二数字电信号;其中,所述第一数字电信号包含两个正交偏振信息,第二数字电信号包含两个正交偏振信息;
    将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量;
    计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;
    根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散。
  2. 如权利要求1所述的方法,其特征在于,将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量包括:
    将所述第一数字电信号转换成频域的第一琼斯向量组Ei=[Ex,i Ey,i]T,i=1,2,...,N,N为正整数;Ex,Ey分别代表所述第一数字电信号包含的两个正交偏振信息;
    将所述第二数字电信号转换成频域的第二琼斯向量组Fi=[Fx,i Fy,i]T,i=1,2,...,N,N为正整数;Fx,Fy分别代表所述第二数字电信号包含的两个正交偏振信息;
    将所述第一琼斯向量组根据斯托克斯变换S1=Ex^2-Ey^2;S2=Ex·Ey*+Ex*·Ey;S3=j(Ex·Ey*-Ex*·Ey)转换成第一斯托克斯向量组
    Figure PCTCN2016112197-appb-100001
    将所述第二琼斯向量组根据斯托克斯变换S1=Fx^2-Fy^2;S2=Fx·Fy*+Fx*·Fy;S3=j(Fx·Fy*-Fx*·Fy)转换成第二斯托克斯向量组
    Figure PCTCN2016112197-appb-100002
  3. 如权利要求2所述的方法,其特征在于,计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度包括:
    利用关系式
    Figure PCTCN2016112197-appb-100003
    计算斯托克斯空间旋转矩阵MPMD
    将所述斯托克斯空间旋转矩阵进行归一化处理后,利用所述斯托克斯空间旋转矩阵MPMD的迹和已知的符号周期T计算所述第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度。
  4. 如权利要求3所述的方法,其特征在于,所述根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散包括:
    利用公式
    Figure PCTCN2016112197-appb-100004
    得到所述待测光信号传输过程中产生的偏振模色散;其中,Δτ是PMD产生的偏振模色散且该Δτ是实数,T是符号周期,Tr(MPMD)是所述归一化后的斯托克斯空间旋转矩阵的迹。
  5. 一种监测偏振模色散的装置,其特征在于,该装置包括:
    光信号源,用于产生第一光信号和第二光信号;其中,所述第一光信号和所述第二光信号的中心频率在待测光信号的中心频率两边,且所述第一光信号和所述第二光信号的中心频率差等于波特率;
    第一相干接收机,所述第一相干接收机与所述光信号源相连,用于将所述第一光信号与所述待测光信号进行相干混频得到第一模拟电信号;
    第二相干接收机,所述第二相干接收机与所述光信号源相连,用于将所述待测光信号与所述第二光信号进行相干混频得到第二模拟电信号;
    信号处理器,所述信号处理器与所述第一相干接收机和所述第二相干接收机相连,用于将将第一模拟电信号转换为第一数字电信号,将第二模拟电信号转换为第二数字电信号;其中,所述第一数字电信号包含两个正交偏振信息,第二数字电信号包含两个正交偏振信息;将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量;计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;根据所述平均旋转角度计算所述待测光信号传输过程中产生的偏振模色散。
  6. 如权利要求5所述的装置,其特征在于,所述光信号源包括:
    第一激光器,用于产生所述第一光信号;
    第二激光器,用于产生所述第二光信号。
  7. 如权利要求5所述的装置,其特征在于,所述光信号源包括:
    一个激光源,用于产生光信号;
    一个光电调制器和一个微波信号源,所述光电调制器的两个输入端分别连接所述激光源和所述微波信号源的输出端,用于利用所述微波信号源产生的信号对所述光信号进行载波抑制调制产生所述第一光信号和第二光信号。
  8. 一种监测光通信网络色散的装置,其特征在于,该装置包括:
    相干接收模块,用于将待测光信号与第一光信号进行相干混频得到的第一模拟电信号;将所述待测光信号与第二光信号进行相干混频得到第二模拟电信号;其中,所述第一光信号和所述第二光信号的中心频率在所述待测光信号的中心频率两边,且所述第一光信号和所述第二光信号的中心频率差等于波特率;
    模数转换模块,用于将第一模拟电信号转换为第一数字电信号,将第二模拟电信号转换为第二数字电信号;其中,所述第一数字电信号包含两个正交偏振信息,第二数字电信号包含两个正交偏振信息;
    运算模块,用于将第一数字电信号转换成第一斯托克斯向量,将第二数字电信号转换成第二斯托克斯向量;并计算第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度;根据所述平均旋转角度计算所述待 测光信号传输过程中产生的偏振模色散。
  9. 如权利要求8所述的装置,其特征在于,所述运算模块具体用于:
    将所述第一数字电信号转换成频域的第一琼斯向量组Ei=[Ex,i Ey,i]T,i=1,2,...,N,N是一个正整数;Ex,Ey分别代表所述第一数字电信号包含的两个正交偏振信息;
    将所述第二数字电信号转换成频域的第二琼斯向量组Fi=[Fx,i Fy,i]T,i=1,2,...,N,N为正整数;Fx,Fy分别代表所述第二数字电信号包含的两个正交偏振信息;
    将所述第一琼斯向量组根据斯托克斯变换S1=Ex^2-Ey^2;S2=Ex·Ey*+Ex*·Ey;S3=j(Ex·Ey*-Ex*·Ey)转换成第一斯托克斯向量组
    Figure PCTCN2016112197-appb-100005
    将所述第二琼斯向量组根据斯托克斯变换S1=Fx^2-Fy^2;S2=Fx·Fy*+Fx*·Fy;S3=j(Fx·Fy*-Fx*·Fy)转换成第二斯托克斯向量组
    Figure PCTCN2016112197-appb-100006
  10. 如权利要求9所述的装置,其特征在于,所述运算模块具体用于:
    利用关系式
    Figure PCTCN2016112197-appb-100007
    计算斯托克斯空间旋转矩阵MPMD
    将所述斯托克斯空间旋转矩阵进行归一化处理后,利用所述斯托克斯空间旋转矩阵MPMD的迹和已知的符号周期T计算所述第一斯托克斯向量和第二斯托克斯向量在球面坐标系下的平均旋转角度。
  11. 如权利要求10所述的装置,其特征在于,所述运算模块具体用于:
    利用公式
    Figure PCTCN2016112197-appb-100008
    得到所述待测光信号传输过程中产生的偏振模色散;其中,Δτ是PMD产生的偏振模色散且该Δτ是实数,T是符号周期,Tr(MPMD)是所述归一化后的斯托克斯空间旋转矩阵的迹。
PCT/CN2016/112197 2015-12-28 2016-12-26 一种监测偏振模色散的方法及装置 WO2017114369A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511000186.1 2015-12-28
CN201511000186.1A CN106921432B (zh) 2015-12-28 2015-12-28 一种监测偏振模色散的方法及装置

Publications (1)

Publication Number Publication Date
WO2017114369A1 true WO2017114369A1 (zh) 2017-07-06

Family

ID=59225904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112197 WO2017114369A1 (zh) 2015-12-28 2016-12-26 一种监测偏振模色散的方法及装置

Country Status (2)

Country Link
CN (1) CN106921432B (zh)
WO (1) WO2017114369A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110971294B (zh) 2018-09-28 2023-02-17 富士通株式会社 光链路导致的偏振态变化监测装置及方法、光接收机
CN113078946B (zh) * 2021-03-25 2022-07-29 中山大学 一种光信噪比监测方法及其系统
CN116647278B (zh) * 2023-07-26 2023-09-29 长春理工大学 球偏振信号生成方法、装置及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180582B2 (en) * 2003-07-24 2007-02-20 Yokogawa Electric Corporation Apparatus and method for measuring characteristics of optical fibers
CN1976258A (zh) * 2006-12-21 2007-06-06 北京邮电大学 一种快速获得光纤链路中偏振模色散信息的实时监测方法
CN101325454A (zh) * 2008-07-30 2008-12-17 烽火通信科技股份有限公司 一种在光纤偏振模色散测试中降低不确定度的方法
CN102147326A (zh) * 2010-08-26 2011-08-10 华为技术有限公司 偏振检测器的校准方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152098A (zh) * 2013-02-05 2013-06-12 北京邮电大学 一种基于偏振干涉的带内光信噪比检测方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7180582B2 (en) * 2003-07-24 2007-02-20 Yokogawa Electric Corporation Apparatus and method for measuring characteristics of optical fibers
CN1976258A (zh) * 2006-12-21 2007-06-06 北京邮电大学 一种快速获得光纤链路中偏振模色散信息的实时监测方法
CN101325454A (zh) * 2008-07-30 2008-12-17 烽火通信科技股份有限公司 一种在光纤偏振模色散测试中降低不确定度的方法
CN102147326A (zh) * 2010-08-26 2011-08-10 华为技术有限公司 偏振检测器的校准方法和装置

Also Published As

Publication number Publication date
CN106921432A (zh) 2017-07-04
CN106921432B (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
US9322740B2 (en) Distributed disturbance sensing device and the related demodulation method based on polarization sensitive optical frequency domain reflectometry
US10148350B2 (en) Method and system for differentiating macro-bend losses from splice and connector losses in fiber-optic links
US20170019172A1 (en) Using fractional Fourier transform nonlinear effects in optical fiber link monitoring methods
JP2016524715A (ja) 光パルス圧縮反射装置
US9686019B2 (en) Coherent optical receiver, device and method for detecting inter-lane skew in coherent optical receiver
WO2017114369A1 (zh) 一种监测偏振模色散的方法及装置
Lu et al. Frequency division multiplexing OTDR with fast signal processing
CN106501601A (zh) 一种光电探测器频率响应测量方法及测量系统
CN111678584A (zh) 一种带光源频移校准辅助通道的光纤振动测量装置及方法
US20050174577A1 (en) Heterodyne optical network analysis that utilizes signal modulation
CN110896329A (zh) 基于本地本振光方案的连续变量量子密钥分发相干探测系统
US10263697B2 (en) Method and apparatus for monitoring chromatic dispersion in optical communications network
CN110768714A (zh) 基于双偏振态时分复用的偏振光时域反射仪及检测方法
US7894049B2 (en) Method and device for measuring polarization state and polarization mode dispersion in photonic transmission systems
JP5366139B2 (ja) 光信号波形計測装置
JP2022173990A (ja) 線路監視システムを用いた空間分解による外乱検出
Yan et al. Graphical solution for RF half-wave voltage and chirp parameter of electrooptic modulators using optical spectrum analysis
JP7478401B2 (ja) 検出装置、光受信装置、光通信システム、プログラム及び検出方法
Baney et al. Elementary matrix method for dispersion analysis in optical systems
Chen et al. In-phase/quadrature skew measurement for optical Mach-Zehnder modulator
CN212030564U (zh) 一种光源频移校准辅助通道结构及光纤振动测量装置
Askarov et al. Frequency-derivative measurement technique for dispersive effects in single-mode fiber systems
Schanner et al. Low-Complexity Method for Optical Fiber Nonlinear Coefficient Measurement
Li et al. Modal Delay Measurement for Few-Mode Fibers Using Frequency-Domain Complex Transfer Function
Kaur et al. Role of self phase modulation and cross phase modulation on quality of signal in optical links

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881158

Country of ref document: EP

Kind code of ref document: A1