WO2017113943A1 - 一种实现小于0.1uw功耗待机电源电路 - Google Patents

一种实现小于0.1uw功耗待机电源电路 Download PDF

Info

Publication number
WO2017113943A1
WO2017113943A1 PCT/CN2016/102710 CN2016102710W WO2017113943A1 WO 2017113943 A1 WO2017113943 A1 WO 2017113943A1 CN 2016102710 W CN2016102710 W CN 2016102710W WO 2017113943 A1 WO2017113943 A1 WO 2017113943A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
controllable switch
rectifier diode
rectifier bridge
wave rectifier
Prior art date
Application number
PCT/CN2016/102710
Other languages
English (en)
French (fr)
Inventor
刘治发
Original Assignee
刘治发
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘治发 filed Critical 刘治发
Publication of WO2017113943A1 publication Critical patent/WO2017113943A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • H02M7/1623Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit
    • H02M7/1626Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration with control circuit with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/162Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the invention relates to a power supply circuit and belongs to the technical field of microelectronics.
  • Standby power consumption has received more and more attention in the last decade, because when the electrical plug is not pulled out of the socket or the connection to the grid is not cut off, although these appliances are not being used or are not in working condition, they are consumed. With electricity.
  • This standby power consumption involves various fields of people's life and work, a wide range of electrical equipment, a wide range, long standby time, and a huge sum of waste of energy. It is not only an economic issue, but also an environmental issue and a safety hazard. It has become an urgent problem for human society. For more than a decade, countless people at home and abroad have made a lot of efforts to invent various methods in an attempt to achieve zero power consumption in standby mode.
  • the UCC28730 a newly developed zero-power standby chip developed by Texas Instruments in the United States in 2015, is relatively successful.
  • the shortcoming is that the standby power consumption is only barely ⁇ 5mw.
  • the US PI company is doing ⁇ 4mw
  • the French ST company is doing ⁇ 5mw and so on.
  • the main reason why they failed to achieve zero standby power consumption is that they also use the traditional switching power supply mode during standby. Although the frequency during standby is reduced to several tens of Hz, it is inevitable that it will be under high voltage and high current. Switching power consumption, copper loss and iron loss.
  • the object of the present invention is to solve the technical problem that the standby power consumption of the current electronic and electrical equipment cannot be reduced below milliwatts.
  • a standby power supply circuit that realizes a power consumption of less than 0.1 uw, and is characterized in that it includes a first capacitor, a second capacitor, a third capacitor, a full-wave rectifier bridge, a first controllable switch, a second controllable switch, a voltage sampling control unit;
  • One end of the first capacitor is connected to one input end of the full-wave rectifier bridge, and one end of the second capacitor is connected to the other input end of the full-wave rectifier bridge;
  • the other end of the first capacitor and the other end of the second capacitor serve as an input end of the alternating current
  • One end of the first controllable switch is connected to one input end of the full-wave rectifier bridge, and one end of the second controllable switch is connected to the other input end of the full-wave rectifier bridge, and the other end of the first controllable switch and the second The other end of the control switch is connected to an output end of the full-wave rectifier bridge;
  • the output of the full-wave rectifier bridge is connected in parallel with a third capacitor
  • the voltage sampling control unit is connected in parallel to the output end of the full-wave rectifier bridge, and the voltage sampling control unit controls the opening and closing of the first controllable switch and the second controllable switch according to the output voltage of the full-wave rectifier bridge.
  • the full-wave rectifier bridge includes a first rectifier diode, a second rectifier diode, a third rectifier diode, and a fourth rectifier diode;
  • the negative terminal of the first rectifier diode is connected to the negative terminal of the fourth rectifier diode
  • the positive terminal of the fourth rectifier diode is connected to the negative terminal of the third rectifier diode
  • the positive terminal of the third rectifier diode is connected to the positive terminal of the second rectifier diode.
  • the negative terminal of the second rectifier diode is connected to the positive terminal of the first rectifier diode;
  • One end of the first capacitor is connected to a common node of the first rectifier diode and the second rectifier diode;
  • One end of the second capacitor is connected to a common node of the third rectifier diode and the fourth rectifier diode;
  • the other end of the first capacitor and the other end of the second capacitor serve as an input end of the alternating current
  • the first controllable switch is connected in parallel with the two ends of the second rectifier diode
  • a second controllable switch is connected in parallel with the two ends of the third rectifier diode
  • a common node of the first rectifier diode and the fourth rectifier diode a common node of the second rectifier diode and the third rectifier diode is connected as a third capacitor of the rectifier bridge in parallel;
  • the voltage sampling control unit is connected in parallel to the output end of the rectifier bridge, and the voltage sampling control unit controls the opening and closing of the first controllable switch and the second controllable switch according to the magnitude of the output voltage of the rectifier bridge.
  • a standby power supply circuit capable of achieving power consumption of less than 0.1 uw, comprising: a first capacitor, a second capacitor, a half-wave rectifier bridge, a first controllable switch, and a voltage sampling control unit;
  • One end of the first capacitor is connected to one input end of the half wave rectifier bridge
  • the other end of the first capacitor and the other input end of the half-wave rectifier bridge serve as an input terminal of the alternating current
  • One end of the first controllable switch is connected to the input end of the half-wave rectifier bridge and the common node of the first capacitor, and the other end of the first controllable switch is connected to the other input end of the half-wave rectifier bridge;
  • the output of the half-wave rectifier bridge is connected in parallel with the second capacitor
  • the voltage sampling control unit is connected in parallel to the output end of the half-wave rectifier bridge, and the voltage sampling control unit controls the opening and closing of the first controllable switch according to the magnitude of the output voltage of the half-wave rectifier bridge.
  • the half-wave rectifier bridge includes a first rectifier diode and a second rectifier diode
  • the negative terminal of the first rectifier diode is connected to the positive terminal of the second rectifier diode, and the negative terminal of the second rectifier diode and the positive terminal of the first rectifier diode serve as an output end of the rectifier bridge;
  • One end of the first capacitor is connected to a common node of the first rectifier diode and the second rectifier diode;
  • the other end of the first capacitor and the positive terminal of the first rectifier diode serve as an input terminal of the alternating current
  • the second capacitor is connected in parallel to the output end of the rectifier bridge
  • the first controllable switch is connected in parallel to both ends of the first rectifier diode
  • the voltage sampling control unit is connected in parallel to the output end of the rectifier bridge, and the voltage sampling control unit controls the opening and closing of the first controllable switch according to the magnitude of the output voltage of the rectifier bridge.
  • the first controllable switch can be implemented by using a controllable thyristor; or can be implemented by using a bipolar transistor or a field effect transistor.
  • the standby power supply circuit of the present invention truly achieves a target of less than 0.1 uw, and saves a large amount of electric energy for electrical equipment of homes and factories.
  • FIG. 1 is a schematic diagram of a circuit principle of a full-wave rectifier bridge according to the present invention
  • FIG. 2 is a schematic diagram of a circuit principle of a half wave rectifier bridge according to the present invention.
  • Figure 3 is a schematic diagram of one embodiment of Figure 1;
  • Figure 4 is a schematic diagram of one embodiment of Figure 2.
  • a standby power supply circuit for realizing less than 0.1 uw power consumption comprising: a first capacitor C1, a second capacitor C2, a third capacitor C3, a full-wave rectifier bridge, a first controllable switch S1, and a second controllable switch S2 , voltage sampling control unit;
  • One end of the first capacitor C1 is connected to one input end of the full-wave rectifier bridge, and one end of the second capacitor C2 is connected to the other input end of the full-wave rectifier bridge;
  • the other end of the first capacitor C1 and the other end of the second capacitor C2 serve as an input end of the alternating current
  • One end of the first controllable switch S1 is connected to one input end of the full-wave rectifier bridge, and one end of the second controllable switch S2 is connected to the other input end of the full-wave rectifier bridge, and the other end of the first controllable switch S1 is The other end of the second controllable switch S2 is connected to an output end of the full-wave rectifier bridge;
  • the output of the full-wave rectifier bridge is connected in parallel with the third capacitor C3;
  • the voltage sampling control unit is connected in parallel to the output end of the full-wave rectifier bridge, and the voltage sampling control unit controls the opening and closing of the first controllable switch S1 and the second controllable switch S2 according to the output voltage of the full-wave rectifier bridge. .
  • the full-wave rectifier bridge includes a first rectifier diode D1, a second rectifier diode D2, a third rectifier diode D3, and a fourth rectifier diode D4;
  • the negative terminal of the first rectifier diode D1 is connected to the negative terminal of the fourth rectifier diode D4, the positive terminal of the fourth rectifier diode D4 is connected to the negative terminal of the third rectifier diode D3, and the positive terminal of the third rectifier diode D3 is connected to the second terminal.
  • a positive terminal of the rectifier diode D2 a negative terminal of the second rectifier diode D2 is connected to a positive terminal of the first rectifier diode D1;
  • One end of the first capacitor C1 is connected to a common node of the first rectifier diode D1 and the second rectifier diode D2;
  • One end of the second capacitor C2 is connected to a common node of the third rectifier diode D3 and the fourth rectifier diode D4;
  • the other end of the first capacitor C1 and the other end of the second capacitor C2 serve as an input end of the alternating current
  • the second rectifier diode D2 is connected in parallel with the first controllable switch S1;
  • the second rectifier diode D3 is connected in parallel with the second controllable switch S2;
  • the voltage sampling control unit is connected in parallel to the output end of the full-wave rectifier bridge, and the voltage sampling control unit controls the opening and closing of the first controllable switch S1 and the second controllable switch S2 according to the output voltage of the full-wave rectifier bridge.
  • the third capacitor C3 can be a non-polar capacitor or an electrolytic capacitor.
  • a standby power supply circuit capable of achieving a power consumption of less than 0.1 uw, comprising: a first capacitor C1, a second capacitor C2, a half-wave rectifier bridge, a first controllable switch S1, and a voltage sampling control unit;
  • One end of the first capacitor C1 is connected to one input end of the half-wave rectifier bridge
  • the other end of the first capacitor C1 and the other input end of the half-wave rectifier bridge serve as an input terminal of the alternating current
  • One end of the first controllable switch S1 is connected to the input end of the half-wave rectifier bridge and the common node of the first capacitor C1, and the other end of the first controllable switch S1 is connected to the other input end of the half-wave rectifier bridge;
  • the output of the half-wave rectifier bridge is connected in parallel with the second capacitor C2;
  • the voltage sampling control unit is connected in parallel to the output end of the half-wave rectifier bridge, and the voltage sampling control unit controls the opening and closing of the first controllable switch S1 according to the magnitude of the output voltage of the half-wave rectifier bridge.
  • the half-wave rectifier bridge includes a first rectifier diode D1 and a second rectifier diode D2;
  • the negative terminal of the first rectifier diode D1 is connected to the positive terminal of the second rectifier diode D2, and the negative terminal of the second rectifier diode D2 and the positive terminal of the first rectifier diode D1 are used as output terminals of the half-wave rectifier bridge;
  • One end of the first capacitor C1 is connected to a common node of the first rectifier diode D1 and the second rectifier diode D2;
  • the other end of the first capacitor C1 and the positive terminal of the first rectifier diode D1 serve as input terminals of the alternating current;
  • the second capacitor C2 is connected in parallel to the output end of the half-wave rectifier bridge
  • the first controllable switch S1 is connected in parallel to both ends of the first rectifier diode D1;
  • the voltage sampling control unit is connected in parallel to the output end of the half-wave rectifier bridge, and the voltage sampling control unit controls the opening and closing of the first controllable switch S1 according to the magnitude of the output voltage of the rectifier bridge.
  • the first controllable switch S1 can be implemented by using a controllable thyristor; or can be implemented by using a bipolar transistor or a field effect transistor.
  • the second capacitor C2 can be a non-polar capacitor or an electrolytic capacitor.
  • the method of the present invention creates a capacitive reactance switching power supply design method different from the conventional switching power supply.
  • Traditional switching power supplies use inductors or transformers to pass PWM and FM power switches.
  • the widening and frequency modulation under high voltage and high current form a stable power supply, which inevitably produces the switching loss formed by the slope of the front and rear edges of the switch pulse and the magnetic path loss and line resistance loss of the inductor transformer.
  • the newly-created capacitive reactance switching power supply of the present invention constitutes a capacitive reactance switching power supply with almost no power loss by using a lossless capacitive reactance, an electronic switch, and a voltage sampling circuit.
  • the working principle of the invention shows that the zero power consumption (less than 0.1 uw) standby power supply of the invention has the basic design method of charging the low voltage large capacitor through the rectifying device by using the constant current and the current limiting action of the reactance of the capacitor in the alternating current circuit.
  • the voltage sampling control circuit connected to both ends of the capacitor monitors and controls. When the voltage reaches the set value, the control electronic switch (ie, the control switch) passes the charging capacitor over the rectifier circuit and directly connects to the grid. , stop charging the capacitor.
  • the voltage sampling circuit controls the electronic switch to restore the charging capacitor to replenish the capacitor through the rectifying device to stabilize the voltage.
  • the present invention operates entirely at a power frequency (50 Hz or 60 Hz) low frequency micro current electronic switch. It completely avoids the switching loss (rising edge, falling edge slope, conduction voltage drop, etc.) of the normal switching power supply operating at high voltage and high current, and the copper loss and iron loss of the transformer when operating at high voltage and high current.
  • the new design of the zero-power circuit uses voltage sampling and voltage control, which makes the zero standby power supply consume very little power in the standby state.
  • the next step is to design the interface and control method for the whole electronic and electrical machine.
  • At least three ports, one probe pulse output port and one detection signal should be set on the power supply.
  • the detection pulse voltage is applied to the infrared receiving module, and when the detecting signal end receives the infrared signal, the decoder power is immediately started from the starting port, and if it is found to be the power-on signal, Turn on the power of the whole machine, the whole machine works normally.
  • the detection pulse voltage is added to the temperature test module, and the detection signal end receives the start signal to control the refrigeration system of the refrigerator to reach the set temperature.
  • the refrigeration system stops working, so that the refrigerator is zero-power standby power supply when it is not cooling, and the power consumption of the whole machine is zero.
  • the charger is activated by starting the power output port of the whole machine, and then the current sensor on the side of the battery is preset to transmit to the detection signal terminal whether the battery is charging, and if the battery is found to be full or left. charger. Then the charger switching power supply stops working and enters the zero power standby power supply state. The charger consumes zero power.
  • power converters which are used in the same way as chargers. As long as the output of the power converter is found to have no load, it enters the zero-power standby power supply state, and the power converter consumes zero power.
  • the detection signal can be added to the primary side (on the mains side), or it can be added to the secondary side through the start end, so that when the device is stopped, it enters the zero-power standby power supply state, and the whole machine consumes zero power.
  • the zero-power standby power supply can be used on all the devices that have power consumption during standby, and these devices become green and do not consume power when in standby.
  • the repetition frequency of the detection pulse and the selection of the detection pulse width are such that the frequency reduction width is minimized on the premise that the information is not leaked, and it is preferable to control the detection power consumption in standby at the microwatt level.
  • the general power consumption in the uw level industry can be called zero power consumption.

Abstract

一种实现小于0.1uw功耗的待机电源电路,其特征在于,包括第一电容(C1)、第二电容(C2)、第三电容(C3)、全波整流桥、第一可控开关(S1)、第二可控开关(S2)、电压取样控制单元;该第一电容(C1)的一端连接该全波整流桥的一个输入端,该第二电容(C2)的一端连接该全波整流桥的另一个输入端;该第一电容(C1)的另一端和该第二电容(C2)的另一端作为交流电的输入端;该第一可控开关(S1)的一端连接该全波整流桥的一个输入端,该第二可控开关(S2)的一端连接该全波整流桥的另一个输入端,该第一可控开关(S1)的另一端和该第二可控开关(S2)的另一端共同连接该全波整流桥的一个输出端;使得待机电源电路的功耗小于0.1uw。

Description

一种实现小于0.1uw功耗待机电源电路 技术领域
本发明涉及一种电源电路,属于微电子技术领域。
背景技术
待机功耗在最近十几年来越来越受到人们关注,因为当电器插头未从插座拔出或没有切断同电网的连接时,尽管这些电器不在被使用或不处在工作状态,但却在消耗着电能。这种待机功耗涉及到人们生活和工作的各个领域,各种用电设备,范围之广,待机时间之长,浪费电能总和之巨,不仅是经济问题,也是环保问题,也是安全隐患。成为人类社会急需解决的问题。十几年来,国内外无数的人们做了很多努力,发明了各种各样的方法,企图实现待机状态时零功耗。美国德州仪器(TI)公司2015年新研发成功的零功耗待机芯片UCC28730算是比较成功的,不足的是仅勉强把待机功耗做到<5mw。与此相同的还有美国PI公司做到<4mw,法国ST公司做到<5mw等等。他们没能把待机功耗做到零的主要原因是:在待机时,他们还采用传统的开关电源方式工作,尽管把待机时的频率降到几十Hz但还是不可避免高电压大电流下的开关功耗,铜损和铁损。如果把这样的芯片用到电子和电器产品整机上,在待机时还会增加整机系统连接时的一些功耗,整机更做不到零功耗待机了,所以到现在为止,人们还看不到不拔下电源插头,不断开电网的连接,停止使用的电器能够做到不耗电(零功耗待机)。
发明内容
本发明的目的是解决目前的电子电器设备待机功耗无法降到毫瓦以下的技术问题。
为了实现以上的目的,本发明解决技术问题的技术方案是:一种实现小于0.1uw功耗待机电源电路,其特征在于,包括第一电容、第二电容、第三电容、全波整流桥、第一可控开关、第二可控开关、电压取样控制单元;
所述的第一电容的一端连接全波整流桥的一个输入端,第二电容的一端连接全波整流桥的另一个输入端;
所述的第一电容的另一端和第二电容的另一端作为交流电的输入端;
所述的第一可控开关的一端连接全波整流桥的一个输入端,第二可控开关的一端连接全波整流桥的另一个输入端,第一可控开关的另一端和第二可控开关的另一端共同连接全波整流桥的一个输出端;
所述的全波整流桥的输出端并联第三电容;
所述的电压取样控制单元并联于全波整流桥的输出端,电压取样控制单元根据全波整流桥的输出电压的大小控制第一可控开关和第二可控开关的断开与闭合。
进一步,所述的全波整流桥包括第一整流二极管、第二整流二极管、第三整流二极管、第四整流二极管;
所述的第一整流二极管的负极端连接第四整流二极管的负极端,第四整流二极管的正极端连接第三整流二极管的负极端,第三整流二极管的正极端连接第二整流二极管的正极端,第二整流二极管的负极端连接第一整流二极管的正极端;
所述的第一电容的一端连接第一整流二极管和第二整流二极管的公共节点;
所述的第二电容的一端连接第三整流二极管和第四整流二极管的公共节点;
所述的第一电容的另一端和第二电容的另一端作为交流电的输入端;
所述的第二整流二极管的两端并联第一可控开关;
所述的第三整流二极管的两端并联第二可控开关;
第一整流二极管和第四整流二极管的公共节点、第二整流二极管和第三整流二极管的公共节点作为整流桥的输出端并联第三电容;
所述的电压取样控制单元并联于整流桥的输出端,电压取样控制单元根据整流桥的输出电压的大小控制第一可控开关和第二可控开关的断开与闭合。
一种实现小于0.1uw功耗待机电源电路,其特征在于,包括第一电容、第二电容、半波整流桥、第一可控开关、电压取样控制单元;
所述的第一电容的一端连接半波整流桥的一个输入端;
所述的第一电容的另一端和半波整流桥的另一个输入端作为交流电的输入端;
所述的第一可控开关的一端连接半波整流桥的输入端与第一电容的公共节点,第一可控开关的另一端连接半波整流桥的另一个输入端;
所述的半波整流桥的输出端并联第二电容;
所述的电压取样控制单元并联于半波整流桥的输出端,电压取样控制单元根据半波整流桥的输出电压的大小控制第一可控开关的断开与闭合。
进一步,所述的半波整流桥包括第一整流二极管、第二整流二极管;
所述的第一整流二极管的负极端连接第二整流二极管的正极端,第二整流二极管的负极端与第一整流二极管的正极端作为整流桥的输出端;
所述的第一电容的一端连接第一整流二极管和第二整流二极管的公共节点;
所述的第一电容的另一端和第一整流二极管的正极端作为交流电的输入端;
所述的第二电容并联于整流桥的输出端;
所述的第一可控开关并联于第一整流二极管的两端;
所述的电压取样控制单元并联于整流桥的输出端,电压取样控制单元根据整流桥的输出电压的大小控制第一可控开关的断开与闭合。
其中,所述的第一可控开关可以采用可控晶闸管实现;也可以采用双极晶体管或场效应晶体管实现。
有益效果:本发明的待机电源电路真正实现了小于0.1uw的目标,为家庭和工厂的电气设备节省了大量的电能。
附图说明
图1是本发明采用全波整流桥的电路原理示意图;
图2是本发明采用半波整流桥的电路原理示意图;
图3是图1的一个具体实施例原理图;
图4是图2的一个具体实施例原理图。
具体实施方式
下面结合附图详细描述本发明的技术方案。
实施例1
一种实现小于0.1uw功耗待机电源电路,其特征在于,包括第一电容C1、第二电容C2、第三电容C3、全波整流桥、第一可控开关S1、第二可控开关S2、电压取样控制单元;
所述的第一电容C1的一端连接全波整流桥的一个输入端,第二电容C2的一端连接全波整流桥的另一个输入端;
所述的第一电容C1的另一端和第二电容C2的另一端作为交流电的输入端;
所述的第一可控开关S1的一端连接全波整流桥的一个输入端,第二可控开关S2的一端连接全波整流桥的另一个输入端,第一可控开关S1的另一端和第二可控开关S2的另一端共同连接全波整流桥的一个输出端;
所述的全波整流桥的输出端并联第三电容C3;
所述的电压取样控制单元并联于全波整流桥的输出端,电压取样控制单元根据全波整流桥的输出电压的大小控制第一可控开关S1和第二可控开关S2的断开与闭合。
进一步,所述的全波整流桥包括第一整流二极管D1、第二整流二极管D2、第三整流二极管D3、第四整流二极管D4;
所述的第一整流二极管D1的负极端连接第四整流二极管D4的负极端,第四整流二极管D4的正极端连接第三整流二极管D3的负极端,第三整流二极管D3的正极端连接第二整流二极管D2的正极端,第二整流二极管D2的负极端连接第一整流二极管D1的正极端;
所述的第一电容C1的一端连接第一整流二极管D1和第二整流二极管D2的公共节点;
所述的第二电容C2的一端连接第三整流二极管D3和第四整流二极管D4的公共节点;
所述的第一电容C1的另一端和第二电容C2的另一端作为交流电的输入端;
所述的第二整流二极管D2的两端并联第一可控开关S1;
所述的第三整流二极管D3的两端并联第二可控开关S2;
第一整流二极管D1和第四整流二极管D4的公共节点、第二整流二极管D2和第三整流二极管D3的公共节点作为整流桥的输出端并联第三电容C3;
所述的电压取样控制单元并联于全波整流桥的输出端,电压取样控制单元根据全波整流桥的输出电压的大小控制第一可控开关S1和第二可控开关S2的断开与闭合。其中,第三电容C3可以采用无极性电容也可以采用电解电容。
实施例2:
一种实现小于0.1uw功耗待机电源电路,其特征在于,包括第一电容C1、第二电容C2、半波整流桥、第一可控开关S1、电压取样控制单元;
所述的第一电容C1的一端连接半波整流桥的一个输入端;
所述的第一电容C1的另一端和半波整流桥的另一个输入端作为交流电的输入端;
所述的第一可控开关S1的一端连接半波整流桥的输入端与第一电容C1的公共节点,第一可控开关S1的另一端连接半波整流桥的另一个输入端;
所述的半波整流桥的输出端并联第二电容C2;
所述的电压取样控制单元并联于半波整流桥的输出端,电压取样控制单元根据半波整流桥的输出电压的大小控制第一可控开关S1的断开与闭合。
进一步,所述的半波整流桥包括第一整流二极管D1、第二整流二极管D2;
所述的第一整流二极管D1的负极端连接第二整流二极管D2的正极端,第二整流二极管D2的负极端与第一整流二极管D1的正极端作为半波整流桥的输出端;
所述的第一电容C1的一端连接第一整流二极管D1和第二整流二极管D2的公共节点;
所述的第一电容C1的另一端和第一整流二极管D1的正极端作为交流电的输入端;
所述的第二电容C2并联于半波整流桥的输出端;
所述的第一可控开关S1并联于第一整流二极管D1的两端;
所述的电压取样控制单元并联于半波整流桥的输出端,电压取样控制单元根据整流桥的输出电压的大小控制第一可控开关S1的断开与闭合。
其中,所述的第一可控开关S1可以采用可控晶闸管实现;也可以采用双极晶体管或场效应晶体管实现。其中,第二电容C2可以采用无极性电容也可以采用电解电容。
本发明的方法创造了一种不同于传统开关电源的电容电抗式开关电源设计方法。传统的开关电源是利用电感或变压器通过PWM和FM功率开关通 过在高电压大电流下的调宽和调频形成稳定的电源,这就不可避免的产生了可观开关脉冲前后沿斜率形成的开关损耗和电感变压器的磁路损耗和线电阻损耗。当然还有整个开关电源电路自身的损耗。所以根本不可能实现零功耗的待机电源。而本发明新创造的电容电抗式开关电源通过采用无损耗的电容电抗、电子开关、电压取样电路构成几乎不存在电能损耗的电容电抗式开关电源。
本发明工作原理说明:本发明的零功耗(小于0.1uw)待机电源,其基本的设计方法是利用电容的电抗在交流电路中的恒流和限流作用通过整流装置对低压大电容充电,同时为保证电容电压稳定,由接在电容两端的电压取样控制电路进行监测和控制,当电压达到设定值时控制电子开关(即可控开关)将充电电容越过整流电路,直接并接到电网,停止向电容充电。当电压由于长时间使用而低于电压设定值时,电压取样电路控制电子开关将充电电容恢复到通过整流装置向电容补充电量,使其电压稳定。由于本发明完全是在工频(50Hz或60Hz)低频微小电流电子开关工作。完全避免了普通开关电源工作在高电压大电流时的开关损耗(上升沿,下降沿斜率,导通压降等)和变压器在高电压大电流工作时的铜损和铁损。新设计零功耗电路时使用的是电压取样和电压控制,这使得零待机电源在待机状态耗电甚微。
根据我们的实际测量和计算,在完全待机情况下,这些微小的工作电流,需要100S周期内补充电20uA时长1mS,如电源电压设定为5v,那么平均功耗就为0.1uW,基本实现零功耗待机电源的目标。
完成了零功耗待机电源后下一步骤就是要设计将其用于各种电子电器整机的接口和控制方式,在该电源上至少要设置3个口,一个探测脉冲输出口,一个探测信号输入口和一个启动整机电源输出口。比如用于电视机、空调等使用遥控器的电器时,将探测脉冲电压加到红外接收模块上,当探测信号端收到红外线信号时从启动口立即启动解码器电源,如果发现是开机信号就打开整机电源,整机正常工作,当使用者用遥控器把整机关闭,整机所有电源均关闭,重新回到零功耗待机电源值守状态,整机耗电为零。对于间歇式工作的整机如电冰箱也是一样,只是将探测脉冲电压加到温度测试模块上,探测信号端收到启动信号,控制电冰箱制冷系统工作,到达设定温度后。制冷系统停止工作,使电冰箱在不制冷时为零功耗待机电源值守状态,整机耗电为零。再比如对手机和电动车充电器是通过启动整机电源输出口启动充电器工作,然后通过预设在电池一侧的电流传感器向探测信号端传送电池是否在充电,如发现电池已经充满或离开充电器。则充电器开关电源停止工作,进入零功耗待机电源值守状态。充电器耗电为零。还有使用非常广泛的电源变换器,它的使用方法与充电器相同,只要发现电源变换器输出端没有负载接入就进入零功耗待机电源值守状态,电源变换器耗电为零。另外所有键控设备如微波炉,电饭煲,电磁灶,洗衣机,复印件,打印机等等。探测信号可以加在一次侧(市电一侧),也可以通过启动端加到二次侧,使得这类设备在停止使用时,进入零功耗待机电源值守状态,整机耗电为零。综上所述,该零功耗待机电源可以用在所有待机时存在耗电的整机设备上,把这些设备变成绿色的待机时不耗电设备。 探测脉冲的重复频率和探测脉冲宽度的选择以不漏掉信息的前提下,尽量降低频率减小宽度,最好把待机时的探测功耗控制在微瓦级。
目前一般功耗为uw级别行业内就可以称为零功耗了。
本发明的零功耗待机电源的推广应用:
不仅是为人们节省了不必要的经济浪费,因为每个家庭就有十几到几十个待机还耗电的大小设备,如果全国十几亿人口和世界几十亿人口,社会总量是巨大的。当把所有的设备待机都变成绿色的不消耗电能的时候,人类可以少建多少个发电厂,少烧多少吨煤和油,可以减少多少二氧化碳排放,可以减少多少安全事故,这是人们盼望已久的。通过这项发明的推广使用相信可以把中国和世界的待机功耗标准推到顶点“0”。

Claims (8)

  1. 一种实现小于0.1uw功耗待机电源电路,其特征在于,包括第一电容(C1)、第二电容(C2)、第三电容(C3)、全波整流桥、第一可控开关(S1)、第二可控开关(S2)、电压取样控制单元;
    所述的第一电容(C1)的一端连接所述的全波整流桥的一个输入端,所述的第二电容(C2)的一端连接所述的全波整流桥的另一个输入端;
    所述的第一电容(C1)的另一端和所述的第二电容(C2)的另一端作为交流电的输入端;
    所述的第一可控开关(S1)的一端连接所述的全波整流桥的一个输入端,所述的第二可控开关(S2)的一端连接所述的全波整流桥的另一个输入端,所述的第一可控开关(S1)的另一端和所述的第二可控开关(S2)的另一端共同连接所述的全波整流桥的一个输出端;
    所述的全波整流桥的输出端并联所述的第三电容(C3);
    所述的电压取样控制单元并联于所述的全波整流桥的输出端,所述的电压取样控制单元根据所述的全波整流桥的输出电压的大小控制所述的第一可控开关和所述的第二可控开关的断开与闭合。
  2. 根据权利要求1所述的一种实现小于0.1uw功耗待机电源电路,其特征在于,所述的全波整流桥包括第一整流二极管(D1)、第二整流二极管(D2)、第三整流二极管(D3)、第四整流二极管(D4);
    所述的第一整流二极管(D1)的负极端连接所述的第四整流二极管(D4)的负极端,所述的第四整流二极管(D4)的正极端连接所述的第三整流二极管(D3)的负极端,所述的第三整流二极管(D3)的正极端连接 所述的第二整流二极管(D2)的正极端,所述的第二整流二极管(D2)的负极端连接所述的第一整流二极管(D1)的正极端;
    所述的第一电容(C1)的一端连接所述的第一整流二极管(D1)和所述的第二整流二极管(D2)的公共节点;
    所述的第二电容(C2)的一端连接所述的第三整流二极管(D3)和所述的第四整流二极管(D4)的公共节点;
    所述的第一电容(C1)的另一端和所述的第二电容(C2)的另一端作为交流电的输入端;
    所述的第二整流二极管(D2)的两端并联所述的第一可控开关(C1);
    所述的第三整流二极管(D3)的两端并联所述的第二可控开关(C2);
    所述的第一整流二极管(D1)和所述的第四整流二极管(D4)的公共节点、所述的第二整流二极管(D2)和所述的第三整流二极管(D3)的公共节点作为所述的全波整流桥的输出端并联所述的第三电容(C3);
    所述的电压取样控制单元并联于所述的全波整流桥的输出端,所述的电压取样控制单元根据所述的全波整流桥的输出电压的大小控制所述的第一可控开关(C1)和所述的第二可控开关(C2)的断开与闭合。
  3. 根据权利要求1所述的实现小于0.1uw功耗待机电源电路,其特征在于,所述的第一可控开关(S1)和所述的第二可控开关(S2)采用可控晶闸管实现。
  4. 根据权利要求1所述的实现小于0.1uw功耗待机电源电路,其特征在于,所述的第一可控开关(S1)和所述的第二可控开关(S2)采用双极晶体管或场效应晶体管实现。
  5. 一种实现小于0.1uw功耗待机电源电路,其特征在于,包括第一电容(C1)、第二电容(C2)、半波整流桥、第一可控开关(S1)、电压取样控制单元;
    所述的第一电容(C1)的一端连接所述的半波整流桥的一个输入端;
    所述的第一电容(C1)的另一端和所述的半波整流桥的另一个输入端作为交流电的输入端;
    所述的第一可控开关(C1)的一端连接所述的半波整流桥的输入端与所述的第一电容(C1)的公共节点,所述的第一可控开关(S1)的另一端连接所述的半波整流桥的另一个输入端;
    所述的半波整流桥的输出端并联所述的第二电容(C2);
    所述的电压取样控制单元并联于所述的半波整流桥的输出端,所述的电压取样控制单元根据所述的半波整流桥的输出电压的大小控制所述的第一可控开关(S1)的断开与闭合。
  6. 根据权利要求5所述的一种实现小于0.1uw功耗待机电源电路,其特征在于,所述的半波整流桥包括第一整流二极管(D1)、第二整流二极管(D2);
    所述的第一整流二极管(D1)的负极端连接所述的第二整流二极管(D2)的正极端,所述的第二整流二极管(D2)的负极端与所述的第一整流二极管(D1)的正极端作为所述的半波整流桥的输出端;
    所述的第一电容(C1)的一端连接所述的第一整流二极管(D1)和所述的第二整流二极管(D2)的公共节点;
    所述的第一电容(C1)的另一端和所述的第一整流二极管(D1)的正极端作为交流电的输入端;
    所述的第二电容(C2)并联于所述的半波整流桥的输出端;
    所述的第一可控开关(S1)并联于所述的第一整流二极管(D1)的两端;
    所述的电压取样控制单元并联于所述的半波整流桥的输出端,所述的电压取样控制单元根据所述的半波整流桥的输出电压的大小控制所述的第一可控开关(S1)的断开与闭合。
  7. 根据权利要求5所述的实现小于0.1uw功耗待机电源电路,其特征在于,所述的第一可控开关(S1)采用可控晶闸管实现。
  8. 根据权利要求5所述的实现小于0.1uw功耗待机电源电路,其特征在于,所述的第一可控开关(S1)采用双极晶体管或场效应晶体管实现。
PCT/CN2016/102710 2015-12-31 2016-10-20 一种实现小于0.1uw功耗待机电源电路 WO2017113943A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511028202.8 2015-12-31
CN201511028202.8A CN105429486A (zh) 2015-12-31 2015-12-31 一种实现小于0.1uw功耗待机电源电路

Publications (1)

Publication Number Publication Date
WO2017113943A1 true WO2017113943A1 (zh) 2017-07-06

Family

ID=55507473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/102710 WO2017113943A1 (zh) 2015-12-31 2016-10-20 一种实现小于0.1uw功耗待机电源电路

Country Status (2)

Country Link
CN (1) CN105429486A (zh)
WO (1) WO2017113943A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105429486A (zh) * 2015-12-31 2016-03-23 刘治发 一种实现小于0.1uw功耗待机电源电路
CN106849700A (zh) * 2017-04-17 2017-06-13 刘明 一种实现零功耗待机开关电源集成电路
CN115792364B (zh) * 2023-02-07 2023-05-02 南京美斯玛微电子技术有限公司 一种基于待机状态分析的功耗计算方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931319A (zh) * 2009-06-08 2010-12-29 康舒科技股份有限公司 无桥式功率因子校正电路
CN103036457A (zh) * 2011-10-07 2013-04-10 株式会社安川电机 交流直流转换器
US20150263511A1 (en) * 2014-03-13 2015-09-17 Infineon Technologies Ag Overvoltage protection for a synchronous power rectifier
CN105429486A (zh) * 2015-12-31 2016-03-23 刘治发 一种实现小于0.1uw功耗待机电源电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205265549U (zh) * 2015-12-31 2016-05-25 刘治发 一种实现小于0.1uw功耗待机电源电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931319A (zh) * 2009-06-08 2010-12-29 康舒科技股份有限公司 无桥式功率因子校正电路
CN103036457A (zh) * 2011-10-07 2013-04-10 株式会社安川电机 交流直流转换器
US20150263511A1 (en) * 2014-03-13 2015-09-17 Infineon Technologies Ag Overvoltage protection for a synchronous power rectifier
CN105429486A (zh) * 2015-12-31 2016-03-23 刘治发 一种实现小于0.1uw功耗待机电源电路

Also Published As

Publication number Publication date
CN105429486A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
CN103219878B (zh) 一种电容放电电路及功率变换器
CN101714831A (zh) 放电电磁干扰滤波器的启动电路用于电源供应器的省电
WO2017113943A1 (zh) 一种实现小于0.1uw功耗待机电源电路
CN104578743A (zh) 供电控制电路
CN203707489U (zh) 智能节能插座
CN205319949U (zh) 一种新型简易开关电源
CN104467437A (zh) 低待机功耗开关电源
CN102255336A (zh) 高效节能自循环电子负载
CN201556975U (zh) 一种智能安全节能的待机自动断电装置
CN202352928U (zh) 一种节能插线板
CN205265549U (zh) 一种实现小于0.1uw功耗待机电源电路
CN110635691A (zh) 一种电流源模块
CN102684453B (zh) 对电源供应器的电磁干扰滤波器放电的启动电路
CN109586397B (zh) 电源控制电路及电子设备
CN208797618U (zh) 一种安规电路及家电设备
CN203398457U (zh) 一种智能家电待机节能插座
CN105226967B (zh) 交流220v用超低功耗待机电源
CN202737761U (zh) 水池用开关电源电路
CN202917746U (zh) 智能安全插座
CN216121782U (zh) 一种交流输电电路及插排
CN203967985U (zh) Lc串联自激振荡电压变换电路
CN203352462U (zh) 电子节能电池
CN103600156A (zh) 一种自动识别转换双电压焊机
CN102522909B (zh) 一种无极性逆变器
CN209565609U (zh) 一种利用中频变压器正激识别电网的电路和电焊机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880735

Country of ref document: EP

Kind code of ref document: A1