WO2017113869A1 - 头戴显示器及其双目3d视频显示方法和装置 - Google Patents

头戴显示器及其双目3d视频显示方法和装置 Download PDF

Info

Publication number
WO2017113869A1
WO2017113869A1 PCT/CN2016/098006 CN2016098006W WO2017113869A1 WO 2017113869 A1 WO2017113869 A1 WO 2017113869A1 CN 2016098006 W CN2016098006 W CN 2016098006W WO 2017113869 A1 WO2017113869 A1 WO 2017113869A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
video
display
adjustment
video data
Prior art date
Application number
PCT/CN2016/098006
Other languages
English (en)
French (fr)
Inventor
陈江峰
万细苟
彭华军
Original Assignee
深圳纳德光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳纳德光学有限公司 filed Critical 深圳纳德光学有限公司
Publication of WO2017113869A1 publication Critical patent/WO2017113869A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance

Definitions

  • the present invention relates to the field of image display algorithms, and more particularly to a head mounted display and a binocular 3D video display method and apparatus.
  • Head-mounted display is a new technology in modern display technology.
  • the development of high-resolution micro-display technology, imaging optical design and perfection of ultra-precision manufacturing have opened up new avenues for the design of head-mounted displays, making them augmented reality.
  • Important applications such as virtual reality and stereo display.
  • the display effect of video images is a very critical technical link. Whether it is for a head-mounted display with left and right split screen displays or a head-mounted display for full-screen display, 2D video display technology is relatively mature, and the key to its display technology lies in the display effect of 3D video.
  • the existing head-mounted display satisfies the normal display of 2D video, it is difficult to ensure an excellent 3D video display effect at the same time.
  • the different conditions of their vision also affect the display effect they see.
  • the technical problem to be solved by the present invention is to provide a headset for the above-mentioned drawbacks of the prior art.
  • a binocular 3D video display method for constructing a head mounted display wherein the head mounted display comprises two independently driven display screens; the binocular 3D video display method comprises the following steps:
  • the adjustment interface of the visual acuity or the interpupillary distance is displayed, and the visual adjustment or the interpupillary distance adjustment is performed;
  • the 3D video data frame subjected to nonlinear smoothing processing is divided into two parts;
  • the two parts of the 3D video data frame after the splitting are separately enlarged, and then the enlarged two parts of the 3D video data frames are separately sent to the two display screens for display.
  • the binocular 3D video display method of the present invention wherein the visual adjustment or the distance adjustment process comprises:
  • the standard timing signal comprises: a line sync signal, a field sync signal and a data enable signal DE;
  • the step of performing nonlinear smoothing processing on the video data according to the standard timing signal specifically includes:
  • the data enable signal DE When the data enable signal DE is valid, the data of the mth row, the m+1th row, and the m+2th row of the 3D video data frame are sequentially read and stored in three cache units.
  • n is a natural number.
  • the binocular 3D video display method of the present invention wherein the step of dividing the 3D video data frame after the nonlinear smoothing processing into two parts comprises:
  • the binocular 3D video display method of the present invention wherein the split two-part 3D video data frames are separately enlarged, and then the amplified two parts of the 3D video data frames are respectively sent to two display screens for display.
  • the steps specifically include:
  • the data in the second buffer area is read, and the image data is enlarged, converted into differential video interface data, and sent to the second display screen for display.
  • the binocular 3D video display method of the present invention wherein when the visual adjustment signal input by the user is acquired, the left eye visual acuity adjustment signal or the right eye visual acuity adjustment signal is first determined, and according to the determination result Displaying a left eye visual adjustment interface or a right eye visual adjustment interface respectively;
  • the left-eye gaze adjustment interface and the right-eye gaze adjustment interface respectively include one or more of a plurality of box lines, cross lines, and/or text information.
  • the interpupillary adjustment interface comprises a horizontal line extending from left to right and a vertical line extending from top to bottom, and the two ends of the horizontal line are disposed perpendicular to a short vertical line of the horizontal line, and both ends of the vertical line are provided with short horizontal lines perpendicular to the vertical line.
  • the method for displaying a binocular 3D video according to the present invention wherein the manner of distinguishing whether the user inputs the left-eye gaze adjustment signal, the right-eye diopter adjustment signal, or the pacing adjustment signal comprises:
  • the binocular 3D video display method of the present invention wherein the left eye vision adjustment interface, the right eye vision adjustment interface, and the pupil distance adjustment interface are the same adjustment interface.
  • the binocular 3D video display method of the present invention wherein the method further comprises the steps of:
  • the 2D video data subjected to the nonlinear smoothing process is copied into two copies, and the two pieces of the 2D video data are respectively displayed on the two display screens.
  • the present invention also provides a binocular 3D video display device with a head mounted display, wherein the head mounted display comprises two independently driven display screens; the binocular 3D video display device comprises:
  • the diopter adjustment/pitch adjustment module is configured to display the adjustment interface of the visuosing or the slanting distance when the gaze adjustment or the pacing adjustment signal is acquired, and perform the gaze adjustment or the slanting distance adjustment;
  • a data reading module configured to read a display to be displayed when a playback start signal for playing a video is acquired Video data shown;
  • An image interface module for generating a standard timing signal corresponding to a resolution of the video data
  • An image smoothing filtering module configured to perform nonlinear smoothing processing on the video data according to the standard timing signal
  • a determining module configured to determine whether the video data is 3D video data or 2D video data
  • the left and right image separation module is configured to divide the 3D video data frame after the nonlinear smoothing process into two parts when the video data is 3D video data;
  • the image enlargement display module is configured to separately enlarge and split the two parts of the 3D video data frame, and then send the enlarged two parts of the 3D video data frame to the two display screens for display.
  • the binocular 3D video display device of the present invention wherein the diopter adjustment/pitch adjustment module comprises:
  • the interface display unit is configured to display a booting interface, and display a left eye visual adjustment interface when acquiring an externally input left eye visual adjustment signal; and display a right eye when acquiring an externally input right eye visual adjustment signal The diopter adjustment interface; and, when the externally input slant adjustment signal is acquired, the ⁇ distance adjustment interface is displayed.
  • the binocular 3D video display device of the present invention wherein the image interface module comprises:
  • timing signal generating unit for respectively generating a line sync signal, a field sync signal and a data enable signal DE;
  • the image smoothing filter module includes:
  • a first reading unit configured to sequentially read data of the mth row, the m+1th row, and the m+2th row of the 3D video data frame when the data enable signal DE is valid, and respectively Deposited into three cache units;
  • a filtering unit configured to perform nonlinear smoothing processing on data of the current pixel point
  • n is a natural number.
  • the binocular 3D video display device of the present invention wherein the image enlargement display module comprises:
  • a first enlarged display unit configured to read data in the first buffer area, and enlarge the image data, convert the data into differential video interface data, and send the data to the first display screen for display;
  • the second enlarged display unit is configured to read data in the second buffer area, and enlarge the image data, convert the data into differential video interface data, and send the data to the second display screen for display.
  • the binocular 3D video display device of the present invention wherein the diopter adjustment/pitch adjustment module comprises any one of the following structures for facilitating user input of the diopter adjustment signal and the pacing adjustment signal:
  • One input button or two different input buttons; or, a voice input device; or a touch screen.
  • the binocular 3D video display device of the present invention wherein the device further comprises:
  • a 2D video display module configured to: when the video data is 2D video data, copy the 2D video data after the nonlinear smoothing processing into two copies, and display the two pieces of the 2D video data in two display screens respectively on.
  • the present invention also provides a head mounted display comprising a binocular 3D video display device as hereinbefore described, or a 3D video display using any of the binocular 3D video display methods as previously described.
  • the invention has the beneficial effects that the binocular vision and the interpupillary adjustment of the binocular optical module of the head-mounted display can be quickly and conveniently completed by the complete visual/pitch adjustment scheme and the high-quality binocular 3D video display method.
  • the 3D video display enables users of different gaze and pitch to get a perfect viewing effect.
  • 1 is a general flow chart of a binocular 3D video display method of the present invention
  • FIG. 2a is a flow chart of the diopter/pitch adjustment in the binocular 3D video display method of the present invention
  • FIG. 2b is a schematic diagram of the left eye gaze adjustment interface
  • FIG. 2c is a schematic diagram of the right eye adjustment interface; Reference schematic diagram;
  • step S40 is a detailed step of step S40 in the binocular 3D video display method of the present invention.
  • step S42 is a detailed step of step S42 in the binocular 3D video display method of the present invention.
  • FIG. 5 is a reference diagram for performing single pixel point nonlinear smoothing processing in the binocular 3D video display method of the present invention
  • Figure 6 is a detailed step of step S60 in the binocular 3D video display method of the present invention.
  • Figure 7 is a block diagram showing the principle of a binocular 3D video display device of the present invention.
  • FIG. 8 is a schematic block diagram of an image interface module of a binocular 3D video display device of the present invention.
  • FIG. 9 is a schematic block diagram of an image smoothing filter module of a binocular 3D video display device of the present invention.
  • FIG. 10 is a schematic block diagram of an image left and right separation module of the binocular 3D video display device of the present invention.
  • Figure 11 is a block diagram showing the principle of an image enlargement display module of the binocular 3D video display device of the present invention.
  • the flow of the binocular 3D video display method of the head mounted display of the preferred embodiment of the present invention is as shown in FIG. 1.
  • the head mounted display includes two display screens.
  • the method starts at step S00 and further includes the following steps:
  • step S90 The above binocular 3D video display method ends in step S90.
  • the above-mentioned binocular 3D video display method can quickly and conveniently complete the binocular vision and the adjustment of the pupil distance of the binocular optical module of the head-mounted display through a complete visual/pitch adjustment scheme and a high-quality binocular 3D video display method.
  • the 3D video display enables users of different gaze and pitch to get a perfect viewing effect.
  • the image white point interference can be effectively removed, the image noise can be filtered out, and the line of sight and the distance adjustment process can be combined to make the image viewed by the wearer clearer.
  • the process of adjusting the tilt or the distance adjustment in step S10 includes: displaying a booting interface; acquiring an externally input left eye visual adjustment signal, displaying a left eye visual adjustment interface; and acquiring an external input.
  • the right eye gaze adjustment signal displays the right eye gaze adjustment interface; the external input ⁇ distance adjustment signal is obtained, and the ⁇ distance adjustment interface is displayed.
  • the left eye visual adjustment signal input by the user is acquired, it is determined that the left eye visual adjustment signal is further It is a right-eye gaze adjustment signal, and respectively displays a left-eye gaze adjustment interface or a right-eye gaze adjustment interface according to the judgment result; the left-eye gaze adjustment interface and the right-eye gaze adjustment interface respectively include a plurality of square lines, One or more of cross lines and/or textual information, as shown in Figures 2b and 2c.
  • the interpupillary adjustment interface when acquiring the interpuppage adjustment signal input by the user, the interpupillary adjustment interface is displayed.
  • the above-mentioned interpupillary adjustment interface includes a horizontal line extending from left to right and a vertical line extending from top to bottom, and both ends of the horizontal line are provided with short vertical lines perpendicular to the horizontal line, and both ends of the vertical line are disposed perpendicular to the vertical
  • the short horizontal lines of the lines are shown in Figure 2d.
  • the left eye vision adjustment interface, the right eye vision adjustment interface, and the pupil distance adjustment interface may be different three adjustment interfaces, or the same adjustment interface.
  • the manner of distinguishing whether the user inputs the visual adjustment signal or the deviation adjustment signal comprises: obtaining input information from the same key, distinguishing by different input order of the same key; or acquiring input information of different keys to distinguish; or Obtain different voice recognition input information for distinguishing; or obtain different touch operation information of the touch screen to distinguish.
  • the flow of the adjustment interface for displaying the dioptric or the pupil distance in the binocular 3D video display method is:
  • Power on the head-mounted display system display the boot interface, automatically enter the left-eye visual adjustment interface after a predetermined time, the user rotates the left-eye visual adjustment knob according to the prompt to adjust the visibility, if the adjustment is clear, click the mode button to exit and Enter the right eyesight adjustment interface, the user rotates the right eyesight adjustment knob according to the prompt to adjust the visibility. If the adjustment is clear, click the mode button to exit and enter the distance adjustment interface, and the user can adjust the slider adjustment according to the prompt. If there is no ghost in the picture, click the mode button to exit and enter the main interface of video playback. If the main interface of the video playback is not clear, you can click the mode button to re-execute the visual and/or distance adjustment steps.
  • the step of generating a standard timing signal corresponding to the resolution of the video data specifically includes: generating a line synchronization signal, a field synchronization signal, and a data enable signal DE, respectively, through the three signals Ensure that the subsequent processes are synchronized.
  • step S40 in the above-mentioned binocular 3D video display method specifically includes:
  • the step S42 in the binocular 3D video display method includes:
  • Step S421 reading data corresponding to the original 3 ⁇ 3 matrix pixel points centered on the current pixel point, and sorting the data of each row of pixel points in the 3 ⁇ 3 matrix in descending order to form a new 3 ⁇ 3 matrix;
  • the first row of three pixel data is sorted into: Pmax1, Pmed1, and Pmin1; and the second row of three pixel data is performed.
  • the order is: Pmax2, Pmed2, Pmin2; the third row of three pixel data is sorted into: Pmax3, Pmed3, Pmin3, and a new 3x3 matrix is obtained;
  • Step S422 reading and sorting the three data in the first column of the new 3x3 matrix, taking the minimum value thereof, and storing it in the register, which is recorded as Pmax_min; that is, referring to FIG. 5, comparing the three pixels of the first column Point data: Pmax1, Pmax2, Pmax3, taking the minimum value, which is recorded as Pmax_min;
  • Step S423 reading and sorting the three data in the second column of the new 3x3 matrix, taking the intermediate value therein, and storing it in the register, which is recorded as Pmed_med; that is, referring to FIG. 5, comparing the three pixels of the second column Point data: Pmed1, Pmed2, Pmed3, taking the middle value, recorded as Pmed_med;
  • Step S424 reading and sorting the three data in the third column of the new 3x3 matrix, taking the maximum value thereof, and storing it in the register, which is recorded as Pmin_max; that is, referring to FIG. 5, comparing the three columns of the third column Pixel point data: Pmin1, Pmin2, Pmin3, taking the minimum value, denoted as Pmin_min;
  • Step S425 reading and sorting Pmax_min, Pmed_med, and Pmin_max, taking the intermediate value, storing it in a register, and recording it as Pmed;
  • Step S426, assigning the value of Pmed to the central pixel of the original 3x3 matrix.
  • the step S60 the step of dividing the video data after the nonlinear smoothing processing into two parts, specifically includes:
  • the data is divided into two pieces of data of about 960X1080p, and the data can be split into two upper and lower parts as needed.
  • step S70 the two parts of the split data are respectively enlarged to the original resolution, and the steps of displaying the enlarged two parts of the data through the two display screens respectively include: reading the first The data in a buffer area is enlarged and the image data is enlarged, converted into differential video interface data, and sent to the first display screen for display; at the same time, the data in the second buffer area is read, and the image data is enlarged and converted into a differential video interface. After the data is sent to the second display for display.
  • step S70 the process of reading, enlarging and displaying the data in the first buffer area is parallel with the process of reading, enlarging and displaying the data in the second buffer area, so that the human eye can pass
  • the images displayed simultaneously on the two displays see the 3D image display.
  • step S10 the 3D video display process of steps S30, S40, S50, S60, and S70 described above can obtain an excellent 3D video display effect, so that different users can Can see excellent 3D video quality.
  • the first display screen and the second display screen are both OLED screens, so the data needs to be converted into differential video interface data, and then sent to two display screens for display.
  • the binocular 3D video display method further includes step S80: when the video data is 2D video data, copying the 2D video data after nonlinear smoothing into two copies, and Two copies of the 2D video data are displayed on two display screens.
  • a binocular 3D video display device with a head mounted display comprising: a diopter adjustment/pitch adjustment module 10 for acquiring The adjustment interface for displaying the visuos or the cymbal distance when the gaze adjustment or the pacing adjustment signal of the head-mounted display is adjusted, and the data reading module 20 is configured to obtain the playback for playing the video.
  • the video data to be displayed is read;
  • the image interface module 40 is configured to generate a standard timing signal corresponding to the resolution of the video data; and the image smoothing filtering module 50 is configured to perform non-video data according to the standard timing signal.
  • the determining module 30 is configured to determine whether the video data is 3D video data or 2D video data; and the image left and right separating module 60 divides the 3D video data after the nonlinear smoothing process into two when the video data is 3D video data.
  • the image magnifying display module 70 is configured to separately enlarge and split the two parts of the 3D video data frame, and then separately transmit the enlarged two parts of the 3D video data frame. Two screens to be displayed.
  • the visual adjustment/pitch adjustment module 10 includes: an interface display unit for displaying the boot interface, and displaying a left eye visual adjustment interface when acquiring an externally input left eye visual adjustment signal; and, acquiring the external When the right eyesight adjustment signal is input, the right eye vision adjustment interface is displayed; and when the externally input pupil distance adjustment signal is acquired, the pupil distance adjustment interface is displayed.
  • the image interface module 40 includes a timing signal generating unit 41 for generating a line synchronization signal, a field synchronization signal, and a data enable signal DE, respectively.
  • the image smoothing filter module 50 includes: a first reading unit 51, configured to sequentially read the mth line, the m+1th line, and the first frame of the current frame of the video data when the data enable signal DE is valid. m + 2 rows of pixel data, and sequentially stored in the first buffer unit, the second buffer unit and the third buffer unit; the filtering unit 52 is configured to perform nonlinear smoothing processing on the data of the current pixel; wherein Natural number.
  • the first row of three pixel data is sorted into: Pmax1, Pmed1, and Pmin1; and the second row of three pixel data is performed.
  • the order is: Pmax2, Pmed2, Pmin2; the third row of three pixel data is sorted into: Pmax3, Pmed3, Pmin3, to obtain a new 3x3 matrix; compare the three pixel data of the first column: Pmax1, Pmax2, Pmax3 , take the minimum value, denoted as Pmax_min; compare the three pixel data of the second column: Pmed1, Pmed2, Pmed3, take the middle value, denoted as Pmed_med; compare the three pixel data of the third column: Pmin1 , Pmin2, Pmin3, take the minimum value, denoted as Pmin_min; read and sort Pmax_min, Pmed_med and Pmin_max, take the intermediate value, store it in the register, record it as Pmed; assign the value of Pmed to the original 3x3 matrix Center pixel.
  • the block 60 includes: a second reading unit 61, configured to read pixel point data subjected to nonlinear smoothing processing when the data enable signal DE is valid for a 3D video data frame having a resolution of axb; the counting unit 62, After the row of data is read by the second reading unit, the data enable signal counter is incremented by one, denoted as DE_CN; and the second determining unit 63 is configured to determine the size of the data enable signal counter DE_CN; the first buffer The unit 64 is configured to store the read non-linear smoothing pixel point data into the first buffer area 641 when DE_CN ⁇ 1 and DE_CN ⁇ (a/2); and the second buffer unit 65 is configured to: When DE_CN ⁇ (a/2) +1 and DE_CN ⁇ a, the read nonlinearly smoothed pixel point data is stored in the second buffer area 651.
  • the image enlargement display module 70 includes: a first enlarged display unit 71, configured to read data in the first buffer area, and enlarge the image data, After being converted into differential video interface data, the data is sent to the first display screen for display; the second enlarged display unit 72 is configured to read data in the second buffer area, and enlarge the image data, and convert the data into differential video interface data, and then send the data. Display to the second display.
  • the way to enlarge the image may be to enlarge by column, or to enlarge the image by other methods.
  • the first display screen and the second display screen are both OLED screens.
  • the diopter adjustment/pitch adjustment module includes any one of the following structures that facilitates the user to input the gaze adjustment signal and the slant adjustment signal:
  • An input button that distinguishes different input signals by different input of one input button For example: when the head-mounted display system is powered on, the logo is displayed, and after 5 seconds, the left-eye visual adjustment interface is automatically entered. The user rotates the left-eye visual adjustment knob according to the prompt to adjust the visibility. If the adjustment is clear, click the mode button to exit. And enter the right eyesight adjustment interface, the user rotates the right eyesight adjustment knob according to the prompt to adjust the visibility, if the adjustment is clear, click the mode button to exit and enter the distance adjustment interface, The user can slide the distance adjustment slider to adjust the distance according to the prompt. If the screen has no ghosting, click the mode button to exit and enter the main interface. If the main interface is not clear, click the mode button to re-do the visual and pacing adjustment steps. .
  • buttons are used, one for the dioptric adjustment signal input and the other for the interpupillary adjustment signal input.
  • the voice input device receives the external voice control information and performs voice recognition, and then performs corresponding display operations according to the information content.
  • the touch screen that is, the touch input device provided on the head mounted display, such as a touch screen, receives the adjustment information of the external input, which may be an operation of clicking the touch screen or an operation of sliding on the touch screen.
  • the method further includes: a 2D video display module, configured to copy the 2D video data when the video data is 2D video data, and copy the original 2D video data and the copied 2D video data. Displayed separately on the two displays.
  • the 2D or 3D display mode can be switched by a display mode control button.
  • each module and unit is implemented by hardware, software or software/hardware.
  • a head mounted display comprising a binocular 3D video display device as described above for performing 3D video display using any of the binocular 3D video display methods as described above.
  • the head mounted display further includes a main body frame, an eyepiece system disposed on the main body frame, and two display screens and a PCB board.
  • the binocular 3D video display device and the display method thereof are described in the foregoing embodiments, and details are not described herein again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

涉及头戴显示器及其双目3D视频显示方法和装置,其中双目3D视频显示方法包括以下步骤:在获取到视度调节或瞳距调节信号时,显示视度或瞳距的调节界面,进行视度调节或瞳距调节;读取待显示的视频数据;产生与视频数据的分辨率对应的标准时序信号,进行非线性平滑处理;判断视频数据为3D视频数据还是2D视频数据;将经过非线性平滑处理后的3D视频数据帧分成两部分;对拆分后的两部分3D视频数据帧分别进行放大处理,将放大后的两部分3D视频数据帧分别发送至两块显示屏进行显示。其可快速方便完成头戴显示器的双目光学模组的双目视度和瞳距的调节及双目3D视频显示,使不同视度和瞳距的使用者得到完美的观影效果。

Description

头戴显示器及其双目3D视频显示方法和装置 技术领域
本发明涉及图像显示算法技术领域,更具体地说,涉及一种头戴显示器及其双目3D视频显示方法和装置。
背景技术
头戴显示器是现代显示技术中一种全新技术,高分辨率微型显示屏技术的发展、成像光学设计以及超精密制造的完善,均为头戴显示器的设计开辟了新途径,使其在增强现实、虚拟现实以及立体显示等方面均有重要应用。
在目前应用较多的用于视频观看的头戴显示器中,视频影像的显示效果是非常关键的技术环节。无论是对于左右分屏显示的头戴显示器、还是对于全屏显示的头戴显示器来说,2D视频显示技术都较为成熟,其显示技术的关键在于3D视频的显示效果。而现有的头戴显示器在满足了正常显示2D视频的情况下,很难保证同时具有优异的3D视频显示效果。同时,对于视力不好的用户而言,其视力的不同状况也影响了其观看到的显示效果。
因此,需要针对视力不佳的用户提供完整的3D视频显示方案,使不同用户均能快速方便完成头戴显示器的双目视度和瞳距的调节,并得到完美的观影效果。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种头戴 显示器及其双目3D视频显示方法和装置。
本发明解决其技术问题所采用的技术方案是:
构造一种头戴显示器的双目3D视频显示方法,其中,所述头戴显示器包含两块独立驱动的显示屏;所述双目3D视频显示方法包括以下步骤:
在获取到视度调节或瞳距调节信号时,显示视度或瞳距的调节界面,进行视度调节或瞳距调节;
在获取到用于播放视频的播放启动信号时,读取待显示的视频数据;
产生与所述视频数据的分辨率对应的标准时序信号;
根据所述标准时序信号对所述视频数据进行非线性平滑处理;
判断所述视频数据为3D视频数据还是2D视频数据;
在所述视频数据为3D视频数据时,将经过非线性平滑处理后的3D视频数据帧分成两部分;
对拆分后的两部分3D视频数据帧分别进行放大处理,再将放大后的两部分3D视频数据帧分别发送至两块显示屏进行显示。
本发明所述的双目3D视频显示方法,其中,所述视度调节或瞳距调节过程包括:
获取外部输入的左眼视度调节信号,显示左眼视度调节界面;
获取外部输入的右眼视度调节信号,显示右眼视度调节界面;
获取外部输入的瞳距调节信号,显示瞳距调节界面。
本发明所述的双目3D视频显示方法,其中,所述标准时序信号包括:行同步信号、场同步信号和数据使能信号DE;
根据所述标准时序信号对所述视频数据进行非线性平滑处理的步骤具体包括:
在所述数据使能信号DE有效时,依次读取所述3D视频数据帧第m行、第m+1行和第m+2行像素点的数据,并分别存入三个缓存单元
对当前像素点数据进行非线性平滑处理;
其中,所述m为自然数。
本发明所述的双目3D视频显示方法,其中,将经过非线性平滑处理后的3D视频数据帧分成两部分的步骤具体包括:
对于分辨率为axb的3D视频数据帧,在所述数据使能信号DE有效时,读取经过非线性平滑处理的像素点数据,每读取完一行数据后,令数据使能信号计数器计数加1,记为DE_CN;
判断所述数据使能信号计数器DE_CN的大小;
在DE_CN≥1且DE_CN≤(a/2)时,将所读取的经过非线性平滑处理的像素点数据存入第一缓存区内;
在DE_CN≥(a/2)+1且DE_CN≤a时,将所读取的经过非线性平滑处理的像素点数据存入第二缓存区内。
本发明所述的双目3D视频显示方法,其中,对拆分后的两部分3D视频数据帧分别进行放大处理,再将放大后的两部分3D视频数据帧分别发送至两块显示屏进行显示的步骤具体包括:
读取所述第一缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第一显示屏进行显示;
读取所述第二缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第二显示屏进行显示。
本发明所述的双目3D视频显示方法,其中,在获取用户输入的视度调节信号时,先判断为左眼视度调节信号还是右眼视度调节信号,并根据判断结果 分别显示左眼视度调节界面或右眼视度调节界面;
其中,所述左眼视度调节界面和所述右眼视度调节界面分别包括多个方框线条、十字线条和/或文字信息中的一种或多种。
本发明所述的双目3D视频显示方法,其中,所述瞳距调节界面包括从左至右延伸的横线条和从上至下延伸的竖线条,所述横线条的两端设置有垂直于所述横线条的短纵线条,所述竖线条的两端设置有垂直于所述竖线条的短横线条。
本发明所述的双目3D视频显示方法,其中,区分用户输入的是所述左眼视度调节信号、所述右眼视度调节信号、还是所述瞳距调节信号的方式包括:
获取来自同一按键的输入信息,通过同一按键的不同输入次序进行区分;
或者,获取不同按键的输入信息进行区分;
或者,获取不同语音识别输入信息进行区分;
或者,获取触摸屏的不同触摸操作信息进行区分。
本发明所述的双目3D视频显示方法,其中,所述左眼视度调节界面、所述右眼视度调节界面和所述瞳距调节界面为同一调节界面。
本发明所述的双目3D视频显示方法,其中,所述方法还包括步骤:
在所述视频数据为2D视频数据时,对经过非线性平滑处理后的2D视频数据复制成两份,并将两份所述2D视频数据分别显示在两块显示屏上。
本发明还提供了一种头戴显示器的双目3D视频显示装置,其中,所述头戴显示器包含两块独立驱动的显示屏;所述双目3D视频显示装置包括:
视度调节/瞳距调节模块,用于在获取到视度调节或瞳距调节信号时,显示视度或瞳距的调节界面,进行视度调节或瞳距调节;
数据读取模块,用于在获取到用于播放视频的播放启动信号时,读取待显 示的视频数据;
图像接口模块,用于产生与视频数据的分辨率对应的标准时序信号;
图像平滑滤波模块,用于根据所述标准时序信号,对所述视频数据进行非线性平滑处理;
判断模块,用于判断所述视频数据为3D视频数据还是2D视频数据;
图像左右分离模块,用于在所述视频数据为3D视频数据时,将经过非线性平滑处理后的3D视频数据帧分成两部分;
图像放大显示模块,用于对拆分后的两部分3D视频数据帧分别进行放大处理,再将放大后的两部分3D视频数据帧分别发送至两块显示屏进行显示。
本发明所述的双目3D视频显示装置,其中,所述视度调节/瞳距调节模块包括:
界面显示单元,用于显示开机界面,以及在获取外部输入的左眼视度调节信号时,显示左眼视度调节界面;以及,在获取外部输入的右眼视度调节信号时,显示右眼视度调节界面;以及,在获取外部输入的瞳距调节信号时,显示瞳距调节界面。
本发明所述的双目3D视频显示装置,其中,所述图像接口模块包括:
时序信号产生单元,用于分别产生行同步信号、场同步信号和数据使能信号DE;
所述图像平滑滤波模块包括:
第一读取单元,用于在所述数据使能信号DE有效时,依次读取所述3D视频数据帧第m行、第m+1行和第m+2行像素点的数据,并分别存入三个缓存单元;
滤波单元,用于对当前像素点的数据进行非线性平滑处理;
其中,所述m为自然数。
本发明所述的双目3D视频显示装置,其中,所述图像放大显示模块包括:
第一放大显示单元,用于读取所述第一缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第一显示屏进行显示;
第二放大显示单元,用于读取所述第二缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第二显示屏进行显示。
本发明所述的双目3D视频显示装置,其中,所述视度调节/瞳距调节模块包括便于用户输入所述视度调节信号和所述瞳距调节信号的以下任一结构:
一个输入按键;或者,两个不同输入按键;或者,语音输入设备;或者,触摸屏。
本发明所述的双目3D视频显示装置,其中,所述装置还包括:
2D视频显示模块,用于在所述视频数据为2D视频数据时,对经过非线性平滑处理后的2D视频数据复制成两份,并将两份所述2D视频数据分别显示在两块显示屏上。
本发明还提供了一种头戴显示器,其中,包含如前面所述的双目3D视频显示装置,或采用如前面所述的任一种双目3D视频显示方法进行3D视频显示。
本发明的有益效果在于:通过完整的视度/瞳距调节方案及优质双目3D视频显示方法,可快速方便完成头戴显示器的双目光学模组的双目视度和瞳距的调节及3D视频显示,使不同视度和瞳距的使用者得到完美的观影效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将结合附图及实施例对本发明作进一步说明,下面描述中的附图仅仅是本发明的部分实 施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图:
图1是本发明的双目3D视频显示方法大体流程图;
图2a是本发明的双目3D视频显示方法中视度/瞳距调节流程图;图2b是左眼视度调节界面参考示意图;图2c是右眼调节界面参考示意图;图2d是瞳距调节界面参考示意图;
图3是本发明的双目3D视频显示方法中步骤S40的详细步骤;
图4是本发明的双目3D视频显示方法中步骤S42的详细步骤;
图5是本发明的双目3D视频显示方法中进行单个像素点非线性平滑处理的参考示图;
图6是本发明的双目3D视频显示方法中步骤S60的详细步骤;
图7是本发明的双目3D视频显示装置原理框图;
图8是本发明的双目3D视频显示装置的图像接口模块原理框图;
图9是本发明的双目3D视频显示装置的图像平滑滤波模块原理框图;
图10是本发明的双目3D视频显示装置的图像左右分离模块原理框图;
图11是本发明的双目3D视频显示装置的图像放大显示模块原理框图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的部分实施例,而不是全部实施例。基于本发明的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
本发明较佳实施例的头戴显示器的双目3D视频显示方法流程如图1所示,其中头戴显示器包含两块显示屏,上述方法开始于步骤S00,还包括以下步骤:
S10、在获取到用于调节头戴显示器的视度或瞳距的视度调节或瞳距调节信号时,显示视度或瞳距的调节界面,进行视度调节或瞳距调节;
S20、在获取到用于播放视频的播放启动信号时,读取待显示的视频数据;
S30、产生与视频数据的分辨率对应的标准时序信号;
S40、根据标准时序信号,对视频数据进行非线性平滑处理;
S50、判断视频数据为3D视频数据还是2D视频数据;
S60、在所述视频数据为3D视频数据时,将经过非线性平滑处理后的3D视频数据帧分成两部分;
S70、对拆分后的两部分3D视频数据帧分别进行放大处理,再将放大后的两部分3D视频数据帧分别发送至头戴显示器的两块显示屏进行显示;
上述双目3D视频显示方法结束于步骤S90。
上述双目3D视频显示方法通过完整的视度/瞳距调节方案及优质双目3D视频显示方法,可快速方便完成头戴显示器的双目光学模组的双目视度和瞳距的调节及3D视频显示,使不同视度和瞳距的使用者得到完美的观影效果。
采用上述步骤S10-S70的处理流程,可有效去除图像白点干扰,滤除图像噪声,结合视距和瞳距调节过程,可使得佩戴者观看到的图像更加清晰。
上述双目3D视频显示方法中,步骤S10中所述视度调节或瞳距调节过程包括:显示开机界面;获取外部输入的左眼视度调节信号,显示左眼视度调节界面;获取外部输入的右眼视度调节信号,显示右眼视度调节界面;获取外部输入的瞳距调节信号,显示瞳距调节界面。
具体地,在获取用户输入的视度调节信号时,判断为左眼视度调节信号还 是右眼视度调节信号,并根据判断结果分别显示左眼视度调节界面或右眼视度调节界面;上述左眼视度调节界面和右眼视度调节界面分别包括多个方框线条、十字线条和/或文字信息中的一种或多种,如图2b和图2c所示。
具体地,在获取用户输入的瞳距调节信号时,显示瞳距调节界面。上述瞳距调节界面包括从左至右延伸的横线条和从上至下延伸的竖线条,横线条的两端设置有垂直于横线条的短纵线条,竖线条的两端设置有垂直于竖线条的短横线条,如图2d所示。
上述实施例中,左眼视度调节界面、右眼视度调节界面和瞳距调节界面可以是不同的三个调节界面,或者为同一调节界面。
其中,区分用户输入的是视度调节信号还是瞳距调节信号的方式包括:获取来自同一按键的输入信息,通过同一按键的不同输入次序进行区分;或者,获取不同按键的输入信息进行区分;或者,获取不同语音识别输入信息进行区分;或者,获取触摸屏的不同触摸操作信息进行区分。
参阅图2a的视度/瞳距调节流程,以通过同一模式按键的不同输入次序进行区分为例,上述双目3D视频显示方法中显示视度或瞳距的调节界面的流程为:
在头戴显示器系统上电启动,显示开机界面,预定时间之后自动进入左眼视度调节界面,用户根据提示旋转左眼视度调节旋钮进行视度调节,如调整清晰,单击模式按键退出并进入右眼视度调节界面,用户根据提示旋转右眼视度调节旋钮进行视度调节,如调整清晰,单击模式按键退出并进入瞳距调节界面,用户根据提示滑动瞳距调节滑钮调节瞳距,如画面无重影,单击模式按键退出并进入视频播放主界面,如视频播放主界面显示不清晰,可单击模式按键重新进行视度和/或瞳距调节步骤。
进一步地,上述双目3D视频显示方法中,产生与视频数据的分辨率对应的标准时序信号的步骤具体包括:分别产生行同步信号、场同步信号和数据使能信号DE,通过该三个信号保证后续处理流程同步。
如图3所示,上述双目3D视频显示方法中步骤S40具体包括:
S41、在所述数据使能信号DE有效时,依次读取当前3D视频数据帧第m行、第m+1行和第m+2行像素点的数据,并分别存入三个缓存单元:第一缓存单元、第二缓存单元和第三缓存单元;
S42、对当前像素点的数据进行非线性平滑处理;其中,m为自然数。
如图4所示,上述双目3D视频显示方法中的步骤S42具体包括:
步骤S421、读取以当前像素点为中心点的原始3x3矩阵像素点对应的数据,对3x3矩阵中的每行像素点的数据按由大到小顺序进行排序,形成新的3x3矩阵;即,参阅图5,对于由P11、P12……P32、P33构成的3X3像素点矩阵,对第一行三个像素点数据进行排序为:Pmax1、Pmed1、Pmin1;对第二行三个像素点数据进行排序为:Pmax2、Pmed2、Pmin2;对第三行三个像素点数据进行排序为:Pmax3、Pmed3、Pmin3,得到新的3x3矩阵;
步骤S422、读取并对新的3x3矩阵第一列中的三个数据进行排序,取其中的最小值,存入寄存器,记为Pmax_min;即,参阅图5,比较第一列的三个像素点数据:Pmax1、Pmax2、Pmax3,取其中的最小值,记为Pmax_min;
步骤S423、读取并对新的3x3矩阵第二列中的三个数据进行排序,取其中的中间值,存入寄存器,记为Pmed_med;即,参阅图5,比较第二列的三个像素点数据:Pmed1、Pmed2、Pmed3,取其中的中间值,记为Pmed_med;
步骤S424、读取并对新的3x3矩阵第三列中的三个数据进行排序,取其中的最大值,存入寄存器,记为Pmin_max;即,参阅图5,比较第三列的三个 像素点数据:Pmin1、Pmin2、Pmin3,取其中的最小值,记为Pmin_min;
步骤S425、读取并对Pmax_min、Pmed_med和Pmin_max进行排序,取其中间值,存入寄存器,记为Pmed;
步骤S426、将Pmed的值赋给原始3x3矩阵的中心像素点。
如图6所示,上述双目3D视频显示方法中,步骤S60、将经过非线性平滑处理后的视频数据分成两部分的步骤具体包括:
S61、对于分辨率为axb的3D视频数据帧,在数据使能信号DE有效时,读取经过非线性平滑处理的像素点数据,每读取完一行数据后,令数据使能信号计数器计数加1,记为DE_CN;
S62、判断数据使能信号计数器DE_CN的大小;
S63、在DE_CN≥1且DE_CN≤(a/2)时,将所读取的经过非线性平滑处理的像素点数据存入第一缓存区内;
S64、在DE_CN≥(a/2)+1且DE_CN≤a时,将所读取的经过非线性平滑处理的像素点数据存入第二缓存区内。
例如,对于分辨率为1920X1080p的3D视频数据帧,在上述数据使能信号计数器计数至960之前的像素点数据存放于第一缓存区内,DE_CN=961之后的像素点数据存放在第二缓存区内,从而将数据分成两份960X1080p的左右两块数据,也可以根据需要将数据拆分成上下两块。
上述双目3D视频显示方法中,步骤S70、对拆分后的两部分数据分别放大至原始分辨率,将放大后的两部分数据分别通过两块显示屏进行显示的步骤具体包括:读取第一缓存区内的数据并放大图像数据,转换成差分视频接口数据后,发送至第一显示屏进行显示;同时,读取第二缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第二显示屏进行显示。
即,上述步骤S70中,对第一缓存区内数据的读取、放大及显示过程,与对第二缓存区内数据的读取、放大及显示的过程是并行的过程,使得人眼能通过两块显示屏上同时显示的图像看到3D图像显示效果。
经验证,在进行了步骤S10的视度/瞳距调节后,再通过上述步骤S30、S40、S50、S60、S70的3D视频显示流程,可得到优异的3D视频显示效果,使得不同使用者均能看到优异的3D视频画质。
上述双目3D视频显示方法中,优选地,第一显示屏和第二显示屏均为OLED屏,因此需要将上述数据转换成差分视频接口数据后,再发送至两块显示屏进行显示。
进一步地,如图1所示,上述双目3D视频显示方法还包括步骤S80:在所述视频数据为2D视频数据时,对经过非线性平滑处理后的2D视频数据复制成两份,并将两份所述2D视频数据分别显示在两块显示屏上。
在本发明的另一实施例中,还提供了一种头戴显示器的双目3D视频显示装置,如图7所示,其包括:视度调节/瞳距调节模块10,用于在获取到用于调节头戴显示器的视度或瞳距的视度调节或瞳距调节信号时,显示视度或瞳距的调节界面;数据读取模块20,用于在获取到用于播放视频的播放启动信号时,读取待显示的视频数据;图像接口模块40,用于产生与视频数据的分辨率对应的标准时序信号;图像平滑滤波模块50,用于根据标准时序信号,对视频数据进行非线性平滑处理;判断模块30,用于判断视频数据为3D视频数据还是2D视频数据;图像左右分离模块60,在视频数据为3D视频数据时,将经过非线性平滑处理后的3D视频数据分成两部分;图像放大显示模块70,用于对拆分后的两部分3D视频数据帧分别进行放大处理,再将放大后的两部分3D视频数据帧分别发送至两块显示屏进行显示。上述双目3D视频显示装置 可快速方便完成头戴显示器的双目光学模组的双目视度和瞳距的调节及3D视频显示,使不同视度和瞳距的使用者得到完美的观影效果。
其中,视度调节/瞳距调节模块10包括:界面显示单元,用于显示开机界面,以及在获取外部输入的左眼视度调节信号时,显示左眼视度调节界面;以及,在获取外部输入的右眼视度调节信号时,显示右眼视度调节界面;以及,在获取外部输入的瞳距调节信号时,显示瞳距调节界面。
其中,如图8所示,上述图像接口模块40包括:时序信号产生单元41,用于分别产生行同步信号、场同步信号和数据使能信号DE。
如图9所示,上述图像平滑滤波模块50包括:第一读取单元51,用于在数据使能信号DE有效时,依次读取视频数据当前帧第m行、第m+1行和第m+2行像素点的数据,并依次存入第一缓存单元、第二缓存单元和第三缓存单元;滤波单元52,用于对当前像素点的数据进行非线性平滑处理;其中,m为自然数。
参阅图5,对于由P11、P12……P32、P33构成的3X3像素点矩阵,对第一行三个像素点数据进行排序为:Pmax1、Pmed1、Pmin1;对第二行三个像素点数据进行排序为:Pmax2、Pmed2、Pmin2;对第三行三个像素点数据进行排序为:Pmax3、Pmed3、Pmin3,得到新的3x3矩阵;比较第一列的三个像素点数据:Pmax1、Pmax2、Pmax3,取其中的最小值,记为Pmax_min;比较第二列的三个像素点数据:Pmed1、Pmed2、Pmed3,取其中的中间值,记为Pmed_med;比较第三列的三个像素点数据:Pmin1、Pmin2、Pmin3,取其中的最小值,记为Pmin_min;读取并对Pmax_min、Pmed_med和Pmin_max进行排序,取其中间值,存入寄存器,记为Pmed;将Pmed的值赋给原始3x3矩阵的中心像素点。
进一步地,如图10所示,上述双目3D视频显示装置中,图像左右分离模 块60包括:第二读取单元61,用于对于分辨率为axb的3D视频数据帧,在数据使能信号DE有效时,读取经过非线性平滑处理的像素点数据;计数单元62,用于在第二读取单元每读取完一行数据后,令数据使能信号计数器计数加1,记为DE_CN;第二判断单元63,用于判断数据使能信号计数器DE_CN的大小;第一缓存单元64,用于在DE_CN≥1且DE_CN≤(a/2)时,将所读取的经过非线性平滑处理的像素点数据存入第一缓存区641内;第二缓存单元65,用于在DE_CN≥(a/2)+1且DE_CN≤a时,将所读取的经过非线性平滑处理的像素点数据存入第二缓存区651内。
进一步地是,如图11所示,上述双目3D视频显示装置中,图像放大显示模块70包括:第一放大显示单元71,用于读取第一缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第一显示屏进行显示;第二放大显示单元72,用于读取第二缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第二显示屏进行显示。其中放大图像的方式可以是按列进行放大,或其他方法进行图像放大。
优选地,上述双目3D视频显示装置中,第一显示屏和第二显示屏均为OLED屏。
优选地,上述双目3D视频显示装置中,视度调节/瞳距调节模块包括便于用户输入视度调节信号和瞳距调节信号的以下任一结构:
一个输入按键,可以通过一个输入按键的不同次输入来区分不同的输入信号。例如:在头戴显示器系统上电启动,显示logo,5秒之后自动进入左眼视度调节界面,用户根据提示旋转左眼视度调节旋钮进行视度调节,如调整清晰,单击模式按键退出并进入右眼视度调节界面,用户根据提示旋转右眼视度调节旋钮进行视度调节,如调整清晰,单击模式按键退出并进入瞳距调节界面,用 户根据提示滑动瞳距调节滑钮调节瞳距,如画面无重影,单击模式按键退出并进入主界面,如主界面显示不清晰,可单击模式按键重新进行视度和瞳距调节步骤。
或者,通过两个不同输入按键,一个用于进行视度调节信号输入,另一个用于瞳距调节信号输入。
或者,语音输入设备,即接收外部语音控制信息,并进行语音识别,然后根据信息内容进行相应的显示操作。
或者,触摸屏,即通过设置于头戴显示器上的触摸输入设备,例如触摸屏,来接收外部输入的调节信息,可以是点击触摸屏的操作,或者是在触摸屏上滑动的操作。
在进一步的双目3D视频显示装置中,其还包括:2D视频显示模块,用于在视频数据为2D视频数据时,对2D视频数据进行复制,并将原始2D视频数据和复制的2D视频数据分别显示在两块显示屏上。可以通过一个显示模式控制按键实现2D或3D显示模式的切换。
上述双目3D视频显示装置中,各模块和单元由硬件、软件或软/硬件结合实现。
在本发明的另一实施例中,还提供了一种头戴显示器,其中包括如前所述的双目3D视频显示装置,采用如前述任一种双目3D视频显示方法进行3D视频显示。具体地,该头戴显示器还包括主体框架、设置于主体框架上的目镜系统和两块显示屏、PCB板。其中,双目3D视频显示装置及其显示方法参见前述各实施例,在此不再赘述。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (17)

  1. 一种头戴显示器的双目3D视频显示方法,其特征在于,所述头戴显示器包含两块独立驱动的显示屏;所述双目3D视频显示方法包括以下步骤:
    在获取到视度调节或瞳距调节信号时,显示视度或瞳距的调节界面,进行视度调节或瞳距调节;
    在获取到用于播放视频的播放启动信号时,读取待显示的视频数据;
    产生与所述视频数据的分辨率对应的标准时序信号,根据所述标准时序信号对所述视频数据进行非线性平滑处理;
    判断所述视频数据为3D视频数据还是2D视频数据;
    在所述视频数据为3D视频数据时,将经过非线性平滑处理后的3D视频数据帧分成两部分;
    对拆分后的两部分3D视频数据帧分别进行放大处理,再将放大后的两部分3D视频数据帧分别发送至两块所述显示屏进行显示。
  2. 根据权利要求1所述的双目3D视频显示方法,其特征在于,所述视度调节或瞳距调节过程包括:
    获取外部输入的左眼视度调节信号,显示左眼视度调节界面;
    获取外部输入的右眼视度调节信号,显示右眼视度调节界面;
    获取外部输入的瞳距调节信号,显示瞳距调节界面。
  3. 根据权利要求1所述的双目3D视频显示方法,其特征在于,所述标准时序信号包括:行同步信号、场同步信号和数据使能信号DE;
    根据所述标准时序信号对所述视频数据进行非线性平滑处理的步骤具体包括:
    在所述数据使能信号DE有效时,依次读取所述3D视频数据帧第m行、第m+1行和第m+2行像素点的数据,并分别存入三个缓存单元
    对当前像素点数据进行非线性平滑处理;
    其中,所述m为自然数。
  4. 根据权利要求3所述的双目3D视频显示方法,其特征在于,将经过非线性平滑处理后的3D视频数据帧分成两部分的步骤具体包括:
    对于分辨率为axb的3D视频数据帧,在所述数据使能信号DE有效时,读取经过非线性平滑处理的像素点数据,每读取完一行数据后,令数据使能信号计数器计数加1,记为DE_CN;
    判断所述数据使能信号计数器DE_CN的大小;
    在DE_CN≥1且DE_CN≤(a/2)时,将所读取的经过非线性平滑处理的像素点数据存入第一缓存区内;
    在DE_CN≥(a/2)+1且DE_CN≤a时,将所读取的经过非线性平滑处理的像素点数据存入第二缓存区内。
  5. 根据权利要求4所述的双目3D视频显示方法,其特征在于,对拆分后的两部分3D视频数据帧分别进行放大处理,再将放大后的两部分3D视频数据帧分别发送至两块显示屏进行显示的步骤具体包括:
    读取所述第一缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第一显示屏进行显示;
    读取所述第二缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第二显示屏进行显示。
  6. 根据权利要求2所述的双目3D视频显示方法,其特征在于,在获取用户输入的视度调节信号时,先判断为左眼视度调节信号还是右眼视度调节信 号,并根据判断结果分别显示左眼视度调节界面或右眼视度调节界面;
    其中,所述左眼视度调节界面和所述右眼视度调节界面分别包括多个方框线条、十字线条和/或文字信息中的一种或多种。
  7. 根据权利要求2所述的双目3D视频显示方法,其特征在于,所述瞳距调节界面包括从左至右延伸的横线条和从上至下延伸的竖线条,所述横线条的两端设置有垂直于所述横线条的短纵线条,所述竖线条的两端设置有垂直于所述竖线条的短横线条。
  8. 根据权利要求6或7所述的双目3D视频显示方法,其特征在于,区分用户输入的是所述左眼视度调节信号、所述右眼视度调节信号、还是所述瞳距调节信号的方式包括:
    获取来自同一按键的输入信息,通过同一按键的不同输入次序进行区分;
    或者,获取不同按键的输入信息进行区分;
    或者,获取不同语音识别输入信息进行区分;
    或者,获取触摸屏的不同触摸操作信息进行区分。
  9. 根据权利要求2所述的双目3D视频显示方法,其特征在于,所述左眼视度调节界面、所述右眼视度调节界面和所述瞳距调节界面为同一调节界面。
  10. 根据权利要求1所述的双目3D视频显示方法,其特征在于,所述方法还包括步骤:
    在所述视频数据为2D视频数据时,对经过非线性平滑处理后的2D视频数据复制成两份,并将两份所述2D视频数据分别显示在两块显示屏上。
  11. 一种头戴显示器的双目3D视频显示装置,其特征在于,所述头戴显示器包含两块独立驱动的显示屏;所述双目3D视频显示装置包括:
    视度调节/瞳距调节模块,用于在获取到视度调节或瞳距调节信号时,显 示视度或瞳距的调节界面,进行视度调节或瞳距调节;
    数据读取模块,用于在获取到用于播放视频的播放启动信号时,读取待显示的视频数据;
    图像接口模块,用于产生与视频数据的分辨率对应的标准时序信号;
    图像平滑滤波模块,用于根据所述标准时序信号,对所述视频数据进行非线性平滑处理;
    判断模块,用于判断所述视频数据为3D视频数据还是2D视频数据;
    图像左右分离模块,用于在所述视频数据为3D视频数据时,将经过非线性平滑处理后的3D视频数据帧分成两部分;
    图像放大显示模块,用于对拆分后的两部分3D视频数据帧分别进行放大处理,再将放大后的两部分3D视频数据帧分别发送至两块所述显示屏进行显示。
  12. 根据权利要求11所述的双目3D视频显示装置,其特征在于,所述视度调节/瞳距调节模块包括:
    界面显示单元,用于显示开机界面,以及在获取外部输入的左眼视度调节信号时,显示左眼视度调节界面;以及,在获取外部输入的右眼视度调节信号时,显示右眼视度调节界面;以及,在获取外部输入的瞳距调节信号时,显示瞳距调节界面。
  13. 根据权利要求12所述的双目3D视频显示装置,其特征在于,所述图像接口模块包括:时序信号产生单元,用于分别产生行同步信号、场同步信号和数据使能信号DE;
    所述图像平滑滤波模块包括:
    第一读取单元,用于在所述数据使能信号DE有效时,依次读取所述3D 视频数据帧第m行、第m+1行和第m+2行像素点的数据,并分别存入三个缓存单元;
    滤波单元,用于对当前像素点的数据进行非线性平滑处理;
    其中,所述m为自然数。
  14. 根据权利要求13所述的双目3D视频显示装置,其特征在于,所述图像放大显示模块包括:
    第一放大显示单元,用于读取所述第一缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第一显示屏进行显示;
    第二放大显示单元,用于读取所述第二缓存区内的数据,并放大图像数据,转换成差分视频接口数据后,发送至第二显示屏进行显示。
  15. 根据权利要求11所述的双目3D视频显示装置,其特征在于,所述视度调节/瞳距调节模块包括便于用户输入所述视度调节信号和所述瞳距调节信号的以下任一结构:
    一个输入按键;或者,两个不同输入按键;或者,语音输入设备;或者,触摸屏。
  16. 根据权利要求11所述的双目3D视频显示装置,其特征在于,所述装置还包括:
    2D视频显示模块,用于在所述视频数据为2D视频数据时,对经过非线性平滑处理后的2D视频数据复制成两份,并将两份所述2D视频数据分别显示在两块显示屏上。
  17. 一种头戴显示器,其特征在于,包含如权利要求11-16中所述的双目3D视频显示装置,或采用如权利要求1-10中任一种双目3D视频显示方法进行3D视频显示。
PCT/CN2016/098006 2015-12-31 2016-09-05 头戴显示器及其双目3d视频显示方法和装置 WO2017113869A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511025607.6A CN105657407B (zh) 2015-12-31 2015-12-31 头戴显示器及其双目3d视频显示方法和装置
CN201511025607.6 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017113869A1 true WO2017113869A1 (zh) 2017-07-06

Family

ID=56490811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098006 WO2017113869A1 (zh) 2015-12-31 2016-09-05 头戴显示器及其双目3d视频显示方法和装置

Country Status (2)

Country Link
CN (1) CN105657407B (zh)
WO (1) WO2017113869A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055264A (zh) * 2019-06-06 2020-12-08 舜宇光学(浙江)研究院有限公司 一种视频数据拆分方法及其系统以及电子设备和计算系统
CN112578561A (zh) * 2019-09-30 2021-03-30 精工爱普生株式会社 头戴式显示器
CN113268302A (zh) * 2021-05-27 2021-08-17 杭州灵伴科技有限公司 一种头戴式显示设备的显示模式切换方法、装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105657407B (zh) * 2015-12-31 2018-11-23 深圳纳德光学有限公司 头戴显示器及其双目3d视频显示方法和装置
WO2017166193A1 (zh) * 2016-03-31 2017-10-05 深圳多哚新技术有限责任公司 一种基于vr图像的显示屏驱动的方法和装置
CN106507093A (zh) * 2016-09-26 2017-03-15 北京小鸟看看科技有限公司 一种虚拟现实设备的显示模式切换方法和装置
CN106792094A (zh) * 2016-12-23 2017-05-31 歌尔科技有限公司 Vr设备播放视频的方法和vr设备
JP7243193B2 (ja) * 2019-01-10 2023-03-22 セイコーエプソン株式会社 表示システム、表示システムの制御方法、情報処理装置、及び情報処理装置の制御プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027433A1 (ja) * 2011-08-22 2013-02-28 日立コンシューマエレクトロニクス株式会社 映像表示装置
US20140078043A1 (en) * 2012-09-14 2014-03-20 Lg Electronics Inc. Apparatus and method of providing user interface on head mounted display and head mounted display thereof
CN103901622A (zh) * 2014-04-23 2014-07-02 成都理想境界科技有限公司 3d头戴观影设备及对应的视频播放器
CN104202591A (zh) * 2014-09-01 2014-12-10 北京行云时空科技有限公司 一种3d图像显示系统及方法
CN104822061A (zh) * 2015-04-30 2015-08-05 小鸟科技有限公司 头戴式3d显示器的瞳距调节方法、系统、以及模块
CN105657407A (zh) * 2015-12-31 2016-06-08 深圳纳德光学有限公司 头戴显示器及其双目3d视频显示方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100367074C (zh) * 2003-10-27 2008-02-06 深圳国际技术创新研究院 眼镜式显示器
JP2013050558A (ja) * 2011-08-30 2013-03-14 Sony Corp ヘッド・マウント・ディスプレイ及び表示制御方法
JP6375591B2 (ja) * 2013-01-15 2018-08-22 セイコーエプソン株式会社 頭部装着型表示装置、頭部装着型表示装置の制御方法、および、画像表示システム
US9411160B2 (en) * 2013-02-12 2016-08-09 Seiko Epson Corporation Head mounted display, control method for head mounted display, and image display system
JP6212877B2 (ja) * 2013-02-20 2017-10-18 富士通株式会社 画像表示装置及び画像表示方法
CN103901620A (zh) * 2014-03-20 2014-07-02 成都理想境界科技有限公司 一种头戴显示设备
CN103901621A (zh) * 2014-03-20 2014-07-02 成都理想境界科技有限公司 一种头戴显示设备
CN104581119B (zh) * 2014-12-31 2017-06-13 青岛歌尔声学科技有限公司 一种3d图像的显示方法和一种头戴设备
CN105100779A (zh) * 2015-09-18 2015-11-25 云南师范大学 一种头戴式立体视频播放方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027433A1 (ja) * 2011-08-22 2013-02-28 日立コンシューマエレクトロニクス株式会社 映像表示装置
US20140078043A1 (en) * 2012-09-14 2014-03-20 Lg Electronics Inc. Apparatus and method of providing user interface on head mounted display and head mounted display thereof
CN103901622A (zh) * 2014-04-23 2014-07-02 成都理想境界科技有限公司 3d头戴观影设备及对应的视频播放器
CN104202591A (zh) * 2014-09-01 2014-12-10 北京行云时空科技有限公司 一种3d图像显示系统及方法
CN104822061A (zh) * 2015-04-30 2015-08-05 小鸟科技有限公司 头戴式3d显示器的瞳距调节方法、系统、以及模块
CN105657407A (zh) * 2015-12-31 2016-06-08 深圳纳德光学有限公司 头戴显示器及其双目3d视频显示方法和装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112055264A (zh) * 2019-06-06 2020-12-08 舜宇光学(浙江)研究院有限公司 一种视频数据拆分方法及其系统以及电子设备和计算系统
CN112055264B (zh) * 2019-06-06 2022-11-01 舜宇光学(浙江)研究院有限公司 一种视频数据拆分方法及其系统以及电子设备和计算系统
CN112578561A (zh) * 2019-09-30 2021-03-30 精工爱普生株式会社 头戴式显示器
US11480799B2 (en) 2019-09-30 2022-10-25 Seiko Epson Corporation Head-mounted display
CN112578561B (zh) * 2019-09-30 2023-10-17 精工爱普生株式会社 头戴式显示器
CN113268302A (zh) * 2021-05-27 2021-08-17 杭州灵伴科技有限公司 一种头戴式显示设备的显示模式切换方法、装置

Also Published As

Publication number Publication date
CN105657407A (zh) 2016-06-08
CN105657407B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
WO2017113869A1 (zh) 头戴显示器及其双目3d视频显示方法和装置
TWI598846B (zh) 影像資料處理方法以及使用該方法的立體影像顯示裝置
US8675048B2 (en) Image processing apparatus, image processing method, recording method, and recording medium
Moshtael et al. High tech aids low vision: a review of image processing for the visually impaired
TWI387340B (zh) 根據資料比對結果播放影像之方法及其相關影像播放系統
US20070153122A1 (en) Apparatus and method for simultaneous multiple video channel viewing
CN104539935B (zh) 图像亮度的调节方法及调节装置、显示装置
TW201234838A (en) Stereoscopic display device and control method of stereoscopic display device
US20100103318A1 (en) Picture-in-picture display apparatus having stereoscopic display functionality and picture-in-picture display method
EP2095646A2 (en) Improvements in stereoscopic motion pictures
US20160344999A1 (en) SYSTEMS AND METHODs FOR PRODUCING PANORAMIC AND STEREOSCOPIC VIDEOS
US11659158B1 (en) Frustum change in projection stereo rendering
CN102918855A (zh) 用于合理使用帧打包格式的活动空间的方法及设备
CA2933704A1 (en) Systems and methods for producing panoramic and stereoscopic videos
KR102204212B1 (ko) 실감형 콘텐츠 제공 장치 및 방법
TW201225050A (en) Video display apparatus which collaborates with three-dimensional glasses for presenting stereoscopic images and control method applied to the video display apparatus
KR20080100984A (ko) 3차원 영상 디스플레이 방법 및 장치
JP2002051359A (ja) 3次元映像ディスプレイ装置及び方法
CN112616048A (zh) Ar眼镜及其显示方法和系统、图像处理方法及设备
CN202738032U (zh) 图像处理设备
WO2018014435A1 (zh) 一种头戴显示器及其画中画显示方法和系统
CN102063735B (zh) 通过改变视点角度制作三维图像源的方法和装置
CN113391449A (zh) 一种智慧扩视野助视器及智慧扩视野助视方法
CN206833075U (zh) 头戴式显示设备和电子设备
JP2011529285A (ja) 再現描写メディア中への両眼ステレオ情報の包含のための合成構造、メカニズムおよびプロセス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880662

Country of ref document: EP

Kind code of ref document: A1