WO2017113833A1 - 一种信号处理方法及设备 - Google Patents

一种信号处理方法及设备 Download PDF

Info

Publication number
WO2017113833A1
WO2017113833A1 PCT/CN2016/096692 CN2016096692W WO2017113833A1 WO 2017113833 A1 WO2017113833 A1 WO 2017113833A1 CN 2016096692 W CN2016096692 W CN 2016096692W WO 2017113833 A1 WO2017113833 A1 WO 2017113833A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
ofdm
signals
sideband
processing
Prior art date
Application number
PCT/CN2016/096692
Other languages
English (en)
French (fr)
Inventor
邱晶
贾明
马江镭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16880626.3A priority Critical patent/EP3399711B1/en
Priority to JP2018533933A priority patent/JP6579563B2/ja
Publication of WO2017113833A1 publication Critical patent/WO2017113833A1/zh
Priority to US16/023,539 priority patent/US10257007B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26412Filtering over the entire frequency band, e.g. filtered orthogonal frequency-division multiplexing [OFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26534Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26536Filtering over the entire frequency band, e.g. filtered orthogonal frequency division multiplexing [OFDM]

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a signal processing method and device.
  • the requirements of the Orthogonal Frequency Division Multiplexing (OFDM) waveform parameters are different for each service scenario, and can be dynamically according to the service scenario. Selecting and configuring OFDM waveform parameters while taking into account the advantages of traditional OFDM is an inevitable requirement for 5G basic waveforms.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDM Flash-OFDM
  • f-OFDM is a waveform technology capable of satisfying 5G requirements.
  • the system bandwidth is divided into several OFDM subband frequency domain signals.
  • Each OFDM sub-band has the characteristics of a conventional OFDM waveform, and then uses a high-order digital shaping filter for OFDM sub-band filtering for each OFDM sub-band, and OFDM sub-band filtering is performed by using a high-order digital shaping filter in the time domain.
  • FIG. 1 is a schematic diagram of processing an OFDM subband frequency domain signal.
  • the bandwidth of an OFDM subband frequency domain signal is 20 MHz.
  • the OFDM subband frequency domain signal is first subjected to a fast repetition of 2048 points.
  • the Inverse Fast Fourier Transform becomes a time domain signal, and a cyclic prefix is added to each time domain signal, and a high-order digital shaping filter is filtered on each of the cyclic prefix signals, and the filtered signal is filtered. Merge together through RF (Radio Frequency, RF) goes out.
  • RF Radio Frequency, RF
  • the f-OFDM waveform technique uses a high-order digital shaping filter to make the filtered signal have good out-of-band performance (eg, a very narrow transition band), the required guard band overhead between adjacent OFDM subbands can be very Low, even in most scenarios, no guard band is needed, but since the OFDM subband signals in f-OFDM are wideband signals (for example, the bandwidth of the OFDM signal specified in Long Term Evolution (LTE) is 20 MHz.
  • LTE Long Term Evolution
  • the signal sampling rate is high, if this high-order time domain filtering is performed at a high sampling rate, the implementation complexity will be very high, and for the whole system, the following problems will be brought about: (1) for the terminal In other words, high-complexity filtering is not conducive to energy saving of the terminal. Especially for many low-cost terminals that may exist in the system, the implementation of high-order digital shaping filters will be a big bottleneck; (2) high-order digital The filter needs to consume a long processing time on both the transmitter side and the receiver side, which is particularly disadvantageous for the typical ultra-low latency service requirements in 5G; therefore, designing a low complexity digital shaping filter , Has become the core issue f-OFDM technology.
  • an embodiment of the present invention provides a signal processing method and device.
  • the implementation of low-complexity digital shaping filtering can greatly reduce the complexity of filtering operations, making f-OFDM more achievable.
  • an embodiment of the present invention provides a signal processing method for transmitting an OFDM signal, where the method may include:
  • the filtering strategy is:
  • the OFDM signal to be transmitted is divided into: a first sideband signal, a first signal, and a second sideband signal; the first sideband signal is located at a left sideband of the OFDM signal to be transmitted, and the second sideband a signal is located in a right band of the OFDM signal to be transmitted, the first signal being located in an intermediate frequency band of the OFDM signal to be transmitted except the left band and the right band; the first sideband signal Bandwidth, the second sideband The bandwidth of the signal is less than the bandwidth of the first signal;
  • the first sideband signal is sampled by using a first sampling rate, and the sampled signal is subjected to filtering processing, upsampling processing, and digital frequency conversion processing of the first spectral template to generate a first f-OFDM signal;
  • the first signal is sampled by using a second sampling rate, and the sampled signal is subjected to filtering processing by the second spectral template to generate a second f-OFDM signal;
  • the second sideband signal is sampled by using a third sampling rate, and the sampled signal is subjected to filtering processing, upsampling processing, and digital frequency conversion processing of the third spectral template to generate a third f-OFDM signal;
  • the first sampling rate and the third sampling rate are smaller than the second sampling rate; the transition band of the first spectrum template and the third spectrum template is smaller than the transition band of the second spectrum template, and the first spectrum template
  • the filtering process, the filtering process of the second spectrum template, and the filtering process of the third spectrum template are used to ensure that the out-of-band leakage of the filtered OFDM signal meets a first preset threshold.
  • the first preset threshold may be set as needed.
  • the comparison between the embodiments of the present invention is not limited.
  • the bandwidth of the transition band of the signal is smaller than the first preset threshold, the spectrum template used when the f-OFDM signal is obtained is indicated.
  • the transition band of the signal is relatively narrow.
  • the bandwidth of the transition band of the signal is greater than the first preset threshold, it indicates that the transition band of the spectrum template used when obtaining the f-OFDM signal is relatively wide.
  • the present invention divides the OFDM wideband signal into two sideband signals and an intermediate signal, and performs filtering processing on the narrowband spectral template on the two sideband signals, and performs intermediate signal processing on the intermediate signal.
  • the transition band has a relatively wide spectral template filtering process. Since the sideband signal is at the edge position, although the transition band must be filtered with a narrow spectral template to achieve good out-of-band performance, the bandwidth of the sideband is relatively narrow.
  • the sampling rate is low, which can well reduce the working sampling rate of the digital shaping filter, and the filtering implementation is relatively simple.
  • the intermediate signal although the bandwidth is relatively wide and the sampling rate is relatively high, the transition band performance is due to its intermediate position.
  • the method is further configured to transmit M consecutive OFDM signals including the OFDM, where the M is an integer greater than or equal to 2, if the M The parameters of the OFDM signals are different, and the method further includes:
  • the M f-OFDM signals are superimposed and transmitted.
  • the bandwidth of each OFDM signal in the M OFDM signals may be the same or different.
  • the spectrum template may be filtered, and the purpose thereof is to suppress the remote spectrum leakage generated by the OFDM signals outside the system bandwidth, instead of the adjacent band spectrum leakage outside the OFDM signal, and therefore, for some OFDM signals having the same parameters in the middle
  • the transition band specification of the filter is required to be relaxed. For subbands located on both sides of the system bandwidth and subbands using different OFDM parameters within the system bandwidth, a filter with a narrow transition band is required to suppress the subbands.
  • the method further includes:
  • the filtering policy Processing, by the filtering policy, the first OFDM signal of the i OFDM signals to obtain an f-OFDM signal corresponding to the first OFDM signal; the first OFDM signal is located at the i frequency consecutive a first edge of the OFDM signal;
  • the first OFDM signal is located at the Describe a second edge of the i consecutive frequency OFDM signals;
  • the above process is mainly for the transmission of the downlink signal.
  • the same transmitting device can also serve as the receiving device, and the receiving end transmits the uplink through the above processing.
  • the path signal when receiving the uplink signal, its processing of the uplink signal may be an inverse process to the downlink signal processing, or may be different.
  • the embodiment of the present invention further provides a signal processing method for processing the received filtered orthogonal frequency division multiplexing f-OFDM signal.
  • the transition band of the f-OFDM signal meets a first preset threshold, and the method may further include:
  • the signal processing strategy is:
  • the received f-OFDM signal is subjected to digital frequency conversion processing, downsampling processing, and filtering processing of the third spectrum template to filter out the second sideband signal;
  • the first sideband signal is located in the superposed OFDM a left sideband of the signal, the second sideband signal being located on a right sideband of the superposed OFDM signal, the first signal being located in an intermediate frequency band of the superposed OFDM signal except the left sideband and the right sideband;
  • the bandwidth of the first spectrum template and the third spectrum template is smaller than the bandwidth of the second spectrum template, and the transition band of the first spectrum template and the third spectrum template is smaller than the second spectrum template. Transition zone.
  • the embodiment of the present invention further provides a transmitter, configured to transmit an OFDM signal, where the transmitter may include:
  • a first filtering module configured to perform filtering processing on the OFDM signal to obtain an f-OFDM signal
  • a sending module configured to send the f-OFDM signal obtained by the first filtering module
  • the first filtering module may specifically include:
  • a signal dividing unit configured to divide the OFDM signal to be transmitted into: a first sideband signal, a first signal, and a second sideband signal; the first sideband signal is located in a left sideband of the OFDM signal to be transmitted, The second sideband signal is located in a right band of the OFDM signal to be transmitted, and the first signal is located in an intermediate frequency band of the OFDM signal to be transmitted except the left side band and the right side band; The bandwidth of the first sideband signal and the bandwidth of the second sideband signal are all smaller than the bandwidth of the first signal.
  • the left sideband and the right sideband may be two edge frequency bands of a OFDM spectrum, and the bandwidth of the first sideband signal and the bandwidth of the second sideband signal are all smaller than the bandwidth of the first signal, a band with a signal and a band of the second sideband signal
  • the specific value of each signal bandwidth division may be arbitrary.
  • the embodiment of the present invention does not limit this.
  • the hardware processing capability can be flexibly divided, but in principle, the first sideband signal needs to be satisfied.
  • the bandwidth of the second sideband signal is as small as possible (ie, a narrowband signal) to ensure that the sampling rate of the sideband signal is relatively low, and the first signal may be the broadband signal of the middle portion.
  • one OFDM signal can include at least one subcarrier (as shown in FIG. 1)
  • the following principle can be followed: using several subcarriers on the left side of the OFDM signal as the first sideband signal.
  • the subcarriers on the right side of the OFDM signal are used as the second sideband signal, and the remaining subcarriers are used as the first signal.
  • a filtering unit configured to sample the first sideband signal separated by the signal dividing unit by using a first sampling rate, and perform the filtering processing, the upsampling processing, and the digital frequency conversion processing of the sampled signal by the first spectrum template to generate First f-OFDM signal;
  • the first signal separated by the signal dividing unit is sampled by using a second sampling rate, and the sampled signal is filtered by the second spectral template to generate a second f-OFDM signal;
  • the second sideband signal separated by the signal dividing unit is sampled by using a third sampling rate, and the sampled signal is subjected to filtering processing, upsampling processing and digital frequency conversion processing of the third spectral template to generate a third f-OFDM. signal.
  • a merging unit configured to superimpose the first f-OFDM signal, the second f-OFDM signal, and the third f-OFDM signal filtered by the filtering unit into the f-OFDM signal.
  • the transition band of the first spectrum template and the third spectrum template is smaller than the transition band of the second spectrum template, the first spectrum template, the second spectrum template, and the third The spectrum template is configured to ensure that the out-of-band leakage of the filtered OFDM signal meets a first preset threshold, wherein the first preset threshold may be set as needed, and the comparison in the embodiment of the present invention is not limited, when the signal transitions When the bandwidth of the band is smaller than the first preset threshold, the transition band of the spectrum template used when the f-OFDM signal is obtained is relatively narrow. When the bandwidth of the transition band of the signal is greater than the first preset threshold, the f is obtained.
  • the transition pattern of the spectral mask used in the OFDM signal is relatively wide.
  • the spectrum of the first f-OFDM signal has been moved to the spectrum position of the OFDM signal corresponding to the first sideband signal
  • the spectrum of the second f-OFDM signal is in the spectrum of the OFDM signal
  • the first sampling rate and the third sampling rate are smaller than the second sampling rate; the bandwidth of the transition band of the first f-OFDM signal and the third f-OFDM signal is less than a preset threshold; The bandwidth of the transition band of the f-OFDM signal is greater than a preset threshold.
  • the transmitter is further configured to transmit M consecutive OFDM signals including the OFDM, where the M is an integer greater than or equal to 2, and if the parameters of the M OFDM signals are different,
  • the first filtering module is further configured to:
  • the sending module is further configured to superimpose and transmit the M f-OFDM signals obtained by the first filtering module.
  • the bandwidth of each OFDM signal in the M OFDM signals may be the same or different.
  • the first group of OFDM signals includes i frequency-continuous OFDM signals
  • the parameters of the i OFDM signals are the same, the parameters of the (Mi) OFDM signals except the i signals are different for the M OFDM signals, and each of the (Mi) OFDM signals is OFDM signals
  • the parameter of the OFDM signal is not the same as the parameter of the i OFDM signal, where 2 ⁇ i ⁇ M.
  • the first filtering unit is further configured to:
  • the first OFDM signal is located in the first OFDM signal of the i frequency
  • the first OFDM signal is located in the first OFDM signal of the i frequency
  • the transmitter further includes: a second filtering module
  • the second filtering module is configured to perform filtering processing on a fourth spectrum template for each of the OFDM signals except the first OFDM signal and the second OFDM signal, respectively I-2) f-OFDM signals; the bandwidth of the transition band of the fourth spectrum template is greater than a second preset threshold;
  • the sending module is further configured to: use an f-OFDM signal corresponding to the first OFDM signal, an f-OFDM signal corresponding to the second OFDM signal, the (i-2) f-OFDM signal, and The (Mi) f-OFDM signals are superimposed, The superimposed signal is transmitted.
  • the above process is mainly for the transmission of the downlink signal.
  • the same transmitting device can also serve as the receiving device, and the receiving end transmits the uplink through the above processing.
  • the path signal when receiving the uplink signal, its processing of the uplink signal may be an inverse process to the downlink signal processing, or may be different.
  • the embodiment of the present invention further provides a receiver, configured to process the received filtered orthogonal frequency division multiplexing f-OFDM signal,
  • the transition band of the f-OFDM signal meets a first preset threshold
  • the transmitter may further include:
  • a receiving module configured to receive the f-OFDM signal
  • a first processing module configured to process the f-OFDM signal received by the receiving module according to a preset signal processing policy, to obtain an OFDM signal
  • the signal processing strategy is:
  • the received f-OFDM signal is subjected to digital frequency conversion processing, downsampling processing, and filtering processing of the third spectrum template to filter out the second sideband signal;
  • the first sideband signal is located in the superposed OFDM a left sideband of the signal, the second sideband signal being located on a right sideband of the superposed OFDM signal, the first signal being located in an intermediate frequency band of the superposed OFDM signal except the left sideband and the right sideband;
  • the bandwidth of the first spectrum template and the third spectrum template is smaller than the bandwidth of the second spectrum template, and the transition band of the first spectrum template and the third spectrum template is smaller than the second spectrum template. Transition zone.
  • an embodiment of the present invention further provides a transmitter, configured to transmit orthogonal frequencies.
  • the OFDM signal is divided and multiplexed, and the transmitter may include:
  • a processor configured to process the OFDM signal according to a preset filtering policy to obtain an f-OFDM signal
  • a communication unit configured to transmit an f-OFDM signal obtained by the processor
  • the filtering strategy is specifically:
  • the OFDM signal to be transmitted is divided into: a first sideband signal, a first signal, and a second sideband signal; the first sideband signal is located at a left sideband of the OFDM signal to be transmitted, and the second sideband a signal is located in a right band of the OFDM signal to be transmitted, the first signal being located in an intermediate frequency band of the OFDM signal to be transmitted except the left band and the right band; the first sideband signal The bandwidth of the second sideband signal is smaller than the bandwidth of the first signal;
  • the first sideband signal separated by the signal dividing unit is sampled by using a first sampling rate, and the sampled signal is subjected to filtering processing, upsampling processing and digital frequency conversion processing of the first spectral template to generate a first f-OFDM. signal;
  • the first signal separated by the signal dividing unit is sampled by using a second sampling rate, and the sampled signal is filtered by the second spectral template to generate a second f-OFDM signal;
  • the second sideband signal separated by the signal dividing unit is sampled by using a third sampling rate, and the sampled signal is subjected to filtering processing, upsampling processing and digital frequency conversion processing of the third spectral template to generate a third f-OFDM. signal;
  • the first f-OFDM signal, the second f-OFDM signal, and the third f-OFDM signal are superimposed as the f-OFDM signal.
  • the left sideband and the right sideband may be two edge frequency bands of a OFDM spectrum, and the bandwidth of the first sideband signal and the bandwidth of the second sideband signal are all smaller than the bandwidth of the first signal,
  • the bandwidth of the signal band and the bandwidth of the second sideband signal may be equal; the specific value of the bandwidth division of each signal may be any, which is not limited by the embodiment of the present invention.
  • the capability is flexibly divided, but in principle, the bandwidth of the first sideband signal and the second sideband signal needs to be as small as possible (ie, a narrowband signal) to ensure that the sampling rate of the sideband signal is relatively low.
  • the first signal it can be a broadband signal in the middle portion.
  • one OFDM signal can include at least one subcarrier (as shown in FIG. 1)
  • the following principle can be followed: using several subcarriers on the left side of the OFDM signal as the first sideband signal.
  • the subcarriers on the right side of the OFDM signal are used as the second sideband signal, and the remaining subcarriers are used as the first signal.
  • the spectrum of the first f-OFDM signal has been moved to the spectrum position of the OFDM signal corresponding to the first sideband signal
  • the spectrum of the second f-OFDM signal is in the spectrum of the OFDM signal
  • the first sampling rate and the third sampling rate are smaller than the second sampling rate; the transition band of the first spectrum template and the third spectrum template is smaller than the transition band of the second spectrum template, the first The spectrum template, the second spectrum template, and the third spectrum template are used to ensure that the out-of-band leakage of the filtered OFDM signal meets a first preset threshold; the first preset threshold may be set according to requirements.
  • the comparison between the embodiments of the present invention is not limited.
  • the transition band of the spectrum template used when the f-OFDM signal is obtained is narrower, and the bandwidth of the transition band of the signal is greater than
  • the first preset threshold it indicates that the transition band of the spectrum template used when obtaining the f-OFDM signal is relatively wide.
  • the transmitter is further configured to transmit M consecutive OFDM signals including the OFDM, where the M is an integer greater than or equal to 2, if the M The parameters of the OFDM signals are different.
  • the processor may be further configured to:
  • the transmitter is further configured to superimpose and transmit the M f-OFDM signals obtained by the processor.
  • the bandwidth of each OFDM signal in the M OFDM signals may be the same or different.
  • the spectrum template may be filtered, and the purpose thereof is to suppress the remote spectrum leakage generated by the OFDM signals outside the system bandwidth, instead of the adjacent band spectrum leakage outside the OFDM signal, and therefore, for some OFDM signals having the same parameters in the middle
  • the transition band specification of the filter is required to be relaxed. For subbands located on both sides of the system bandwidth and subbands using different OFDM parameters within the system bandwidth, a filter with a narrow transition band is required to suppress the subbands.
  • the first group of OFDM signals includes i frequency-continuous OFDM signals. a signal, wherein the parameters of the i OFDM signals are the same, and (Mi) OFDM signals of the M OFDM signals except the i signals The numbers are different, and the parameters of each of the (Mi) OFDM signals are different from the parameters of the i OFDM signals, where 2 ⁇ i ⁇ M;
  • the processor is further configured to:
  • the filtering policy Processing, by the filtering policy, the first OFDM signal of the i OFDM signals to obtain an f-OFDM signal corresponding to the first OFDM signal; the first OFDM signal is located at the i frequency consecutive a first edge of the OFDM signal;
  • the second OFDM signal of the second OFDM signal of the i OFDM signals Processing, according to the filtering policy, the second OFDM signal of the second OFDM signal of the i OFDM signals, to obtain a second OFDM signal corresponding to the second OFDM signal An f-OFDM signal; the first OFDM signal is located at a second edge of the i frequency-contiguous OFDM signals;
  • the (M-i) OFDM signals are respectively processed according to the filtering strategy to obtain (M-i) f-OFDM signals.
  • the transmitter is further configured to: use an f-OFDM signal corresponding to the first OFDM signal, an f-OFDM signal corresponding to the second OFDM signal, the (i-2) f-OFDM signal, and The (Mi) f-OFDM signals are superimposed, and the superimposed signals are transmitted.
  • the above process is mainly for the transmission of the downlink signal.
  • the same transmitting device can also serve as the receiving device, and the receiving end transmits the uplink through the above processing.
  • the path signal when receiving the uplink signal, its processing of the uplink signal may be an inverse process to the downlink signal processing, or may be different.
  • the embodiment of the present invention further provides a receiver, configured to process the received filtered orthogonal frequency division multiplexing f-OFDM signal,
  • the transition band of the f-OFDM signal meets a first preset threshold
  • the transmitter may further include:
  • a communication unit configured to receive the f-OFDM signal
  • a processor configured to process, according to a preset signal processing strategy, an f-OFDM signal received by the receiving module to obtain an OFDM signal;
  • the signal processing strategy is:
  • the received f-OFDM signal is subjected to digital frequency conversion processing, downsampling processing, and filtering processing of the third spectrum template to filter out the second sideband signal;
  • the first sideband signal is located in the superposed OFDM a left sideband of the signal, the second sideband signal being located on a right sideband of the superposed OFDM signal, the first signal being located in an intermediate frequency band of the superposed OFDM signal except the left sideband and the right sideband;
  • the bandwidth of the first spectrum template and the third spectrum template is smaller than the bandwidth of the second spectrum template, and the transition band of the first spectrum template and the third spectrum template is smaller than the second spectrum template. Transition zone.
  • the embodiment of the present invention provides a signal processing method and device, which divides an OFDM signal to be transmitted into: a first sideband signal, a first signal, and a second sideband signal; the first sideband signal is located a left sideband of the OFDM signal to be transmitted, the second sideband signal is located in a right sideband of the OFDM signal to be transmitted, and the first signal is located in the OFDM signal to be transmitted except the left sideband and An intermediate frequency band other than the right sideband; a bandwidth of the first sideband signal and a bandwidth of the second sideband signal are all smaller than a bandwidth of the first signal; and the first side is used by the first sampling rate
  • the signal is sampled, and the sampled signal is subjected to filtering processing, upsampling processing and digital frequency conversion processing of the first spectral template to generate a first f-OFDM signal; and the first signal is sampled by using a second sampling rate, The sampled signal is filtered by the second spectral template to generate a second
  • the present invention divides the OFDM wideband signal into two sideband signals and one intermediate signal, and the transition bands of the two sideband signals are relatively narrow.
  • the intermediate signal is filtered with a relatively wide spectral template filtering process. Since the sideband signal is at the edge position, it is necessary to use the shaping filter for filtering to obtain a very narrow transition band, achieving a good band. External performance, but because the bandwidth of the sideband is relatively narrow, the sampling rate is low, the working sampling rate of the digital shaping filter can be well reduced, and the filtering is simple to implement. Meanwhile, for the intermediate signal, although the bandwidth is relatively wide, the sampling rate is relatively high. However, because it is located in the middle position, there is not much requirement for the performance of the transition zone, and it can be very wide. Therefore, the filtering can be performed using the molding filter with a very low order, and the filtering implementation is also very simple. Therefore, the entire In terms of technical solutions, the complexity of filtering can be well reduced.
  • FIG. 1 is a schematic diagram of processing an OFDM subband frequency domain signal
  • FIG. 2 is a schematic diagram of frequency domain signal division according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a transceiver system according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a signal processing method according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a signal processing method according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a signal processing method according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of transmitting a broadband signal of 20 MHz according to an embodiment of the present invention.
  • FIG. 8(a) is a schematic diagram of a spectrum according to an embodiment of the present invention.
  • FIG. 8(b) is a schematic diagram of another spectrum according to an embodiment of the present invention.
  • FIG. 8(c) is a schematic diagram of still another spectrum according to an embodiment of the present invention.
  • FIG. 8(d) is a schematic diagram of still another spectrum according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of receiving a filtered f-OFDM signal according to an embodiment of the present invention.
  • FIG. 10(a) is a schematic diagram of another spectrum according to an embodiment of the present invention.
  • FIG. 10(b) is a schematic diagram of another spectrum according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of a transmit signal according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of a received signal according to an embodiment of the present invention.
  • FIG. 13 is a structural diagram of still another transmitting signal according to an embodiment of the present invention.
  • FIG. 14 is a structural diagram of still another received signal according to an embodiment of the present invention.
  • FIG. 15(a) is a structural diagram of still another transmitting signal according to an embodiment of the present invention.
  • FIG. 15(b) is a structural diagram of still another received signal according to an embodiment of the present invention.
  • FIG. 16 is a structural diagram of a transmitter 30 according to an embodiment of the present invention.
  • FIG. 17 is a structural diagram of a receiver 40 according to an embodiment of the present invention.
  • the complexity of digital shaping filtering in the existing f-OFDM waveform technology mainly comes from the superposition results of two aspects: First, in order to obtain good out-of-band performance, the order of digital shaping filtering is very high; The signal bandwidth is relatively wide, so that the filtering work sampling rate is very high; at this time, if a good out-of-band performance is obtained, the two aspects are decoupled, that is, high-order filtering is performed at a low sampling rate. Low-order filtering at high-speed sampling rates can greatly reduce the complexity of filtering.
  • the present invention divides an OFDM wideband signal in the frequency domain: a left band, a middle subband, and a right side with three subband signals.
  • the left and right band signals are at the edge.
  • the position must be filtered using high-order shaping filters to obtain a very narrow transition band for good out-of-band performance, while the left and right bands have narrower bandwidths and lower sampling rates, which can be well reduced.
  • the working sampling rate of the order digital shaping filter is very simple.
  • the transition band can be very wide due to its intermediate position (if it can be The left and right sidebands are also considered part of the transition zone), and the filtering can be filtered using a very low order shaping filter, so the implementation of the filtering is also very simple.
  • FIG. 3 is a block diagram of a transceiver system according to an embodiment of the present invention.
  • the transceiver system may include: a transmitter 10 and a receiver 20, where the transmitter 10 is configured to use the filtering policy provided by the present invention to transmit The OFDM signal is subjected to filtering processing to obtain f-OFDM transmission; the receiver 20 is configured to receive the f-OFDM signal transmitted by the transmitter 10, and perform the inverse f-OFDM signal on the received f-OFDM signal. Processing, recovering the original OFDM signal.
  • the transmitter 10 may include: a communication unit 1001, a processor 1002, a memory 1003, and at least one communication bus 1004 for implementing connection and mutual communication between the devices;
  • the receiver 20 may include a communication unit 2001, a processor 2002, a memory 2003, and at least one communication bus 2004 for enabling connection and mutual communication between these devices.
  • the communication unit 1001 and the communication unit 2001 can be used for signal transmission with an external network element, and can be an antenna unit.
  • the processor 1002 and the processor 2002 may be a central processing unit (CPU), may be an Application Specific Integrated Circuit (ASIC), or be configured to implement an embodiment of the present invention. Or a plurality of integrated circuits, such as one or more digital singnal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the memory 1003 and the memory 2003 may be a volatile memory such as a random-access memory (RAM) or a non-volatile memory such as a read-only memory (read).
  • RAM random-access memory
  • a non-volatile memory such as a read-only memory (read).
  • read read-only memory
  • ROM read-only memory
  • flash memory hard disk drive (HDD)
  • SSD solid-state drive
  • the communication bus 1004 and the communication bus 2004 can be divided into an address bus, a data bus, a control bus, etc., and can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus, or an extended industry standard. Architecture (Extended Industry Standard Architecture, EISA) bus, etc. For ease of representation, only one thick line table is used in Figure 3. This does not mean that there is only one bus or one type of bus.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the processor 1002 in the transmitter 10 is configured to divide the OFDM signal to be transmitted into: a first sideband signal, a first signal, and a first a second sideband signal; the first sideband signal is located on a left sideband of the OFDM signal to be transmitted, and the second sideband signal is located on a right sideband of the OFDM signal to be transmitted, the first signal is located in a An intermediate frequency band of the OFDM signal to be transmitted except the left sideband and the right sideband; a bandwidth of the first sideband signal and a bandwidth of the second sideband signal are all smaller than the first signal bandwidth;
  • the first sideband signal separated by the signal dividing unit is sampled by using a first sampling rate, and the sampled signal is subjected to filtering processing, upsampling processing and digital frequency conversion processing of the first spectral template to generate a first f-OFDM. signal;
  • the first signal separated by the signal dividing unit is sampled by using a second sampling rate, and the sampled signal is filtered by the second spectral template to generate a second f-OFDM signal;
  • the second sideband signal separated by the signal dividing unit is sampled by using a third sampling rate, and the sampled signal is subjected to filtering processing, upsampling processing and digital frequency conversion processing of the third spectral template to generate a third f-OFDM. signal.
  • the first sampling rate and the third sampling rate are smaller than the second sampling rate; the transition band of the first spectrum template and the third spectrum template is smaller than the transition band of the second spectrum template, the first The spectrum template, the second spectrum template, and the third spectrum template are used to ensure that the out-of-band leakage of the filtered OFDM signal meets a first preset threshold.
  • the transmitter 10 is configured to superimpose the first f-OFDM signal, the second f-OFDM signal, and the third f-OFDM signal obtained by the processor 1002 into the f-OFDM signal.
  • the first sampling rate and the third sampling rate are smaller than the second sampling rate; the bandwidth of the transition band of the first f-OFDM signal and the third f-OFDM signal is less than a preset threshold; The bandwidth of the transition band of the f-OFDM signal is greater than a preset threshold.
  • the transmitter 10 is further configured to transmit M consecutive OFDM signals including the OFDM, where the M is an integer greater than or equal to 2, if The parameters of the M OFDM signals are different, and the processor 1002 can also be used to:
  • the transmitter is further configured to superimpose and transmit the M f-OFDM signals obtained by the processor.
  • the bandwidth of each OFDM signal in the M OFDM signals may be the same or different.
  • the spectrum template may be filtered, and the purpose thereof is to suppress the remote spectrum leakage generated by the OFDM signals outside the system bandwidth, instead of the adjacent band spectrum leakage outside the OFDM signal, and therefore, for some OFDM signals having the same parameters in the middle
  • the transition band specification of the filter is required to be relaxed. For subbands located on both sides of the system bandwidth and subbands using different OFDM parameters within the system bandwidth, a filter with a narrow transition band is required to suppress the subbands.
  • the first group of OFDM signals includes i frequency-continuous OFDM signals. a signal, wherein the parameters of the i OFDM signals are the same, and (Mi) OFDM signals of the M OFDM signals except the i signals.
  • the parameters of each of the (Mi) OFDM signals are different from the parameters of the i OFDM signals, where 2 ⁇ i ⁇ M; then the processor 1002 can also Used for:
  • the filtering policy Processing, by the filtering policy, the first OFDM signal of the i OFDM signals to obtain an f-OFDM signal corresponding to the first OFDM signal; the first OFDM signal is located at the i frequency consecutive a first edge of the OFDM signal;
  • the first OFDM signal is located at the Describe a second edge of the i consecutive frequency OFDM signals;
  • the (M-i) OFDM signals are respectively processed according to the filtering strategy to obtain (M-i) f-OFDM signals.
  • the transmitter is further configured to: use an f-OFDM signal corresponding to the first OFDM signal, an f-OFDM signal corresponding to the second OFDM signal, the (i-2) f-OFDM signal, and The (Mi) f-OFDM signals are superimposed, and the superimposed signals are transmitted.
  • the present invention divides the OFDM wideband signal into two sideband signals and an intermediate signal, and performs filtering processing on the narrowband spectral template on the two sideband signals, and performs intermediate signal processing on the intermediate signal.
  • the transition band has a relatively wide spectral template filtering process. Since the sideband signal is at the edge position, although the transition band must be filtered with a narrow spectral template to achieve good out-of-band performance, the bandwidth of the sideband is relatively narrow.
  • the sampling rate is low, which can well reduce the working sampling rate of the digital shaping filter, and the filtering implementation is relatively simple.
  • the intermediate signal although the bandwidth is relatively wide and the sampling rate is relatively high, the transition band performance is due to its intermediate position.
  • the filter implementation is also very simple, therefore, from this According to the entire technical solution provided by the invention, the invention can reduce the filtering well in the process of signal transmission. Complexity.
  • the processor 2002 in the receiver 20 is configured to:
  • the received f-OFDM signal is subjected to digital frequency conversion processing, downsampling processing, and filtering processing of the third spectrum template to filter out the second sideband signal;
  • the first sideband signal is located on a left sideband of the superposed OFDM signal, and the second sideband signal is located on a right sideband of the superposed OFDM signal,
  • the first signal is located in an intermediate frequency band of the superposed OFDM signal except the left side band and the right side band;
  • the bandwidth of the first spectrum template and the third spectrum template is smaller than the bandwidth of the second spectrum template, and the transition band of the first spectrum template and the third spectrum template is smaller than the second spectrum template. Transition zone.
  • the transmitter 10 and the receiver 20 may be independent devices that transmit and receive signals to each other, such as one may be a base station, and the other may be a terminal; or the transmitter 10 and the receiver 20 may be regarded as the same device. It has the function of transmitting and receiving signals.
  • embodiment 1 shows and describes in detail the signal processing method provided by the present invention, wherein the steps shown may also be in a group other than the transmitter 10 and the receiver 20.
  • the execution is performed in a computer system that executes instructions, and in addition, although the logical order is shown in the figures, in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 4 is a schematic diagram of a signal processing method according to an embodiment of the present invention.
  • the transmitter 10 is configured to transmit an Orthogonal Frequency Division Multiplexing (OFDM) signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the method may include:
  • S101 Process the OFDM signal according to a preset filtering policy to obtain an f-OFDM signal.
  • the filtering strategy is a technical solution for reducing filtering complexity based on the foregoing principles provided by the embodiments of the present invention.
  • the transition band on both sides of the signal processed by the filtering strategy is relatively narrow, and has good out-of-band performance.
  • An OFDM signal to be transmitted which processes the OFDM signal according to a preset filtering strategy, and the process of obtaining an f-OFDM signal is as shown in FIG. 5, and may include the following steps:
  • the OFDM signal to be transmitted is divided into: a first sideband signal, a first signal, and a second sideband signal; the first sideband signal is located in the OFDM signal to be transmitted. a left sideband of the number, the second sideband signal being located in a right band of the OFDM signal to be transmitted, the first signal being located in the OFDM signal to be transmitted except the left sideband and the right sideband
  • the intermediate frequency band; the bandwidth of the first sideband signal and the bandwidth of the second sideband signal are all smaller than the bandwidth of the first signal.
  • the left sideband and the right sideband may be two edge frequency bands of a OFDM spectrum.
  • the left sideband may be the frequency band of the left edge of the spectrum
  • the right sideband may be the frequency band of the right edge of the spectrum, which is understandable.
  • the orientation or positional relationship indicated by the terms "left” and "right” is based on the orientation or positional relationship shown in the drawings, for the convenience of describing the present invention and simplifying the description, instead of It is to be understood that the object referred to has a particular orientation, is constructed and operated in a particular orientation and is therefore not to be construed as limiting.
  • the bandwidth of the first sideband signal and the bandwidth of the second sideband signal are all smaller than the bandwidth of the first signal, and the bandwidth of the first sideband signal and the bandwidth of the second sideband signal may be equal;
  • the specific value of each signal bandwidth division may be arbitrary, which is not limited by the embodiment of the present invention. Specifically, it may be flexibly divided according to the processing capability of the hardware, but in principle, the first sideband signal and the second sideband are required to be satisfied.
  • the bandwidth of the signal is as small as possible (ie, a narrowband signal) to ensure that the sampling rate of the sideband signal is relatively low.
  • the first signal it can be the broadband signal of the middle portion.
  • one OFDM signal can include at least one subcarrier (as shown in FIG. 1)
  • the following principle can be followed: using several subcarriers on the left side of the OFDM signal as the first sideband signal.
  • the subcarriers on the right side of the OFDM signal are used as the second sideband signal, and the remaining subcarriers are used as the first signal.
  • the first sideband signal is sampled by using a first sampling rate, and the sampled signal is subjected to filtering processing, upsampling processing, and digital frequency conversion processing of the first spectral template to generate a first f-OFDM signal.
  • the OFDM signal to be transmitted in the embodiment of the present invention is a baseband frequency domain signal, so the first sideband signal can be sampled by using the IFFT technology.
  • the first sampling rate may be a single sampling rate of the first sideband signal; the single sampling rate is: a bandwidth of 2 n subcarriers closest to the number of subcarriers included in the first sideband signal
  • the transition band of the first spectrum template is relatively narrow to ensure a narrow transition band of the filtered signal to achieve good out-of-band performance; since the filtering order of the spectrum template is higher, the filtered The narrower the transition band of the signal is, therefore, correspondingly, the first spectrum template is a digital shaping filter template with a relatively high filtering order.
  • the filtering processing of the spectrum template may be set to the frequency domain filtering, and the frequency domain signal is filtered, which is not limited in the embodiment of the present invention.
  • the filtering process of the spectrum template is used as the time domain filtering as an example for description.
  • the upsampling refers to sampling the signal filtered by the first spectrum template, so that the sampling rate of the sampled signal is greater than the sampling rate of the filtered signal.
  • the resulting single f-OFDM signal has a single sampling rate that is the same as the single sampling rate of the original OFDM signal.
  • the digital frequency conversion means that the upsampled signal is spectrally shifted, and the signal is moved to the spectral position of the first sideband signal.
  • the second sideband signal becomes a time-discrete signal.
  • a cyclic prefix (Add CP) is added to the sampled signal, and the signal after adding the cyclic prefix is subjected to filtering processing, upsampling and up-conversion processing of the first spectral template to generate a first f-OFDM signal.
  • S1013 sampling the first signal by using a second sampling rate, and using the sampled signal The number is filtered by the second spectral template to generate a second f-OFDM signal.
  • the first signal can be sampled by the second sampling rate by the IFFT technique. Since the first signal is an intermediate signal of the original OFDM signal, and the bandwidth thereof is closer to the bandwidth of the original OFDM signal, the second sampling rate may be substantially a single sampling rate of the OFDM signal, so that the sampling and filtering are performed.
  • the subsequent single-sample rate of the generated second f-OFDM signal is the same as the single sampling rate of the original OFDM signal; meanwhile, since the bandwidth of the first sideband signal and the second sideband signal is much smaller than the bandwidth of the first signal, Therefore, the single sampling rate of the first sideband signal and the second sideband signal is much smaller than the single sampling rate of the first signal as the sampling rate, and therefore, the signal is sampled at the sampling rate of the single sampling rate of the signal.
  • the second sampling rate is greater than the first sampling rate and the third sampling rate in step S1014.
  • the first signal is an intermediate signal of the original OFDM signal
  • there may be a large transition band for example, the frequency band of the first sideband signal and the frequency band of the second sideband signal may be used as a transition band of the first signal
  • the bandwidth of the second spectrum template may be set to be smaller, so that the filtering complexity may be reduced.
  • the transition band of the second spectrum template may be set to be larger than the transition band of the first spectrum template and the transition band of the third spectrum template.
  • the first signal after sampling the first signal with the second sampling rate, the first signal becomes a time-discrete signal.
  • the sampled The signal is added with a cyclic prefix (Add CP), and the signal after adding the cyclic prefix is subjected to filtering processing of the second spectral template to generate a second f-OFDM signal.
  • Add CP cyclic prefix
  • the second sideband signal is sampled by using a third sampling rate, and the sampled signal is subjected to filtering processing, upsampling processing, and digital frequency conversion processing of the third spectral template to generate a third f-OFDM signal.
  • the second sideband signal may be sampled by a third sampling rate by using an IFFT technique, and the third sampling rate may be a single sampling rate of the second sideband signal; the single sampling The rate is: the bandwidth of the nearest 2 n subcarriers from the number of subcarriers included in the second sideband signal, and the n is an integer greater than or equal to 1.
  • the transition band of the third spectrum template is also narrow.
  • the third spectrum template may also be a digital shaping filter template with a relatively high filtering order.
  • the upsampling refers to sampling the signal filtered by the third spectrum template, so that the sampling rate of the sampled signal is greater than the sampling rate of the filtered signal.
  • the digital frequency conversion means that the upsampled signal is spectrally shifted, and the signal is moved to the spectral position of the second sideband signal.
  • the second sideband signal after sampling the second sideband signal with the third sampling rate, the second sideband signal becomes a time-discrete signal.
  • a cyclic prefix (Add CP) is added to the sampled signal, and the signal after adding the cyclic prefix is subjected to filtering processing, upsampling and up-conversion processing of the third spectral template to generate a third f-OFDM signal.
  • the out-of-band leakage of the OFDM signal meets the first preset threshold; wherein the first preset threshold may be set as needed, and the comparison in the embodiment of the present invention is not limited, when the out-of-band leakage of the OFDM signal meets the first preset threshold.
  • the signal indicates that the signal has good out-of-band performance, it will not cause interference to other signals.
  • the out-of-band leakage of the OFDM signal does not satisfy the first preset threshold, it indicates that the out-of-band leakage of the signal is relatively large and will seriously affect For other signals.
  • S1015 Superimpose the first f-OFDM signal, the second f-OFDM signal, and the third f-OFDM signal, and use the superposed signal as an f-OFDM signal of the signal.
  • the spectrum of the first f-OFDM signal has been moved to the spectrum position of the OFDM signal corresponding to the first sideband signal
  • the spectrum of the second f-OFDM signal is in the spectrum of the OFDM signal
  • the third f-OFDM signal has been moved to a spectrum position corresponding to the second sideband signal in a spectrum of the OFDM signal, and therefore, from a frequency domain perspective And the first f-OFDM signal, the second f-OFDM signal, and the third f-OFDM signal
  • the superposing may be: superimposing the spectrum of the first f-OFDM signal, the spectrum of the second f-OFDM signal, and the spectrum of the third f-OFDM signal as a spectrum of a complete signal
  • superimposing the first f-OFDM signal, the second f-OFDM signal, and the third f-OFDM signal may be: using the first f-OFDM signal
  • the present invention divides the OFDM wideband signal into two sideband signals and an intermediate signal, and performs filtering processing on the narrowband spectral template on the two sideband signals, and performs intermediate signal processing on the intermediate signal.
  • the transition band has a relatively wide spectral template filtering process. Since the sideband signal is at the edge position, although the transition band must be filtered with a narrow spectral template to achieve good out-of-band performance, the bandwidth of the sideband is relatively narrow.
  • the sampling rate is low, which can well reduce the working sampling rate of the digital shaping filter, and the filtering implementation is relatively simple.
  • the intermediate signal although the bandwidth is relatively wide and the sampling rate is relatively high, the transition band performance is due to its intermediate position.
  • the filter implementation is also very simple, therefore, from this According to the entire technical solution provided by the invention, the invention can reduce the filtering well in the process of signal transmission. Complexity.
  • the above process is mainly for the transmission of the downlink signal.
  • the same transmitting device can also serve as the receiving device, and the receiving end transmits the uplink through the above processing.
  • the path signal when receiving the uplink signal, its processing of the uplink signal may be an inverse process to the downlink signal processing, or may be different.
  • the present invention further provides a signal processing method for processing a received filtered orthogonal frequency division multiplexing f-OFDM signal, the transition band of the f-OFDM signal
  • the first preset threshold is met, and the signal processing method may include:
  • S2011 Perform digital frequency conversion processing, down sampling processing, and filtering processing of the first spectrum template on the received f-OFDM signal, and filter out the first sideband signal.
  • the digital frequency conversion may be: performing up-conversion processing on the f-OFDM signal, and moving a center frequency of the f-OFDM signal to a center frequency of the first sideband signal;
  • the downsampling refers to: sampling the digitally converted signal so that the sampling rate of the sampled signal is smaller than the sampling rate of the digitally converted signal; optionally, the sampling rate and the transmitted signal of the sampled signal can be made.
  • the first sampling rate used is equal.
  • S2012 The received f-OFDM signal is filtered by the second spectrum template to filter out the first signal.
  • S2013 The received f-OFDM signal is subjected to digital frequency conversion processing, down sampling processing, and filtering processing of the third spectrum template, and the second sideband signal is filtered out.
  • the digital frequency conversion may be: performing down-conversion processing on the f-OFDM signal, and moving a center frequency of the f-OFDM signal to a center frequency of the second sideband signal.
  • the downsampling refers to: sampling the digitally converted signal so that the sampling rate of the sampled signal is smaller than the sampling rate of the digitally converted signal; optionally, the sampling rate and the transmitted signal of the sampled signal can be made.
  • the third sampling rate used is equal.
  • S2014 superimpose the first sideband signal, the first signal, and the second sideband signal into an OFDM signal corresponding to the received f-OFDM signal.
  • the first sideband signal is located in a left sideband of the superposed OFDM signal
  • the second sideband signal is located in a right sideband of the superposed OFDM signal
  • the first signal is located in the superposed OFDM signal.
  • the bandwidth of the first spectrum template and the third spectrum template is smaller than the bandwidth of the second spectrum template, and the transition band of the first spectrum template and the third spectrum template is smaller than the second spectrum template. Transition zone.
  • the 20 MHz OFDM bandwidth signal is divided into: 900 KHz left band signal, 18.2 MHz intermediate signal, 900 KHz right band signal;
  • the 900KHz left signal is subjected to 128-point IFFT conversion to generate a time domain signal. No.
  • the time domain signal is added with a cyclic prefix to generate a signal A1, and the signal A1 is subjected to filtering processing of the first spectral template to generate a signal A2, the signal A2 is upsampled, a signal A3 is generated, and the signal A3 is digitally up-converted.
  • Signal A4; the spectrum of the signals A1 to A4 is as shown in Fig. 8(a);
  • the intermediate signal of 18.2 MHz is subjected to IFFT conversion of 2048 points to generate a time domain signal, the time domain signal is added with a cyclic prefix to generate a signal B1, and the signal B1 is subjected to filtering processing of the second spectral template to generate a signal B2; the signal B1
  • the spectrum of ⁇ B4 is shown in Figure 8(b);
  • the right side of the 900KHz signal is subjected to 128-point IFFT conversion to generate a time domain signal, the time domain signal is added with a cyclic prefix to generate a signal C1, and the signal C1 is subjected to filtering processing of the third spectral template to generate a signal C2, and the signal C2 is passed.
  • the signal A4, the signal B2 and the signal C4 are superimposed to form a signal D, and the superposed signal D is taken as an f-OFDM signal of the OFDM signal, for example, as shown in FIG. 8(d), the signal A4, the signal B2 and the signal C4 are used.
  • the spectra are combined to form a signal D.
  • the first spectrum template and the third spectrum template have a filtering order of 16
  • the second spectrum template has a filtering order of 4
  • the high-speed sampling rate is 10 points in one second.
  • the filtering method adopted by the embodiment of the invention greatly reduces the filtering complexity.
  • the filter of each sub-band signal is designed to have a wider passband width than the subband data bandwidth, and the right side of the left sideband and the left side of the rightband need to reserve a certain bandwidth.
  • the left side of the passband of the sideband shaping filter should be appropriately wider than the right side, so that the left side of the sideband signal after the filter process is pre- Leave a certain amount of bandwidth.
  • the signal A5 is obtained by a low pass filter, and the signal A5 is downsampled by a sampling frequency of 1.92 Mbps to generate a signal A6.
  • the filtering process of the first spectrum template used in signal filtering on the left side filters the signal A6 to generate a signal A7, and demodulates the signal A7 by a cyclic prefix and a 128-point FFT to recover a left-side band signal of 900 kHz; wherein, the signal The spectrum of A5 to A7 is shown in Fig. 10(a).
  • the received 20 MHz bandwidth f-OFDM signal is directly filtered by the filtering process of the second spectrum template used in the filtering of the 18.2 MHz intermediate signal in the above transmission process to generate the signal B3, and the signal B3 is subjected to a de-cyclic prefix and a 2048-point FFT. Transform, recovering the intermediate signal of 18.2MHz;
  • the received 20 MHz bandwidth f-OFDM signal is digitally converted, and then filtered by a low pass filter to obtain a signal C5 on the right side; the signal C5 is downsampled at a sampling frequency of 1.92 Mbps to generate a signal C6, using the above transmission process.
  • the filtering process of the third spectrum template used in the signal filtering in the middle right side filters the signal C6 to generate a signal C7, and demodulates the signal C7 by a cyclic prefix and a 128-point FFT to recover a left-side band signal of 900 kHz; wherein, the signal
  • the spectrum of C5 to C7 is as shown in Fig. 10(b).
  • the low-pass filter used above does not require a steep transition band, and the purpose is only to filter out the in-band signal and avoid spectral aliasing caused by downsampling.
  • the passband design of the shaping filter used in the reception also needs to leave a certain margin on the basis of the signal bandwidth, thereby avoiding the phase operation of the filter.
  • the effect of neighbor subband edge subcarrier performance is not limited to the following criteria:
  • the operation can simultaneously implement multiple different OFDM parameters in one OFDM wideband signal, and the system bandwidth of the entire OFDM signal can be first divided into several smaller bandwidth OFDM signals, and each OFDM signal with a smaller bandwidth is adopted.
  • the filtering strategy described in FIG. 5 performs filtering to obtain an f-OFDM signal of each OFDM signal having a relatively small bandwidth, and obtains an f-OFDM signal in which each f-OFDM signal is combined into an original large bandwidth OFDM signal.
  • the signal processing method may include:
  • the M f-OFDM signals are superimposed and transmitted.
  • the M is an integer greater than or equal to 2, if the M
  • the signal processing method may further include:
  • the M f-OFDM signals are respectively processed according to a preset signal processing strategy to obtain M OFDM signals.
  • each OFDM signal is filtered by using the filtering method shown in FIG. 5.
  • each 20 MHz sub-OFDM signal is filtered by using the foregoing filtering manner, so that any adjacent two sub-OFDM signals have Very good frequency domain isolation, OFDM parameters can be arbitrarily configured without interfering with each other.
  • the 100 MHz f- may be first used.
  • the OFDM signal is filtered through five different low-pass filters, and the f-OFDM signals of the five OFDM signals are filtered out.
  • the processing method shown in FIG. 6 is adopted, and each will be used.
  • the 20 MHz OFDM signal is recovered.
  • the spectrum template may be filtered, and the purpose thereof is to suppress the remote spectrum leakage generated by the OFDM signals outside the system bandwidth, instead of the adjacent band spectrum leakage outside the OFDM signal, and therefore, for some OFDM signals having the same parameters in the middle
  • the transition band specification of the filter is required to be relaxed.
  • a filter with a narrow transition band is required to suppress the subbands.
  • the neighboring band spectrum is leaked, which can further reduce the complexity of the filtering operation of the entire system, and the specific implementation is as follows:
  • the first group of OFDM signals includes i frequency-continuous OFDM signals, and the parameters of the i OFDM signals are the same, and the M OFDM signals are excluded.
  • the parameters of the (Mi) OFDM signals other than the i signals are different, and the parameters of each of the (Mi) OFDM signals are different from the parameters of the i OFDM signals, and the 2 ⁇ i ⁇ M; then the method further comprises:
  • the filtering policy Processing, by the filtering policy, the first OFDM signal of the i OFDM signals to obtain an f-OFDM signal corresponding to the first OFDM signal; the first OFDM signal is located at the i frequency consecutive a first edge of the OFDM signal;
  • the second OFDM signal is processed to obtain an f-OFDM signal corresponding to the second OFDM signal; the first OFDM signal is located at a second edge of the i frequency-contiguous OFDM signals;
  • the bandwidth of the transition band of the fourth spectrum template may be greater than a second preset threshold, that is, the signal filtered by the fourth spectrum template may be leaked in the band; the second preset threshold may be set as needed.
  • the comparison between the embodiments of the present invention is not limited.
  • the bandwidth of the filtered signal of the fourth spectrum template may be wider, and may be leaked in the band. Because the lower the filtering order of the spectrum template, the larger the transition band, correspondingly, the filtering order of the fourth spectrum template can be set to compare, thereby reducing the complexity of the filtering.
  • the signal processing method may further include:
  • Each of the (M-i) f-OFDM signals is processed according to the signal processing strategy to obtain (M-i) OFDM signals.
  • OFDM signal 1 and OFDM signal 5 are the whole. Two edge subband signals of the system bandwidth.
  • the OFDM signal 1, the OFDM signal 2, the OFDM signal 3, and the OFDM signal 4 use the same OFDM parameters, the OFDM signal 5 uses a different from the other four OFDM signals.
  • OFDM parameters in the case where all subband signals are synchronized, there is no interference between the OFDM signal 1, the OFDM signal 2, the OFDM signal 3, and the OFDM signal 4, and there is interference between the OFDM signal 4 and the OFDM signal 5.
  • the divided OFDM signal 1, OFDM signal 4, and OFDM signal can be implemented by using the filtering method shown in FIG. 5, for the two
  • the sideband signal of the OFDM signal performs extremely narrow filtering of the transition band, and suppresses the adjacent band leakage of the current OFDM signal band, and for the OFDM signal 2, the OFDM signal 3 can adopt a wider transition band as shown in FIG. 15(a).
  • the filtering process of the four-spectral template can be performed to suppress the out-of-band spectrum leakage generated by the out-of-band of the OFDM signal 4 and the OFDM signal 1, and then the f-OFDM signal of each OFDM signal is moved to the corresponding spectrum of the entire 100 MHz spectrum.
  • the synthesized 100 MHz filtered f-OFDM signal is transmitted; correspondingly, as shown in FIG. 14, in the simplified receiving structure diagram of the 100 MHz wideband signal, the acquired OFDM signal 1, OFDM signal 4, and OFDM signal can be obtained.
  • the three f-OFDM signals are respectively detected by the method shown in FIG. 6, and for the acquired two OFDM signals 2 and OFDM signals 3, the two f-OFDM signals can be as shown in FIG. 15(b).
  • Four spectral template filtering processing to recover The original signal can be recovered; thus, in the entire filtering scheme, the filtering scheme is further simplified because the filtering index requirements of OFDM signal 2 and OFDM signal 3 are relaxed.
  • an embodiment of the present invention provides a signal processing method, which divides an OFDM signal to be transmitted into: a first sideband signal, a first signal, and a second sideband signal; the first sideband signal is located in the a left sideband of the OFDM signal to be transmitted, the second sideband signal being located in a right band of the OFDM signal to be transmitted, the first signal being located in the OFDM signal to be transmitted except the left sideband and the Middle of the right side a frequency band of the first sideband signal and a bandwidth of the second sideband signal are smaller than a bandwidth of the first signal; sampling the first sideband signal with a first sampling rate, and sampling The subsequent signal is subjected to filtering processing, upsampling processing and digital frequency conversion processing of the first spectral template to generate a first f-OFDM signal; the first signal is sampled by the second sampling rate, and the sampled signal is subjected to the second Filtering processing of the spectrum template to generate a second f-OFDM signal;
  • the present invention divides the OFDM wideband signal into two sideband signals and an intermediate signal, and performs filtering processing on the narrowband spectral template on the two sideband signals, and performs intermediate signal processing on the intermediate signal.
  • the transition band has a wider spectral template filtering process. Since the sideband signal is at the edge position, it must be filtered by using the shaping filter to obtain a narrow transition band, achieving good out-of-band performance, but the bandwidth of the sideband is compared.
  • the narrow, low sampling rate can well reduce the working sampling rate of the filtering process of the spectrum template, and the filtering is simple to implement.
  • the filtering can be performed using a molding filter with a very low order, and the filtering implementation is also very simple. Therefore, from the perspective of the entire technical solution provided by the present invention, it can be very good. Reduce the complexity of filtering.
  • the following embodiments of the present invention further provide a transmitter 30, preferably for performing the signal processing method described in FIG.
  • FIG. 16 is a structural diagram of a transmitter 20 according to an embodiment of the present invention, for performing the signal processing method according to the first embodiment, for transmitting an orthogonal frequency division multiplexing OFDM signal, as shown in FIG.
  • the device 20 can include:
  • a first filtering module 201 configured to filter the OFDM signal, and obtain To the f-OFDM signal;
  • the sending module 202 is configured to send the f-OFDM signal obtained by the first filtering module 201.
  • the first filtering module 201 may specifically include:
  • the signal dividing unit 2011 is configured to divide the OFDM signal to be transmitted into: a first sideband signal, a first signal, and a second sideband signal; the first sideband signal is located on a left side of the OFDM signal to be transmitted.
  • the second sideband signal is located in a right band of the OFDM signal to be transmitted, and the first signal is located in an intermediate frequency band of the OFDM signal to be transmitted except the left side band and the right side band;
  • the bandwidth of the first sideband signal and the bandwidth of the second sideband signal are all smaller than the bandwidth of the first signal.
  • the left sideband and the right sideband may be two edge frequency bands of a OFDM spectrum.
  • the left sideband may be the frequency band of the left edge of the spectrum
  • the right sideband may be the frequency band of the right edge of the spectrum, which is understandable.
  • the orientation or positional relationship indicated by the terms "left” and "right” is based on the orientation or positional relationship shown in the drawings, for the convenience of describing the present invention and simplifying the description, instead of It is to be understood that the object referred to has a particular orientation, is constructed and operated in a particular orientation and is therefore not to be construed as limiting.
  • the bandwidth of the first sideband signal and the bandwidth of the second sideband signal are all smaller than the bandwidth of the first signal, and the bandwidth of the first sideband signal and the bandwidth of the second sideband signal may be equal;
  • the specific value of each signal bandwidth division may be arbitrary, which is not limited by the embodiment of the present invention. Specifically, it may be flexibly divided according to the processing capability of the hardware, but in principle, the first sideband signal and the second sideband are required to be satisfied.
  • the bandwidth of the signal is as small as possible (ie, a narrowband signal) to ensure that the sampling rate of the sideband signal is relatively low.
  • the first signal it can be the broadband signal of the middle portion.
  • one OFDM signal can include at least one subcarrier (as shown in FIG. 1)
  • the following principle can be followed: using several subcarriers on the left side of the OFDM signal as the first sideband signal.
  • the subcarriers on the right side of the OFDM signal are used as the second sideband signal, and the remaining subcarriers are used as the first signal.
  • the filtering unit 2012 is configured to sample the first sideband signal that is separated by the signal dividing unit 2011 by using a first sampling rate, and pass the sampled signal to the first spectrum template.
  • the filtering process, the upsampling process, and the digital frequency conversion process generate a first f-OFDM signal.
  • the OFDM signal to be transmitted in the embodiment of the present invention is a baseband frequency domain signal, so the first sideband signal can be sampled by using the IFFT technology.
  • the transition band of the first spectrum template is relatively narrow, so as to ensure that the filtered signal has a narrow transition band and achieves good out-of-band performance; since the filtering order of the spectrum template is higher, the filtered signal
  • the upsampling refers to sampling the signal filtered by the first spectrum template, so that the sampling rate of the sampled signal is greater than the sampling rate of the filtered signal.
  • the resulting single f-OFDM signal has a single sampling rate that is the same as the single sampling rate of the original OFDM signal.
  • the digital frequency conversion means that the upsampled signal is spectrally shifted, and the signal is moved to the spectral position of the first sideband signal.
  • the second sideband signal becomes a time-discrete signal.
  • a cyclic prefix (Add CP) is added to the sampled signal, and the signal after adding the cyclic prefix is subjected to filtering processing, upsampling and up-conversion processing of the first spectral template to generate a first f-OFDM signal.
  • the filtering unit 2012 is further configured to sample the first signal that is separated by the signal dividing unit 2011 by using a second sampling rate, and perform filtering processing of the sampled signal by using a second spectrum template to generate a second f-OFDM. signal.
  • the first signal can be sampled by the second sampling rate by the IFFT technique. Since the first signal is an intermediate signal of the original OFDM signal, the bandwidth is relatively close to the bandwidth of the original OFDM signal, so the second sampling rate can basically be Determining the single sampling rate of the OFDM signal such that the single sample rate of the sampled, filtered second f-OFDM signal is the same as the single sample rate of the original OFDM signal; meanwhile, due to the first sideband signal sum The bandwidth of the second sideband signal is much smaller than the bandwidth of the first signal, so that the single sampling rate of the first sideband signal and the second sideband signal is much smaller than the single sampling rate of the first signal as the sampling rate, therefore, When the signal is sampled with the single sampling rate of the signal as the sampling rate, the second sampling rate is greater than the first sampling rate and the third sampling rate in step S1014.
  • the first signal is an intermediate signal of the original OFDM signal
  • there may be a large transition band for example, the frequency band of the first sideband signal and the frequency band of the second sideband signal may be used as a transition band of the first signal
  • the bandwidth of the second spectrum template may be set to be smaller, so that the filtering complexity may be reduced.
  • the transition band of the second spectrum template may be set to be larger than the transition band of the first spectrum template and the transition band of the third spectrum template.
  • the first signal after sampling the first signal with the second sampling rate, the first signal becomes a time-discrete signal.
  • the sampled The signal is added with a cyclic prefix (Add CP), and the signal after adding the cyclic prefix is subjected to filtering processing of the second spectral template to generate a second f-OFDM signal.
  • Add CP cyclic prefix
  • the filtering unit 2012 is further configured to sample the second sideband signal separated by the signal dividing unit 2011 by using a third sampling rate, and perform filtering processing, upsampling processing, and filtering of the sampled signal by the third spectral template. Digital frequency conversion processing to generate a third f-OFDM signal.
  • the second sideband signal may be sampled by a third sampling rate by using an IFFT technique, and the third sampling rate may be a single sampling rate of the second sideband signal; the single sampling The rate is: the bandwidth of the nearest 2 n subcarriers from the number of subcarriers included in the second sideband signal, and the n is an integer greater than or equal to 1.
  • the transition band of the third spectrum template is also narrower to ensure a narrow transition band of the filtered signal to achieve good out-of-band performance;
  • Digital shaping filter template Similar to the first spectrum template, the transition band of the third spectrum template is also narrower to ensure a narrow transition band of the filtered signal to achieve good out-of-band performance;
  • the third spectral template can also be a relatively high filtering order.
  • the upsampling refers to sampling the signal filtered by the third spectrum template, so that the sampling rate of the sampled signal is greater than the sampling rate of the filtered signal.
  • the digital frequency conversion means that the upsampled signal is spectrally shifted, and the signal is moved to the spectral position of the second sideband signal.
  • the second sideband signal after sampling the second sideband signal with the third sampling rate, the second sideband signal becomes a time-discrete signal.
  • a cyclic prefix (Add CP) is added to the sampled signal, and the signal after adding the cyclic prefix is subjected to filtering processing, upsampling and up-conversion processing of the third spectral template to generate a third f-OFDM signal.
  • the merging unit 2013 is configured to superimpose the first f-OFDM signal, the second f-OFDM signal, and the third f-OFDM signal filtered by the filtering unit 2012 into the f-OFDM signal.
  • the spectrum of the first f-OFDM signal has been moved to the spectrum position of the OFDM signal corresponding to the first sideband signal
  • the spectrum of the second f-OFDM signal is in the spectrum of the OFDM signal
  • the first sampling rate and the third sampling rate are smaller than the second sampling rate; in addition, regardless of how the transitions of the first spectrum template, the second spectrum template, and the third spectrum template are set, it is necessary to ensure that The out-of-band leakage of the OFDM signal filtered by the first spectrum template, the second spectrum template, and the third spectrum template satisfies a first preset threshold
  • the value of the first preset threshold may be set as needed.
  • the comparison in the embodiment of the present invention is not limited. When the out-of-band leakage of the OFDM signal meets the first preset threshold, the signal indicates that the signal has a good out-of-band. The performance does not cause interference to other signals. When the out-of-band leakage of the OFDM signal does not satisfy the first preset threshold, it indicates that the out-of-band leakage of the signal is relatively large, which may seriously affect other signals.
  • the transmitter is further configured to transmit M consecutive OFDM signals including the OFDM, where the M is an integer greater than or equal to 2, and if the parameters of the M OFDM signals are different.
  • the first filtering module 201 can also be used to:
  • the sending module 202 is further configured to superimpose and transmit the M f-OFDM signals obtained by the first filtering module 201.
  • the bandwidth of each OFDM signal in the M OFDM signals may be the same or different.
  • the spectrum template may be filtered, and the purpose thereof is to suppress the remote spectrum leakage generated by the OFDM signals outside the system bandwidth, instead of the adjacent band spectrum leakage outside the OFDM signal, and therefore, for some OFDM signals having the same parameters in the middle
  • the transition band specification of the filter is required to be relaxed. For subbands located on both sides of the system bandwidth and subbands using different OFDM parameters within the system bandwidth, a filter with a narrow transition band is required to suppress the subbands.
  • the first group of OFDM signals includes i frequency-continuous OFDM signals. a signal, wherein the parameters of the i OFDM signals are the same, and (Mi) OFDM signals of the M OFDM signals except the i signals.
  • the parameters of each of the (Mi) OFDM signals are different from the parameters of the i OFDM signals, where 2 ⁇ i ⁇ M; then the first filtering module 201, Also used for:
  • the first OFDM signal is located in the first OFDM signal of the i frequency
  • the first OFDM signal is located in the first OFDM signal of the i frequency
  • the transmitter further includes: a second filtering module 203;
  • the second filtering module 203 is configured to perform filtering processing on the fourth spectrum template for each of the OFDM signals except the first OFDM signal and the second OFDM signal, respectively (i-2) f-OFDM signals;
  • the bandwidth of the transition band of the fourth spectrum template may be greater than a second preset threshold, that is, the signal filtered by the fourth spectrum template may be leaked in the band; the second preset threshold may be set as needed.
  • the comparison between the embodiments of the present invention is not limited.
  • the bandwidth of the filtered signal of the fourth spectrum template may be wider, and may be leaked in the band. Because the lower the filtering order of the spectrum template, the larger the transition band, correspondingly, the filtering order of the fourth spectrum template can be set to compare, thereby reducing the complexity of the filtering.
  • the sending module 202 is further configured to: use an f-OFDM signal corresponding to the first OFDM signal, an f-OFDM signal corresponding to the second OFDM signal, and (i-2) f-OFDM signals And superimposing the (Mi) f-OFDM signals to transmit the superposed signals.
  • an embodiment of the present invention provides a transmitter that divides an OFDM signal to be transmitted into: a first sideband signal, a first signal, and a second sideband signal; the first sideband signal is located in the a left sideband of the transmitted OFDM signal, the second sideband signal being located in a right band of the OFDM signal to be transmitted, the first signal being located in the OFDM signal to be transmitted except the left sideband and the right side An intermediate frequency band outside the band; the bandwidth of the first sideband signal and the bandwidth of the second sideband signal are all smaller than Decoding the bandwidth of the first signal; sampling the first sideband signal with a first sampling rate, and performing filtering, upsampling, and digital frequency conversion processing on the sampled signal by the first spectral template to generate a first f- OFDM signal; sampling the first signal with a second sampling rate, filtering the sampled signal by a second spectral template to generate a second f-OFDM signal; and using the third sampling rate for the second edge
  • the signal is
  • the present invention divides the OFDM wideband signal into two sideband signals and an intermediate signal, and performs filtering processing on the narrowband spectral template on the two sideband signals, and performs intermediate signal processing on the intermediate signal.
  • the transition band has a wider spectral template filtering process. Since the sideband signal is at the edge position, it must be filtered by using the shaping filter to obtain a narrow transition band, achieving good out-of-band performance, but the bandwidth of the sideband is compared. Narrow, low sampling rate, can reduce the working sampling rate of digital shaping filtering, and the filtering is simple.
  • the filtering can be performed using a very low-order shaping filter, and the filtering implementation is also very simple. Therefore, from the perspective of the entire technical solution provided by the present invention, the performance can be well reduced. The complexity of filtering.
  • the above process is mainly for the transmission of the downlink signal.
  • the same transmitting device can also serve as the receiving device, and the receiving end transmits the uplink through the above processing.
  • the path signal when receiving the uplink signal, the processing of the uplink signal may be the reverse process of the downlink signal processing, or may be different; specifically, the following embodiment 3 further provides a
  • the receiver 40 is configured to process the received f-OFDM signal.
  • FIG. 17 is a structural diagram of a receiver 40 according to an embodiment of the present invention, as shown in FIG. As shown, the receiver 40 can include:
  • a receiving module 401 configured to receive the f-OFDM signal
  • the first processing module 402 is configured to process the f-OFDM signal received by the receiving module according to a preset signal processing policy to obtain an OFDM signal.
  • the signal processing strategy is:
  • the received f-OFDM signal is subjected to digital frequency conversion processing, downsampling processing, and filtering processing of the third spectrum template to filter out the second sideband signal;
  • the first sideband signal is located in a left sideband of the superposed OFDM signal
  • the second sideband signal is located in a right sideband of the superposed OFDM signal
  • the first signal is located in the superposed OFDM signal.
  • the bandwidth of the first spectrum template and the third spectrum template is smaller than the bandwidth of the second spectrum template, and the transition band of the first spectrum template and the third spectrum template is smaller than the second spectrum template. Transition zone.
  • the digital frequency conversion when filtering the first sideband signal may be: performing up-conversion processing on the f-OFDM signal, and moving a center frequency of the f-OFDM signal to a center frequency of the first sideband signal
  • Upsampling refers to: sampling the digitally converted signal so that the sampling rate of the sampled signal is smaller than the sampling rate of the digitally converted signal; optionally, the sampling rate and the transmitted signal of the sampled signal can be made.
  • the first sampling rate used is equal;
  • the digital frequency conversion when filtering the second sideband signal may be: performing a down conversion process on the f-OFDM signal, and moving a center frequency of the f-OFDM signal to a center frequency of the second sideband signal Up; downsampling means: sampling the digitally converted signal so that the sampled rate of the sampled signal is less than that of the digitally converted signal The sampling rate; optionally, the sampling rate of the sampled signal is equal to the third sampling rate used when transmitting the signal.
  • the first processing module 402 can also be used to:
  • the M f-OFDM signals are respectively processed according to a preset signal processing strategy to obtain M OFDM signals.
  • the first group of f-OFDM signals includes i frequency-continuous f-OFDM signals, and the i f-OFDM signals
  • the transition band does not satisfy the first preset threshold, and the transition band of the (Mi) f-OFDM signals other than the i signals in the M f-OFDM signals satisfies a first preset threshold, ⁇ i ⁇ M; then the first processing module 402 can also be used to:
  • the receiver may further include:
  • a second processing module 403 configured to perform filtering processing on a fourth spectrum template for each of the f-OFDM signals, to obtain i OFDM signals; and a transition band of the fourth spectrum template The bandwidth is greater than the second predetermined threshold.
  • the bandwidths of the M f-OFDM signals are not completely equal or completely equal or unequal.
  • the embodiment of the present invention provides a receiver for processing the received filtered orthogonal frequency division multiplexing f-OFDM signal, where the transition band of the f-OFDM signal satisfies the first preset.
  • the receiver includes: a receiving module, a first processing module, the receiving module is configured to receive the f-OFDM signal, and the first processing module is configured to receive the f received by the receiving module according to a preset signal processing policy.
  • the OFDM signal is processed to obtain an OFDM signal;
  • the signal processing strategy is: performing digital frequency conversion processing, down sampling processing, filtering processing of the first spectrum template on the received f-OFDM signal, and filtering out the first sideband signal; Passing the received f-OFDM signal through the second spectrum template Filtering, filtering out the first signal; subjecting the received f-OFDM signal to digital frequency conversion processing, downsampling processing, filtering processing of the third spectral template, filtering out the second sideband signal; and the first sideband
  • the signal, the first signal, and the second sideband signal are superimposed as an OFDM signal corresponding to the received f-OFDM signal.
  • the two sideband signals of the received f-OFDM signal are subjected to filtering processing of a relatively narrow spectral template, and the intermediate signal is subjected to filtering processing of a relatively wide spectral template, which can well reduce filtering. the complexity.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the software functional units described above are stored in a storage medium and include instructions for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform portions of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read only memory. (Read-Only Memory, ROM for short), random access memory (RAM), disk or optical disk, and other media that can store program code.
  • the storage medium may include a read only memory, a random access memory, a magnetic disk or an optical disk, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信号处理方法及设备,涉及通信技术领域,实现低复杂度的滤波方案。该方法包括:将OFDM信号分为:第一边带信号、第一信号以及第二边带信号;用第一采样率对第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;用第二采样率对第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;用第三采样率对第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号;将第一f-OFDM信号、第二f-OFDM信号和第三f-OFDM信号叠加为f-OFDM信号;第一采样率、第三采样率小于第二采样率。

Description

一种信号处理方法及设备
本申请要求于2015年12月31日提交中国专利局、申请号为201511032383.1、发明名称为“一种信号处理方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种信号处理方法及设备。
背景技术
在第五代移动通信技术(5G)丰富的业务场景中,每种业务场景对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)波形参数的需求各不相同,能够根据业务场景来动态地选择和配置OFDM波形参数,同时又能兼顾传统OFDM的优点,是对5G基础波形的必然要求。
其中,基于OFDM子带滤波的OFDM(Filtered-OFDM,简称:f-OFDM)就是能够满足5G需求的波形技术,在f-OFDM波形技术中,将系统带宽划分为若干OFDM子带频域信号,每个OFDM子带具有传统OFDM波形的特性,然后对每个OFDM子带采用高阶数字成型滤波器进行OFDM子带滤波,由于在时域上采用了高阶数字成型滤波器进行OFDM子带滤波,所以在频域上每个滤波后的OFDM子带具有良好的带外性能,实现了各OFDM子带波形的解耦,进而可以在兼容传统OFDM波形的优点的情况下,根据实际业务场景对每个OFDM子带配置不同的波形参数。例如:图1为现有对OFDM子带频域信号进行处理的示意图,OFDM子带频域信号的带宽为20MHz,如图1所示,将OFDM子带频域信号先进行2048点的快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT)变为时域信号,对每个时域信号加循环前缀,对每个加循环前缀的信号进行高阶数字成型滤波器滤波,将滤波后的信号合并在一起通过射频 (Radio Frequency,RF)出去。
虽然f-OFDM波形技术使用了高阶数字成型滤波器,使过滤后的信号具有良好的带外性能(如:很窄的过渡带),相邻OFDM子带之间需要的保护带开销可以非常低,甚至在大部分场景下,不需要保护带,但是,由于f-OFDM中OFDM子带信号均为宽带信号(如:长期演进(Long Term Evolution,LTE)中规定OFDM信号的带宽为20 MHz),信号采样率高,如果在较高的采样率上进行这种高阶时域滤波,实现复杂度会非常高,对于整个系统而言,会带来以下诸多问题:(1)对于终端而言,高复杂度的滤波不利于终端的节能,特别是对于系统中可能存在的众多低成本终端而言,高阶数字成型滤波器的实现将会是较大的瓶颈;(2)高阶数字滤波器无论在发射机侧还是接收机侧,都需要消耗较长的处理时间,这对于5G中典型的超低时延业务需求,尤为不利;所以,设计低复杂度的数字成型滤波方案,就成为f-OFDM技术的核心问题。
发明内容
为解决上述问题,本发明实施例提供一种信号处理方法及设备。实现低复杂度数字成型滤波的方案,能够大大降低滤波操作的复杂度,使得f-OFDM具有更强的可实现性。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种信号处理方法,用于传输正交频分复用OFDM信号,所述方法可以包括:
根据预设的滤波策略对所述OFDM信号进行处理,得到f-OFDM信号;将所述f-OFDM信号发射出去;
所述滤波策略为:
将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带 信号的带宽均小于所述第一信号的带宽;
用第一采样率对所述第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;
用第二采样率对所述第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;
用第三采样率对所述第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号;
将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号;
所述第一采样率、第三采样率小于第二采样率;所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带,所述第一频谱模板的滤波处理、所述第二频谱模板的滤波处理以及所述第三频谱模板的滤波处理用于:保证过滤后的所述OFDM信号的带外泄露满足第一预设阈值。
其中,第一预设阈值可以根据需要进行设置,本发明实施例对比不进行限定,当信号的过渡带的带宽小于第一预设阈值时,则表示得到该f-OFDM信号时采用的频谱模板的过渡带比较窄,当信号的过渡带的带宽大于第一预设阈值时,则表示得到该f-OFDM信号时采用的频谱模板的过渡带比较宽。
如此,与现有技术方案相比,本发明将OFDM宽带信号划分:两个边带信号、一个中间信号,对两个边带信号进行过渡带比较窄的频谱模板的滤波处理,对中间信号进行过渡带比较宽的频谱模板的滤波处理,由于边带信号处于边缘位置,虽然必须使用过渡带比较窄的频谱模板进行滤波,以达到很好的带外性能,但由于边带的带宽比较窄,采样速率低,可以很好地降低数字成型滤波的工作采样速率,滤波实现比较简单;同时,对于中间信号,虽其带宽比较宽,采样速率比较高,但由于其位于中间位置,对过渡带性能没有 太大要求,可以非常宽(如可以将左右边带也视为过渡带的一部分),所以,可以使用过渡带比较宽的频谱模板进行滤波,在滤波实现上也很简单,因此,从本发明提供的整个技术方案上来看,在信号传输的过程中,本发明可以很好的降低滤波的复杂度。
进一步,在第一方面的一种可实现方式中,所述方法还用于传输包含所述OFDM在内的频率连续的M个OFDM信号,所述M为大于等于2的整数,若所述M个OFDM信号的参数各不相同,则所述方法还包括:
根据预设的滤波策略分别对所述M个OFDM信号进行处理,得到M个f-OFDM信号;
将所述M个f-OFDM信号叠加后发射出去。
其中,需要说明的是,所述M个OFDM信号中各OFDM信号的带宽可以相同或不同。
但是,当若干OFDM信号中除两侧边带信号以外的中间若干OFDM信号之间是同步的,且具有相同的OFDM参数时,为了降低滤波的复杂度,这些子带只需要采用过渡带较宽的频谱模板进行滤波即可,其目的是为了抑制这些OFDM信号在系统带宽以外产生的远端频谱泄露,而非本OFDM信号以外的邻带频谱泄露,因此,对于中间具有相同参数的若干OFDM信号,其滤波器的过渡带指标要求可以放松,而对位于系统带宽两边的子带、以及系统带宽内部使用不同OFDM参数的子带,则需要采用过渡带极窄的滤波器,抑制这些子带以外的邻带频谱泄露,这样可以进一步降低整个系统滤波操作的复杂度。具体的,若所述M个OFDM信号中存在第一组OFDM信号,所述第一组OFDM信号包含i个频率连续的OFDM信号,所述i个OFDM信号的参数相同,所述M个OFDM信号中除所述i个信号之外的(M-i)个OFDM信号的参数各不相同,且所述(M-i)个OFDM信号中每个OFDM信号的参数与所述i个OFDM信号的参数不相同,所述2≤i≤M;则在第一方面的又一种可实现方式中,所述方法还包括:
根据所述滤波策略对所述i个OFDM信号中的第一OFDM信号进行处理,得到与所述第一OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第一边缘;
根据所述滤波策略对所述i个OFDM信号中的第二OFDM信号所述第二OFDM信号进行处理,得到与所述第二OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第二边缘;
分别对所述i个OFDM信号中除所述第一OFDM信号和所述第二OFDM信号之外的每个OFDM信号进行第四频谱模板的滤波处理,得到(i-2)个f-OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值;
根据所述滤波策略分别对所述(M-i)个OFDM信号进行处理,得到(M-i)个f-OFDM信号;
将与所述第一OFDM信号对应的f-OFDM信号、与所述第二OFDM信号对应的f-OFDM信号、所述(i-2)个f-OFDM信号以及所述(M-i)个f-OFDM信号进行叠加,将叠加后的信号发射出去。
可以理解的是,上述过程主要针对下行链路信号的发射,在通信过程中,作为发送下行链路信号的逆过程,同一发射设备也可以作为接收设备,接收对端经过上述处理发送的上行链路信号,当接收到上行链路信号时,其对上行链路信号的处理可以为对下行链路信号处理的逆过程,也可以有一定的不同。
因此,作为第一方面的逆过程,在第二方面中,本发明实施例又提供一种信号处理方法,用于对接收到的过滤后的正交频分复用f-OFDM信号进行处理,所述f-OFDM信号的过渡带满足第一预设阈值,所述方法还可以包括:
根据预设的信号处理策略对所述f-OFDM信号进行处理,得到OFDM信号;
所述信号处理策略为:
将接收到的f-OFDM信号进行数字变频处理、下采样处理、第 一频谱模板的滤波处理,过滤出第一边带信号;
将接收到的f-OFDM信号经过第二频谱模板的滤波处理,过滤出第一信号;
将接收到的f-OFDM信号经过数字变频处理、下采样处理、第三频谱模板的滤波处理,过滤出第二边带信号;
将所述第一边带信号、所述第一信号和所述第二边带信号叠加为与接收到的f-OFDM信号相对应的OFDM信号;所述第一边带信号位于叠加后的OFDM信号的左边带,所述第二边带信号位于叠加后的OFDM信号的右边带,所述第一信号位于叠加后的OFDM信号中除所述左边带和所述右边带之外的中间频带;
所述第一频谱模板、所述第三频谱模板的带宽小于所述所述第二频谱模板的带宽,所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带。
第三方面,本发明实施例还提供一种发送器,用于传输正交频分复用OFDM信号,所述发送器可以包括:
第一过滤模块,用于对所述OFDM信号进行过滤处理,得到f-OFDM信号;
发送模块,用于将所述第一过滤模块得到的f-OFDM信号发射出去;
其中,所述第一过滤模块具体可以包括:
信号划分单元,用于将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽。
所述左边带和所述右边带可以为一段OFDM频谱的两个边缘频带,所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽,第一边带信号的带宽和所述第二边带信号的带 宽可以相等;至于各信号带宽划分的具体数值可以是任意的,本发明实施例对此不进行限定,具体的,可以根据硬件的处理能力进行灵活划分,但原则上需要满足第一边带信号和第二边带信号的带宽尽可能的小(即为窄带信号),以保证边带信号的采样速率比较低,至于第一信号,可以为中间部分的宽带信号。
因通信协议规定一个OFDM信号可以包含至少一个子载波(如图1所示),所以,在对信号划分的过程中,可以遵循如下原则:将OFDM信号左边的几个子载波作为第一边带信号,将OFDM信号右边的几个子载波作为第二边带信号,剩余的子载波作为第一信号。
过滤单元,用于采用第一采样率对所述信号划分单元分出的第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;
采用第二采样率对所述信号划分单元分出的第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;
采用第三采样率对所述信号划分单元分出的第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号。
合并单元,用于将所述过滤单元过滤出的第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号。
需要说明的是,所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带,所述第一频谱模板、所述第二频谱模板以及所述第三频谱模板用于:保证过滤后的所述OFDM信号的带外泄露满足第一预设阈值,其中,第一预设阈值可以根据需要进行设置,本发明实施例对比不进行限定,当信号的过渡带的带宽小于第一预设阈值时,则表示得到该f-OFDM信号时采用的频谱模板的过渡带比较窄,当信号的过渡带的带宽大于第一预设阈值时,则表示得到该f-OFDM信号时采用的频谱模板的过渡带比较宽。
由于第一f-OFDM信号的频谱已经搬移到所述OFDM信号的频谱中与所述第一边带信号对应的频谱位置上、所述第二f-OFDM信号的频谱在所述OFDM信号的频谱中与所述第一信号对应的频谱位置上,第三f-OFDM信号已经搬移到所述OFDM信号的频谱中与所述第二边带信号对应的频谱位置上,因此,从频域上来看,将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号进行叠加可以为:将所述第一f-OFDM信号的频谱、所述第二f-OFDM信号的频谱和所述第三f-OFDM信号的频谱叠加在一起,作为一个完整的信号的频谱;或者,从时域上来看,将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号进行叠加可以为:将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号按照时间先后顺序连在一起作为一个时间连续的信号。
其中,所述第一采样率、第三采样率小于第二采样率;所述第一f-OFDM信号、所述第三f-OFDM信号的过渡带的带宽小于预设阈值;所述第二f-OFDM信号的过渡带的带宽大于预设阈值。
进一步的,所述发送器还用于传输包含所述OFDM在内的频率连续的M个OFDM信号,所述M为大于等于2的整数,若所述M个OFDM信号的参数各不相同,则在第二方面的一种可实现方式中,所述第一过滤模块,还可以用于:
分别将所述M个OFDM信号通过所述第一过滤模块,得到M个f-OFDM信号;
所述发送模块,还用于将所述第一过滤模块得到的M个f-OFDM信号叠加后发射出去。
其中,需要说明的是,所述M个OFDM信号中各OFDM信号的带宽可以相同或不同。
但是,当若干OFDM信号中除两侧边带信号以外的中间若干OFDM信号之间是同步的,且具有相同的OFDM参数时,为了降低滤波的复杂度,这些子带只需要采用过渡带较宽的频谱模板进行滤 波即可,其目的是为了抑制这些OFDM信号在系统带宽以外产生的远端频谱泄露,而非本OFDM信号以外的邻带频谱泄露,因此,对于中间具有相同参数的若干OFDM信号,其滤波器的过渡带指标要求可以放松,而对位于系统带宽两边的子带、以及系统带宽内部使用不同OFDM参数的子带,则需要采用过渡带极窄的滤波器,抑制这些子带以外的邻带频谱泄露,这样可以进一步降低整个系统滤波操作的复杂度,具体的,若所述M个OFDM信号中存在第一组OFDM信号,所述第一组OFDM信号包含i个频率连续的OFDM信号,所述i个OFDM信号的参数相同,所述M个OFDM信号中除所述i个信号之外的(M-i)个OFDM信号的参数各不相同,且所述(M-i)个OFDM信号中每个OFDM信号的参数与所述i个OFDM信号的参数不相同,所述2≤i≤M;则在第二方面的另一种实现方式中,所述第一过滤单元,还用于:
对所述i个OFDM信号中的第一OFDM信号进行过滤处理,得到与所述第一OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第一边缘;
对所述i个OFDM信号中的第二OFDM信号进行过滤处理,得到与所述第二OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第二边缘;
以及,分别对所述(M-i)个OFDM信号进行过滤处理,得到(M-i)个f-OFDM信号;
所述发送器还包括:第二过滤模块;
所述第二过滤模块,用于分别对所述i个OFDM信号中除所述第一OFDM信号和所述第二OFDM信号之外的每个OFDM信号进行第四频谱模板的滤波处理,得到(i-2)个f-OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值;
所述发送模块,还用于将与所述第一OFDM信号对应的f-OFDM信号、与所述第二OFDM信号对应的f-OFDM信号、所述(i-2)个f-OFDM信号以及所述(M-i)个f-OFDM信号进行叠加, 将叠加后的信号发射出去。
可以理解的是,上述过程主要针对下行链路信号的发射,在通信过程中,作为发送下行链路信号的逆过程,同一发射设备也可以作为接收设备,接收对端经过上述处理发送的上行链路信号,当接收到上行链路信号时,其对上行链路信号的处理可以为对下行链路信号处理的逆过程,也可以有一定的不同。
因此,作为与发送器相对的接收端,在第四方面中,本发明实施例还提供一种接收器,用于对接收到的过滤后的正交频分复用f-OFDM信号进行处理,所述f-OFDM信号的过渡带满足第一预设阈值,所述发送器还可以包括:
接收模块,用于接收所述f-OFDM信号;
第一处理模块,用于根据预设的信号处理策略对所述接收模块接收到的f-OFDM信号进行处理,得到OFDM信号;
所述信号处理策略为:
将接收到的f-OFDM信号进行数字变频处理、下采样处理、第一频谱模板的滤波处理,过滤出第一边带信号;
将接收到的f-OFDM信号经过第二频谱模板的滤波处理,过滤出第一信号;
将接收到的f-OFDM信号经过数字变频处理、下采样处理、第三频谱模板的滤波处理,过滤出第二边带信号;
将所述第一边带信号、所述第一信号和所述第二边带信号叠加为与接收到的f-OFDM信号相对应的OFDM信号;所述第一边带信号位于叠加后的OFDM信号的左边带,所述第二边带信号位于叠加后的OFDM信号的右边带,所述第一信号位于叠加后的OFDM信号中除所述左边带和所述右边带之外的中间频带;
所述第一频谱模板、所述第三频谱模板的带宽小于所述所述第二频谱模板的带宽,所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带。
第五方面,本发明实施例还提供一种发送器,用于传输正交频 分复用OFDM信号,所述发送器可以包括:
处理器,用于根据预设的滤波策略对所述OFDM信号进行处理,得到f-OFDM信号;
通信单元,用于将所述处理器得到的f-OFDM信号发射出去;
其中,所述滤波策略具体为:
将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽;
采用第一采样率对所述信号划分单元分出的第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;
采用第二采样率对所述信号划分单元分出的第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;
采用第三采样率对所述信号划分单元分出的第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号;
将第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号。
所述左边带和所述右边带可以为一段OFDM频谱的两个边缘频带,所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽,第一边带信号的带宽和所述第二边带信号的带宽可以相等;至于各信号带宽划分的具体数值可以是任意的,本发明实施例对此不进行限定,具体的,可以根据硬件的处理能力进行灵活划分,但原则上需要满足第一边带信号和第二边带信号的带宽尽可能的小(即为窄带信号),以保证边带信号的采样速率比较低, 至于第一信号,可以为中间部分的宽带信号。
因通信协议规定一个OFDM信号可以包含至少一个子载波(如图1所示),所以,在对信号划分的过程中,可以遵循如下原则:将OFDM信号左边的几个子载波作为第一边带信号,将OFDM信号右边的几个子载波作为第二边带信号,剩余的子载波作为第一信号。
由于第一f-OFDM信号的频谱已经搬移到所述OFDM信号的频谱中与所述第一边带信号对应的频谱位置上、所述第二f-OFDM信号的频谱在所述OFDM信号的频谱中与所述第一信号对应的频谱位置上,第三f-OFDM信号已经搬移到所述OFDM信号的频谱中与所述第二边带信号对应的频谱位置上,因此,从频域上来看,将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号进行叠加可以为:将所述第一f-OFDM信号的频谱、所述第二f-OFDM信号的频谱和所述第三f-OFDM信号的频谱叠加在一起,作为一个完整的信号的频谱;或者,从时域上来看,将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号进行叠加可以为:将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号按照时间先后顺序连在一起作为一个时间连续的信号。
其中,所述第一采样率、第三采样率小于第二采样率;所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带,所述第一频谱模板、所述第二频谱模板以及所述第三频谱模板用于:保证过滤后的所述OFDM信号的带外泄露满足第一预设阈值;第一预设阈值可以根据需要进行设置,本发明实施例对比不进行限定,当信号的过渡带的带宽小于第一预设阈值时,则表示得到该f-OFDM信号时采用的频谱模板的过渡带比较窄,当信号的过渡带的带宽大于第一预设阈值时,则表示得到该f-OFDM信号时采用的频谱模板的过渡带比较宽。
进一步的,所述发送器还用于传输包含所述OFDM在内的频率连续的M个OFDM信号,所述M为大于等于2的整数,若所述M 个OFDM信号的参数各不相同,则在第三方面的一种可实现方式中,所述处理器,还可以用于:
根据所述滤波策略分别对所述M个OFDM信号进行处理,得到M个f-OFDM信号;
所述发送器,还用于将所述处理器得到的M个f-OFDM信号叠加后发射出去。
其中,需要说明的是,所述M个OFDM信号中各OFDM信号的带宽可以相同或不同。
但是,当若干OFDM信号中除两侧边带信号以外的中间若干OFDM信号之间是同步的,且具有相同的OFDM参数时,为了降低滤波的复杂度,这些子带只需要采用过渡带较宽的频谱模板进行滤波即可,其目的是为了抑制这些OFDM信号在系统带宽以外产生的远端频谱泄露,而非本OFDM信号以外的邻带频谱泄露,因此,对于中间具有相同参数的若干OFDM信号,其滤波器的过渡带指标要求可以放松,而对位于系统带宽两边的子带、以及系统带宽内部使用不同OFDM参数的子带,则需要采用过渡带极窄的滤波器,抑制这些子带以外的邻带频谱泄露,这样可以进一步降低整个系统滤波操作的复杂度,具体的,若所述M个OFDM信号中存在第一组OFDM信号,所述第一组OFDM信号包含i个频率连续的OFDM信号,所述i个OFDM信号的参数相同,所述M个OFDM信号中除所述i个信号之外的(M-i)个OFDM信号的参数各不相同,且所述(M-i)个OFDM信号中每个OFDM信号的参数与所述i个OFDM信号的参数不相同,所述2≤i≤M;则在第三方面的另一种实现方式中,所述处理器,还用于:
根据所述滤波策略对所述i个OFDM信号中的第一OFDM信号进行处理,得到与所述第一OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第一边缘;
根据所述滤波策略对所述i个OFDM信号中的第二OFDM信号所述第二OFDM信号进行处理,得到与所述第二OFDM信号对应的 f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第二边缘;
分别对所述i个OFDM信号中除所述第一OFDM信号和所述第二OFDM信号之外的每个OFDM信号进行第四频谱模板的滤波处理,得到(i-2)个f-OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值;
根据所述滤波策略分别对所述(M-i)个OFDM信号进行处理,得到(M-i)个f-OFDM信号。
所述发送器,还用于将与所述第一OFDM信号对应的f-OFDM信号、与所述第二OFDM信号对应的f-OFDM信号、所述(i-2)个f-OFDM信号以及所述(M-i)个f-OFDM信号进行叠加,将叠加后的信号发射出去。
可以理解的是,上述过程主要针对下行链路信号的发射,在通信过程中,作为发送下行链路信号的逆过程,同一发射设备也可以作为接收设备,接收对端经过上述处理发送的上行链路信号,当接收到上行链路信号时,其对上行链路信号的处理可以为对下行链路信号处理的逆过程,也可以有一定的不同。
因此,作为与发送器相对的接收端,在第六方面中,本发明实施例还提供一种接收器,用于对接收到的过滤后的正交频分复用f-OFDM信号进行处理,所述f-OFDM信号的过渡带满足第一预设阈值,所述发送器还可以包括:
通信单元,用于接收所述f-OFDM信号;
处理器,用于根据预设的信号处理策略对所述接收模块接收到的f-OFDM信号进行处理,得到OFDM信号;
所述信号处理策略为:
将接收到的f-OFDM信号进行数字变频处理、下采样处理、第一频谱模板的滤波处理,过滤出第一边带信号;
将接收到的f-OFDM信号经过第二频谱模板的滤波处理,过滤出第一信号;
将接收到的f-OFDM信号经过数字变频处理、下采样处理、第三频谱模板的滤波处理,过滤出第二边带信号;
将所述第一边带信号、所述第一信号和所述第二边带信号叠加为与接收到的f-OFDM信号相对应的OFDM信号;所述第一边带信号位于叠加后的OFDM信号的左边带,所述第二边带信号位于叠加后的OFDM信号的右边带,所述第一信号位于叠加后的OFDM信号中除所述左边带和所述右边带之外的中间频带;
所述第一频谱模板、所述第三频谱模板的带宽小于所述所述第二频谱模板的带宽,所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带。
由上可知,本发明实施例提供一种信号处理方法及设备,将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽;用第一采样率对所述第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;用第二采样率对所述第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;用第三采样率对所述第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号;将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号发射出去;所述第一采样率、第三采样率小于第二采样率;所述第一f-OFDM信号、所述第三f-OFDM信号的过渡带的带宽小于预设阈值;所述第二f-OFDM信号的过渡带的带宽大于预设阈值。如此,与现有技术方案相比,本发明将OFDM宽带信号划分:两个边带信号、一个中间信号,对两个边带信号进行过渡带比较窄的频 谱模板的滤波处理,对中间信号进行过渡带比较宽的频谱模板的滤波处理,由于边带信号处于边缘位置,虽必须使用成型滤波进行滤波,以获得很窄的过渡带,达到很好的带外性能,但由于边带的带宽比较窄,采样速率低,可以很好地降低数字成型滤波的工作采样速率,滤波实现简单;同时,对于中间信号,虽其带宽比较宽,采样速率比较高,但由于其位于中间位置,对过渡带性能没有太大要求,可以非常宽,所以,可以使用阶数很低的成型滤波进行滤波,在滤波实现上也很简单,因此,从本发明提供的整个技术方案上来看,可以很好的降低滤波的复杂度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1现有对OFDM子带频域信号进行处理的示意图;
图2为本发明实施例提供的频域信号划分的示意图;
图3为本发明实施例提供的一种收发系统框图;
图4为本发明实施例提供的一种信号处理方法的流程图;
图5为本发明实施例提供的一种信号处理方法的流程图;
图6为本发明实施例提供的一种信号处理方法的流程图;
图7为本发明实施例提供的传输20MHz的宽带信号的流程图;
图8(a)为本发明实施例提供的一种频谱示意图;
图8(b)为本发明实施例提供的又一种频谱示意图;
图8(c)为本发明实施例提供的再一种频谱示意图;
图8(d)为本发明实施例提供的再一种频谱示意图;
图9为本发明实施例提供的接收过滤后的f-OFDM信号的流程图;
图10(a)为本发明实施例提供的又一种频谱示意图;
图10(b)为本发明实施例提供的又一种频谱示意图;
图11为本发明实施例提供的一种发射信号的结构图;
图12为本发明实施例提供的一种接收信号的结构图;
图13为本发明实施例提供的又一种发射信号的结构图;
图14为本发明实施例提供的又一种接收信号的结构图;
图15(a)为本发明实施例提供的再一种发射信号的结构图;
图15(b)为本发明实施例提供的再一种接收信号的结构图;
图16为本发明实施例提供的一种发送器30的结构图;
图17为本发明实施例提供的一种接收器40的结构图。
具体实施方式
如前所述,现有f-OFDM波形技术中数字成型滤波的复杂度主要来源于2个方面的叠加结果:一、为了获得很好的带外性能,数字成型滤波的阶数很高;二、信号带宽比较宽使得滤波的工作采样速率很高;此时,若能在获得很好的带外性能的情况下,将这两个方面解耦,即在低采样率上做高阶滤波,在高速采样率上做低阶滤波,则可以很大程度上降低滤波的复杂度。基于此理念,如图2所示,本发明将一个OFDM宽带信号在频域上划分:左边带、中间子带、右边带三个子带信号,从图2可知,左边带和右边带信号处于边缘位置,必须使用高阶成型滤波进行滤波,以获得很窄的过渡带,才能达到很好的带外性能,然而左边带和右边带的带宽比较窄,采样速率低,这可以很好地降低高阶数字成型滤波的工作采样速率,滤波的实现很简单;同时,对于中间子带,虽然其带宽比较宽,采样速率比较高,但由于其位于中间位置,其过渡带可以非常宽(如可以将左右边带也视为过渡带的一部分),则可以使用阶数很低的成型滤波进行滤波,所以滤波的实现也很简单。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图3为本发明实施例提供的收发系统框图;如图3所示,所述收发系统可以包括:发送器10和接收器20,所述发送器10用于采用本发明提供的过滤策略对待传输的OFDM信号进行过滤处理,得到f-OFDM发射出去;所述接收器20用于接收发送器10发射的f-OFDM信号,采用与发送器10相逆的过程对接收到的f-OFDM信号进行处理,恢复出原来的OFDM信号。
具体的,如图3所示,所述发送器10可以包括:通信单元1001、处理器1002、存储器1003、以及至少一个通信总线1004,用于实现这些装置之间的连接和相互通信;所述接收器20可以包括:通信单元2001、处理器2002、存储器2003、以及至少一个通信总线2004,用于实现这些装置之间的连接和相互通信。
其中,通信单元1001和通信单元2001,可用于与外部网元之间进行信号传输,可以为一天线单元。
处理器1002、处理器2002可能是一个中央处理器(central processing unit,简称为CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
存储器1003、存储器2003,可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(read-only memory,ROM),快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);或者上述种类的存储器的组合。
通信总线1004、通信总线2004可以分为地址总线、数据总线、控制总线等,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。为便于表示,图3中仅用一条粗线表 示,但并不表示仅有一根总线或一种类型的总线。
具体的,当发送器10待传输正交频分复用OFDM信号时,发送器10中的处理器1002,用于将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽;
采用第一采样率对所述信号划分单元分出的第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;
采用第二采样率对所述信号划分单元分出的第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;
采用第三采样率对所述信号划分单元分出的第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号。
其中,所述第一采样率、第三采样率小于第二采样率;所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带,所述第一频谱模板、所述第二频谱模板以及所述第三频谱模板用于:保证过滤后的所述OFDM信号的带外泄露满足第一预设阈值。
发送器10,用于将所述处理器1002得到的第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号。
其中,所述第一采样率、第三采样率小于第二采样率;所述第一f-OFDM信号、所述第三f-OFDM信号的过渡带的带宽小于预设阈值;所述第二f-OFDM信号的过渡带的带宽大于预设阈值。
进一步的,所述发送器10还用于传输包含所述OFDM在内的频率连续的M个OFDM信号,所述M为大于等于2的整数,若所述 M个OFDM信号的参数各不相同,则所述处理器1002,还可以用于:
根据所述滤波策略分别对所述M个OFDM信号进行处理,得到M个f-OFDM信号;
所述发送器,还用于将所述处理器得到的M个f-OFDM信号叠加后发射出去。
其中,需要说明的是,所述M个OFDM信号中各OFDM信号的带宽可以相同或不同。
但是,当若干OFDM信号中除两侧边带信号以外的中间若干OFDM信号之间是同步的,且具有相同的OFDM参数时,为了降低滤波的复杂度,这些子带只需要采用过渡带较宽的频谱模板进行滤波即可,其目的是为了抑制这些OFDM信号在系统带宽以外产生的远端频谱泄露,而非本OFDM信号以外的邻带频谱泄露,因此,对于中间具有相同参数的若干OFDM信号,其滤波器的过渡带指标要求可以放松,而对位于系统带宽两边的子带、以及系统带宽内部使用不同OFDM参数的子带,则需要采用过渡带极窄的滤波器,抑制这些子带以外的邻带频谱泄露,这样可以进一步降低整个系统滤波操作的复杂度,具体的,若所述M个OFDM信号中存在第一组OFDM信号,所述第一组OFDM信号包含i个频率连续的OFDM信号,所述i个OFDM信号的参数相同,所述M个OFDM信号中除所述i个信号之外的(M-i)个OFDM信号的参数各不相同,且所述(M-i)个OFDM信号中每个OFDM信号的参数与所述i个OFDM信号的参数不相同,所述2≤i≤M;则所述处理器1002,还可以用于:
根据所述滤波策略对所述i个OFDM信号中的第一OFDM信号进行处理,得到与所述第一OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第一边缘;
根据所述滤波策略对所述i个OFDM信号中的第二OFDM信号所述第二OFDM信号进行处理,得到与所述第二OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第二边缘;
分别对所述i个OFDM信号中除所述第一OFDM信号和所述第 二OFDM信号之外的每个OFDM信号进行第四频谱模板的滤波处理,得到(i-2)个f-OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值;
根据所述滤波策略分别对所述(M-i)个OFDM信号进行处理,得到(M-i)个f-OFDM信号。
所述发送器,还用于将与所述第一OFDM信号对应的f-OFDM信号、与所述第二OFDM信号对应的f-OFDM信号、所述(i-2)个f-OFDM信号以及所述(M-i)个f-OFDM信号进行叠加,将叠加后的信号发射出去。
如此,与现有技术方案相比,本发明将OFDM宽带信号划分:两个边带信号、一个中间信号,对两个边带信号进行过渡带比较窄的频谱模板的滤波处理,对中间信号进行过渡带比较宽的频谱模板的滤波处理,由于边带信号处于边缘位置,虽然必须使用过渡带比较窄的频谱模板进行滤波,以达到很好的带外性能,但由于边带的带宽比较窄,采样速率低,可以很好地降低数字成型滤波的工作采样速率,滤波实现比较简单;同时,对于中间信号,虽其带宽比较宽,采样速率比较高,但由于其位于中间位置,对过渡带性能没有太大要求,可以非常宽(如可以将左右边带也视为过渡带的一部分),所以,可以使用过渡带比较宽的频谱模板进行滤波,在滤波实现上也很简单,因此,从本发明提供的整个技术方案上来看,在信号传输的过程中,本发明可以很好的降低滤波的复杂度。
相对的,作为发送信号的逆过程,当接收器20中的通信单元2001接收到该f-OFDM信号后,接收器20中的处理器2002,用于:
将接收到的f-OFDM信号进行数字变频处理、下采样处理、第一频谱模板的滤波处理,过滤出第一边带信号;
将接收到的f-OFDM信号经过第二频谱模板的滤波处理,过滤出第一信号;
将接收到的f-OFDM信号经过数字变频处理、下采样处理、第三频谱模板的滤波处理,过滤出第二边带信号;
将所述第一边带信号、所述第一信号和所述第二边带信号叠加 为与接收到的f-OFDM信号相对应的OFDM信号;所述第一边带信号位于叠加后的OFDM信号的左边带,所述第二边带信号位于叠加后的OFDM信号的右边带,所述第一信号位于叠加后的OFDM信号中除所述左边带和所述右边带之外的中间频带;
所述第一频谱模板、所述第三频谱模板的带宽小于所述所述第二频谱模板的带宽,所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带。
需要说明的是,上述发送器10、接收器20可以为相互收发信号的独立的设备,如一个可以为基站,另一个可以为终端;也可以将发送器10和接收器20看作同一设备,具备发送信号和接收信号的功能。
为了便于描述,以下实施例一以步骤的形式示出并详细描述了本发明提供的信号处理方法,其中,示出的步骤也可以在除发送器10、接收器20之外的诸如一组可执行指令的计算机系统中执行,此外,虽然在图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一
图4为本发明实施例提供的一种信号处理方法,由图3所述的发送器10执行,用于传输正交频分复用OFDM信号,如图4所示,所述方法可以包括:
S101:根据预设的滤波策略对所述OFDM信号进行处理,得到f-OFDM信号。
S102:将所述f-OFDM信号发射出去。
其中,所述滤波策略为本发明实施例提供的基于上述原理来降低滤波复杂度的技术方案,经滤波策略处理后的信号两边的过渡带比较窄,具有良好的带外性能,具体的,对于一个待传输的OFDM信号,其根据预设的滤波策略对所述OFDM信号进行处理,得到f-OFDM信号的过程如图5所示,可以包括以下步骤:
S1011:将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信 号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽。
所述左边带和所述右边带可以为一段OFDM频谱的两个边缘频带,例如,如图1所示,左边带可以为频谱左边边缘的频带,右边带可以为频谱右边边缘的频带,可以理解的是,在本发明实施例中,根据术语“左”、“右”指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的物体必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽,第一边带信号的带宽和所述第二边带信号的带宽可以相等;至于各信号带宽划分的具体数值可以是任意的,本发明实施例对此不进行限定,具体的,可以根据硬件的处理能力进行灵活划分,但原则上需要满足第一边带信号和第二边带信号的带宽尽可能的小(即为窄带信号),以保证边带信号的采样速率比较低,至于第一信号,可以为中间部分的宽带信号。
因通信协议规定一个OFDM信号可以包含至少一个子载波(如图1所示),所以,在对信号划分的过程中,可以遵循如下原则:将OFDM信号左边的几个子载波作为第一边带信号,将OFDM信号右边的几个子载波作为第二边带信号,剩余的子载波作为第一信号。
S1012:用第一采样率对所述第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号。
其中,由于本发明实施例所述待传输的OFDM信号为基带频域信号,所以,可以通过IFFT技术来实现用第一采样率对所述第一边带信号进行采样。所述第一采样率可以为所述第一边带信号的单倍采样速率;所述单倍采样速率为:离第一边带信号包含的子载波的个数最近的2n个子载波的带宽,所述n为大于等于1的整数,例如: 若第一边带信号的带宽为900kHz,每个子载波的带宽为15kHz,则第一边带信号包含60个子载波,离60最近的2n为128,第一采样率为:128*15=1920kbps=1.92Mbps。
本发明实施例所述的频谱模板的滤波处理为时域滤波,所述时域滤波是指对时域信号进行线性卷积操作;如:假设滤波的时域响应为f(n)n=0,1,...M-1(M为滤波阶数),时域输入信号为x(n),则经过滤波后的输出信号为:
Figure PCTCN2016096692-appb-000001
即对于每个输入的时域采样点,都需要M次复数乘法,M-1次复数加法,才能得到该采样点对应的滤波信号。
所述第一频谱模板的过渡带比较窄,以保证经滤波处理后的信号的具有很窄的过渡带,达到良好的带外性能;由于,频谱模板的滤波阶数越高,经滤波后的信号的过渡带就越窄,所以,相应的,第一频谱模板为滤波阶数比较高的数字成型滤波模板。
此外,根据数字滤波的两种实现方式:时域实现和频域实现,还可以将频谱模板的滤波处理设置为频域滤波,对频域信号进行滤波,本发明实施例对此不进行限定,在本发明实施例中,仅以频谱模板的滤波处理为时域滤波为例进行说明。
所述上采样是指:对经第一频谱模板过滤后的信号进行采样,使采样后的信号的采样率大于过滤后的信号的采样率。使最终得到的所述第一f-OFDM信号的单倍采样速率与原OFDM信号的单倍采样速率相同。
所述数字变频是指:将经过上采样后的信号进行频谱搬移,将信号搬移到第一边带信号的频谱位置上。
需要说明的是,在用第一采样率对所述第一边带信号进行采样之后,第二边带信号变为时间上离散的信号,此时,为了避免各信号之间的干扰,还可以对采样后的信号加循环前缀(Add CP),将加循环前缀后的信号经过第一频谱模板的滤波处理、上采样和上变频处理,生成第一f-OFDM信号。
S1013:用第二采样率对所述第一信号进行采样,将采样后的信 号经过第二频谱模板的滤波处理,生成第二f-OFDM信号。
其中,可以通过IFFT技术来实现用第二采样率对所述第一信号进行采样。由于,第一信号为原有OFDM信号的中间信号,其带宽比较接近原OFDM信号的带宽,所以,第二采样率基本上可以为所述OFDM信号的单倍采样速率,以使得经采样、滤波后的生成的第二f-OFDM信号的单倍采样速率与原OFDM信号的单倍采样速率相同;同时,由于第一边带信号和第二边带信号的带宽远小于第一信号的带宽,所以,第一边带信号和第二边带信号的单倍采样速率远小于第一信号的单倍采样速率作为采样率时,因此,当以信号的单倍采样速率作为采样率对信号进行采样时,所述第二采样率大于第一采样率和步骤S1014中的第三采样率。
因第一信号为原OFDM信号的中间信号,可以有较大的过渡带(如可以将第一边带信号的频带和第二边带信号的频带作为第一信号的过渡带),所以,在对第一信号进行第二频谱模板的滤波处理时,可以采用过渡带比较宽的频谱模板进行滤波,即第二频谱模板的滤波阶数可以设置的比较小,以此来降低滤波的复杂性;可选的,在本发明实施例中,可以将第二频谱模板的过渡带设置为大于第一频谱模板的过渡带、第三频谱模板的过渡带。
需要说明的是,在用第二采样率对所述第一信号进行采样之后,第一信号变为时间上离散的信号,此时,为了避免各信号之间的干扰,也可以对采样后的信号加循环前缀(Add CP),将加循环前缀后的信号经过第二频谱模板的滤波处理,生成第二f-OFDM信号。
S1014:用第三采样率对所述第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号。
其中,可以通过IFFT技术来实现用第三采样率对所述第二边带信号进行采样,所述第三采样率可以为所述第二边带信号的单倍采样速率;所述单倍采样速率为:离第二边带信号包含的子载波的个数最近的2n个子载波的带宽,所述n为大于等于1的整数。
同第一频谱模板相同,所述第三频谱模板的过渡带也比较窄, 以保证经第三频谱模板滤波后的信号的具有很窄的过渡带,达到良好的带外性能;由于,频谱模板的滤波阶数越高,经滤波后的信号的过渡带就越窄,所以,相应的,第三频谱模板也可以为滤波阶数比较高的数字成型滤波模板。
所述上采样是指:对经第三频谱模板过滤后的信号进行采样,使采样后的信号的采样率大于过滤后的信号的采样率。
所述数字变频是指:将经过上采样后的信号进行频谱搬移,将信号搬移到第二边带信号的频谱位置上。
需要说明的是,在用第三采样率对所述第二边带信号进行采样之后,第二边带信号变为时间上离散的信号,此时,为了避免各信号之间的干扰,也可以对采样后的信号加循环前缀(Add CP),将加循环前缀后的信号经过第三频谱模板的滤波处理、上采样和上变频处理,生成第三f-OFDM信号。
此外,不论上述第一频谱模板、所述第二频谱模板以及所述第三频谱模板的过渡如何设置,必须要保证经第一频谱模板、第二频谱模板以及第三频谱模板过滤后的所述OFDM信号的带外泄露满足第一预设阈值;其中,所述第一预设阈值可以根据需要进行设置,本发明实施例对比不进行限定,当OFDM信号的带外泄露满足第一预设阈值时,则表示信号具有很好的带外性能,不会对其他信号造成干扰,当OFDM信号的带外泄露不满足第一预设阈值时,则表示信号的带外泄露比较大,会严重影响对其他信号。
S1015:将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号进行叠加,将叠加后的信号作为所述信号的f-OFDM信号。
由于第一f-OFDM信号的频谱已经搬移到所述OFDM信号的频谱中与所述第一边带信号对应的频谱位置上、所述第二f-OFDM信号的频谱在所述OFDM信号的频谱中与所述第一信号对应的频谱位置上,第三f-OFDM信号已经搬移到所述OFDM信号的频谱中与所述第二边带信号对应的频谱位置上,因此,从频域上来看,将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信 号进行叠加可以为:将所述第一f-OFDM信号的频谱、所述第二f-OFDM信号的频谱和所述第三f-OFDM信号的频谱叠加在一起,作为一个完整的信号的频谱;或者,从时域上来看,将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号进行叠加可以为:将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号按照时间先后顺序连在一起作为一个时间连续的信号。
如此,与现有技术方案相比,本发明将OFDM宽带信号划分:两个边带信号、一个中间信号,对两个边带信号进行过渡带比较窄的频谱模板的滤波处理,对中间信号进行过渡带比较宽的频谱模板的滤波处理,由于边带信号处于边缘位置,虽然必须使用过渡带比较窄的频谱模板进行滤波,以达到很好的带外性能,但由于边带的带宽比较窄,采样速率低,可以很好地降低数字成型滤波的工作采样速率,滤波实现比较简单;同时,对于中间信号,虽其带宽比较宽,采样速率比较高,但由于其位于中间位置,对过渡带性能没有太大要求,可以非常宽(如可以将左右边带也视为过渡带的一部分),所以,可以使用过渡带比较宽的频谱模板进行滤波,在滤波实现上也很简单,因此,从本发明提供的整个技术方案上来看,在信号传输的过程中,本发明可以很好的降低滤波的复杂度。
可以理解的是,上述过程主要针对下行链路信号的发射,在通信过程中,作为发送下行链路信号的逆过程,同一发射设备也可以作为接收设备,接收对端经过上述处理发送的上行链路信号,当接收到上行链路信号时,其对上行链路信号的处理可以为对下行链路信号处理的逆过程,也可以有一定的不同。
具体的,如图6所示,本发明还提供一种信号处理方法,用于对接收到的过滤后的正交频分复用f-OFDM信号进行处理,所述f-OFDM信号的过渡带满足第一预设阈值,所述信号处理方法可以包括:
S2011:将接收到的f-OFDM信号进行数字变频处理、下采样处理、第一频谱模板的滤波处理,过滤出第一边带信号。
其中,所述数字变频可以为:对所述f-OFDM信号进行上变频处理,将所述f-OFDM信号的中心频率搬移到所述第一边带信号的中心频率上;
所述下采样是指:对数字变频后的信号进行采样,使采样后的信号的采样率小于数字变频后的信号的采样率;可选的,可以使采样后的信号的采样率与传输信号时采用的第一采样率相等。
S2012:将接收到的f-OFDM信号经过第二频谱模板的滤波处理,过滤出第一信号。
S2013:将接收到的f-OFDM信号经过数字变频处理、下采样处理、第三频谱模板的滤波处理,过滤出第二边带信号。
其中,所述数字变频可以为:对所述f-OFDM信号进行下变频处理,将所述f-OFDM信号的中心频率搬移到所述第二边带信号的中心频率上。
所述下采样是指:对数字变频后的信号进行采样,使采样后的信号的采样率小于数字变频后的信号的采样率;可选的,可以使采样后的信号的采样率与传输信号时采用的第三采样率相等。
S2014:将所述第一边带信号、所述第一信号和所述第二边带信号叠加为与接收到的f-OFDM信号相对应的OFDM信号。
其中,所述第一边带信号位于叠加后的OFDM信号的左边带,所述第二边带信号位于叠加后的OFDM信号的右边带,所述第一信号位于叠加后的OFDM信号中除所述左边带和所述右边带之外的中间频带;
所述第一频谱模板、所述第三频谱模板的带宽小于所述所述第二频谱模板的带宽,所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带。
下面以传输LTE中规定的20MHz带宽的OFDM信号为例,结合图7~图8(d)对上述方法进行说明:
如图7所示,将20MHz的OFDM带宽信号分成:900KHz的左边带信号,18.2MHz的中间信号,900KHz的右边带信号;
将900KHz的左边带信号进行128点的IFFT变换,生成时域信 号,将时域信号加循环前缀,生成信号A1,将信号A1进行第一频谱模板的滤波处理,生成信号A2,将信号A2经过上采样,生成信号A3,将信号A3进行数字上变频处理得到信号A4;所述信号A1~A4的频谱如图8(a)所示;
将18.2MHz的中间信号进行2048点的IFFT变换,生成时域信号,将时域信号加循环前缀,生成信号B1,将信号B1进行第二频谱模板的滤波处理,生成信号B2;所述信号B1~B4的频谱如图8(b)所示;
将900KHz的右边带信号进行128点的IFFT变换,生成时域信号,将时域信号加循环前缀,生成信号C1,将信号C1进行第三频谱模板的滤波处理,生成信号C2,将信号C2经过上采样,生成信号C3,将信号C3进行数字上变频处理得到信号C4;所述信号C1~C4的频谱如图8(c)所示;
将信号A4、信号B2和信号C4进行叠加形成信号D,将叠加后的信号D作为OFDM信号的f-OFDM信号,例如:如图8(d)所示,将信号A4、信号B2和信号C4的频谱合并在一起形成信号D。
因在时域滤波时,对于每个输入的时域采样点,都需要次复数乘法,次复数加法(为滤波阶数),才能得到一个采样点对应的滤波信号,此时,若假设本发明实施例中采用的第一频谱模板、第三频谱模板的滤波阶数为16,第二频谱模板的滤波阶数为4,30.72Mbps的高速采样率一秒钟采样1万点,1.92Mbps的低速采样率一秒钟采样10个点,则对于20MHz的OFDM带宽信号而言,采用图1所述的现有滤波过程,则需要10000*16*15=240万次的运算,而采用图7所述的滤波过程,则需要:10*16*15+10000*4*3+10*16*15=7.48万次的运算,比较图1和图7中对OFDM信号进行滤波的运算量可知:本发明实施例采用的滤波方法大大降低了滤波复杂度。
此外,需要说明的是,各子带信号的滤波器在设计时,滤波器的通带宽度要大于子带数据带宽,且左边带的右侧和右边带的左侧需要预留一定的带宽余量,避免由于滤波操作带来的对子带边缘子载波性能的影响;例如:如图8(a)所示,对于左边带信号而言, 其边带成型滤波器的通带的右侧要适当的比左侧宽一点,这样使得经该滤波器过程后的边带信号的右侧预留一定的带宽余量,同理,如图8(c)所示,对于右边带信号而言,其边带成型滤波器的通带的左侧要适当的比右侧宽一点,这样使得经该滤波器过程后的边带信号的左侧预留一定的带宽余量。
相对应的,作为发送信号的逆处理过程,当接收到20MHz带宽的过滤后的f-OFDM信号时,则会执行如图9所示的过程:
将接收到的20MHz带宽f-OFDM信号进行数字变频处理后,经过一个低通滤波器,获取左边带信号A5;将信号A5采用1.92Mbps的采样频率进行下采样,生成信号A6,用上述发送过程中左边带信号过滤时采用的第一频谱模板的滤波处理对所述信号A6进行滤波,生成信号A7,将信号A7去循环前缀、128点FFT变换,恢复出900KHz的左边带信号;其中,信号A5~A7的频谱如图10(a)所示。
用上述发送过程中18.2MHz的中间信号过滤时采用的第二频谱模板的滤波处理对接收到的20MHz带宽f-OFDM信号直接进行滤波,生成信号B3,将信号B3经去循环前缀、2048点FFT变换,恢复出18.2MHz的中间信号;
将接收到的20MHz带宽f-OFDM信号进行数字变频处理后,经过低通滤波器过滤,获取右边带信号C5;将信号C5采用1.92Mbps的采样频率进行下采样,生成信号C6,用上述发送过程中右边带信号过滤时采用的第三频谱模板的滤波处理对所述信号C6进行滤波,生成信号C7,将信号C7去循环前缀、128点FFT变换,恢复出900KHz的左边带信号;其中,信号C5~C7的频谱如图10(b)所示。
需要说明的是,上述使用的低通滤波器不要求有很陡的过渡带,其目的只是为了滤出带内信号,以及避免下采样造成的频谱混叠。
此外,可理解的是,同发射时成型滤波器的设计一样,接收时采用的成型滤波器的通带设计也需要在信号带宽的基础上留有一定的余量,从而避免滤波器操作对相邻子带边缘子载波性能的影响。
需要说明的是,对于带宽更宽的超宽带信号(比如100MHz带宽的信号),如果直接采用上述的带宽划分方法,则中间的宽子带信 号的采样率仍非常大(如当中间子带信号约为100MHz带宽时,需要的采样率为8192*15KHz=122.880Mbps),即使滤波器可以在时域上通过滤波器来实现,但是由于采样率比较大,需要的计算量还是很大的,而且这种方法必须保证整个OFDM信号上只存在一种OFDM参数;因此,当OFDM信号划分的中间信号的带宽比较大时,为了避免高采样率的操作,同时可以实现在一个OFDM宽带信号中配置多种不同的OFDM参数,可以先将整个OFDM信号的系统带宽划分为若干个较小带宽的OFDM信号,将每个带宽比较小的OFDM信号采用图5所述的滤波策略进行滤波,获得每个带宽比较小的OFDM信号的f-OFDM信号,将获得每个f-OFDM信号合并为原大带宽的OFDM信号的f-OFDM信号。
进一步的,当传输包含所述OFDM在内的频率连续的M个OFDM信号,所述M为大于等于2的整数,且所述M个OFDM信号的参数各不相同时,所述信号处理方法可以包括:
根据预设的滤波策略分别对所述M个OFDM信号进行处理,得到M个f-OFDM信号;
将所述M个f-OFDM信号叠加后发射出去。
相对应的,对于接收器而言,当接收到的包含所述f-OFDM在内的频率连续的M个f-OFDM信号进行处理,所述M为大于等于2的整数,若所述M个f-OFDM信号的过渡带均满足第一预设阈值,则所述信号处理方法还可以包括:
根据预设的信号处理策略分别对所述M个f-OFDM信号进行处理,得到M个OFDM信号。
例如,对于待传输的频谱连续的5个20MHz的OFDM信号,若这5个OFDM信号的参数各不相同,可以如图11所示,将每个OFDM信号采用图5所示的滤波方法进行滤波,获得每个OFDM信号的f-OFDM信号,然后,再通过数字上变频的方式将每个OFDM信号的f-OFDM信号的频谱搬移到整个100MHz的OFDM信号的频谱中的对应频谱位置上,合成100MHz的OFDM信号的过滤f-OFDM信号。
其中,需要说明的是,所述M个OFDM信号中各OFDM信号的带宽可以相同或不同,如此,采用上述过滤方式对每个20MHz的子OFDM信号过滤,使得任意相邻两个子OFDM信号间具有很好的频域隔离,可以任意配置OFDM参数,且不会彼此产生干扰。
相对的,作为发送信号的逆处理过程,当接收到由上述5个OFDM信号的f-OFDM信号合成的100MHz的f-OFDM信号后,如图12所示,可以先将所述100MHz的f-OFDM信号分别经过5个不同的低通滤波器,过滤出5个OFDM信号的f-OFDM信号,然后,对于每个OFDM信号的f-OFMD信号采用如图6所示的处理方法,将每个20MHz的OFDM信号恢复出来。
但是,当若干OFDM信号中除两侧边带信号以外的中间若干OFDM信号之间是同步的,且具有相同的OFDM参数时,为了降低滤波的复杂度,这些子带只需要采用过渡带较宽的频谱模板进行滤波即可,其目的是为了抑制这些OFDM信号在系统带宽以外产生的远端频谱泄露,而非本OFDM信号以外的邻带频谱泄露,因此,对于中间具有相同参数的若干OFDM信号,其滤波器的过渡带指标要求可以放松,而对位于系统带宽两边的子带、以及系统带宽内部使用不同OFDM参数的子带,则需要采用过渡带极窄的滤波器,抑制这些子带以外的邻带频谱泄露,这样可以进一步降低整个系统滤波操作的复杂度,具体实现如下:
若所述M个OFDM信号中存在第一组OFDM信号,所述第一组OFDM信号包含i个频率连续的OFDM信号,所述i个OFDM信号的参数相同,所述M个OFDM信号中除所述i个信号之外的(M-i)个OFDM信号的参数各不相同,且所述(M-i)个OFDM信号中每个OFDM信号的参数与所述i个OFDM信号的参数不相同,所述2≤i≤M;则所述方法还包括:
根据所述滤波策略对所述i个OFDM信号中的第一OFDM信号进行处理,得到与所述第一OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第一边缘;
根据所述滤波策略对所述i个OFDM信号中的第二OFDM信号 所述第二OFDM信号进行处理,得到与所述第二OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第二边缘;
分别对所述i个OFDM信号中除所述第一OFDM信号和所述第二OFDM信号之外的每个OFDM信号进行第四频谱模板的滤波处理,得到(i-2)个f-OFDM信号;
根据所述滤波策略分别对所述(M-i)个OFDM信号进行处理,得到(M-i)个f-OFDM信号;
将与所述第一OFDM信号对应的f-OFDM信号、与所述第二OFDM信号对应的f-OFDM信号、所述(i-2)个f-OFDM信号以及所述(M-i)个f-OFDM信号进行叠加,将叠加后的信号发射出去。
其中,所述第四频谱模板的过渡带的带宽可以大于第二预设阈值,即经第四频谱模板滤波后的信号可以在带内进行泄露;所述第二预设阈值可以根据需要进行设置,本发明实施例对比不进行限定,当第四频谱模板的过渡带的带宽可以大于第二预设阈值,则表示第四频谱模板滤波后的信号的带宽可以比较宽,可以在带内进行泄露;由于,频谱模板的滤波阶数越低,过渡带越大,所以,相对应的,第四频谱模板的滤波阶数可以设置的比较第,以此降低滤波的复杂度。
相对应的,对于接收器而言,若接收到的M个f-OFDM信号中存在第一组f-OFDM信号,所述第一组f-OFDM信号包含i个频率连续的f-OFDM信号,所述i个f-OFDM信号的过渡带不满足第一预设阈值,所述M个f-OFDM信号中除所述i个信号之外的(M-i)个f-OFDM信号的过渡带满足第一预设阈值,所述2≤i≤M;则所述信号处理方法还可以包括:
对所述i个f-OFDM信号中的每个f-OFDM信号进行第四频谱模板的滤波处理,得到i个OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值;
根据所述信号处理策略对所述(M-i)个f-OFDM信号中的每个f-OFDM信号进行处理,得到(M-i)个OFDM信号。
例如,若上述5个20MHz的OFDM信号按照频谱从左到右的顺序分别为:OFDM信号1、OFDM信号2、OFDM信号3、OFDM信号4以及OFDM信号5,OFDM信号1和OFDM信号5是整个系统带宽的两个边缘子带信号,此时,若OFDM信号1、OFDM信号2、OFDM信号3、OFDM信号4用了相同的OFDM参数,而OFDM信号5采用了不同于其他四个OFDM信号的OFDM参数,则在所有子带信号同步的情况下,OFDM信号1、OFDM信号2、OFDM信号3、OFDM信号4之间是没有干扰的,而OFDM信号4与OFDM信号5之间存在干扰。
因此,如图13所示,在100MHz宽带信号的简化发射结构图中,可以将划分出的OFDM信号1、OFDM信号4、OFDM信号采用如图5所示的过滤方法来实现,对这两个OFDM信号的边带信号进行过渡带极窄的滤波,抑制当前OFDM信号的频带的邻带泄露,而对于OFDM信号2、OFDM信号3可以如图15(a)所示采用过渡带较宽的第四频谱模板的滤波处理即可,目的是抑制在OFDM信号4和OFDM信号1的带外产生的远端频谱泄露,然后,将各OFDM信号的f-OFDM信号搬移到整个100MHz的频谱的对应频谱位置上,合成100MHz的过滤f-OFDM信号发射出去;相对应的,如图14所示,在100MHz宽带信号的简化接收结构图中,可以将获取到的OFDM信号1、OFDM信号4、OFDM信号3个f-OFDM信号分别采用如图6所示的方法进行检测,而对于获取到的OFDM信号2、OFDM信号3的2个f-OFDM信号,可以采用如图15(b)所示的第四频谱模板的滤波处理进行恢复出原信号即可;如此,在整个滤波方案,因为OFDM信号2和OFDM信号3的滤波指标需求放松,而进一步简化了滤波方案。
由上可知,本发明实施例提供一种信号处理方法,将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中 间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽;用第一采样率对所述第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;用第二采样率对所述第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;用第三采样率对所述第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号;将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号发射出去;所述第一采样率、第三采样率小于第二采样率;所述第一f-OFDM信号、所述第三f-OFDM信号的过渡带的带宽小于预设阈值;所述第二f-OFDM信号的过渡带的带宽大于预设阈值。如此,与现有技术方案相比,本发明将OFDM宽带信号划分:两个边带信号、一个中间信号,对两个边带信号进行过渡带比较窄的频谱模板的滤波处理,对中间信号进行过渡带比较宽的频谱模板的滤波处理,由于边带信号处于边缘位置,虽必须使用成型滤波进行滤波,以获得很窄的过渡带,达到很好的带外性能,但由于边带的带宽比较窄,采样速率低,可以很好地降低频谱模板的滤波处理的工作采样速率,滤波实现简单;同时,对于中间信号,虽其带宽比较宽,采样速率比较高,但由于其位于中间位置,对过渡带性能没有太大要求,可以非常宽,所以,可以使用阶数很低的成型滤波进行滤波,在滤波实现上也很简单,因此,从本发明提供的整个技术方案上来看,可以很好的降低滤波的复杂度。
根据本发明实施例,本发明下述实施例还提供了一种发送器30,优选地用于执行图5所述的信号处理方法。
实施例二
图16为本发明实施例提供的一种发送器20的结构图,用于执行实施例一所述的信号处理方法,传输正交频分复用OFDM信号,如图16所示,所述发送器20可以包括:
第一过滤模块201,用于对所述OFDM信号进行过滤处理,得 到f-OFDM信号;
发送模块202,用于将所述第一过滤模块201得到的f-OFDM信号发射出去;
其中,如图16所示,所述第一过滤模块201具体可以包括:
信号划分单元2011,用于将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽。
所述左边带和所述右边带可以为一段OFDM频谱的两个边缘频带,例如,如图1所示,左边带可以为频谱左边边缘的频带,右边带可以为频谱右边边缘的频带,可以理解的是,在本发明实施例中,根据术语“左”、“右”指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的物体必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽,第一边带信号的带宽和所述第二边带信号的带宽可以相等;至于各信号带宽划分的具体数值可以是任意的,本发明实施例对此不进行限定,具体的,可以根据硬件的处理能力进行灵活划分,但原则上需要满足第一边带信号和第二边带信号的带宽尽可能的小(即为窄带信号),以保证边带信号的采样速率比较低,至于第一信号,可以为中间部分的宽带信号。
因通信协议规定一个OFDM信号可以包含至少一个子载波(如图1所示),所以,在对信号划分的过程中,可以遵循如下原则:将OFDM信号左边的几个子载波作为第一边带信号,将OFDM信号右边的几个子载波作为第二边带信号,剩余的子载波作为第一信号。
过滤单元2012,用于采用第一采样率对所述信号划分单元2011分出的第一边带信号进行采样,将采样后的信号经第一频谱模板的 滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号。
其中,由于本发明实施例所述待传输的OFDM信号为基带频域信号,所以,可以通过IFFT技术来实现用第一采样率对所述第一边带信号进行采样。所述第一采样率可以为所述第一边带信号的单倍采样速率;所述单倍采样速率为:离第一边带信号包含的子载波的个数最近的2n个子载波的带宽,所述n为大于等于1的整数,例如:若第一边带信号的带宽为900kHz,每个子载波的带宽为15kHz,则第一边带信号包含60个子载波,离60最近的2n为128,第一采样率为:128*15=1920kbps=1.92Mbps。
所述第一频谱模板的过渡带比较窄,以保证滤波处理后的信号的具有很窄的过渡带,达到良好的带外性能;由于,频谱模板的滤波阶数越高,经滤波后的信号的过渡带就越窄,所以,相应的,第一频谱模板可以为滤波阶数比较高的数字成型滤波模板。
所述上采样是指:对经第一频谱模板过滤后的信号进行采样,使采样后的信号的采样率大于过滤后的信号的采样率。使最终得到的所述第一f-OFDM信号的单倍采样速率与原OFDM信号的单倍采样速率相同。
所述数字变频是指:将经过上采样后的信号进行频谱搬移,将信号搬移到第一边带信号的频谱位置上。
需要说明的是,在用第一采样率对所述第一边带信号进行采样之后,第二边带信号变为时间上离散的信号,此时,为了避免各信号之间的干扰,还可以对采样后的信号加循环前缀(Add CP),将加循环前缀后的信号经过第一频谱模板的滤波处理、上采样和上变频处理,生成第一f-OFDM信号。
所述过滤单元2012,还用于采用第二采样率对所述信号划分单元2011分出的第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号。
其中,可以通过IFFT技术来实现用第二采样率对所述第一信号进行采样。由于,第一信号为原有OFDM信号的中间信号,其带宽比较接近原OFDM信号的带宽,所以,第二采样率基本上可以为所 述OFDM信号的单倍采样速率,以使得经采样、滤波后的生成的第二f-OFDM信号的单倍采样速率与原OFDM信号的单倍采样速率相同;同时,由于第一边带信号和第二边带信号的带宽远小于第一信号的带宽,所以,第一边带信号和第二边带信号的单倍采样速率远小于第一信号的单倍采样速率作为采样率时,因此,当以信号的单倍采样速率作为采样率对信号进行采样时,所述第二采样率大于第一采样率和步骤S1014中的第三采样率。
因第一信号为原OFDM信号的中间信号,可以有较大的过渡带(如可以将第一边带信号的频带和第二边带信号的频带作为第一信号的过渡带),所以,在对第一信号进行第二频谱模板的滤波处理时,可以采用过渡带比较宽的频谱模板进行滤波,即第二频谱模板的滤波阶数可以设置的比较小,以此来降低滤波的复杂性;可选的,在本发明实施例中,可以将第二频谱模板的过渡带设置为大于第一频谱模板的过渡带、第三频谱模板的过渡带。
需要说明的是,在用第二采样率对所述第一信号进行采样之后,第一信号变为时间上离散的信号,此时,为了避免各信号之间的干扰,也可以对采样后的信号加循环前缀(Add CP),将加循环前缀后的信号经过第二频谱模板的滤波处理,生成第二f-OFDM信号。
所述过滤单元2012,还用于采用第三采样率对所述信号划分单元2011分出的第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号。
其中,可以通过IFFT技术来实现用第三采样率对所述第二边带信号进行采样,所述第三采样率可以为所述第二边带信号的单倍采样速率;所述单倍采样速率为:离第二边带信号包含的子载波的个数最近的2n个子载波的带宽,所述n为大于等于1的整数。
同第一频谱模板相同,所述第三频谱模板的过渡带也比较窄,以保证经滤波处理后的信号的具有很窄的过渡带,达到良好的带外性能;由于,频谱模板的滤波阶数越高,经滤波后的信号的过渡带就越窄,所以,相应的,第三频谱模板也可以为滤波阶数比较高的 数字成型滤波模板。
所述上采样是指:对经第三频谱模板过滤后的信号进行采样,使采样后的信号的采样率大于过滤后的信号的采样率。
所述数字变频是指:将经过上采样后的信号进行频谱搬移,将信号搬移到第二边带信号的频谱位置上。
需要说明的是,在用第三采样率对所述第二边带信号进行采样之后,第二边带信号变为时间上离散的信号,此时,为了避免各信号之间的干扰,也可以对采样后的信号加循环前缀(Add CP),将加循环前缀后的信号经过第三频谱模板的滤波处理、上采样和上变频处理,生成第三f-OFDM信号。
合并单元2013,用于将所述过滤单元2012过滤出的第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号。
由于第一f-OFDM信号的频谱已经搬移到所述OFDM信号的频谱中与所述第一边带信号对应的频谱位置上、所述第二f-OFDM信号的频谱在所述OFDM信号的频谱中与所述第一信号对应的频谱位置上,第三f-OFDM信号已经搬移到所述OFDM信号的频谱中与所述第二边带信号对应的频谱位置上,因此,从频域上来看,将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号进行叠加可以为:将所述第一f-OFDM信号的频谱、所述第二f-OFDM信号的频谱和所述第三f-OFDM信号的频谱叠加在一起,作为一个完整的信号的频谱;或者,从时域上来看,将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号进行叠加可以为:将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号按照时间先后顺序连在一起作为一个时间连续的信号。
其中,所述第一采样率、第三采样率小于第二采样率;此外,不论上述第一频谱模板、所述第二频谱模板以及所述第三频谱模板的过渡如何设置,必须要保证经第一频谱模板、第二频谱模板以及第三频谱模板过滤后的所述OFDM信号的带外泄露满足第一预设阈 值;其中,所述第一预设阈值可以根据需要进行设置,本发明实施例对比不进行限定,当OFDM信号的带外泄露满足第一预设阈值时,则表示信号具有很好的带外性能,不会对其他信号造成干扰,当OFDM信号的带外泄露不满足第一预设阈值时,则表示信号的带外泄露比较大,会严重影响对其他信号。
进一步的,所述发送器还用于传输包含所述OFDM在内的频率连续的M个OFDM信号,所述M为大于等于2的整数,若所述M个OFDM信号的参数各不相同,则所述第一过滤模块201,还可以用于:
分别将所述M个OFDM信号通过所述第一过滤模块201,得到M个f-OFDM信号;
所述发送模块202,还用于将所述第一过滤模块201得到的M个f-OFDM信号叠加后发射出去。
其中,需要说明的是,所述M个OFDM信号中各OFDM信号的带宽可以相同或不同。
但是,当若干OFDM信号中除两侧边带信号以外的中间若干OFDM信号之间是同步的,且具有相同的OFDM参数时,为了降低滤波的复杂度,这些子带只需要采用过渡带较宽的频谱模板进行滤波即可,其目的是为了抑制这些OFDM信号在系统带宽以外产生的远端频谱泄露,而非本OFDM信号以外的邻带频谱泄露,因此,对于中间具有相同参数的若干OFDM信号,其滤波器的过渡带指标要求可以放松,而对位于系统带宽两边的子带、以及系统带宽内部使用不同OFDM参数的子带,则需要采用过渡带极窄的滤波器,抑制这些子带以外的邻带频谱泄露,这样可以进一步降低整个系统滤波操作的复杂度,具体的,若所述M个OFDM信号中存在第一组OFDM信号,所述第一组OFDM信号包含i个频率连续的OFDM信号,所述i个OFDM信号的参数相同,所述M个OFDM信号中除所述i个信号之外的(M-i)个OFDM信号的参数各不相同,且所述(M-i)个OFDM信号中每个OFDM信号的参数与所述i个OFDM信号的参数不相同,所述2≤i≤M;则所述第一过滤模块201,还用于:
对所述i个OFDM信号中的第一OFDM信号进行过滤处理,得到与所述第一OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第一边缘;
对所述i个OFDM信号中的第二OFDM信号进行过滤处理,得到与所述第二OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第二边缘;
以及,分别对所述(M-i)个OFDM信号进行过滤处理,得到(M-i)个f-OFDM信号;
所述发送器还包括:第二过滤模块203;
所述第二过滤模块203,用于分别对所述i个OFDM信号中除所述第一OFDM信号和所述第二OFDM信号之外的每个OFDM信号进行第四频谱模板的滤波处理,得到(i-2)个f-OFDM信号;
其中,所述第四频谱模板的过渡带的带宽可以大于第二预设阈值,即经第四频谱模板滤波后的信号可以在带内进行泄露;所述第二预设阈值可以根据需要进行设置,本发明实施例对比不进行限定,当第四频谱模板的过渡带的带宽可以大于第二预设阈值,则表示第四频谱模板滤波后的信号的带宽可以比较宽,可以在带内进行泄露;由于,频谱模板的滤波阶数越低,过渡带越大,所以,相对应的,第四频谱模板的滤波阶数可以设置的比较第,以此降低滤波的复杂度。
所述发送模块202,还用于将与所述第一OFDM信号对应的f-OFDM信号、与所述第二OFDM信号对应的f-OFDM信号、所述(i-2)个f-OFDM信号以及所述(M-i)个f-OFDM信号进行叠加,将叠加后的信号发射出去。
由上可知,本发明实施例提供一种发送器,将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所 述第一信号的带宽;用第一采样率对所述第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;用第二采样率对所述第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;用第三采样率对所述第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号;将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号发射出去;所述第一采样率、第三采样率小于第二采样率;所述第一f-OFDM信号、所述第三f-OFDM信号的过渡带的带宽小于预设阈值;所述第二f-OFDM信号的过渡带的带宽大于预设阈值。如此,与现有技术方案相比,本发明将OFDM宽带信号划分:两个边带信号、一个中间信号,对两个边带信号进行过渡带比较窄的频谱模板的滤波处理,对中间信号进行过渡带比较宽的频谱模板的滤波处理,由于边带信号处于边缘位置,虽必须使用成型滤波进行滤波,以获得很窄的过渡带,达到很好的带外性能,但由于边带的带宽比较窄,采样速率低,可以很好地降低数字成型滤波的工作采样速率,滤波实现简单;同时,对于中间信号,虽其带宽比较宽,采样速率比较高,但由于其位于中间位置,对过渡带性能没有太大要求,可以非常宽,所以,可以使用阶数很低的成型滤波进行滤波,在滤波实现上也很简单,因此,从本发明提供的整个技术方案上来看,可以很好的降低滤波的复杂度。
可以理解的是,上述过程主要针对下行链路信号的发射,在通信过程中,作为发送下行链路信号的逆过程,同一发射设备也可以作为接收设备,接收对端经过上述处理发送的上行链路信号,当接收到上行链路信号时,其对上行链路信号的处理可以为对下行链路信号处理的逆过程,也可以有一定的不同;具体的,下述实施例三还提供一种接收器40,用于对接收到的f-OFDM信号进行处理。
实施例三
图17为本发明实施例提供的一种接收器40的结构图,如图17 所示,所述接收器40可以包括:
接收模块401,用于接收所述f-OFDM信号;
第一处理模块402,用于根据预设的信号处理策略对所述接收模块接收到的f-OFDM信号进行处理,得到OFDM信号。
其中,所述信号处理策略为:
将接收到的f-OFDM信号进行数字变频处理、下采样处理、第一频谱模板的滤波处理,过滤出第一边带信号;
将接收到的f-OFDM信号经过第二频谱模板的滤波处理,过滤出第一信号;
将接收到的f-OFDM信号经过数字变频处理、下采样处理、第三频谱模板的滤波处理,过滤出第二边带信号;
将所述第一边带信号、所述第一信号和所述第二边带信号叠加为与接收到的f-OFDM信号相对应的OFDM信号;
其中,所述第一边带信号位于叠加后的OFDM信号的左边带,所述第二边带信号位于叠加后的OFDM信号的右边带,所述第一信号位于叠加后的OFDM信号中除所述左边带和所述右边带之外的中间频带;
所述第一频谱模板、所述第三频谱模板的带宽小于所述所述第二频谱模板的带宽,所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带。
其中,过滤出第一边带信号时的数字变频可以为:对所述f-OFDM信号进行上变频处理,将所述f-OFDM信号的中心频率搬移到所述第一边带信号的中心频率上;下采样是指:对数字变频后的信号进行采样,使采样后的信号的采样率小于数字变频后的信号的采样率;可选的,可以使采样后的信号的采样率与传输信号时采用的第一采样率相等;
其中,过滤出第二边带信号时的数字变频可以为:对所述f-OFDM信号进行下变频处理,将所述f-OFDM信号的中心频率搬移到所述第二边带信号的中心频率上;下采样是指:对数字变频后的信号进行采样,使采样后的信号的采样率小于数字变频后的信号的 采样率;可选的,可以使采样后的信号的采样率与传输信号时采用的第三采样率相等。
进一步的,若所述接收器接收到的包含所述f-OFDM在内的频率连续的M个f-OFDM信号进行处理,所述M为大于等于2的整数,若所述M个f-OFDM信号的过渡带均满足第一预设阈值,则所述第一处理模块402,还可以用于:
根据预设的信号处理策略分别对所述M个f-OFDM信号进行处理,得到M个OFDM信号。
进一步的,若所述M个f-OFDM信号中存在第一组f-OFDM信号,所述第一组f-OFDM信号包含i个频率连续的f-OFDM信号,所述i个f-OFDM信号的过渡带不满足第一预设阈值,所述M个f-OFDM信号中除所述i个信号之外的(M-i)个f-OFDM信号的过渡带满足第一预设阈值,所述2≤i≤M;则所述第一处理模块402,还可以用于:
根据所述信号处理策略对所述(M-i)个f-OFDM信号中的每个f-OFDM信号进行处理,得到(M-i)个OFDM信号;
如图17所示,所述接收器还可以包括:
第二处理模块403,用于对所述i个f-OFDM信号中的每个f-OFDM信号进行第四频谱模板的滤波处理,得到i个OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值。
其中,所述M个f-OFDM信号的带宽不完全相等或者完全相等或者各不相等。
由上可知,本发明实施例提供一种接收器,用于对接收到的过滤后的正交频分复用f-OFDM信号进行处理,所述f-OFDM信号的过渡带满足第一预设阈值,所述接收器包括:接收模块、第一处理模块,接收模块用于接收所述f-OFDM信号;第一处理模块用于根据预设的信号处理策略对所述接收模块接收到的f-OFDM信号进行处理,得到OFDM信号;所述信号处理策略为:将接收到的f-OFDM信号进行数字变频处理、下采样处理、第一频谱模板的滤波处理,过滤出第一边带信号;将接收到的f-OFDM信号经过第二频谱模板 的滤波处理,过滤出第一信号;将接收到的f-OFDM信号经过数字变频处理、下采样处理、第三频谱模板的滤波处理,过滤出第二边带信号;将所述第一边带信号、所述第一信号和所述第二边带信号叠加为与接收到的f-OFDM信号相对应的OFDM信号。如此,对接收到的f-OFDM信号的两个边带信号进行过渡带比较窄的频谱模板的滤波处理,对中间信号进行过渡带比较宽的频谱模板的滤波处理,可以很好的降低滤波的复杂度。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的单元和系统的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器 (Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件(例如处理器)来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器、随机存储器、磁盘或光盘等。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (16)

  1. 一种信号处理方法,用于传输正交频分复用OFDM信号,其特征在于,所述方法包括:
    根据预设的滤波策略对所述OFDM信号进行处理,得到f-OFDM信号;将所述f-OFDM信号发射出去;
    所述滤波策略为:
    将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽;
    用第一采样率对所述第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;
    用第二采样率对所述第一信号进行采样,将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;
    用第三采样率对所述第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号;
    将所述第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号;
    所述第一采样率、第三采样率小于第二采样率;所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带,所述第一频谱模板、所述第二频谱模板以及所述第三频谱模板用于:保证过滤后的所述OFDM信号的带外泄露满足第一预设阈值。
  2. 根据权利要求1所述的信号处理方法,其特征在于,所述方法还用于传输包含所述OFDM在内的频率连续的M个OFDM信号,所述M为大于等于2的整数,若所述M个OFDM信号的参数各不相 同,则所述方法还包括:
    根据预设的滤波策略分别对所述M个OFDM信号进行处理,得到M个f-OFDM信号;
    将所述M个f-OFDM信号叠加后发射出去。
  3. 根据权利要求2所述的信号处理方法,其特征在于,若所述M个OFDM信号中存在第一组OFDM信号,所述第一组OFDM信号包含i个频率连续的OFDM信号,所述i个OFDM信号的参数相同,所述M个OFDM信号中除所述i个信号之外的(M-i)个OFDM信号的参数各不相同,且所述(M-i)个OFDM信号中每个OFDM信号的参数与所述i个OFDM信号的参数不相同,所述2≤i≤M;则所述方法还包括:
    根据所述滤波策略对所述i个OFDM信号中的第一OFDM信号进行处理,得到与所述第一OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第一边缘;
    根据所述滤波策略对所述i个OFDM信号中的第二OFDM信号所述第二OFDM信号进行处理,得到与所述第二OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第二边缘;
    分别对所述i个OFDM信号中除所述第一OFDM信号和所述第二OFDM信号之外的每个OFDM信号进行第四频谱模板的滤波处理,得到(i-2)个f-OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值;
    根据所述滤波策略分别对所述(M-i)个OFDM信号进行处理,得到(M-i)个f-OFDM信号;
    将与所述第一OFDM信号对应的f-OFDM信号、与所述第二OFDM信号对应的f-OFDM信号、所述(i-2)个f-OFDM信号以及所述(M-i)个f-OFDM信号进行叠加,将叠加后的信号发射出去。
  4. 根据权利要求2或3所述的信号处理方法,其特征在于,
    所述M个OFDM信号的带宽不完全相等或者完全相等或者各不 相等。
  5. 一种信号处理方法,用于对接收到的过滤后的正交频分复用f-OFDM信号进行处理,所述f-OFDM信号的过渡带满足第一预设阈值,其特征在于,所述方法包括:
    根据预设的信号处理策略对所述f-OFDM信号进行处理,得到OFDM信号;
    所述信号处理策略为:
    将接收到的f-OFDM信号进行数字变频处理、下采样处理、第一频谱模板的滤波处理,过滤出第一边带信号;
    将接收到的f-OFDM信号经过第二频谱模板的滤波处理,过滤出第一信号;
    将接收到的f-OFDM信号经过数字变频处理、下采样处理、第三频谱模板的滤波处理,过滤出第二边带信号;
    将所述第一边带信号、所述第一信号和所述第二边带信号叠加为与接收到的f-OFDM信号相对应的OFDM信号;所述第一边带信号位于叠加后的OFDM信号的左边带,所述第二边带信号位于叠加后的OFDM信号的右边带,所述第一信号位于叠加后的OFDM信号中除所述左边带和所述右边带之外的中间频带;
    所述第一频谱模板、所述第三频谱模板的带宽小于所述所述第二频谱模板的带宽,所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带。
  6. 根据权利要求5所述的信号处理方法,其特征在于,所述方法还用于对接收到的包含所述f-OFDM在内的频率连续的M个f-OFDM信号进行处理,所述M为大于等于2的整数,若所述M个f-OFDM信号的过渡带均满足第一预设阈值,则所述方法还包括:
    根据预设的信号处理策略分别对所述M个f-OFDM信号进行处理,得到M个OFDM信号。
  7. 根据权利要求6所述的信号处理方法,其特征在于,若所述M个f-OFDM信号中存在第一组f-OFDM信号,所述第一组f-OFDM 信号包含i个频率连续的f-OFDM信号,所述i个f-OFDM信号的过渡带不满足第一预设阈值,所述M个f-OFDM信号中除所述i个信号之外的(M-i)个f-OFDM信号的过渡带满足第一预设阈值,所述2≤i≤M;则所述方法还包括:
    对所述i个f-OFDM信号中的每个f-OFDM信号进行第四频谱模板的滤波处理,得到i个OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值;
    根据所述信号处理策略对所述(M-i)个f-OFDM信号中的每个f-OFDM信号进行处理,得到(M-i)个OFDM信号。
  8. 根据权利要求6或7所述的信号处理方法,其特征在于,
    所述M个f-OFDM信号的带宽不完全相等或者完全相等或者各不相等。
  9. 一种发送器,其特征在于,用于传输正交频分复用OFDM信号,其特征在于,所述发送器包括:
    第一过滤模块,用于对所述OFDM信号进行过滤处理,得到f-OFDM信号;
    发送模块,用于将所述第一过滤模块得到的f-OFDM信号发射出去;
    其中,所述第一过滤模块包括:
    信号划分单元,用于将待传输的OFDM信号分为:第一边带信号、第一信号以及第二边带信号;所述第一边带信号位于所述待传输的OFDM信号的左边带,所述第二边带信号位于所述待传输的OFDM信号的右边带,所述第一信号位于所述待传输的OFDM信号中除所述左边带和所述右边带之外的中间频带;所述第一边带信号的带宽、所述第二边带信号的带宽均小于所述第一信号的带宽;
    过滤单元,用于采用第一采样率对所述信号划分单元分出的第一边带信号进行采样,将采样后的信号经第一频谱模板的滤波处理、上采样处理和数字变频处理,生成第一f-OFDM信号;
    采用第二采样率对所述信号划分单元分出的第一信号进行采样, 将采样后的信号经第二频谱模板的滤波处理,生成第二f-OFDM信号;
    采用第三采样率对所述信号划分单元分出的第二边带信号进行采样,将采样后的信号经第三频谱模板的滤波处理、上采样处理和数字变频处理,生成第三f-OFDM信号;
    合并单元,用于将所述过滤单元过滤出的第一f-OFDM信号、所述第二f-OFDM信号和所述第三f-OFDM信号叠加为所述f-OFDM信号;
    所述第一采样率、第三采样率小于第二采样率;所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带,所述第一频谱模板的滤波处理、所述第二频谱模板的滤波处理以及所述第三频谱模板的滤波处理用于:保证过滤后的所述OFDM信号的带外泄露满足第一预设阈值。
  10. 根据权利要求9所述的发送器,其特征在于,所述发送器还用于传输包含所述OFDM在内的频率连续的M个OFDM信号,所述M为大于等于2的整数,若所述M个OFDM信号的参数各不相同,则所述第一过滤模块,还用于:
    分别将所述M个OFDM信号通过所述第一过滤模块,得到M个f-OFDM信号;
    所述发送模块,还用于将所述第一过滤模块得到的M个f-OFDM信号叠加后发射出去。
  11. 根据权利要求10所述的发送器,其特征在于,若所述M个OFDM信号中存在第一组OFDM信号,所述第一组OFDM信号包含i个频率连续的OFDM信号,所述i个OFDM信号的参数相同,所述M个OFDM信号中除所述i个信号之外的(M-i)个OFDM信号的参数各不相同,且所述(M-i)个OFDM信号中每个OFDM信号的参数与所述i个OFDM信号的参数不相同,所述2≤i≤M;则所述第一过滤模块,还用于:
    对所述i个OFDM信号中的第一OFDM信号进行过滤处理,得到与所述第一OFDM信号对应的f-OFDM信号;所述第一OFDM信 号位于所述i个频率连续的OFDM信号的第一边缘;
    对所述i个OFDM信号中的第二OFDM信号进行过滤处理,得到与所述第二OFDM信号对应的f-OFDM信号;所述第一OFDM信号位于所述i个频率连续的OFDM信号的第二边缘;
    以及,分别对所述(M-i)个OFDM信号进行过滤处理,得到(M-i)个f-OFDM信号;
    所述发送器还包括:第二过滤模块;
    所述第二过滤模块,用于分别对所述i个OFDM信号中除所述第一OFDM信号和所述第二OFDM信号之外的每个OFDM信号进行第四频谱模板的滤波处理,得到(i-2)个f-OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值;
    所述发送模块,还用于将与所述第一OFDM信号对应的f-OFDM信号、与所述第二OFDM信号对应的f-OFDM信号、所述(i-2)个f-OFDM信号以及所述(M-i)个f-OFDM信号进行叠加,将叠加后的信号发射出去。
  12. 根据权利要求10或11所述的发送器,其特征在于,
    所述M个OFDM信号的带宽不完全相等或者完全相等或者各不相等。
  13. 一种接收器,用于对接收到的过滤后的正交频分复用f-OFDM信号进行处理,所述f-OFDM信号的过渡带满足第一预设阈值,其特征在于,所述接收器包括:
    接收模块,用于接收所述f-OFDM信号;
    第一处理模块,用于根据预设的信号处理策略对所述接收模块接收到的f-OFDM信号进行处理,得到OFDM信号;
    所述信号处理策略为:
    将接收到的f-OFDM信号进行数字变频处理、下采样处理、第一频谱模板的滤波处理,过滤出第一边带信号;
    将接收到的f-OFDM信号经过第二频谱模板的滤波处理,过滤出第一信号;
    将接收到的f-OFDM信号经过数字变频处理、下采样处理、第三频谱模板的滤波处理,过滤出第二边带信号;
    将所述第一边带信号、所述第一信号和所述第二边带信号叠加为与接收到的f-OFDM信号相对应的OFDM信号;所述第一边带信号位于叠加后的OFDM信号的左边带,所述第二边带信号位于叠加后的OFDM信号的右边带,所述第一信号位于叠加后的OFDM信号中除所述左边带和所述右边带之外的中间频带;
    所述第一频谱模板、所述第三频谱模板的带宽小于所述所述第二频谱模板的带宽,所述第一频谱模板、所述第三频谱模板的过渡带小于所述第二频谱模板的过渡带。
  14. 根据权利要求13所述的接收器,其特征在于,所述接收器还用于对接收到的包含所述f-OFDM在内的频率连续的M个f-OFDM信号进行处理,所述M为大于等于2的整数,若所述M个f-OFDM信号的过渡带均满足第一预设阈值,则所述第一处理模块,还用于:
    根据预设的信号处理策略分别对所述M个f-OFDM信号进行处理,得到M个OFDM信号。
  15. 根据权利要求14所述的接收器,其特征在于,若所述M个f-OFDM信号中存在第一组f-OFDM信号,所述第一组f-OFDM信号包含i个频率连续的f-OFDM信号,所述i个f-OFDM信号的过渡带不满足第一预设阈值,所述M个f-OFDM信号中除所述i个信号之外的(M-i)个f-OFDM信号的过渡带满足第一预设阈值,所述2≤i≤M;则所述第一处理模块,还用于:
    根据所述信号处理策略对所述(M-i)个f-OFDM信号中的每个f-OFDM信号进行处理,得到(M-i)个OFDM信号;
    所述接收器还包括:
    第二处理模块,用于对所述i个f-OFDM信号中的每个f-OFDM信号进行第四频谱模板的滤波处理,得到i个OFDM信号;所述第四频谱模板的过渡带的带宽大于第二预设阈值。
  16. 根据权利要求14或15所述的接收器,其特征在于,
    所述M个f-OFDM信号的带宽不完全相等或者完全相等或者各不相等。
PCT/CN2016/096692 2015-12-31 2016-08-25 一种信号处理方法及设备 WO2017113833A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16880626.3A EP3399711B1 (en) 2015-12-31 2016-08-25 Signal processing method and apparatus
JP2018533933A JP6579563B2 (ja) 2015-12-31 2016-08-25 信号処理方法およびデバイス
US16/023,539 US10257007B2 (en) 2015-12-31 2018-06-29 Signal processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511032383.1A CN106936755B (zh) 2015-12-31 2015-12-31 一种信号处理方法及设备
CN201511032383.1 2015-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/023,539 Continuation US10257007B2 (en) 2015-12-31 2018-06-29 Signal processing method and device

Publications (1)

Publication Number Publication Date
WO2017113833A1 true WO2017113833A1 (zh) 2017-07-06

Family

ID=59224531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096692 WO2017113833A1 (zh) 2015-12-31 2016-08-25 一种信号处理方法及设备

Country Status (5)

Country Link
US (1) US10257007B2 (zh)
EP (1) EP3399711B1 (zh)
JP (1) JP6579563B2 (zh)
CN (1) CN106936755B (zh)
WO (1) WO2017113833A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200060433A (ko) * 2017-09-26 2020-05-29 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 신호 처리를 위한 방법 및 장치

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199998A (zh) * 2017-12-29 2018-06-22 北京宇电科技集团有限公司 一种抗混叠滤波方法、装置和可编程逻辑器件
CN108418605B (zh) * 2018-03-09 2021-07-02 北京宇电科技集团有限公司 基于采用ofdm的电力载波通信系统的通信方法
CN108600141A (zh) * 2018-03-09 2018-09-28 北京宇电科技集团有限公司 采用ofdm的电力载波通信系统
CN112187691B (zh) * 2019-07-03 2024-04-30 中兴通讯股份有限公司 一种信号处理的方法、装置和设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2840749A1 (en) * 2013-08-23 2015-02-25 Alcatel Lucent Receiver and receive method for a filtered multicarrier signal
US20150229502A1 (en) * 2014-02-13 2015-08-13 Futurewei Technologies, Inc. System and method for guard band utilization for synchronous and asynchronous communications
US20150256308A1 (en) * 2014-03-07 2015-09-10 Huawei Technologies Co., Ltd. Systems and Methods for OFDM with Flexible Sub-Carrier Spacing and Symbol Duration

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7881398B2 (en) * 2006-08-21 2011-02-01 Agere Systems Inc. FFT numerology for an OFDM transmission system
KR20150091370A (ko) * 2012-11-29 2015-08-10 인터디지탈 패튼 홀딩스, 인크 Ofdm 시스템에서의 스펙트럼 누출 감소 방법
US9584347B2 (en) * 2013-05-31 2017-02-28 Silicon Laboratories Inc. Methods and systems for rapid detection of digital radio signals
US9197364B1 (en) * 2015-02-12 2015-11-24 Urbain A. von der Embse Scaling for QLM communications faster than shannon rate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2840749A1 (en) * 2013-08-23 2015-02-25 Alcatel Lucent Receiver and receive method for a filtered multicarrier signal
US20150229502A1 (en) * 2014-02-13 2015-08-13 Futurewei Technologies, Inc. System and method for guard band utilization for synchronous and asynchronous communications
US20150256308A1 (en) * 2014-03-07 2015-09-10 Huawei Technologies Co., Ltd. Systems and Methods for OFDM with Flexible Sub-Carrier Spacing and Symbol Duration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200060433A (ko) * 2017-09-26 2020-05-29 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 신호 처리를 위한 방법 및 장치
EP3691320A4 (en) * 2017-09-26 2020-12-16 Datang Mobile Communications Equipment Co., Ltd. METHOD AND DEVICE FOR SIGNAL PROCESSING
US11283661B2 (en) 2017-09-26 2022-03-22 Datang Mobile Communications Equipment Co., Ltd. Method and apparatus for signal processing
KR102444949B1 (ko) 2017-09-26 2022-09-19 다탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 신호 처리를 위한 방법 및 장치

Also Published As

Publication number Publication date
EP3399711A4 (en) 2019-01-02
CN106936755B (zh) 2019-12-17
US10257007B2 (en) 2019-04-09
EP3399711A1 (en) 2018-11-07
CN106936755A (zh) 2017-07-07
US20180309606A1 (en) 2018-10-25
JP6579563B2 (ja) 2019-09-25
JP2019500806A (ja) 2019-01-10
EP3399711B1 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
WO2017113833A1 (zh) 一种信号处理方法及设备
Renfors et al. Analysis and design of efficient and flexible fast-convolution based multirate filter banks
EP3326342B1 (en) Transceiver architecture that maintains legacy timing by inserting and removing cyclic prefix at legacy sampling rate
JP6259918B2 (ja) マルチキャリアのピーク抑圧処理方法及び装置
CN108270713B (zh) 一种多应用场景信号多址接入方法及系统
US10826742B2 (en) Method and system for multi-carrier time division multiplexing modulation/demodulation
US20160352543A1 (en) Configurable architecture for generating a waveform
Renfors et al. Highly adjustable multirate digital filters based on fast convolution
CN107819715B (zh) 用于基于线性调制的通信系统的接收机架构
Renfors et al. Channel equalization in fast-convolution filter bank based receivers for professional mobile radio
CN115244846A (zh) 可配置波峰因子降低的装置和方法
Renfors et al. Fast-convolution filtered OFDM waveforms with adjustable CP length
JP2019528606A (ja) 信号送信方法及び装置
CN115242219B (zh) 一种基于wola结构滤波器组的并行匹配滤波方法
WO2013000317A1 (zh) 多载波信号的接收方法及装置
CN106878222B (zh) 一种多载波信号的生成方法和装置
US20190349157A1 (en) Receiver, transmitter, communication system for subband communication and methods for subband communication
JP6765541B2 (ja) サブバンドベース複合デジタル時間領域信号処理
CN106878221B (zh) 一种多载波信号的生成方法和装置
CN110095791A (zh) 一种多载波fsk调制信号解调方法
CN108667758B (zh) 一种削峰方法及装置
WO2021000955A1 (zh) 一种信号处理的方法、装置和设备
CN107438037B (zh) 一种数据传输方法和相关装置
Motwani Signal processing techniques for ensuring fidelity of back-end signal transmission in flash memory based solid state drives
Kang et al. Simulation analysis of modified filter bank multicarrier for physical layer cognitive radio under radio environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018533933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016880626

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016880626

Country of ref document: EP

Effective date: 20180731