WO2017113630A1 - 一种制备大规格高品质铝合金铸锭的装置及方法 - Google Patents

一种制备大规格高品质铝合金铸锭的装置及方法 Download PDF

Info

Publication number
WO2017113630A1
WO2017113630A1 PCT/CN2016/085826 CN2016085826W WO2017113630A1 WO 2017113630 A1 WO2017113630 A1 WO 2017113630A1 CN 2016085826 W CN2016085826 W CN 2016085826W WO 2017113630 A1 WO2017113630 A1 WO 2017113630A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
crystallizer
alloy ingot
preparing
oil
Prior art date
Application number
PCT/CN2016/085826
Other languages
English (en)
French (fr)
Inventor
张志峰
徐骏
张少明
白月龙
高明伟
刘建朝
杨玉洁
Original Assignee
北京有色金属研究总院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201511020092.0A external-priority patent/CN106925735B/zh
Priority claimed from CN201521131860.5U external-priority patent/CN205236991U/zh
Application filed by 北京有色金属研究总院 filed Critical 北京有色金属研究总院
Priority to US16/067,306 priority Critical patent/US20190009328A1/en
Publication of WO2017113630A1 publication Critical patent/WO2017113630A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/07Lubricating the moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/112Treating the molten metal by accelerated cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Definitions

  • the invention belongs to the field of metal material processing, and particularly relates to a device and a method for preparing a large-size high-quality aluminum alloy ingot.
  • Semi-continuous casting is the most important method for producing aluminum alloy ingots.
  • the ingot is solidified from the outside to the inside, which is bound to cause the metal melt liquid to be deep.
  • the uniformity of the temperature field is difficult to control, resulting in uneven casing, which is prone to wrinkles, segregation, and even leakage in the thinner region of the shell;
  • the specification is large, and the cooling effect is limited, which inevitably reduces the continuous casting speed, the nucleation in the melt is less and uneven, and the crystal grains are abnormally coarse.
  • the surface quality of the large-size aluminum alloy ingot prepared by the traditional semi-continuous casting is poor, the internal structure is coarse and uneven, the composition segregation is serious, the ingot yield is low, and the car skin or the milling surface needs to be deformed and processed, and the cost is high.
  • the material waste is serious.
  • Chinese patent CN104550798A proposes an aluminum alloy semi-continuous casting electromagnetic stirring device and method, which adopts a combination of direct current and permanent magnet, and can design different melt flow modes in the crystallizer region according to the size, shape and material composition of the aluminum ingot. And flow strength, control the segregation behavior of alloying elements and the growth mode of dendrites to achieve the purpose of tissue homogenization and refinement.
  • the invention adopts a single cooling method in which the crystallizer is sequentially solidified from the outside to the inside only, and the problem of temperature unevenness in the solidification process of the aluminum alloy melt cannot be solved, especially for preparing a large-sized ingot, the stirring effect of the method on the melt. Limited, the temperature gradient in the melt is large, and the liquid pocket is very deep, resulting in a slow casting speed, so the effect on improving the internal quality of the ingot is limited.
  • the air film casting method represented by American Airslip technology and German AirsolVeil technology is based on the principle of forming a gas film between the crystallizer and the ingot shell to reduce the solidification process.
  • the contact pressure with the inner wall of the crystallizer allows the melt to solidify in a gas contact state.
  • China patent CN100418667C improved the oil-lubricating crystallizer and proposed crystal oil, gas and water.
  • the overall design of the structure reduces the primary cooling by the heat insulation effect of the oil and gas film, and uses two rows of water spray holes to improve the secondary water cooling effect to improve the surface quality of the ingot.
  • the existing gas film casting method is difficult to prepare a high-quality large-sized ingot.
  • the existing gas film casting method cannot prepare large-size aluminum alloy ingots, and has problems such as poor surface quality of ingots and uneven internal structure, and the shortage of large-sized aluminum alloy ingots prepared by the existing semi-continuous casting method.
  • the invention proposes a new device and a method for preparing a large-size high-quality aluminum alloy ingot, and applies an intermediate uniform cooling in a crystallizer and an external electromagnetic stirring coupling melt treatment in a gas film casting process to prepare a large-size high-quality aluminum. When the alloy is ingot, the surface quality and internal quality of the ingot are simultaneously solved.
  • the main design idea is: it is difficult to prepare large-size aluminum alloy ingots with diameter (greater than 300mm) for the existing gas film casting method.
  • the crystallizer adopts the partition gas supply structure design to reduce the difference of the gas supply pressure on the graphite ring and achieve stability.
  • Control the gas pressure to ensure a stable and continuous gas film between the melt and the crystallizer apply uniform cooling in the mold to the alloy melt in the semi-continuous casting process and electromagnetic stirring coupling outside the mold to increase the solidification process of the ingot
  • the cooling dimension in the medium strengthens the three-dimensional convection of the melt during solidification, improves the temperature field and the uniformity of the composition field of the bulk alloy, improves the internal consistency of the ingot, improves the uniformity of the initial solidification, and increases the initial condensation.
  • the thickness prevents the initial crust and the oil film from rupturing, reduces the contact pressure between the initial crust and the inner wall of the crystallizer, and solidifies the melt under gas pressure contact to prepare a large-sized aluminum alloy ingot with excellent internal and external quality.
  • the utility model relates to a new device for preparing a large-size high-quality aluminum alloy ingot, which is mainly composed of a uniform cooler, a hot top, an oil-lubricating crystallizer, an induction coil and an ingot; the hot top is arranged above the oil-lubricating crystallizer; The induction coil is disposed outside the oil-lubricating crystallizer, the uniform cooler is disposed in the oil-lubricating crystallizer, and the ingot is located below the oil-lubricating crystallizer.
  • the oil-gas lubrication crystallizer comprises a crystallizer body and a graphite ring.
  • the graphite ring is installed above the crystallizer body, and the outer wall of the graphite ring is provided with a gas groove and an oil groove.
  • the gas groove is divided into 3 to 20 segments, and the length of each gas channel is 100 ⁇ 500mm, each section is provided with separate inlet passages, separately supplied by gas and separately controlled; the oil tank is separated from the gas tank, the oil tank is arranged in the upper part of the gas tank, the graphite ring is prepared by porous graphite, and the gas and lubricating oil are exuded through the graphite ring.
  • the oil-gas lubrication crystallizer adopts the partition gas supply structure design to reduce the difference between the gas volume and the gas pressure in the single gas-supplying graphite ring gas tank, and achieve the purpose of stably controlling the gas pressure.
  • the oil and gas lubrication crystallizer adopts a double row water spray hole design.
  • the mold body is arranged on the upper and lower sides Two rows of water spray holes, the upper row of spray holes and the crystallizer wall angle of 15 to 30 °, the diameter of 1 to 5 mm, the lower row of spray holes and the crystallizer wall angle is 0 ⁇ 25 ° and greater than 0 °, Ensure that the cooling water can be sprayed onto the ingot without splashing back, with a diameter of 2 to 8 mm.
  • the water volume of the double-row spray hole can be controlled separately, and the diameter of the upper spray hole should be less than or equal to the diameter of the lower spray hole.
  • the induction coil is disposed outside the crystallizer, and the yoke (iron core) adopts a retractable design with a variable length and a telescopic range of 0 to 100 mm.
  • the electromagnetic induction coil generates an electromagnetic field and is introduced into the internal melt of the crystal mold through the yoke.
  • the electromagnetic coil can generate a rotating electromagnetic field, a traveling wave electromagnetic field or a composite electromagnetic field.
  • the upper part of the uniform cooler is an adiabatic end, the lower part is a cooling end, and the adiabatic end is provided with a stirring blade.
  • the uniform cooler extends through the hot top into the height position of the crystallizer, and the bottom of the uniform cooler and the crystallizer.
  • the flushing, uniform cooler can be set one or more, the uniform cooler can be rotated, and the rotating speed is 0-300r/min.
  • the adiabatic end is cylindrical and has an outer diameter of 100-800mm. It is made of high temperature resistant ceramic material and has thermal insulation to ensure that the melt in the hot top is not cooled.
  • the cooling end is made of heat conductive material such as graphite and copper.
  • the cooling end has a cooling effect;
  • the cooling end of the uniform cooler has a spiral shape, and the uniform cooling device rotates to produce a forced melt downward flow;
  • the stirring blade is made of a high temperature resistant material, such as copper , molybdenum, titanium, ceramics and composite materials, the number of mixing blades is 0-8, the width is 10 ⁇ 100mm, the thickness is 2 ⁇ 8mm, and the stirring blade rotates with the uniform cooler, which has the effect of forced downward flow of the melt, so that The melt is continuously added downward to the liquid cavity to achieve the effect of dynamic continuous uniform cooling;
  • the inside of the uniform cooler is connected to the circulating cooling medium, the cooling medium reaches the cooling end, and the cooling end exchanges heat with the melt, and the cooling medium is air.
  • nitrogen, water, oil and other fluids the flow rate of the cooling medium is 0 ⁇ 2000L / min.
  • the present invention proposes a method for preparing a large-size high-quality aluminum alloy ingot, in which a melt which has been subjected to refining treatment and stabilized to a liquidus level of 80 to 100 ° C is poured into the heat.
  • the outer wall of the graphite ring and the oil groove pass into the air and lubricating oil; control the flow rate of the upper row of water spray holes and the lower row of water spray holes; the alloy melt reaches the upper part of the starter through the hot top and the crystallizer, and the melt level
  • the starter slowly decreases, the flow rate of the cooling water increases slowly, the casting process enters a stable state, uniform cooling and electromagnetic stirring treatment are applied, and finally a large-size high-quality aluminum alloy ingot is obtained.
  • the air flow rate in the gas tank is 500-5000 mL/min
  • the oil tank adopts pulse type oil supply
  • the oil supply amount is 60-100/s
  • the flow rate of the upper row spray hole is 1-50L /min
  • the flow rate of the lower row of water spray holes is 20 to 100 L/min
  • the casting speed is 20 to 100 mm/min.
  • the cooling strength of the uniform cooling treatment is 500 to 5000 W/(m 2 ⁇ k)
  • the shear rate of the electromagnetic stirring treatment is 10 to 2000 s -1 .
  • FIG. 1 is a schematic view showing the structure of a high quality large-size aluminum alloy ingot apparatus according to the present invention.
  • FIG. 2 is a schematic view of a partition of a graphite ring.
  • Figure 3 is an enlarged view of a portion E of the crystallizer of Figure 1.
  • Figure 4 is a schematic view of a uniform cooler.
  • 5a and 5b are photographs showing the surface appearance of a conventional semi-continuous casting and a ⁇ 582 mm gauge 7075 aluminum alloy ingot prepared by the present invention, respectively.
  • Figures 6a and 6b are the microstructures of a conventional semi-continuous casting and a ⁇ 582mm gauge 7075 aluminum alloy ingot prepared by the present invention, respectively.
  • the present invention can be implemented according to the following examples, but is not limited thereto, and these examples are only for exemplifying the embodiments of the present invention, and are not intended to limit the scope of the present invention.
  • various processes not described in detail And methods are conventional methods well known in the art.
  • the apparatus of the present invention comprises a uniform cooler 1, a hot top 2, a melt 3, an oil-lubricating lubricator 4, a yoke 5, a coil 6, a graphite ring 7, a water spray hole 8, an ingot 9, and a guide. Ingot 10 and so on.
  • the hot top 2 is disposed above the oil-lubricating crystallizer 4, the coil 6 and the yoke 5 are disposed outside the oil-lubricating crystallizer 4, the uniform cooler 1 is disposed in the oil-lubricating crystallizer 4, and the ingot 10 is located in the oil-lubricating crystallizer 4 Below.
  • the oil-lubricating crystallizer 4 comprises a crystallizer body and a graphite ring 7.
  • the graphite ring 7 is mounted above the crystallizer body, and the outer wall of the graphite ring 7 is provided with a gas groove 12 and an oil groove 11, and the gas groove 12 is designed in a segmented manner, as shown in FIG.
  • the gas tank 12 is divided into 3 to 20 sections, each of which has a length of 100 to 500 mm, and each section is separately provided with an intake passage, which is separately supplied with air and separately controlled; the oil tank 11 is separated from the gas tank 12, and the oil tank 11 is set.
  • the graphite ring 7 is prepared using porous graphite, and the gas and lubricating oil are oozing out of the crystallizer through the graphite ring 7.
  • the oil-lubricating crystallizer 4 adopts a double-row water jet hole design, as shown in Fig. 3; the two rows of water spray holes individually control the water volume, and the upper row of water spray holes 13 and the inner wall of the oil-lubricating crystallizer 4 have an angle of 15 to 30°, and the diameter 1 to 5 mm, under The water jet hole 14 and the oil-lubricating crystallizer 4 wall have an angle of 0 to 25° and greater than 0°, and the diameter is 2 to 8 mm, and the diameter of the upper row of water spray holes is smaller than or equal to the diameter of the lower row of water spray holes.
  • the yoke 5 is of a retractable design.
  • the yoke 5 has a variable length and a telescopic range of 0 to 100 mm.
  • the electromagnetic induction coil 6 generates an electromagnetic field and is introduced into the internal melt of the crystallizer via the yoke 5.
  • the electromagnetic coil 6 can generate a rotating electromagnetic field, a traveling wave electromagnetic field or a composite electromagnetic field.
  • the uniform cooler 1 extends into the height position of the oil-lubricating crystallizer 4 through the hot top 2, and the uniform cooler 1 can be provided with one or more, the uniform cooler 1 can be rotated, and the rotation speed is 0-300r. /min.
  • the uniform cooler 1 is composed of an upper heat insulating end 15 and a lower cooling end 17, and the adiabatic end 15 is provided with a stirring blade 16; the upper heat insulating end 15 is cylindrical, and has an outer diameter of 100 to 800 mm, and is used with high temperature insulation.
  • the material is made of a material; the cooling end 17 is made of a heat conductive material such as graphite, copper, molybdenum, titanium and a composite material thereof; the cooling end 17 of the uniform cooler 1 has a spiral shape, and the uniform cooler 1 generates a forced melt downward when rotated.
  • the effect of the flow; the number of stirring blades is 0-8, the blade width is 10 ⁇ 100mm, the blade thickness is 2-8mm, and the stirring blade 16 is made of high temperature resistant materials such as copper, molybdenum, titanium, ceramic and composite materials thereof.
  • the melt is brought to the cooling end 17 of the uniform cooler 1, and the circulating cooling medium is introduced into the uniform cooler 1, and the cooling medium reaches the cooling end 17, and passes through the cooling end 17 and melts.
  • Body heat exchange cooling medium is air, nitrogen, water, oil and other fluids
  • the flow rate of the cooling medium is 0 ⁇ 2000L / min, to achieve continuous dynamic and even supercooling of the melt
  • the melt is cooled by the bottom of the uniform cooler, continue down flow Sump into the mushy zone, cooling the melt to achieve a uniform continuous dynamic force feeding and, eventually to prepare large-sized ingots of fine grain homogeneous.
  • the method of use is as follows: in the semi-continuous casting process, the whole set is preheated to 80-200 ° C, and the melt which has been refined and stabilized to be 80-100 ° C above the liquidus is poured into the device.
  • the outer ring gas groove 12 and the oil groove 11 of the graphite ring 7 are supplied with air and lubricating oil, the air flow rate is 500-5000 mL/min, the oil supply is pulsed, and the oil supply amount is 60-100/s;
  • the coil 6 has a current of 10 to 200 A, and the flow rate of the upper row of water spray holes 13 is controlled to be 1 to 50 L/min, the flow rate of the lower row of water spray holes 14 is 20 to 100 L/min, and the casting speed is 20 to 100 mm/min.
  • the alloy melt reaches the upper part of the starter 10 through the hot top 2 and the crystallizer 4, and the melt level rises to the required height.
  • the continuous casting starts, the starter 10 slowly decreases, the cooling water flow slowly increases, and the casting process enters a stable state.
  • Uniform cooling and electromagnetic stirring treatment are applied, the cooling intensity of the uniform cooling treatment is 500 to 5000 W/(m 2 ⁇ k), and the shear rate of the electromagnetic stirring treatment is 10 to 2000 s -1 until the end of the casting process.
  • the ⁇ 582mm size 7075 aluminum alloy round ingot is prepared by the invention, and the surface is required to be smooth, and the internal structure is fine and uniform.
  • the specific implementation is as follows:
  • the oil-gas lubrication crystallizer 4 uses a zoned gas supply system, graphite ring 7
  • An air tank 12 and an oil tank 11 are arranged outside, and the air tank 12 is divided into four sections, each of which has a length of 456 mm, and each section is separately provided with an intake passage, which is separately supplied with air and separately controlled; the oil tank 11 is separated from the air tank 12, The oil groove 11 is disposed at the upper portion of the gas tank 12, and the graphite ring 7 is prepared using porous graphite.
  • the upper row of water spray holes 13 and the crystallizer wall have an angle of 25° and a diameter of 2 mm.
  • the lower row of spray holes 14 and the crystallizer wall have an angle of 10° and a diameter of 5 mm, and the water volume of the double row of spray holes can be separately controlled.
  • the uniform cooler 1 is placed on a casting platform having a diameter of 300 mm, the cooler, the hot top and the crystallizer are concentric, and the bottom end of the uniform cooler 1 is flush with the bottom end of the crystallizer.
  • the heat-insulating end 15 of the uniform cooler 1 is made of a high-temperature-resistant insulating ceramic having a diameter of 300 mm and a thickness of 10 mm, and a lower cooling end 17 having a diameter of 350 mm, made of graphite, having a number of blades of 3 and a blade width of 50 mm.
  • the uniform cooler 1 has a rotational speed of 60 r/min.
  • the electromagnetic coil is disposed on the outer circumference of the oil-lubricating crystallizer 4, and the electromagnetic coil generates a rotating electromagnetic field, and the alloy melt is sheared, and the yoke length is 50 mm.
  • a melt which has been subjected to refining treatment and stabilized to 100 ° C above the liquidus is poured into the hot top.
  • the outer ring gas groove 12 and the oil groove 11 of the graphite ring 7 are supplied with air and lubricating oil, the air flow rate is 1430 mL/min, and the pulse oil supply is used, the oil supply amount is 80/s; and the flow rate of the upper row water spray hole 13 is controlled to be 20 L/ Min, the flow rate of the lower row of spray holes 14 is 30 L/min; the casting speed is 65 mm/min.
  • the alloy melt reaches the crystallizer through the hot top 2, the melt level rises to the required height, the continuous casting starts, the ingot 10 slowly descends, the cooling water flow slowly increases, the casting process enters a steady state, and uniform cooling and electromagnetic stirring are applied.
  • the treatment, the cooling intensity of the uniform cooling treatment was 1210 W/(m 2 ⁇ k), and the shear rate of the electromagnetic stirring treatment was 110 s -1 until the end of the casting process.
  • the invention combines the design of the oil-gas lubrication crystallizer partition gas structure with the application of the crystallizer uniform cooling and the external electromagnetic stirring process of the crystallizer, by controlling the cooling effect of the uniform cooler, the structure of the stirring blade and The mutual coupling between the rotational speed and the electromagnetic stirring shear strength can cause forced uniform cooling and stereo convection of the whole melt.
  • the temperature field and the uniformity of the composition field are significantly improved, not only from Fundamentally solve the problem of coarse and large unevenness, macrosegregation and cracking of large-size aluminum alloy ingots prepared by ordinary semi-continuous casting method, and the uniformity and solidification thickness of initial shells are also greatly increased, effectively reducing initial condensation.
  • the contact pressure between the shell and the inner wall of the crystallizer to achieve the melt Solidification forming under gas pressure contact condition significantly improves the surface quality of the ingot.
  • the partition gas supply structure design can reduce the difference between the gas volume and the gas pressure in the single gas-supplying graphite ring gas tank, and can stably control the gas pressure; the pulse-type oil supply is used to make the melt A stable and continuous gas film can be formed between the crystallizer and the stable lubrication effect, and the technical problem that the large-size aluminum alloy ingot (diameter larger than 300 mm) cannot be cast by gas film is solved, and the surface of the ingot is smooth.
  • the large-sized ingot prepared by the invention has fine crystal grains, uniform composition, smooth surface and fast casting speed, and significantly reduces subsequent homogenization and processing cost, and improves production efficiency and finished product rate.
  • the whole set of methods is simple and feasible, and the implementation effect is good, and industrial production can be realized.
  • the invention combines the zoned gas crystallizer with the uniform cooler and the electromagnetic stirrer.
  • the partitioned gas crystallizer design can stably control the gas pressure, the uniform cooler increases the cooling dimension during the solidification process of the ingot, and the electromagnetic stirrer strengthens the solidification process.
  • the three-dimensional convection of the melt improves the temperature field of the large-volume alloy melt and the uniformity of the composition field.
  • the effective coupling of the three can force the uniform solidification of the melt under gas pressure contact, so that the melt and the crystallizer are between It can form a stable and continuous gas film, not only the surface of the ingot is smooth, but also the internal structure is fine and uniform.
  • the high-quality ingot produced by the invention has high production efficiency, easy combination with large industrial production, and has broad industrial application prospects in aerospace, rail transit, shipbuilding and other manufacturing fields.

Abstract

一种制备大规格高品质铝合金铸锭的装置,主要由均匀冷却器(1)、热顶(2)、油气润滑结晶器(4)、感应线圈(6)和引锭(10)组成;热顶设置于油气润滑结晶器的上方,感应线圈设置在油气润滑结晶器外侧,均匀冷却器设置于油气润滑结晶器内,引锭位于油气润滑结晶器下方。以及一种制备大规格高品质铝合金铸锭的方法。所述装置将分区给气结晶器与均匀冷却器和电磁搅拌器结合,三者的有效耦合实现了熔体在气体压力接触状态下强制均匀凝固成形,使熔体和结晶器之间形成稳定连续的气膜。铸锭表面光滑,而且内部组织细小均匀。

Description

一种制备大规格高品质铝合金铸锭的装置及方法 技术领域
本发明属于金属材料加工领域,特别涉及一种制备大规格高品质铝合金铸锭的装置及方法。
背景技术
随着制造业大型成套装备使用性能的日益提升,在航空航天、轨道交通、船舶制造等领域中越来越多的使用大型整体式结构已成为一种必然的趋势,例如大型运输机、高性能战机和高速列车的研制都广泛采用大规格整体铝材和高性能厚板,而这些材料的制备离不开大规格高品质的铝合金铸锭,因此,大规格高品质铝合金铸锭制备对提升制造业装备能力具有重要意义。
半连续铸造是生产铝合金铸锭最主要的方法。然而由于普通的半连续铸造技术的局限性,在制备大规格铝合金铸锭过程中,由于冷却方式单一,铸锭由外向内凝固,势必造成金属熔体液穴较深。同时,由于铸锭尺寸较大,凝固过程中,温度场均匀性难以控制,导致凝壳不均,在凝壳较薄区域易产生褶皱、偏析瘤、甚至拉漏等问题;此外,由于铸锭规格较大,而冷却效果有限,必然使连铸速度降低,熔体内形核较少且不均匀,晶粒异常粗大。因此,采用传统半连续铸造制备的大规格铝合金铸锭表面质量差,内部组织粗大且不均匀,成分偏析严重,铸锭成品率低,需要经过车皮或铣面才能进行变形加工,成本较高,材料浪费严重。
为了解决此类问题,研究人员进行了大量的研究,以期制备内部组织小均匀、无偏析、表面质量好的铝合金铸锭。
中国专利CN104550798A提出一种铝合金半连续铸造电磁搅拌装置及方法,采用直流电流和永磁体结合的方法,可以根据铝锭的尺寸、形状、材料成分设计不同的熔体在结晶器区域的流动方式和流动强度,控制合金元素的偏析行为和枝晶的生长方式,达到组织均匀化与细化的目的。但是,该发明是采用仅靠结晶器从外向内顺序凝固的单一冷却方式,铝合金熔体凝固过程中温度不均匀问题无法解决,特别对于制备大规格铸锭,该方法对熔体的搅拌作用有限,熔体内温度梯度较大,液穴很深,导致铸造速度很慢,因此对改善铸锭内部质量的效果有限。
在改善铸锭表面质量方面,以美国的Airslip技术和德国的AirsolVeil技术为代表的气膜铸造方法,其原理是在结晶器与铸锭凝壳之间形成一层气膜,减少凝固过程凝壳与结晶器内壁的接触压力,让熔体在于气体接触状态下凝固成形。中国专利CN100418667C在此基础上对油气润滑结晶器进行了改进,提出结晶器油、气、水 结构整体设计,通过油气膜隔热作用减少一次冷却,采用两排喷水排孔提高二次水冷效果,来提高铸锭的表面质量。但是现有的气膜铸造方法很难制备处高品质大规格铸锭。若大规格铸锭仅靠结晶器冷却,铸造速度较慢,熔体经过结晶器冷却形成的初凝壳很薄且不均匀,采用油膜铸造技术,油气极容易穿透初凝壳,导致跑火、拉漏等问题,生产工艺很难控制,因此铸锭直径通常不能超过300mm(12英寸),而且气膜铸造技术无法解决凝固组织细小均匀和成分偏析等问题。
发明内容
现有的气膜铸造方法不能制备大规格铝合金铸锭,存在铸锭表面质量差、内部组织粗大不均匀等问题,针对现有半连续铸造法制备大规格铝合金铸锭存在的不足,本发明提出了一种制备大规格高品质铝合金铸锭的新装置及方法,在气膜铸造过程中施加结晶器内中间均匀冷却和结晶器外电磁搅拌耦合熔体处理,在制备大规格优质铝合金铸锭时,同时解决铸锭表面质量和内部质量问题。
其主要设计思想是:针对现有的气膜铸造方法很难制备大规格(直径大于300mm)铝合金铸锭,结晶器采用分区给气结构设计,减小石墨环上给气压力差异,实现稳定控制气体压力,确保熔体和结晶器之间能够形成稳定连续的气膜;对半连续铸造过程中的合金熔体施加结晶器内均匀冷却和结晶器外电磁搅拌耦合处理,增加铸锭凝固过程中的冷却维度,强化凝固过程熔体的立体化对流,提高大体积合金熔体温度场和成分场的均匀性,在保证铸锭内部质量的同时,改善初期凝固的均匀性,增加初凝壳厚度,防止初凝壳和油气膜破裂,减少初期凝壳与结晶器内壁的接触压力,实现熔体在气体压力接触状态下凝固成形,制备出内外质量俱佳的大规格铝合金铸锭。
一种制备大规格高品质铝合金铸锭的新装置,主要由均匀冷却器、热顶、油气润滑结晶器、感应线圈和引锭组成;所述的热顶设置于油气润滑结晶器的上方,所述的感应线圈设置在油气润滑结晶器外侧,所述的均匀冷却器设置于油气润滑结晶器内,所述的引锭位于油气润滑结晶器下方。
所述的油气润滑结晶器包括结晶器本体和石墨环,石墨环安装在结晶器本体的上方,石墨环外壁设有气槽和油槽,气槽分为3~20段,每段气槽长度为100~500mm,每段单独设置进气通道,单独供气、单独控制;油槽与气槽分开,油槽设置在气槽上部,石墨环采用多孔石墨制备,气体和润滑油通过石墨环渗出结晶器。油气润滑结晶器采用分区给气结构设计,减小单一给气石墨环气槽内气量和气压的差异,达到稳定控制气体压力的目的。
所述的油气润滑结晶器采用双排喷水孔设计。所述的结晶器本体上设置上、下 两排喷水孔,上排喷水孔与结晶器壁夹角为15~30°,直径为1~5mm,下排喷水孔与结晶器壁夹角为0~25°且大于0°,保证冷却水能够喷射到铸锭上且不回溅,直径为2~8mm。双排喷水孔水量可以单独控制,上排喷水孔直径需小于等于下排喷水孔直径。
所述的感应线圈设置在结晶器外,磁轭(铁芯)采用可伸缩式设计,长度可变,伸缩范围为0~100mm,电磁感应线圈产生电磁场经磁轭导入结晶器内部熔体。电磁线圈可产生旋转电磁场、行波电磁场或复合电磁场。
所述均匀冷却器上部为绝热端,下部为冷却端,绝热端设置有搅拌叶片,在半连续铸造过程中,均匀冷却器通过热顶伸入到结晶器高度位置,均匀冷却器底部与结晶器平齐,均匀冷却器可以设置一个或多个,均匀冷却器可以转动,旋转速度为0~300r/min。
绝热端为圆筒形,外径为100~800mm,采用耐高温绝热陶瓷材料制成,具有绝热作用,保证热顶内的熔体不被冷却;冷却端采用导热材料制成,如石墨、铜、钼、钛及其复合材料,冷却端具有冷却效果;均匀冷却器冷却端具有螺旋形状,均匀冷却器转动时产生强制熔体向下流动的效果;搅拌叶片采用耐高温材料制成,如铜、钼、钛、陶瓷及其复合材料,搅拌叶片数为0~8,宽度为10~100mm,厚度为2~8mm,搅拌叶片随均匀冷却器转动,具有强制熔体向下流动的效果,使熔体不断地向下补充到液穴当中,起到动态连续均匀冷却的效果;均匀冷却器内部通入循环冷却介质,冷却介质到达冷却端,通过冷却端与熔体换热,冷却介质为空气、氮气、水、油等各种流体,冷却介质流量为0~2000L/min。
基于上述装置,本发明提出了一种制备大规格高品质铝合金铸锭的方法,在半连续铸造过程中,将经过精炼处理且稳定为液相线以上80~100℃的熔体浇入热顶内;石墨环外壁气槽和油槽通入空气和润滑油;控制上排喷水孔和下排喷水孔的流量;合金熔体经热顶、结晶器到达引锭上部,熔体液面升至要求高度,连铸开始,引锭缓慢下降,冷却水流量缓慢加大,待铸造过程进入稳定状态,施加均匀冷却和电磁搅拌处理,最终得到大规格高品质铝合金铸锭。
在半连续铸造过程中,所述的气槽中空气流量为500~5000mL/min,油槽采用脉冲式供油,供油量为60~100/s;上排喷水孔的流量为1~50L/min,下排喷水孔的流量为20~100L/min;铸造速度为20~100mm/min。均匀冷却处理的冷却强度为500~5000W/(m2·k),电磁搅拌处理的剪切速率为10~2000s-1
附图说明
图1是本发明制备高品质大规格铝合金铸锭装置的结构示意图。
图2是石墨环分区示意图。
图3是图1中结晶器局部E区的放大图。
图4是均匀冷却器示意图。
图5a和图5b分别是普通半连续铸造和本发明制备的Φ582mm规格7075铝合金铸锭表面外观照片。
图6a和图6b分别是普通半连续铸造和本发明制备的Φ582mm规格7075铝合金铸锭微观组织。
主要附图标记说明:
1   均匀冷却器                2   热顶
3   熔体                      4   油气润滑结晶器
5   磁轭                      6   线圈
7   石墨环                    8   喷水孔
9   铸锭                     10   引锭
11  油槽                     12   气槽
13  上排喷水孔               14   下排喷水孔
15  绝热端                   16   搅拌叶片
17  冷却端
具体实施方式
本发明可以根据以下实例实施,但不限于此,这些实施例只是为了举例说明本发明实施过程,而非以任何方式限制本发明的范围,在以下的实施例中,未详细描述的各种过程和方法是本领域中公知的常规方法。
如图1所示,本发明装置包括均匀冷却器1、热顶2、熔体3、油气润滑结晶器4、磁轭5、线圈6、石墨环7、喷水孔8、铸锭9、引锭10等。热顶2设置于油气润滑结晶器4的上方,线圈6和磁轭5设置在油气润滑结晶器4外,均匀冷却器1设置于油气润滑结晶器4内,引锭10位于油气润滑结晶器4下方。
油气润滑结晶器4包括结晶器本体和石墨环7,石墨环7安装在结晶器本体的上方,石墨环7外壁设有气槽12和油槽11,气槽12采用分段式设计,如图2所示,气槽12分为3~20段,每段气槽12长度为100~500mm,每段单独设置进气通道,单独供气、单独控制;油槽11与气槽12分开,油槽11设置在气槽12上部,石墨环7采用多孔石墨制备,气体和润滑油通过石墨环7渗出结晶器。
油气润滑结晶器4采用双排喷水孔设计,如图3所示;两排喷水孔单独控制水量,上排喷水孔13与油气润滑结晶器4内壁夹角为15~30°,直径为1~5mm,下 排喷水孔14与油气润滑结晶器4壁夹角为0~25°且大于0°,直径为2~8mm,上排喷水孔直径需小于等于下排喷水孔直径。
磁轭5采用可伸缩式设计。磁轭5长度可变,伸缩范围为0~100mm,电磁感应线圈6产生电磁场经磁轭5导入结晶器内部熔体。电磁线圈6可产生旋转电磁场、行波电磁场或复合电磁场。
在半连续铸造过程中,均匀冷却器1通过热顶2伸入到油气润滑结晶器4高度位置,均匀冷却器1可以设置一个或多个,均匀冷却器1可以转动,旋转速度为0~300r/min。如图4所示,均匀冷却器1由上部绝热端15和下部冷却端17组成,绝热端15设置搅拌叶片16;上部绝热端15为圆筒形,外径为100~800mm,使用耐高温绝热材料制成;冷却端17采用导热材料制成,如石墨、铜、钼、钛及其复合材料;均匀冷却器1的冷却端17具有螺旋形状,均匀冷却器1转动时产生强制熔体向下流动的效果;搅拌叶片数为0~8,叶片宽度为10~100mm,叶片厚度为2~8mm,搅拌叶片16采用耐高温材料制成,如铜、钼、钛、陶瓷及其复合材料,叶片随着均匀冷却器1转动,使用过程中,带动熔体向均匀冷却器1的冷却端17汇集,均匀冷却器1内通入循环冷却介质,冷却介质到达冷却端17,通过冷却端17与熔体换热,冷却介质为空气、氮气、水、油等各种流体,冷却介质流量为0~2000L/min,实现熔体连续动态均匀过冷,熔体经过均匀冷却器底部冷却,继续向下流动进入液穴糊状区,实现熔体的连续动态均匀冷却和强制补缩,最终制备出细晶均质大规格铸锭。
使用方法为:在半连续铸造过程中,整套装置预热至80~200℃,将经过精炼处理且稳定为液相线以上80~100℃的熔体浇入本装置中。在连铸过程中:石墨环7外壁气槽12和油槽11通入空气和润滑油,空气流量为500~5000mL/min,供油采用脉冲式,供油量为60~100/s;开启电磁线圈6,电流为10~200A,控制上排喷水孔13的流量为1~50L/min,下排喷水孔14的流量为20~100L/min;铸造速度为20~100mm/min。
合金熔体经热顶2、结晶器4到达引锭10上部,熔体液面升至要求高度,连铸开始,引锭10缓慢下降,冷却水流量缓慢加大,待铸造过程进入稳定状态,施加均匀冷却和电磁搅拌处理,均匀冷却处理的冷却强度为500~5000W/(m2·k),电磁搅拌处理的剪切速率为10~2000s-1,直到铸造过程结束。
采用本发明制备Φ582mm规格7075铝合金圆铸锭,要求表面光滑,内部组织细小均匀。具体实施方式如下:
装置结构示意图如图1所示,油气润滑结晶器4采用分区给气系统,石墨环7 外设有气槽12和油槽11,气槽12分为4段,每段气槽12长度为456mm,每段单独设置进气通道,单独供气、单独控制;油槽11与气槽12分开,油槽11设置在气槽12上部,石墨环7采用多孔石墨制备。上排喷水孔13与结晶器壁夹角为25°,直径为2mm,下排喷水孔14与结晶器壁夹角为10°,直径为5mm,双排喷水孔水量可以单独控制。
均匀冷却器1设置在铸造平台上,冷却器直径为300mm,冷却器、热顶和结晶器同心,均匀冷却器1底端与结晶器的底端平齐。均匀冷却器1绝热端15采用耐高温绝热陶瓷制成,直径为300mm,厚度为10mm,下部冷却端17直径为350mm,用石墨制成,叶片数为3,叶片宽度为50mm。均匀冷却器1转速为60r/min。
电磁线圈设置在油气润滑结晶器4的外周,电磁线圈产生旋转电磁场,对合金熔体实施剪切,磁轭长度为50mm。
在半连续铸造过程中,将经过精炼处理且稳定为液相线以上100℃的熔体浇入热顶内。石墨环7外壁气槽12和油槽11通入空气和润滑油,空气流量为1430mL/min,采用脉冲式供油,供油量为80/s;控制上排喷水孔13的流量为20L/min,下排喷水孔14的流量为30L/min;铸造速度为65mm/min。合金熔体通过热顶2到达结晶器,熔体液面升至要求高度,连铸开始,引锭10缓慢下降,冷却水流量缓慢加大,待铸造过程进入稳定状态,施加均匀冷却和电磁搅拌处理,均匀冷却处理的冷却强度为1210W/(m2·k),电磁搅拌处理的剪切速率为110s-1,直到铸造过程结束。
通过对比普通半连续铸造和本发明制备的Φ582mm规格7075铝合金圆铸锭表面质量和内部组织,发现采用普通半连续铸造制备的铸锭表面质量差、内部组织粗大,如图5a、图6a所示;采用本发明制备的铸锭表面光亮,内部组织细小均匀,平均晶粒尺寸为154μm,如图5b、图6b所示。
工业应用性
本发明的创新性及技术进步主要体现在:
1.本发明在半连续铸造过程中,将油气润滑结晶器分区给气结构设计与施加结晶器中间均匀冷却和结晶器外电磁搅拌处理巧妙结合,通过控制均匀冷却器冷却效果、搅拌叶片结构及转速、电磁搅拌剪切强度三者间的相互耦合作用,可使整个熔体产生强制均匀冷却和立体化对流,在提高冷却强度的基础上,显著改善温度场和成分场的均匀性,不但从根本上解决普通半连续铸造方法制备大规格铝合金铸锭存在组织粗大不均匀、宏观偏析、开裂等问题,而且使得初期凝壳的均匀性和凝固厚度也得到大幅度增加,有效地减少初期凝壳与结晶器内壁的接触压力,实现熔体 在气体压力接触状态下凝固成形,显著提高铸锭表面质量。
2.对大规格铝合金油气润滑洁净器采用分区给气结构设计,可减小单一给气石墨环气槽内气量和气压的差异,能够稳定控制气体压力;采用脉冲式供油,使熔体和结晶器之间能够形成稳定连续的气膜,达到稳定润滑的效果,解决了大规格铝合金铸锭(直径大于300mm)不能采用气膜铸造的技术问题,铸锭表面光滑。
3.本发明制备的大规格铸锭晶粒细小,成分均匀,表面光滑,铸造速度快,显著降低后续均质化和加工成本,提高了生产效率和成材率。整套方法简单可行,实施效果好,可实现工业化生产。
本发明将分区给气结晶器与均匀冷却器和电磁搅拌器巧妙结合,分区给气结晶器设计能够稳定控制气体压力,均匀冷却器增加铸锭凝固过程中的冷却维度,电磁搅拌器强化凝固过程熔体的立体化对流,提高大体积合金熔体温度场和成分场的均匀性,三者的有效耦合能实现熔体在气体压力接触状态下强制均匀凝固成形,使熔体和结晶器之间能够形成稳定连续的气膜,不但铸锭表面光滑,而且内部组织细小均匀。采用本发明制备的大规格铝合金高品质铸锭生产效率高、易与大工业生产相结合,在航空航天、轨道交通、船舶等制造领域具有广阔的工业应用前景。

Claims (24)

  1. 一种制备大规格高品质铝合金铸锭的装置,其特征在于:该装置主要由均匀冷却器、热顶、油气润滑结晶器、感应线圈和引锭组成;所述的热顶设置于油气润滑结晶器的上方,所述的感应线圈设置在油气润滑结晶器外侧,所述的均匀冷却器设置于油气润滑结晶器内,所述的引锭位于油气润滑结晶器下方。
  2. 根据权利要求1所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的油气润滑结晶器包括结晶器本体和石墨环,所述的石墨环安装在结晶器本体的上方,所述的石墨环外壁设有气槽和油槽,所述的油槽与气槽分开,所述的油槽设置在气槽上部。
  3. 根据权利要求2所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的气槽分为3~20段,每段单独供气、单独控制。
  4. 根据权利要求3所述的制备大规格高品质铝合金铸锭的装置,其特征在于:每段气槽长度为100~500mm。
  5. 根据权利要求2所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的石墨环采用多孔石墨制成。
  6. 根据权利要求2所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的结晶器本体上设置上、下两排喷水孔,上排喷水孔与结晶器壁夹角为15~30°,直径为1~5mm,下排喷水孔与结晶器壁夹角为0~25°且大于0°,直径为2~8mm。
  7. 根据权利要求6所述的制备大规格高品质铝合金铸锭的装置,其特征在于:上、下两排喷水孔水量单独控制,上排喷水孔直径小于等于下排喷水孔直径。
  8. 根据权利要求1所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的感应线圈的磁轭采用可伸缩式设计,伸缩范围为0~100mm,感应线圈产生电磁场经磁轭导入结晶器内部熔体。
  9. 根据权利要求8所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的感应线圈产生旋转电磁场、行波电磁场或复合电磁场。
  10. 根据权利要求1所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述均匀冷却器上部为绝热端,下部为冷却端,所述的绝热端设置有搅拌叶片。
  11. 根据权利要求10所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的绝热端为圆筒形,采用耐高温绝热陶瓷材料制成。
  12. 根据权利要求11所述的制备大规格高品质铝合金铸锭的装置,其特征在于: 所述的绝热端外径为100~800mm。
  13. 根据权利要求10所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的冷却端采用导热材料制成。
  14. 根据权利要求13所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的冷却端具有螺旋形状,采用石墨、铜、钼、钛或其复合材料制成。
  15. 根据权利要求10所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的搅拌叶片采用耐高温材料制成,搅拌叶片数为0~8。
  16. 根据权利要求15所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的搅拌叶片采用铜、钼、钛、陶瓷或其复合材料制成,搅拌叶片宽度为10~100mm,厚度为2~8mm。
  17. 根据权利要求1所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的均匀冷却器为一个或多个,设置到结晶器高度位置,旋转速度为0~300r/min。
  18. 根据权利要求17所述的制备大规格高品质铝合金铸锭的装置,其特征在于:所述的均匀冷却器采用的冷却介质为空气、氮气、水或油,冷却介质流量为0~2000L/min。
  19. 一种制备大规格高品质铝合金铸锭的方法,包括如下步骤:在半连续铸造过程中,将经过精炼处理且稳定为液相线以上80~100℃的熔体浇入热顶内;石墨环外壁气槽和油槽通入空气和润滑油;控制上排喷水孔和下排喷水孔的流量;合金熔体经热顶、结晶器到达引锭上部,熔体液面升至要求高度,连铸开始,引锭缓慢下降,冷却水流量缓慢加大,待铸造过程进入稳定状态,施加均匀冷却处理和电磁搅拌处理,最终得到大规格高品质铝合金铸锭。
  20. 根据权利要求19所述的制备大规格高品质铝合金铸锭的方法,其特征在于:所述的气槽中空气流量为500~5000mL/min,所述的油槽采用脉冲式供油,供油量为60~100/s。
  21. 根据权利要求19所述的制备大规格高品质铝合金铸锭的方法,其特征在于:所述的上排喷水孔的流量为1~50L/min,下排喷水孔的流量为20~100L/min。
  22. 根据权利要求19所述的制备大规格高品质铝合金铸锭的方法,其特征在于:连铸过程中,铸造速度为20~100mm/min。
  23. 根据权利要求19所述的制备大规格高品质铝合金铸锭的方法,其特征在于:所述的均匀冷却处理的冷却强度为500~5000W/(m2·k)。
  24. 根据权利要求19所述的制备大规格高品质铝合金铸锭的方法,其特征在于:所述的电磁搅拌处理的剪切速率为10~2000s-1
PCT/CN2016/085826 2015-12-30 2016-06-15 一种制备大规格高品质铝合金铸锭的装置及方法 WO2017113630A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/067,306 US20190009328A1 (en) 2015-12-30 2016-06-15 Device and method for preparing large-sized high-quality aluminium alloy ingot

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201521131860.5 2015-12-30
CN201511020092.0A CN106925735B (zh) 2015-12-30 2015-12-30 一种制备大规格高品质铝合金铸锭的装置及方法
CN201521131860.5U CN205236991U (zh) 2015-12-30 2015-12-30 一种制备大规格高品质铝合金铸锭的装置
CN201511020092.0 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017113630A1 true WO2017113630A1 (zh) 2017-07-06

Family

ID=59224516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085826 WO2017113630A1 (zh) 2015-12-30 2016-06-15 一种制备大规格高品质铝合金铸锭的装置及方法

Country Status (2)

Country Link
US (1) US20190009328A1 (zh)
WO (1) WO2017113630A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115780752B (zh) * 2023-02-08 2023-04-21 福建省永春双恒铝材有限公司 适于铝型材生产的铝棒制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960163A (en) * 1988-11-21 1990-10-02 Aluminum Company Of America Fine grain casting by mechanical stirring
CN1621179A (zh) * 2004-12-16 2005-06-01 上海交通大学 铝合金气膜连续铸造结晶器
CN1857828A (zh) * 2006-05-19 2006-11-08 苏州有色金属加工研究院 铝及铝合金半连铸连续润滑结晶器
CN101332493A (zh) * 2008-07-31 2008-12-31 东北大学 一种静磁场作用下的气膜快速连铸装置及方法
CN203635884U (zh) * 2013-12-27 2014-06-11 北京有色金属研究总院 一种制备大规格超高强铝合金连续铸锭的装置
CN104741552A (zh) * 2013-12-27 2015-07-01 北京有色金属研究总院 一种制备大规格超高强铝合金连续铸锭的装置及方法
CN204685985U (zh) * 2014-12-26 2015-10-07 北京有色金属研究总院 一种用于电磁搅拌的气滑结晶器装置
CN205236987U (zh) * 2015-12-30 2016-05-18 北京有色金属研究总院 一种大规格细晶均质铝合金铸锭的制备装置
CN205236991U (zh) * 2015-12-30 2016-05-18 北京有色金属研究总院 一种制备大规格高品质铝合金铸锭的装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4960163A (en) * 1988-11-21 1990-10-02 Aluminum Company Of America Fine grain casting by mechanical stirring
CN1621179A (zh) * 2004-12-16 2005-06-01 上海交通大学 铝合金气膜连续铸造结晶器
CN1857828A (zh) * 2006-05-19 2006-11-08 苏州有色金属加工研究院 铝及铝合金半连铸连续润滑结晶器
CN101332493A (zh) * 2008-07-31 2008-12-31 东北大学 一种静磁场作用下的气膜快速连铸装置及方法
CN203635884U (zh) * 2013-12-27 2014-06-11 北京有色金属研究总院 一种制备大规格超高强铝合金连续铸锭的装置
CN104741552A (zh) * 2013-12-27 2015-07-01 北京有色金属研究总院 一种制备大规格超高强铝合金连续铸锭的装置及方法
CN204685985U (zh) * 2014-12-26 2015-10-07 北京有色金属研究总院 一种用于电磁搅拌的气滑结晶器装置
CN205236987U (zh) * 2015-12-30 2016-05-18 北京有色金属研究总院 一种大规格细晶均质铝合金铸锭的制备装置
CN205236991U (zh) * 2015-12-30 2016-05-18 北京有色金属研究总院 一种制备大规格高品质铝合金铸锭的装置

Also Published As

Publication number Publication date
US20190009328A1 (en) 2019-01-10

Similar Documents

Publication Publication Date Title
CN106925735B (zh) 一种制备大规格高品质铝合金铸锭的装置及方法
CN106623832B (zh) 一种超大规格铝合金铸锭的制备装置及方法
CN101745627A (zh) 多层异种铝合金同步复合铸造装置
CN203635889U (zh) 一种连续制备大尺寸高品质铝合金铸锭的装置
CN103170588B (zh) 一种温型铸造方法
CN102672112A (zh) 一种电机壳体的铸造方法
CN102151794A (zh) 一种活塞重力铸造方法及装置
CN205236991U (zh) 一种制备大规格高品质铝合金铸锭的装置
CN103978170B (zh) 铝合金近终形铸锭用半连续铸造结晶器
CN104722730A (zh) 一种连续制备大尺寸高品质铝合金铸锭的装置和方法
CN106925730A (zh) 一种大规格细晶均质铝合金铸锭的制备装置及方法
CN113333691B (zh) 一种用于大高径比高温合金铸锭的铸模及应用
WO2017113630A1 (zh) 一种制备大规格高品质铝合金铸锭的装置及方法
CN104550808B (zh) 一种低内部缺陷钢锭的生产方法及其装置
CN204685985U (zh) 一种用于电磁搅拌的气滑结晶器装置
CN110405170B (zh) 一种低一冷的电磁半连续铸造装置及方法
CN103014366A (zh) 一种大型电渣重熔钢锭强化冷却装置及方法
CN204385267U (zh) 一种电磁搅拌高剪切熔体处理及自动净化的装置
CN105772664A (zh) 一种用于电磁搅拌的气滑结晶器装置及其应用方法
CN105149529A (zh) 一种温控型金属铸造方法
CN102179494B (zh) 一种铝合金复合铸锭的连铸方法及其装置
CN205236987U (zh) 一种大规格细晶均质铝合金铸锭的制备装置
CN206253610U (zh) 一种制备超大规格铝合金铸锭用熔体处理器
US20210154731A1 (en) Method for Forming Battery Bracket by Semi-Solid Die Casting
CN204975244U (zh) 双金属复层圆坯电磁连铸设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880438

Country of ref document: EP

Kind code of ref document: A1