WO2017113217A1 - 一种小区合并拆分的方法和装置 - Google Patents

一种小区合并拆分的方法和装置 Download PDF

Info

Publication number
WO2017113217A1
WO2017113217A1 PCT/CN2015/099938 CN2015099938W WO2017113217A1 WO 2017113217 A1 WO2017113217 A1 WO 2017113217A1 CN 2015099938 W CN2015099938 W CN 2015099938W WO 2017113217 A1 WO2017113217 A1 WO 2017113217A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
radio frequency
frequency module
interference
sfn
Prior art date
Application number
PCT/CN2015/099938
Other languages
English (en)
French (fr)
Inventor
代建设
李松涛
黄黎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/099938 priority Critical patent/WO2017113217A1/zh
Priority to CN201580085560.4A priority patent/CN108476409A/zh
Publication of WO2017113217A1 publication Critical patent/WO2017113217A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present invention relates to the field of wireless communications, and more particularly to a method and apparatus for cell merge splitting.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • 3GPP 3rd Generation Partnership Project
  • the LTE system includes evolution.
  • EPC Evolved Packet Core
  • eNB Evolved Node B
  • co-frequency networking is an important means to improve its spectrum utilization.
  • a strict intra-frequency networking refers to a networking mode with a frequency reuse factor of 1, which can maximize spectrum utilization efficiency.
  • the strict intra-frequency networking mode will cause serious interference to the user equipment (UE) of the cell, affecting the user experience and system throughput.
  • UE user equipment
  • a cell merging technology is introduced, that is, a technology of combining multiple cells that can work independently into one cell.
  • the cell merging technology can reduce the interference received by the UE in the network and improve the user experience. However, after multiple cells are merged into one cell, the physical resource block (PRB) can be reduced. Since the services in the actual network are dynamically changed, how to dynamically perform cell merging or how to dynamically split the merged cells to adapt to real-time changes in services and ensure system throughput requires analysis and research.
  • PRB physical resource block
  • the embodiments of the present invention provide a method and a device for cell splitting, which can adapt to dynamic changes of services in a network, thereby improving user experience and improving system throughput.
  • an embodiment of the present invention provides a method for cell splitting, where the method includes: acquiring a cell load of a SFN cell of a single frequency network, where the SFN cell is a combination of a first cell and a second cell. Forming;
  • the second cell is from the Split in the SFN cell.
  • the acquiring the interference between the first cell and the second cell includes:
  • the acquiring the interference between the first cell and the second cell includes:
  • the interference between the first cell and the second cell is greater than an interference threshold, and includes:
  • the ratio exceeds the interference ratio threshold.
  • the signal strength includes: reference signal received power or signal to interference and noise ratio.
  • the The second cell is merged, including:
  • the first radio frequency module is used to schedule the UE of the first cell in all subframes
  • only the second radio frequency module is used to schedule the UE of the reconstructed second cell in all subframes.
  • an embodiment of the present invention provides an apparatus, where the apparatus includes:
  • An acquiring unit configured to acquire a cell load of a SFN cell of a single frequency network, where the SFN cell is formed by combining the first cell and the second cell;
  • a processing unit configured to determine whether a cell load of the SFN cell is greater than a high load threshold
  • the acquiring unit is further configured to: if the processing unit determines that a cell load of the SFN cell is greater than the high load threshold, acquire interference between the first cell and the second cell;
  • the processing unit is further configured to: if the interference between the first cell and the second cell is less than a split interference threshold, split the second cell from the SFN cell.
  • the device further includes a transceiver unit, configured to perform information interaction between the device and the user equipment UE;
  • the obtaining unit is specifically configured to:
  • the device further includes a transceiver unit, configured to perform information interaction between the device and the user equipment UE;
  • the obtaining unit is specifically configured to:
  • the interference between the first cell and the second cell is greater than an interference threshold, and includes:
  • the ratio exceeds the interference ratio threshold.
  • the signal strength includes: reference signal received power or signal to interference and noise ratio .
  • the processing unit is specifically configured to:
  • the first radio frequency module is used to schedule the UE of the first cell in all subframes
  • only the second radio frequency module is used to schedule the UE of the reconstructed second cell in all subframes.
  • an embodiment of the present invention provides a method for cell splitting, where the method includes: reconstructing the second cell as a common cell;
  • the first radio frequency module is used to schedule the UE of the first cell in all subframes
  • only the second radio frequency module is used to schedule the UE of the reconstructed second cell in all subframes.
  • the first radio frequency module and the second radio frequency module are used to schedule the UE of the SFN cell, and the second The radio module schedules the UE of the reconstructed second cell, including:
  • an embodiment of the present invention provides an apparatus, where the apparatus includes: a reconstruction unit, configured to reconstruct the second cell as a normal cell; and a scheduling unit that uses the first radio frequency module and the first time in a molecular frame manner
  • the second radio module is configured to schedule the UE of the SFN cell, and the second radio module is used to schedule the UE of the reestablished second cell, where the first radio frequency module is a radio frequency module of the first cell, and the second radio frequency
  • the module is a radio frequency module of the second cell;
  • a triggering unit configured to trigger a UE in the coverage of the second radio frequency module in the SFN cell to switch to the reconstructed second cell
  • the scheduling unit is further configured to: after the handover is completed, use only the first radio frequency module to schedule the UE of the first cell in all subframes, and only use the second radio frequency module to schedule the subframe in all subframes. Reestablished UE of the second cell.
  • the scheduling unit is configured to use, by using the first radio frequency module and the second radio frequency module, to schedule, in an odd subframe, the UE of the SFN cell,
  • the second radio frequency module schedules the UE of the reconstructed second cell in an even subframe.
  • an embodiment of the present invention provides a system for cell splitting, where the system includes a centralized control device and a base station;
  • the centralized control device is configured to acquire a cell load of the SFN cell, where the SFN cell is formed by combining the first cell and the second cell; if the cell load of the SFN cell is greater than a high load threshold, acquiring the location Determining interference between the first cell and the second cell; if the interference between the first cell and the second cell is less than a split interference threshold, determining to split the second cell from the SFN cell And transmitting, to the base station, an instruction to split the second cell from the SFN cell;
  • the base station is configured to acquire an instruction that is sent by the central control device to split the second cell from the SFN cell, and split the second cell from the SFN cell.
  • the embodiment of the invention provides a method and a device for cell splitting.
  • the cell splitting is performed, which can adapt to the real-time change of the service in the actual network, and improve the accuracy of the cell splitting. Degree and efficiency, improve the user experience, improve system throughput, and further ensure the continuity of UE services in the cell splitting process.
  • the embodiments of the present invention provide a method and device for cell merging, which can adapt to dynamic changes of services in a network, thereby improving user experience and improving system throughput.
  • the embodiment of the present invention provides a method for cell merging, by acquiring a cell load of a first cell, acquiring a cell load of a second cell, and interference between the first cell and the second cell;
  • the cell load of the first cell is smaller than the first load threshold
  • the interference between the first cell and the second cell is greater than the interference threshold
  • the cell load of the first cell and the cell load of the second cell When the sum is smaller than the second load threshold, the first cell and the second cell are combined, and the merged first cell and the second cell use the same PCI.
  • the absolute value of the difference between the signal strength of the UE to the first cell and the signal strength of the UE to the second cell may be obtained, and the absolute value of the difference is used as the first cell and the first Interference between two cells.
  • the ratio of the difference between the signal strength of the UE to the first cell and the signal strength of the UE to the second cell is greater than the interference threshold, and whether the ratio exceeds the interference threshold is obtained. Whether the interference between the first cell and the second cell is greater than an interference threshold.
  • the signal strength includes: a reference signal received power or a signal interference noise ratio.
  • the UE of the first cell scheduling, by using the first radio frequency module and the second radio frequency module, the UE of the first cell, by using the first The radio frequency module and the second radio frequency module schedule the UE of the second cell, the first radio frequency module is a radio frequency module of the first cell, and the second radio frequency module is a radio frequency module of the second cell;
  • the UE that triggers the second cell is handed over to the first cell; after the handover is completed, the second cell is deactivated; and the UE of the first cell is scheduled in all subframes by using the first radio frequency module and the second radio frequency module .
  • an embodiment of the present invention provides an apparatus, where the apparatus includes:
  • An acquiring unit configured to acquire a cell load of the first cell and acquire a cell load of the second cell, and is further configured to acquire interference between the first cell and the second cell, where the first cell uses the first physical cell Identifying the PCI, the second cell using the second PCI;
  • a processing unit configured to: if a cell load of the first cell is less than a first load threshold, if interference between the first cell and the second cell is greater than an interference threshold, and a cell load of the first cell The sum of the cell loads of the second cell is smaller than the second load threshold, and the first cell is merged with the second cell, where the merged first cell and the second cell use the same PCI .
  • the device further includes a transceiver unit, configured to exchange information between the device and the user equipment UE;
  • the obtaining unit is specifically configured to:
  • the device further includes a transceiver unit, configured to exchange information between the device and the user equipment UE;
  • the obtaining unit is specifically configured to:
  • the ratio of the absolute value of the difference between the signal strength of the multiple UEs of the UE to the first cell and the signal strength of the second cell is greater than the interference threshold, whether the ratio exceeds the interference threshold Whether the interference between the first cell and the second cell is greater than an interference threshold.
  • processing unit is specifically configured to:
  • the first radio frequency module is a radio frequency module of the first cell
  • the second radio frequency module is a radio frequency module of the second cell
  • the second cell is deactivated
  • the UE of the first cell is scheduled in all subframes by using the first radio frequency module and the second radio frequency module.
  • an embodiment of the present invention provides a system for cell merging, where the system includes a centralized control device and a base station;
  • the centralized control device is configured to acquire a cell load of the first cell and acquire a cell load of the second cell, where the first cell uses the first physical cell to identify the PCI, and the second cell uses the second PCI;
  • the cell load of the first cell is smaller than the first load threshold, if the interference between the first cell and the second cell is greater than an interference threshold, and the cell load of the first cell is related to the second cell And determining, by combining the first load and the second cell
  • the base station is configured to acquire an instruction for combining the first cell and the second cell that is sent by the centralized control device, and perform a combining process on the first cell and the second cell.
  • the embodiment of the invention provides a method and a device for cell merging, which performs cell merging when the cell load of the cell and the interference between the cells meet the condition, can adapt to real-time changes of services in the actual network, and improve the accuracy and efficiency of cell merging.
  • the user experience is improved, the system throughput is improved, and the continuity of the UE service is further ensured in the cell merging process.
  • FIG. 1 is a schematic diagram of a wireless communication network according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of cell merge splitting according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a cell merging method according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a cell splitting method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a different frequency networking scenario according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a cell merge in a same frequency group network scenario according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of splitting a scene of a same frequency network scene according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of an apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a wireless communication network 100 according to an embodiment of the present invention.
  • the wireless communication network is only an example, and the scope of application of the embodiments of the present invention is not limited thereto.
  • the wireless communication network shown in FIG. 1 may be an LTE network, an enhanced LTE (LTE-Advanced, LTE-A) network, or a future wireless network.
  • LTE-A enhanced LTE
  • LTE-A enhanced LTE
  • the wireless communication network includes a plurality of network elements, such as a base station 101 and a core network 102, for supporting a plurality of user equipments 103 for communication.
  • the base station 101 is an eNB in LTE.
  • a base station can manage one or more cells 104, each of which can serve multiple UEs, and the UE selects one cell to initiate network access and performs voice and/or data services with the base station 101.
  • the base station 101 and the core network 102 perform information exchange through the S1 interface, and the plurality of base stations 101 perform information interaction through the X2 interface.
  • the user equipment 103 may also be referred to as a mobile terminal (MT), a mobile station (Mobile Station, MS), or the like.
  • MT mobile terminal
  • MS Mobile Station
  • FIG. 2 is a schematic diagram of cell merge splitting according to an embodiment of the present invention. It should be understood that the scope of application of the embodiments of the present invention is not limited thereto.
  • each merged cell uses the same Physical Cell Identifier (PCI).
  • PCI Physical Cell Identifier
  • a partial edge region of the three cells before the merge becomes a central region of the merged cell.
  • a merged cell may be referred to as a single frequency network (SFN) cell
  • a merged cell may be referred to as a physical cell
  • a non-SFN cell may be referred to as a normal cell.
  • the merged SFN cells need to be split in time to avoid affecting system throughput.
  • the merged SFN cell (Cell0) is split into Cell1, Cell2, and Cell3 before the merge according to the change of services in the network.
  • FIG. 3 is a schematic flowchart of a cell merging method according to an embodiment of the present invention.
  • the cell merging method can adapt to real-time changes of services in the network.
  • the method includes:
  • step S304 if the cell load of the first cell is less than the first load threshold, step S304 is performed;
  • step S305 is performed;
  • the cell in which the first cell and the second cell are combined may be referred to as an SFN cell.
  • the first cell uses the first PCI
  • the second cell uses the second PCI
  • the merged first cell and the second cell use the same PCI.
  • cell merging is not performed on the first cell.
  • step S304 If the interference between the first cell and the second cell and the sum of the cell load of the first cell and the cell load of the second cell do not satisfy the condition of step S304, cell merging is not performed on the first cell.
  • the cell load of the first cell is less than the first load threshold
  • the cell load of the second cell and the interference between the first cell and the second cell are acquired, and then S304 is performed.
  • the cell merging method provided by the embodiment of the present invention is also applicable to the merging of the first cell to the SFN cell, and the second cell is the cell merging of the common cell, that is, by using the cell merging method, the SFN cell and the third cell may also be performed. small District merger.
  • the combined SFN cell can be split according to the change of the service.
  • FIG. 4 is a schematic flowchart diagram of a cell splitting method according to an embodiment of the present invention.
  • the method includes:
  • S401 Acquire a cell load of an SFN cell, where the SFN cell is formed by combining a first cell and a second cell.
  • step S403 if the cell load of the SFN cell is greater than the high load threshold, step S403 is performed;
  • step S405 if the interference between the first cell and the second cell is less than the split interference threshold, step S405 is performed;
  • the SFN cell is not split.
  • the second cell is not split.
  • step S403 may also be performed before step S402.
  • the cell splitting method provided by the embodiment of the present invention is also applicable to the first cell being an SFN cell, that is, when the first cell is an SFN cell, according to the foregoing splitting method, when the foregoing conditions are met, the method continues.
  • the first cell is split.
  • the cell merging and splitting method provided by the embodiment of the present invention may be applied to a base station, such as an eNB of an LTE system, or may be applied to a network management device or a centralized control device, where the centralized control device may perform multiple base stations. Centralized management for coordination between multiple base stations.
  • a base station such as an eNB of an LTE system
  • the centralized control device may perform multiple base stations. Centralized management for coordination between multiple base stations.
  • the network management device or the centralized control device determines to combine the first cell and the second cell according to the foregoing method, the first cell and the second cell are combined and sent to the base station.
  • the base station After the base station acquires an instruction to merge the first cell and the second cell, the base station performs a combining process on the first cell and the second cell.
  • the base station After the network management device or the centralized control device determines to split the second cell from the SFN cell according to the foregoing method, the base station sends an instruction to split the second cell from the SFN cell, and after the base station acquires the instruction, the base station sends the second cell from the second cell.
  • the SFN community is split out.
  • the cell load is a PRB utilization rate of the cell.
  • the interference between the first cell and the second cell is an absolute value of a difference between signal strengths of the same UE to the two cells. If the absolute value of the difference between the signal strength of the UE to the first cell and the signal strength of the UE to the second cell is greater than the interference threshold, the interference between the first cell and the second cell is large. Otherwise, the interference between the first cell and the second cell is small.
  • the absolute value of the difference between the signal strength of the multiple UEs to the first cell and the signal strength of the UE to the second cell is calculated, if the signal strength of the UE to the first cell and the UE
  • the absolute value of the difference between the signal strengths of the second cell and the interference threshold is greater than the interference threshold, the interference between the first cell and the second cell is large. Otherwise, the interference between the first cell and the second cell is small.
  • the signal strength may be Reference Signal Received Power (RSRP), or Signal to Interference plus Noise Ratio (SINR), or other parameters that characterize the signal strength.
  • the interference between the first cell and the second cell is an interference coefficient between the first cell and the second cell. If the interference coefficient between the first cell and the second cell is greater than the interference threshold, the interference between the first cell and the second cell is large. Otherwise, the interference between the first cell and the second cell is small.
  • the signals of the first cell and the second cell may be collected, and the interference coefficient between the first cell and the second cell is obtained according to the collected signal.
  • the interference between different cells is consistent with the interference between the first cell and the second cell, and is not described again.
  • the first load threshold, the second load threshold, the interference threshold, and the interference ratio threshold of the cell merging method are preset values of the system, and the high load threshold and the split interference threshold of the cell splitting method are also preset values of the system.
  • Different interference thresholds can be set according to different interference conditions, and the interference between cells can be a statistic within a certain period of time.
  • the cell merging and splitting method provided by the embodiment of the present invention is also applicable to the merging of two or more cells.
  • N For example, for N cells: Cell1, Cell2...CellN, N is greater than 2, and the cell load of the N cells is obtained. If the cell load of Cell1 is less than the first load threshold, the interference between Cell1 and Cell2, and between Cell1 and CellN are respectively acquired. coefficient. Preferably, Cell1 is the lowest cell load in the N cells and the cell load of Cell1 is less than the first load threshold. If the interference coefficient of Cell1 and Cell2 is greater than the interference threshold, and the sum of the cell load of Cell1 and the cell load of Cell2 is less than the second load threshold, it is determined that Cell1 and Cell2 perform cell merging, and the merged cell is the first SFN cell.
  • the interference coefficients of Cell1 and Cell2 are the largest.
  • the cells may be merged into the second SFN cell again according to the above method under the above conditions with other cells (for example, Cell3).
  • the second SFN cell needs to be split.
  • the cell load of the second SFN cell is greater than the high load threshold, the interference between Cell1 and Cell2, the interference between Cell1 and Cell3, the interference between Cell1 and Cell3 is less than the interference between Cell1 and Cell2, and the interference between Cell1 and Cell3 is obtained.
  • Cell3 is split from the second SFN cell. That is, the cell with the least interference can be selected, and the above is satisfied.
  • the threshold is split, the cell is split from the SFN cell. After the second SFN cell is split, if the first SFN cell needs to be split, the splitting method may be performed.
  • the foregoing embodiments of the present invention provide a cell merging and splitting method, and perform cell merging and splitting when the cell load of the cell and the interference between cells meet the condition, and can adapt to the service in the actual network.
  • the real-time change improves the accuracy and efficiency of cell consolidation and splitting, improves the user experience, and improves system throughput.
  • the user service continuity can be further improved by ensuring continuity of the UE service, and similarly, for the cell demolition Points can also guarantee the continuity of the UE service.
  • the different frequency networking may cover the same area at the same time by using more than two frequency bands.
  • FIG. 5 is a schematic diagram of a different frequency networking scenario according to an embodiment of the present invention.
  • the frequency band used by the first cell and the second cell is the first frequency band
  • the frequency band used by the third cell and the fourth cell is the second frequency band
  • the third cell is the same frequency and the same coverage cell of the first cell.
  • the fourth cell is an inter-frequency and coverage cell of the second cell.
  • the UE of the second cell After determining that the first cell and the second cell are combined, the UE of the second cell performs inter-frequency handover and switches to the fourth cell.
  • the first cell is merged with the second cell.
  • the second cell adopts the same PCI as the first cell, and the merged cell is an SFN cell.
  • the base station triggers the UE of the second cell to perform the inter-frequency handover, and after the UE of the second cell completes the inter-frequency handover, deactivates the second cell, and then performs the second cell according to the configuration information of the first cell.
  • Signal transmission completes the combination of the first cell and the second cell.
  • the combined SFN cell simultaneously uses the first radio frequency module of the first cell and the second radio frequency module of the second cell to schedule the UE of the SFN cell.
  • the UE of the second cell (or the UE of the second radio module coverage range) is switched by the inter-frequency switch, and the device is switched to
  • the inter-frequency of the second cell is the same as the coverage cell, that is, the fourth cell.
  • the second cell included in the SFN cell is deleted, and the second cell is reconstructed as a normal cell.
  • the UE that is not in the overlapping area of the first cell and the second cell may perform inter-frequency handover, and the pair is in the first The UE of the cell and the overlapping area of the second cell switches to the first cell.
  • the same frequency networking is to continuously cover an area with one frequency band.
  • the first cell and the second cell use the same frequency band.
  • FIG. 6 is a schematic diagram of a cell merge in a same frequency network scene according to an embodiment of the present invention.
  • each radio frame corresponds to 10 milliseconds in the time domain, including 10 subframes, each subframe containing two slots.
  • the first cell schedules UEs of the first cell using 10 subframes
  • the second cell schedules UEs of the second cell by using 10 subframes.
  • the first cell schedules the UE of the first cell by using the first radio module
  • the second cell uses the 10th subframe to schedule the UE of the second cell by using the second radio module.
  • the UE of the first cell is scheduled by using the first radio frequency module and the second radio frequency module
  • the second cell is scheduled by using the first radio frequency module and the second radio frequency module.
  • the first radio module is the radio frequency module of the first cell
  • the second radio frequency module is the radio frequency module of the second cell.
  • the first cell schedules the UE of the first cell by using an odd subframe
  • the second cell schedules the UE of the second cell by using an even subframe. More specifically, the UE of the first cell is scheduled in the odd-numbered subframe by using the first radio frequency module and the second radio frequency module, and the UE of the second cell is scheduled in the even-numbered subframe by using the first radio frequency module and the second radio frequency module.
  • the first cell may also use an even subframe
  • the second cell uses the odd subframe to perform UE scheduling
  • the first cell and the second cell use other time division manner to perform UE scheduling.
  • each radio frequency module transmits signals of two cells, and the first radio frequency module and the second radio frequency module simultaneously serve one cell.
  • the first cell and the second cell can be normally switched (that is, the first cell after the configuration and the second cell after the configuration can be normally switched), so as to ensure the user's service experience to the greatest extent, and Since the signals of the two cells are separately transmitted in the form of time division, the signals between the two cells are prevented from interacting with each other.
  • the UE of the second cell is handed over to the first cell.
  • the second cell is deactivated, and the first cell is used to schedule the UE by using all subframes to complete cell merging.
  • the first cell ie, the merged SFN cell
  • the radio module included in the new SFN cell is the radio module of all the merging cells.
  • FIG. 7 is a schematic diagram of splitting a cell in a same frequency network scenario according to an embodiment of the present invention.
  • the SFN cell obtained by combining the first cell and the second cell uses the first radio frequency module of the first cell and the second radio frequency module of the second cell to schedule the UE of the SFN cell in all subframes. .
  • the second cell After determining to split the second cell from the SFN cell, the second cell is reconstructed as a normal cell.
  • the UE of the SFN cell is scheduled by using the first radio frequency module and the second radio frequency module, and the UE of the reconstructed second cell is scheduled by using the second radio frequency module ( Since it is the reconstructed second cell, there is no UE in the cell, but it is a working cell).
  • the SFN cell schedules the UE of the SFN cell by using an odd subframe, and the reconstructed second cell uses an even subframe for scheduling.
  • the first radio frequency module and the second radio frequency module are used to schedule the UE of the SFN cell in the odd subframe, and the second radio frequency module is used to schedule the UE of the second cell in the even subframe.
  • the SFN cell may also use an even subframe, and the reconstructed second cell performs UE scheduling by using an odd subframe, or the SFN cell and the reconstructed second cell perform UE scheduling by using other time division manners.
  • the normal handover can be performed between the SFN cell and the second cell after the above setting (that is, the SFN cell after the configuration and the second cell to be reconstructed can be normally switched), so that the service experience of the user can be ensured to the greatest extent, and
  • the signals of the two cells are respectively transmitted in the form of time division, which avoids the mutual influence of signals between the two cells.
  • the UE in the SFN cell that is in the coverage of the second radio module is triggered to switch to the reconstructed second cell.
  • the second radio frequency module is no longer used for the SFN cell, that is, only the first radio frequency module is used to schedule the UE of the first cell in all subframes, and only the second radio frequency module is used to schedule the reconstruction in all subframes.
  • the UE of the second cell completes cell splitting.
  • the foregoing cell splitting method for ensuring the continuity of the UE service may also exist as an independent embodiment.
  • the specific method of the above switching can refer to the prior art switching method.
  • the above cell splitting method is also applicable to the cell splitting in which the first cell is an SFN cell.
  • an embodiment of the present invention provides an apparatus 80 for implementing cell merging and or splitting, and performing the foregoing cell merging and or splitting method to adapt to real-time changes of services in a network.
  • the device may be a base station, such as an eNB of an LTE system, or may be a network management device or a centralized control device.
  • the device 80 includes: an acquisition order Element 801 and processing unit 802.
  • the obtaining unit 801 is configured to acquire a cell load of the first cell and acquire a cell load of the second cell.
  • the obtaining unit 801 is further configured to acquire interference between the first cell and the second cell.
  • the processing unit 802 is configured to: if the cell load of the first cell is less than the first load threshold, if the interference between the first cell and the second cell is greater than the interference threshold, and the sum of the cell load of the first cell and the cell load of the second cell The second cell is merged with the second cell by less than the second load threshold.
  • the combined cell is called an SFN cell.
  • the processing unit 802 determines that the cell load of the first cell is less than the first load threshold
  • the acquiring unit 801 re-acquires interference between the first cell and the second cell.
  • the obtaining unit 801 is configured to acquire a cell load of the SFN cell, where the SFN cell is formed by combining the first cell and the second cell;
  • the processing unit 802 is configured to determine whether a cell load of the SFN cell is greater than a high load threshold
  • the processing unit 602 determines that the cell load of the SFN cell is greater than the high load threshold, the acquiring unit 801 is further configured to acquire interference between the first cell and the second cell.
  • the processing unit 802 is further configured to determine that if the interference between the first cell and the second cell is less than a split interference threshold, the second cell is split from the SFN cell.
  • the obtaining unit 801 may be configured to acquire interference between the first cell and the second cell before the processing unit 802 determines that the cell load of the SFN cell is greater than a high load threshold.
  • the device further includes a transceiver unit 803, configured to perform information interaction between the base station and the UE.
  • the acquiring unit 801 is configured to acquire interference between the first cell and the second cell, specifically, according to the signal strength of the UE to the first cell and the signal strength of the UE to the second cell acquired by the transceiver unit 803. Obtaining an absolute value of a difference between a signal strength of the UE to the first cell and a signal strength of the UE to the second cell.
  • the processing unit 802 is specifically configured to determine an absolute difference between a signal strength of the UE to the first cell and a signal strength of the UE to the second cell. Whether the value is greater than the interference threshold, or determining whether the absolute value of the difference between the signal strength of the UE to the first cell and the signal strength of the UE to the second cell is greater than a ratio of the interference threshold exceeds a preset proportional threshold.
  • the acquiring unit 801 is configured to acquire interference between the first cell and the second cell, specifically, acquiring the first The interference coefficient between a cell and a second cell.
  • the foregoing embodiments of the present invention provide a cell merging and or splitting device, and perform cell merging and or splitting when the cell load of the cell and the inter-cell interference satisfy the condition, and can adapt to the actual network.
  • the real-time changes in the business improve the accuracy and efficiency of cell consolidation and or splitting, improve the user experience, and improve system throughput.
  • the processing unit 802 can further improve the user experience by ensuring the continuity of the UE service.
  • the processing unit 802 is further configured to perform the inter-frequency handover of the UE of the second cell to the fourth cell, where the fourth cell is the inter-frequency same coverage cell of the second cell.
  • the first cell is merged with the second cell.
  • the second cell adopts the same PCI as the first cell, and the merged cell is an SFN cell.
  • the processing unit 802 triggers the UE of the second cell to perform the inter-frequency handover.
  • the processing unit 802 deactivates the second cell, and then presses the second cell according to the first The configuration information of the cell is sent and received, and the combination of the first cell and the second cell is completed. In this way, the combined SFN cell simultaneously uses the first radio frequency module of the first cell and the second radio frequency module of the second cell to schedule the UE of the SFN cell.
  • the processing unit 802 is further configured to perform the inter-frequency handover on the UE of the second cell (or the UE in the coverage of the second radio module), and switch to the inter-frequency coverage of the second cell.
  • the cell the fourth cell.
  • the second cell included in the SFN cell is deleted, and the second cell is reconstructed as a normal cell.
  • the processing unit 802 is further configured to: schedule, by using the first radio frequency module and the second radio frequency module, the UE of the first cell by using the first radio frequency module, using the first The radio frequency module and the second radio frequency module schedule the UE of the second cell.
  • the first radio frequency module and the second radio frequency module are used to schedule the UE of the first cell in the odd subframe, and the UE of the second cell is scheduled in the even subframe by using the first radio frequency module and the second radio frequency module.
  • the first cell and the second cell can be normally switched (that is, the first cell after the configuration and the second cell after the configuration can be normally switched), so as to ensure the user's service experience to the greatest extent, and Since the signals of the two cells are separately transmitted in the form of time division, the signals between the two cells are prevented from interacting with each other. It should be noted that other time division manners are also within the protection scope of the embodiments of the present invention.
  • the processing unit 802 is further configured to: switch the UE of the second cell to the first cell, after the UE handover of the second cell is completed, The second cell is deactivated, and the first cell is used to schedule the UE by using all subframes to complete cell merging.
  • the first cell ie, the merged SFN cell
  • the first cell at this time uses the first radio frequency module and the second radio frequency module to schedule the UE of the cell in all subframes.
  • the processing unit 802 is further configured to reestablish the second cell as a normal cell.
  • the UE of the SFN cell is scheduled by using the first radio frequency module and the second radio frequency module, and the UE of the reconstructed second cell is scheduled by using the second radio frequency module ( Since it is the reconstructed second cell, there is no UE in the cell, but it is a working cell).
  • the SFN cell schedules the UE of the SFN cell by using an odd subframe, and the reconstructed second cell uses an even subframe for scheduling.
  • the first radio frequency module and the second radio frequency module are used to schedule the UE of the SFN cell in the odd subframe, and the second radio frequency module is used to schedule the UE of the second cell to be reconstructed in the even subframe.
  • the normal handover can be performed between the SFN cell and the second cell after the above setting (that is, the SFN cell after the configuration and the second cell to be reconstructed can be normally switched), so that the service experience of the user can be ensured to the greatest extent, and
  • the signals of the two cells are respectively transmitted in the form of time division, which avoids the mutual influence of signals between the two cells.
  • the processing unit 802 is further configured to switch, in the SFN cell, the UE in the coverage of the second radio frequency module to the reconstructed second cell.
  • the processing unit 802 is further configured to: after the handover is completed, the second radio frequency module is no longer used by the SFN cell, that is, only the first radio frequency module is used to schedule the UE of the first cell in all subframes, and only the second radio frequency module is used. All subframes schedule the UE of the second cell to complete cell splitting.
  • the device further includes an interface unit 804, where the processing unit 802 determines to combine the first cell and the second cell, and sends the first cell and the first cell to the base station 81.
  • the two cells perform the combined instruction.
  • the interface unit 804 is further configured to acquire, from the base station 81, the cell load of the first cell and the cell load of the second cell, and interference between the first cell and the second cell.
  • the base station 81 includes an interface unit 811, configured to receive an instruction for combining the first cell and the second cell from the network management device or the centralized control device, where the base station 81 further includes a processing unit 812, configured to perform the first cell and the second cell.
  • the interface unit 804 is also applicable to the network management device or the centralized control device to send an instruction to the base station 81 to split the second cell from the SFN cell.
  • the obtaining unit and the processing unit in the embodiment of the present invention may be a processor, or may be implemented in a certain processor, or may be stored in a memory in the form of program code, and processed by a certain one.
  • the device calls and executes the functions of the above unit.
  • the processor described here can be a central processing unit (Central Processing Unit, CPU), or an Application Specific Integrated Circuit (ASIC), or one or more integrated circuits that implement embodiments of the present invention.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • an embodiment of the present invention provides an apparatus 90 for performing the foregoing cell merging and or splitting method to implement cell merging and or splitting to adapt to real-time changes of services in a network.
  • the device may be a base station, such as an eNB of an LTE system, or may be a network management device or a centralized control device.
  • the apparatus 90 includes a processor 901 and a memory 902, and the processor 901 and the memory 902 are connected by a bus.
  • the memory 902 is used to store the program code, and the processor 901 calls the program code stored in the memory 902.
  • the method is used to: acquire the cell load of the first cell and acquire the cell load of the second cell, and acquire the first cell and Inter-cell interference, if the cell load of the first cell is less than the first load threshold, if the interference between the first cell and the second cell is greater than the interference threshold, and the cell load of the first cell and the cell load of the second cell And less than the second load threshold, combining the first cell with the second cell.
  • the processor 901 calls the program code stored in the memory to perform: acquiring the cell load of the first cell and acquiring the cell load of the second cell, and acquiring the first if the cell load of the first cell is less than the first load threshold.
  • the interference between the cell and the second cell if the interference between the first cell and the second cell is greater than the interference threshold, and the sum of the cell load of the first cell and the cell load of the second cell is less than the second load threshold, the first cell Merged with the second cell.
  • the processor 901 calls the program code stored in the memory 902 for execution:
  • the second cell is split from the SFN cell.
  • the processor 901 may acquire interference between the first cell and the second cell before determining that the cell load of the SFN cell is greater than a high load threshold.
  • the device further includes a transceiver 903 for information interaction between the base station and the UE.
  • the processor 901 is configured to acquire interference between the first cell and the second cell, where specifically, it is used to obtain, according to the signal strength of the UE to the first cell acquired by the transceiver 903 and the signal strength of the UE to the second cell. The absolute value of the difference between the signal strength of the UE to the first cell and the signal strength of the UE to the second cell.
  • the processor 901 in the process of combining and splitting the first cell and the second cell, The processing of ensuring the continuity of the UE service further improves the user experience.
  • the method and apparatus for cell merging and or splitting according to the embodiments of the present invention are also applicable to PCI optimization in a PCI conflict or confusion scenario. Further, by using the above time division method, the cell can be guaranteed in the PCI adjustment. The business in the business is not interrupted.
  • the embodiment of the present invention provides a system for merging a cell, where the system includes a centralized control device and a base station, where the centralized control device is configured to acquire a cell load of the first cell and acquire a cell load of the second cell, where The first cell uses the first PCI, the second cell uses the second PCI, and acquires interference between the first cell and the second cell; if the cell load of the first cell is less than the first load threshold, if the first The interference between the cell and the second cell is greater than the interference threshold, and the sum of the cell load of the first cell and the cell load of the second cell is smaller than the second load threshold, and determining to merge the first cell with the second cell And transmitting, to the base station, an instruction to merge the first cell and the second cell.
  • the base station is configured to acquire an instruction for combining the first cell and the second cell that is sent by the centralized control device, and perform a combining process on the first cell and the second cell.
  • the centralized control device in the system may also be a network management device, and the specific processing method may be referred to the foregoing method and/or device embodiment.
  • the embodiment of the present invention further provides a system for cell splitting, where the system includes a centralized control device and a base station, where the centralized control device is configured to acquire a cell load of the SFN cell, where the SFN cell passes the Obtaining a combination of a cell and a second cell; if the cell load of the SFN cell is greater than a high load threshold, acquiring interference between the first cell and the second cell; if the first cell and the second cell are The interference is less than the split interference threshold, determining to split the second cell from the SFN cell, and sending an instruction to the base station to split the second cell from the SFN cell.
  • the base station is configured to acquire an instruction that is sent by the central control device to split the second cell from the SFN cell, and split the second cell from the SFN cell.
  • any device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as the cells may or may not be Physical units can be located in one place or distributed to multiple network elements. Can be based on reality It is necessary to select some or all of the modules to achieve the purpose of the solution of the embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, and specifically, one or more communication buses or signal lines can be realized.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, dedicated hardware, dedicated CPU, dedicated memory, dedicated memory, Special components and so on.
  • functions performed by computer programs can be easily implemented with the corresponding hardware, and the specific hardware structure used to implement the same function can be various, such as analog circuits, digital circuits, or dedicated circuits. Circuits, etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of the present invention which is essential or contributes to the prior art, can be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • U disk mobile hard disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk, etc., including a number of instructions to make a computer device (may be A personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • a computer device may be A personal computer, server, or network device, etc.

Abstract

本发明实施例提供了一种小区拆分的方法和装置,包括:获取单频网SFN小区的小区负载,其中,其中SFN小区是通过第一小区和第二小区的合并形成的,若该SFN小区的小区负载大于高负载门限,获取第一小区与第二小区间的干扰,若第一小区与第二小区间的干扰小于拆分干扰门限,将第二小区从SFN小区中拆分出。上述小区拆分方法可以适应实际网络中业务的实时变化,提高了小区拆分的准确度和效率,改善了用户体验,提高了系统吞吐量。

Description

一种小区合并拆分的方法和装置 技术领域
本发明涉及无线通信领域,更具体地,涉及一种小区合并拆分的方法和装置。
背景技术
长期演进(Long Term Evolution,LTE)是由第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)组织制定的通用移动通信系统(Universal Mobile Telecommunications System,UMTS)技术标准的演进,LTE系统包括演进分组核心网(Evolved Packet Core,EPC)和演进基站(Evolved Node B,eNB)。对LTE来说,在频率资源日趋紧缺的情况下,同频组网是提高其频谱利用率的重要手段。严格的同频组网是指频率复用因子为1的组网方式,该方式可以最大化频谱利用效率。但是严格的同频组网方式会使小区边缘用户设备(User Equipment,UE)受到的严重的干扰,影响用户体验、系统吞吐量等。
为了解决小区间干扰的问题,提升用户体验,引入了小区合并技术,即将多个可以独立工作的小区合并为一个小区的技术。
小区合并技术可以减少网络中UE受到的干扰,提升用户体验。但多个小区合并变为一个小区后,可用物理资源块(Physical Resource Block,PRB)减少。由于实际网络中的业务是动态变化的,如何动态地进行小区合并或如何动态地将合并后的小区进行拆分以适应业务的实时变化,确保系统吞吐量,需要分析研究。
发明内容
本发明实施例提供一种小区拆分的方法和装置,能够适应网络中业务的动态变化,进而提高用户体验,提升系统吞吐量。
第一方面,本发明实施例提供了一种小区拆分的方法,所述方法包括:获取单频网SFN小区的小区负载,其中,所述SFN小区是通过第一小区和第二小区的合并形成的;
若所述SFN小区的小区负载大于高负载门限,获取所述第一小区与所述第二小区间的干扰;
若所述第一小区与所述第二小区间的干扰小于拆分干扰门限,将所述第二小区从所述 SFN小区中拆分出。
结合第一方面,在第一方面的第一种可能的实现方式中,所述获取所述第一小区与所述第二小区间的干扰,包括:
获取用户设备UE到所述第一小区的信号强度;
获取所述UE到所述第二小区的信号强度;
获取所述UE到所述第一小区的信号强度和所述UE到所述第二小区的信号强度的差值的绝对值。
结合第一方面,在第二种可能的实现方式中,所述获取所述第一小区与所述第二小区间的干扰,包括:
获取用户设备UE到所述第一小区的信号强度;
获取所述UE到所述第二小区的信号强度;
统计包含所述UE的多个UE到所述第一小区的信号强度和到所述第二小区的信号强度的差值的绝对值大于所述干扰门限的比例;
所述第一小区与所述第二小区间的干扰大于干扰门限,包括:
所述比例超过干扰比例门限。
结合第一方面的第一种可能的实现方式或第二种可能的实现方式,在第三种可能的实现方式中,所述信号强度,包括:参考信号接收功率或信号干扰噪声比。
结合第一方面,或者第一方面的第一至第三种可能的实现方式中的任意一种可能的实现方式,在第四种可能的实现方式中,所述将所述第一小区与所述第二小区进行合并,包括:
重建所述第二小区为普通小区;
按时分子帧的方式,利用第一射频模块和第二射频模块调度所述SFN小区的UE,利用所述第二射频模块调度所述重建的第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块;
触发所述SFN小区中处于所述第二射频模块覆盖范围的UE切换到所述重建的第二小区;
切换完成后,只利用所述第一射频模块在所有的子帧调度所述第一小区的UE,只利用所述第二射频模块在所有的子帧调度所述重建的第二小区的UE。
第二方面,本发明实施例提供了一种装置,所述装置包括:
获取单元,用于获取单频网SFN小区的小区负载,其中,所述SFN小区是通过第一小区和第二小区的合并形成的;
处理单元,用于确定所述SFN小区的小区负载是否大于高负载门限;
所述获取单元,还用于若所述处理单元确定所述SFN小区的小区负载大于所述高负载门限,获取所述第一小区与所述第二小区间的干扰;
处理单元,还用于若所述第一小区与所述第二小区间的干扰小于拆分干扰门限,将所述第二小区从所述SFN小区中拆分出。
结合第二方面,在第二方面的第一种可能的实现方式中,所述装置还包括收发单元,用于所述装置与用户设备UE间的信息交互;
所述获取单元,具体用于:
通过所述收发单元获取所述UE到所述第一小区的信号强度;
通过所述收发单元获取所述UE到所述第二小区的信号强度;
获取所述UE到所述第一小区的信号强度和所述UE到所述第二小区的信号强度的差值的绝对值。
结合第二方面,在第二种可能的实现方式中,所述装置还包括收发单元,用于所述装置与用户设备UE间的信息交互;
所述获取单元,具体用于:
通过所述收发单元获取用户设备UE到所述第一小区的信号强度;
通过所述收发单元获取所述UE到所述第二小区的信号强度;
统计包含所述UE的多个UE到所述第一小区的信号强度和到所述第二小区的信号强度的差值的绝对值大于所述干扰门限的比例;
所述第一小区与所述第二小区间的干扰大于干扰门限,包括:
所述比例超过干扰比例门限。
结合第二方面第一种可能的实现方式或者第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述信号强度,包括:参考信号接收功率或信号干扰噪声比。
结合第二方面,或者第二方面第一至第三种中可能的实现方式中的任意一种可能的实现方式,在第四种可能的实现方式中,所述处理单元,具体用于:
重建所述第二小区为普通小区;
按时分子帧的方式,利用第一射频模块和第二射频模块调度所述SFN小区的UE,利用所述第二射频模块调度所述重建的第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块;
触发所述SFN小区中处于所述第二射频模块覆盖范围的UE切换到所述重建的第二小区;
切换完成后,只利用所述第一射频模块在所有的子帧调度所述第一小区的UE,只利用所述第二射频模块在所有的子帧调度所述重建的第二小区的UE。
第三方面,本发明实施例提供了一种小区拆分的方法,所述方法包括:重建所述第二小区为普通小区;
按时分子帧的方式,利用第一射频模块和第二射频模块调度所述SFN小区的UE,利用所述第二射频模块调度所述重建的第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块;
触发所述SFN小区中处于所述第二射频模块覆盖范围的UE切换到所述重建的第二小区;
切换完成后,只利用所述第一射频模块在所有的子帧调度所述第一小区的UE,只利用所述第二射频模块在所有的子帧调度所述重建的第二小区的UE。
结合第三方面,在第三方面的第一种可能的实现方式中,所述按时分子帧的方式,利用第一射频模块和第二射频模块调度所述SFN小区的UE,利用所述第二射频模块调度所述重建的第二小区的UE,包括:
利用所述第一射频模块和所述第二射频模块在奇数子帧调度所述SFN小区的UE,利用所述第二射频模块在偶数子帧调度所述重建的第二小区的UE。
第四方面,本发明实施例提供了一种装置,所述装置包括:重建单元,用于重建所述第二小区为普通小区;调度单元,按时分子帧的方式,利用第一射频模块和第二射频模块调度所述SFN小区的UE,利用所述第二射频模块调度所述重建的第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块;
触发单元,用于触发所述SFN小区中处于所述第二射频模块覆盖范围的UE切换到所述重建的第二小区;
所述调度单元,还用于切换完成后,只利用所述第一射频模块在所有的子帧调度所述第一小区的UE,只利用所述第二射频模块在所有的子帧调度所述重建的第二小区的UE。
结合第四方面,在第四方面的第一种可能的实现方式中,所述调度单元,具体用于利用第一射频模块和第二射频模块在奇数子帧调度所述SFN小区的UE,利用所述第二射频模块在偶数子帧调度所述重建的第二小区的UE。
第五方面,本发明实施例提供了一种小区拆分的系统,所述系统包括集中控制设备和基站;
所述集中控制设备,用于获取SFN小区的小区负载,其中,所述SFN小区是通过第一小区和第二小区的合并形成的;若所述SFN小区的小区负载大于高负载门限,获取所述第一小区与所述第二小区间的干扰;若所述第一小区与所述第二小区间的干扰小于拆分干扰门限,确定将所述第二小区从所述SFN小区中拆分出,并向基站发送将所述第二小区从所述SFN小区中拆分出的指令;
所述基站,用于获取集中控制设备发送的将所述第二小区从所述SFN小区中拆分出的指令,并将所述第二小区从所述SFN小区中拆分出。
本发明实施例提供一种小区拆分的方法和装置,在小区的小区负载以及小区间的干扰满足条件时进行小区拆分,可以适应实际网络中业务的实时变化,提高了小区拆分的准确度和效率,改善了用户体验,提高了系统吞吐量,还可以进一步在小区拆分过程中保证UE业务的连续性。
此外,本发明实施例提供一种小区合并的方法和装置,能够适应网络中业务的动态变化,进而提高用户体验,提升系统吞吐量。
一方面,本发明实施例提供了一种小区合并的方法,通过获取第一小区的小区负载和获取第二小区的小区负载,以及所述第一小区与所述第二小区间的干扰;在所述第一小区的小区负载小于第一负载门限,所述第一小区与所述第二小区间的干扰大于干扰门限,并且所述第一小区的小区负载与所述第二小区的小区负载之和小于第二负载门限时,将所述第一小区与所述第二小区进行合并,合并后的所述第一小区和所述第二小区使用相同的PCI。
其中,可以获取UE到所述第一小区的信号强度和所述UE到所述第二小区的信号强度的差值的绝对值,将该差值的绝对值作为述第一小区与所述第二小区间的干扰。
可选的,可以获取UE到所述第一小区的信号强度和所述UE到所述第二小区的信号强度的差值的绝对值大于干扰门限的比例,将该比例是否超过干扰比例门限作为所述第一小区与所述第二小区间的干扰是否大于干扰门限。
其中,所述信号强度,包括:参考信号接收功率或信号干扰噪声比。
进一步的,在将所述第一小区与所述第二小区进行合并中,按时分子帧的方式,利用第一射频模块和第二射频模块调度所述第一小区的UE,利用所述第一射频模块和所述第二射频模块调度所述第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块;触发所述第二小区的UE切换到所述第一小区;切换完成后,去激活所述第二小区;利用第一射频模块和第二射频模块在全部子帧调度所述第一小区的UE。
另一方面,本发明实施例提供了一种装置,所述装置包括:
获取单元,用于获取第一小区的小区负载和获取第二小区的小区负载,还用于获取所述第一小区与所述第二小区间的干扰,其中,第一小区使用第一物理小区标识PCI,第二小区使用第二PCI;
处理单元,用于若所述第一小区的小区负载小于第一负载门限,若所述第一小区与所述第二小区间的干扰大于干扰门限,并且所述第一小区的小区负载与所述第二小区的小区负载之和小于第二负载门限,将所述第一小区与所述第二小区进行合并,其中,合并后的所述第一小区和所述第二小区使用相同的PCI。
可选的,所述装置还包括收发单元,用于所述装置与用户设备UE间的信息交互;
所述获取单元,具体用于:
通过所述收发单元获取所述UE到所述第一小区的信号强度;
通过所述收发单元获取所述UE到所述第二小区的信号强度;
获取所述UE到所述第一小区的信号强度和所述UE到所述第二小区的信号强度的差值的绝对值,将该差值的绝对值作为述第一小区与所述第二小区间的干扰。
可选的,所述装置还包括收发单元,用于所述装置与用户设备UE间的信息交互;
所述获取单元,具体用于:
通过所述收发单元获取用户设备UE到所述第一小区的信号强度;
通过所述收发单元获取所述UE到所述第二小区的信号强度;
统计包含所述UE的多个UE到所述第一小区的信号强度和到所述第二小区的信号强度的差值的绝对值大于所述干扰门限的比例,将该比例是否超过干扰比例门限作为所述第一小区与所述第二小区间的干扰是否大于干扰门限。
进一步的,所述处理单元,具体用于:
按时分子帧的方式,利用第一射频模块和第二射频模块调度所述第一小区的UE,利用所述第一射频模块和所述第二射频模块调度所述第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块;
触发所述第二小区的UE切换到所述第一小区;
切换完成后,去激活所述第二小区;
利用第一射频模块和第二射频模块在全部子帧调度所述第一小区的UE。
再一方面,本发明实施例提供了一种小区合并的系统,所述系统包括集中控制设备和基站;
所述集中控制设备,用于获取第一小区的小区负载和获取第二小区的小区负载,其中,第一小区使用第一物理小区标识PCI,第二小区使用第二PCI;
获取所述第一小区与所述第二小区间的干扰;
若所述第一小区的小区负载小于第一负载门限,若所述第一小区与所述第二小区间的干扰大于干扰门限,并且所述第一小区的小区负载与所述第二小区的小区负载之和小于第二负载门限,确定将所述第一小区与所述第二小区进行合并,并向基站发送将所述第一小区和所述第二小区进行合并的指令;
所述基站,用于获取集中控制设备发送的将第一小区和第二小区进行合并的指令,并对第一小区和第二小区进行合并处理。
本发明实施例提供一种小区合并的方法和装置,在小区的小区负载以及小区间的干扰满足条件时进行小区合并,可以适应实际网络中业务的实时变化,提高了小区合并的准确度和效率,改善了用户体验,提高了系统吞吐量,还可以进一步在小区合并过程中保证UE业务的连续性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对现有技术或实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以如这些附图获得其他的附图。
图1为本发明实施例提供的一种无线通信网络的示意图;
图2为本发明实施例提供的一种小区合并拆分的示意图;
图3为本发明实施例提供的一种小区合并方法的流程示意图;
图4为本发明实施例提供的一种小区拆分方法的流程示意图;
图5为本发明实施例提供的一种异频组网场景示意图;
图6为本发明实施例提供的一种同频组网场景小区合并示意图;
图7为本发明实施例提供的一种同频组网场景小区拆分示意图
图8为本发明实施例提供的一种装置的结构示意图;
图9为本发明实施例提供的一种装置的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,为本发明实施例提供的一种无线通信网络100的示意图。该无线通信网络只是举例说明,本发明实施例的应用范围并不局限于此。
图1所示的无线通信网络可以为LTE网络,也可以为增强的LTE(LTE-Advanced,LTE-A)网络,还可以是未来无线网络。
为方便描述,以LTE网络为例进行描述。该无线通信网络包括若干基站101、核心网102等网元,用以支撑若干用户设备103进行通信。
基站101,是LTE中的eNB。一个基站可以管理一个或多个小区104,每个基站可以服务多个UE,UE选择一个小区发起网络接入,与基站101进行语音和/或数据业务。基站101与核心网102通过S1接口进行信息交互,多个基站101通过X2接口进行信息交互。
用户设备103也可称之为移动终端(Mobile Terminal,MT)、移动台(Mobile Station,MS)等。
请参考图2,为本发明实施例提供的一种小区合并拆分的示意图。应当理解,本发明实施例的应用范围并不局限于此。
如图2所示,以三个小区(Cell1,Cell2和Cell3)合并拆分为例,根据网络中业务的需要,可以将三个独立工作的小区合并为一个小区(Cell0),具体的,对独立工作的每个小区对应的射频模块进行处理,为一个小区工作,其中,射频模块可以为射频拉远单元(Remote Radio Unit,RRU)。进行小区合并后,各被合并的小区使用相同的物理小区标识(Physical Cell Identifier,PCI)。合并前该三个小区的部分边缘区域变为合并后小区的中心区域。合并后的小区可称为单频网(Single Frequency Network,SFN)小区,被合并的小区可称为物理小区,非SFN小区可称为普通小区。但是从系统角度来说,小区合并后,PRB资源减少了,随着网络中业务的变化,还需要及时将合并的SFN小区进行拆分,以免影响系统吞吐量。如图2所示,依据网络中业务的变化,合并后的SFN小区(Cell0)拆分为合并前的Cell1,Cell2和Cell3
请参考图3,为本发明实施例提供的一种小区合并方法的流程示意图。该小区合并方法可以适应网络中业务的实时变化。
如图3所示,该方法包括:
S301、获取第一小区的小区负载和获取第二小区的小区负载;
S302、获取第一小区与第二小区间的干扰;
S303、若第一小区的小区负载小于第一负载门限,执行步骤S304;
S304、若第一小区与第二小区间的干扰大于干扰门限,并且第一小区的小区负载与第二小区的小区负载之和小于第二负载门限,执行步骤S305;
S305、将第一小区与第二小区进行合并。
第一小区和第二小区合并后的小区可以称为SFN小区。合并前,第一小区使用第一PCI,第二小区使用第二PCI,合并后的该第一小区和该第二小区使用相同的PCI。
如果第一小区的小区负载大于第一负载门限,则对该第一小区不执行小区合并。
如果第一小区与第二小区间的干扰以及第一小区的小区负载与第二小区的小区负载之和不满足步骤S304的条件,则对该第一小区不执行小区合并。
可选的,为避免不必要的操作,可在第一小区的小区负载小于第一负载门限时,获取第二小区的小区负载以及第一小区与第二小区间的干扰,然后再执行S304。
可选的,本发明实施例提供的小区合并方法也适用于第一小区为SFN小区,第二小区为普通小区的小区合并,即利用上述小区合并方法,还可以将SFN小区与第三小区进行小 区合并。
合并后的SFN小区可根据业务的变化进行拆分。请参考图4,为本发明实施例提供的一种小区拆分方法的流程示意图。
如图4所示,该方法包括:
S401、获取SFN小区的小区负载,其中,该SFN小区是通过第一小区和第二小区的合并形成的;
S402、若该SFN小区的小区负载大于高负载门限,执行步骤S403;
S403、获取第一小区与第二小区间的干扰;
S404、若该第一小区与该第二小区间的干扰小于拆分干扰门限,执行步骤S405;
S405、将该第二小区从该SFN小区中拆分出。
如果该SFN小区的小区负载小于该高负载门限,则不对该SFN小区进行拆分。
如果第一小区与第二小区间的干扰大于该拆分干扰门限,则不将该第二小区拆分出去。
可选的,也可在步骤S402之前进行步骤S403。可选的,本发明实施例提供的小区拆分方法也适用于第一小区为SFN小区,即在第一小区为SFN小区的时候,还可以依据上述拆分方法,在满足上述条件时继续对该第一小区进行拆分。
需要说明的是,本发明实施例提供的小区合并、拆分方法可以应用于基站,例如LTE系统的eNB,也可以应用于网管设备或集中控制设备,其中,集中控制设备可以对多个基站进行集中管理,用以在多个基站间进行协调。对于上述方法应用于网管设备或集中控制设备的情况,当网管设备或集中控制设备根据上述方法确定将第一小区和第二小区进行合并后,向基站发送将第一小区和第二小区进行合并的指令,基站获取将第一小区和第二小区进行合并的指令后,基站对第一小区和第二小区进行合并处理。当网管设备或集中控制设备根据上述方法确定将第二小区从SFN小区拆分出去后,向基站发送将第二小区从SFN小区拆分的指令,基站获取该指令后,基站将第二小区从SFN小区拆分出去。
可选的,小区负载为小区的PRB利用率。
可选的,第一小区与第二小区间的干扰为同一个UE到这两个小区的信号强度的差值的绝对值。若UE到第一小区的信号强度与该UE到第二小区的信号强度的差值的绝对值大于干扰门限,则第一小区与第二小区间的干扰大。否则,第一小区与第二小区间的干扰小。可 选的,在预设时间段内,统计多个UE到第一小区的信号强度与该UE到第二小区的信号强度的差值的绝对值,若UE到第一小区的信号强度与该UE到第二小区的信号强度的差值的绝对值大于干扰门限的比例超过干扰比例门限,则第一小区与第二小区间的干扰大。否则,第一小区与第二小区间的干扰小。上述信号强度可以为参考信号接收功率(Reference Signal Received Power,RSRP),或信号干扰噪声比(Signal to Interference plus Noise Ratio,SINR),或其他表征信号强度的参数。
可选的,第一小区与第二小区间的干扰为第一小区与第二小区间的干扰系数。若第一小区与第二小区间的干扰系数大于干扰门限,则第一小区与第二小区间的干扰大。否则,第一小区与第二小区间的干扰小。可以对第一小区与第二小区的信号进行采集,根据采集的信号获取第一小区与第二小区间的干扰系数。
不同小区间的干扰与上述第一小区与第二小区间的干扰含义一致,不再赘述。
需要说明的是,小区合并方法的第一负载门限,第二负载门限,干扰门限和干扰比例门限为系统预设值,小区拆分方法的高负载门限和拆分干扰门限也为系统预设值。可以依据不同的干扰条件设置不同的干扰门限,小区间的干扰可以是一定时间内的统计量。
需要说明的是,本发明实施例提供的小区合并、拆分方法也适用于2个以上小区的合并。
例如,对于N个小区:Cell1,Cell2…CellN,N大于2,获取这N个小区的小区负载,若Cell1的小区负载小于第一负载门限,分别获取Cell1与Cell2,Cell1与CellN之间的干扰系数。优选的,Cell1为这N个小区中小区负载最低且Cell1的小区负载小于该第一负载门限。若Cell1与Cell2的干扰系数大于干扰门限,且Cell1的小区负载与Cell2的小区负载之和小于第二负载门限,则确定Cell1与Cell2进行小区合并,合并后的小区为第一SFN小区。优选的,在Cell1与其他小区间的干扰系数中,Cell1与Cell2的干扰系数最大。对于该第一SFN小区,可以与其他小区(譬如Cell3)在满足上述条件下,按上述方法再次进行小区合并为第二SFN小区。
当合并后的第二SFN小区不满足系统需求时,需要对该第二SFN小区进行拆分。当该第二SFN小区的小区负载大于高负载门限时,获取Cell1与Cell2的干扰,Cell1与Cell3的干扰,当Cell1与Cell3间的干扰小于Cell1与Cell2间的干扰,且Cell1与Cell3间的干扰小于拆分干扰门限时,将Cell3从该第二SFN小区拆分出去。即可以选取干扰最小的小区,并在满足上述 拆分门限时,将该小区从SFN小区中拆分出去。当该第二SFN小区拆分后,若第一SFN小区也需进行拆分时,可按上述拆分方法进行。
通过上述实施例可以看出,本发明实施例通过提供一种小区合并、拆分的方法,在小区的小区负载以及小区间的干扰满足条件时进行小区合并、拆分,可以适应实际网络中业务的实时变化,提高了小区合并、拆分的准确度和效率,改善了用户体验,提高了系统吞吐量。
进一步的,确定将第一小区与第二小区进行合并后,在第一小区与第二小区进行合并时,可以通过保证UE业务的连续性的处理,进一步提升用户体验,同理,对于小区拆分,也可保证UE业务的连续性。
下面分两种场景具体描述在小区合并、拆分过程中如何保证UE业务的连续性。
场景一,异频组网。
异频组网可以是用两个以上的频段同时覆盖同一片区域。请参考图5,为本发明实施例提供的一种异频组网场景示意图。
如图5所示,第一小区和第二小区采用的频段是第一频段,第三小区和第四小区采用的频段是第二频段,第三小区是第一小区的异频同覆盖小区,第四小区是第二小区的异频同覆盖小区。
确定将第一小区与第二小区进行合并后,将第二小区的UE进行异频切换,切换到第四小区。当第二小区中没有UE时,将第一小区与第二小区进行合并。合并后,第二小区采用与第一小区相同的PCI,合并后的小区为SFN小区。具体的,基站触发第二小区的UE进行异频切换,待该第二小区的UE完成异频切换后,去激活该第二小区,然后将该第二小区按该第一小区的配置信息进行信号传输,完成第一小区与第二小区的合并。这样,合并后的SFN小区同时利用第一小区的第一射频模块和第二小区的第二射频模块调度该SFN小区的UE。
对于小区拆分,当确定将该第二小区从该SFN小区拆分出去后,将该第二小区的UE(或者说将该第二射频模块覆盖范围的UE)进行异频切换,切换到该第二小区的异频同覆盖小区,即第四小区。当第二小区中没有UE时,删除该SFN小区包含的该第二小区,同时重建该第二小区为普通小区。
可选的,可以对非处于第一小区和第二小区交叠区域的UE进行异频切换,对处于第一 小区和第二小区交叠区域的UE切换到该第一小区。
场景二,同频组网。
同频组网是用一个频段连续覆盖一片区域。第一小区和第二小区采用相同的频段。请参考图6,为本发明实施例提供的一种同频组网场景小区合并示意图。
如图6所示,小区合并前,第一小区和第二小区独立工作,分别使用所有的子帧对各自小区的UE进行调度。对于LTE来说,每个无线帧在时域上对应10毫秒,包括10个子帧,每个子帧包含两个时隙(slot)。第一小区使用10个子帧调度第一小区的UE,第二小区使用10个子帧调度第二小区的UE。具体的,第一小区通过第一射频模块使用10个子帧调度第一小区的UE,第二小区通过第二射频模块使用10个子帧调度第二小区的UE。
确定将第一小区与第二小区进行合并后,按时分子帧的方式,利用第一射频模块和第二射频模块调度第一小区的UE,利用第一射频模块和第二射频模块调度第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块。具体的,第一小区使用奇数子帧调度第一小区的UE,第二小区使用偶数子帧调度第二小区的UE。更具体的,利用第一射频模块和第二射频模块在奇数子帧调度第一小区的UE,利用第一射频模块和第二射频模块在偶数子帧调度第二小区的UE。需要说明的是,第一小区也可以利用偶数子帧,第二小区利用奇数子帧进行UE调度,或者第一小区和第二小区使用其他时分的方式进行UE调度。这样,每个射频模块都发送两个小区的信号,且第一射频模块和第二射频模块同时为一个小区服务。经过上述设置后的第一小区和第二小区间可以进行正常切换(即配置后的第一小区和配置后的第二小区间可以进行正常切换),这样可以最大程度保障用户的业务体验,且由于采用时分的形式分别发送两个小区的信号,避免了两个小区间信号互相影响。
将第二小区的UE切换到第一小区。
第二小区的UE切换完成后,将该第二小区去激活,并让第一小区利用所有的子帧对UE进行调度,完成小区合并。此时的第一小区(即合并后的SFN小区)利用第一射频模块和第二射频模块在所有的子帧调度该小区的UE。
对于第一小区是SFN小区的小区合并,合并后新的SFN小区包含的射频模块为所有合并小区的射频模块。
需要说明的是,上述保证UE业务的连续性的小区合并方法也可以作为独立的实施例存 在。上述切换的具体方法可参考现有技术的切换方法。
通过上述方法,完成了小区合并,同时保证UE业务的连续性。
对于小区拆分,请参考图7,为本发明实施例提供的一种同频组网场景小区拆分示意图。
如图7所示,由第一小区和第二小区合并得到的SFN小区利用该第一小区的第一射频模块和该第二小区的第二射频模块在所有的子帧调度该SFN小区的UE。
当确定将该第二小区从该SFN小区拆分出去后,重建第二小区为普通小区。对于该重建的第二小区和该SFN小区,按时分子帧的方式,利用第一射频模块和第二射频模块调度该SFN小区的UE,利用第二射频模块调度该重建的第二小区的UE(由于是重建的第二小区,该小区中还未有UE,但为可以工作的小区)。具体的,该SFN小区使用奇数子帧调度该SFN小区的UE,重建的第二小区使用偶数子帧进行调度。更具体的,利用第一射频模块和第二射频模块在奇数子帧调度SFN小区的UE,利用第二射频模块在偶数子帧调度第二小区的UE。需要说明的是,该SFN小区也可以利用偶数子帧,重建的第二小区利用奇数子帧进行UE调度,或者该SFN小区和重建的第二小区使用其他时分的方式进行UE调度。这样,经过上述设置后的SFN小区和第二小区间可以进行正常切换(即配置后的SFN小区和重建的第二小区间可以进行正常切换),这样可以最大程度保障用户的业务体验,且由于采用时分的形式分别发送两个小区的信号,避免了两个小区间信号互相影响。
触发SFN小区中处于第二射频模块覆盖范围的UE切换到该重建的第二小区。
切换完成后,第二射频模块不再用于该SFN小区,即只利用第一射频模块在所有的子帧调度该第一小区的UE,只利用第二射频模块在所有的子帧调度该重建的第二小区的UE,完成小区拆分。
需要说明的是,上述保证UE业务的连续性的小区拆分方法也可以作为独立的实施例存在。上述切换的具体方法可参考现有技术的切换方法。
通过上述方法,完成了小区拆分,同时保证UE业务的连续性。上述小区拆分方法也适用于第一小区为SFN小区的小区拆分。
请参考图8,本发明实施例提供一种装置80,该装置用于实现小区合并和或拆分,执行上述小区合并和或拆分方法,以适应网络中业务的实时变化。该装置可以是基站,例如LTE系统的eNB,也可以是网管设备或集中控制设备。如图8所示,该装置80包括:获取单 元801和处理单元802。
在小区合并时:
获取单元801,用于获取第一小区的小区负载和获取第二小区的小区负载;
获取单元801,还用于获取第一小区与第二小区间的干扰;
处理单元802,用于若第一小区的小区负载小于第一负载门限,若第一小区与第二小区间的干扰大于干扰门限,并且第一小区的小区负载与第二小区的小区负载之和小于第二负载门限,将第一小区与第二小区进行合并。合并后的小区称为SFN小区。
可选的,为避免不必要的操作,可在处理单元802确定第一小区的小区负载小于第一负载门限后,获取单元801再获取第一小区与第二小区间的干扰。
在小区拆分时:
获取单元801,用于获取SFN小区的小区负载,其中,该SFN小区是通过第一小区和第二小区的合并形成的;
处理单元802,用于确定该SFN小区的小区负载是否大于高负载门限;
若处理单元602确定该SFN小区的小区负载大于高负载门限,该获取单元801,还用于获取第一小区与第二小区间的干扰;
处理单元802,还用于确定若该第一小区与该第二小区间的干扰小于拆分干扰门限,将该第二小区从该SFN小区中拆分出。
可选的,获取单元801也可以在处理单元802确定该SFN小区的小区负载大于高负载门限之前,用于获取第一小区与第二小区间的干扰。
对于上述装置为基站的情况,则该装置还包括收发单元803,用于基站与UE间的信息交互。该获取单元801,用于获取第一小区与第二小区间的干扰,具体为,用于根据通过收发单元803获取的UE到第一小区的信号强度与该UE到第二小区的信号强度,获取该UE到第一小区的信号强度与该UE到第二小区的信号强度的差值的绝对值。在确定第一小区与第二小区间的干扰是否大于干扰门限时,处理单元802,具体用于,确定UE到第一小区的信号强度与该UE到第二小区的信号强度的差值的绝对值是否大于干扰门限,或者,确定UE到第一小区的信号强度与该UE到第二小区的信号强度的差值的绝对值大于干扰门限的比例是否超过预设的比例门限。
可选的,该获取单元801,用于获取第一小区与第二小区间的干扰,具体为,获取第 一小区与第二小区间的干扰系数。
通过上述实施例可以看出,本发明实施例通过提供一种小区合并和或拆分的装置,在小区的小区负载以及小区间的干扰满足条件时进行小区合并和或拆分,可以适应实际网络中业务的实时变化,提高了小区合并和或拆分的准确度和效率,改善了用户体验,提高了系统吞吐量。
进一步的,在处理单元802在将第一小区与第二小区进行合并和或拆分处理中,可以通过保证UE业务的连续性的处理,进一步提升用户体验。
对于异频组网场景,在小区合并中,处理单元802还用于,将第二小区的UE进行异频切换,切换到第四小区,第四小区是第二小区的异频同覆盖小区。当第二小区中没有UE时,将第一小区与第二小区进行合并。合并后,第二小区采用与第一小区相同的PCI,合并后的小区为SFN小区。具体的,处理单元802触发第二小区的UE进行异频切换,待该第二小区的UE完成异频切换后,处理单元802去激活该第二小区,然后将该第二小区按该第一小区的配置信息收发信号,完成第一小区与第二小区的合并。这样,合并后的SFN小区同时利用第一小区的第一射频模块和第二小区的第二射频模块调度该SFN小区的UE。
在小区拆分时,处理单元802还用于,将该第二小区的UE(或者说将该第二射频模块覆盖范围的UE)进行异频切换,切换到该第二小区的异频同覆盖小区,即第四小区。当第二小区中没有UE时,删除该SFN小区包含的该第二小区,同时重建该第二小区为普通小区。
对于同频组网场景,进行小区合并前,第一小区通过第一射频模块使用全部子帧调度第一小区的UE,第二小区通过第二射频模块使用全部个子帧调度第二小区的UE。在进行第一小区和第二小区的合并中,处理单元802还用于,按时分子帧的方式,利用第一射频模块和第二射频模块调度所述第一小区的UE,利用所述第一射频模块和所述第二射频模块调度所述第二小区的UE。具体的,利用第一射频模块和第二射频模块在奇数子帧调度第一小区的UE,利用第一射频模块和第二射频模块在偶数子帧调度第二小区的UE。经过上述设置后的第一小区和第二小区间可以进行正常切换(即配置后的第一小区和配置后的第二小区间可以进行正常切换),这样可以最大程度保障用户的业务体验,且由于采用时分的形式分别发送两个小区的信号,避免了两个小区间信号互相影响。需要说明的是,其他时分方式也在本发明实施例的保护范围之内。
处理单元802还用于,将第二小区的UE切换到第一小区,在第二小区的UE切换完成后, 将该第二小区去激活,并让第一小区利用所有的子帧对UE进行调度,完成小区合并。此时的第一小区(即合并后的SFN小区)利用第一射频模块和第二射频模块在所有的子帧调度该小区的UE。
在小区拆分时,处理单元802还用于,重建第二小区为普通小区。对于该重建的第二小区和该SFN小区,按时分子帧的方式,利用第一射频模块和第二射频模块调度该SFN小区的UE,利用第二射频模块调度该重建的第二小区的UE(由于是重建的第二小区,该小区中还未有UE,但为可以工作的小区)。具体的,该SFN小区使用奇数子帧调度该SFN小区的UE,重建的第二小区使用偶数子帧进行调度。更具体的,利用第一射频模块和第二射频模块在奇数子帧调度SFN小区的UE,利用第二射频模块在偶数子帧调度重建的第二小区的UE。这样,经过上述设置后的SFN小区和第二小区间可以进行正常切换(即配置后的SFN小区和重建的第二小区间可以进行正常切换),这样可以最大程度保障用户的业务体验,且由于采用时分的形式分别发送两个小区的信号,避免了两个小区间信号互相影响。
处理单元802还用于,将SFN小区中处于第二射频模块覆盖范围的UE切换到该重建的第二小区。
处理单元802还用于,切换完成后,第二射频模块不再用于该SFN小区,即只利用第一射频模块在所有的子帧调度该第一小区的UE,只利用第二射频模块在所有的子帧调度该第二小区的UE,完成小区拆分。
对于上述装置为网管设备或集中控制设备的情况,则该装置还包括接口单元804,用于处理单元802确定将第一小区和第二小区进行合并后,向基站81发送将第一小区和第二小区进行合并的指令。接口单元804,还用于从基站81获取第一小区的小区负载和第二小区的小区负载,以及第一小区与第二小区间的干扰。基站81包括接口单元811,用于接收来自网管设备或集中控制设备的将第一小区和第二小区进行合并的指令,基站81还包括处理单元812,用于将第一小区与第二小区进行合并,具体的小区合并处理可参考上文的描述,此处不再赘述。同理,上述接口单元804也适用于网管设备或集中控制设备向基站81发送将该第二小区从该SFN小区拆分出去的指令。
需要说明的是,本发明实施例中的获取单元、处理单元可以为处理器,也可以集成在某一个处理器中实现,此外,也可以以程序代码的形式存储于存储器中,由某一个处理器调用并执行以上单元的功能。这里所述的处理器可以是一个中央处理器(Central Processing  Unit,CPU),或者是特定集成电路(Application Specific Integrated Circuit,ASIC),或者完成实施本发明实施例的一个或多个集成电路。
请参考图9,本发明实施例提供了一种装置90,该装置用于执行上述小区合并和或拆分方法,实现小区合并和或拆分,以适应网络中业务的实时变化。该装置可以是基站,例如LTE系统的eNB,也可以是网管设备或集中控制设备。如图9所示,该装置90包括:包括处理器901和存储器902,处理器901和存储器902通过总线连接。
存储器902用于存储程序代码,处理器901调用存储器902中存储的程序代码,在小区合并时,用于执行:获取第一小区的小区负载和获取第二小区的小区负载,获取第一小区与第二小区间的干扰,若第一小区的小区负载小于第一负载门限,若第一小区与第二小区间的干扰大于干扰门限,并且第一小区的小区负载与第二小区的小区负载之和小于第二负载门限,将第一小区与第二小区进行合并。
优选的,处理器901调用存储器中存储的程序代码,用于执行:获取第一小区的小区负载和获取第二小区的小区负载,若第一小区的小区负载小于第一负载门限,获取第一小区与第二小区间的干扰,若第一小区与第二小区间的干扰大于干扰门限,并且第一小区的小区负载与第二小区的小区负载之和小于第二负载门限,将第一小区与第二小区进行合并。
在小区拆分时,处理器901调用存储器902中存储的程序代码,用于执行:
获取SFN小区的小区负载,其中,该SFN小区是通过第一小区和第二小区的合并形成的;
若该SFN小区的小区负载大于高负载门限,获取第一小区与第二小区间的干扰;
若该第一小区与该第二小区间的干扰小于拆分干扰门限,将该第二小区从该SFN小区中拆分出。
可选的,处理器901可以在确定该SFN小区的小区负载大于高负载门限之前,获取第一小区与第二小区间的干扰。
对于上述装置为基站的情况,则该装置还包括收发器903,用于基站与UE间的信息交互。处理器901,用于获取第一小区与第二小区间的干扰,具体为:用于根据通过收发器903获取的UE到第一小区的信号强度与该UE到第二小区的信号强度,获取该UE到第一小区的信号强度与该UE到第二小区的信号强度的差值的绝对值。
进一步的,在处理器901在将第一小区与第二小区进行合并和或拆分处理中,可以通 过保证UE业务的连续性的处理,进一步提升用户体验。
需要说明的是,装置90进行小区合并和或拆分的方法以及更多具体实现可参考前述方法和/或装置实施例所述。
需要说明的是,本发明实施例提供的小区合并和或拆分的方法和装置也适用于PCI冲突或混淆场景下的PCI优化,进一步的,利用上述时分方法,在PCI调整中,可保证小区中的业务不中断。
此外,本发明实施例提供了一种小区合并的系统,所述系统包括集中控制设备和基站,该集中控制设备,用于获取第一小区的小区负载和获取第二小区的小区负载,其中,第一小区使用第一PCI,第二小区使用第二PCI;获取所述第一小区与所述第二小区间的干扰;若该第一小区的小区负载小于第一负载门限,若该第一小区与该第二小区间的干扰大于干扰门限,并且该第一小区的小区负载与该第二小区的小区负载之和小于第二负载门限,确定将该第一小区与该第二小区进行合并,并向基站发送将该第一小区和该第二小区进行合并的指令。该基站,用于获取集中控制设备发送的将第一小区和第二小区进行合并的指令,并对第一小区和第二小区进行合并处理。需要说明的是,该系统中的集中控制设备也可以为网管设备,且具体的处理方法可参考前述方法和/或装置实施例所述。
同理,本发明实施例还提供了一种小区拆分的系统,所述系统包括集中控制设备和基站,该集中控制设备,用于获取SFN小区的小区负载,其中,该SFN小区是通过第一小区和第二小区的合并形成的;若该SFN小区的小区负载大于高负载门限,获取所述第一小区与所述第二小区间的干扰;若该第一小区与该第二小区间的干扰小于拆分干扰门限,确定将该第二小区从该SFN小区中拆分出,并向基站发送将该第二小区从该SFN小区中拆分出的指令。该基站,用于获取集中控制设备发送的将该第二小区从该SFN小区中拆分出的指令,并将该第二小区从该SFN小区中拆分出。
需要说明的是,本发明实施例列举出的实现方式只是作为本发明的具体示例,本领域技术人员根据本发明公开的方法容易想到的其他实现方式也应该在本发明的保护范围之下。
需要说明的是,以上描述的任意装置实施例都仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实 际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本发明提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本发明而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
所属领域的技术人员可以清楚地了解到,上述描述的装置或单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种小区拆分的方法,其特征在于,所述方法包括:
    获取单频网SFN小区的小区负载,其中,所述SFN小区是通过第一小区和第二小区的合并形成的;
    若所述SFN小区的小区负载大于高负载门限,获取所述第一小区与所述第二小区间的干扰;
    若所述第一小区与所述第二小区间的干扰小于拆分干扰门限,将所述第二小区从所述SFN小区中拆分出。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述第一小区与所述第二小区间的干扰,包括:
    获取用户设备UE到所述第一小区的信号强度;
    获取所述UE到所述第二小区的信号强度;
    获取所述UE到所述第一小区的信号强度和所述UE到所述第二小区的信号强度的差值的绝对值。
  3. 根据权利要求1所述的方法,其特征在于,所述获取所述第一小区与所述第二小区间的干扰,包括:
    获取用户设备UE到所述第一小区的信号强度;
    获取所述UE到所述第二小区的信号强度;
    统计包含所述UE的多个UE到所述第一小区的信号强度和到所述第二小区的信号强度的差值的绝对值大于所述干扰门限的比例;
    所述第一小区与所述第二小区间的干扰大于干扰门限,包括:
    所述比例超过干扰比例门限。
  4. 根据权利要求2或3所述的方法,其特征在于,所述信号强度,包括:参考信号接收功率RSRP或信号干扰噪声比SINR。
  5. 根据权利要求1所述的方法,其特征在于,所述获取所述第一小区与所述第二小区间的干扰,包括:获取所述第一小区与所述第二小区间的干扰系数。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述将所述第二小区从所述SFN小区中拆分出,包括:
    重建所述第二小区为普通小区;
    按时分子帧的方式,利用第一射频模块和第二射频模块调度所述SFN小区的UE,利用所述第二射频模块调度所述重建的第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块;
    触发所述SFN小区中处于所述第二射频模块覆盖范围的UE切换到所述重建的第二小区;
    切换完成后,只利用所述第一射频模块在所有的子帧调度所述第一小区的UE,只利用所述第二射频模块在所有的子帧调度所述重建的第二小区的UE。
  7. 根据权利要求6所述的方法,其特征在于,所述按时分子帧的方式,利用第一射频模块和第二射频模块调度所述SFN小区的UE,利用所述第二射频模块调度所述重建的第二小区的UE,包括:
    利用所述第一射频模块和所述第二射频模块在奇数子帧调度所述SFN小区的UE,利用所述第二射频模块在偶数子帧调度所述重建的第二小区的UE。
  8. 根据权利要求1-5任一项所述的方法,其特征在于,所述将所述第二小区从所述SFN小区中拆分出,包括:
    触发所述第二小区的UE切换到所述第二小区的异频同覆盖小区;
    切换完成后,删除所述SFN小区包含的所述第二小区;
    将所述第二小区重建为普通小区。
  9. 一种装置,其特征在于,所述装置包括:
    获取单元,用于获取单频网SFN小区的小区负载,其中,所述SFN小区是通过第一小区和第二小区的合并形成的;
    处理单元,用于确定所述SFN小区的小区负载是否大于高负载门限;
    所述获取单元,还用于若所述处理单元确定所述SFN小区的小区负载大于所述高负载门限,获取所述第一小区与所述第二小区间的干扰;
    处理单元,还用于若所述第一小区与所述第二小区间的干扰小于拆分干扰门限,将所述第二小区从所述SFN小区中拆分出。
  10. 根据权利要求9所述的装置,其特征在于,所述装置还包括收发单元,用于所述装置与用户设备UE间的信息交互;
    所述获取单元,具体用于:
    通过所述收发单元获取所述UE到所述第一小区的信号强度;
    通过所述收发单元获取所述UE到所述第二小区的信号强度;
    获取所述UE到所述第一小区的信号强度和所述UE到所述第二小区的信号强度的差值的绝对值。
  11. 根据权利要求9所述的装置,其特征在于,所述装置还包括收发单元,用于所述装置与用户设备UE间的信息交互;
    所述获取单元,具体用于:
    通过所述收发单元获取用户设备UE到所述第一小区的信号强度;
    通过所述收发单元获取所述UE到所述第二小区的信号强度;
    统计包含所述UE的多个UE到所述第一小区的信号强度和到所述第二小区的信号强度的差值的绝对值大于所述干扰门限的比例;
    所述第一小区与所述第二小区间的干扰大于干扰门限,包括:
    所述比例超过干扰比例门限。
  12. 根据权利要求10或11所述的装置,其特征在于,所述信号强度,包括:参考信号接收功率RSRP或信号干扰噪声比SINR。
  13. 根据权利要求9所述的装置,其特征在于,所述获取单元,具体用于:获取所述第一小区与所述第二小区间的干扰系数。
  14. 根据权利要求9-13任一项所述的装置,其特征在于,所述处理单元,具体用于:
    重建所述第二小区为普通小区;
    按时分子帧的方式,利用第一射频模块和第二射频模块调度所述SFN小区的UE,利用所述第二射频模块调度所述重建的第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块;
    触发所述SFN小区中处于所述第二射频模块覆盖范围的UE切换到所述重建的第二小区;
    切换完成后,只利用所述第一射频模块在所有的子帧调度所述第一小区的UE,只利用所述第二射频模块在所有的子帧调度所述重建的第二小区的UE。
  15. 根据权利要求14所述的装置,其特征在于,所述处理单元,具体用于:
    利用第一射频模块和第二射频模块在奇数子帧调度所述SFN小区的UE,利用所述第二射频模块在偶数子帧调度所述重建的第二小区的UE。
  16. 根据权利要求9-13任一项所述的装置,其特征在于,所述处理单元,具体用于:
    触发所述第二小区的UE切换到所述第二小区的异频同覆盖小区;
    切换完成后,删除所述SFN小区包含的所述第二小区;
    将所述第二小区重建为普通小区。
  17. 一种装置,其特征在于,所述装置包括:处理器和存储器;
    所述存储器,用于存储程序代码;
    所述处理器,用于调用存储器中存储的程序代码,用于执行:获取单频网SFN小区的小区负载,其中,所述SFN小区是通过第一小区和第二小区的合并形成的;
    所述处理器,还用于若所述SFN小区的小区负载大于高负载门限,获取所述第一小区与所述第二小区间的干扰;
    所述处理器,还用于若所述第一小区与所述第二小区间的干扰小于拆分干扰门限,将所述第二小区从所述SFN小区拆分出。
  18. 根据权利要求17所述的装置,其特征在于,所述装置还包括收发器,用于所述装置与用户设备UE间的信息交互;
    所述处理器,具体用于:
    通过所述收发器获取所述UE到所述第一小区的信号强度;
    通过所述收发器获取所述UE到所述第二小区的信号强度;
    获取所述UE到所述第一小区的信号强度和所述UE到所述第二小区的信号强度的差值的绝对值。
  19. 根据权利要求17所述的装置,其特征在于,所述装置还包括收发器,用于所述装置与用户设备UE间的信息交互;
    所述处理器,具体用于:
    通过所述收发器获取用户设备UE到所述第一小区的信号强度;
    通过所述收发器获取所述UE到所述第二小区的信号强度;
    统计包含所述UE的多个UE到所述第一小区的信号强度和到所述第二小区的信号强度的差值的绝对值大于所述干扰门限的比例;
    所述第一小区与所述第二小区间的干扰大于干扰门限,包括:
    所述比例超过干扰比例门限。
  20. 根据权利要求18或19所述的装置,其特征在于,所述信号强度,包括:参考信号接收功率RSRP或信号干扰噪声比SINR。
  21. 根据权利要求17所述的装置,其特征在于,所述处理器,具体用于:获取所述第一小区与所述第二小区间的干扰系数。
  22. 根据权利要求17-21任一项所述的装置,其特征在于,所述处理器,具体用于:
    重建所述第二小区为普通小区;
    按时分子帧的方式,利用第一射频模块和第二射频模块调度所述SFN小区的UE,利用所述第二射频模块调度所述重建的第二小区的UE,所述第一射频模块为所述第一小区的射频模块,所述第二射频模块为所述第二小区的射频模块;
    触发所述SFN小区中处于所述第二射频模块覆盖范围的UE切换到所述重建的第二小区;
    切换完成后,只利用所述第一射频模块在所有的子帧调度所述第一小区的UE,只利用所述第二射频模块在所有的子帧调度所述重建的第二小区的UE。
  23. 根据权利要求22所述的装置,其特征在于,所述处理器,具体用于:
    利用第一射频模块和第二射频模块在奇数子帧调度所述SFN小区的UE,利用所述第二射频模块在偶数子帧调度所述重建的第二小区的UE。
  24. 根据权利要求17-21任一项所述的装置,其特征在于,所述处理器,具体用于:
    触发所述第二小区的UE切换到所述第二小区的异频同覆盖小区;
    切换完成后,删除所述SFN小区包含的所述第二小区;
    将所述第二小区重建为普通小区。
PCT/CN2015/099938 2015-12-30 2015-12-30 一种小区合并拆分的方法和装置 WO2017113217A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/099938 WO2017113217A1 (zh) 2015-12-30 2015-12-30 一种小区合并拆分的方法和装置
CN201580085560.4A CN108476409A (zh) 2015-12-30 2015-12-30 一种小区合并拆分的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099938 WO2017113217A1 (zh) 2015-12-30 2015-12-30 一种小区合并拆分的方法和装置

Publications (1)

Publication Number Publication Date
WO2017113217A1 true WO2017113217A1 (zh) 2017-07-06

Family

ID=59224375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099938 WO2017113217A1 (zh) 2015-12-30 2015-12-30 一种小区合并拆分的方法和装置

Country Status (2)

Country Link
CN (1) CN108476409A (zh)
WO (1) WO2017113217A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112235804A (zh) * 2020-10-12 2021-01-15 江苏亨鑫众联通信技术有限公司 基站远端单元动态划归方法和装置、小区组网方法和系统
US11659627B2 (en) 2021-08-09 2023-05-23 Corning Research & Development Corporation Systems and methods for splitting cells in a network for internet of things (IoT)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111200822B (zh) * 2018-11-20 2023-03-28 上海华为技术有限公司 小区划分方法以及接入网设备
CN114173352A (zh) * 2021-12-01 2022-03-11 中国电信股份有限公司 网络覆盖优化方法、装置、存储介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007021139A1 (en) * 2005-08-19 2007-02-22 Electronics And Telecommunications Research Institute Dynamic resource allocation method based on frequency reuse partitioning for ofdma/fdd system, and frame transmission method therefor
CN102316420A (zh) * 2011-10-24 2012-01-11 北京邮电大学 基于lte的多播单频网的拆分方法
CN103209416A (zh) * 2013-03-11 2013-07-17 华为技术有限公司 小区组网的方法及装置
CN103379520A (zh) * 2012-04-26 2013-10-30 电信科学技术研究院 一种进行干扰控制的方法和设备
WO2015042818A1 (en) * 2013-09-26 2015-04-02 Nec (China) Co., Ltd. Clustering method and apparatus for cross-subframe interference elimination and traffic adaptation and communications mechanism between baseband units
CN104641670A (zh) * 2012-09-19 2015-05-20 高通股份有限公司 用于针对lte eimta干扰缓解而分离小区簇的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103841582B (zh) * 2013-12-30 2017-11-21 上海华为技术有限公司 一种控制方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007021139A1 (en) * 2005-08-19 2007-02-22 Electronics And Telecommunications Research Institute Dynamic resource allocation method based on frequency reuse partitioning for ofdma/fdd system, and frame transmission method therefor
CN102316420A (zh) * 2011-10-24 2012-01-11 北京邮电大学 基于lte的多播单频网的拆分方法
CN103379520A (zh) * 2012-04-26 2013-10-30 电信科学技术研究院 一种进行干扰控制的方法和设备
CN104641670A (zh) * 2012-09-19 2015-05-20 高通股份有限公司 用于针对lte eimta干扰缓解而分离小区簇的方法和装置
CN103209416A (zh) * 2013-03-11 2013-07-17 华为技术有限公司 小区组网的方法及装置
WO2015042818A1 (en) * 2013-09-26 2015-04-02 Nec (China) Co., Ltd. Clustering method and apparatus for cross-subframe interference elimination and traffic adaptation and communications mechanism between baseband units

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112235804A (zh) * 2020-10-12 2021-01-15 江苏亨鑫众联通信技术有限公司 基站远端单元动态划归方法和装置、小区组网方法和系统
US11659627B2 (en) 2021-08-09 2023-05-23 Corning Research & Development Corporation Systems and methods for splitting cells in a network for internet of things (IoT)

Also Published As

Publication number Publication date
CN108476409A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
US10595239B2 (en) Data transmission method and device
US20200120530A1 (en) Information Transmission Method and Apparatus
US20160309491A1 (en) Channel selection method and device
AU2017207499A1 (en) Inter-cell fractional frequency reuse scheduler
EP3504893B1 (en) Identification of potentially neighboring network nodes in a wireless communication network
JP5398585B2 (ja) 無線通信システム及び基地局間協調通信制御方法
EP2830383A1 (en) A method to optimize almost blank subframe usage in a wireless network
EP3869856A1 (en) Load balancing method and device
WO2017113217A1 (zh) 一种小区合并拆分的方法和装置
WO2021088850A1 (zh) 消息发送方法和装置、消息接收方法和装置、设备和存储介质
WO2016000491A1 (zh) 确定拉远射频单元rru的方法与设备
CN108713330A (zh) 用于网络控制的切换和ue自主切换的混合方案
CN111465098B (zh) 一种信息传输方法及装置
JP5828704B2 (ja) 無線通信システムおよび通信制御方法
US20170303158A1 (en) Measurement method and device
CN113286331A (zh) 重建立的方法和通信装置
EP3185632A1 (en) Comp jt communication method and base station
CN113498125A (zh) 一种通信方法、接入网设备、终端设备和核心网设备
WO2022027811A1 (zh) 无线通信的方法、终端设备和网络设备
EP3703422A1 (en) Method and apparatus for identifying user device
US20230300927A1 (en) Communication Method, Communications Apparatus, and Storage Medium
EP3211952B1 (en) Joint interference rejection method and device, and method and device for realizing uplink comp
WO2017113215A1 (zh) 一种小区合并的方法和装置
WO2021088770A1 (zh) 一种测量配置方法及设备
WO2022133692A1 (zh) 状态切换的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911846

Country of ref document: EP

Kind code of ref document: A1