WO2017113214A1 - 光网络单元的检测方法、装置和无源光网络系统 - Google Patents

光网络单元的检测方法、装置和无源光网络系统 Download PDF

Info

Publication number
WO2017113214A1
WO2017113214A1 PCT/CN2015/099934 CN2015099934W WO2017113214A1 WO 2017113214 A1 WO2017113214 A1 WO 2017113214A1 CN 2015099934 W CN2015099934 W CN 2015099934W WO 2017113214 A1 WO2017113214 A1 WO 2017113214A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical network
network unit
optical
onu
dropped
Prior art date
Application number
PCT/CN2015/099934
Other languages
English (en)
French (fr)
Inventor
李成员
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580085367.0A priority Critical patent/CN108370271B/zh
Priority to PCT/CN2015/099934 priority patent/WO2017113214A1/zh
Publication of WO2017113214A1 publication Critical patent/WO2017113214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks

Definitions

  • the present invention relates to a PON (Passive Optical Network) technology, and in particular, to a method, an apparatus, and a passive optical network system for detecting an optical network unit.
  • PON Passive Optical Network
  • a passive optical network is a point-to-multipoint (P2MP) passive optical network consisting of an optical line terminal (OLT) and an optical distribution network (Optical Distribution Network).
  • the ODN is composed of at least one optical network unit (ONU) or an ONT (optical network terminal). Since the ONT can be regarded as a special ONU, the ONU is uniformly used in this document.
  • TDMA Time Division Multiple Access
  • the OLT performs bandwidth authorization for the ONU.
  • the bandwidth authorization is its illuminating time slot.
  • Each ONU has its own specific illuminating time slot.
  • the ONU allocates its own illuminating time slot according to the OLT.
  • the optical signal is sent to the OLT; in the downlink direction (from the OLT to the ONU), the OLT sends an optical signal to each ONU through broadcast.
  • each ONU transmits an optical signal only in a specific lighting time slot allocated to itself, and a rogue ONU is an ONU that does not emit light according to an illuminating time slot allocated by the OLT.
  • rogue ONUs There are many types of rogue ONUs. From the point of view of the luminous current of the rogue ONU, it can be divided into long-illumination rogue ONUs: ONUs that emit light at any time; non-long-emission rogues ONUs: emit light in non-OLT-assigned illumination slots, possibly It is pre-lighting, delayed shutdown, or the software of the ONU hangs.
  • the OLT when detecting rogue ONUs, the OLT sends a message to all ONUs, instructing all ONUs not to send optical signals, and all ONUs shut down the uplink ports to detect the presence of rogue ONUs, which will cause all ONUs to interrupt uplink communication services. Detecting the presence of a rogue ONU, And the detection efficiency is low.
  • the embodiment of the invention provides a method and a device for detecting an optical network unit and a passive optical network system, which can improve the detection efficiency and accuracy of the rogue ONU and reduce the impact on the uplink service.
  • a method for detecting an optical network unit comprising: detecting, by an optical line terminal, one or more optical network units being dropped; and the optical line terminal assigning the dropped optical network unit a time slot; the optical line terminal detects an optical signal in the allocated time slot, and determines that a streaming optical network unit exists in the dropped optical network unit.
  • the OLT Detecting that one or more ONUs are dropped by the OLT; the OLT allocates a time slot to the dropped ONU; and the OLT detects an optical signal in the allocated time slot, and determines the dropped line
  • a streaming optical network unit exists in the optical network unit, thereby improving the detection efficiency and accuracy of the rogue ONU and reducing the impact on the uplink service.
  • the detection method since the detection method does not need to make any changes to the ONU, and does not need to interrupt the uplink service of the ONU, the operation is convenient, reliable, and easy to implement, which greatly improves the user experience.
  • the assigning a time slot to the offline optical network unit by the optical line terminal specifically includes:
  • optical line terminal allocates a time slot to each of the optical network units identified by the logical identifier according to the logical identifier of the dropped optical network unit.
  • the ONU releases the logical identifier used for registration, so that the OLT is assigned to the newly-online ONU for registration.
  • the normal ONU will not receive the message of the allocated time slot sent by the OLT at this time, and will not make any response.
  • the rogue ONU especially the rogue ONU caused by the software hang, can still receive the message that the OLT allocates the time slot, and the OLT allocates the time slot to the identified ONU of the logical identifier according to the logical identifier of the dropped ONU.
  • the presence of the rogue ONU is quickly determined by detecting the optical signal at the time slot.
  • the optical line terminal allocates a time slot to the dropped optical network unit Body includes:
  • the optical line terminal allocates a unified time slot to the dropped optical network unit.
  • the optical line terminal is After the step of detecting the presence of the optical network unit in the allocated optical network unit, the step of determining the presence of the streaming optical network unit in the dropped optical network unit further includes:
  • the optical line terminal When the optical line terminal allocates the logical identifier of the dropped optical network unit to the newly registered optical network unit, the optical line terminal determines the current allocation in the historical allocation record according to the historical allocation record of the logical identifier.
  • the optical network unit identified by the logical identifier in the recorded previous allocation record is the rogue optical network unit.
  • the historical allocation record table of the logical identifier includes a logical identifier, a sequence number (SN), or a media access control (MAC) of the ONU.
  • the historical allocation record record of the logical identifier records the correspondence between the logical identifier of the ONU and the SN of the ONU, or records the correspondence between the logical identifier of the ONU and the MAC of the ONU.
  • the OLT searches for a historical allocation record of the logical identifier, and determines which ONU is used by the logical identifier in the previous allocation record of the current logical identifier allocation record, which may be used in the previous allocation record.
  • the SN or MAC determines whether the ONU identified by the SN or the MAC is a rogue ONU.
  • the OLT determines that the ONU identified by the logical identifier is the most accurate as the rogue ONU in the previous allocation record of the current allocation record in the historical allocation record, so that it can quickly determine which ONU is a rogue ONU, and can be based on
  • the history record table sends the SN information that uniquely identifies the ONU at the factory to the upper management device, so that the ONU is isolated to avoid affecting communication of other normal ONUs.
  • the optical line terminal detects that there is an optical signal in the allocated time slot, and determines that there is a rogue in the dropped optical network unit.
  • the steps of the optical network unit further include:
  • the optical line terminal When the optical line terminal allocates the logical identifier of the dropped optical network unit to the newly registered optical network unit, the optical line terminal determines that the optical network unit identified by the logical identifier is a rogue optical network. unit.
  • a detection device of an optical network unit includes: a processor, a user interface module, and an optical module, wherein the processor is connected to a user interface module, and the user interface module is connected to the optical module;
  • the processor is configured to: according to the offline information of one or more optical network units reported by the user interface module, the user interface module to allocate a time slot to the dropped optical network unit;
  • the user interface module reads that the optical module detects an optical signal in the allocated time slot, and determines that a streaming optical network unit exists in the dropped optical network unit;
  • the user interface module is configured to report, when the one or more optical network units are offline, report the offline information of the optical network unit to the processor; and send the offline according to the indication of the processor
  • the optical network unit allocates a time slot; according to the notification of the optical module, reading, by the optical module, information that the optical signal is detected in the allocated time slot;
  • the optical module is configured to detect an optical signal in the allocated time slot to notify the user interface module.
  • the detecting device of the optical network unit provided by the second aspect may be an optical line terminal device in a passive optical network system or integrated in the optical line terminal device.
  • the ONU releases the logical identifier used for registration, so that the OLT is assigned to the newly-online ONU for registration.
  • the normal ONU will not receive the message of the allocated time slot sent by the OLT at this time, and will not make any response.
  • the rogue ONU especially the rogue ONU caused by the software hang, can still receive the message that the OLT allocates the time slot, and the OLT allocates the time slot to the identified ONU of the logical identifier according to the logical identifier of the dropped ONU. , quickly determine the rogue ONU by detecting the optical signal in the time slot The presence.
  • the user interface module is specifically configured to: according to the optical network unit that is disconnected The logical identifier assigns a time slot to each of the optical network units identified by the logical identifier.
  • the ONU releases the logical identifier used for registration, so that the OLT is assigned to the newly-online ONU for registration.
  • the normal ONU will not receive the message of the allocated time slot sent by the OLT at this time, and will not make any response.
  • the rogue ONU especially the rogue ONU caused by the software hang, can still receive the message that the OLT allocates the time slot, and the OLT allocates the time slot to the identified ONU of the logical identifier according to the logical identifier of the dropped ONU.
  • the presence of the rogue ONU is quickly determined by detecting the optical signal at the time slot.
  • the user interface module is specific And is used to allocate a unified time slot to the dropped optical network unit.
  • the processor is specifically used When the logical identifier of the dropped optical network unit is allocated to the newly registered optical network unit, determining the previous allocation record of the currently allocated record in the historical allocation record according to the historical allocation record of the logical identifier The optical network unit identified by the logical identifier is the rogue optical network unit.
  • the historical allocation record table of the logical identifier includes a logical identifier, a sequence number (SN), or a media access control (MAC) of the ONU.
  • the historical allocation record record of the logical identifier records the correspondence between the logical identifier of the ONU and the SN of the ONU, or records the correspondence between the logical identifier of the ONU and the MAC of the ONU.
  • the OLT searches for a historical allocation record of the logical identifier, and determines which ONU is used by the logical identifier in the previous allocation record of the current logical identifier allocation record, which may be used in the previous allocation record.
  • the SN or MAC determines whether the ONU identified by the SN or the MAC is a rogue ONU.
  • the OLT determines that the ONU identified by the logical identifier is the most accurate as the rogue ONU in the previous allocation record of the current allocation record in the historical allocation record, so that it can quickly determine which ONU is a rogue ONU, and can be based on
  • the history record table sends the SN information that uniquely identifies the ONU at the factory to the upper management device, so that the ONU is isolated to avoid affecting communication of other normal ONUs.
  • the logical identifier of the dropped optical network unit has not been allocated to the newly registered optical network unit, it is determined that the optical network unit identified by the logical identifier is a rogue optical network unit.
  • a third aspect is an apparatus for detecting an optical network unit, the detecting apparatus comprising:
  • a detecting unit configured to detect that one or more optical network units are dropped
  • An allocating unit configured to allocate a time slot to the dropped optical network unit
  • a processing unit configured to detect that there is an optical signal in the allocated time slot, and determine that the streaming optical network unit exists in the dropped optical network unit.
  • the detecting device of the optical network unit provided by the third aspect may be an optical line terminal device in a passive optical network system or integrated in the optical line terminal device.
  • the allocating unit is specifically configured to: identify, according to the logical identifier of the dropped optical network unit, each of the logical identifiers The optical network unit allocates time slots.
  • the allocating unit is specifically configured to allocate a unified time to the dropped optical network unit Gap.
  • the processing unit is specifically configured to: when the logical identifier of the dropped optical network unit is allocated to the newly registered optical network unit, determine the history according to a historical allocation record of the logical identifier.
  • the optical network unit identified by the logical identifier in the previous allocation record of the current allocation record in the allocation record is the rogue optical network unit.
  • the processing unit is specifically used When the logical identifier of the dropped optical network unit has not been allocated to the newly registered optical network unit, it is determined that the optical network unit identified by the logical identifier is a rogue optical network unit.
  • a detecting apparatus of an optical network unit wherein the detecting apparatus of the optical network unit is configured to perform the detecting method of the optical network unit described in any one of the possible implementation manners of the first aspect.
  • the detecting device of the optical network unit provided by the fourth aspect may be an optical line terminal device in a passive optical network system or integrated in the optical line terminal device.
  • a fifth aspect provides a passive optical network system, where the optical network system includes: an optical line terminal, an optical distribution network, and at least one optical network unit, where the optical line terminal is connected to the optical network unit through an optical distribution network.
  • the optical line terminal includes the detection device of the optical network unit that may be implemented by any one of the foregoing second aspects, or the optical line terminal includes any one of the foregoing third aspects.
  • the detecting device of the optical network unit, or the optical line terminal comprises the detecting device of an optical network unit provided by the above fourth aspect.
  • An embodiment of the present invention provides a method for detecting an optical network unit, where one or more ONUs are detected by an OLT; the OLT allocates a time slot to the dropped ONU; and the OLT is in the allocated time. If an optical signal is detected in the slot, it is determined that the streaming optical network unit exists in the dropped optical network unit, thereby improving the detection efficiency and accuracy of the rogue ONU and reducing the impact on the uplink service.
  • the detection method does not need to make any changes to the ONU, and does not need to interrupt the uplink service of the ONU, the operation is convenient, reliable, and easy to implement, which greatly improves the user experience.
  • FIG. 1 is a schematic block diagram of an optical network system in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for detecting an optical network unit according to an embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of an apparatus for detecting an optical network unit in accordance with an embodiment of the present invention.
  • FIG 4 is another schematic block diagram of an apparatus for detection of an optical network unit in accordance with an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a network architecture of a passive optical network (PON) system to which the method, apparatus, and system for optical network unit detection provided by the present application are applicable.
  • the passive optical network system 100 includes at least one optical line termination (OLT) 110, a plurality of optical network units (ONUs) 120, and an optical distribution network (ODN) 130.
  • the optical line terminal 110 is connected to the plurality of optical network units 120 in a point-to-multipoint manner through the optical distribution network 130.
  • the optical line terminal 110 and the optical network unit 120 can communicate using a TDM mechanism, a WDM mechanism, or a TDM/WDM hybrid mechanism.
  • the direction from the optical line terminal 110 to the optical network unit 120 is defined as a downlink direction, and the direction from the optical network unit 120 to the optical line terminal 110 is an uplink direction.
  • the passive optical network system 100 can be a communication network that does not require any active devices to implement data distribution between the optical line terminal 110 and the optical network unit 120.
  • the optical line Data distribution between the terminal 110 and the optical network unit 120 can be implemented by passive optical devices (such as optical splitters) in the optical distribution network 130.
  • Passive optical network system 100 Gigabit passive light as defined in the ITU-T G.983 standard, Asynchronous Transfer Mode Passive Optical Network (ATM PON) system or Broadband Passive Optical Network (BPON) system, ITU-T G.984 series of standards Network (GPON) system, Ethernet Passive Optical Network (EPON), Wavelength Division Multiplexed Passive Optical Network (WDM PON) system defined by IEEE 802.3ah standard or next-generation passive optical network (NGA PON system, such as ITU- The XGPON system defined by the T G.987 series of standards, the 10G EPON system defined by the IEEE 802.3av standard, the TDM/WDM hybrid PON system, etc.).
  • ATM PON Asynchronous Transfer Mode Passive Optical Network
  • BPON Broadband Passive Optical Network
  • GPON Ethernet Passive Optical Network
  • WDM PON Wavelength Division Multiplexed Passive Optical
  • the optical line terminations 110 are typically located at a central location (e.g., Central Office, CO) that can collectively manage the plurality of optical network units 120.
  • the optical line terminal 110 may serve as a medium between the optical network unit 120 and an upper layer network (not shown), and forward data received from the upper layer network to the optical network unit 120 as downlink data, and The uplink data received from the optical network unit 120 is forwarded to the upper layer network.
  • the specific configuration of the optical line terminal 110 may vary depending on the specific type of the passive optical network 100.
  • the optical line terminal 110 may include a control module, a switch module, and an interface module (The interface module can convert the downlink data processed by the switching module into a downlink optical signal, and send the downlink optical signal to the optical network unit 120 through the optical distribution network 130, and receive the The optical network unit 120 transmits the uplink optical signal sent by the optical distribution network 130, and converts the uplink optical signal into a data signal such as Ethernet and provides the switching module to output to a network such as an Ethernet.
  • the interface module can convert the downlink data processed by the switching module into a downlink optical signal, and send the downlink optical signal to the optical network unit 120 through the optical distribution network 130, and receive the The optical network unit 120 transmits the uplink optical signal sent by the optical distribution network 130, and converts the uplink optical signal into a data signal such as Ethernet and provides the switching module to output to a network such as an Ethernet.
  • the optical network unit 120 can be distributedly disposed at a user-side location (such as a customer premises).
  • the optical network unit 120 may be a network device for communicating with the optical line terminal 110 and a user, and specifically, the optical network unit 120 may serve as an interface between the optical line terminal 110 and the user.
  • the medium for example, the optical network unit 120 may forward the downlink data received from the optical line terminal 110 to the user, and forward the data received from the user to the optical line terminal 110 as uplink data.
  • the specific configuration of the optical network unit 120 may be different depending on the specific type of the passive optical network 100.
  • the optical network unit 120 may include an optical transceiver component 300.
  • the component 300 is configured to receive the optical line terminal 110 by using the The downlink data signal transmitted by the optical distribution network 130, and the uplink data signal is transmitted to the optical line terminal 110 through the optical distribution network 130.
  • the structure of the optical network unit 120 is similar to that of an optical network terminal (ONT). Therefore, in the solution provided in this application, the optical network unit and the optical network terminal may mutually change.
  • the optical distribution network 130 can be a data distribution system that can include optical fibers, optical couplers, optical multiplexers/demultiplexers, optical splitters, and/or other devices.
  • the optical fiber, optical coupler, optical multiplexer/demultiplexer, optical splitter, and/or other device may be a passive optical device, in particular, the optical fiber, optical coupler, photosynthetic
  • the wave/demultiplexer, optical splitter, and/or other device may be a device that distributes data signals between the optical line terminal 110 and the optical network unit 120 without the need for power support.
  • the optical distribution network 130 may also include one or more processing devices, such as optical amplifiers or relay devices.
  • the optical distribution network 130 may specifically extend from the optical line terminal 110 to the plurality of optical network units 120, but may also be configured in any other point-to-multipoint structure. .
  • a method and apparatus for detecting an optical network unit may be applied to a PON system using TDM, for example, a GPON system, an Ethernet passive optical network (Ethernet) Passive Optical Network (referred to as "EPON") system, 10G EPON system or 10G GPON system, etc., for convenience of description, the GPON system will be exemplified below, but the present invention is not limited thereto.
  • TDM for example, a GPON system, an Ethernet passive optical network (Ethernet) Passive Optical Network (referred to as "EPON") system, 10G EPON system or 10G GPON system, etc.
  • FIG. 2 shows a schematic flowchart of a method 200 for detecting an optical network unit according to an embodiment of the present invention.
  • the method 200 may be performed by a detecting device of an optical network unit, for example, the method 200 may be performed by an OLT.
  • the location of the OLT in the PON system can be seen in Figure 1.
  • the method 200 includes:
  • the OLT detects that one or more ONUs are offline.
  • the OLT may have multiple ways to detect that the ONU is disconnected.
  • the OLT may not detect the light sent by the ONU in consecutive time slots allocated to the ONU. Signal, then determine that the ONU has been dropped, or is assigned to the ONU The response of the ONU is not received in the time slot, and the ONU is determined to be dropped. There may be other detection methods.
  • the OLT determines whether the ONU has been dropped or not, or detects the received signal strength indication of the ONU for a period of time by detecting signal detection (SD) information under the PON port for a period of time ( Received signal strength indicator (RSSI) and other information to determine whether the ONU is dropped, not limited to the standard specified detection method.
  • SD signal detection
  • RSSI Received signal strength indicator
  • the OLT can actively send outbound messages to indicate one or more, or even all ONUs are dropped.
  • the normal ONU receives the drop request from the OLT, it will actively drop the line, but the rogue The ONU, especially the rogue ONU that is dropped by the software, is still considered to be online after being dropped by the OLT. Therefore, it can continue to receive the message sent by the OLT.
  • the ONU is considered to be online, which in turn causes the OLT to
  • the ONU's offline status is inconsistent with the ONU's own online status due to software failure. It is because of this inconsistency that the OLT must first determine whether the ONU is offline, whether it is active or passive, and then through the follow-up. The action of the judgment to quickly determine if there is a rogue ONU.
  • the OLT allocates a time slot to the dropped ONU.
  • the state of the dropped ONU is described. After the normal ONU is disconnected, the ONU will release the logical identifier used when the ONU is registered, and will not receive and send data. However, the rogue ONU, especially the rogue ONU caused by the failure of the software program of the ONU, is also called the ONU of the software hanged. After the software hangs, the control plane of the ONU can no longer work, for example, ONU The physical layer operation (administration and maintenance, PLOAM) message or the optical network terminal management and control interface (OMCI) message sent by the OLT cannot be received, but the forwarding plane can still work. For example, the ONU can still receive a bandwidth map (BWmap) message sent by the OLT.
  • PLOAM administration and maintenance
  • OMCI optical network terminal management and control interface
  • the OLT For the OLT, whether the ONU is actively dropped or the OLT drops it, the OLT considers the ONU to be in the offline state; but for the rogue ONU, the rogue ONU is still online, which results in the OLT and the ONU. ONU The online and offline status are inconsistent. In turn, this feature can be used to allocate time slots to the ONUs that are dropped. The normally dropped ONUs will not receive any messages sent by the OLT at this time, but the rogue ONU can still receive the OLT. The allocated time slots are illuminated in the time slots allocated by the OLT, so that the OLT can quickly and accurately identify the presence of rogue ONUs.
  • the OLT allocates time slots to dropped ONUs in two alternative ways:
  • the OLT allocates a time slot to each ONU identified by the logical identifier according to the logical identifier of the dropped ONU.
  • the logical identifier is a logical identifier assigned by the OLT to the ONU when the ONU is registered.
  • the logical identifier may be an ONU identifier
  • the logical identifier may be a logical link identifier (Logical Link Identifier). , LLID).
  • the ONU releases the logical identifier used for registration, so that the OLT is assigned to the newly-online ONU for registration.
  • the normal ONU will not receive the message of the allocated time slot sent by the OLT at this time, and will not make any response.
  • the rogue ONU especially the rogue ONU caused by the software hang, can still receive the message that the OLT allocates the time slot, and the OLT allocates the time slot to the identified ONU of the logical identifier according to the logical identifier of the dropped ONU.
  • the presence of the rogue ONU is quickly determined by detecting the optical signal at the time slot.
  • the message of the allocated time slot sent by the OLT may be a bandwidth map (BWmap) message, which is based on the G.984 standard of the PON, and is a message used by the OLT to allocate a time slot to the ONU. See standard and will not be described in detail here.
  • BWmap bandwidth map
  • outflow ⁇ ONU greatly improves the security and reliability of the system Sex.
  • the OLT allocates time slots according to the logical identifier of the dropped ONU, so that after detecting the presence of the rogue ONU, it can further quickly determine which ONU is the rogue ONU, and finally accurately locates the rogue ONU itself. Determining which ONU is a rogue ONU will be described in detail in the following step S216, and will not be described here.
  • the OLT allocates a unified time slot to the dropped ONU.
  • the OLT allocates a unified time slot to all the ONUs, and as long as there is a rogue ONU in the dropped ONU, it can emit light in the time slot, and the OLT detects the optical signal in the time slot, thereby Quickly determine the presence of a rogue ONU.
  • the OLT allocates a unified time slot to the dropped ONUs without specific restrictions on the time slots, and allocates the time slots according to the TDM manner, as long as it does not affect the uplink communication services of other normal online ONUs. In this way, the uplink communication service of the normal online ONU can be interrupted, and the presence of the rogue ONU can be quickly and easily determined.
  • the OLT detects that there is an optical signal in the allocated time slot, and determines that a rogue ONU exists in the dropped ONU.
  • the normally dropped ONU will no longer accept messages such as allocating time slots, nor will it transmit optical signals in the assigned time slots, but the ONUs, especially the software-dead ONUs, because the ONUs are the ONUs for the OLT.
  • the OLT can also receive the message of the allocated time slot sent by the OLT, and the ONU can send the optical signal to the time slot allocated by the OLT for the OLT.
  • the OLT can determine the presence of a rogue ONU by detecting the optical signal within the assigned time slot.
  • the optical signal of the ONU can be detected in the time slot in the allocated time slot as long as there is a rogue ONU. Since this is the normal allocation of the OLT The process of the time slot does not affect the uplink communication service of the normal ONU, and does not need to interrupt the uplink communication service of the ONU, so that the entire detection process can be completed, and the detection process is simple, fast, and has high accuracy, which greatly reduces the PON. The maintenance cost of the system and the reliability and security of the PON are improved.
  • the present application further proposes a method of determining which ONU is a rogue ONU, but is not limited to this manner.
  • the method further includes:
  • the OLT allocates the logical identifier of the dropped ONU to the newly registered ONU, the OLT determines the previous allocation record of the currently allocated record in the historical allocation record according to the historical allocation record of the logical identifier.
  • the ONU identified by the logical identifier is the ONU.
  • step S212 Further determining which ONU is the rogue ONU also needs to allocate a time slot to the first type of the foregoing step S212, that is, the OLT allocates a time slot to the ONU identified by the logical identifier according to the logical identifier of the dropped ONU, so that There are two optional cases: one is that the logical identifier has been assigned by the OLT to the newly registered ONU; the other is that the logical identifier has not been allocated by the OLT. Next, it is specifically described for the first case how step S216 determines which ONU is a rogue ONU.
  • the logical registration code used for registering the ONU is released.
  • the OLT allocates the logical registration code to the new ONU for registration.
  • the rogue ONU does not release the logical registration code, which results in a logical registration code for both ONUs.
  • the OLT allocates time slots according to this logical registration code, both the newly registered ONU and the dropped ONU will receive the allocated time slots, and will emit light in the allocated time slots, which causes the OLT to allocate time slots.
  • the optical signal can be detected to determine the presence of a rogue ONU, but since both ONUs in the time slot are illuminated, the OLT cannot parse the optical signal, and the rogue ONU will further cause the newly registered ONU to fail to complete the registration. The process, so it is necessary to further identify the rogue ONU.
  • the historical allocation record of the logical identifier includes the logical identifier of the ONU, a sequence number (SN), or a media access control (MAC), and the logic of each ONU.
  • the identifier has a one-to-one correspondence with the SN of the ONU, or the logical identifier of each ONU has a one-to-one correspondence with the MAC of the ONU.
  • the ONU is set to have the SN in the GPON, and the MAC in the EPON is set for each ONU at the time of shipment, and uniquely identifies the ONU.
  • the OLT searches for a historical allocation record of the logical identifier, and determines which ONU is used by the logical identifier in the previous allocation record of the current logical identifier allocation record, which may be used in the previous allocation record.
  • the SN or MAC determines whether the ONU identified by the SN or the MAC is a rogue ONU.
  • the logical identification code of the OLT can also be allocated to multiple newly registered ONUs. Therefore, when the rogue ONU is determined, it is determined that the ONU identified by the logical identifier in the previous allocation record of the current allocation record in the historical allocation record is the most accurate, which can be fast. It is determined which ONU is a rogue ONU, and the SN information that uniquely identifies the ONU at the factory is sent to the upper management device according to the history record table, so that the ONU is isolated to avoid affecting communication of other normal ONUs.
  • the OLT has not assigned the logical identifier of the dropped ONU to the newly registered ONU.
  • the OLT has not assigned the logical identifier of the dropped ONU to the newly registered ONU.
  • how to identify which ONU is a rogue ONU see step S218.
  • the optical line terminal allocates the logical identifier of the dropped optical network unit to the newly registered optical network unit, the optical line terminal determines that the optical network unit identified by the logical identifier is rogue. Optical network unit.
  • the OLT uses the logical identifier of the dropped ONU to be allocated to the newly registered ONU, since the OLT allocates the time slot according to the logical identifier of the dropped ONU, when the OLT detects in the time slot, To the optical signal, only the ONU of the logical identifier is sent, so the ONU identified by the logical identifier is a rogue ONU.
  • the OLT may further search for a historical allocation record of the logical identifier, where the logical identifier historical allocation record includes: a logical identifier of the ONU, an SN, or a MAC, etc., by searching a logical identifier of the ONU, obtaining an SN of the ONU or The MAC sends the SN or MAC that uniquely identifies the ONU to the upper-layer device at the factory setting, so that the ONU is taken out next door to avoid affecting the communication services of other normal ONUs.
  • An embodiment of the present invention provides a method for detecting an optical network unit, where one or more ONUs are detected by an OLT; the OLT allocates a time slot to the dropped ONU; and the OLT is in the allocated time. If an optical signal is detected in the slot, it is determined that the streaming optical network unit exists in the dropped optical network unit, thereby improving the detection efficiency and accuracy of the rogue ONU and reducing the impact on the uplink service.
  • the detection method does not need to make any changes to the ONU, and does not need to interrupt the uplink service of the ONU, the operation is convenient, reliable, and easy to implement, which greatly improves the user experience.
  • the detection method of the optical network unit according to the embodiment of the present invention is described in detail above with reference to FIG. 2, and the detection apparatus and optical network system of the optical network unit according to the embodiment of the present invention will be described in detail below with reference to FIG. 3, FIG. 4 and FIG.
  • the detecting device for the optical network unit may be an OLT, and the device may be used to perform the detecting method of the optical network unit described in FIG. 2 and the corresponding embodiment, and the detecting process is described in detail below in combination with the structure of each device. .
  • FIG. 3 shows a schematic block diagram of a detection device 300 of an optical network unit in accordance with an embodiment of the present invention.
  • the apparatus 300 includes at least a processor 310, a user interface module 320, and the optical module 340.
  • the processor 310 is connected to the user interface module 320, and the user interface module 320 is connected to the optical module 340.
  • the processor 310 is configured to instruct the user interface module to allocate a time slot to the dropped optical network unit according to the offline information of one or more optical network units reported by the user interface module;
  • the user interface module reads that the optical module detects an optical signal in the allocated time slot, and determines that a streaming optical network unit exists in the dropped optical network unit.
  • the user interface module 320 is configured to report, when the one or more optical network units are offline, report the offline information of the optical network unit to the processor, and send the information according to the indication of the processor.
  • the optical network unit of the line allocates a time slot; according to the notification of the optical module, the optical module is read to detect information of the optical signal in the allocated time slot.
  • the optical module 340 is configured to detect an optical signal in the allocated time slot, and notify the User interface module.
  • the detection devices 300 of the plurality of ONUs can be integrated through the backplane connector, integrated on the backplane, and controlled by the main control board.
  • the detection device of the ONU can be integrated into the OLT or the OLT device.
  • Multiple OLT devices can be integrated as a single board through the backplane connector and connected to the main control board of the backplane.
  • one end of the detection device 300 of the ONU is connected to a user-side device, such as an ONU, and the other side is connected to a network device through a backplane, such as various servers.
  • the detection device of the ONU can be integrated in the OLT device of FIG. 1 .
  • the detecting device 300 of the ONU may further include: a network switching module 330.
  • the processor 310 is connected to the network switch module 330 at the user interface module 320, and the other end is connected to the main control board of the backplane through a backplane connector.
  • the processor 310 can be used to receive the master on the backplane.
  • the instructions of the board are communicated with the user interface module 320 and the network switching module 330, respectively.
  • the other end of the user interface module 320 is connected to the optical module, and one end is connected to the network switching module 330.
  • the data received by the network switching module is forwarded to the user side device through the optical module 340, or the data of the user side device is used.
  • the data is forwarded to the network switching module 330 for processing by the optical module 340.
  • One end of the network switching module 330 is connected to the user interface module 320, and the other end is connected to the main control board on the backplane through a backplane connector for receiving data on the network side, for example, data from the Ethernet, and the network side
  • the data is converted into an optical signal, which is sent to the user interface module 320 and sent to the user side device; or receives the data from the user side received by the user interface module 320, and the data is in the format of the network side device that needs to be sent, for example, receiving from
  • the optical signal of the user interface module converts the optical signal into an Ethernet frame for transmission to the Ethernet.
  • the detecting device 300 of the ONT may further include: a power module for supporting a voltage required by the board; and a clock module for supporting a clock required by the board.
  • the detection device of the ONT may be integrated into a central office device such as an OLT, or may be detected by each module of the existing OLT device, for example, FIG.
  • the detecting device 300 can be a single piece of a board and connected to the backboard through a backplane connector.
  • the standby 300 can also include a backplane connector and a backplane, and a main control board and a DC power supply on the backplane, wherein the DC power source is used to provide power to the detection device.
  • the processor may be a central processing unit (“CPU"), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and dedicated processors. Integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the user interface module may be a (Media Access Control, MAC) MAC chip or a MAC module.
  • MAC Media Access Control
  • processors can be integrated on the hardware in logic or software.
  • the user interface module 320 allocates time slots to the dropped ONUs according to the indication of the processor 310. There are two alternative ways to allocate:
  • the user interface module 320 is specifically configured to allocate a time slot to each ONU identified by the logical identifier according to the logical identifier of the dropped optical network unit.
  • the logical identifier of the dropped ONU may be allocated by the processor 310 to the ONU, and then sent to the user interface module 320. Alternatively, the logical identifier of the dropped ONU may be allocated by the user interface module 320. .
  • the logical identifier is a logical identifier assigned by the user interface module 320 to the ONU when the ONU is registered.
  • the logical identifier may be an ONU identifier ONU ID for the GPON, and the logical identifier may be a logical link for the EPON.
  • Logical Link Identifier (LLID) is a logical identifier assigned by the user interface module 320 to the ONU when the ONU is registered.
  • the logical identifier may be an ONU identifier ONU ID for the GPON, and the logical identifier may be a logical link for the EPON.
  • Logical Link Identifier LLID
  • the ONU releases the logical identifier used in the registration, so that the processor 310 instructs the user interface module 320 to be used when registering the newly uploaded ONU.
  • the normal ONU will not receive the message of the allocated time slot sent by the user interface module 320 at this time, and will not make any response.
  • the rogue ONU especially the rogue ONU caused by the software hangs, the ONU can still receive the user interface module 320.
  • the time slot message is allocated, and the user interface module 320 allocates a time slot to the identified ONU of the logical identifier according to the logical identifier of the dropped ONU, and quickly determines the rogue ONU by detecting the optical signal in the time slot. presence.
  • the message of the allocated time slot sent by the user interface module 320 may be a bandwidth map (BWmap) message, which is based on the standard specification of the G.984 of the PON, and is when the user interface module 320 allocates to the ONU.
  • BWmap bandwidth map
  • the optical module 340 can allocate a time slot to the dropped ONU to detect whether there is light in the time slot, and can quickly and accurately determine whether there is a rogue ONU. As long as there is a rogue ONU in the dropped ONU, the ONU of the rogue ONU is inconsistent with the offline status of the ONU determined by the processor 310, so that the dropped ONU still considers itself to be online and continues to receive.
  • the time slot allocated by the OLT since the OLT is a process of allocating time slots normally, it does not affect the communication of the normal online ONU, that is, it does not affect or interrupt the data communication service of the uplink port of the normal ONU, and can be fast.
  • the user interface module 320 allocates a time slot according to the logical identifier of the dropped ONU according to the instruction of the processor 310, so that after detecting the existence of the rogue ONU, the processor 310 may further The historical allocation record of the logical identifier further determines which ONU is the rogue ONU, and finally accurately locates the rogue ONU itself. Determining which ONU is a rogue ONU will be described in detail in the following hardware modules, and will not be described here.
  • the user interface module 320 is specifically configured to allocate a unified time slot to the dropped ONU.
  • the user interface module 320 allocates a unified time slot to all the ONUs, and as long as there is a rogue ONU in the dropped ONU, it can emit light in the time slot, and then be connected by the user.
  • the port module 320 detects the optical signal within the time slot to quickly determine the presence of the rogue ONU.
  • the user interface module 320 allocates a unified time slot to the dropped ONU, and does not specifically limit the time slot, and allocates the time slot according to the TDM manner, as long as it does not affect the uplink communication of other normal online ONUs.
  • the service is premised, so that the uplink communication service of the normal online ONU can be performed without interrupting, and the existence of the rogue ONU can be quickly and easily determined.
  • the user interface module 320 determines that there is a rogue ONU, there may be multiple ways to further determine which ONU is a rogue ONU.
  • the present application further proposes a method of determining which ONU is a rogue ONU, but is not limited to the manner. .
  • the processor 310 is specifically configured to: when the logical identifier of the dropped optical network unit is allocated to the newly registered optical network unit, determine the current allocation record in the historical allocation record according to the historical allocation record of the logical identifier.
  • the optical network unit identified by the logical identifier in the previous allocation record is the rogue optical network unit.
  • the logical identifier of the dropped ONU may be allocated by the processor 310 and allocated to the ONU through the user interface module 320 for use in the ONU registration.
  • the processor 310 determines that the ONU is offline, and the newly registered ONU needs to be registered, the historical allocation record of the logical identifier of the dropped ONU may be stored for further determining which ONU is a rogue ONU.
  • the user interface module 320 gives the logic according to the logical identifier of the dropped ONU.
  • the identified ONU allocates a time slot, so that there are two optional cases: one is that the logical identifier has been allocated by the user interface module 320 to the newly registered ONU; the other is that the logical identifier has not been used by the user interface.
  • Module 320 is assigned for use by other ONTs.
  • the logical registration code used for registering the ONU is released.
  • the processor 310 allocates the logical registration code to the new ONU for registration.
  • the rogue ONU does not release the logical registration code, which results in a logical registration code for both ONUs.
  • the processor 310 instructs the user interface module 320 to allocate a time slot according to the logical registration code, the newly registered ONU and the dropped ONU will receive the allocated time slot, and emit light in the allocated time slot.
  • the optical module 340 can detect the optical signal in the allocated time slot, and then notify the processor to read the detection result through the user interface module, and determine the presence of the rogue ONU according to the detection result, but because the time slot is Both ONUs are illuminated, causing the user interface module 320 to be unable to resolve the optical signal, and the rogue ONU will further cause the newly registered ONU to fail to complete the registration process, so it is necessary to further identify the rogue ONU.
  • the historical allocation record table of the logical identifier includes the logical identifier, sequence number (SN) or media of the ONU.
  • Information such as the access control (MAC), the logical identifier of each ONU has a one-to-one correspondence with the SN of the ONU, or the logical identifier of each ONU has a one-to-one correspondence with the MAC of the ONU.
  • the ONU is set to have the SN in the GPON, and the MAC in the EPON is set for each ONU at the time of shipment, and uniquely identifies the ONU.
  • the user interface module 320 determines that a rogue ONU exists, the user interface module searches for a historical allocation record of the logical identifier, and determines which ONU is used by the logical identifier in the previous allocation record of the current logical identifier allocation record.
  • the SN or MAC in the record is allocated once to determine that the ONU identified by the SN or the MAC is a rogue ONU.
  • the logical identification code can also be allocated to multiple newly registered ONUs. Therefore, when the rogue ONU is determined, it is determined that the ONU identified by the logical identifier in the previous allocation record of the current allocation record in the historical allocation record is the most accurate, so that it can be fast.
  • the ONU is determined to be a rogue ONU, and the SN information that uniquely identifies the ONU at the factory is sent to the upper management device according to the history record table, so that the ONU is isolated to avoid affecting communication of other normal ONUs.
  • the processor 310 has not assigned the logical identifier of the dropped ONU to the newly registered ONU. In this case, how to identify which ONU is described in the following description:
  • the processor 310 is specifically configured to: when the logical identifier of the dropped optical network unit has not been allocated to the newly registered optical network unit, determine that the optical network unit identified by the logical identifier is a rogue optical network unit. .
  • the user interface processing module allocates the logical identifier of the ONU that is disconnected according to the processor 310.
  • the optical module 340 detects the optical signal in the time slot, and only the ONU of the logical identifier is sent, so the ONU identified by the logical identifier is a rogue ONU.
  • the processor 310 may further search for a historical allocation record of the logical identifier, where the logical identifier history allocation record includes: a logical identifier of the ONU, an SN, or a MAC, etc., by searching a logical identifier of the ONU, obtaining an SN of the ONU. Or MAC, send the SN or MAC that uniquely identifies the ONU to the upper-layer device, etc., so that the ONU is taken out next door to avoid affecting the communication services of other normal ONUs.
  • An embodiment of the present invention provides a detecting apparatus of an optical network unit, where one or more ONUs are detected by a processor in the detecting device, and the user interface module is instructed to allocate a time slot to the dropped optical network unit.
  • the user interface module detects that there is an optical signal in the allocated time slot, and determines that the streaming optical network unit exists in the dropped optical network unit, thereby improving detection efficiency and accuracy of the rogue ONU, and reducing Impact on the upstream business.
  • the detection method does not need to make any changes to the ONU, and does not need to interrupt the uplink service of the ONU, the operation is convenient, reliable, and easy to implement, which greatly improves the user experience.
  • the embodiment of the present invention further provides a detection device 400 for another optical network unit, wherein the detection device 400 includes:
  • the detecting unit 402 is configured to detect that one or more optical network units are dropped;
  • An allocating unit 404 configured to allocate a time slot to the dropped optical network unit
  • the processing unit 406 is configured to detect that there is an optical signal in the allocated time slot, and determine that the streaming optical network unit exists in the dropped optical network unit.
  • the rogue ONU can be quickly and accurately identified.
  • the allocating unit 404 allocates a time slot to the dropped optical network unit by using the following two optional methods: First, the allocating unit 404 is configured to: according to the dropped optical network unit The logical identifier is assigned to the optical network unit identified by each of the logical identifiers. Second, the allocating unit 404 is specifically configured to allocate the unified time slot to the dropped optical network unit.
  • the fast and accurate identification of the rogue ONU can further quickly identify which rogue ONU is in the following two ways: one way is:
  • the processing unit 406 is specifically configured to: when the logical identifier of the dropped optical network unit is allocated to the newly registered optical network unit, determine the current allocation record in the historical allocation record according to the historical allocation record of the logical identifier.
  • the optical network unit identified by the logical identifier in the previous allocation record is the rogue optical network unit.
  • the processing unit 406 is specifically configured to: when the logical identifier of the dropped optical network unit has not been allocated to the newly registered optical network unit, determine the optical network unit identified by the logical identifier. It is a streaming optical network unit.
  • An embodiment of the present invention provides a detecting apparatus of an optical network unit, where one or more ONUs are detected by a processor in the detecting device, and the user interface module is instructed to allocate a time slot to the dropped optical network unit.
  • the user interface module detects that there is an optical signal in the allocated time slot, and determines that the streaming optical network unit exists in the dropped optical network unit, thereby improving detection efficiency and accuracy of the rogue ONU, and reducing Impact on the upstream business.
  • the detection method does not need to make any changes to the ONU, and does not need to interrupt the uplink service of the ONU, the operation is convenient, reliable, and easy to implement, which greatly improves the user experience.
  • the embodiment of the present invention further provides a detection device for an optical network unit, such as an optical line terminal, for performing the detection method of the optical network unit described in FIG. 2 and the embodiment corresponding to FIG. 2, which is shown in FIG. 2 . And a description corresponding to the specific embodiment of FIG. 2, and details are not described herein again.
  • an optical network unit such as an optical line terminal
  • the optical network system includes: an optical line terminal, an optical distribution network, and at least one optical network unit, where the optical line terminal passes optical distribution.
  • the network is connected to the optical network unit, where the optical line terminal is configured to detect that one or more optical network units are dropped; and the optical line terminal allocates time slots to the dropped optical network unit; The optical line terminal detects that there is an optical signal in the allocated time slot, and determines that the streaming optical network unit exists in the dropped optical network unit.
  • the specific optical line terminal may include the detecting device 300 of the optical network unit as shown in FIG. 3, and the hardware structure diagram and the functions performed by the hardware modules are specifically described in the description of the corresponding embodiments, and details are not described herein again.
  • the specific optical circuit may also include the detection device 400 of the optical network unit as shown in FIG. 4 .
  • the hardware structure diagram and the functions performed by the hardware modules are specifically described in the description of the corresponding embodiments, and details are not described herein again.
  • An embodiment of the present invention provides a passive optical network system, in which one or more ONUs are detected by a processor in a detecting device, and the user interface module is instructed to allocate a time slot to the dropped optical network unit.
  • the user interface module detects that there is an optical signal in the allocated time slot, and determines that the streaming optical network unit exists in the dropped optical network unit, thereby improving detection efficiency and accuracy of the rogue ONU, and reducing The impact of upstream business.
  • the detection method does not need to make any changes to the ONU, and does not need to interrupt the uplink service of the ONU, the operation is convenient, reliable, and easy to implement, which greatly improves the user experience.
  • the optical module includes an optical power detection module, and the optical power detection module receives the trigger signal of each of the uplink optical signals generated by the control module, and detects each of the trigger signals of each of the uplink optical signals. The power of the upstream optical signal.
  • the detecting apparatus of the optical network unit according to the embodiment of the present invention may correspond to the executing body of the method according to the embodiment of the present invention, and may also correspond to each of the foregoing mentioned in the foregoing embodiments.
  • the optical network detecting device, and the above-mentioned and other operations and/or functions of the respective modules in the device are respectively implemented in order to implement the corresponding processes of the method in FIG. 2, and are not described herein again for brevity.
  • a method, apparatus, and system for detecting an optical network unit detects that one or more ONUs are dropped; assigns a time slot to the dropped ONU; in the allocated time slot. If an optical signal is detected, it is determined that there is a streaming optical network unit in the dropped optical network unit, thereby improving the detection efficiency and accuracy of the rogue ONU and reducing the impact on the uplink service.
  • the detection method does not need to make any changes to the ONU, and does not need to interrupt the uplink service of the ONU, the operation is convenient, reliable, and easy to implement, which greatly improves the user experience.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be Ignore, or not execute.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明公开了一种检测上行光信号的功率的方法、装置、和光网络系统。该方法包括:通过检测到一个或者多个ONU掉线;给所述掉线的ONU分配时隙;在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元,进而能够提高流氓ONU的检测效率和准确程度,减少对上行业务的影响。另外,由于该检测方法不需要对ONU进行任何改动,且不需要中断ONU的上行业务,操作方便、可靠,易于执行,极大地提高了用户的体验程度。

Description

光网络单元的检测方法、装置和无源光网络系统 技术领域
本发明涉及PON(Passive Optical Network,无源光网络)技术,特别是涉及一种光网络单元的检测方法、装置和无源光网络系统。
背景技术
接入PON(passive optical network,无源光网络)是一种点到多点(P2MP)结构的无源光网络,由光线路终端(optical line terminal,OLT)、光分配网络(Optical Distribution Network,ODN)和至少一个光网络单元(optical network unit,ONU)或者ONT(optical network terminal,光网络终端)组成。由于ONT可以看成是一种特殊的ONU,本文以下统一使用ONU。
上行方向(从ONU到OLT的方向),所有的ONU通过时分多址(Time Division Multiple Access,TDMA)方式共享光传输介质。在TDMA方式下,OLT对ONU进行带宽授权,对ONU来说,这种带宽授权即为其发光时隙,每个ONU都有自己特定的发光时隙,ONU按照OLT给自身分配的发光时隙发送光信号给OLT;下行方向(从OLT到ONU的方向),OLT通过广播方式发送光信号给各个ONU。
在正常情况下,各ONU只有在分配给自身的特定发光时隙内才会发送光信号,而流氓ONU就是不按照OLT分配的发光时隙发光的ONU。
流氓ONU的种类很多,从流氓ONU的发光的时间来看,可以分为长发光流氓ONU:任意时刻都在发光的ONU;非长发光流氓ONU:在非OLT分配的发光时隙内发光,可能是提前发光、延迟关断或者该ONU的软件挂死等。
目前在检测流氓ONU时,OLT发送消息给所有ONU,指令所有ONU不发送光信号,通过所有ONU关断上行端口,以检测是否有流氓ONU的存在,这将导致所有ONU需要中断上行通信业务来检测流氓ONU的存在, 并且检测效率低。
发明内容
本发明实施例提供了一种光网络单元的检测方法、装置和无源光网络系统,能够提高流氓ONU的检测效率和准确程度,减少对上行业务的影响。
第一方面,提供了一种光网络单元的检测方法,所述方法包括:光线路终端检测到一个或者多个光网络单元掉线;所述光线路终端给所述掉线的光网络单元分配时隙;所述光线路终端在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元。
通过OLT检测到一个或者多个ONU掉线;所述OLT给所述掉线的ONU分配时隙;所述OLT在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元,进而能够提高流氓ONU的检测效率和准确程度,减少对上行业务的影响。另外,由于该检测方法不需要对ONU进行任何改动,且不需要中断ONU的上行业务,操作方便、可靠,易于执行,极大地提高了用户的体验程度。
结合第一方面,在第一方面的第一种可能的实现方式中,所述光线路终端给所述掉线的光网络单元分配时隙具体包括:
所述光线路终端根据所述掉线的光网络单元的逻辑标识,给每个所述逻辑标识所标识的光网络单元分配时隙。
正如上面描述的可知,正常的ONU掉线后,该ONU释放注册时使用的逻辑标识,以便OLT分配给新上线的ONU注册时使用。该正常的ONU此时不会再接收OLT发送的分配时隙的消息,更不会作出任何响应。但是流氓ONU,尤其是软件挂死导致的流氓ONU,此时ONU仍然能够接收OLT分配时隙的消息,而OLT根据掉线的ONU的逻辑标识,给该逻辑标识所述标识的ONU分配时隙,通过在该时隙检测到光信号进而快速确定流氓ONU的存在。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述光线路终端给所述掉线的光网络单元分配时隙具 体包括:
所述光线路终端给所述掉线的光网络单元分配统一时隙。
上述给所述掉线的ONU分配统一时隙比第一种方式去确定流氓ONU的存在要更为简便、快速。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第三种可能的实现方式或者第一方面的第二种可能实现方式中,所述光线路终端在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元的步骤之后还包括:
当所述光线路终端将所述掉线的光网络单元的逻辑标识分配给新注册的光网络单元时,所述光线路终端根据逻辑标识的历史分配记录,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的光网络单元为该流氓光网络单元。
另外,所述逻辑标识的历史分配记录表包括有该ONU的逻辑标识、序列号(sequence number,SN)或者媒体接入控制(Media Access Control,MAC)。
所述逻辑标识的历史分配记录表记录:ONU的逻辑标识与ONU的SN的对应关系,或者,记录ONU的逻辑标识与ONU的MAC的对应关系。
当有OLT确定有流氓ONU存在时,OLT查找逻辑标识的历史分配记录,确定当前逻辑标识分配记录的前一次分配记录中所述逻辑标识分配给哪个ONU使用了,具体可以通过前一次分配记录中的SN或者MAC来确定该SN或者MAC所标识的ONU为流氓ONU。
OLT通过确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的ONU为流氓ONU是最准确的,这样可以快速的确定出哪个ONU是流氓ONU,并且可以根据所述历史记录表,将出厂时唯一标识ONU的SN信息发送给上层管理设备,使得该ONU被隔离,避免影响其他正常ONU的通信。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第三 种可能的实现方式或者第一方面的第二种可能实现方式中,所述光线路终端在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元的步骤之后还包括:
当所述光线路终端将所述掉线的光网络单元的逻辑标识还未分配给新注册的光网络单元时,所述光线路终端确定所述逻辑标识所标识的光网络单元为流氓光网络单元。
第二方面,一种光网络单元的检测装置,至少包括:处理器、用户接口模块和光模块,所述处理器与用户接口模块连接,所述用户接口模块与所述光模块连接;
所述处理器,用于根据所述用户接口模块上报的一个或者多个光网络单元的掉线信息,指示所述用户接口模块给所述掉线的光网络单元分配时隙;当通过所述用户接口模块读取到所述光模块在所述分配的时隙检测到有光信号,确定所述掉线的光网络单元中存在流氓光网络单元;
所述用户接口模块,用于检测到一个或者多个光网络单元掉线时,上报所述光网络单元的掉线信息给所述处理器;根据所述处理器的指示,给所述掉线的光网络单元分配时隙;根据所述光模块的通知,读取所述光模块在所述分配的时隙内检测到有光信号的信息;
所述光模块,用于在所述分配的时隙内检测到有光信号,通知所述用户接口模块。
其中,第二方面提供的所述光网络单元的检测装置可以是无源光网络系统中的光线路终端设备,或者集成在所述光线路终端设备中。
正如上面描述的可知,正常的ONU掉线后,该ONU释放注册时使用的逻辑标识,以便OLT分配给新上线的ONU注册时使用。该正常的ONU此时不会再接收OLT发送的分配时隙的消息,更不会作出任何响应。但是流氓ONU,尤其是软件挂死导致的流氓ONU,此时ONU仍然能够接收OLT分配时隙的消息,而OLT根据掉线的ONU的逻辑标识,给该逻辑标识所述标识的ONU分配时隙,通过在该时隙检测到光信号进而快速确定流氓ONU 的存在。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述用户接口模块具体用于,根据所述掉线的光网络单元的逻辑标识,给每个所述逻辑标识所标识的光网络单元分配时隙。
正如上面描述的可知,正常的ONU掉线后,该ONU释放注册时使用的逻辑标识,以便OLT分配给新上线的ONU注册时使用。该正常的ONU此时不会再接收OLT发送的分配时隙的消息,更不会作出任何响应。但是流氓ONU,尤其是软件挂死导致的流氓ONU,此时ONU仍然能够接收OLT分配时隙的消息,而OLT根据掉线的ONU的逻辑标识,给该逻辑标识所述标识的ONU分配时隙,通过在该时隙检测到光信号进而快速确定流氓ONU的存在。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式,或者第二方面的第二种可能的实现方式中,所述用户接口模块具体用于给所述掉线的光网络单元分配统一时隙。
上述给所述掉线的ONU分配统一时隙比第一种方式去确定流氓ONU的存在要更为简便、快速。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式,或者第二方面的第三种可能的实现方式中,所述处理器具体用于,当所述掉线的光网络单元的逻辑标识被分配给新注册的光网络单元时,根据逻辑标识的历史分配记录,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的光网络单元为该流氓光网络单元。
另外,所述逻辑标识的历史分配记录表包括有该ONU的逻辑标识、序列号(sequence number,SN)或者媒体接入控制(Media Access Control,MAC)。
所述逻辑标识的历史分配记录表记录:ONU的逻辑标识与ONU的SN的对应关系,或者,记录ONU的逻辑标识与ONU的MAC的对应关系。
当有OLT确定有流氓ONU存在时,OLT查找逻辑标识的历史分配记录,确定当前逻辑标识分配记录的前一次分配记录中所述逻辑标识分配给哪个ONU使用了,具体可以通过前一次分配记录中的SN或者MAC来确定该SN或者MAC所标识的ONU为流氓ONU。
OLT通过确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的ONU为流氓ONU是最准确的,这样可以快速的确定出哪个ONU是流氓ONU,并且可以根据所述历史记录表,将出厂时唯一标识ONU的SN信息发送给上层管理设备,使得该ONU被隔离,避免影响其他正常ONU的通信。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式,或者第二方面的第四种可能的实现方式中,所述处理器具体用于,当所述掉线的光网络单元的逻辑标识还未被分配给新注册的光网络单元时,确定所述逻辑标识所标识的光网络单元为流氓光网络单元。
第三方面,一种光网络单元的检测装置,所述检测装置包括:
检测单元,用于检测到一个或者多个光网络单元掉线;
分配单元,用于给所述掉线的光网络单元分配时隙;
处理单元,用于在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元。
其中,第三方面提供的所述光网络单元的检测装置可以是无源光网络系统中的光线路终端设备,或者集成在所述光线路终端设备中。
结合第三方面,在第三方面的第一种可能的实现方式中,所述分配单元具体用于,根据所述掉线的光网络单元的逻辑标识,给每个所述逻辑标识所标识的光网络单元分配时隙。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述分配单元具体用于给所述掉线的光网络单元分配统一时隙。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第三 种可能的实现方式中,所述处理单元具体用于,当所述掉线的光网络单元的逻辑标识被分配给新注册的光网络单元时,根据逻辑标识的历史分配记录,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的光网络单元为该流氓光网络单元。
结合第三方面或第三方面的第一种至第三种可能的实现方式中的任一种可能的实现方式,在第三方面的第四种可能的实现方式中,所述处理单元具体用于,当所述掉线的光网络单元的逻辑标识还未被分配给新注册的光网络单元时,确定所述逻辑标识所标识的光网络单元为流氓光网络单元。
第四方面,一种光网络单元的检测装置,所述光网络单元的检测装置用于执行第一方面的所述的任意一种可能实现的方式中所记载的光网络单元的检测方法。
其中,第四方面提供的所述光网络单元的检测装置可以是无源光网络系统中的光线路终端设备,或者集成在所述光线路终端设备中。
第五方面,提供一种无源光网络系统,所述光网络系统包括:光线路终端、光分配网络和至少一个光网络单元,所述光线路终端通过光分配网络与所述光网络单元连接,所述光线路终端包括如上述第二方面的任意一任意一种可能实现的光网络单元的检测装置,或者,所述光线路终端包括如上述第三方面的任意一任意一种可能实现的光网络单元的检测装置,或者,所述光线路终端包括上述第四方面提供的一种光网络单元的检测装置。
本发明实施例提供了一种光网络单元的检测方法,通过OLT检测到一个或者多个ONU掉线;所述OLT给所述掉线的ONU分配时隙;所述OLT在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元,进而能够提高流氓ONU的检测效率和准确程度,减少对上行业务的影响。另外,由于该检测方法不需要对ONU进行任何改动,且不需要中断ONU的上行业务,操作方便、可靠,易于执行,极大地提高了用户的体验程度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的一种光网络系统的示意性框图。
图2是根据本发明实施例的光网络单元的检测方法的示意性流程图。
图3是根据本发明实施例的光网络单元的检测的装置的示意性框图。
图4是根据本发明实施例的用于光网络单元的检测的装置的另一示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
请参阅图1,其为本申请提供的光网络单元检测的方法、装置和系统可以适用的无源光网络(PON)系统的网络架构示意图。所述无源光网络系统100包括至少一个光线路终端(OLT)110、多个光网络单元(ONU)120和一个光分配网络(ODN)130。所述光线路终端110通过所述光分配网络130以点到多点的形式连接到所述多个光网络单元120。所述光线路终端110和所述光网络单元120之间可以采用TDM机制、WDM机制或者TDM/WDM混合机制进行通信。其中,从所述光线路终端110到所述光网络单元120的方向定义为下行方向,而从所述光网络单元120到所述光线路终端110的方向为上行方向。
所述无源光网络系统100可以是不需要任何有源器件来实现所述光线路终端110与所述光网络单元120之间的数据分发的通信网络,在具体实施例中,所述光线路终端110与所述光网络单元120之间的数据分发可以通过所述光分配网络130中的无源光器件(比如分光器)来实现。所述无源光网络系统 100可以为ITU-T G.983标准定义的异步传输模式无源光网络(ATM PON)系统或宽带无源光网络(BPON)系统、ITU-T G.984系列标准定义的吉比特无源光网络(GPON)系统、IEEE 802.3ah标准定义的以太网无源光网络(EPON)、波分复用无源光网络(WDM PON)系统或者下一代无源光网络(NGA PON系统,比如ITU-T G.987系列标准定义的XGPON系统、IEEE 802.3av标准定义的10G EPON系统、TDM/WDM混合PON系统等)。上述标准定义的各种无源光网络系统的全部内容通过引用结合在本申请文件中。
所述光线路终端110通常位于中心位置(例如中心局Central Office,CO),其可以统一管理所述多个光网络单元120。所述光线路终端110可以充当所述光网络单元120与上层网络(图未示)之间的媒介,将从所述上层网络接收到的数据作为下行数据转发到所述光网络单元120,以及将从所述光网络单元120接收到的上行数据转发到所述上层网络。所述光线路终端110的具体结构配置可能会因所述无源光网络100的具体类型而异,在一种实施例中,所述光线路终端110可以包括控制模块、交换模块和接口模块(图未示),其中,所述接口模块可以将经过交换模块处理的下行数据转换成下行光信号,并通过所述光分配网络130将下行光信号发送给所述光网络单元120,并且接收所述光网络单元120通过所述光分配网络130发送的上行光信号,并将所述上行光信号信号转换为以太网等数据信号并提供给所述交换模块输出到以太网等网络。
所述光网络单元120可以分布式地设置在用户侧位置(比如用户驻地)。所述光网络单元120可以为用于与所述光线路终端110和用户进行通信的网络设备,具体而言,所述光网络单元120可以充当所述光线路终端110与所述用户之间的媒介,例如,所述光网络单元120可以将从所述光线路终端110接收到的下行数据转发到用户,以及将从用户接收到的数据作为上行数据转发到所述光线路终端110。所述光网络单元120的具体结构配置可能会因所述无源光网络100的具体类型而异,在一种实施例中,所述光网络单元120可以包括光收发组件300,所述光收发组件300用于接收所述光线路终端110通过所述 光分配网络130发送的下行数据信号,并且通过所述光分配网络130向所述光线路终端110发送上行数据信号。应当理解,在本申请文件中,所述光网络单元120的结构与光网络终端(Optical Network Terminal,ONT)相近,因此在本申请文件提供的方案中,光网络单元和光网络终端之间可以互换。
所述光分配网络130可以是一个数据分发系统,其可以包括光纤、光耦合器、光合波/分波器、光分路器和/或其他设备。在一个实施例中,所述光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是无源光器件,具体来说,所述光纤、光耦合器、光合波/分波器、光分路器和/或其他设备可以是在所述光线路终端110和所述光网络单元120之间分发数据信号是不需要电源支持的器件。另外,在其他实施例中,该光分配网络130还可以包括一个或多个处理设备,例如,光放大器或者中继设备(Relay device)。在如图1所示的分支结构中,所述光分配网络130具体可以从所述光线路终端110延伸到所述多个光网络单元120,但也可以配置成其他任何点到多点的结构。
应理解,在本发明实施例中,根据本发明实施例的用于光网络单元的检测的方法和装置,可以应用于采用TDM的PON系统,例如,GPON系统、以太网无源光网络(Ethernet Passive Optical Network,简称为“EPON”)系统、10G EPON系统或10G GPON系统等,为了描述方便,下文中将以GPON系统为例进行说明,但本发明并不限于此。
图2示出了根据本发明实施例的一种光网络单元的检测方法200的示意性流程图,该方法200可以由光网络单元的检测装置执行,例如该方法200可以由OLT执行,所述OLT在PON系统中的位置可以如图1可知。
需要说明的是,下面的实施例
如图2所示,该方法200包括:
S210,OLT检测到一个或者多个ONU掉线。
具体而言,OLT可以有多种检测ONU掉线的方式,可选地可以根据标准G.984.3的规定可知,OLT在连续多个分配给该ONU的时隙内检测不到该ONU发送的光信号,则确定该ONU已经掉线,或者在给该ONU分配的 时隙内接收不到ONU的响应等,确定该ONU掉线。还可以有其它的检测方式,例如OLT通过检测一段时间内的PON端口下的信号检测(signal detect,SD)信息来确定该ONU是否已经掉线,或者检测一段时间内ONU的接收信号强度指示(received signal strength indicator,RSSI)等信息来确定ONU是否掉线,这里不局限于标准规定的检测方式。
需要说明的是,导致ONU掉线的原因有很多,可能是OLT与ONU之间的光纤断裂,导致ONU掉线,或者OLT主动发消息让ONU掉线等。为了快速的识别出流氓ONU的存在,OLT可以主动发送下线消息指示一个或者多个,甚至全部ONU掉线,此时,正常ONU收到OLT的掉线请求后,都会主动掉线,但是流氓ONU,尤其是软件掉死的这种流氓ONU被OLT主动掉线后,仍然认为自己在线,因此还可以继续接收OLT发送的消息,但是对于OLT而言,认为该ONU已经在线,进而导致OLT对该ONU的掉线状态与ONU自身由于软件故障导致的在线状态的状态不一致,真是因为这种不一致,使得OLT首先要确定该ONU是否掉线,不管是主动掉线还是被动掉线,进而通过后续的判断的动作来快速确定是否存在流氓ONU。
S212、所述OLT给所述掉线的ONU分配时隙。
这里首先描述下掉线ONU的状态:正常的ONU掉线后,该ONU会释放掉该ONU注册时使用的逻辑标识等,也不再接收和发送数据等。但是流氓ONU,尤其是ONU的软件程序上出现故障导致的流氓ONU,这种ONU又被称为软件挂死的ONU,该ONU在软件挂死后,该ONU的控制面不能再工作,例如ONU不能接收OLT发送的物理层运行管理维护(physical layer operation,administration and maintenance,PLOAM)消息或者光网络终端管理控制接口(optical network terminal management and control interface,OMCI)消息等,但是转发面仍然可以工作,例如ONU仍然可以接收OLT发送的带宽映射(bandwidth map,BWmap)消息。对OLT而言,无论ONU是主动掉线还是OLT让其掉线,OLT认为该ONU处于掉线状态;但是对于流氓ONU而言,流氓ONU仍然处于在线状态,这就导致OLT与ONU之间对于ONU 的在线和掉线的状态不一致,进而可以利用这个特点,通过给掉线的ONU分配时隙,正常的掉线的ONU此时是不会接收任何OLT发送的消息,但是流氓ONU仍然可以接收OLT分配的时隙,并在OLT分配的时隙发光,进而OLT能快速而准确地识别出有流氓ONU的存在。
OLT给掉线的ONU分配时隙可以有两种可选的方式进行分配:
其一、OLT根据所述掉线的ONU的逻辑标识,给每个所述逻辑标识所标识的ONU分配时隙。
所述逻辑标识为ONU注册时OLT给ONU分配的逻辑标识,例如:对于GPON而言该逻辑标识可以是ONU标识ONU ID,对于EPON而言,该逻辑标识可以是逻辑链路标识(Logical Link Identifier,LLID)。
正如上面描述的可知,正常的ONU掉线后,该ONU释放注册时使用的逻辑标识,以便OLT分配给新上线的ONU注册时使用。该正常的ONU此时不会再接收OLT发送的分配时隙的消息,更不会作出任何响应。但是流氓ONU,尤其是软件挂死导致的流氓ONU,此时ONU仍然能够接收OLT分配时隙的消息,而OLT根据掉线的ONU的逻辑标识,给该逻辑标识所述标识的ONU分配时隙,通过在该时隙检测到光信号进而快速确定流氓ONU的存在。
上述的OLT发送的分配时隙的消息可以是带宽映射(bandwidth map,BWmap)消息,该消息基于PON的G.984的标准规定,是OLT给ONU分配时隙时采用的消息,具体消息格式请参见标准,这里不再详细描述。
通过给掉线的ONU分配时隙去检测该时隙内是否有光就可以快速准确地是否有流氓ONU的存在。只要掉线的ONU中有流氓ONU的存在,就会由于流氓ONU的在线状态与OLT确定的该ONU的掉线状态不一致,导致掉线的ONU仍然认为自己处于在线状态而继续接收OLT分配的时隙,由于此时OLT是正常分配时隙的过程,所以不会影响正常在线ONU的通信,即可以不影响、也不需要中断正常ONU的上行端口的数据通信业务,又可以快速而准确地检测出流氓ONU的存在,极大地提高了系统的安全性和可靠 性。另外,OLT根据掉线的ONU的逻辑标识去分配时隙,这样在检测出流氓ONU的存在后,还可以进一步快速的确定哪个ONU是流氓ONU,进而最终精准定位到流氓ONU自身。具体确定哪个ONU是流氓ONU在下面步骤S216会有详细的介绍,这里就不再赘述。
其二、OLT给所述掉线的ONU分配统一时隙。
这里为了快速地的检测是否有流氓ONU的存在,也可以通过这第二种方式给所有掉线的ONU分配统一的时隙,而不需要像第一种方式一样,给每个掉线的ONU分配一个时隙。
OLT给所述的所有ONU分配一个统一的时隙,只要掉线的ONU中有流氓ONU的存在,就可以在这个时隙内发光,进而被OLT在该时隙内检测到该光信号,从而快速地确定流氓ONU的存在。
上述给所述掉线的ONU分配统一时隙比第一种方式去确定流氓ONU的存在要更为简便、快速。
需要说明的是,OLT给所述掉线的ONU分配统一时隙没有对该时隙做具体的限制,按照TDM的方式去分配该时隙,只要不影响其他正常在线ONU的上行通信业务为前提,这样既可以不中断正常在线ONU的上行通信业务,又可以快速、简便地判断出流氓ONU的存在。
S214、OLT在所述分配的时隙内检测到有光信号,则确定所述掉线的ONU中存在流氓ONU。
由于正常掉线的ONU不会再接受分配时隙等消息,亦不会在分配的时隙去发送光信号,而流氓ONU,尤其是软件掉死的ONU由于该ONU虽然对于OLT而言该ONU已经掉线,但是对ONU自身而言,由于ONU还处于运行状态,因此还可以再接收到OLT发送的分配时隙的消息,该ONU就可以在OLT为其分配的时隙发送光信号,进而OLT可以通过在分配的时隙内检测到该光信号,故确定有流氓ONU的存在。
通过给掉线的ONU分配时隙,在分配的时隙内,只要有流氓ONU的存在,就可以在该时隙内检测到该ONU的光信号。由于这是OLT正常分配 时隙的过程,因此不会影响正常ONU的上行通信业务,也不需要中断ONU的上行通信业务,即可完成整个检测的过程,并且检测过程简单、快速、准确率高,极大地降低了PON系统的维护成本和提高了PON的可靠性和安全性。
进一步地,通过上述确定存在流氓ONU之后,还可以有多种方式进一步确定哪个ONU是流氓ONU,本申请进一步的提出了确定哪个ONU是流氓ONU的方式,但是不限制于该方式。
所述方法还包括:
S216、当所述OLT将所述掉线的ONU的逻辑标识分配给新注册的ONU时,所述OLT根据逻辑标识的历史分配记录,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的ONU为该ONU。
进一步判断出哪个ONU是流氓ONU还需要针对上面步骤S212的第一种分配时隙的方式,即OLT根据掉线的ONU的逻辑标识,给所述逻辑标识所标识的ONU分配时隙,这样就会存在下面两种可选的情况:其一是逻辑标识已经被OLT分配给新注册的ONU使用;二是该逻辑标识还未被OLT分配。下面就针对第一种情况具体描述下步骤S216是如何确定出哪个ONU是流氓ONU。
具体的,正常ONU掉线后释放该ONU注册时用的逻辑注册码,当有新ONU进行注册时,OLT会将该逻辑注册码分配给新ONU用于注册时使用。但是,流氓ONU并没有释放该逻辑注册码,这就会导致一个逻辑注册码同时给两个ONU使用。当OLT根据这个逻辑注册码分配时隙时,新注册的ONU和掉线的流氓ONU都会接收到分配的时隙,并且在分配的时隙内,都发光,这就导致OLT在分配的时隙内,可以检测到光信号,来判定有流氓ONU的存在,但是由于该时隙内两个ONU都发光,导致OLT无法解析该光信号,并且该流氓ONU将进一步导致新注册的ONU无法完成注册过程,所以进一步识别出流氓ONU非常有必要。
由于每次OLT分配的逻辑标识会记录在分配记录表中,形成逻辑标识 的历史分配记录,所述逻辑标识的历史分配记录表包括有该ONU的逻辑标识、序列号(sequence number,SN)或者媒体接入控制(Media Access Control,MAC)等信息,每个ONU的逻辑标识与ONU的SN是一一对应关系,或者每个ONU的逻辑标识与ONU的MAC是一一对应关系。其中,GPON中出厂时ONU被设置有SN,EPON中为MAC,都是出厂时为每个ONU设置的,唯一标识该ONU。当有OLT确定有流氓ONU存在时,OLT查找逻辑标识的历史分配记录,确定当前逻辑标识分配记录的前一次分配记录中所述逻辑标识分配给哪个ONU使用了,具体可以通过前一次分配记录中的SN或者MAC来确定该SN或者MAC所标识的ONU为流氓ONU。
需要说明的是,由于ONU的掉线有时候会发生多次,OLT的逻辑标识码也可以分配给多个新注册的ONU使用。因此,确定流氓ONU时,只有当前有流氓ONU存在时,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的ONU为流氓ONU是最准确的,这样可以快速的确定出哪个ONU是流氓ONU,并且可以根据所述历史记录表,将出厂时唯一标识ONU的SN信息发送给上层管理设备,使得该ONU被隔离,避免影响其他正常ONU的通信。
第二种情况中,该OLT还未将掉线的ONU的逻辑标识分配给新注册的ONU使用,这种情况下如何识别出哪个ONU是流氓ONU请参见步骤S218。
S218、当所述光线路终端将所述掉线的光网络单元的逻辑标识还未分配给新注册的光网络单元时,所述光线路终端确定所述逻辑标识所标识的光网络单元为流氓光网络单元。
具体地,当OLT将所述掉线的ONU的逻辑标识还未分配给新注册的ONU使用时,由于OLT根据掉线的ONU的逻辑标识来分配时隙,所以当OLT在该时隙内检测到光信号,只有该逻辑标识的ONU发出的,因此该逻辑标识所标识的ONU就为流氓ONU。可选地,OLT也可以再查找逻辑标识的历史分配记录,该逻辑标识历史分配记录包括:该ONU的逻辑标识、SN或者MAC等,通过查找该ONU的逻辑标识,获得该ONU的SN或者 MAC,将出厂设置时唯一标识该ONU的SN或者MAC发送到上层设备等,使得该ONU被隔壁出来,避免影响到其它正常ONU的通信业务。
本发明实施例提供了一种光网络单元的检测方法,通过OLT检测到一个或者多个ONU掉线;所述OLT给所述掉线的ONU分配时隙;所述OLT在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元,进而能够提高流氓ONU的检测效率和准确程度,减少对上行业务的影响。另外,由于该检测方法不需要对ONU进行任何改动,且不需要中断ONU的上行业务,操作方便、可靠,易于执行,极大地提高了用户的体验程度。
上文中结合图2,详细描述了根据本发明实施例光网络单元的检测方法,下面将结合图3、图4和图5,详细描述根据本发明实施例的光网络单元的检测装置和光网络系统,其中用于光网络单元的检测装置可以为OLT,该装置可以用于执行上述图2以及对应的实施例的描述的光网络单元的检测方法,下面进一步结合各装置的结构详细描述其检测过程。
图3示出了根据本发明实施例的光网络单元的检测装置300的示意性框图。该装置300至少包括:处理器310、用户接口模块320和所述光模块340。
所述处理器310与用户接口模块320连接,所述用户接口模块320与所述光模块340连接。
所述处理器310,用于根据所述用户接口模块上报的一个或者多个光网络单元的掉线信息,指示所述用户接口模块给所述掉线的光网络单元分配时隙;当通过所述用户接口模块读取到所述光模块在所述分配的时隙检测到有光信号,确定所述掉线的光网络单元中存在流氓光网络单元。
所述用户接口模块320,用于检测到一个或者多个光网络单元掉线时,上报所述光网络单元的掉线信息给所述处理器;根据所述处理器的指示,给所述掉线的光网络单元分配时隙;根据所述光模块的通知,读取所述光模块在所述分配的时隙内检测到有光信号的信息。
所述光模块340,用于在所述分配的时隙内检测到有光信号,通知所述 用户接口模块。
如图300所示,多个ONU的检测设备300可以集成通过背板连接器,集成在背板上,受控于主控板。该ONU的检测设备可以集成在OLT中,也可以为OLT设备,多个OLT设备可以作为单板通过背板连接器进行集成,并与背板的主控板进行连接。
对应于图1的PON系统架构图,从图3可以看出,该ONU的检测设备300的一端与用户侧设备,例如ONU连接,另一侧通过背板与网络设备连接,例如各种服务器等。其中,该ONU的检测设备可以集成在图1的OLT设备中。
该ONU的检测设备300还可以包括:网络交换模块330。其中,所述处理器310分别于用户接口模块320与网络交换模块330连接,另一端通过背板连接器与背板的主控板连接,该处理器310可以用于接收背板上的主控板的指令,以及分别于用户接口模块320和网络交换模块330进行通信。所述用户接口模块320的另一端与光模块连接,一端与网络交换模块330连接,用于将所述网络交换模块接收的数据通过光模块340转发给用户侧设备,或者将用户侧设备的数据通过所述光模块340,将该数据转发给网络交换模块330处理。所述网络交换模块330一端与所述用户接口模块320连接,另一端通过背板连接器与背板上的主控板连接,用于接收网络侧的数据例如来自以太网的数据,将网络侧的数据转换成光信号,发送给用户接口模块320发送给用户侧设备;或者接收用户接口模块320接收的来自用户侧的数据,将该数据成需要发送的网络侧设备的格式,例如,接收来自用户接口模块的光信号,将光信号转换成以太网帧发送到以太网中。
可选地,所述ONT的检测设备300还可以包括:电源模块,用于支持单板所需的电压;和时钟模块,用于支持单板所需的时钟。
需要说明的是,该ONT的检测设备可以集成于局端设备例如OLT中,也可以通过现有的OLT设备的各模块进行检测,例如图300。其中该检测设备300可以为一块一块的单板,通过背板连接器,连接到背板上,该检测设 备300还可以包括背板连接器和背板以及背板上的主控板和直流电源,其中,该直流电源用于给检测设备提供电源。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述用户接口模块可以是(Media Access Control,MAC)MAC芯片或者MAC模块
在实现过程中,下面提到的处理器中在硬件上可以集成逻辑电路或者软件形式的指令完成。
进一步地,所述用户接口模块320根据所述处理器310的指示给掉线的ONU分配时隙可以有两种可选的方式进行分配:
其一,所述用户接口模块320具体用于根据所述掉线的光网络单元的逻辑标识,给每个所述逻辑标识所标识的ONU分配时隙。
其中,所述掉线的ONU的逻辑标识可以是处理器310给所述ONU分配的,然后发送给用户接口模块320;或者,所述掉线的ONU的逻辑标识可以是用户接口模块320分配的。
所述逻辑标识为ONU注册时所述用户接口模块320给ONU分配的逻辑标识,例如:对于GPON而言该逻辑标识可以是ONU标识ONU ID,对于EPON而言,该逻辑标识可以是逻辑链路标识(Logical Link Identifier,LLID)。
正如上面描述的可知,正常的ONU掉线后,该ONU释放注册时使用的逻辑标识,以便所述处理器310指示所述用户接口模块320分配给新上线的ONU注册时使用。该正常的ONU此时不会再接收所述用户接口模块320发送的分配时隙的消息,更不会作出任何响应。但是流氓ONU,尤其是软件挂死导致的流氓ONU,此时ONU仍然能够接收所述用户接口模块320分 配时隙的消息,而所述用户接口模块320根据掉线的ONU的逻辑标识,给该逻辑标识所述标识的ONU分配时隙,通过在该时隙检测到光信号进而快速确定流氓ONU的存在。
上述的所述用户接口模块320发送的分配时隙的消息可以是带宽映射(bandwidth map,BWmap)消息,该消息基于PON的G.984的标准规定,是所述用户接口模块320给ONU分配时隙时采用的消息,具体消息格式请参见标准,这里不再详细描述。
通过光模块340给掉线的ONU分配时隙去检测该时隙内是否有光就可以快速准确地确定是否有流氓ONU的存在。只要掉线的ONU中有流氓ONU的存在,就会由于流氓ONU的在线状态与所述处理器310确定的该ONU的掉线状态不一致,导致掉线的ONU仍然认为自己处于在线状态而继续接收OLT分配的时隙,由于此时OLT是正常分配时隙的过程,所以不会影响正常在线ONU的通信,即可以不影响、也不需要中断正常ONU的上行端口的数据通信业务,又可以快速而准确地检测出流氓ONU的存在,极大地提高了系统的安全性和可靠性。另外,所述用户接口模块320根据所述处理器310的指示,根据掉线的ONU的逻辑标识去分配时隙,这样在检测出流氓ONU的存在后,所述处理器310还可以根据所述逻辑标识的历史分配记录进一步快速的确定哪个ONU是流氓ONU,进而最终精准定位到流氓ONU自身。具体确定哪个ONU是流氓ONU在下面硬件模块中会有详细的介绍,这里就不再赘述。
其二,所述用户接口模块320具体用于给所述掉线的ONU分配统一时隙。
这里为了快速地的检测是否有流氓ONU的存在,也可以通过这第二种方式给所有掉线的ONU分配统一的时隙,而不需要像第一种方式一样,给每个掉线的ONU分配一个时隙。
用户接口模块320给所述的所有ONU分配一个统一的时隙,只要掉线的ONU中有流氓ONU的存在,就可以在这个时隙内发光,进而被用户接 口模块320在该时隙内检测到该光信号,从而快速地确定流氓ONU的存在。
上述给所述掉线的ONU分配统一时隙比第一种方式去确定流氓ONU的存在要更为简便、快速。
需要说明的是,用户接口模块320给所述掉线的ONU分配统一时隙没有对该时隙做具体的限制,按照TDM的方式去分配该时隙,只要不影响其他正常在线ONU的上行通信业务为前提,这样既可以不中断正常在线ONU的上行通信业务,又可以快速、简便地判断出流氓ONU的存在。
进一步地,通过上述用户接口模块320确定存在流氓ONU之后,还可以有多种方式进一步确定哪个ONU是流氓ONU,本申请进一步的提出了确定哪个ONU是流氓ONU的方式,但是不限制于该方式。
这里举例说明上述方式中的其中一种方式是如何确定哪个ONU是流氓ONU:
所述处理器310具体用于,当所述掉线的光网络单元的逻辑标识被分配给新注册的光网络单元时,根据逻辑标识的历史分配记录,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的光网络单元为该流氓光网络单元。
其中,所述掉线的ONU的逻辑标识可以是由处理器310分配,并通过所述用户接口模块320分配给该ONU,用于该ONU注册时使用的。当所述处理器310确定所述ONU掉线,有新注册的ONU需要注册时,可以将该掉线的ONU的逻辑标识的历史分配记录进行存储,用于进一步确定哪个ONU是流氓ONU。
具体地,进一步判断出哪个ONU是流氓ONU还需要针对上面用户接口模块320中提到的第一种分配时隙的方式,即用户接口模块320根据掉线的ONU的逻辑标识,给所述逻辑标识所标识的ONU分配时隙,这样就会存在下面两种可选的情况:其一是逻辑标识已经被用户接口模块320分配给新注册的ONU使用;二是该逻辑标识还未被用户接口模块320分配给其它ONT使用。
下面就针对第一种情况具体描述下是如何确定出哪个ONU是流氓ONU。
具体的,正常ONU掉线后释放该ONU注册时用的逻辑注册码,当有新ONU进行注册时,处理器310会将该逻辑注册码分配给新ONU用于注册时使用。但是,流氓ONU并没有释放该逻辑注册码,这就会导致一个逻辑注册码同时给两个ONU使用。当处理器310指示所述用户接口模块320根据这个逻辑注册码分配时隙时,新注册的ONU和掉线的流氓ONU都会接收到分配的时隙,并且在分配的时隙内,都发光,这就导致光模块340在分配的时隙内,可以检测到光信号,进而通过用户接口模块通知处理器读取该检测结果,根据检测结果来判定有流氓ONU的存在,但是由于该时隙内两个ONU都发光,导致用户接口模块320无法解析该光信号,并且该流氓ONU将进一步导致新注册的ONU无法完成注册过程,所以进一步识别出流氓ONU非常有必要。
由于每次处理器310分配的逻辑标识会记录在分配记录表中,形成历史分配记录,所述逻辑标识的历史分配记录表包括有该ONU的逻辑标识、序列号(sequence number,SN)或者媒体接入控制(Media Access Control,MAC)等信息,每个ONU的逻辑标识与ONU的SN是一一对应关系,或者每个ONU的逻辑标识与ONU的MAC是一一对应关系。其中,GPON中出厂时ONU被设置有SN,EPON中为MAC,都是出厂时为每个ONU设置的,唯一标识该ONU。当用户接口模块320确定有流氓ONU存在时,用户接口模块查找逻辑标识的历史分配记录,确定当前逻辑标识分配记录的前一次分配记录中所述逻辑标识分配给哪个ONU使用了,具体可以通过前一次分配记录中的SN或者MAC来确定该SN或者MAC所标识的ONU为流氓ONU。
需要说明的是,由于ONU的掉线有时候会发生多次,该逻辑标识码也可以分配给多个新注册的ONU使用。因此,确定流氓ONU时,只有当前有流氓ONU存在时,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的ONU为流氓ONU是最准确的,这样可以快 速的确定出哪个ONU是流氓ONU,并且可以根据所述历史记录表,将出厂时唯一标识ONU的SN信息发送给上层管理设备,使得该ONU被隔离,避免影响其他正常ONU的通信。
第二种情况中,该处理器310还未将掉线的ONU的逻辑标识分配给新注册的ONU使用,这种情况下如何识别出哪个ONU请参见下面的描述:
所述处理器310具体用于,当所述掉线的光网络单元的逻辑标识还未被分配给新注册的光网络单元时,确定所述逻辑标识所标识的光网络单元为流氓光网络单元。
具体地,当处理器310将所述掉线的ONU的逻辑标识还未分配给新注册的ONU使用时,由于所述用户接口处理模块根据处理器310为掉线的ONU的逻辑标识来分配时隙,所以当光模块340在该时隙内检测到光信号,只有该逻辑标识的ONU发出的,因此该逻辑标识所标识的ONU就为流氓ONU。可选地,处理器310也可以再查找逻辑标识的历史分配记录,该逻辑标识历史分配记录包括:该ONU的逻辑标识、SN或者MAC等,通过查找该ONU的逻辑标识,获得该ONU的SN或者MAC,将出厂设置时唯一标识该ONU的SN或者MAC发送到上层设备等,使得该ONU被隔壁出来,避免影响到其它正常ONU的通信业务。
本发明实施例提供了一种光网络单元的检测装置,通过检测装置中的处理器检测到一个或者多个ONU掉线;指示所述用户接口模块给所述掉线的光网络单元分配时隙;所述用户接口模块在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元,进而能够提高流氓ONU的检测效率和准确程度,减少对上行业务的影响。另外,由于该检测方法不需要对ONU进行任何改动,且不需要中断ONU的上行业务,操作方便、可靠,易于执行,极大地提高了用户的体验程度。
本发明实施例还提供另一种光网络单元的检测装置400,其特征在于,所述检测装置400包括:
检测单元402,用于检测到一个或者多个光网络单元掉线;
分配单元404,用于给所述掉线的光网络单元分配时隙;
处理单元406,用于在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元。
通过上述检测方法,可以快速、准确地识别出流氓ONU。
进一步地,所述分配单元404具体通过下面可选的两种方式给所述掉线的光网络单元分配时隙:其一,所述分配单元404用于,根据所述掉线的光网络单元的逻辑标识,给每个所述逻辑标识所标识的光网络单元分配时隙;其二,所述分配单元404具体用于给所述掉线的光网络单元分配统一时隙。
针对上述的两种分配时隙的方式的第一种而言,在快速、准确地识别出流氓ONU,还可以通过下面两种方式进一步快速地识别出哪个是流氓ONU:其一种方式是:所述处理单元406具体用于,当所述掉线的光网络单元的逻辑标识被分配给新注册的光网络单元时,根据逻辑标识的历史分配记录,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的光网络单元为该流氓光网络单元。另一种方式,所述处理单元406具体用于,当所述掉线的光网络单元的逻辑标识还未被分配给新注册的光网络单元时,确定所述逻辑标识所标识的光网络单元为流氓光网络单元。
本发明实施例提供了一种光网络单元的检测装置,通过检测装置中的处理器检测到一个或者多个ONU掉线;指示所述用户接口模块给所述掉线的光网络单元分配时隙;所述用户接口模块在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元,进而能够提高流氓ONU的检测效率和准确程度,减少对上行业务的影响。另外,由于该检测方法不需要对ONU进行任何改动,且不需要中断ONU的上行业务,操作方便、可靠,易于执行,极大地提高了用户的体验程度。
本发明实施例还提供了一种光网络单元的检测装置,例如光线路终端,用于执行图2以及对应于图2实施例所描述的一种光网络单元的检测方法,具体请参见图2以及对应于图2的具体实施例的描述,这里不再赘述。
本发明实施例还提供了一种无源光网络系统,如图1所示,所述光网络系统包括:光线路终端、光分配网络和至少一个光网络单元,所述光线路终端通过光分配网络与所述光网络单元连接,所述光线路终端,用于光线路终端检测到一个或者多个光网络单元掉线;所述光线路终端给所述掉线的光网络单元分配时隙;所述光线路终端在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元。
具体光线路终端可以包括如图3所示的光网络单元的检测装置300,其硬件结构图以及各硬件模块所执行的功能请具体参见相应实施例的描述,这里就不再赘述。
具体光线路中还可以包括如图4所示的光网络单元的检测装置400,其硬件结构图以及各硬件模块所执行的功能请具体参见相应实施例的描述,这里就不再赘述。
本发明实施例提供了一种无源光网络系统,通过检测装置中的处理器检测到一个或者多个ONU掉线;指示所述用户接口模块给所述掉线的光网络单元分配时隙;所述用户接口模块在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元,进而能够提高流氓ONU的检测效率和准确程度,减少对上行业务的影响。另外,由于该检测方法不需要对ONU进行任何改动,且不需要中断ONU的上行业务,操作方便、可靠,易于执行,极大地提高了用户的体验程度。
该光模块包括光功率检测模块,该光功率检测模块接收该控制模块生成的该每个上行光信号的触发信号,并在该每个上行光信号的触发信号的持续时间内,分别检测该每个上行光信号的功率。
还应理解,在本发明实施例中,根据本发明实施例的光网络单元的检测装置,可对应于根据本发明实施例的方法的执行主体,还可以对应于上述实施例中提到的各种光网络检测装置,并且该装置中的各个模块的上述和其它操作和/或功能分别为了实现图2中的方法的相应流程,为了简洁,在此不再赘述。
因此,本本发明实施例提供的一种光网络单元的检测方法、装置和系统,通过检测到一个或者多个ONU掉线;给所述掉线的ONU分配时隙;在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元,进而能够提高流氓ONU的检测效率和准确程度,减少对上行业务的影响。另外,由于该检测方法不需要对ONU进行任何改动,且不需要中断ONU的上行业务,操作方便、可靠,易于执行,极大地提高了用户的体验程度。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示 意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种光网络单元的检测方法,其特征在于,所述方法包括:
    光线路终端检测到一个或者多个光网络单元掉线;
    所述光线路终端给所述掉线的光网络单元分配时隙;
    所述光线路终端在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元。
  2. 如权利要求1所述的方法,其特征在于,所述光线路终端给所述掉线的光网络单元分配时隙具体包括:
    所述光线路终端根据所述掉线的光网络单元的逻辑标识,给每个所述逻辑标识所标识的光网络单元分配时隙。
  3. 如权利要求1所述的方法,其特征在于,所述光线路终端给所述掉线的光网络单元分配时隙具体包括:
    所述光线路终端给所述掉线的光网络单元分配统一时隙。
  4. 如权利要求2所述的方法,其特征在于,所述光线路终端在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元的步骤之后还包括:
    当所述光线路终端将所述掉线的光网络单元的逻辑标识分配给新注册的光网络单元时,所述光线路终端根据逻辑标识的历史分配记录,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的光网络单元为该流氓光网络单元。
  5. 如权利要求2所述的方法,其特征在于,所述光线路终端在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元的步骤之后还包括:
    当所述光线路终端将所述掉线的光网络单元的逻辑标识还未分配给新注册的光网络单元时,所述光线路终端确定所述逻辑标识所标识的光网络单元为流氓光网络单元。
  6. 一种光网络单元的检测装置,至少包括:处理器、用户接口模块和光模块,所述处理器与用户接口模块连接,所述用户接口模块与所述光模块连接,其特征在于,
    所述处理器,用于根据所述用户接口模块上报的一个或者多个光网络单元的掉线信息,指示所述用户接口模块给所述掉线的光网络单元分配时隙;当通过所述用户接口模块读取到所述光模块在所述分配的时隙检测到有光信号,确定所述掉线的光网络单元中存在流氓光网络单元;
    所述用户接口模块,用于检测到一个或者多个光网络单元掉线时,上报所述光网络单元的掉线信息给所述处理器;根据所述处理器的指示,给所述掉线的光网络单元分配时隙;根据所述光模块的通知,读取所述光模块在所述分配的时隙内检测到有光信号的信息;
    所述光模块,用于在所述分配的时隙内检测到有光信号,通知所述用户接口模块。
  7. 如权利要求6所示的检测装置,其特征在于,所述用户接口模块具体用于,根据所述掉线的光网络单元的逻辑标识,给每个所述逻辑标识所标识的光网络单元分配时隙。
  8. 如权利要求6所示的检测装置,其特征在于,所述用户接口模块具体用于给所述掉线的光网络单元分配统一时隙。
  9. 如权利要求7所示的检测装置,其特征在于,所述处理器具体用于,当所述掉线的光网络单元的逻辑标识被分配给新注册的光网络单元时,根据逻辑标识的历史分配记录,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的光网络单元为该流氓光网络单元。
  10. 如权利要求7所示的检测装置,其特征在于,所述处理器具体用于,当所述掉线的光网络单元的逻辑标识还未被分配给新注册的光网络单元时,确定所述逻辑标识所标识的光网络单元为流氓光网络单元。
  11. 一种光网络单元的检测装置,其特征在于,所述检测装置包括:
    检测单元,用于检测到一个或者多个光网络单元掉线;
    分配单元,用于给所述掉线的光网络单元分配时隙;
    处理单元,用于在所述分配的时隙内检测到有光信号,则确定所述掉线的光网络单元中存在流氓光网络单元。
  12. 如权利要求11所示的检测装置,其特征在于,所述分配单元具体用于,根据所述掉线的光网络单元的逻辑标识,给每个所述逻辑标识所标识的光网络单元分配时隙。
  13. 如权利要求11所示的检测装置,其特征在于,所述分配单元具体用于给所述掉线的光网络单元分配统一时隙。
  14. 如权利要求12所示的检测装置,其特征在于,所述处理单元具体用于,当所述掉线的光网络单元的逻辑标识被分配给新注册的光网络单元时,根据逻辑标识的历史分配记录,确定所述历史分配记录中当前分配记录的前一次分配记录中所述逻辑标识所标识的光网络单元为该流氓光网络单元。
  15. 如权利要求12所示的检测装置,其特征在于,所述处理单元具体用于,当所述掉线的光网络单元的逻辑标识还未被分配给新注册的光网络单元时,确定所述逻辑标识所标识的光网络单元为流氓光网络单元。
  16. 一种光网络单元的检测装置,其特征在于,所述光网络单元的检测装置用于执行如权利要求1-5所述的任意一种光网络单元的检测方法。
  17. 一种无源光网络系统,其特征在于,所述光网络系统包括:光线路终端、光分配网络和至少一个光网络单元,所述光线路终端通过光分配网络与所述光网络单元连接,其特征在于,所述光线路终端包括如权利要求6-10所述的任意一种光网络单元的检测装置,或者,所述光线路终端包括如权利要求11-15所述的任意一种光网络单元的检测装置,或者,所述光线路终端为如权利要求16所述的光线路终端。
PCT/CN2015/099934 2015-12-30 2015-12-30 光网络单元的检测方法、装置和无源光网络系统 WO2017113214A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580085367.0A CN108370271B (zh) 2015-12-30 2015-12-30 光网络单元的检测方法、装置和无源光网络系统
PCT/CN2015/099934 WO2017113214A1 (zh) 2015-12-30 2015-12-30 光网络单元的检测方法、装置和无源光网络系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099934 WO2017113214A1 (zh) 2015-12-30 2015-12-30 光网络单元的检测方法、装置和无源光网络系统

Publications (1)

Publication Number Publication Date
WO2017113214A1 true WO2017113214A1 (zh) 2017-07-06

Family

ID=59224008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099934 WO2017113214A1 (zh) 2015-12-30 2015-12-30 光网络单元的检测方法、装置和无源光网络系统

Country Status (2)

Country Link
CN (1) CN108370271B (zh)
WO (1) WO2017113214A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021093185A1 (en) * 2020-01-31 2021-05-20 Zte Corporation Fast detection and recovery of a rogue optical network unit using a reset signal
CN114866139A (zh) * 2022-04-07 2022-08-05 上海联虹技术有限公司 故障排查方法、装置、系统、设备及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108983751B (zh) * 2018-07-25 2021-07-06 深圳市元征科技股份有限公司 诊断接头异常处理的方法以及服务器
CN114584211B (zh) * 2020-11-28 2024-05-17 华为技术有限公司 一种流氓光网络终端的检测方法及光通信装置
CN113037371A (zh) * 2021-01-28 2021-06-25 普联国际有限公司 光网络系统中流氓光网络单元的定位方法和装置
CN115734104A (zh) * 2021-08-31 2023-03-03 中兴通讯股份有限公司 通道占用检测与防护方法、光线路终端、网络及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142894A (zh) * 2011-02-12 2011-08-03 华为技术有限公司 一种光网络单元的控制方法、装置及系统
US8768163B2 (en) * 2010-12-23 2014-07-01 Electronics And Telecommunications Research Institute Detecting rogue ONU, OLT and PON system
CN104205739A (zh) * 2012-03-22 2014-12-10 三菱电机株式会社 Pon系统、olt以及onu
US20150326958A1 (en) * 2014-05-08 2015-11-12 Calix, Inc. Rogue optical network interface device detection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8768163B2 (en) * 2010-12-23 2014-07-01 Electronics And Telecommunications Research Institute Detecting rogue ONU, OLT and PON system
CN102142894A (zh) * 2011-02-12 2011-08-03 华为技术有限公司 一种光网络单元的控制方法、装置及系统
CN104205739A (zh) * 2012-03-22 2014-12-10 三菱电机株式会社 Pon系统、olt以及onu
US20150326958A1 (en) * 2014-05-08 2015-11-12 Calix, Inc. Rogue optical network interface device detection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021093185A1 (en) * 2020-01-31 2021-05-20 Zte Corporation Fast detection and recovery of a rogue optical network unit using a reset signal
CN114866139A (zh) * 2022-04-07 2022-08-05 上海联虹技术有限公司 故障排查方法、装置、系统、设备及存储介质

Also Published As

Publication number Publication date
CN108370271B (zh) 2020-04-03
CN108370271A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2017113214A1 (zh) 光网络单元的检测方法、装置和无源光网络系统
US9432114B2 (en) Method for identifying the optical network unit power off reason
US10727939B2 (en) Communication method, optical line terminal, and optical network unit in passive optical network system
EP2683099B1 (en) Optical network unit detection method and device, and passive optical network system
US10652635B2 (en) Passive optical network communications method and apparatus, and system
US9106332B2 (en) Data synchronization method and system, and optical network unit
US10110301B2 (en) Method, apparatus, and system for detecting rogue optical network unit
US20140178067A1 (en) Data communication method in optical network system, optical network unit and system
US9998211B2 (en) Protection switching method, system, and apparatus for passive optical network
US20140010529A1 (en) Method for Detecting and Excluding Failed Optical Network Termination
US20150358076A1 (en) Port-dualized optical line terminal and passive optical network system capable of measuring rssi of standby line in standby port, and method of determining stability of standby line using the same
CN102149027A (zh) 通路切换方法、系统及下行数据发送方法
CN102648590B (zh) 光网络系统的通信方法、系统及装置
WO2012097538A1 (zh) 一种实现全保护方式的方法及系统
CN102487466B (zh) 一种全保护模式下无源光网络中的传输数据的方法及系统
CN111316575B (zh) Pon系统中的数据发送和接收方法、网络设备及系统
CN108924674B (zh) 光网络系统及其监控管理方法
JP6414406B2 (ja) 局側装置、宅側装置、ponシステム及び光通信方法
CN114584211B (zh) 一种流氓光网络终端的检测方法及光通信装置
JP2017011379A (ja) Ponシステム
CN115901179A (zh) 一种非正常发光onu的检测方法、装置和系统
KR102211854B1 (ko) Pon 기반 광통신장치 및 이를 포함하는 epon 시스템
JP2022002375A (ja) 宅側装置、通信装置、ponシステム、及び電源断の通知方法
WO2018049613A1 (zh) 数据通信方法、装置以及系统
CN105263070A (zh) 一种无源光网络的应用程序推送方法、系统和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911843

Country of ref document: EP

Kind code of ref document: A1