WO2017111527A1 - Apparatus for dispensing radiation shielding material including silicon and shielding powder mixed with each other - Google Patents

Apparatus for dispensing radiation shielding material including silicon and shielding powder mixed with each other Download PDF

Info

Publication number
WO2017111527A1
WO2017111527A1 PCT/KR2016/015159 KR2016015159W WO2017111527A1 WO 2017111527 A1 WO2017111527 A1 WO 2017111527A1 KR 2016015159 W KR2016015159 W KR 2016015159W WO 2017111527 A1 WO2017111527 A1 WO 2017111527A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
powder
shielding
discharge
discharge nozzle
Prior art date
Application number
PCT/KR2016/015159
Other languages
French (fr)
Korean (ko)
Inventor
김희수
정연걸
김동진
조광운
김상태
박갑래
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2017111527A1 publication Critical patent/WO2017111527A1/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials

Definitions

  • the present invention relates to a radiation shielding material ejecting apparatus, and more particularly, to a radiation shielding material ejecting apparatus in which silicon and shielding powder are mixed and ejected.
  • Radioactivity refers to a phenomenon in which unstable atomic nuclei emit radiation from the inside in the process of self-decomposition.
  • Some isotopes are those that emit radiation on their own and change from an unstable state into a stable element, which is called a radioisotope.
  • radiation is widely used in national institutions, hospitals, research institutes, universities and non-destructive testing companies for the purpose of energy sources, medical care, agriculture, material analysis, and the like.
  • radiation Since radiation is very high in energy, it has a destructive power that, if directly exposed to radioactivity, can break or damage the organism's gene chain. The nature and effects of radiation do not depend on naturally occurring or artificially generated artificial radiation. Side effects from radiation exposure have been reported: generalized fatigue, hair loss, gastrointestinal disorders, oral disorders, urinary disorders, and genital disorders. It is very important to protect the external exposure of the human body or damage to the device from radiation through radiation shielding.
  • alpha rays There are three types of radiation, alpha rays, beta rays, and gamma rays. Depending on the type, the degree of permeation of the material is different, and the materials and methods that can be shielded are different.
  • materials including lead, boron, iron, hydrogen, heavy concrete, and the like are used as radiation shielding materials.
  • the shielded radiation is gamma rays
  • lead, iron, tungsten compounds or mixtures are used.
  • the radiation to be shielded is a neutron
  • boron, lithium, gadolinium, samarium, europium, cadmium, disprosium compounds or mixtures are used.
  • the conventional shielding material is manufactured by mixing the shielding material in a predetermined amount, it is difficult to determine the amount suitable for the intensity of the radiation energy at the site of use of the shielding material, and thus the shielding material to the shielding object in an amount suitable for the strength of the radiation energy. There was a difficulty in injecting or coating it.
  • the present invention provides a radiation shielding material discharging apparatus in which silicon and shielding powder are mixed so that the shielding material is easily injected into the shielding object and the curing of the shielding material is easy, and the amount of shielding powder can be adjusted and injected according to the energy of radiation. .
  • a radiation shielding material discharging apparatus in which silicon and shielding powder are mixed includes a silicon storage tube in which silicon is stored; A silicon discharge nozzle disposed at a front end of the silicon storage tube to form a path through which the silicon is discharged to the outside, and a discharge port through which the silicon is discharged to the distal end to discharge the silicon to the outside; And a powder supply unit disposed outside the silicon discharge nozzle and supplying shielding powder from the outside of the silicon discharge nozzle to the inside of the silicon discharge nozzle, wherein the silicon moves in the direction of the discharge port from the inside of the silicon discharge nozzle.
  • the shielding powder is supplied from the powder supply unit, the silicon and the shielding powder mixed with each other are discharged to the outside of the silicon discharge nozzle.
  • the silicon discharge nozzle comprises a powder supply hole for introducing the shielding powder, the powder supply unit, a powder storage container for storing the shielding powder; And a powder discharge part disposed at a lower end of the powder storage container and opposed to the powder supply hole to discharge the shielding powder toward the powder supply hole.
  • the powder discharge portion the powder discharge hole formed in the bottom surface of the powder reservoir; And a hole opening / closing member mounted inside the powder reservoir so as to contact the bottom surface of the powder reservoir, and reducing and increasing the opening size of the powder discharge hole by rotating in the powder reservoir.
  • the silicon discharge nozzle is installed on the silicon discharge nozzle so as to be disposed between the powder discharge part and the powder supply hole, and the shielding powder discharged from the powder discharge part is transferred by a predetermined amount toward the powder supply hole to discharge the silicon. It may further include a powder transfer member to be introduced into the nozzle.
  • the powder transfer member may include a rotating shaft installed on the silicon discharge nozzle; And a rotating body rotatably coupled to the rotating shaft to rotate in one direction and having powder accommodating grooves arranged along the rotating direction about the rotating shaft.
  • the stirring apparatus may further include a stirring member rotatably installed in the silicon discharge nozzle and rotating to mix the silicon and the shielding powder introduced into the silicon discharge nozzle.
  • the stirring member may include: a first stirring blade rotatably mounted on an inner surface of the silicon discharge nozzle; And a second stirring blade rotatably mounted on an inner surface of the silicon discharge nozzle and disposed to face the first stirring blade, wherein the first stirring blade and the second stirring blade can rotate in opposite directions to each other. have.
  • the shielding material discharging device in which the silicon and the shielding powder are mixed according to the present invention is used, the shielding material is easily injected into the shielding object and the curing of the shielding material is easy, and the amount of the shielding powder can be adjusted and adjusted according to the energy of the radiation. In this case, the shielding powder is evenly distributed in the silicon and can be discharged.
  • FIG. 1 and 2 are a perspective view and a cross-sectional view for explaining a radiation shielding material discharge device mixed with a silicon and shielding powder according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating the hole opening and closing member shown in FIG. 1.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 and 2 are a perspective view and a cross-sectional view for explaining a radiation shielding material discharge device mixed with silicon and shielding powder according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view for explaining the hole opening and closing member shown in FIG. to be.
  • a radiation shielding material discharging apparatus in which silicon and shielding powder are mixed includes a silicon storage tube 100, a silicon discharge nozzle 200, and a powder supply unit 300. do.
  • the silicon storage tube 100 stores the silicon in the gel state.
  • the silicon storage tube 100 may have a hollow cylindrical shape. Gel-like silicon is stored in the inner space of the cylinder.
  • the silicon discharge nozzle 200 discharges silicon from the silicon storage tube 100.
  • the silicon discharge nozzle 200 is disposed at the front end of the silicon storage tube 100 to form a path through which silicon is discharged to the outside, and a discharge port 210 for discharging silicon is formed at the distal end.
  • the silicon discharge nozzle 200 may be screwed with the silicon storage tube 100, may be a hollow cylindrical shape having a diameter smaller than the silicon storage tube 100, the end portion formed with the outlet 210 It may be formed in the form of decreasing diameter.
  • the silicon discharge nozzle 200 is connected to the powder supply unit 300 and the shielding powder 10 is introduced from the powder supply unit 300.
  • the silicon discharge nozzle 200 has a powder supply hole 220 formed at one side thereof. do.
  • the powder supply hole 220 is preferably positioned close to the silicon storage tube 100 such that the shielding powder 10 introduced through the powder supply unit 300 is sufficiently mixed and discharged in the internal space of the silicon discharge nozzle 200. .
  • the powder supply part 300 supplies the shielding powder to the inside of the silicon discharge nozzle 200.
  • the powder supply part 300 includes a powder storage container 310 and a powder discharge part 320.
  • the powder storage container 310 has an inner space in which the shielding powder 10 may be stored.
  • the powder reservoir 310 is formed on the bottom surface 311, the upper side of the side portion 312 and the side portion 312 perpendicular to the bottom surface 311 and the upper surface portion facing the bottom surface 311 is open It may be a hollow cylindrical shape, the cover 313 is coupled to the open upper surface portion of the cylinder.
  • the powder reservoir 310 is disposed to face the powder supply hole 220 formed in the silicon discharge nozzle (200). To this end, the powder reservoir 310 is disposed above the powder supply hole 220, the axial direction of the powder reservoir 310 is perpendicular to the axial direction of the silicon storage tube 100 can be coupled to the silicon discharge nozzle 200. have.
  • the silicon discharge nozzle ( The coupling portion 230 having the male screw portion 231a on the outer surface is formed to protrude in a cylindrical shape from the outer surface of the silicon discharge nozzle 200 at the position of the powder supply hole 220 in the outer surface of the powder storage container 310.
  • the lower end of the side portion 312 and the coupling portion 230 may be screwed.
  • the powder discharge part 320 allows the shielding powder 10 stored in the powder storage container 310 to be discharged.
  • the powder discharge part 320 includes a powder discharge hole 321 and a hole opening and closing member 322.
  • the powder discharge hole 321 is formed in the bottom surface 311 of the powder reservoir 310.
  • the powder discharge hole 321 may have a fan shape.
  • the hole opening and closing member 322 is mounted inside the powder storage container 310 to contact the bottom surface 311 of the powder storage container 310, and rotates in the powder storage container 310 to open the powder discharge hole 321. And increase and decrease.
  • the hole opening and closing member 322 may have a disc shape in which a portion thereof is cut into a shape corresponding to the shape of the powder discharge hole 321, and the hole opening and closing member 322 is rotated to rotate the hole of the powder discharge hole 321.
  • the adjusting knob 322a may be included to adjust the size of the opening.
  • the adjusting knob 322a may be integrally formed on the side surface of the disc shape and may be exposed to the outside of the powder storage container 310.
  • a slit 314 may be formed along the circumferential direction of the cylinder on the bottom surface 311 of the powder reservoir 310 so that the adjustment knob 322a is exposed to the outside of the powder reservoir 310, and the slit 314 Through the control knob (322a) may be exposed to the outside of the powder reservoir (310).
  • the hole opening and closing member 322 by holding the control knob 322a exposed to the outside of the powder storage container 310 with the user's hand to move the adjustment knob 322a along the slit 314 to open the hole opening and closing member 322 3), the uncut portion of the disc may be positioned above the powder discharge hole 321 or the entire cut portion of the disc may correspond to the powder discharge hole 321 as shown in FIG.
  • the opening size of the powder discharge hole 321 may be adjusted according to the width of the powder discharge hole 321.
  • the powder storage container 310 may be formed of a transparent material so that the degree of opening of the powder discharge hole 321 through the hole opening and closing member 322 is controlled from the outside of the powder storage container 310.
  • the shielding powder may vary depending on the type of radiation to be shielded through the radiation shielding material, and the amount supplied may vary according to the intensity of the radiation.
  • the shielding powder 10 may be one or more selected from the group consisting of boron, lithium, gadolinium, samarium, europium, cadmium, and dysprosium.
  • the shielding powder 10 may be one or more selected from the group consisting of lead, iron, and tungsten.
  • the radiation shielding material discharging device in which the silicon and the shielding powder are mixed may discharge the silicon stored in the silicon storage tube 100 to the outside through the silicon discharge nozzle 200 using a silicon gun. .
  • the shield powder 10 may be supplied to the inside of the silicon discharge nozzle 200 through the powder supply unit 300 to discharge the mixed silicon of the shield powder 10. That is, when the powder discharge hole 321 is opened by rotating the hole opening / closing member 322 mounted to the powder storage container 310 of the powder supply part 300, the shielding powder 10 stored in the powder storage container 310 is the powder storage container ( The shielding powder 10 discharged from the 310 through the powder discharge hole 321 and discharged is dropped toward the powder supply hole 220 formed in the silicon discharge nozzle 200 to be supplied into the silicon discharge nozzle 200. Can be.
  • Silicon mixed with the shielding powder 10 may be used as a shielding agent for radiation. That is, the shielding powder 10 is made of a material capable of shielding radiation of neutrons, X-rays, and gamma rays, and the shielding powder 10 is mixed with silicon to be present in the silicon, so that the discharged silicon is a shielding agent of radiation. It can be used as.
  • the amount of the shielding powder 10 mixed with the silicon may vary depending on the intensity of radiation to be shielded. That is, the shielding powder is controlled by adjusting the opening size of the powder discharge hole 321 through the process of reducing or increasing the opening size of the powder discharge hole 321 by rotating the hole opening and closing member 322 of the powder supply part 300. It is possible to adjust the amount of the discharged (10), thereby adjusting the amount of the shielding powder 10 is mixed in the silicon.
  • the radiation shielding material discharging device mixed with the silicon and shielding powder may further include a powder transfer member 400 and the stirring member 500.
  • the powder transfer member 400 is installed on the silicon discharge nozzle 200 to be disposed between the powder discharge part 320 and the powder supply hole 220, and the shielding powder 10 discharged from the powder discharge part 320. To the powder supply hole 220 by a predetermined amount to be introduced into the silicon discharge nozzle (200).
  • the powder transfer member 400 includes a rotating shaft 410 and a rotating body 420.
  • the rotating shaft 410 is installed on the silicon discharge nozzle 200.
  • the rotating shaft 410 may be installed so that both ends are supported on the inner surface of the coupling portion 230 formed in the silicon discharge nozzle 200 illustrated above.
  • the rotating body 420 transfers the shielding powder 10 discharged from the powder discharge hole 321 of the powder supply part 300 to the inside of the silicon discharge nozzle 200.
  • the rotating body 420 is rotatably coupled to the rotating shaft 410 located below the powder supply unit 300, wherein the rotating body 420 is part of the silicon discharge nozzle through the powder supply hole 220 It is inserted into the inside of the 200 and the remaining portion is located below the powder discharge hole 321 outside the silicon discharge nozzle (200).
  • the rotating body 420 coupled with the rotating shaft 410 rotates in one direction about the rotating shaft 410, and the powder accommodating grooves 421 are arranged along the rotating direction of the rotating body 420.
  • the shielding powder 10 discharged through the powder discharge hole 321 is dropped, and when the shielding powder 10 is located in the powder accommodating groove 421, the rotating body 420 rotates. As the position of the powder accommodating groove 421 is moved, the shielding powder 10 located in the powder accommodating groove 421 is transferred into the silicon discharge nozzle 200.
  • the rotating shaft 410 may be in the form of a gear in which protrusions (gears of a gear) having the same interval are formed on a disk-shaped rotating body.
  • the powder accommodating grooves 421 may be a space between the protrusions of the gear.
  • the stirring member 500 mixes the shielding powder 10 with the silicon so that the shielding powder 10 supplied into the silicon discharge nozzle 200 can be evenly distributed in the silicon on the gel.
  • the stirring member 500 is rotatably installed in the silicon discharge nozzle.
  • the stirring member 500 may include a first stirring blade 510 and a second stirring blade 520.
  • the first stirring blade 510 is rotatably mounted on the inner surface of the silicon discharge nozzle 200.
  • the first wing mounting rib 530 protruding from the inner surface of the silicon discharge nozzle 200 is formed on one inner side of the silicon discharge nozzle 200 and the first rotating shaft (530) is formed on the first wing mounting rib 530.
  • the first stirring blade 510 may be installed to allow free rotation through 410.
  • the second stirring blade 520 is rotatably mounted on the inner surface of the silicon discharge nozzle 200 so as to face the first stirring blade 510.
  • a second wing mounting rib 540 is formed inside the silicon discharge nozzle 200 to face the first wing mounting rib 530 at a predetermined distance, and is formed on the second wing mounting rib 540.
  • the second stirring blade 520 may be installed to allow free rotation through the second rotation shaft 410.
  • the first stirring blade 510 and the second stirring blade 520 is the first stirring blade 510 and the first by the discharge pressure of the silicon when the silicon proceeds toward the outlet 210 in the silicon discharge nozzle 200 2 stirring blade 520 can be rotated by the silicon push.
  • the first stirring blade 510 and the second stirring blade 520 may have opposite directions of rotation.
  • the structure in which the rotation directions of the first stirring blade 510 and the second stirring blade 520 are reversed for example, the inclination angle of the first stirring blade 510 and the second stirring blade 520.
  • the first stirring blade 510 and the second stirring blade 520 may be rotated in opposite directions.
  • the shielding powder 10 supplied into the silicon discharge nozzle 200 may be evenly distributed in the silicon.
  • the process of supplying and mixing the shielding powder 10 will be described below.
  • the shielding powder 10 stored in the powder storage container 310 of the powder supply unit 300 is controlled from the inside of the powder storage container 310 through the powder discharge hole 321 opened by adjusting the opening / closing member 322. Drop toward the rotor 420 located below the powder reservoir (310). The shielding powder 10 falling toward the rotating body 420 is accommodated inward of the powder accommodating grooves 421 of the rotating body 420.
  • the silicon gun when the silicon gun is operated to discharge the silicon from the silicon storage tube 100, the silicon is discharged from the silicon discharge nozzle by the discharge pressure generated when the silicon proceeds in the direction of the discharge port 210 in the silicon discharge nozzle 200. While passing quickly through the path of 200, the portion inserted into the silicon discharge nozzle 200 of the rotor 420, the first stirring blade 510 and the second stirring blade 520 is rotated.
  • the rotating body 420 rotates in a clockwise direction to move the shielding powders 10 accommodated inside the powder accommodating grooves 421 toward the powder supply hole 220, and accommodates the shielding powders 10.
  • the shielding powders 10 fall down from the inside of the powder accommodating grooves 421 to discharge silicon through the powder supply hole 220. It is supplied to the inside of the nozzle 200.
  • the supplied shielding powder 10 is introduced into the silicon on the gel, and the shielding powder 10 moves with the silicon toward the outlet 210.
  • the first stirring blade 510 and the second stirring blade 520 are rotated by the advancing silicon.
  • the first stirring blade 510 and the second stirring blade 520 is rotated in the opposite direction, the shielding powder introduced into the silicon as the first stirring blade 510 and the second stirring blade 520 ( 10) are stirred with the silicon so that the shielding powder 10 is evenly distributed in the silicon.
  • the silicon in which the shielding powder 10 is evenly distributed is discharged to the outside through the outlet 210 of the silicon discharge nozzle 200.
  • the shielding powders 10 discharged from the powder supply unit 300 accommodate the powder of the rotating body 420 of the powder transfer member 400. Interspersed in the grooves 421 and received inside the powder accommodating grooves 421, the rotor 420 rotates to move the shielding powders 10 into the silicon discharge nozzle 200 by a predetermined time interval or a constant speed. As a result, it can be dispersed in the silicon without being concentrated in one region in the silicon. Thus, the shielding powders 10 can be evenly distributed in the silicon.
  • the first mixing blade 510 and the second stirring blade 520 is rotated in the process of moving toward the outlet 210 of the silicon discharge nozzle 200, the silicon mixed with the shielding powder 10,
  • the shielding powders 10 are agitated with the silicon by the rotating first stirring blades 510 and the second stirring blades 520 so that the shielding powders may be more evenly distributed in the silicon in the gel state.
  • the radiation shielding material discharging device mixed with the silicon and shielding powder is not rotated in the direction opposite to the direction in which the rotating body 420 of the powder transfer member 400 rotates in one direction It may be configured to not.
  • the rotation limiting member 600 may be installed next to the powder supply hole 220 of the silicon discharge nozzle 200.
  • the rotation limiting member 600 may be in the form of a ratchet pawl, and is configured to rotate only upwards and not downwards.
  • the end of the rotation limiting member 600 may enter the inside of the powder accommodating groove 421 formed in the rotating body 420 and may be supported by a protrusion (gear tooth) located next to the powder accommodating groove 421.
  • a protrusion gear tooth located next to the powder accommodating groove 421.

Abstract

Disclosed is an apparatus for dispensing a radiation shielding material including silicon and shielding powder mixed with each other. The apparatus for dispensing a radiation shielding material including silicon and shielding powder mixed with each other comprises: a silicon storage tube in which silicon is stored; a silicon dispensing nozzle disposed on the front end of the silicon storage tube to form a passage through which the silicon is dispensed to the outside, the silicon dispensing nozzle having an outlet on the distal end thereof through which the silicon is dispensed to the outside; and a powder supply unit disposed on the exterior of the silicon dispensing nozzle to supply the shielding powder into the silicon dispensing nozzle from the outside of the silicon dispensing nozzle, wherein the shielding powder is supplied into the silicon dispensing nozzle from the powder supply unit when the silicon inside the silicon dispensing nozzle moves toward the outlet, and the shielding powder and the silicon are mixed with each other and then dispensed to the outside of the silicon dispensing nozzle. By using the apparatus for dispensing the radiation shielding material including the silicon and the shielding powder mixed with each other, it is possible to: facilitate injection of the shielding material into an object to be shielded and curing of the shielding material; adjust the amount of the shielding powder depending on radiation energy; and dispense the silicon with the shielding powder uniformly distributed therein.

Description

실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치Radiation shielding material discharge device mixed with silicon and shielding powder
본 발명은 방사선 차폐재 토출장치에 관한 것으로, 더욱 상세하게는 실리콘 및 차폐분말을 혼합하여 토출할 수 있는 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치에 관한 것이다.The present invention relates to a radiation shielding material ejecting apparatus, and more particularly, to a radiation shielding material ejecting apparatus in which silicon and shielding powder are mixed and ejected.
방사능은 불안정한 원자핵이 스스로 붕 괴하는 과정에서 내부로부터 방사선을 방 출하는 현상을 말한다. 동위원소들 중에서 는 스스로 방사선을 방출하고 불안정한 상태에서 안정한 원소로 바뀌는 것 들이 존재하는 데, 이러한 것을 방사성 동위 원 소라고 한다. 현재, 방사선은 에너지원, 의료, 농업, 물질 분석 등의 목적으로, 국가 기관, 병원, 연구소, 대학 및 비파괴 검사 회사 등에서 널리 사용되고 있다. Radioactivity refers to a phenomenon in which unstable atomic nuclei emit radiation from the inside in the process of self-decomposition. Some isotopes are those that emit radiation on their own and change from an unstable state into a stable element, which is called a radioisotope. Currently, radiation is widely used in national institutions, hospitals, research institutes, universities and non-destructive testing companies for the purpose of energy sources, medical care, agriculture, material analysis, and the like.
방사선은 에너지가 매우 높으므로, 방사 능에 직접적으로 노출될 경우 생물의 유 전자 사슬을 끊거나 손상시킬 수 있을 정 도의 파괴력을 지닌다. 방사선이 가지는 성질이나 영향은 자연적으로 발생하는 자연방사선이나 인위적으로 발생시키는 인공방사선에 따라 다르지 않다. 방사선 노출에 의한 부작용으로는 전신피로감, 탈 모, 위장관 장애, 구강 장애, 비뇨기 장애, 생식기 장애 등이 보고되었다. 방사선 차 폐를 통해 방사선으로부터 인체의 외부피 폭이나 기기의 방사선 손상을 방어하는 것이 매우 중요하다. Since radiation is very high in energy, it has a destructive power that, if directly exposed to radioactivity, can break or damage the organism's gene chain. The nature and effects of radiation do not depend on naturally occurring or artificially generated artificial radiation. Side effects from radiation exposure have been reported: generalized fatigue, hair loss, gastrointestinal disorders, oral disorders, urinary disorders, and genital disorders. It is very important to protect the external exposure of the human body or damage to the device from radiation through radiation shielding.
방사선의 종류에는 크게 알파선, 베타선, 감마선이 있다. 이러한 종류에 따라 물질을 투과하는 정도가 다르며, 차폐할 수 있는 물질과 방법이 달리하게 된다.There are three types of radiation, alpha rays, beta rays, and gamma rays. Depending on the type, the degree of permeation of the material is different, and the materials and methods that can be shielded are different.
현재 방사선 차폐물질로 납, 붕소, 철, 수소, 중량 콘크리트 등을 포함하는 물질이 사용되고 있다. 일반적으로 차폐되는 방사선이 감마선인 경우, 납, 철, 텅스텐 화합물 또는 혼합물이 사용된다. 또한, 차폐되는 방사선이 중성자인 경우, 붕소, 리 튬, 가돌리늄, 사마륨, 유로퓸, 카드뮴, 디 스프로슘 화합물 또는 혼합물이 사용되고 있다.Currently, materials including lead, boron, iron, hydrogen, heavy concrete, and the like are used as radiation shielding materials. In general, when the shielded radiation is gamma rays, lead, iron, tungsten compounds or mixtures are used. In addition, when the radiation to be shielded is a neutron, boron, lithium, gadolinium, samarium, europium, cadmium, disprosium compounds or mixtures are used.
종래 대부분의 방사선 차폐재는 납, 붕소, 철, 수소, 중량 콘크리트 등의 물질을 복잡한 일련의 과정을 통해 제조하여야 하므로 제조 과정에 많은 시간이 소요된다. 종래의 차폐재 제조방법과 관련된 종래기술로는 한국등록특허 제10-1145704호, 한국공개특허 제10-2011-0126934호 등이 있다.Most radiation shielding materials in the related art require a lot of time in the manufacturing process, because a material such as lead, boron, iron, hydrogen, heavy concrete must be manufactured through a complex series of processes. Conventional technologies related to the conventional shielding material manufacturing method include Korea Patent Registration No. 10-1145704, Korea Patent Publication No. 10-2011-0126934 and the like.
또한, 종래의 차폐재는 차폐물질의 혼합이 미리 정해진 양으로 혼합되어 제조되므로 차폐재의 사용 현장에서 방사선 에너지의 강도에 적합한 양을 가늠하기 어렵고, 이에 따라 방사선 에너지의 강도에 적합한 양으로 차폐대상에 차폐재를 주입 또는 코팅하는 것에 어려움이 있었다. In addition, the conventional shielding material is manufactured by mixing the shielding material in a predetermined amount, it is difficult to determine the amount suitable for the intensity of the radiation energy at the site of use of the shielding material, and thus the shielding material to the shielding object in an amount suitable for the strength of the radiation energy. There was a difficulty in injecting or coating it.
본 발명은 차폐대상으로의 차폐재의 주입 및 차폐재의 경화가 용이하고, 방사선의 에너지에 따라 차폐분말의 혼합량을 조절하여 주입할 수 있도록 한 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치를 제공하는데 있다.SUMMARY OF THE INVENTION The present invention provides a radiation shielding material discharging apparatus in which silicon and shielding powder are mixed so that the shielding material is easily injected into the shielding object and the curing of the shielding material is easy, and the amount of shielding powder can be adjusted and injected according to the energy of radiation. .
본 발명에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치는 실리콘이 저장되어 있는 실리콘저장튜브; 상기 실리콘저장튜브의 앞단에 배치되어 상기 실리콘이 외부로 배출되는 경로를 형성하고, 말단부에 상기 실리콘이 배출되는 배출구를 형성하여 상기 실리콘을 외부로 배출시키는 실리콘배출노즐; 및 상기 실리콘배출노즐의 외부에 배치되어 상기 실리콘배출노즐의 외부로부터 상기 실리콘배출노즐의 내부로 차폐분말을 공급하는 분말공급부를 포함하고, 상기 실리콘배출노즐의 내부에서 상기 배출구 방향으로 상기 실리콘이 진행할 때 상기 분말공급부로부터 상기 차폐분말이 공급되어서 서로 혼합된 상기 실리콘 및 차폐분말이 상기 실리콘배출노즐의 외부로 배출되는 것을 특징으로 한다.According to the present invention, a radiation shielding material discharging apparatus in which silicon and shielding powder are mixed includes a silicon storage tube in which silicon is stored; A silicon discharge nozzle disposed at a front end of the silicon storage tube to form a path through which the silicon is discharged to the outside, and a discharge port through which the silicon is discharged to the distal end to discharge the silicon to the outside; And a powder supply unit disposed outside the silicon discharge nozzle and supplying shielding powder from the outside of the silicon discharge nozzle to the inside of the silicon discharge nozzle, wherein the silicon moves in the direction of the discharge port from the inside of the silicon discharge nozzle. When the shielding powder is supplied from the powder supply unit, the silicon and the shielding powder mixed with each other are discharged to the outside of the silicon discharge nozzle.
일 실시예로, 상기 실리콘배출노즐은 상기 차폐분말이 인입되기 위한 분말공급구멍을 포함하고, 상기 분말공급부는, 상기 차폐분말을 저장하고 있는 분말저장통; 및 상기 분말저장통의 하단부에 배치되고, 상기 분말공급구멍에 대향되어 상기 차폐분말을 상기 분말공급구멍 방향으로 배출하는 분말배출부를 포함할 수 있다.In one embodiment, the silicon discharge nozzle comprises a powder supply hole for introducing the shielding powder, the powder supply unit, a powder storage container for storing the shielding powder; And a powder discharge part disposed at a lower end of the powder storage container and opposed to the powder supply hole to discharge the shielding powder toward the powder supply hole.
일 실시예로, 상기 분말배출부는, 상기 분말저장통의 바닥면에 형성된 분말배출구멍; 및 상기 분말저장통의 바닥면에 접하도록 상기 분말저장통 내부에 장착되고, 상기 분말저장통 내에서 회전하여 상기 분말배출구멍의 개방되는 크기를 감소 및 증가시키는 구멍개폐부재를 포함할 수 있다.In one embodiment, the powder discharge portion, the powder discharge hole formed in the bottom surface of the powder reservoir; And a hole opening / closing member mounted inside the powder reservoir so as to contact the bottom surface of the powder reservoir, and reducing and increasing the opening size of the powder discharge hole by rotating in the powder reservoir.
다른 실시예로, 상기 분말배출부 및 분말공급구멍의 사이에 배치되도록 상기 실리콘배출노즐 상에 설치되고, 상기 분말배출부로부터 배출된 차폐분말을 상기 분말공급구멍을 향해 일정량씩 이송하여 상기 실리콘배출노즐 내부로 투입하는 분말이송부재를 더 포함할 수 있다.In another embodiment, the silicon discharge nozzle is installed on the silicon discharge nozzle so as to be disposed between the powder discharge part and the powder supply hole, and the shielding powder discharged from the powder discharge part is transferred by a predetermined amount toward the powder supply hole to discharge the silicon. It may further include a powder transfer member to be introduced into the nozzle.
일 예로, 상기 분말이송부재는, 상기 실리콘배출노즐 상에 설치된 회전축; 및 상기 회전축에 회전 가능하게 결합되어 일방향으로 회전하고, 상기 회전축을 중심으로 회전하는 방향을 따라 분말수용홈들이 배열되어 있는 회전체를 포함할 수 있다.As an example, the powder transfer member may include a rotating shaft installed on the silicon discharge nozzle; And a rotating body rotatably coupled to the rotating shaft to rotate in one direction and having powder accommodating grooves arranged along the rotating direction about the rotating shaft.
또 다른 실시예로, 상기 실리콘배출노즐의 내부에 회전 가능하게 설치되고, 회전하여 상기 실리콘과 상기 실리콘배출노즐의 내부로 투입된 차폐분말을 혼합하는 교반부재를 더 포함할 수 있다.In another embodiment, the stirring apparatus may further include a stirring member rotatably installed in the silicon discharge nozzle and rotating to mix the silicon and the shielding powder introduced into the silicon discharge nozzle.
일 예로, 상기 교반부재는, 상기 실리콘배출노즐의 내면에 회전 가능하게 장착된 제1 교반날개; 및 상기 실리콘배출노즐의 내면에 회전 가능하게 장착되고, 상기 제1 교반날개와 마주하도록 배치된 제2 교반날개를 포함하고, 상기 제1 교반날개 및 제2 교반날개는 서로 반대 방향으로 회전할 수 있다.For example, the stirring member may include: a first stirring blade rotatably mounted on an inner surface of the silicon discharge nozzle; And a second stirring blade rotatably mounted on an inner surface of the silicon discharge nozzle and disposed to face the first stirring blade, wherein the first stirring blade and the second stirring blade can rotate in opposite directions to each other. have.
본 발명에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치를 이용하면, 차폐대상으로의 차폐재의 주입 및 차폐재의 경화가 용이하고, 방사선의 에너지에 따라 차폐분말의 혼합량을 조절하여 주입할 수 있고, 실리콘 내에 차폐분말이 고르게 분포하여 토출될 수 있는 효과가 있다.When the radiation shielding material discharging device in which the silicon and the shielding powder are mixed according to the present invention is used, the shielding material is easily injected into the shielding object and the curing of the shielding material is easy, and the amount of the shielding powder can be adjusted and adjusted according to the energy of the radiation. In this case, the shielding powder is evenly distributed in the silicon and can be discharged.
도 1 및 도 2는 본 발명의 일 실시예에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치를 설명하기 위한 사시도 및 단면도이다.1 and 2 are a perspective view and a cross-sectional view for explaining a radiation shielding material discharge device mixed with a silicon and shielding powder according to an embodiment of the present invention.
도 3은 도 1에 도시된 구멍개폐부재를 설명하기 위한 단면도이다.3 is a cross-sectional view illustrating the hole opening and closing member shown in FIG. 1.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, a radiation shielding material discharging apparatus in which silicon and a shielding powder are mixed according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements. In the accompanying drawings, the dimensions of the structures are shown in an enlarged scale than actual for clarity of the invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, action, component, part, or combination thereof described on the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1 및 도 2는 본 발명의 일 실시예에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치를 설명하기 위한 사시도 및 단면도이고, 도 3은 도 1에 도시된 구멍개폐부재를 설명하기 위한 단면도이다.1 and 2 are a perspective view and a cross-sectional view for explaining a radiation shielding material discharge device mixed with silicon and shielding powder according to an embodiment of the present invention, Figure 3 is a cross-sectional view for explaining the hole opening and closing member shown in FIG. to be.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치는 실리콘저장튜브(100), 실리콘배출노즐(200) 및 분말공급부(300)를 포함한다. 1 and 2, a radiation shielding material discharging apparatus in which silicon and shielding powder are mixed according to an embodiment of the present invention includes a silicon storage tube 100, a silicon discharge nozzle 200, and a powder supply unit 300. do.
실리콘저장튜브(100)에는 겔 상태의 실리콘이 저장된다. 일 예로, 실리콘저장튜브(100)는 중공의 원통 형상일 수 있다. 원통의 내부공간에 겔 상태의 실리콘이 저장된다.The silicon storage tube 100 stores the silicon in the gel state. For example, the silicon storage tube 100 may have a hollow cylindrical shape. Gel-like silicon is stored in the inner space of the cylinder.
실리콘배출노즐(200)은 실리콘저장튜브(100)로부터 실리콘을 배출한다. 실리콘배출노즐(200)은 실리콘저장튜브(100)의 앞단에 배치되어 실리콘이 외부로 배출되는 경로를 형성하며, 말단부에 실리콘이 배출되기 위한 배출구(210)가 형성되어 있다. 일 예로, 실리콘배출노즐(200)은 실리콘저장튜브(100)와 나사 결합될 수 있고, 실리콘저장튜브(100)보다 작은 직경을 갖는 중공의 원통 형상일 수 있고, 배출구(210)가 형성된 끝단부는 직경이 감소하는 형태로 형성될 수 있다.The silicon discharge nozzle 200 discharges silicon from the silicon storage tube 100. The silicon discharge nozzle 200 is disposed at the front end of the silicon storage tube 100 to form a path through which silicon is discharged to the outside, and a discharge port 210 for discharging silicon is formed at the distal end. For example, the silicon discharge nozzle 200 may be screwed with the silicon storage tube 100, may be a hollow cylindrical shape having a diameter smaller than the silicon storage tube 100, the end portion formed with the outlet 210 It may be formed in the form of decreasing diameter.
이러한 실리콘배출노즐(200)은 분말공급부(300)와 연결되어 분말공급부(300)로부터 차폐분말(10)이 투입되며, 이를 위해 실리콘배출노즐(200)은 일측에 분말공급구멍(220)이 형성된다. 분말공급구멍(220)은 분말공급부(300)를 통해 투입된 차폐분말(10)이 실리콘배출노즐(200)의 내부공간에서 충분히 혼합되어 배출되도록 실리콘저장튜브(100)에 근접하게 위치하는 것이 바람직하다.The silicon discharge nozzle 200 is connected to the powder supply unit 300 and the shielding powder 10 is introduced from the powder supply unit 300. For this purpose, the silicon discharge nozzle 200 has a powder supply hole 220 formed at one side thereof. do. The powder supply hole 220 is preferably positioned close to the silicon storage tube 100 such that the shielding powder 10 introduced through the powder supply unit 300 is sufficiently mixed and discharged in the internal space of the silicon discharge nozzle 200. .
분말공급부(300)는 실리콘배출노즐(200)의 내부로 차폐분말을 공급한다. 분말공급부(300)는 분말저장통(310) 및 분말배출부(320)를 포함한다.The powder supply part 300 supplies the shielding powder to the inside of the silicon discharge nozzle 200. The powder supply part 300 includes a powder storage container 310 and a powder discharge part 320.
분말저장통(310)은 차폐분말(10)이 저장될 수 있는 내부공간을 갖는다. 예를 들면, 분말저장통(310)은 바닥면(311), 바닥면(311)으로부터 수직한 측면부(312) 및 측면부(312)의 상단에 형성되고 상기 바닥면(311)에 대향하는 상면부는 개방되어 있는 중공의 원통 형상일 수 있고, 원통의 개방된 상면부에는 덮개(313)가 결합된 형태일 수 있다. The powder storage container 310 has an inner space in which the shielding powder 10 may be stored. For example, the powder reservoir 310 is formed on the bottom surface 311, the upper side of the side portion 312 and the side portion 312 perpendicular to the bottom surface 311 and the upper surface portion facing the bottom surface 311 is open It may be a hollow cylindrical shape, the cover 313 is coupled to the open upper surface portion of the cylinder.
이러한 분말저장통(310)은 실리콘배출노즐(200)에 형성된 분말공급구멍(220)에 대향하도록 배치된다. 이를 위해, 분말저장통(310)은 분말공급구멍(220)의 위에서 분말저장통(310)의 축방향이 실리콘저장튜브(100)의 축방향에 수직하게 배치되어 실리콘배출노즐(200)과 결합될 수 있다. 예를 들면, 분말저장통(310)의 측면부(312)의 하단을 바닥면(311)의 아래로 더 연장시켜서 측면부(312)의 하단의 내면에 암나사부(312a)를 형성하고, 실리콘배출노즐(200)에는 외면에 수나사부(231a)를 갖는 결합부(230)를 분말공급구멍(220)의 위치에서 실리콘배출노즐(200)의 외면으로부터 원통 형상으로 돌출되게 형성하여, 분말저장통(310)의 측면부(312)의 하단부와 상기 결합부(230)를 나사 결합할 수 있다.The powder reservoir 310 is disposed to face the powder supply hole 220 formed in the silicon discharge nozzle (200). To this end, the powder reservoir 310 is disposed above the powder supply hole 220, the axial direction of the powder reservoir 310 is perpendicular to the axial direction of the silicon storage tube 100 can be coupled to the silicon discharge nozzle 200. have. For example, by extending the lower end of the side portion 312 of the powder storage container 310 further below the bottom surface 311 to form a female screw portion 312a on the inner surface of the lower end of the side portion 312, the silicon discharge nozzle ( The coupling portion 230 having the male screw portion 231a on the outer surface is formed to protrude in a cylindrical shape from the outer surface of the silicon discharge nozzle 200 at the position of the powder supply hole 220 in the outer surface of the powder storage container 310. The lower end of the side portion 312 and the coupling portion 230 may be screwed.
분말배출부(320)는 분말저장통(310)의 내부에 저장된 차폐분말(10)이 배출되도록 한다. 분말배출부(320)는 분말배출구멍(321) 및 구멍개폐부재(322)를 포함한다.The powder discharge part 320 allows the shielding powder 10 stored in the powder storage container 310 to be discharged. The powder discharge part 320 includes a powder discharge hole 321 and a hole opening and closing member 322.
분말배출구멍(321)은 분말저장통(310)의 바닥면(311)에 형성된다. 일 예로, 분말배출구멍(321)은 부채꼴 형상일 수 있다.The powder discharge hole 321 is formed in the bottom surface 311 of the powder reservoir 310. For example, the powder discharge hole 321 may have a fan shape.
구멍개폐부재(322)는 분말저장통(310)의 바닥면(311)에 접하도록 분말저장통(310) 내부에 장착되고, 분말저장통(310) 내에서 회전하여 분말배출구멍(321)의 개방되는 크기를 감소 및 증가시키도록 구성된다. The hole opening and closing member 322 is mounted inside the powder storage container 310 to contact the bottom surface 311 of the powder storage container 310, and rotates in the powder storage container 310 to open the powder discharge hole 321. And increase and decrease.
일 예로, 구멍개폐부재(322)는 분말배출구멍(321)의 형상에 대응하는 형상으로 일부분이 절개되어 있는 원판 형상일 수 있고, 구멍개폐부재(322)를 회전시켜서 분말배출구멍(321)의 개방되는 크기를 조절하기 위해 조절손잡이(322a)를 포함할 수 있다.For example, the hole opening and closing member 322 may have a disc shape in which a portion thereof is cut into a shape corresponding to the shape of the powder discharge hole 321, and the hole opening and closing member 322 is rotated to rotate the hole of the powder discharge hole 321. The adjusting knob 322a may be included to adjust the size of the opening.
조절손잡이(322a)는 원판 형상의 옆면에 일체로 형성될 수 있고 분말저장통(310)의 외부로 노출될 수 있다. 조절손잡이(322a)가 분말저장통(310)의 외부로 노출되기 위해 분말저장통(310)의 바닥면(311)의 위로는 원통의 원주방향을 따라 슬릿(314)이 형성될 수 있고, 슬릿(314)을 통해 조절손잡이(322a)가 분말저장통(310)의 외부로 노출될 수 있다. The adjusting knob 322a may be integrally formed on the side surface of the disc shape and may be exposed to the outside of the powder storage container 310. A slit 314 may be formed along the circumferential direction of the cylinder on the bottom surface 311 of the powder reservoir 310 so that the adjustment knob 322a is exposed to the outside of the powder reservoir 310, and the slit 314 Through the control knob (322a) may be exposed to the outside of the powder reservoir (310).
이러한 경우, 구멍개폐부재(322)는 분말저장통(310)의 외부로 노출된 조절손잡이(322a)를 사용자의 손으로 잡고 슬릿(314)을 따라 조절손잡이(322a)를 이동시켜서 구멍개폐부재(322)를 돌리면 도 3과 같이 원판의 절개되지 않은 부분이 분말배출구멍(321)의 위로 위치하거나 원판의 절개된 부분 전체가 분말배출구멍(321)에 대응될 수 있고, 원판의 절개되지 않은 부분이 분말배출구멍(321)의 위로 위치하는 폭에 따라 분말배출구멍(321)의 개방되는 크기가 조절될 수 있다.In this case, the hole opening and closing member 322 by holding the control knob 322a exposed to the outside of the powder storage container 310 with the user's hand to move the adjustment knob 322a along the slit 314 to open the hole opening and closing member 322 3), the uncut portion of the disc may be positioned above the powder discharge hole 321 or the entire cut portion of the disc may correspond to the powder discharge hole 321 as shown in FIG. The opening size of the powder discharge hole 321 may be adjusted according to the width of the powder discharge hole 321.
일 예로, 분말저장통(310)은 구멍개폐부재(322)를 통해 분말배출구멍(321)이 개방되는 정도가 조절되는 것을 분말저장통(310) 외부에서 확인할 수 있도록 투명 재질로 형성될 수 있다.For example, the powder storage container 310 may be formed of a transparent material so that the degree of opening of the powder discharge hole 321 through the hole opening and closing member 322 is controlled from the outside of the powder storage container 310.
여기서, 상기 차폐분말은 방사선 차폐재를 통해 차폐하고자 하는 방사선의 종류에 따라 달라질 수 있고, 방사선의 강도에 따라 공급되는 양이 달라질 수 있다.Here, the shielding powder may vary depending on the type of radiation to be shielded through the radiation shielding material, and the amount supplied may vary according to the intensity of the radiation.
*차폐하고자 하는 방사선이 중성자인 경우, 상기 차폐분말(10)은, 보론, 리튬, 가돌리늄, 사마륨, 유로퓸, 카드뮴 및 디스프로슘으로 이루어진 그룹 중 선택된 하나 또는 하나 이상일 수 있다.When the radiation to be shielded is a neutron, the shielding powder 10 may be one or more selected from the group consisting of boron, lithium, gadolinium, samarium, europium, cadmium, and dysprosium.
차폐하고자 하는 방사선이 감마선인 경우, 상기 차폐분말(10)은, 납, 철 및 텅스텐으로 이루어진 그룹 중 선택된 하나 또는 하나 이상일 수 있다.When the radiation to be shielded is gamma rays, the shielding powder 10 may be one or more selected from the group consisting of lead, iron, and tungsten.
이러한 본 발명의 일 실시예에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치는 실리콘 건을 사용하여 실리콘저장튜브(100) 내에 저장된 실리콘을 실리콘배출노즐(200)을 통해 외부로 토출시킬 수 있다.The radiation shielding material discharging device in which the silicon and the shielding powder are mixed according to an embodiment of the present invention may discharge the silicon stored in the silicon storage tube 100 to the outside through the silicon discharge nozzle 200 using a silicon gun. .
실리콘을 배출하는 과정에서 분말공급부(300)를 통해 실리콘배출노즐(200)의 내부로 차폐분말(10)을 공급하여 차폐분말(10)이 혼합된 실리콘을 토출시킬 수 있다. 즉, 분말공급부(300)의 분말저장통(310)에 장착된 구멍개폐부재(322)를 회전시켜서 분말배출구멍(321)을 개방하면 분말저장통(310) 내에 저장된 차폐분말(10)이 분말저장통(310)으로부터 분말배출구멍(321)을 통해 배출되고, 배출되는 차폐분말(10)은 실리콘배출노즐(200)에 형성된 분말공급구멍(220)을 향해 낙하하여 실리콘배출노즐(200)의 내부로 공급될 수 있다. In the process of discharging silicon, the shield powder 10 may be supplied to the inside of the silicon discharge nozzle 200 through the powder supply unit 300 to discharge the mixed silicon of the shield powder 10. That is, when the powder discharge hole 321 is opened by rotating the hole opening / closing member 322 mounted to the powder storage container 310 of the powder supply part 300, the shielding powder 10 stored in the powder storage container 310 is the powder storage container ( The shielding powder 10 discharged from the 310 through the powder discharge hole 321 and discharged is dropped toward the powder supply hole 220 formed in the silicon discharge nozzle 200 to be supplied into the silicon discharge nozzle 200. Can be.
차폐분말(10)이 혼합된 실리콘은 방사선의 차폐제로 이용될 수 있다. 즉, 차폐분말(10)은 중성자, X선 및 감마선의 방사선을 차폐할 수 있는 재료로 이루어져 있고, 이러한 차폐분말(10)이 실리콘과 함께 혼합되어 실리콘 내에 존재하게 되므로 토출된 실리콘은 방사선의 차폐제로서 이용될 수 있다.Silicon mixed with the shielding powder 10 may be used as a shielding agent for radiation. That is, the shielding powder 10 is made of a material capable of shielding radiation of neutrons, X-rays, and gamma rays, and the shielding powder 10 is mixed with silicon to be present in the silicon, so that the discharged silicon is a shielding agent of radiation. It can be used as.
실리콘을 토출시켜서 차폐제로서 이용하는 경우, 차폐하고자 하는 방사선의 강도에 따라 차폐분말(10)이 실리콘과 혼합되는 양을 달리할 수 있다. 즉, 분말공급부(300)의 구멍개폐부재(322)를 회전시켜서 분말배출구멍(321)의 개방되는 크기를 감소시키거나 증가시키는 과정을 통해 분말배출구멍(321)의 개방 크기를 조절하여 차폐분말(10)이 배출되는 양을 조절할 수 있고, 이에 따라 실리콘에 혼합되는 차폐분말(10)의 혼합량을 조절할 수 있다.When the silicon is discharged and used as the shielding agent, the amount of the shielding powder 10 mixed with the silicon may vary depending on the intensity of radiation to be shielded. That is, the shielding powder is controlled by adjusting the opening size of the powder discharge hole 321 through the process of reducing or increasing the opening size of the powder discharge hole 321 by rotating the hole opening and closing member 322 of the powder supply part 300. It is possible to adjust the amount of the discharged (10), thereby adjusting the amount of the shielding powder 10 is mixed in the silicon.
한편, 본 발명의 다른 실시예에 따라, 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치는 분말이송부재(400) 및 교반부재(500)를 더 포함할 수 있다.On the other hand, according to another embodiment of the present invention, the radiation shielding material discharging device mixed with the silicon and shielding powder may further include a powder transfer member 400 and the stirring member 500.
분말이송부재(400)는 분말배출부(320) 및 분말공급구멍(220)의 사이에 배치되도록 실리콘배출노즐(200) 상에 설치되고, 분말배출부(320)로부터 배출된 차폐분말(10)을 분말공급구멍(220)을 향해 일정량씩 이송하여 실리콘배출노즐(200) 내부로 투입한다. 분말이송부재(400)는 회전축(410) 및 회전체(420)를 포함한다.The powder transfer member 400 is installed on the silicon discharge nozzle 200 to be disposed between the powder discharge part 320 and the powder supply hole 220, and the shielding powder 10 discharged from the powder discharge part 320. To the powder supply hole 220 by a predetermined amount to be introduced into the silicon discharge nozzle (200). The powder transfer member 400 includes a rotating shaft 410 and a rotating body 420.
회전축(410)은 실리콘배출노즐(200) 상에 설치된다. 예를 들면, 회전축(410)은 양측 단부가 앞서 예시된 실리콘배출노즐(200)에 형성되는 결합부(230)의 내면에 지지되도록 설치될 수 있다.The rotating shaft 410 is installed on the silicon discharge nozzle 200. For example, the rotating shaft 410 may be installed so that both ends are supported on the inner surface of the coupling portion 230 formed in the silicon discharge nozzle 200 illustrated above.
회전체(420)는 분말공급부(300)의 분말배출구멍(321)으로부터 배출되어 낙하되는 차폐분말(10)을 실리콘배출노즐(200)의 내부로 이송한다. 이를 위해, 회전체(420)는 분말공급부(300)의 아래에 위치한 회전축(410)에 회전 가능하게 결합되며, 이때 회전체(420)는 일부분이 분말공급구멍(220)을 통해 실리콘배출노즐(200)의 내부로 삽입되며 나머지 부분은 실리콘배출노즐(200)의 외부에서 분말배출구멍(321)의 아래에 위치한다. 회전축(410)과 결합된 회전체(420)는 회전축(410)을 중심으로 일방향으로 회전하고, 회전체(420)의 회전방향을 따라 분말수용홈들(421)이 배열된다. 분말수용홈(421)에는 분말배출구멍(321)을 통해 배출되는 차폐분말(10)이 낙하되어 위치하며, 차폐분말(10)이 분말수용홈(421) 내에 위치한 경우 회전체(420)가 회전하면 분말수용홈(421)의 위치가 이동됨에 따라 분말수용홈(421) 내에 위치한 차폐분말(10)은 실리콘배출노즐(200)의 내부로 이송된다.The rotating body 420 transfers the shielding powder 10 discharged from the powder discharge hole 321 of the powder supply part 300 to the inside of the silicon discharge nozzle 200. To this end, the rotating body 420 is rotatably coupled to the rotating shaft 410 located below the powder supply unit 300, wherein the rotating body 420 is part of the silicon discharge nozzle through the powder supply hole 220 It is inserted into the inside of the 200 and the remaining portion is located below the powder discharge hole 321 outside the silicon discharge nozzle (200). The rotating body 420 coupled with the rotating shaft 410 rotates in one direction about the rotating shaft 410, and the powder accommodating grooves 421 are arranged along the rotating direction of the rotating body 420. In the powder accommodating groove 421, the shielding powder 10 discharged through the powder discharge hole 321 is dropped, and when the shielding powder 10 is located in the powder accommodating groove 421, the rotating body 420 rotates. As the position of the powder accommodating groove 421 is moved, the shielding powder 10 located in the powder accommodating groove 421 is transferred into the silicon discharge nozzle 200.
일 예로, 회전축(410)은 원판 모양의 회전체에 같은 간격의 돌기(기어의 이)가 형성된 기어(Gear) 형태일 수 있다. 이러한 경우, 분말수용홈들(421)은 기어의 돌기들 사이의 공간일 수 있다.For example, the rotating shaft 410 may be in the form of a gear in which protrusions (gears of a gear) having the same interval are formed on a disk-shaped rotating body. In this case, the powder accommodating grooves 421 may be a space between the protrusions of the gear.
교반부재(500)는 실리콘배출노즐(200)의 내부로 공급된 차폐분말(10)이 겔 상의 실리콘 내에 고르게 분포할 수 있도록 차폐분말(10)을 실리콘과 혼합한다. 교반부재(500)는 실리콘배출노즐의 내부에 회전 가능하게 설치된다. 교반부재(500)는 제1 교반날개(510) 및 제2 교반날개(520)를 포함할 수 있다.The stirring member 500 mixes the shielding powder 10 with the silicon so that the shielding powder 10 supplied into the silicon discharge nozzle 200 can be evenly distributed in the silicon on the gel. The stirring member 500 is rotatably installed in the silicon discharge nozzle. The stirring member 500 may include a first stirring blade 510 and a second stirring blade 520.
제1 교반날개(510)는 실리콘배출노즐(200)의 내면에 회전 가능하게 장착된다. 예를 들면, 실리콘배출노즐(200)의 내부 일측에 실리콘배출노즐(200)의 내면으로부터 돌출된 제1 날개장착리브(530)를 형성하고 이 제1 날개장착리브(530)에 제1 회전축(410)을 통해 제1 교반날개(510)가 자유회전이 가능하도록 설치될 수 있다.The first stirring blade 510 is rotatably mounted on the inner surface of the silicon discharge nozzle 200. For example, the first wing mounting rib 530 protruding from the inner surface of the silicon discharge nozzle 200 is formed on one inner side of the silicon discharge nozzle 200 and the first rotating shaft (530) is formed on the first wing mounting rib 530. The first stirring blade 510 may be installed to allow free rotation through 410.
제2 교반날개(520)는 실리콘배출노즐(200)의 내면에 회전 가능하게 장착되어 제1 교반날개(510)와 마주하도록 배치된다. 예를 들면, 실리콘배출노즐(200)의 내부에 제1 날개장착리브(530)와 일정 거리 이격되어 마주하는 제2 날개장착리브(540)를 형성하고 이 제2 날개장착리브(540)에 제2 회전축(410)을 통해 제2 교반날개(520)가 자유회전이 가능하도록 설치될 수 있다.The second stirring blade 520 is rotatably mounted on the inner surface of the silicon discharge nozzle 200 so as to face the first stirring blade 510. For example, a second wing mounting rib 540 is formed inside the silicon discharge nozzle 200 to face the first wing mounting rib 530 at a predetermined distance, and is formed on the second wing mounting rib 540. The second stirring blade 520 may be installed to allow free rotation through the second rotation shaft 410.
이러한 제1 교반날개(510) 및 제2 교반날개(520)는 실리콘배출노즐(200) 내에서 배출구(210)를 향해 실리콘이 진행하면 실리콘의 토출 압력에 의해 제1 교반날개(510) 및 제2 교반날개(520)를 실리콘이 밀어서 회전시킬 수 있다. 이때 제1 교반날개(510) 및 제2 교반날개(520)는 회전 방향이 반대일 수 있다. 제1 교반날개(510) 및 제2 교반날개(520)의 회전 방향이 반대가 되도록 하는 구조에는 특별한 제한은 없으며, 예를 들면, 제1 교반날개(510)의 경사각 및 제2 교반날개(520)의 경사각이 대칭이 되도록 하여 제1 교반날개(510) 및 제2 교반날개(520)가 서로 반대 방향으로 회전하도록 할 수 있다.The first stirring blade 510 and the second stirring blade 520 is the first stirring blade 510 and the first by the discharge pressure of the silicon when the silicon proceeds toward the outlet 210 in the silicon discharge nozzle 200 2 stirring blade 520 can be rotated by the silicon push. In this case, the first stirring blade 510 and the second stirring blade 520 may have opposite directions of rotation. There is no particular limitation on the structure in which the rotation directions of the first stirring blade 510 and the second stirring blade 520 are reversed, for example, the inclination angle of the first stirring blade 510 and the second stirring blade 520. ) So that the inclination angle of symmetry is symmetric, the first stirring blade 510 and the second stirring blade 520 may be rotated in opposite directions.
이러한 본 발명의 다른 실시예에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치는 실리콘배출노즐(200) 내부로 공급되는 차폐분말(10)이 실리콘 내에 고르게 분포할 수 있다. 이에 대한 설명을 위해 이하에서는 차폐분말(10)의 공급 및 혼합과정을 설명한다.In the radiation shielding material discharging apparatus in which the silicon and the shielding powder are mixed according to another embodiment of the present invention, the shielding powder 10 supplied into the silicon discharge nozzle 200 may be evenly distributed in the silicon. In order to explain this, the process of supplying and mixing the shielding powder 10 will be described below.
먼저, 분말공급부(300)의 분말저장통(310)에 저장되어 있는 차폐분말(10)은 구멍개폐부재(322)를 조절하여 개방된 분말배출구멍(321)을 통해 분말저장통(310)의 내부로부터 분말저장통(310)의 아래에 위치한 회전체(420)를 향해 낙하한다. 회전체(420)를 향해 낙하하는 차폐분말(10)은 회전체(420)의 분말수용홈들(421)의 내측으로 다수 수용된다.First, the shielding powder 10 stored in the powder storage container 310 of the powder supply unit 300 is controlled from the inside of the powder storage container 310 through the powder discharge hole 321 opened by adjusting the opening / closing member 322. Drop toward the rotor 420 located below the powder reservoir (310). The shielding powder 10 falling toward the rotating body 420 is accommodated inward of the powder accommodating grooves 421 of the rotating body 420.
이러한 상태에서 실리콘 건을 조작하여 실리콘저장튜브(100)로부터 실리콘이 토출되도록 하면, 실리콘이 실리콘배출노즐(200) 내에서 배출구(210) 방향으로 진행할 때 발생되는 토출압력에 의해 실리콘은 실리콘배출노즐(200)의 경로를 빠르게 지나면서 회전체(420)의 실리콘배출노즐(200) 내부로 삽입된 부분, 제1 교반날개(510) 및 제2 교반날개(520)를 회전시키게 된다.In this state, when the silicon gun is operated to discharge the silicon from the silicon storage tube 100, the silicon is discharged from the silicon discharge nozzle by the discharge pressure generated when the silicon proceeds in the direction of the discharge port 210 in the silicon discharge nozzle 200. While passing quickly through the path of 200, the portion inserted into the silicon discharge nozzle 200 of the rotor 420, the first stirring blade 510 and the second stirring blade 520 is rotated.
이 과정에서 회전체(420)는 시계방향으로 회전하여 분말수용홈들(421)의 내측에 수용된 차폐분말(10)들을 분말공급구멍(220)을 향해 이동시키고, 차폐분말(10)들을 수용하고 있는 분말수용홈들(421)의 위치가 분말공급구멍(220)에 근접하면 차폐분말(10)들은 분말수용홈들(421)의 내측으로부터 아래로 낙하하여 분말공급구멍(220)을 통해 실리콘배출노즐(200)의 내부로 공급된다. 공급된 차폐분말(10)은 겔 상의 실리콘 내로 투입되고, 차폐분말(10)은 실리콘과 함께 배출구(210) 방향으로 이동한다.In this process, the rotating body 420 rotates in a clockwise direction to move the shielding powders 10 accommodated inside the powder accommodating grooves 421 toward the powder supply hole 220, and accommodates the shielding powders 10. When the position of the powder accommodating grooves 421 is close to the powder supply hole 220, the shielding powders 10 fall down from the inside of the powder accommodating grooves 421 to discharge silicon through the powder supply hole 220. It is supplied to the inside of the nozzle 200. The supplied shielding powder 10 is introduced into the silicon on the gel, and the shielding powder 10 moves with the silicon toward the outlet 210.
이와 동시에 제1 교반날개(510) 및 제2 교반날개(520)는 진행하는 실리콘에 의해 회전되고 있다. 이때, 제1 교반날개(510) 및 제2 교반날개(520)는 서로 반대방향으로 회전하며, 제1 교반날개(510) 및 제2 교반날개(520)가 회전함에 따라 실리콘 내로 투입된 차폐분말(10)들이 실리콘과 교반되어 차폐분말(10)은 실리콘 내에 고르게 분포하게 된다. 차폐분말(10)이 고르게 분포된 실리콘은 실리콘배출노즐(200)의 배출구(210)를 통해 외부로 배출된다.At the same time, the first stirring blade 510 and the second stirring blade 520 are rotated by the advancing silicon. At this time, the first stirring blade 510 and the second stirring blade 520 is rotated in the opposite direction, the shielding powder introduced into the silicon as the first stirring blade 510 and the second stirring blade 520 ( 10) are stirred with the silicon so that the shielding powder 10 is evenly distributed in the silicon. The silicon in which the shielding powder 10 is evenly distributed is discharged to the outside through the outlet 210 of the silicon discharge nozzle 200.
이러한 본 발명의 다른 실시예에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치는 분말공급부(300)로부터 배출되는 차폐분말(10)들이 분말이송부재(400)의 회전체(420)의 분말수용홈들(421)에 산재되어 분말수용홈들(421)의 내측에 수용된 후 회전체(420)가 회전하여 차폐분말들(10)을 실리콘배출노즐(200) 내부로 소정의 시간 간격 또는 일정한 속도로 공급하게 되므로 실리콘 내에서 일 영역에 집중되지 않고 실리콘 내에 분산될 수 있다. 따라서, 차폐분말들(10)이 실리콘 내에 고르게 분포할 수 있다.In the radiation shielding material discharging apparatus in which the silicon and shielding powder are mixed according to another embodiment of the present invention, the shielding powders 10 discharged from the powder supply unit 300 accommodate the powder of the rotating body 420 of the powder transfer member 400. Interspersed in the grooves 421 and received inside the powder accommodating grooves 421, the rotor 420 rotates to move the shielding powders 10 into the silicon discharge nozzle 200 by a predetermined time interval or a constant speed. As a result, it can be dispersed in the silicon without being concentrated in one region in the silicon. Thus, the shielding powders 10 can be evenly distributed in the silicon.
또한, 차폐분말들(10)이 혼합된 실리콘은 실리콘배출노즐(200)의 배출구(210)를 향해 이동하는 과정에서 제1 교반날개(510) 및 제2 교반날개(520)가 회전되고 있고, 이때 회전하는 제1 교반날개(510) 및 제2 교반날개(520) 의해 차폐분말들(10)이 실리콘과 교반되어 차폐분말들은 겔 상태의 실리콘 내에 더욱 고르게 분포할 수 있다.In addition, the first mixing blade 510 and the second stirring blade 520 is rotated in the process of moving toward the outlet 210 of the silicon discharge nozzle 200, the silicon mixed with the shielding powder 10, In this case, the shielding powders 10 are agitated with the silicon by the rotating first stirring blades 510 and the second stirring blades 520 so that the shielding powders may be more evenly distributed in the silicon in the gel state.
한편, 본 발명의 다른 실시예에 따른 실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치는 분말이송부재(400)의 회전체(420)가 일방향으로는 회전하고 회전하는 방향의 반대 방향으로는 회전되지 않도록 구성될 수 있다. 이를 위해, 실리콘배출노즐(200)의 분말공급구멍(220)의 옆에는 회전제한부재(600)가 설치될 수 있다. 회전제한부재(600)는 래칫(ratchet)용 폴(pawl)의 형태일 수 있고, 상측으로만 회전하고 아래측으로는 회전하지 않도록 구성된다. On the other hand, the radiation shielding material discharging device mixed with the silicon and shielding powder according to another embodiment of the present invention is not rotated in the direction opposite to the direction in which the rotating body 420 of the powder transfer member 400 rotates in one direction It may be configured to not. To this end, the rotation limiting member 600 may be installed next to the powder supply hole 220 of the silicon discharge nozzle 200. The rotation limiting member 600 may be in the form of a ratchet pawl, and is configured to rotate only upwards and not downwards.
이러한 회전제한부재(600)의 끝단부는 회전체(420)에 형성된 분말수용홈(421)의 내측으로 진입되어 있고 분말수용홈(421)의 옆에 위치한 돌기(기어 이)에 지지될 수 있다. 이와 같이 회전제한부재(600)가 회전체(420)에 지지되어 있는 경우, 예를 들면, 회전체(420)는 시계방향으로만 회전하고 반시계방향으로는 회전되지 않을 수 있다.The end of the rotation limiting member 600 may enter the inside of the powder accommodating groove 421 formed in the rotating body 420 and may be supported by a protrusion (gear tooth) located next to the powder accommodating groove 421. As such, when the rotation limiting member 600 is supported by the rotating body 420, for example, the rotating body 420 may rotate only in a clockwise direction and not rotate in a counterclockwise direction.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the presented embodiments is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the invention. Thus, the present invention should not be limited to the embodiments set forth herein but should be construed in the broadest scope consistent with the principles and novel features set forth herein.

Claims (7)

  1. 실리콘이 저장되어 있는 실리콘저장튜브;A silicon storage tube in which silicon is stored;
    상기 실리콘저장튜브의 앞단에 배치되어 상기 실리콘이 외부로 배출되는 경로를 형성하고, 말단부에 상기 실리콘이 배출되는 배출구를 형성하여 상기 실리콘을 외부로 배출시키는 실리콘배출노즐; 및A silicon discharge nozzle disposed at a front end of the silicon storage tube to form a path through which the silicon is discharged to the outside, and a discharge port through which the silicon is discharged to the distal end to discharge the silicon to the outside; And
    상기 실리콘배출노즐의 외부에 배치되어 상기 실리콘배출노즐의 외부로부터 상기 실리콘배출노즐의 내부로 차폐분말을 공급하는 분말공급부를 포함하고,A powder supply unit disposed outside the silicon discharge nozzle and supplying shielding powder from the outside of the silicon discharge nozzle to the inside of the silicon discharge nozzle,
    상기 실리콘배출노즐의 내부에서 상기 배출구 방향으로 상기 실리콘이 진행할 때 상기 분말공급부로부터 상기 차폐분말이 공급되어서 서로 혼합된 상기 실리콘 및 차폐분말이 상기 실리콘배출노즐의 외부로 배출되는 것을 특징으로 하는,When the silicon proceeds in the direction of the discharge port inside the silicon discharge nozzle, the shielding powder is supplied from the powder supply unit, characterized in that the silicon and the shielding powder mixed with each other is discharged to the outside of the silicon discharge nozzle,
    실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치.Radiation shielding material discharge device mixed with silicon and shielding powder.
  2. 제1항에 있어서,The method of claim 1,
    상기 실리콘배출노즐은 상기 차폐분말이 인입되기 위한 분말공급구멍을 포함하고,The silicon discharge nozzle includes a powder supply hole for introducing the shielding powder,
    상기 분말공급부는,The powder supply unit,
    상기 차폐분말을 저장하고 있는 분말저장통; 및A powder storage container for storing the shielding powder; And
    상기 분말저장통의 하단부에 배치되고, 상기 분말공급구멍에 대향되어 상기 차폐분말을 상기 분말공급구멍 방향으로 배출하는 분말배출부를 포함하는 것을 특징으로 하는,It is disposed in the lower end of the powder reservoir, characterized in that it comprises a powder discharge portion that is opposed to the powder supply hole for discharging the shielding powder in the powder supply hole direction,
    실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치.Radiation shielding material discharge device mixed with silicon and shielding powder.
  3. 제2항에 있어서,The method of claim 2,
    상기 분말배출부는,The powder discharge unit,
    상기 분말저장통의 바닥면에 형성된 분말배출구멍; 및A powder discharge hole formed in a bottom surface of the powder storage container; And
    상기 분말저장통의 바닥면에 접하도록 상기 분말저장통 내부에 장착되고, 상기 분말저장통 내에서 회전하여 상기 분말배출구멍의 개방되는 크기를 감소 및 증가시키는 구멍개폐부재를 포함하는 것을 특징으로 하는,It is mounted to the inside of the powder reservoir to contact the bottom surface of the powder reservoir, characterized in that it comprises a hole opening and closing member which rotates in the powder reservoir to reduce and increase the opening size of the powder discharge hole,
    실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치.Radiation shielding material discharge device mixed with silicon and shielding powder.
  4. 제2항에 있어서,The method of claim 2,
    상기 분말배출부 및 분말공급구멍의 사이에 배치되도록 상기 실리콘배출노즐 상에 설치되고, 상기 분말배출부로부터 배출된 차폐분말을 상기 분말공급구멍을 향해 일정량씩 이송하여 상기 실리콘배출노즐 내부로 투입하는 분말이송부재를 더 포함하는 것을 특징으로 하는,It is installed on the silicon discharge nozzle so as to be disposed between the powder discharge part and the powder supply hole, and transfers the shielding powder discharged from the powder discharge part by a predetermined amount toward the powder supply hole and into the silicon discharge nozzle. Characterized in that it further comprises a powder transfer member,
    실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치.Radiation shielding material discharge device mixed with silicon and shielding powder.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 분말이송부재는,The powder transfer member,
    상기 실리콘배출노즐 상에 설치된 회전축; 및A rotating shaft installed on the silicon discharge nozzle; And
    상기 회전축에 회전 가능하게 결합되어 일방향으로 회전하고, 상기 회전축을 중심으로 회전하는 방향을 따라 분말수용홈들이 배열되어 있는 회전체를 포함하는 것을 특징으로 하는, Rotatingly coupled to the rotating shaft is rotated in one direction, characterized in that it comprises a rotating body in which powder accommodating grooves are arranged along the direction of rotation about the rotating shaft,
    실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치.Radiation shielding material discharge device mixed with silicon and shielding powder.
  6. 제1항에 있어서,The method of claim 1,
    상기 실리콘배출노즐의 내부에 회전 가능하게 설치되고, 회전하여 상기 실리콘과 상기 실리콘배출노즐의 내부로 투입된 차폐분말을 혼합하는 교반부재를 더 포함하는 것을 특징으로 하는,And a stirring member rotatably installed in the silicon discharge nozzle and rotating to mix the silicon and the shielding powder introduced into the silicon discharge nozzle.
    실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치.Radiation shielding material discharge device mixed with silicon and shielding powder.
  7. 제6항에 있어서,The method of claim 6,
    상기 교반부재는,The stirring member,
    상기 실리콘배출노즐의 내면에 회전 가능하게 장착된 제1 교반날개; 및A first stirring blade rotatably mounted on an inner surface of the silicon discharge nozzle; And
    상기 실리콘배출노즐의 내면에 회전 가능하게 장착되고, 상기 제1 교반날개와 마주하도록 배치된 제2 교반날개를 포함하고,A second stirring blade rotatably mounted on an inner surface of the silicon discharge nozzle and disposed to face the first stirring blade,
    상기 제1 교반날개 및 제2 교반날개는 서로 반대 방향으로 회전하는 것을 특징으로 하는,The first stirring blade and the second stirring blade, characterized in that rotating in the opposite direction,
    실리콘 및 차폐분말이 혼합된 방사선 차폐재 토출장치.Radiation shielding material discharge device mixed with silicon and shielding powder.
PCT/KR2016/015159 2015-12-23 2016-12-23 Apparatus for dispensing radiation shielding material including silicon and shielding powder mixed with each other WO2017111527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150185005A KR101734902B1 (en) 2015-12-23 2015-12-23 Discharge device for radiation shielding material comprising silicon and shielding powder
KR10-2015-0185005 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017111527A1 true WO2017111527A1 (en) 2017-06-29

Family

ID=58739907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015159 WO2017111527A1 (en) 2015-12-23 2016-12-23 Apparatus for dispensing radiation shielding material including silicon and shielding powder mixed with each other

Country Status (2)

Country Link
KR (1) KR101734902B1 (en)
WO (1) WO2017111527A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156615A (en) * 2008-12-26 2010-07-15 Mitsubishi Heavy Ind Ltd Method and device for radiation shield
WO2012010917A1 (en) * 2010-07-19 2012-01-26 G.I.C. Ipari Szolgáltató És Kereskedelmi Kft. Additive-containing aluminoborosilicate and process for producing the same
KR101401654B1 (en) * 2013-04-02 2014-06-02 주식회사 엠티지 Shielding material, method for manufacturing the same and container for shielding radial rays comprising the same
EP2784782A2 (en) * 2013-03-27 2014-10-01 Mitsubishi Heavy Industries, Ltd. Shielding material collecting nozzle, shielding vessel, and shielding material collecting device and method
KR101523069B1 (en) * 2014-10-31 2015-05-26 신정훈 Apparatus for pouring a neutron and gamma ray shielding material for storage containers of spent nuclear fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156615A (en) * 2008-12-26 2010-07-15 Mitsubishi Heavy Ind Ltd Method and device for radiation shield
WO2012010917A1 (en) * 2010-07-19 2012-01-26 G.I.C. Ipari Szolgáltató És Kereskedelmi Kft. Additive-containing aluminoborosilicate and process for producing the same
EP2784782A2 (en) * 2013-03-27 2014-10-01 Mitsubishi Heavy Industries, Ltd. Shielding material collecting nozzle, shielding vessel, and shielding material collecting device and method
KR101401654B1 (en) * 2013-04-02 2014-06-02 주식회사 엠티지 Shielding material, method for manufacturing the same and container for shielding radial rays comprising the same
KR101523069B1 (en) * 2014-10-31 2015-05-26 신정훈 Apparatus for pouring a neutron and gamma ray shielding material for storage containers of spent nuclear fuel

Also Published As

Publication number Publication date
KR101734902B1 (en) 2017-05-12

Similar Documents

Publication Publication Date Title
US5927351A (en) Drawing station system for radioactive material
US6551232B1 (en) Dosimetry for californium-252(252Cf) neutron-emitting brachytherapy sources and encapsulation, storage, and clinical delivery thereof
EP2040778B1 (en) Radiation shielded syringe assembly
CA2571166A1 (en) Automated dispensing system and associated method of use
US20090069625A1 (en) Shielded cartridge assembly for brachytherapy seeds
EP1915761A2 (en) Radiation-shielding assemblies and methods
WO2017111527A1 (en) Apparatus for dispensing radiation shielding material including silicon and shielding powder mixed with each other
WO2017197557A1 (en) Source loading device for radiotherapy equipment and source loading method
Sarantites et al. A “dwarf ball”: Design, instrumentation, and response characteristics of a 4π light charged-particle multidetector system
WO2022098045A1 (en) Drug injection control device having structure in which rod lock screwed to piston rod is capable of linear motion whilst rotation thereof is restricted inside rod holder
US10755828B2 (en) Device for preparing radioactive solutions
WO2017200298A1 (en) Remote afterloading brachytherapy apparatus using liquid radioactive isotope
US6717163B2 (en) Unit dose syringe shield and measuring applicator
KR100589674B1 (en) An apparatus and a method for dispense of radioactive substance
US20220236432A1 (en) Device for the preparation of radioactive solutions
CN214910679U (en) Novel medicine feeding device for tumor radiotherapy nursing
CN109738938A (en) X-ray canonical reference radiation field detection system and its adjusting method
Bielski Centralne laboratorium ochrony radiologicznej: retrospekcja i współczesność
KR20090111512A (en) Radioisotope solution dispenser and method of dispensing
Murali et al. Dosimetry For Selectron After-Loading Technique
CN114927252A (en) Container device for administering a radiopharmaceutical and method of administering a radiopharmaceutical
CN115745036A (en) Solid water treatment agent feeding device and application method thereof
CN114476390A (en) Blanking mechanism and medicine box
DEWBERRY Low-energy structure studies of odd-odd deformed nuclei and the Coriolis and residual interactions[Ph. D. Thesis]
Dukhovskoj et al. Measurement of total cross sections of proton interaction with Li-6, Li-7, Be-9 nuclei at 2 GeV/c

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879394

Country of ref document: EP

Kind code of ref document: A1